Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg1 Structured version   Visualization version   GIF version

Theorem evl1deg1 33545
Description: Evaluation of a univariate polynomial of degree 1. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg1.7 𝐶 = (coe1𝑀)
evl1deg1.8 𝐷 = (deg1𝑅)
evl1deg1.9 𝐴 = (𝐶‘1)
evl1deg1.10 𝐵 = (𝐶‘0)
evl1deg1.11 (𝜑𝑅 ∈ CRing)
evl1deg1.12 (𝜑𝑀𝑈)
evl1deg1.13 (𝜑 → (𝐷𝑀) = 1)
evl1deg1.14 (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵))

Proof of Theorem evl1deg1
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑥 = 𝑋 → (𝑘(.g‘(mulGrp‘𝑅))𝑥) = (𝑘(.g‘(mulGrp‘𝑅))𝑋))
21oveq2d 7403 . . . . 5 (𝑥 = 𝑋 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)) = ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))
32mpteq2dv 5201 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))
43oveq2d 7403 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg1.11 . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg1.12 . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 eqid 2729 . . . 4 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
13 evl1deg1.7 . . . 4 𝐶 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33533 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥))))))
15 evl1deg1.14 . . 3 (𝜑𝑋𝐾)
16 ovexd 7422 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 6992 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))))
18 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20155 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20193 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12448 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22097 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ 𝐾)
27 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20054 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20148 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19027 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20169 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)
36 fvexd 6873 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
38 oveq1 7394 . . . . 5 (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (𝑗(.g‘(mulGrp‘𝑅))𝑋))
3937, 38oveq12d 7405 . . . 4 (𝑘 = 𝑗 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)))
40 breq1 5110 . . . . . . 7 (𝑖 = (𝐷𝑀) → (𝑖 < 𝑗 ↔ (𝐷𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐷𝑀) → ((𝑖 < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)) ↔ ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))))
4241ralbidv 3156 . . . . 5 (𝑖 = (𝐷𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))))
43 evl1deg1.13 . . . . . 6 (𝜑 → (𝐷𝑀) = 1)
44 1nn0 12458 . . . . . 6 1 ∈ ℕ0
4543, 44eqeltrdi 2836 . . . . 5 (𝜑 → (𝐷𝑀) ∈ ℕ0)
4610ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑀𝑈)
47 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
48 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (𝐷𝑀) < 𝑗)
49 evl1deg1.8 . . . . . . . . . . 11 𝐷 = (deg1𝑅)
5049, 6, 8, 18, 13deg1lt 26002 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐷𝑀) < 𝑗) → (𝐶𝑗) = (0g𝑅))
5146, 47, 48, 50syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (𝐶𝑗) = (0g𝑅))
5251oveq1d 7402 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = ((0g𝑅) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)))
5320ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑅 ∈ Ring)
5453, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5515ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑋𝐾)
5628, 12, 54, 47, 55mulgnn0cld 19027 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (𝑗(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
577, 11, 18, 53, 56ringlzd 20204 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → ((0g𝑅) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
5852, 57eqtrd 2764 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
5958ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)))
6059ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)))
6142, 45, 60rspcedvdw 3591 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)))
6236, 35, 39, 61mptnn0fsuppd 13963 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) finSupp (0g𝑅))
63 nn0disj01 32743 . . . 4 ({0, 1} ∩ (ℤ‘2)) = ∅
6463a1i 11 . . 3 (𝜑 → ({0, 1} ∩ (ℤ‘2)) = ∅)
65 nn0split01 32742 . . . 4 0 = ({0, 1} ∪ (ℤ‘2))
6665a1i 11 . . 3 (𝜑 → ℕ0 = ({0, 1} ∪ (ℤ‘2)))
677, 18, 19, 21, 23, 35, 62, 64, 66gsumsplit2 19859 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))))
68 0nn0 12457 . . . . . 6 0 ∈ ℕ0
6968a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
7044a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
71 0ne1 12257 . . . . . 6 0 ≠ 1
7271a1i 11 . . . . 5 (𝜑 → 0 ≠ 1)
7313, 8, 6, 7coe1fvalcl 22097 . . . . . . 7 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ 𝐾)
7410, 68, 73sylancl 586 . . . . . 6 (𝜑 → (𝐶‘0) ∈ 𝐾)
7528, 12, 30, 69, 15mulgnn0cld 19027 . . . . . 6 (𝜑 → (0(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
767, 11, 20, 74, 75ringcld 20169 . . . . 5 (𝜑 → ((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)
7713, 8, 6, 7coe1fvalcl 22097 . . . . . . 7 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ 𝐾)
7810, 44, 77sylancl 586 . . . . . 6 (𝜑 → (𝐶‘1) ∈ 𝐾)
7928, 12, 30, 70, 15mulgnn0cld 19027 . . . . . 6 (𝜑 → (1(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
807, 11, 20, 78, 79ringcld 20169 . . . . 5 (𝜑 → ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)
81 fveq2 6858 . . . . . . 7 (𝑘 = 0 → (𝐶𝑘) = (𝐶‘0))
82 oveq1 7394 . . . . . . 7 (𝑘 = 0 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (0(.g‘(mulGrp‘𝑅))𝑋))
8381, 82oveq12d 7405 . . . . . 6 (𝑘 = 0 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)))
84 fveq2 6858 . . . . . . 7 (𝑘 = 1 → (𝐶𝑘) = (𝐶‘1))
85 oveq1 7394 . . . . . . 7 (𝑘 = 1 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (1(.g‘(mulGrp‘𝑅))𝑋))
8684, 85oveq12d 7405 . . . . . 6 (𝑘 = 1 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)))
877, 19, 83, 86gsumpr 19885 . . . . 5 ((𝑅 ∈ CMnd ∧ (0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧ (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾 ∧ ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))))
8821, 69, 70, 72, 76, 80, 87syl132anc 1390 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))))
8910adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑀𝑈)
90 2eluzge0 12840 . . . . . . . . . . . . 13 2 ∈ (ℤ‘0)
91 uzss 12816 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘0) → (ℤ‘2) ⊆ (ℤ‘0))
9290, 91ax-mp 5 . . . . . . . . . . . 12 (ℤ‘2) ⊆ (ℤ‘0)
93 nn0uz 12835 . . . . . . . . . . . 12 0 = (ℤ‘0)
9492, 93sseqtrri 3996 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℕ0
9594a1i 11 . . . . . . . . . 10 (𝜑 → (ℤ‘2) ⊆ ℕ0)
9695sselda 3946 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ ℕ0)
9743adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝐷𝑀) = 1)
98 eluz2gt1 12879 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
9998adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 < 𝑘)
10097, 99eqbrtrd 5129 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝐷𝑀) < 𝑘)
10149, 6, 8, 18, 13deg1lt 26002 . . . . . . . . 9 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐷𝑀) < 𝑘) → (𝐶𝑘) = (0g𝑅))
10289, 96, 100, 101syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝐶𝑘) = (0g𝑅))
103102oveq1d 7402 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((0g𝑅) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))
10420adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑅 ∈ Ring)
105104, 29syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (mulGrp‘𝑅) ∈ Mnd)
10615adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑋𝐾)
10728, 12, 105, 96, 106mulgnn0cld 19027 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑘(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
1087, 11, 18, 104, 107ringlzd 20204 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((0g𝑅) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
109103, 108eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
110109mpteq2dva 5200 . . . . 5 (𝜑 → (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) = (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅)))
111110oveq2d 7403 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅))))
11288, 111oveq12d 7405 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) = ((((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅)))))
113 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
114 evl1deg1.10 . . . . . . . 8 𝐵 = (𝐶‘0)
115114, 74eqeltrid 2832 . . . . . . 7 (𝜑𝐵𝐾)
1167, 11, 113, 20, 115ringridmd 20182 . . . . . 6 (𝜑 → (𝐵 · (1r𝑅)) = 𝐵)
117116oveq1d 7402 . . . . 5 (𝜑 → ((𝐵 · (1r𝑅)) + (𝐴 · 𝑋)) = (𝐵 + (𝐴 · 𝑋)))
118114a1i 11 . . . . . . 7 (𝜑𝐵 = (𝐶‘0))
11927, 113ringidval 20092 . . . . . . . . . 10 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12028, 119, 12mulg0 19006 . . . . . . . . 9 (𝑋𝐾 → (0(.g‘(mulGrp‘𝑅))𝑋) = (1r𝑅))
12115, 120syl 17 . . . . . . . 8 (𝜑 → (0(.g‘(mulGrp‘𝑅))𝑋) = (1r𝑅))
122121eqcomd 2735 . . . . . . 7 (𝜑 → (1r𝑅) = (0(.g‘(mulGrp‘𝑅))𝑋))
123118, 122oveq12d 7405 . . . . . 6 (𝜑 → (𝐵 · (1r𝑅)) = ((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)))
124 evl1deg1.9 . . . . . . . 8 𝐴 = (𝐶‘1)
125124a1i 11 . . . . . . 7 (𝜑𝐴 = (𝐶‘1))
12628, 12mulg1 19013 . . . . . . . . 9 (𝑋𝐾 → (1(.g‘(mulGrp‘𝑅))𝑋) = 𝑋)
12715, 126syl 17 . . . . . . . 8 (𝜑 → (1(.g‘(mulGrp‘𝑅))𝑋) = 𝑋)
128127eqcomd 2735 . . . . . . 7 (𝜑𝑋 = (1(.g‘(mulGrp‘𝑅))𝑋))
129125, 128oveq12d 7405 . . . . . 6 (𝜑 → (𝐴 · 𝑋) = ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)))
130123, 129oveq12d 7405 . . . . 5 (𝜑 → ((𝐵 · (1r𝑅)) + (𝐴 · 𝑋)) = (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))))
131124, 78eqeltrid 2832 . . . . . . 7 (𝜑𝐴𝐾)
1327, 11, 20, 131, 15ringcld 20169 . . . . . 6 (𝜑 → (𝐴 · 𝑋) ∈ 𝐾)
1337, 19ringcom 20189 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐵𝐾 ∧ (𝐴 · 𝑋) ∈ 𝐾) → (𝐵 + (𝐴 · 𝑋)) = ((𝐴 · 𝑋) + 𝐵))
13420, 115, 132, 133syl3anc 1373 . . . . 5 (𝜑 → (𝐵 + (𝐴 · 𝑋)) = ((𝐴 · 𝑋) + 𝐵))
135117, 130, 1343eqtr3d 2772 . . . 4 (𝜑 → (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))) = ((𝐴 · 𝑋) + 𝐵))
1369crnggrpd 20156 . . . . . 6 (𝜑𝑅 ∈ Grp)
137136grpmndd 18878 . . . . 5 (𝜑𝑅 ∈ Mnd)
138 fvexd 6873 . . . . 5 (𝜑 → (ℤ‘2) ∈ V)
13918gsumz 18763 . . . . 5 ((𝑅 ∈ Mnd ∧ (ℤ‘2) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅))) = (0g𝑅))
140137, 138, 139syl2anc 584 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅))) = (0g𝑅))
141135, 140oveq12d 7405 . . 3 (𝜑 → ((((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅)))) = (((𝐴 · 𝑋) + 𝐵) + (0g𝑅)))
1427, 19, 136, 132, 115grpcld 18879 . . . 4 (𝜑 → ((𝐴 · 𝑋) + 𝐵) ∈ 𝐾)
1437, 19, 18, 136, 142grpridd 18902 . . 3 (𝜑 → (((𝐴 · 𝑋) + 𝐵) + (0g𝑅)) = ((𝐴 · 𝑋) + 𝐵))
144112, 141, 1433eqtrd 2768 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) = ((𝐴 · 𝑋) + 𝐵))
14517, 67, 1443eqtrd 2768 1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   < clt 11208  2c2 12241  0cn0 12442  cuz 12793  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  Poly1cpl1 22061  coe1cco1 22062  eval1ce1 22201  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  ply1dg1rt  33548
  Copyright terms: Public domain W3C validator