MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogcld Structured version   Visualization version   GIF version

Theorem relogcld 25994
Description: Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
relogcld.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
relogcld (𝜑 → (log‘𝐴) ∈ ℝ)

Proof of Theorem relogcld
StepHypRef Expression
1 relogcld.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 relogcl 25947 . 2 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
31, 2syl 17 1 (𝜑 → (log‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6497  cr 11055  +crp 12920  logclog 25926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134  ax-addf 11135  ax-mulf 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-fi 9352  df-sup 9383  df-inf 9384  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-ioo 13274  df-ioc 13275  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-fl 13703  df-mod 13781  df-seq 13913  df-exp 13974  df-fac 14180  df-bc 14209  df-hash 14237  df-shft 14958  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-limsup 15359  df-clim 15376  df-rlim 15377  df-sum 15577  df-ef 15955  df-sin 15957  df-cos 15958  df-pi 15960  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-starv 17153  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-unif 17161  df-hom 17162  df-cco 17163  df-rest 17309  df-topn 17310  df-0g 17328  df-gsum 17329  df-topgen 17330  df-pt 17331  df-prds 17334  df-xrs 17389  df-qtop 17394  df-imas 17395  df-xps 17397  df-mre 17471  df-mrc 17472  df-acs 17474  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-mulg 18878  df-cntz 19102  df-cmn 19569  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928
This theorem is referenced by:  logcnlem3  26015  advlogexp  26026  logccv  26034  recxpcl  26046  cxpsqrt  26074  loglesqrt  26127  logbrec  26148  logbleb  26149  logblt  26150  ang180lem2  26176  isosctrlem2  26185  atanlogaddlem  26279  atantan  26289  birthdaylem2  26318  birthdaylem3  26319  amgmlem  26355  emcllem1  26361  emcllem2  26362  emcllem3  26363  emcllem4  26364  emcllem5  26365  emcllem6  26366  harmonicubnd  26375  fsumharmonic  26377  zetacvg  26380  lgamgulmlem3  26396  lgamgulmlem4  26397  lgamgulmlem5  26398  lgamgulmlem6  26399  lgamgulm2  26401  lgambdd  26402  lgamcvg2  26420  gamcvg  26421  gamcvg2lem  26424  relgamcl  26427  lgam1  26429  chtf  26473  efchtcl  26476  chtge0  26477  vmacl  26483  chtprm  26518  chtdif  26523  efchtdvds  26524  prmorcht  26543  vmalelog  26569  chtleppi  26574  chtublem  26575  fsumvma2  26578  pclogsum  26579  vmasum  26580  chpval2  26582  chpchtsum  26583  chpub  26584  logfacubnd  26585  logfaclbnd  26586  logexprlim  26589  logfacrlim2  26590  bposlem1  26648  bposlem9  26656  chebbnd1lem1  26833  chebbnd1lem2  26834  chebbnd1lem3  26835  chtppilimlem1  26837  chpchtlim  26843  vmadivsum  26846  vmadivsumb  26847  rplogsumlem1  26848  rplogsumlem2  26849  rpvmasumlem  26851  dchrvmasumlem1  26859  dchrvmasum2lem  26860  dchrvmasum2if  26861  dchrvmasumlem2  26862  dchrvmasumiflem1  26865  dchrvmasumiflem2  26866  rplogsum  26891  mulogsumlem  26895  mulogsum  26896  mulog2sumlem1  26898  mulog2sumlem2  26899  mulog2sumlem3  26900  vmalogdivsum2  26902  vmalogdivsum  26903  2vmadivsumlem  26904  logsqvma  26906  logsqvma2  26907  log2sumbnd  26908  selberglem2  26910  selbergb  26913  selberg2lem  26914  selberg2b  26916  chpdifbndlem1  26917  chpdifbndlem2  26918  logdivbnd  26920  selberg3lem1  26921  selberg3lem2  26922  selberg3  26923  selberg4lem1  26924  selberg4  26925  selberg3r  26933  selberg4r  26934  selberg34r  26935  pntsf  26937  pntsval2  26940  pntrlog2bndlem1  26941  pntrlog2bndlem2  26942  pntrlog2bndlem3  26943  pntrlog2bndlem4  26944  pntrlog2bndlem5  26945  pntrlog2bndlem6  26947  pntrlog2bnd  26948  pntpbnd1a  26949  pntpbnd2  26951  pntibndlem2  26955  pntlemb  26961  pntlemg  26962  pntlemh  26963  pntlemn  26964  pntlemr  26966  pntlemj  26967  pntlemf  26969  pntlemk  26970  pntlemo  26971  ostth2lem4  27000  ostth2  27001  ostth3  27002  xrge0iifcnv  32571  xrge0iifiso  32573  xrge0iifhom  32575  hgt750lemd  33318  logdivsqrle  33320  hgt750lem  33321  hgt750lemb  33326  hgt750leme  33328  tgoldbachgtde  33330  dvrelogpow2b  40571  aks4d1p1p6  40576  aks4d1p1p7  40577  aks4d1p1p5  40578  aks4d1p6  40584  stirlinglem4  44404  stirlinglem11  44411  stirlinglem12  44412  stirlinglem13  44413  lighneallem2  45884  rege1logbrege0  46730  amgmwlem  47335
  Copyright terms: Public domain W3C validator