Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cxpcld | Structured version Visualization version GIF version |
Description: Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
cxpcld | ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cxpcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | cxpcl 25377 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7156 ℂcc 10586 ↑𝑐ccxp 25259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ioc 12797 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-mod 13300 df-seq 13432 df-exp 13493 df-fac 13697 df-bc 13726 df-hash 13754 df-shft 14487 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-limsup 14889 df-clim 14906 df-rlim 14907 df-sum 15104 df-ef 15482 df-sin 15484 df-cos 15485 df-pi 15487 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-starv 16651 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-unif 16659 df-hom 16660 df-cco 16661 df-rest 16767 df-topn 16768 df-0g 16786 df-gsum 16787 df-topgen 16788 df-pt 16789 df-prds 16792 df-xrs 16846 df-qtop 16851 df-imas 16852 df-xps 16854 df-mre 16928 df-mrc 16929 df-acs 16931 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-submnd 18036 df-mulg 18305 df-cntz 18527 df-cmn 18988 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-fbas 20176 df-fg 20177 df-cnfld 20180 df-top 21607 df-topon 21624 df-topsp 21646 df-bases 21659 df-cld 21732 df-ntr 21733 df-cls 21734 df-nei 21811 df-lp 21849 df-perf 21850 df-cn 21940 df-cnp 21941 df-haus 22028 df-tx 22275 df-hmeo 22468 df-fil 22559 df-fm 22651 df-flim 22652 df-flf 22653 df-xms 23035 df-ms 23036 df-tms 23037 df-cncf 23592 df-limc 24578 df-dv 24579 df-log 25260 df-cxp 25261 |
This theorem is referenced by: dvcxp1 25441 dvcxp2 25442 dvcncxp1 25444 cxpcn3 25449 cxpaddlelem 25452 cxpeq 25458 relogbreexp 25473 efrlim 25667 rlimcxp 25671 o1cxp 25672 cxploglim2 25676 zetacvg 25712 lgamgulmlem4 25729 ftalem4 25773 sgmmul 25897 logdivsqrle 32161 binomcxplemnn0 41461 binomcxplemdvbinom 41465 binomcxplemnotnn0 41468 etransclem18 43295 etransclem23 43300 etransclem46 43323 etransclem48 43325 |
Copyright terms: Public domain | W3C validator |