Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1deg1 Structured version   Visualization version   GIF version

Theorem evl1deg1 33589
Description: Evaluation of a univariate polynomial of degree 1. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
evl1deg1.1 𝑃 = (Poly1𝑅)
evl1deg1.2 𝑂 = (eval1𝑅)
evl1deg1.3 𝐾 = (Base‘𝑅)
evl1deg1.4 𝑈 = (Base‘𝑃)
evl1deg1.5 · = (.r𝑅)
evl1deg1.6 + = (+g𝑅)
evl1deg1.7 𝐶 = (coe1𝑀)
evl1deg1.8 𝐷 = (deg1𝑅)
evl1deg1.9 𝐴 = (𝐶‘1)
evl1deg1.10 𝐵 = (𝐶‘0)
evl1deg1.11 (𝜑𝑅 ∈ CRing)
evl1deg1.12 (𝜑𝑀𝑈)
evl1deg1.13 (𝜑 → (𝐷𝑀) = 1)
evl1deg1.14 (𝜑𝑋𝐾)
Assertion
Ref Expression
evl1deg1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵))

Proof of Theorem evl1deg1
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . 6 (𝑥 = 𝑋 → (𝑘(.g‘(mulGrp‘𝑅))𝑥) = (𝑘(.g‘(mulGrp‘𝑅))𝑋))
21oveq2d 7421 . . . . 5 (𝑥 = 𝑋 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)) = ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))
32mpteq2dv 5215 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥))) = (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))
43oveq2d 7421 . . 3 (𝑥 = 𝑋 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥)))) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))))
5 evl1deg1.2 . . . 4 𝑂 = (eval1𝑅)
6 evl1deg1.1 . . . 4 𝑃 = (Poly1𝑅)
7 evl1deg1.3 . . . 4 𝐾 = (Base‘𝑅)
8 evl1deg1.4 . . . 4 𝑈 = (Base‘𝑃)
9 evl1deg1.11 . . . 4 (𝜑𝑅 ∈ CRing)
10 evl1deg1.12 . . . 4 (𝜑𝑀𝑈)
11 evl1deg1.5 . . . 4 · = (.r𝑅)
12 eqid 2735 . . . 4 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
13 evl1deg1.7 . . . 4 𝐶 = (coe1𝑀)
145, 6, 7, 8, 9, 10, 11, 12, 13evl1fpws 33577 . . 3 (𝜑 → (𝑂𝑀) = (𝑥𝐾 ↦ (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑥))))))
15 evl1deg1.14 . . 3 (𝜑𝑋𝐾)
16 ovexd 7440 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) ∈ V)
174, 14, 15, 16fvmptd4 7010 . 2 (𝜑 → ((𝑂𝑀)‘𝑋) = (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))))
18 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
19 evl1deg1.6 . . 3 + = (+g𝑅)
209crngringd 20206 . . . 4 (𝜑𝑅 ∈ Ring)
2120ringcmnd 20244 . . 3 (𝜑𝑅 ∈ CMnd)
22 nn0ex 12507 . . . 4 0 ∈ V
2322a1i 11 . . 3 (𝜑 → ℕ0 ∈ V)
2420adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
2513, 8, 6, 7coe1fvalcl 22148 . . . . 5 ((𝑀𝑈𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ 𝐾)
2610, 25sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ 𝐾)
27 eqid 2735 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 7mgpbas 20105 . . . . 5 𝐾 = (Base‘(mulGrp‘𝑅))
2927ringmgp 20199 . . . . . . 7 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3020, 29syl 17 . . . . . 6 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
3130adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑅) ∈ Mnd)
32 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3315adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑋𝐾)
3428, 12, 31, 32, 33mulgnn0cld 19078 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
357, 11, 24, 26, 34ringcld 20220 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)
36 fvexd 6891 . . . 4 (𝜑 → (0g𝑅) ∈ V)
37 fveq2 6876 . . . . 5 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
38 oveq1 7412 . . . . 5 (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (𝑗(.g‘(mulGrp‘𝑅))𝑋))
3937, 38oveq12d 7423 . . . 4 (𝑘 = 𝑗 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)))
40 breq1 5122 . . . . . . 7 (𝑖 = (𝐷𝑀) → (𝑖 < 𝑗 ↔ (𝐷𝑀) < 𝑗))
4140imbi1d 341 . . . . . 6 (𝑖 = (𝐷𝑀) → ((𝑖 < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)) ↔ ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))))
4241ralbidv 3163 . . . . 5 (𝑖 = (𝐷𝑀) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)) ↔ ∀𝑗 ∈ ℕ0 ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))))
43 evl1deg1.13 . . . . . 6 (𝜑 → (𝐷𝑀) = 1)
44 1nn0 12517 . . . . . 6 1 ∈ ℕ0
4543, 44eqeltrdi 2842 . . . . 5 (𝜑 → (𝐷𝑀) ∈ ℕ0)
4610ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑀𝑈)
47 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑗 ∈ ℕ0)
48 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (𝐷𝑀) < 𝑗)
49 evl1deg1.8 . . . . . . . . . . 11 𝐷 = (deg1𝑅)
5049, 6, 8, 18, 13deg1lt 26054 . . . . . . . . . 10 ((𝑀𝑈𝑗 ∈ ℕ0 ∧ (𝐷𝑀) < 𝑗) → (𝐶𝑗) = (0g𝑅))
5146, 47, 48, 50syl3anc 1373 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (𝐶𝑗) = (0g𝑅))
5251oveq1d 7420 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = ((0g𝑅) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)))
5320ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑅 ∈ Ring)
5453, 29syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (mulGrp‘𝑅) ∈ Mnd)
5515ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → 𝑋𝐾)
5628, 12, 54, 47, 55mulgnn0cld 19078 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → (𝑗(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
577, 11, 18, 53, 56ringlzd 20255 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → ((0g𝑅) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
5852, 57eqtrd 2770 . . . . . . 7 (((𝜑𝑗 ∈ ℕ0) ∧ (𝐷𝑀) < 𝑗) → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
5958ex 412 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)))
6059ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 ((𝐷𝑀) < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)))
6142, 45, 60rspcedvdw 3604 . . . 4 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐶𝑗) · (𝑗(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅)))
6236, 35, 39, 61mptnn0fsuppd 14016 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) finSupp (0g𝑅))
63 nn0disj01 32797 . . . 4 ({0, 1} ∩ (ℤ‘2)) = ∅
6463a1i 11 . . 3 (𝜑 → ({0, 1} ∩ (ℤ‘2)) = ∅)
65 nn0split01 32796 . . . 4 0 = ({0, 1} ∪ (ℤ‘2))
6665a1i 11 . . 3 (𝜑 → ℕ0 = ({0, 1} ∪ (ℤ‘2)))
677, 18, 19, 21, 23, 35, 62, 64, 66gsumsplit2 19910 . 2 (𝜑 → (𝑅 Σg (𝑘 ∈ ℕ0 ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))))
68 0nn0 12516 . . . . . 6 0 ∈ ℕ0
6968a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
7044a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
71 0ne1 12311 . . . . . 6 0 ≠ 1
7271a1i 11 . . . . 5 (𝜑 → 0 ≠ 1)
7313, 8, 6, 7coe1fvalcl 22148 . . . . . . 7 ((𝑀𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ 𝐾)
7410, 68, 73sylancl 586 . . . . . 6 (𝜑 → (𝐶‘0) ∈ 𝐾)
7528, 12, 30, 69, 15mulgnn0cld 19078 . . . . . 6 (𝜑 → (0(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
767, 11, 20, 74, 75ringcld 20220 . . . . 5 (𝜑 → ((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)
7713, 8, 6, 7coe1fvalcl 22148 . . . . . . 7 ((𝑀𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ 𝐾)
7810, 44, 77sylancl 586 . . . . . 6 (𝜑 → (𝐶‘1) ∈ 𝐾)
7928, 12, 30, 70, 15mulgnn0cld 19078 . . . . . 6 (𝜑 → (1(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
807, 11, 20, 78, 79ringcld 20220 . . . . 5 (𝜑 → ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)
81 fveq2 6876 . . . . . . 7 (𝑘 = 0 → (𝐶𝑘) = (𝐶‘0))
82 oveq1 7412 . . . . . . 7 (𝑘 = 0 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (0(.g‘(mulGrp‘𝑅))𝑋))
8381, 82oveq12d 7423 . . . . . 6 (𝑘 = 0 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)))
84 fveq2 6876 . . . . . . 7 (𝑘 = 1 → (𝐶𝑘) = (𝐶‘1))
85 oveq1 7412 . . . . . . 7 (𝑘 = 1 → (𝑘(.g‘(mulGrp‘𝑅))𝑋) = (1(.g‘(mulGrp‘𝑅))𝑋))
8684, 85oveq12d 7423 . . . . . 6 (𝑘 = 1 → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)))
877, 19, 83, 86gsumpr 19936 . . . . 5 ((𝑅 ∈ CMnd ∧ (0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 0 ≠ 1) ∧ (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾 ∧ ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)) ∈ 𝐾)) → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))))
8821, 69, 70, 72, 76, 80, 87syl132anc 1390 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))))
8910adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑀𝑈)
90 2eluzge0 12909 . . . . . . . . . . . . 13 2 ∈ (ℤ‘0)
91 uzss 12875 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘0) → (ℤ‘2) ⊆ (ℤ‘0))
9290, 91ax-mp 5 . . . . . . . . . . . 12 (ℤ‘2) ⊆ (ℤ‘0)
93 nn0uz 12894 . . . . . . . . . . . 12 0 = (ℤ‘0)
9492, 93sseqtrri 4008 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℕ0
9594a1i 11 . . . . . . . . . 10 (𝜑 → (ℤ‘2) ⊆ ℕ0)
9695sselda 3958 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ ℕ0)
9743adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝐷𝑀) = 1)
98 eluz2gt1 12936 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
9998adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 < 𝑘)
10097, 99eqbrtrd 5141 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝐷𝑀) < 𝑘)
10149, 6, 8, 18, 13deg1lt 26054 . . . . . . . . 9 ((𝑀𝑈𝑘 ∈ ℕ0 ∧ (𝐷𝑀) < 𝑘) → (𝐶𝑘) = (0g𝑅))
10289, 96, 100, 101syl3anc 1373 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝐶𝑘) = (0g𝑅))
103102oveq1d 7420 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = ((0g𝑅) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))
10420adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑅 ∈ Ring)
105104, 29syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → (mulGrp‘𝑅) ∈ Mnd)
10615adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑋𝐾)
10728, 12, 105, 96, 106mulgnn0cld 19078 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑘(.g‘(mulGrp‘𝑅))𝑋) ∈ 𝐾)
1087, 11, 18, 104, 107ringlzd 20255 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘2)) → ((0g𝑅) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
109103, 108eqtrd 2770 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)) = (0g𝑅))
110109mpteq2dva 5214 . . . . 5 (𝜑 → (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))) = (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅)))
111110oveq2d 7421 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) = (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅))))
11288, 111oveq12d 7423 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) = ((((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅)))))
113 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
114 evl1deg1.10 . . . . . . . 8 𝐵 = (𝐶‘0)
115114, 74eqeltrid 2838 . . . . . . 7 (𝜑𝐵𝐾)
1167, 11, 113, 20, 115ringridmd 20233 . . . . . 6 (𝜑 → (𝐵 · (1r𝑅)) = 𝐵)
117116oveq1d 7420 . . . . 5 (𝜑 → ((𝐵 · (1r𝑅)) + (𝐴 · 𝑋)) = (𝐵 + (𝐴 · 𝑋)))
118114a1i 11 . . . . . . 7 (𝜑𝐵 = (𝐶‘0))
11927, 113ringidval 20143 . . . . . . . . . 10 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12028, 119, 12mulg0 19057 . . . . . . . . 9 (𝑋𝐾 → (0(.g‘(mulGrp‘𝑅))𝑋) = (1r𝑅))
12115, 120syl 17 . . . . . . . 8 (𝜑 → (0(.g‘(mulGrp‘𝑅))𝑋) = (1r𝑅))
122121eqcomd 2741 . . . . . . 7 (𝜑 → (1r𝑅) = (0(.g‘(mulGrp‘𝑅))𝑋))
123118, 122oveq12d 7423 . . . . . 6 (𝜑 → (𝐵 · (1r𝑅)) = ((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)))
124 evl1deg1.9 . . . . . . . 8 𝐴 = (𝐶‘1)
125124a1i 11 . . . . . . 7 (𝜑𝐴 = (𝐶‘1))
12628, 12mulg1 19064 . . . . . . . . 9 (𝑋𝐾 → (1(.g‘(mulGrp‘𝑅))𝑋) = 𝑋)
12715, 126syl 17 . . . . . . . 8 (𝜑 → (1(.g‘(mulGrp‘𝑅))𝑋) = 𝑋)
128127eqcomd 2741 . . . . . . 7 (𝜑𝑋 = (1(.g‘(mulGrp‘𝑅))𝑋))
129125, 128oveq12d 7423 . . . . . 6 (𝜑 → (𝐴 · 𝑋) = ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋)))
130123, 129oveq12d 7423 . . . . 5 (𝜑 → ((𝐵 · (1r𝑅)) + (𝐴 · 𝑋)) = (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))))
131124, 78eqeltrid 2838 . . . . . . 7 (𝜑𝐴𝐾)
1327, 11, 20, 131, 15ringcld 20220 . . . . . 6 (𝜑 → (𝐴 · 𝑋) ∈ 𝐾)
1337, 19ringcom 20240 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐵𝐾 ∧ (𝐴 · 𝑋) ∈ 𝐾) → (𝐵 + (𝐴 · 𝑋)) = ((𝐴 · 𝑋) + 𝐵))
13420, 115, 132, 133syl3anc 1373 . . . . 5 (𝜑 → (𝐵 + (𝐴 · 𝑋)) = ((𝐴 · 𝑋) + 𝐵))
135117, 130, 1343eqtr3d 2778 . . . 4 (𝜑 → (((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))) = ((𝐴 · 𝑋) + 𝐵))
1369crnggrpd 20207 . . . . . 6 (𝜑𝑅 ∈ Grp)
137136grpmndd 18929 . . . . 5 (𝜑𝑅 ∈ Mnd)
138 fvexd 6891 . . . . 5 (𝜑 → (ℤ‘2) ∈ V)
13918gsumz 18814 . . . . 5 ((𝑅 ∈ Mnd ∧ (ℤ‘2) ∈ V) → (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅))) = (0g𝑅))
140137, 138, 139syl2anc 584 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅))) = (0g𝑅))
141135, 140oveq12d 7423 . . 3 (𝜑 → ((((𝐶‘0) · (0(.g‘(mulGrp‘𝑅))𝑋)) + ((𝐶‘1) · (1(.g‘(mulGrp‘𝑅))𝑋))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ (0g𝑅)))) = (((𝐴 · 𝑋) + 𝐵) + (0g𝑅)))
1427, 19, 136, 132, 115grpcld 18930 . . . 4 (𝜑 → ((𝐴 · 𝑋) + 𝐵) ∈ 𝐾)
1437, 19, 18, 136, 142grpridd 18953 . . 3 (𝜑 → (((𝐴 · 𝑋) + 𝐵) + (0g𝑅)) = ((𝐴 · 𝑋) + 𝐵))
144112, 141, 1433eqtrd 2774 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ {0, 1} ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋)))) + (𝑅 Σg (𝑘 ∈ (ℤ‘2) ↦ ((𝐶𝑘) · (𝑘(.g‘(mulGrp‘𝑅))𝑋))))) = ((𝐴 · 𝑋) + 𝐵))
14517, 67, 1443eqtrd 2774 1 (𝜑 → ((𝑂𝑀)‘𝑋) = ((𝐴 · 𝑋) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cun 3924  cin 3925  wss 3926  c0 4308  {cpr 4603   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  2c2 12295  0cn0 12501  cuz 12852  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  .gcmg 19050  CMndccmn 19761  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194  Poly1cpl1 22112  coe1cco1 22113  eval1ce1 22252  deg1cdg1 26011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-cnfld 21316  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-mdeg 26012  df-deg1 26013
This theorem is referenced by:  ply1dg1rt  33592
  Copyright terms: Public domain W3C validator