| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tan4thpiOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of tan4thpi 26457 as of 2-Sep-2025. (Contributed by Mario Carneiro, 5-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| tan4thpiOLD | ⊢ (tan‘(π / 4)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire 26400 | . . . . 5 ⊢ π ∈ ℝ | |
| 2 | 4nn 12247 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 3 | nndivre 12205 | . . . . 5 ⊢ ((π ∈ ℝ ∧ 4 ∈ ℕ) → (π / 4) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . 4 ⊢ (π / 4) ∈ ℝ |
| 5 | 4 | recni 11166 | . . 3 ⊢ (π / 4) ∈ ℂ |
| 6 | sincos4thpi 26456 | . . . . 5 ⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | |
| 7 | 6 | simpri 485 | . . . 4 ⊢ (cos‘(π / 4)) = (1 / (√‘2)) |
| 8 | sqrt2re 16195 | . . . . . 6 ⊢ (√‘2) ∈ ℝ | |
| 9 | 8 | recni 11166 | . . . . 5 ⊢ (√‘2) ∈ ℂ |
| 10 | 2re 12238 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 11 | 0le2 12266 | . . . . . . . 8 ⊢ 0 ≤ 2 | |
| 12 | resqrtth 15198 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ ((√‘2)↑2) = 2 |
| 14 | 2ne0 12268 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 15 | 13, 14 | eqnetri 2995 | . . . . . 6 ⊢ ((√‘2)↑2) ≠ 0 |
| 16 | sqne0 14066 | . . . . . . 7 ⊢ ((√‘2) ∈ ℂ → (((√‘2)↑2) ≠ 0 ↔ (√‘2) ≠ 0)) | |
| 17 | 9, 16 | ax-mp 5 | . . . . . 6 ⊢ (((√‘2)↑2) ≠ 0 ↔ (√‘2) ≠ 0) |
| 18 | 15, 17 | mpbi 230 | . . . . 5 ⊢ (√‘2) ≠ 0 |
| 19 | recne0 11828 | . . . . 5 ⊢ (((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0) → (1 / (√‘2)) ≠ 0) | |
| 20 | 9, 18, 19 | mp2an 692 | . . . 4 ⊢ (1 / (√‘2)) ≠ 0 |
| 21 | 7, 20 | eqnetri 2995 | . . 3 ⊢ (cos‘(π / 4)) ≠ 0 |
| 22 | tanval 16073 | . . 3 ⊢ (((π / 4) ∈ ℂ ∧ (cos‘(π / 4)) ≠ 0) → (tan‘(π / 4)) = ((sin‘(π / 4)) / (cos‘(π / 4)))) | |
| 23 | 5, 21, 22 | mp2an 692 | . 2 ⊢ (tan‘(π / 4)) = ((sin‘(π / 4)) / (cos‘(π / 4))) |
| 24 | 6 | simpli 483 | . . 3 ⊢ (sin‘(π / 4)) = (1 / (√‘2)) |
| 25 | 24, 7 | oveq12i 7381 | . 2 ⊢ ((sin‘(π / 4)) / (cos‘(π / 4))) = ((1 / (√‘2)) / (1 / (√‘2))) |
| 26 | 9, 18 | reccli 11890 | . . 3 ⊢ (1 / (√‘2)) ∈ ℂ |
| 27 | 26, 20 | dividi 11893 | . 2 ⊢ ((1 / (√‘2)) / (1 / (√‘2))) = 1 |
| 28 | 23, 25, 27 | 3eqtri 2756 | 1 ⊢ (tan‘(π / 4)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 ℝcr 11045 0cc0 11046 1c1 11047 ≤ cle 11187 / cdiv 11813 ℕcn 12164 2c2 12219 4c4 12221 ↑cexp 14004 √csqrt 15176 sincsin 16006 cosccos 16007 tanctan 16008 πcpi 16009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ioc 13289 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-seq 13945 df-exp 14005 df-fac 14217 df-bc 14246 df-hash 14274 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15630 df-ef 16010 df-sin 16012 df-cos 16013 df-tan 16014 df-pi 16015 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19232 df-cmn 19697 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-tms 24244 df-cncf 24805 df-limc 25801 df-dv 25802 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |