| Step | Hyp | Ref
| Expression |
| 1 | | nnnfi 13931 |
. 2
⊢ ¬
ℕ ∈ Fin |
| 2 | | 4re 12270 |
. . . . . . . 8
⊢ 4 ∈
ℝ |
| 3 | | resincl 16108 |
. . . . . . . 8
⊢ (4 ∈
ℝ → (sin‘4) ∈ ℝ) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢
(sin‘4) ∈ ℝ |
| 5 | | sin4lt0 16163 |
. . . . . . . 8
⊢
(sin‘4) < 0 |
| 6 | | df-0p 25571 |
. . . . . . . . . . 11
⊢
0𝑝 = (ℂ × {0}) |
| 7 | 6 | fveq1i 6859 |
. . . . . . . . . 10
⊢
(0𝑝‘4) = ((ℂ ×
{0})‘4) |
| 8 | | 4cn 12271 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
| 9 | | c0ex 11168 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 10 | 9 | fvconst2 7178 |
. . . . . . . . . . 11
⊢ (4 ∈
ℂ → ((ℂ × {0})‘4) = 0) |
| 11 | 8, 10 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((ℂ
× {0})‘4) = 0 |
| 12 | 7, 11 | eqtri 2752 |
. . . . . . . . 9
⊢
(0𝑝‘4) = 0 |
| 13 | 12 | eqcomi 2738 |
. . . . . . . 8
⊢ 0 =
(0𝑝‘4) |
| 14 | 5, 13 | breqtri 5132 |
. . . . . . 7
⊢
(sin‘4) < (0𝑝‘4) |
| 15 | 4, 14 | ltneii 11287 |
. . . . . 6
⊢
(sin‘4) ≠ (0𝑝‘4) |
| 16 | | fveq1 6857 |
. . . . . . 7
⊢ (sin =
0𝑝 → (sin‘4) =
(0𝑝‘4)) |
| 17 | 16 | necon3i 2957 |
. . . . . 6
⊢
((sin‘4) ≠ (0𝑝‘4) → sin ≠
0𝑝) |
| 18 | 15, 17 | ax-mp 5 |
. . . . 5
⊢ sin ≠
0𝑝 |
| 19 | | eqid 2729 |
. . . . . 6
⊢ (◡sin “ {0}) = (◡sin “ {0}) |
| 20 | 19 | fta1 26216 |
. . . . 5
⊢ ((sin
∈ (Poly‘ℂ) ∧ sin ≠ 0𝑝) →
((◡sin “ {0}) ∈ Fin ∧
(♯‘(◡sin “ {0})) ≤
(deg‘sin))) |
| 21 | 18, 20 | mpan2 691 |
. . . 4
⊢ (sin
∈ (Poly‘ℂ) → ((◡sin “ {0}) ∈ Fin ∧
(♯‘(◡sin “ {0})) ≤
(deg‘sin))) |
| 22 | 21 | simpld 494 |
. . 3
⊢ (sin
∈ (Poly‘ℂ) → (◡sin “ {0}) ∈
Fin) |
| 23 | | ovexd 7422 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℤ → (𝑧 · π) ∈
V) |
| 24 | 23 | rgen 3046 |
. . . . . . . . 9
⊢
∀𝑧 ∈
ℤ (𝑧 · π)
∈ V |
| 25 | | nfcv 2891 |
. . . . . . . . . 10
⊢
Ⅎ𝑧ℤ |
| 26 | 25 | mptfnf 6653 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ℤ (𝑧 · π)
∈ V ↔ (𝑧 ∈
ℤ ↦ (𝑧 ·
π)) Fn ℤ) |
| 27 | 24, 26 | mpbi 230 |
. . . . . . . 8
⊢ (𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn
ℤ |
| 28 | | sinkpi 26431 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℤ →
(sin‘(𝑧 ·
π)) = 0) |
| 29 | 9 | snid 4626 |
. . . . . . . . . . . 12
⊢ 0 ∈
{0} |
| 30 | 28, 29 | eqeltrdi 2836 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℤ →
(sin‘(𝑧 ·
π)) ∈ {0}) |
| 31 | | sinf 16092 |
. . . . . . . . . . . . . 14
⊢
sin:ℂ⟶ℂ |
| 32 | | ffun 6691 |
. . . . . . . . . . . . . 14
⊢
(sin:ℂ⟶ℂ → Fun sin) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Fun
sin |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℤ → Fun
sin) |
| 35 | | zcn 12534 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) |
| 36 | | picn 26367 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
| 37 | | mulcl 11152 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℂ ∧ π
∈ ℂ) → (𝑧
· π) ∈ ℂ) |
| 38 | 35, 36, 37 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℤ → (𝑧 · π) ∈
ℂ) |
| 39 | 31 | fdmi 6699 |
. . . . . . . . . . . . . 14
⊢ dom sin =
ℂ |
| 40 | 39 | eleq2i 2820 |
. . . . . . . . . . . . 13
⊢ ((𝑧 · π) ∈ dom sin
↔ (𝑧 · π)
∈ ℂ) |
| 41 | 38, 40 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℤ → (𝑧 · π) ∈ dom
sin) |
| 42 | | fvimacnv 7025 |
. . . . . . . . . . . 12
⊢ ((Fun sin
∧ (𝑧 · π)
∈ dom sin) → ((sin‘(𝑧 · π)) ∈ {0} ↔ (𝑧 · π) ∈ (◡sin “ {0}))) |
| 43 | 34, 41, 42 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℤ →
((sin‘(𝑧 ·
π)) ∈ {0} ↔ (𝑧
· π) ∈ (◡sin “
{0}))) |
| 44 | 30, 43 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℤ → (𝑧 · π) ∈ (◡sin “ {0})) |
| 45 | 44 | rgen 3046 |
. . . . . . . . 9
⊢
∀𝑧 ∈
ℤ (𝑧 · π)
∈ (◡sin “
{0}) |
| 46 | | eqid 2729 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℤ ↦ (𝑧 · π)) = (𝑧 ∈ ℤ ↦ (𝑧 ·
π)) |
| 47 | 46 | rnmptss 7095 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ℤ (𝑧 · π)
∈ (◡sin “ {0}) → ran
(𝑧 ∈ ℤ ↦
(𝑧 · π)) ⊆
(◡sin “ {0})) |
| 48 | 45, 47 | ax-mp 5 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ ℤ ↦
(𝑧 · π)) ⊆
(◡sin “ {0}) |
| 49 | 27, 48 | pm3.2i 470 |
. . . . . . 7
⊢ ((𝑧 ∈ ℤ ↦ (𝑧 · π)) Fn ℤ
∧ ran (𝑧 ∈ ℤ
↦ (𝑧 · π))
⊆ (◡sin “
{0})) |
| 50 | | df-f 6515 |
. . . . . . 7
⊢ ((𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ⟶(◡sin “
{0}) ↔ ((𝑧 ∈
ℤ ↦ (𝑧 ·
π)) Fn ℤ ∧ ran (𝑧 ∈ ℤ ↦ (𝑧 · π)) ⊆ (◡sin “ {0}))) |
| 51 | 49, 50 | mpbir 231 |
. . . . . 6
⊢ (𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ⟶(◡sin “
{0}) |
| 52 | | moeq 3678 |
. . . . . . . . 9
⊢
∃*𝑥 𝑥 = (𝑦 / π) |
| 53 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑦 = (𝑥 · π)) |
| 54 | | oveq1 7394 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 · π) → (𝑦 / π) = ((𝑥 · π) / π)) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = ((𝑥 · π) / π)) |
| 56 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℤ) |
| 57 | | zcn 12534 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 ∈ ℂ) |
| 59 | | pine0 26369 |
. . . . . . . . . . . . . 14
⊢ π ≠
0 |
| 60 | | divcan4 11864 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ π
∈ ℂ ∧ π ≠ 0) → ((𝑥 · π) / π) = 𝑥) |
| 61 | 36, 59, 60 | mp3an23 1455 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → ((𝑥 · π) / π) = 𝑥) |
| 62 | 58, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → ((𝑥 · π) / π) = 𝑥) |
| 63 | 55, 62 | eqtrd 2764 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → (𝑦 / π) = 𝑥) |
| 64 | 63 | eqcomd 2735 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) → 𝑥 = (𝑦 / π)) |
| 65 | 64 | moimi 2538 |
. . . . . . . . 9
⊢
(∃*𝑥 𝑥 = (𝑦 / π) → ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))) |
| 66 | 52, 65 | ax-mp 5 |
. . . . . . . 8
⊢
∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) |
| 67 | 66 | ax-gen 1795 |
. . . . . . 7
⊢
∀𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)) |
| 68 | | vex 3451 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 69 | | vex 3451 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 70 | | eleq1w 2811 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ)) |
| 71 | 70 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ)) |
| 72 | | eqeq1 2733 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑦 → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑧 · π))) |
| 73 | | oveq1 7394 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 · π) = (𝑥 · π)) |
| 74 | 73 | eqeq2d 2740 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑦 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π))) |
| 75 | 72, 74 | sylan9bbr 510 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑡 = (𝑧 · π) ↔ 𝑦 = (𝑥 · π))) |
| 76 | 71, 75 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝑥 ∧ 𝑡 = 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π)) ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π)))) |
| 77 | | df-mpt 5189 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℤ ↦ (𝑧 · π)) = {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ ℤ ∧ 𝑡 = (𝑧 · π))} |
| 78 | 68, 69, 76, 77 | braba 5497 |
. . . . . . . . 9
⊢ (𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ (𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))) |
| 79 | 78 | mobii 2541 |
. . . . . . . 8
⊢
(∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))) |
| 80 | 79 | albii 1819 |
. . . . . . 7
⊢
(∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 ↔ ∀𝑦∃*𝑥(𝑥 ∈ ℤ ∧ 𝑦 = (𝑥 · π))) |
| 81 | 67, 80 | mpbir 231 |
. . . . . 6
⊢
∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦 |
| 82 | 51, 81 | pm3.2i 470 |
. . . . 5
⊢ ((𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ⟶(◡sin “
{0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦) |
| 83 | | dff12 6755 |
. . . . 5
⊢ ((𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ–1-1→(◡sin “ {0}) ↔ ((𝑧 ∈ ℤ ↦ (𝑧 · π)):ℤ⟶(◡sin “ {0}) ∧ ∀𝑦∃*𝑥 𝑥(𝑧 ∈ ℤ ↦ (𝑧 · π))𝑦)) |
| 84 | 82, 83 | mpbir 231 |
. . . 4
⊢ (𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ–1-1→(◡sin “ {0}) |
| 85 | | f1fi 9263 |
. . . . 5
⊢ (((◡sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ–1-1→(◡sin “ {0})) → ℤ ∈
Fin) |
| 86 | | nnssz 12551 |
. . . . . 6
⊢ ℕ
⊆ ℤ |
| 87 | | ssfi 9137 |
. . . . . 6
⊢ ((ℤ
∈ Fin ∧ ℕ ⊆ ℤ) → ℕ ∈
Fin) |
| 88 | 86, 87 | mpan2 691 |
. . . . 5
⊢ (ℤ
∈ Fin → ℕ ∈ Fin) |
| 89 | 85, 88 | syl 17 |
. . . 4
⊢ (((◡sin “ {0}) ∈ Fin ∧ (𝑧 ∈ ℤ ↦ (𝑧 ·
π)):ℤ–1-1→(◡sin “ {0})) → ℕ ∈
Fin) |
| 90 | 84, 89 | mpan2 691 |
. . 3
⊢ ((◡sin “ {0}) ∈ Fin → ℕ
∈ Fin) |
| 91 | 22, 90 | syl 17 |
. 2
⊢ (sin
∈ (Poly‘ℂ) → ℕ ∈ Fin) |
| 92 | 1, 91 | mto 197 |
1
⊢ ¬
sin ∈ (Poly‘ℂ) |