Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinnpoly Structured version   Visualization version   GIF version

Theorem sinnpoly 46892
Description: Sine function is not a polynomial with complex coefficients. Indeed, it has infinitely many zeros but is not constant zero, contrary to fta1 26216. (Contributed by Ender Ting, 10-Dec-2025.)
Assertion
Ref Expression
sinnpoly ¬ sin ∈ (Poly‘ℂ)

Proof of Theorem sinnpoly
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnfi 13931 . 2 ¬ ℕ ∈ Fin
2 4re 12270 . . . . . . . 8 4 ∈ ℝ
3 resincl 16108 . . . . . . . 8 (4 ∈ ℝ → (sin‘4) ∈ ℝ)
42, 3ax-mp 5 . . . . . . 7 (sin‘4) ∈ ℝ
5 sin4lt0 16163 . . . . . . . 8 (sin‘4) < 0
6 df-0p 25571 . . . . . . . . . . 11 0𝑝 = (ℂ × {0})
76fveq1i 6859 . . . . . . . . . 10 (0𝑝‘4) = ((ℂ × {0})‘4)
8 4cn 12271 . . . . . . . . . . 11 4 ∈ ℂ
9 c0ex 11168 . . . . . . . . . . . 12 0 ∈ V
109fvconst2 7178 . . . . . . . . . . 11 (4 ∈ ℂ → ((ℂ × {0})‘4) = 0)
118, 10ax-mp 5 . . . . . . . . . 10 ((ℂ × {0})‘4) = 0
127, 11eqtri 2752 . . . . . . . . 9 (0𝑝‘4) = 0
1312eqcomi 2738 . . . . . . . 8 0 = (0𝑝‘4)
145, 13breqtri 5132 . . . . . . 7 (sin‘4) < (0𝑝‘4)
154, 14ltneii 11287 . . . . . 6 (sin‘4) ≠ (0𝑝‘4)
16 fveq1 6857 . . . . . . 7 (sin = 0𝑝 → (sin‘4) = (0𝑝‘4))
1716necon3i 2957 . . . . . 6 ((sin‘4) ≠ (0𝑝‘4) → sin ≠ 0𝑝)
1815, 17ax-mp 5 . . . . 5 sin ≠ 0𝑝
19 eqid 2729 . . . . . 6 (sin “ {0}) = (sin “ {0})
2019fta1 26216 . . . . 5 ((sin ∈ (Poly‘ℂ) ∧ sin ≠ 0𝑝) → ((sin “ {0}) ∈ Fin ∧ (♯‘(sin “ {0})) ≤ (deg‘sin)))
2118, 20mpan2 691 . . . 4 (sin ∈ (Poly‘ℂ) → ((sin “ {0}) ∈ Fin ∧ (♯‘(sin “ {0})) ≤ (deg‘sin)))
2221simpld 494 . . 3 (sin ∈ (Poly‘ℂ) → (sin “ {0}) ∈ Fin)
23 ovexd 7422 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑧 · π) ∈ V)
2423rgen 3046 . . . . . . . . 9 𝑧 ∈ ℤ (𝑧 · π) ∈ V
25 nfcv 2891 . . . . . . . . . 10 𝑧
2625mptfnf 6653 . . . . . . . . 9 (∀𝑧 ∈ ℤ (𝑧 · π) ∈ V ↔ (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ)
2724, 26mpbi 230 . . . . . . . 8 (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ
28 sinkpi 26431 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (sin‘(𝑧 · π)) = 0)
299snid 4626 . . . . . . . . . . . 12 0 ∈ {0}
3028, 29eqeltrdi 2836 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (sin‘(𝑧 · π)) ∈ {0})
31 sinf 16092 . . . . . . . . . . . . . 14 sin:ℂ⟶ℂ
32 ffun 6691 . . . . . . . . . . . . . 14 (sin:ℂ⟶ℂ → Fun sin)
3331, 32ax-mp 5 . . . . . . . . . . . . 13 Fun sin
3433a1i 11 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → Fun sin)
35 zcn 12534 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
36 picn 26367 . . . . . . . . . . . . . 14 π ∈ ℂ
37 mulcl 11152 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℂ ∧ π ∈ ℂ) → (𝑧 · π) ∈ ℂ)
3835, 36, 37sylancl 586 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 · π) ∈ ℂ)
3931fdmi 6699 . . . . . . . . . . . . . 14 dom sin = ℂ
4039eleq2i 2820 . . . . . . . . . . . . 13 ((𝑧 · π) ∈ dom sin ↔ (𝑧 · π) ∈ ℂ)
4138, 40sylibr 234 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · π) ∈ dom sin)
42 fvimacnv 7025 . . . . . . . . . . . 12 ((Fun sin ∧ (𝑧 · π) ∈ dom sin) → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (sin “ {0})))
4334, 41, 42syl2anc 584 . . . . . . . . . . 11 (𝑧 ∈ ℤ → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (sin “ {0})))
4430, 43mpbid 232 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑧 · π) ∈ (sin “ {0}))
4544rgen 3046 . . . . . . . . 9 𝑧 ∈ ℤ (𝑧 · π) ∈ (sin “ {0})
46 eqid 2729 . . . . . . . . . 10 (𝑧 ∈ ℤ ↦ (𝑧 · π)) = (𝑧 ∈ ℤ ↦ (𝑧 · π))
4746rnmptss 7095 . . . . . . . . 9 (∀𝑧 ∈ ℤ (𝑧 · π) ∈ (sin “ {0}) → ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0}))
4845, 47ax-mp 5 . . . . . . . 8 ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0})
4927, 48pm3.2i 470 . . . . . . 7 ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0}))
50 df-f 6515 . . . . . . 7 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (sin “ {0})))
5149, 50mpbir 231 . . . . . 6 (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0})
52 moeq 3678 . . . . . . . . 9 ∃*𝑥 𝑥 = (𝑦 / π)
53 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑦 = (𝑥 · π))
54 oveq1 7394 . . . . . . . . . . . . 13 (𝑦 = (𝑥 · π) → (𝑦 / π) = ((𝑥 · π) / π))
5553, 54syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = ((𝑥 · π) / π))
56 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℤ)
57 zcn 12534 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℂ)
59 pine0 26369 . . . . . . . . . . . . . 14 π ≠ 0
60 divcan4 11864 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝑥 · π) / π) = 𝑥)
6136, 59, 60mp3an23 1455 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑥 · π) / π) = 𝑥)
6258, 61syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → ((𝑥 · π) / π) = 𝑥)
6355, 62eqtrd 2764 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = 𝑥)
6463eqcomd 2735 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 = (𝑦 / π))
6564moimi 2538 . . . . . . . . 9 (∃*𝑥 𝑥 = (𝑦 / π) → ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
6652, 65ax-mp 5 . . . . . . . 8 ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))
6766ax-gen 1795 . . . . . . 7 𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))
68 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
69 vex 3451 . . . . . . . . . 10 𝑦 ∈ V
70 eleq1w 2811 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ))
7170adantr 480 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑡 = 𝑦) → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ))
72 eqeq1 2733 . . . . . . . . . . . 12 (𝑡 = 𝑦 → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑧 · π)))
73 oveq1 7394 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 · π) = (𝑥 · π))
7473eqeq2d 2740 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑦 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π)))
7572, 74sylan9bbr 510 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑡 = 𝑦) → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π)))
7671, 75anbi12d 632 . . . . . . . . . 10 ((𝑧 = 𝑥𝑡 = 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π)) ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))))
77 df-mpt 5189 . . . . . . . . . 10 (𝑧 ∈ ℤ ↦ (𝑧 · π)) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π))}
7868, 69, 76, 77braba 5497 . . . . . . . . 9 (𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
7978mobii 2541 . . . . . . . 8 (∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
8079albii 1819 . . . . . . 7 (∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∀𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))
8167, 80mpbir 231 . . . . . 6 𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦
8251, 81pm3.2i 470 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦)
83 dff12 6755 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦))
8482, 83mpbir 231 . . . 4 (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})
85 f1fi 9263 . . . . 5 (((sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})) → ℤ ∈ Fin)
86 nnssz 12551 . . . . . 6 ℕ ⊆ ℤ
87 ssfi 9137 . . . . . 6 ((ℤ ∈ Fin ∧ ℕ ⊆ ℤ) → ℕ ∈ Fin)
8886, 87mpan2 691 . . . . 5 (ℤ ∈ Fin → ℕ ∈ Fin)
8985, 88syl 17 . . . 4 (((sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ–1-1→(sin “ {0})) → ℕ ∈ Fin)
9084, 89mpan2 691 . . 3 ((sin “ {0}) ∈ Fin → ℕ ∈ Fin)
9122, 90syl 17 . 2 (sin ∈ (Poly‘ℂ) → ℕ ∈ Fin)
921, 91mto 197 1 ¬ sin ∈ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wne 2925  wral 3044  Vcvv 3447  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  cn 12186  4c4 12243  cz 12529  chash 14295  sincsin 16029  πcpi 16032  0𝑝c0p 25570  Polycply 26089  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-ply 26093  df-idp 26094  df-coe 26095  df-dgr 26096  df-quot 26199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator