Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tannpoly Structured version   Visualization version   GIF version

Theorem tannpoly 47004
Description: The tangent function is not a polynomial with complex coefficients, as it is not defined on the whole complex plane. (Contributed by Ender Ting, 10-Dec-2025.)
Assertion
Ref Expression
tannpoly ¬ tan ∈ (Poly‘ℂ)

Proof of Theorem tannpoly
StepHypRef Expression
1 coshalfpi 26415 . . . . . 6 (cos‘(π / 2)) = 0
2 c0ex 11116 . . . . . . . 8 0 ∈ V
32snid 4616 . . . . . . 7 0 ∈ {0}
4 eleq1 2821 . . . . . . . 8 ((cos‘(π / 2)) = 0 → ((cos‘(π / 2)) ∈ {0} ↔ 0 ∈ {0}))
54biimprd 248 . . . . . . 7 ((cos‘(π / 2)) = 0 → (0 ∈ {0} → (cos‘(π / 2)) ∈ {0}))
63, 5mpi 20 . . . . . 6 ((cos‘(π / 2)) = 0 → (cos‘(π / 2)) ∈ {0})
71, 6ax-mp 5 . . . . 5 (cos‘(π / 2)) ∈ {0}
8 eldifn 4083 . . . . 5 ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) → ¬ (cos‘(π / 2)) ∈ {0})
97, 8mt2 200 . . . 4 ¬ (cos‘(π / 2)) ∈ (ℂ ∖ {0})
10 picn 26404 . . . . . . 7 π ∈ ℂ
11 halfcl 12357 . . . . . . 7 (π ∈ ℂ → (π / 2) ∈ ℂ)
1210, 11ax-mp 5 . . . . . 6 (π / 2) ∈ ℂ
13 cosf 16044 . . . . . . . 8 cos:ℂ⟶ℂ
14 fdm 6668 . . . . . . . 8 (cos:ℂ⟶ℂ → dom cos = ℂ)
1513, 14ax-mp 5 . . . . . . 7 dom cos = ℂ
1615eleq2i 2825 . . . . . 6 ((π / 2) ∈ dom cos ↔ (π / 2) ∈ ℂ)
1712, 16mpbir 231 . . . . 5 (π / 2) ∈ dom cos
18 ffun 6662 . . . . . . 7 (cos:ℂ⟶ℂ → Fun cos)
1913, 18ax-mp 5 . . . . . 6 Fun cos
20 fvimacnv 6995 . . . . . 6 ((Fun cos ∧ (π / 2) ∈ dom cos) → ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) ↔ (π / 2) ∈ (cos “ (ℂ ∖ {0}))))
2119, 20mpan 690 . . . . 5 ((π / 2) ∈ dom cos → ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) ↔ (π / 2) ∈ (cos “ (ℂ ∖ {0}))))
2217, 21ax-mp 5 . . . 4 ((cos‘(π / 2)) ∈ (ℂ ∖ {0}) ↔ (π / 2) ∈ (cos “ (ℂ ∖ {0})))
239, 22mtbi 322 . . 3 ¬ (π / 2) ∈ (cos “ (ℂ ∖ {0}))
24 df-tan 15988 . . . . 5 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
2524dmmptss 6196 . . . 4 dom tan ⊆ (cos “ (ℂ ∖ {0}))
2625sseli 3927 . . 3 ((π / 2) ∈ dom tan → (π / 2) ∈ (cos “ (ℂ ∖ {0})))
2723, 26mto 197 . 2 ¬ (π / 2) ∈ dom tan
28 plyf 26140 . . 3 (tan ∈ (Poly‘ℂ) → tan:ℂ⟶ℂ)
29 fdm 6668 . . 3 (tan:ℂ⟶ℂ → dom tan = ℂ)
30 eleq2 2822 . . . . 5 (dom tan = ℂ → ((π / 2) ∈ dom tan ↔ (π / 2) ∈ ℂ))
3130biimprd 248 . . . 4 (dom tan = ℂ → ((π / 2) ∈ ℂ → (π / 2) ∈ dom tan))
3212, 31mpi 20 . . 3 (dom tan = ℂ → (π / 2) ∈ dom tan)
3328, 29, 323syl 18 . 2 (tan ∈ (Poly‘ℂ) → (π / 2) ∈ dom tan)
3427, 33mto 197 1 ¬ tan ∈ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2113  cdif 3896  {csn 4577  ccnv 5620  dom cdm 5621  cima 5624  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016   / cdiv 11784  2c2 12190  sincsin 15980  cosccos 15981  tanctan 15982  πcpi 15983  Polycply 26126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-tan 15988  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-ply 26130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator