| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tan3rdpi | Structured version Visualization version GIF version | ||
| Description: The tangent of π / 3 is √3. (Contributed by SN, 2-Sep-2025.) |
| Ref | Expression |
|---|---|
| tan3rdpi | ⊢ (tan‘(π / 3)) = (√‘3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn 26491 | . . . 4 ⊢ π ∈ ℂ | |
| 2 | 3cn 12343 | . . . 4 ⊢ 3 ∈ ℂ | |
| 3 | 3ne0 12368 | . . . 4 ⊢ 3 ≠ 0 | |
| 4 | 1, 2, 3 | divcli 12005 | . . 3 ⊢ (π / 3) ∈ ℂ |
| 5 | sincos3rdpi 26549 | . . . . 5 ⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) | |
| 6 | 5 | simpri 485 | . . . 4 ⊢ (cos‘(π / 3)) = (1 / 2) |
| 7 | 0re 11259 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 8 | halfgt0 12478 | . . . . 5 ⊢ 0 < (1 / 2) | |
| 9 | 7, 8 | gtneii 11369 | . . . 4 ⊢ (1 / 2) ≠ 0 |
| 10 | 6, 9 | eqnetri 3010 | . . 3 ⊢ (cos‘(π / 3)) ≠ 0 |
| 11 | tanval 16160 | . . 3 ⊢ (((π / 3) ∈ ℂ ∧ (cos‘(π / 3)) ≠ 0) → (tan‘(π / 3)) = ((sin‘(π / 3)) / (cos‘(π / 3)))) | |
| 12 | 4, 10, 11 | mp2an 692 | . 2 ⊢ (tan‘(π / 3)) = ((sin‘(π / 3)) / (cos‘(π / 3))) |
| 13 | 5 | simpli 483 | . . 3 ⊢ (sin‘(π / 3)) = ((√‘3) / 2) |
| 14 | 13, 6 | oveq12i 7441 | . 2 ⊢ ((sin‘(π / 3)) / (cos‘(π / 3))) = (((√‘3) / 2) / (1 / 2)) |
| 15 | 2 | a1i 11 | . . . . . 6 ⊢ (⊤ → 3 ∈ ℂ) |
| 16 | 15 | sqrtcld 15472 | . . . . 5 ⊢ (⊤ → (√‘3) ∈ ℂ) |
| 17 | 1cnd 11252 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
| 18 | 2cnd 12340 | . . . . 5 ⊢ (⊤ → 2 ∈ ℂ) | |
| 19 | ax-1ne0 11220 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 20 | 19 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 21 | 2ne0 12366 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (⊤ → 2 ≠ 0) |
| 23 | 16, 17, 18, 20, 22 | divcan7d 12067 | . . . 4 ⊢ (⊤ → (((√‘3) / 2) / (1 / 2)) = ((√‘3) / 1)) |
| 24 | 16 | div1d 12031 | . . . 4 ⊢ (⊤ → ((√‘3) / 1) = (√‘3)) |
| 25 | 23, 24 | eqtrd 2776 | . . 3 ⊢ (⊤ → (((√‘3) / 2) / (1 / 2)) = (√‘3)) |
| 26 | 25 | mptru 1547 | . 2 ⊢ (((√‘3) / 2) / (1 / 2)) = (√‘3) |
| 27 | 12, 14, 26 | 3eqtri 2768 | 1 ⊢ (tan‘(π / 3)) = (√‘3) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2939 ‘cfv 6559 (class class class)co 7429 ℂcc 11149 0cc0 11151 1c1 11152 / cdiv 11916 2c2 12317 3c3 12318 √csqrt 15268 sincsin 16095 cosccos 16096 tanctan 16097 πcpi 16098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-inf2 9677 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 ax-addf 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-of 7694 df-om 7884 df-1st 8010 df-2nd 8011 df-supp 8182 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-er 8741 df-map 8864 df-pm 8865 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-fsupp 9398 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-q 12987 df-rp 13031 df-xneg 13150 df-xadd 13151 df-xmul 13152 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-shft 15102 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-ef 16099 df-sin 16101 df-cos 16102 df-tan 16103 df-pi 16104 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-starv 17308 df-sca 17309 df-vsca 17310 df-ip 17311 df-tset 17312 df-ple 17313 df-ds 17315 df-unif 17316 df-hom 17317 df-cco 17318 df-rest 17463 df-topn 17464 df-0g 17482 df-gsum 17483 df-topgen 17484 df-pt 17485 df-prds 17488 df-xrs 17543 df-qtop 17548 df-imas 17549 df-xps 17551 df-mre 17625 df-mrc 17626 df-acs 17628 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-submnd 18793 df-mulg 19082 df-cntz 19331 df-cmn 19796 df-psmet 21348 df-xmet 21349 df-met 21350 df-bl 21351 df-mopn 21352 df-fbas 21353 df-fg 21354 df-cnfld 21357 df-top 22890 df-topon 22907 df-topsp 22929 df-bases 22943 df-cld 23017 df-ntr 23018 df-cls 23019 df-nei 23096 df-lp 23134 df-perf 23135 df-cn 23225 df-cnp 23226 df-haus 23313 df-tx 23560 df-hmeo 23753 df-fil 23844 df-fm 23936 df-flim 23937 df-flf 23938 df-xms 24320 df-ms 24321 df-tms 24322 df-cncf 24894 df-limc 25891 df-dv 25892 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |