Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinnpoly Structured version   Visualization version   GIF version

Theorem sinnpoly 47005
Description: Sine function is not a polynomial with complex coefficients. Indeed, it has infinitely many zeros but is not constant zero, contrary to fta1 26253. (Contributed by Ender Ting, 10-Dec-2025.)
Assertion
Ref Expression
sinnpoly ¬ sin ∈ (Poly‘ℂ)

Proof of Theorem sinnpoly
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnfi 13883 . 2 ¬ ℕ ∈ Fin
2 4re 12219 . . . . . . . 8 4 ∈ ℝ
3 resincl 16059 . . . . . . . 8 (4 ∈ ℝ → (sin‘4) ∈ ℝ)
42, 3ax-mp 5 . . . . . . 7 (sin‘4) ∈ ℝ
5 sin4lt0 16114 . . . . . . . 8 (sin‘4) < 0
6 df-0p 25608 . . . . . . . . . . 11 0𝑝 = (ℂ × {0})
76fveq1i 6832 . . . . . . . . . 10 (0𝑝‘4) = ((ℂ × {0})‘4)
8 4cn 12220 . . . . . . . . . . 11 4 ∈ ℂ
9 c0ex 11116 . . . . . . . . . . . 12 0 ∈ V
109fvconst2 7147 . . . . . . . . . . 11 (4 ∈ ℂ → ((ℂ × {0})‘4) = 0)
118, 10ax-mp 5 . . . . . . . . . 10 ((ℂ × {0})‘4) = 0
127, 11eqtri 2756 . . . . . . . . 9 (0𝑝‘4) = 0
1312eqcomi 2742 . . . . . . . 8 0 = (0𝑝‘4)
145, 13breqtri 5120 . . . . . . 7 (sin‘4) < (0𝑝‘4)
154, 14ltneii 11236 . . . . . 6 (sin‘4) ≠ (0𝑝‘4)
16 fveq1 6830 . . . . . . 7 (sin = 0𝑝 → (sin‘4) = (0𝑝‘4))
1716necon3i 2962 . . . . . 6 ((sin‘4) ≠ (0𝑝‘4) → sin ≠ 0𝑝)
1815, 17ax-mp 5 . . . . 5 sin ≠ 0𝑝
19 eqid 2733 . . . . . 6 (sin “ {0}) = (sin “ {0})
2019fta1 26253 . . . . 5 ((sin ∈ (Poly‘ℂ) ∧ sin ≠ 0𝑝) → ((sin “ {0}) ∈ Fin ∧ (♯‘(sin “ {0})) ≤ (deg‘sin)))
2118, 20mpan2 691 . . . 4 (sin ∈ (Poly‘ℂ) → ((sin “ {0}) ∈ Fin ∧ (♯‘(sin “ {0})) ≤ (deg‘sin)))
2221simpld 494 . . 3 (sin ∈ (Poly‘ℂ) → (sin “ {0}) ∈ Fin)
23 ovexd 7390 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑧 · π) ∈ V)
2423rgen 3051 . . . . . . . . 9 𝑧 ∈ ℤ (𝑧 · π) ∈ V
25 nfcv 2896 . . . . . . . . . 10 𝑧
2625mptfnf 6624 . . . . . . . . 9 (∀𝑧 ∈ ℤ (𝑧 · π) ∈ V ↔ (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ)
2724, 26mpbi 230 . . . . . . . 8 (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ
28 sinkpi 26468 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (sin‘(𝑧 · π)) = 0)
299snid 4616 . . . . . . . . . . . 12 0 ∈ {0}
3028, 29eqeltrdi 2841 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (sin‘(𝑧 · π)) ∈ {0})
31 sinf 16043 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
32 ffun 6662 . . . . . . . . . . . . . 14 (sin:ℂ⟶ℂ → Fun sin)
3331, 32ax-mp 5 . . . . . . . . . . . . 13 Fun sin
3433a1i 11 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → Fun sin)
35 zcn 12483 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
36 picn 26404 . . . . . . . . . . . . . 14 π ∈ ℂ
37 mulcl 11100 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ π ∈ ℂ) → (𝑧 · π) ∈ ℂ)
3835, 36, 37sylancl 586 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 · π) ∈ ℂ)
3931fdmi 6670 . . . . . . . . . . . . . 14 dom sin = ℂ
4039eleq2i 2825 . . . . . . . . . . . . 13 ((𝑧 · π) ∈ dom sin ↔ (𝑧 · π) ∈ ℂ)
4138, 40sylibr 234 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · π) ∈ dom sin)
42 fvimacnv 6995 . . . . . . . . . . . 12 ((Fun sin ∧ (𝑧 · π) ∈ dom sin) → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (sin “ {0})))
4334, 41, 42syl2anc 584 . . . . . . . . . . 11 (𝑧 ∈ ℤ → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (sin “ {0})))
4430, 43mpbid 232 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑧 · π) ∈ (sin “ {0}))
4544rgen 3051 . . . . . . . . 9 𝑧 ∈ ℤ (𝑧 · π) ∈ (sin “ {0})
46 eqid 2733 . . . . . . . . . 10 (𝑧 ∈ ℤ ↦ (𝑧 · π)) = (𝑧 ∈ ℤ ↦ (𝑧 · π))
4746rnmptss 7065 . . . . . . . . 9 (∀𝑧 ∈ ℤ (𝑧 · π) ∈ (sin “ {0}) → ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0}))
4845, 47ax-mp 5 . . . . . . . 8 ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0})
4927, 48pm3.2i 470 . . . . . . 7 ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0}))
50 df-f 6493 . . . . . . 7 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0})))
5149, 50mpbir 231 . . . . . 6 (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0})
52 moeq 3663 . . . . . . . . 9 ∃*𝑥 𝑥 = (𝑦 / π)
53 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑦 = (𝑥 · π))
54 oveq1 7362 . . . . . . . . . . . . 13 (𝑦 = (𝑥 · π) → (𝑦 / π) = ((𝑥 · π) / π))
5553, 54syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = ((𝑥 · π) / π))
56 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℤ)
57 zcn 12483 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℂ)
59 pine0 26406 . . . . . . . . . . . . . 14 π ≠ 0
60 divcan4 11813 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝑥 · π) / π) = 𝑥)
6136, 59, 60mp3an23 1455 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑥 · π) / π) = 𝑥)
6258, 61syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → ((𝑥 · π) / π) = 𝑥)
6355, 62eqtrd 2768 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = 𝑥)
6463eqcomd 2739 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 = (𝑦 / π))
6564moimi 2542 . . . . . . . . 9 (∃*𝑥 𝑥 = (𝑦 / π) → ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
6652, 65ax-mp 5 . . . . . . . 8 ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))
6766ax-gen 1796 . . . . . . 7 𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))
68 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
69 vex 3442 . . . . . . . . . 10 𝑦 ∈ V
70 eleq1w 2816 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ))
7170adantr 480 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑡 = 𝑦) → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ))
72 eqeq1 2737 . . . . . . . . . . . 12 (𝑡 = 𝑦 → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑧 · π)))
73 oveq1 7362 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 · π) = (𝑥 · π))
7473eqeq2d 2744 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑦 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π)))
7572, 74sylan9bbr 510 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑡 = 𝑦) → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π)))
7671, 75anbi12d 632 . . . . . . . . . 10 ((𝑧 = 𝑥𝑡 = 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π)) ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))))
77 df-mpt 5177 . . . . . . . . . 10 (𝑧 ∈ ℤ ↦ (𝑧 · π)) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π))}
7868, 69, 76, 77braba 5482 . . . . . . . . 9 (𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
7978mobii 2545 . . . . . . . 8 (∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
8079albii 1820 . . . . . . 7 (∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∀𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
8167, 80mpbir 231 . . . . . 6 𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦
8251, 81pm3.2i 470 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦)
83 dff12 6726 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦))
8482, 83mpbir 231 . . . 4 (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})
85 f1fi 9208 . . . . 5 (((sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})) → ℤ ∈ Fin)
86 nnssz 12500 . . . . . 6 ℕ ⊆ ℤ
87 ssfi 9092 . . . . . 6 ((ℤ ∈ Fin ∧ ℕ ⊆ ℤ) → ℕ ∈ Fin)
8886, 87mpan2 691 . . . . 5 (ℤ ∈ Fin → ℕ ∈ Fin)
8985, 88syl 17 . . . 4 (((sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})) → ℕ ∈ Fin)
9084, 89mpan2 691 . . 3 ((sin “ {0}) ∈ Fin → ℕ ∈ Fin)
9122, 90syl 17 . 2 (sin ∈ (Poly‘ℂ) → ℕ ∈ Fin)
921, 91mto 197 1 ¬ sin ∈ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  ∃*wmo 2535  wne 2930  wral 3049  Vcvv 3438  wss 3899  {csn 4577   class class class wbr 5095  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cima 5624  Fun wfun 6483   Fn wfn 6484  wf 6485  1-1wf1 6486  cfv 6489  (class class class)co 7355  Fincfn 8878  cc 11014  cr 11015  0cc0 11016   · cmul 11021   < clt 11156  cle 11157   / cdiv 11784  cn 12135  4c4 12192  cz 12478  chash 14247  sincsin 15980  πcpi 15983  0𝑝c0p 25607  Polycply 26126  degcdgr 26129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-0p 25608  df-limc 25804  df-dv 25805  df-ply 26130  df-idp 26131  df-coe 26132  df-dgr 26133  df-quot 26236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator