Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourier2 Structured version   Visualization version   GIF version

Theorem fourier2 44023
Description: Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of 𝐹 at any given point 𝑋. See fourierd 44018 for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourier2.f (𝜑𝐹:ℝ⟶ℝ)
fourier2.t 𝑇 = (2 · π)
fourier2.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourier2.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourier2.dmdv (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
fourier2.dvcn (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
fourier2.rlim ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourier2.llim ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourier2.x (𝜑𝑋 ∈ ℝ)
fourier2.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourier2.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fourier2 (𝜑 → ∃𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐹,𝑙,𝑛,𝑟,𝑥   𝑥,𝐺   𝑇,𝑛,𝑥   𝑋,𝑙,𝑛,𝑟,𝑥   𝜑,𝑙,𝑛,𝑟,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑟,𝑙)   𝐵(𝑥,𝑟,𝑙)   𝑇(𝑟,𝑙)   𝐺(𝑛,𝑟,𝑙)

Proof of Theorem fourier2
StepHypRef Expression
1 fourier2.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourier2.t . . . . . 6 𝑇 = (2 · π)
3 fourier2.per . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fourier2.g . . . . . 6 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
5 fourier2.dmdv . . . . . 6 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
6 fourier2.dvcn . . . . . 6 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
7 fourier2.rlim . . . . . 6 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
8 fourier2.llim . . . . . 6 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
9 fourier2.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
101, 2, 3, 4, 5, 6, 7, 8, 9fourierdlem106 44008 . . . . 5 (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
1110simpld 495 . . . 4 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
12 n0 4290 . . . 4 (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ↔ ∃𝑙 𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
1311, 12sylib 217 . . 3 (𝜑 → ∃𝑙 𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
14 simpr 485 . . . . . 6 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → 𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
1510simprd 496 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
16 n0 4290 . . . . . . . . . 10 (((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
1715, 16sylib 217 . . . . . . . . 9 (𝜑 → ∃𝑟 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
1817adantr 481 . . . . . . . 8 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → ∃𝑟 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
19 simpr 485 . . . . . . . . . . 11 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
201ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → 𝐹:ℝ⟶ℝ)
213ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
225ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
236ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → 𝐺 ∈ (dom 𝐺cn→ℂ))
247ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
258ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
269ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → 𝑋 ∈ ℝ)
2714adantr 481 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → 𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
28 fourier2.a . . . . . . . . . . . 12 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
29 fourier2.b . . . . . . . . . . . 12 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
3020, 2, 21, 4, 22, 23, 24, 25, 26, 27, 19, 28, 29fourierd 44018 . . . . . . . . . . 11 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))
3119, 30jca 512 . . . . . . . . . 10 (((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) ∧ 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)) → (𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)))
3231ex 413 . . . . . . . . 9 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → (𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) → (𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))))
3332eximdv 1919 . . . . . . . 8 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → (∃𝑟 𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) → ∃𝑟(𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))))
3418, 33mpd 15 . . . . . . 7 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → ∃𝑟(𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)))
35 df-rex 3071 . . . . . . 7 (∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2) ↔ ∃𝑟(𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)))
3634, 35sylibr 233 . . . . . 6 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → ∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))
3714, 36jca 512 . . . . 5 ((𝜑𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)) → (𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ∧ ∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)))
3837ex 413 . . . 4 (𝜑 → (𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) → (𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ∧ ∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))))
3938eximdv 1919 . . 3 (𝜑 → (∃𝑙 𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) → ∃𝑙(𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ∧ ∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))))
4013, 39mpd 15 . 2 (𝜑 → ∃𝑙(𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ∧ ∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)))
41 df-rex 3071 . 2 (∃𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2) ↔ ∃𝑙(𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ∧ ∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)))
4240, 41sylibr 233 1 (𝜑 → ∃𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wex 1780  wcel 2105  wne 2940  wrex 3070  cdif 3893  c0 4266  cmpt 5169  dom cdm 5607  cres 5609  wf 6461  cfv 6465  (class class class)co 7316  Fincfn 8782  cc 10948  cr 10949  0cc0 10950   + caddc 10953   · cmul 10955  +∞cpnf 11085  -∞cmnf 11086  -cneg 11285   / cdiv 11711  cn 12052  2c2 12107  0cn0 12312  (,)cioo 13158  (,]cioc 13159  [,)cico 13160  Σcsu 15473  sincsin 15849  cosccos 15850  πcpi 15852  cnccncf 24119  citg 24862   lim climc 25106   D cdv 25107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cc 10270  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028  ax-addf 11029  ax-mulf 11030
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-symdif 4186  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-disj 5052  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-ofr 7575  df-om 7759  df-1st 7877  df-2nd 7878  df-supp 8026  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-oadd 8349  df-omul 8350  df-er 8547  df-map 8666  df-pm 8667  df-ixp 8735  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fsupp 9205  df-fi 9246  df-sup 9277  df-inf 9278  df-oi 9345  df-dju 9736  df-card 9774  df-acn 9777  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-xnn0 12385  df-z 12399  df-dec 12517  df-uz 12662  df-q 12768  df-rp 12810  df-xneg 12927  df-xadd 12928  df-xmul 12929  df-ioo 13162  df-ioc 13163  df-ico 13164  df-icc 13165  df-fz 13319  df-fzo 13462  df-fl 13591  df-mod 13669  df-seq 13801  df-exp 13862  df-fac 14067  df-bc 14096  df-hash 14124  df-shft 14854  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-limsup 15256  df-clim 15273  df-rlim 15274  df-sum 15474  df-ef 15853  df-sin 15855  df-cos 15856  df-pi 15858  df-struct 16922  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-mulr 17050  df-starv 17051  df-sca 17052  df-vsca 17053  df-ip 17054  df-tset 17055  df-ple 17056  df-ds 17058  df-unif 17059  df-hom 17060  df-cco 17061  df-rest 17207  df-topn 17208  df-0g 17226  df-gsum 17227  df-topgen 17228  df-pt 17229  df-prds 17232  df-xrs 17287  df-qtop 17292  df-imas 17293  df-xps 17295  df-mre 17369  df-mrc 17370  df-acs 17372  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-submnd 18505  df-mulg 18774  df-cntz 18996  df-cmn 19460  df-psmet 20669  df-xmet 20670  df-met 20671  df-bl 20672  df-mopn 20673  df-fbas 20674  df-fg 20675  df-cnfld 20678  df-top 22123  df-topon 22140  df-topsp 22162  df-bases 22176  df-cld 22250  df-ntr 22251  df-cls 22252  df-nei 22329  df-lp 22367  df-perf 22368  df-cn 22458  df-cnp 22459  df-t1 22545  df-haus 22546  df-cmp 22618  df-tx 22793  df-hmeo 22986  df-fil 23077  df-fm 23169  df-flim 23170  df-flf 23171  df-xms 23553  df-ms 23554  df-tms 23555  df-cncf 24121  df-ovol 24708  df-vol 24709  df-mbf 24863  df-itg1 24864  df-itg2 24865  df-ibl 24866  df-itg 24867  df-0p 24914  df-ditg 25091  df-limc 25110  df-dv 25111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator