| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tannpoly | Structured version Visualization version GIF version | ||
| Description: The tangent function is not a polynomial with complex coefficients, as it is not defined on the whole complex plane. (Contributed by Ender Ting, 10-Dec-2025.) |
| Ref | Expression |
|---|---|
| tannpoly | ⊢ ¬ tan ∈ (Poly‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coshalfpi 26398 | . . . . . 6 ⊢ (cos‘(π / 2)) = 0 | |
| 2 | c0ex 11098 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 3 | 2 | snid 4613 | . . . . . . 7 ⊢ 0 ∈ {0} |
| 4 | eleq1 2817 | . . . . . . . 8 ⊢ ((cos‘(π / 2)) = 0 → ((cos‘(π / 2)) ∈ {0} ↔ 0 ∈ {0})) | |
| 5 | 4 | biimprd 248 | . . . . . . 7 ⊢ ((cos‘(π / 2)) = 0 → (0 ∈ {0} → (cos‘(π / 2)) ∈ {0})) |
| 6 | 3, 5 | mpi 20 | . . . . . 6 ⊢ ((cos‘(π / 2)) = 0 → (cos‘(π / 2)) ∈ {0}) |
| 7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ (cos‘(π / 2)) ∈ {0} |
| 8 | eldifn 4080 | . . . . 5 ⊢ ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) → ¬ (cos‘(π / 2)) ∈ {0}) | |
| 9 | 7, 8 | mt2 200 | . . . 4 ⊢ ¬ (cos‘(π / 2)) ∈ (ℂ ∖ {0}) |
| 10 | picn 26387 | . . . . . . 7 ⊢ π ∈ ℂ | |
| 11 | halfcl 12339 | . . . . . . 7 ⊢ (π ∈ ℂ → (π / 2) ∈ ℂ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (π / 2) ∈ ℂ |
| 13 | cosf 16026 | . . . . . . . 8 ⊢ cos:ℂ⟶ℂ | |
| 14 | fdm 6656 | . . . . . . . 8 ⊢ (cos:ℂ⟶ℂ → dom cos = ℂ) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ dom cos = ℂ |
| 16 | 15 | eleq2i 2821 | . . . . . 6 ⊢ ((π / 2) ∈ dom cos ↔ (π / 2) ∈ ℂ) |
| 17 | 12, 16 | mpbir 231 | . . . . 5 ⊢ (π / 2) ∈ dom cos |
| 18 | ffun 6650 | . . . . . . 7 ⊢ (cos:ℂ⟶ℂ → Fun cos) | |
| 19 | 13, 18 | ax-mp 5 | . . . . . 6 ⊢ Fun cos |
| 20 | fvimacnv 6981 | . . . . . 6 ⊢ ((Fun cos ∧ (π / 2) ∈ dom cos) → ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) ↔ (π / 2) ∈ (◡cos “ (ℂ ∖ {0})))) | |
| 21 | 19, 20 | mpan 690 | . . . . 5 ⊢ ((π / 2) ∈ dom cos → ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) ↔ (π / 2) ∈ (◡cos “ (ℂ ∖ {0})))) |
| 22 | 17, 21 | ax-mp 5 | . . . 4 ⊢ ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) ↔ (π / 2) ∈ (◡cos “ (ℂ ∖ {0}))) |
| 23 | 9, 22 | mtbi 322 | . . 3 ⊢ ¬ (π / 2) ∈ (◡cos “ (ℂ ∖ {0})) |
| 24 | df-tan 15970 | . . . . 5 ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | |
| 25 | 24 | dmmptss 6185 | . . . 4 ⊢ dom tan ⊆ (◡cos “ (ℂ ∖ {0})) |
| 26 | 25 | sseli 3928 | . . 3 ⊢ ((π / 2) ∈ dom tan → (π / 2) ∈ (◡cos “ (ℂ ∖ {0}))) |
| 27 | 23, 26 | mto 197 | . 2 ⊢ ¬ (π / 2) ∈ dom tan |
| 28 | plyf 26123 | . . 3 ⊢ (tan ∈ (Poly‘ℂ) → tan:ℂ⟶ℂ) | |
| 29 | fdm 6656 | . . 3 ⊢ (tan:ℂ⟶ℂ → dom tan = ℂ) | |
| 30 | eleq2 2818 | . . . . 5 ⊢ (dom tan = ℂ → ((π / 2) ∈ dom tan ↔ (π / 2) ∈ ℂ)) | |
| 31 | 30 | biimprd 248 | . . . 4 ⊢ (dom tan = ℂ → ((π / 2) ∈ ℂ → (π / 2) ∈ dom tan)) |
| 32 | 12, 31 | mpi 20 | . . 3 ⊢ (dom tan = ℂ → (π / 2) ∈ dom tan) |
| 33 | 28, 29, 32 | 3syl 18 | . 2 ⊢ (tan ∈ (Poly‘ℂ) → (π / 2) ∈ dom tan) |
| 34 | 27, 33 | mto 197 | 1 ⊢ ¬ tan ∈ (Poly‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 {csn 4574 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Fun wfun 6471 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 / cdiv 11766 2c2 12172 sincsin 15962 cosccos 15963 tanctan 15964 πcpi 15965 Polycply 26109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-ef 15966 df-sin 15968 df-cos 15969 df-tan 15970 df-pi 15971 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-ply 26113 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |