Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinnpoly Structured version   Visualization version   GIF version

Theorem sinnpoly 46901
Description: Sine function is not a polynomial with complex coefficients. Indeed, it has infinitely many zeros but is not constant zero, contrary to fta1 26236. (Contributed by Ender Ting, 10-Dec-2025.)
Assertion
Ref Expression
sinnpoly ¬ sin ∈ (Poly‘ℂ)

Proof of Theorem sinnpoly
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnfi 13865 . 2 ¬ ℕ ∈ Fin
2 4re 12201 . . . . . . . 8 4 ∈ ℝ
3 resincl 16041 . . . . . . . 8 (4 ∈ ℝ → (sin‘4) ∈ ℝ)
42, 3ax-mp 5 . . . . . . 7 (sin‘4) ∈ ℝ
5 sin4lt0 16096 . . . . . . . 8 (sin‘4) < 0
6 df-0p 25591 . . . . . . . . . . 11 0𝑝 = (ℂ × {0})
76fveq1i 6818 . . . . . . . . . 10 (0𝑝‘4) = ((ℂ × {0})‘4)
8 4cn 12202 . . . . . . . . . . 11 4 ∈ ℂ
9 c0ex 11098 . . . . . . . . . . . 12 0 ∈ V
109fvconst2 7133 . . . . . . . . . . 11 (4 ∈ ℂ → ((ℂ × {0})‘4) = 0)
118, 10ax-mp 5 . . . . . . . . . 10 ((ℂ × {0})‘4) = 0
127, 11eqtri 2753 . . . . . . . . 9 (0𝑝‘4) = 0
1312eqcomi 2739 . . . . . . . 8 0 = (0𝑝‘4)
145, 13breqtri 5114 . . . . . . 7 (sin‘4) < (0𝑝‘4)
154, 14ltneii 11218 . . . . . 6 (sin‘4) ≠ (0𝑝‘4)
16 fveq1 6816 . . . . . . 7 (sin = 0𝑝 → (sin‘4) = (0𝑝‘4))
1716necon3i 2958 . . . . . 6 ((sin‘4) ≠ (0𝑝‘4) → sin ≠ 0𝑝)
1815, 17ax-mp 5 . . . . 5 sin ≠ 0𝑝
19 eqid 2730 . . . . . 6 (sin “ {0}) = (sin “ {0})
2019fta1 26236 . . . . 5 ((sin ∈ (Poly‘ℂ) ∧ sin ≠ 0𝑝) → ((sin “ {0}) ∈ Fin ∧ (♯‘(sin “ {0})) ≤ (deg‘sin)))
2118, 20mpan2 691 . . . 4 (sin ∈ (Poly‘ℂ) → ((sin “ {0}) ∈ Fin ∧ (♯‘(sin “ {0})) ≤ (deg‘sin)))
2221simpld 494 . . 3 (sin ∈ (Poly‘ℂ) → (sin “ {0}) ∈ Fin)
23 ovexd 7376 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑧 · π) ∈ V)
2423rgen 3047 . . . . . . . . 9 𝑧 ∈ ℤ (𝑧 · π) ∈ V
25 nfcv 2892 . . . . . . . . . 10 𝑧
2625mptfnf 6612 . . . . . . . . 9 (∀𝑧 ∈ ℤ (𝑧 · π) ∈ V ↔ (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ)
2724, 26mpbi 230 . . . . . . . 8 (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ
28 sinkpi 26451 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (sin‘(𝑧 · π)) = 0)
299snid 4613 . . . . . . . . . . . 12 0 ∈ {0}
3028, 29eqeltrdi 2837 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (sin‘(𝑧 · π)) ∈ {0})
31 sinf 16025 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
32 ffun 6650 . . . . . . . . . . . . . 14 (sin:ℂ⟶ℂ → Fun sin)
3331, 32ax-mp 5 . . . . . . . . . . . . 13 Fun sin
3433a1i 11 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → Fun sin)
35 zcn 12465 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
36 picn 26387 . . . . . . . . . . . . . 14 π ∈ ℂ
37 mulcl 11082 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ π ∈ ℂ) → (𝑧 · π) ∈ ℂ)
3835, 36, 37sylancl 586 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 · π) ∈ ℂ)
3931fdmi 6658 . . . . . . . . . . . . . 14 dom sin = ℂ
4039eleq2i 2821 . . . . . . . . . . . . 13 ((𝑧 · π) ∈ dom sin ↔ (𝑧 · π) ∈ ℂ)
4138, 40sylibr 234 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · π) ∈ dom sin)
42 fvimacnv 6981 . . . . . . . . . . . 12 ((Fun sin ∧ (𝑧 · π) ∈ dom sin) → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (sin “ {0})))
4334, 41, 42syl2anc 584 . . . . . . . . . . 11 (𝑧 ∈ ℤ → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (sin “ {0})))
4430, 43mpbid 232 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑧 · π) ∈ (sin “ {0}))
4544rgen 3047 . . . . . . . . 9 𝑧 ∈ ℤ (𝑧 · π) ∈ (sin “ {0})
46 eqid 2730 . . . . . . . . . 10 (𝑧 ∈ ℤ ↦ (𝑧 · π)) = (𝑧 ∈ ℤ ↦ (𝑧 · π))
4746rnmptss 7051 . . . . . . . . 9 (∀𝑧 ∈ ℤ (𝑧 · π) ∈ (sin “ {0}) → ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0}))
4845, 47ax-mp 5 . . . . . . . 8 ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0})
4927, 48pm3.2i 470 . . . . . . 7 ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0}))
50 df-f 6481 . . . . . . 7 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0})))
5149, 50mpbir 231 . . . . . 6 (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0})
52 moeq 3664 . . . . . . . . 9 ∃*𝑥 𝑥 = (𝑦 / π)
53 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑦 = (𝑥 · π))
54 oveq1 7348 . . . . . . . . . . . . 13 (𝑦 = (𝑥 · π) → (𝑦 / π) = ((𝑥 · π) / π))
5553, 54syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = ((𝑥 · π) / π))
56 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℤ)
57 zcn 12465 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℂ)
59 pine0 26389 . . . . . . . . . . . . . 14 π ≠ 0
60 divcan4 11795 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝑥 · π) / π) = 𝑥)
6136, 59, 60mp3an23 1455 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑥 · π) / π) = 𝑥)
6258, 61syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → ((𝑥 · π) / π) = 𝑥)
6355, 62eqtrd 2765 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = 𝑥)
6463eqcomd 2736 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 = (𝑦 / π))
6564moimi 2539 . . . . . . . . 9 (∃*𝑥 𝑥 = (𝑦 / π) → ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
6652, 65ax-mp 5 . . . . . . . 8 ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))
6766ax-gen 1796 . . . . . . 7 𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))
68 vex 3438 . . . . . . . . . 10 𝑥 ∈ V
69 vex 3438 . . . . . . . . . 10 𝑦 ∈ V
70 eleq1w 2812 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ))
7170adantr 480 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑡 = 𝑦) → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ))
72 eqeq1 2734 . . . . . . . . . . . 12 (𝑡 = 𝑦 → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑧 · π)))
73 oveq1 7348 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 · π) = (𝑥 · π))
7473eqeq2d 2741 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑦 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π)))
7572, 74sylan9bbr 510 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑡 = 𝑦) → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π)))
7671, 75anbi12d 632 . . . . . . . . . 10 ((𝑧 = 𝑥𝑡 = 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π)) ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))))
77 df-mpt 5171 . . . . . . . . . 10 (𝑧 ∈ ℤ ↦ (𝑧 · π)) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π))}
7868, 69, 76, 77braba 5475 . . . . . . . . 9 (𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
7978mobii 2542 . . . . . . . 8 (∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
8079albii 1820 . . . . . . 7 (∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∀𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
8167, 80mpbir 231 . . . . . 6 𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦
8251, 81pm3.2i 470 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦)
83 dff12 6714 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦))
8482, 83mpbir 231 . . . 4 (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})
85 f1fi 9193 . . . . 5 (((sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})) → ℤ ∈ Fin)
86 nnssz 12482 . . . . . 6 ℕ ⊆ ℤ
87 ssfi 9077 . . . . . 6 ((ℤ ∈ Fin ∧ ℕ ⊆ ℤ) → ℕ ∈ Fin)
8886, 87mpan2 691 . . . . 5 (ℤ ∈ Fin → ℕ ∈ Fin)
8985, 88syl 17 . . . 4 (((sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})) → ℕ ∈ Fin)
9084, 89mpan2 691 . . 3 ((sin “ {0}) ∈ Fin → ℕ ∈ Fin)
9122, 90syl 17 . 2 (sin ∈ (Poly‘ℂ) → ℕ ∈ Fin)
921, 91mto 197 1 ¬ sin ∈ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2110  ∃*wmo 2532  wne 2926  wral 3045  Vcvv 3434  wss 3900  {csn 4574   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6471   Fn wfn 6472  wf 6473  1-1wf1 6474  cfv 6477  (class class class)co 7341  Fincfn 8864  cc 10996  cr 10997  0cc0 10998   · cmul 11003   < clt 11138  cle 11139   / cdiv 11766  cn 12117  4c4 12174  cz 12460  chash 14229  sincsin 15962  πcpi 15965  0𝑝c0p 25590  Polycply 26109  degcdgr 26112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-0p 25591  df-limc 25787  df-dv 25788  df-ply 26113  df-idp 26114  df-coe 26115  df-dgr 26116  df-quot 26219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator