| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > argcj | Structured version Visualization version GIF version | ||
| Description: The argument of the conjugate of a complex number 𝐴. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| efiargd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| efiargd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| arginv.1 | ⊢ (𝜑 → ¬ -𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| argcj | ⊢ (𝜑 → (ℑ‘(log‘(∗‘𝐴))) = -(ℑ‘(log‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 2 | efiargd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ≠ 0) |
| 4 | arginv.1 | . . . . . . 7 ⊢ (𝜑 → ¬ -𝐴 ∈ ℝ+) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → ¬ -𝐴 ∈ ℝ+) |
| 6 | rpneg 13033 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ+ ↔ ¬ -𝐴 ∈ ℝ+)) | |
| 7 | 6 | biimpar 477 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ ¬ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+) |
| 8 | 1, 3, 5, 7 | syl21anc 837 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ+) |
| 9 | 8 | relogcld 26568 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (log‘𝐴) ∈ ℝ) |
| 10 | 9 | reim0d 15231 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (ℑ‘(log‘𝐴)) = 0) |
| 11 | 1 | cjred 15232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (∗‘𝐴) = 𝐴) |
| 12 | 11 | fveq2d 6876 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (log‘(∗‘𝐴)) = (log‘𝐴)) |
| 13 | 12 | fveq2d 6876 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (ℑ‘(log‘(∗‘𝐴))) = (ℑ‘(log‘𝐴))) |
| 14 | 10 | negeqd 11468 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → -(ℑ‘(log‘𝐴)) = -0) |
| 15 | neg0 11521 | . . . 4 ⊢ -0 = 0 | |
| 16 | 14, 15 | eqtrdi 2785 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → -(ℑ‘(log‘𝐴)) = 0) |
| 17 | 10, 13, 16 | 3eqtr4d 2779 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (ℑ‘(log‘(∗‘𝐴))) = -(ℑ‘(log‘𝐴))) |
| 18 | efiargd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℂ) |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → (ℑ‘𝐴) = 0) | |
| 21 | 19, 20 | reim0bd 15206 | . . . . . . . 8 ⊢ ((𝜑 ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ) |
| 22 | 21 | ex 412 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ)) |
| 23 | 22 | necon3bd 2945 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 ∈ ℝ → (ℑ‘𝐴) ≠ 0)) |
| 24 | 23 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ≠ 0) |
| 25 | logcj 26551 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴))) | |
| 26 | 18, 24, 25 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴))) |
| 27 | 26 | fveq2d 6876 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘(log‘(∗‘𝐴))) = (ℑ‘(∗‘(log‘𝐴)))) |
| 28 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ) |
| 29 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ≠ 0) |
| 30 | 28, 29 | logcld 26515 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → (log‘𝐴) ∈ ℂ) |
| 31 | 30 | imcjd 15211 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))) |
| 32 | 27, 31 | eqtrd 2769 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘(log‘(∗‘𝐴))) = -(ℑ‘(log‘𝐴))) |
| 33 | 17, 32 | pm2.61dan 812 | 1 ⊢ (𝜑 → (ℑ‘(log‘(∗‘𝐴))) = -(ℑ‘(log‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6527 ℂcc 11119 ℝcr 11120 0cc0 11121 -cneg 11459 ℝ+crp 13000 ∗ccj 15102 ℑcim 15104 logclog 26499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ioc 13358 df-ico 13359 df-icc 13360 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-seq 14009 df-exp 14069 df-fac 14280 df-bc 14309 df-hash 14337 df-shft 15073 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-limsup 15474 df-clim 15491 df-rlim 15492 df-sum 15690 df-ef 16070 df-sin 16072 df-cos 16073 df-pi 16075 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-rest 17421 df-topn 17422 df-0g 17440 df-gsum 17441 df-topgen 17442 df-pt 17443 df-prds 17446 df-xrs 17501 df-qtop 17506 df-imas 17507 df-xps 17509 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-mulg 19036 df-cntz 19285 df-cmn 19748 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cld 22942 df-ntr 22943 df-cls 22944 df-nei 23021 df-lp 23059 df-perf 23060 df-cn 23150 df-cnp 23151 df-haus 23238 df-tx 23485 df-hmeo 23678 df-fil 23769 df-fm 23861 df-flim 23862 df-flf 23863 df-xms 24244 df-ms 24245 df-tms 24246 df-cncf 24807 df-limc 25804 df-dv 25805 df-log 26501 |
| This theorem is referenced by: constrinvcl 33723 |
| Copyright terms: Public domain | W3C validator |