Step | Hyp | Ref
| Expression |
1 | | oveq2 7432 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑘(.g‘(mulGrp‘𝑅))𝑥) = (𝑘(.g‘(mulGrp‘𝑅))𝑋)) |
2 | 1 | oveq2d 7440 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)) = ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) |
3 | 2 | mpteq2dv 5255 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) |
4 | 3 | oveq2d 7440 |
. . 3
⊢ (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) |
5 | | evl1deg1.2 |
. . . 4
⊢ 𝑂 = (eval1‘𝑅) |
6 | | evl1deg1.1 |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
7 | | evl1deg1.3 |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
8 | | evl1deg1.4 |
. . . 4
⊢ 𝑈 = (Base‘𝑃) |
9 | | evl1deg1.11 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CRing) |
10 | | evl1deg1.12 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑈) |
11 | | evl1deg1.5 |
. . . 4
⊢ · =
(.r‘𝑅) |
12 | | eqid 2726 |
. . . 4
⊢
(.g‘(mulGrp‘𝑅)) =
(.g‘(mulGrp‘𝑅)) |
13 | | evl1deg1.7 |
. . . 4
⊢ 𝐶 = (coe1‘𝑀) |
14 | 5, 6, 7, 8, 9, 10,
11, 12, 13 | evl1fpws 33437 |
. . 3
⊢ (𝜑 → (𝑂‘𝑀) = (𝑥 ∈ 𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)))))) |
15 | | evl1deg1.14 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐾) |
16 | | ovexd 7459 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) ∈ V) |
17 | 4, 14, 15, 16 | fvmptd4 7033 |
. 2
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) |
18 | | eqid 2726 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
19 | | evl1deg1.6 |
. . 3
⊢ + =
(+g‘𝑅) |
20 | 9 | crngringd 20229 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
21 | 20 | ringcmnd 20263 |
. . 3
⊢ (𝜑 → 𝑅 ∈ CMnd) |
22 | | nn0ex 12530 |
. . . 4
⊢
ℕ0 ∈ V |
23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ0 ∈
V) |
24 | 20 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
25 | 13, 8, 6, 7 | coe1fvalcl 22202 |
. . . . 5
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0) → (𝐶‘𝑘) ∈ 𝐾) |
26 | 10, 25 | sylan 578 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶‘𝑘) ∈ 𝐾) |
27 | | eqid 2726 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
28 | 27, 7 | mgpbas 20123 |
. . . . 5
⊢ 𝐾 =
(Base‘(mulGrp‘𝑅)) |
29 | 27 | ringmgp 20222 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
30 | 20, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
31 | 30 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝑅) ∈
Mnd) |
32 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
33 | 15 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐾) |
34 | 28, 12, 31, 32, 33 | mulgnn0cld 19089 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾) |
35 | 7, 11, 24, 26, 34 | ringcld 20242 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾) |
36 | | fvexd 6916 |
. . . 4
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
37 | | fveq2 6901 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐶‘𝑘) = (𝐶‘𝑗)) |
38 | | oveq1 7431 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (𝑗(.g‘(mulGrp‘𝑅))𝑋)) |
39 | 37, 38 | oveq12d 7442 |
. . . 4
⊢ (𝑘 = 𝑗 → ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋))) |
40 | | breq1 5156 |
. . . . . . 7
⊢ (𝑖 = (𝐷‘𝑀) → (𝑖 < 𝑗 ↔ (𝐷‘𝑀) < 𝑗)) |
41 | 40 | imbi1d 340 |
. . . . . 6
⊢ (𝑖 = (𝐷‘𝑀) → ((𝑖 < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)) ↔ ((𝐷‘𝑀) < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)))) |
42 | 41 | ralbidv 3168 |
. . . . 5
⊢ (𝑖 = (𝐷‘𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐷‘𝑀) < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)))) |
43 | | evl1deg1.13 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝑀) = 1) |
44 | | 1nn0 12540 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
45 | 43, 44 | eqeltrdi 2834 |
. . . . 5
⊢ (𝜑 → (𝐷‘𝑀) ∈
ℕ0) |
46 | 10 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → 𝑀 ∈ 𝑈) |
47 | | simplr 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → 𝑗 ∈ ℕ0) |
48 | | simpr 483 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → (𝐷‘𝑀) < 𝑗) |
49 | | evl1deg1.8 |
. . . . . . . . . . 11
⊢ 𝐷 = (deg1‘𝑅) |
50 | 49, 6, 8, 18, 13 | deg1lt 26124 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑗 ∈ ℕ0 ∧ (𝐷‘𝑀) < 𝑗) → (𝐶‘𝑗) = (0g‘𝑅)) |
51 | 46, 47, 48, 50 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → (𝐶‘𝑗) = (0g‘𝑅)) |
52 | 51 | oveq1d 7439 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = ((0g‘𝑅) · (𝑗(.g‘(mulGrp‘𝑅))𝑋))) |
53 | 20 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → 𝑅 ∈ Ring) |
54 | 53, 29 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd) |
55 | 15 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → 𝑋 ∈ 𝐾) |
56 | 28, 12, 54, 47, 55 | mulgnn0cld 19089 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → (𝑗(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾) |
57 | 7, 11, 18, 53, 56 | ringlzd 20274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → ((0g‘𝑅) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)) |
58 | 52, 57 | eqtrd 2766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ (𝐷‘𝑀) < 𝑗) → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)) |
59 | 58 | ex 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐷‘𝑀) < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅))) |
60 | 59 | ralrimiva 3136 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐷‘𝑀) < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅))) |
61 | 42, 45, 60 | rspcedvdw 3611 |
. . . 4
⊢ (𝜑 → ∃𝑖 ∈ ℕ0 ∀𝑗 ∈ ℕ0
(𝑖 < 𝑗 → ((𝐶‘𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅))) |
62 | 36, 35, 39, 61 | mptnn0fsuppd 14018 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) finSupp (0g‘𝑅)) |
63 | | nn0disj01 32719 |
. . . 4
⊢ ({0, 1}
∩ (ℤ≥‘2)) = ∅ |
64 | 63 | a1i 11 |
. . 3
⊢ (𝜑 → ({0, 1} ∩
(ℤ≥‘2)) = ∅) |
65 | | nn0split01 32718 |
. . . 4
⊢
ℕ0 = ({0, 1} ∪
(ℤ≥‘2)) |
66 | 65 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ0 = ({0,
1} ∪ (ℤ≥‘2))) |
67 | 7, 18, 19, 21, 23, 35, 62, 64, 66 | gsumsplit2 19927 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))))) |
68 | | 0nn0 12539 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
69 | 68 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℕ0) |
70 | 44 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
71 | | 0ne1 12335 |
. . . . . 6
⊢ 0 ≠
1 |
72 | 71 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ≠ 1) |
73 | 13, 8, 6, 7 | coe1fvalcl 22202 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑈 ∧ 0 ∈ ℕ0) →
(𝐶‘0) ∈ 𝐾) |
74 | 10, 68, 73 | sylancl 584 |
. . . . . 6
⊢ (𝜑 → (𝐶‘0) ∈ 𝐾) |
75 | 28, 12, 30, 69, 15 | mulgnn0cld 19089 |
. . . . . 6
⊢ (𝜑 →
(0(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾) |
76 | 7, 11, 20, 74, 75 | ringcld 20242 |
. . . . 5
⊢ (𝜑 → ((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾) |
77 | 13, 8, 6, 7 | coe1fvalcl 22202 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑈 ∧ 1 ∈ ℕ0) →
(𝐶‘1) ∈ 𝐾) |
78 | 10, 44, 77 | sylancl 584 |
. . . . . 6
⊢ (𝜑 → (𝐶‘1) ∈ 𝐾) |
79 | 28, 12, 30, 70, 15 | mulgnn0cld 19089 |
. . . . . 6
⊢ (𝜑 →
(1(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾) |
80 | 7, 11, 20, 78, 79 | ringcld 20242 |
. . . . 5
⊢ (𝜑 → ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾) |
81 | | fveq2 6901 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝐶‘𝑘) = (𝐶‘0)) |
82 | | oveq1 7431 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) =
(0(.g‘(mulGrp‘𝑅))𝑋)) |
83 | 81, 82 | oveq12d 7442 |
. . . . . 6
⊢ (𝑘 = 0 → ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋))) |
84 | | fveq2 6901 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝐶‘𝑘) = (𝐶‘1)) |
85 | | oveq1 7431 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) =
(1(.g‘(mulGrp‘𝑅))𝑋)) |
86 | 84, 85 | oveq12d 7442 |
. . . . . 6
⊢ (𝑘 = 1 → ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋))) |
87 | 7, 19, 83, 86 | gsumpr 19953 |
. . . . 5
⊢ ((𝑅 ∈ CMnd ∧ (0 ∈
ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧
(((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾 ∧ ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋)))) |
88 | 21, 69, 70, 72, 76, 80, 87 | syl132anc 1385 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋)))) |
89 | 10 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ 𝑀 ∈ 𝑈) |
90 | | 2eluzge0 12929 |
. . . . . . . . . . . . 13
⊢ 2 ∈
(ℤ≥‘0) |
91 | | uzss 12897 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘0) → (ℤ≥‘2)
⊆ (ℤ≥‘0)) |
92 | 90, 91 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘2) ⊆
(ℤ≥‘0) |
93 | | nn0uz 12916 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
94 | 92, 93 | sseqtrri 4017 |
. . . . . . . . . . 11
⊢
(ℤ≥‘2) ⊆
ℕ0 |
95 | 94 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ≥‘2) ⊆ ℕ0) |
96 | 95 | sselda 3979 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ 𝑘 ∈
ℕ0) |
97 | 43 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ (𝐷‘𝑀) = 1) |
98 | | eluz2gt1 12956 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘2) → 1 < 𝑘) |
99 | 98 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ 1 < 𝑘) |
100 | 97, 99 | eqbrtrd 5175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ (𝐷‘𝑀) < 𝑘) |
101 | 49, 6, 8, 18, 13 | deg1lt 26124 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑘 ∈ ℕ0 ∧ (𝐷‘𝑀) < 𝑘) → (𝐶‘𝑘) = (0g‘𝑅)) |
102 | 89, 96, 100, 101 | syl3anc 1368 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ (𝐶‘𝑘) = (0g‘𝑅)) |
103 | 102 | oveq1d 7439 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((0g‘𝑅) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) |
104 | 20 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ 𝑅 ∈
Ring) |
105 | 104, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ (mulGrp‘𝑅)
∈ Mnd) |
106 | 15 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ 𝑋 ∈ 𝐾) |
107 | 28, 12, 105, 96, 106 | mulgnn0cld 19089 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ (𝑘(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾) |
108 | 7, 11, 18, 104, 107 | ringlzd 20274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ ((0g‘𝑅) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)) |
109 | 103, 108 | eqtrd 2766 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘2))
→ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = (0g‘𝑅)) |
110 | 109 | mpteq2dva 5253 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘2)
↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) = (𝑘 ∈ (ℤ≥‘2)
↦ (0g‘𝑅))) |
111 | 110 | oveq2d 7440 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ (0g‘𝑅)))) |
112 | 88, 111 | oveq12d 7442 |
. . 3
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) = ((((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ (0g‘𝑅))))) |
113 | | eqid 2726 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
114 | | evl1deg1.10 |
. . . . . . . 8
⊢ 𝐵 = (𝐶‘0) |
115 | 114, 74 | eqeltrid 2830 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐾) |
116 | 7, 11, 113, 20, 115 | ringridmd 20252 |
. . . . . 6
⊢ (𝜑 → (𝐵 ·
(1r‘𝑅)) =
𝐵) |
117 | 116 | oveq1d 7439 |
. . . . 5
⊢ (𝜑 → ((𝐵 ·
(1r‘𝑅))
+ (𝐴 · 𝑋)) = (𝐵 + (𝐴 · 𝑋))) |
118 | 114 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (𝐶‘0)) |
119 | 27, 113 | ringidval 20166 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
120 | 28, 119, 12 | mulg0 19068 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐾 →
(0(.g‘(mulGrp‘𝑅))𝑋) = (1r‘𝑅)) |
121 | 15, 120 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(0(.g‘(mulGrp‘𝑅))𝑋) = (1r‘𝑅)) |
122 | 121 | eqcomd 2732 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) =
(0(.g‘(mulGrp‘𝑅))𝑋)) |
123 | 118, 122 | oveq12d 7442 |
. . . . . 6
⊢ (𝜑 → (𝐵 ·
(1r‘𝑅)) =
((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋))) |
124 | | evl1deg1.9 |
. . . . . . . 8
⊢ 𝐴 = (𝐶‘1) |
125 | 124 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (𝐶‘1)) |
126 | 28, 12 | mulg1 19075 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐾 →
(1(.g‘(mulGrp‘𝑅))𝑋) = 𝑋) |
127 | 15, 126 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(1(.g‘(mulGrp‘𝑅))𝑋) = 𝑋) |
128 | 127 | eqcomd 2732 |
. . . . . . 7
⊢ (𝜑 → 𝑋 =
(1(.g‘(mulGrp‘𝑅))𝑋)) |
129 | 125, 128 | oveq12d 7442 |
. . . . . 6
⊢ (𝜑 → (𝐴 · 𝑋) = ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋))) |
130 | 123, 129 | oveq12d 7442 |
. . . . 5
⊢ (𝜑 → ((𝐵 ·
(1r‘𝑅))
+ (𝐴 · 𝑋)) = (((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋)))) |
131 | 124, 78 | eqeltrid 2830 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
132 | 7, 11, 20, 131, 15 | ringcld 20242 |
. . . . . 6
⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝐾) |
133 | 7, 19 | ringcom 20259 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝐾 ∧ (𝐴 · 𝑋) ∈ 𝐾) → (𝐵 + (𝐴 · 𝑋)) = ((𝐴 · 𝑋) + 𝐵)) |
134 | 20, 115, 132, 133 | syl3anc 1368 |
. . . . 5
⊢ (𝜑 → (𝐵 + (𝐴 · 𝑋)) = ((𝐴 · 𝑋) + 𝐵)) |
135 | 117, 130,
134 | 3eqtr3d 2774 |
. . . 4
⊢ (𝜑 → (((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋))) = ((𝐴 · 𝑋) + 𝐵)) |
136 | 9 | crnggrpd 20230 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
137 | 136 | grpmndd 18941 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
138 | | fvexd 6916 |
. . . . 5
⊢ (𝜑 →
(ℤ≥‘2) ∈ V) |
139 | 18 | gsumz 18826 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧
(ℤ≥‘2) ∈ V) → (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
140 | 137, 138,
139 | syl2anc 582 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ (0g‘𝑅))) = (0g‘𝑅)) |
141 | 135, 140 | oveq12d 7442 |
. . 3
⊢ (𝜑 → ((((𝐶‘0) ·
(0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) ·
(1(.g‘(mulGrp‘𝑅))𝑋))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ (0g‘𝑅)))) = (((𝐴 · 𝑋) + 𝐵) + (0g‘𝑅))) |
142 | 7, 19, 136, 132, 115 | grpcld 18942 |
. . . 4
⊢ (𝜑 → ((𝐴 · 𝑋) + 𝐵) ∈ 𝐾) |
143 | 7, 19, 18, 136, 142 | grpridd 18965 |
. . 3
⊢ (𝜑 → (((𝐴 · 𝑋) + 𝐵) + (0g‘𝑅)) = ((𝐴 · 𝑋) + 𝐵)) |
144 | 112, 141,
143 | 3eqtrd 2770 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈
(ℤ≥‘2) ↦ ((𝐶‘𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) = ((𝐴 · 𝑋) + 𝐵)) |
145 | 17, 67, 144 | 3eqtrd 2770 |
1
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵)) |