Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgfialglem1 Structured version   Visualization version   GIF version

Theorem extdgfialglem1 33697
Description: Lemma for extdgfialg 33699. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
extdgfialg.b 𝐵 = (Base‘𝐸)
extdgfialg.d 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹))
extdgfialg.e (𝜑𝐸 ∈ Field)
extdgfialg.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
extdgfialg.1 (𝜑𝐷 ∈ ℕ0)
extdgfialglem1.2 𝑍 = (0g𝐸)
extdgfialglem1.3 · = (.r𝐸)
extdgfialglem1.r 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
extdgfialglem1.4 (𝜑𝑋𝐵)
Assertion
Ref Expression
extdgfialglem1 (𝜑 → ∃𝑎 ∈ (𝐹m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍}))))
Distinct variable groups:   · ,𝑛   𝐵,𝑛   𝐷,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝑋   𝑛,𝑍   𝜑,𝑛   𝐵,𝑎,𝑛   𝐷,𝑎   𝐸,𝑎   𝐹,𝑎   𝜑,𝑎   𝐺,𝑎   𝑋,𝑎
Allowed substitution hints:   · (𝑎)   𝑍(𝑎)

Proof of Theorem extdgfialglem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . . . . . 13 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹)))
2 extdgfialg.e . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸 ∈ Field)
32flddrngd 20651 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ DivRing)
4 extdgfialg.f . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (SubDRing‘𝐸))
5 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝐸s 𝐹) = (𝐸s 𝐹)
65sdrgdrng 20700 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
74, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
8 sdrgsubrg 20701 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
94, 8syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (SubRing‘𝐸))
10 eqid 2731 . . . . . . . . . . . . . . . . . . 19 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
1110, 5sralvec 33589 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ DivRing ∧ (𝐸s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
123, 7, 9, 11syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
1312ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
1413ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
15 extdgfialg.d . . . . . . . . . . . . . . . 16 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹))
16 eqid 2731 . . . . . . . . . . . . . . . . 17 (LBasis‘((subringAlg ‘𝐸)‘𝐹)) = (LBasis‘((subringAlg ‘𝐸)‘𝐹))
1716dimval 33605 . . . . . . . . . . . . . . . 16 ((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐹)) = (♯‘𝑏))
1815, 17eqtrid 2778 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 = (♯‘𝑏))
1914, 1, 18syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝐷 = (♯‘𝑏))
20 extdgfialg.1 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℕ0)
2120ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝐷 ∈ ℕ0)
2219, 21eqeltrrd 2832 . . . . . . . . . . . . 13 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘𝑏) ∈ ℕ0)
23 hashclb 14260 . . . . . . . . . . . . . 14 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
2423biimpar 477 . . . . . . . . . . . . 13 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
251, 22, 24syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝑏 ∈ Fin)
26 hashss 14311 . . . . . . . . . . . 12 ((𝑏 ∈ Fin ∧ ran 𝐺𝑏) → (♯‘ran 𝐺) ≤ (♯‘𝑏))
2725, 26sylancom 588 . . . . . . . . . . 11 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘ran 𝐺) ≤ (♯‘𝑏))
28 extdgfialglem1.r . . . . . . . . . . . . . . 15 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
2928dmeqi 5839 . . . . . . . . . . . . . 14 dom 𝐺 = dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
30 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
31 ovexd 7376 . . . . . . . . . . . . . . . 16 (((𝜑𝐺:dom 𝐺1-1→V) ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ V)
3230, 31dmmptd 6621 . . . . . . . . . . . . . . 15 ((𝜑𝐺:dom 𝐺1-1→V) → dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) = (0...𝐷))
33 ovexd 7376 . . . . . . . . . . . . . . 15 ((𝜑𝐺:dom 𝐺1-1→V) → (0...𝐷) ∈ V)
3432, 33eqeltrd 2831 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) ∈ V)
3529, 34eqeltrid 2835 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → dom 𝐺 ∈ V)
36 hashf1rn 14254 . . . . . . . . . . . . 13 ((dom 𝐺 ∈ V ∧ 𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (♯‘ran 𝐺))
3735, 36sylancom 588 . . . . . . . . . . . 12 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (♯‘ran 𝐺))
3837ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘𝐺) = (♯‘ran 𝐺))
3927, 38, 193brtr4d 5118 . . . . . . . . . 10 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘𝐺) ≤ 𝐷)
4016islinds4 21767 . . . . . . . . . . . 12 (((subringAlg ‘𝐸)‘𝐹) ∈ LVec → (ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)) ↔ ∃𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺𝑏))
4140biimpa 476 . . . . . . . . . . 11 ((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ∃𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺𝑏)
4213, 41sylancom 588 . . . . . . . . . 10 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ∃𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺𝑏)
4339, 42r19.29a 3140 . . . . . . . . 9 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (♯‘𝐺) ≤ 𝐷)
4420nn0red 12438 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 ∈ ℝ)
4645ltp1d 12047 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 < (𝐷 + 1))
47 fzfid 13875 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝐷) ∈ Fin)
4847mptexd 7153 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) ∈ V)
4928, 48eqeltrid 2835 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ V)
5049adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → 𝐺 ∈ V)
51 f1f 6714 . . . . . . . . . . . . . . . 16 (𝐺:dom 𝐺1-1→V → 𝐺:dom 𝐺⟶V)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐺:dom 𝐺1-1→V) → 𝐺:dom 𝐺⟶V)
5352ffund 6650 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → Fun 𝐺)
54 hashfundm 14344 . . . . . . . . . . . . . 14 ((𝐺 ∈ V ∧ Fun 𝐺) → (♯‘𝐺) = (♯‘dom 𝐺))
5550, 53, 54syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (♯‘dom 𝐺))
5628, 31dmmptd 6621 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → dom 𝐺 = (0...𝐷))
5756fveq2d 6821 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘dom 𝐺) = (♯‘(0...𝐷)))
58 hashfz0 14334 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ0 → (♯‘(0...𝐷)) = (𝐷 + 1))
5920, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0...𝐷)) = (𝐷 + 1))
6059adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘(0...𝐷)) = (𝐷 + 1))
6155, 57, 603eqtrd 2770 . . . . . . . . . . . 12 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (𝐷 + 1))
6261adantr 480 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (♯‘𝐺) = (𝐷 + 1))
6346, 62breqtrrd 5114 . . . . . . . . . 10 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 < (♯‘𝐺))
6445rexrd 11157 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 ∈ ℝ*)
6550adantr 480 . . . . . . . . . . . 12 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ V)
66 hashxrcl 14259 . . . . . . . . . . . 12 (𝐺 ∈ V → (♯‘𝐺) ∈ ℝ*)
6765, 66syl 17 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (♯‘𝐺) ∈ ℝ*)
6864, 67xrltnled 11175 . . . . . . . . . 10 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (𝐷 < (♯‘𝐺) ↔ ¬ (♯‘𝐺) ≤ 𝐷))
6963, 68mpbid 232 . . . . . . . . 9 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ¬ (♯‘𝐺) ≤ 𝐷)
7043, 69pm2.65da 816 . . . . . . . 8 ((𝜑𝐺:dom 𝐺1-1→V) → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)))
7170ex 412 . . . . . . 7 (𝜑 → (𝐺:dom 𝐺1-1→V → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))))
72 imnan 399 . . . . . . 7 ((𝐺:dom 𝐺1-1→V → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ↔ ¬ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))))
7371, 72sylib 218 . . . . . 6 (𝜑 → ¬ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))))
7412lveclmodd 21036 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
75 eqidd 2732 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹))
76 extdgfialg.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐸)
7776sdrgss 20703 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
784, 77syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
7978, 76sseqtrdi 3970 . . . . . . . . 9 (𝜑𝐹 ⊆ (Base‘𝐸))
8075, 79srasca 21109 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) = (Scalar‘((subringAlg ‘𝐸)‘𝐹)))
81 drngnzr 20658 . . . . . . . . 9 ((𝐸s 𝐹) ∈ DivRing → (𝐸s 𝐹) ∈ NzRing)
827, 81syl 17 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ NzRing)
8380, 82eqeltrrd 2832 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ NzRing)
84 eqid 2731 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐹)) = (Scalar‘((subringAlg ‘𝐸)‘𝐹))
8584islindf3 21758 . . . . . . 7 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ NzRing) → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)))))
8674, 83, 85syl2anc 584 . . . . . 6 (𝜑 → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)))))
8773, 86mtbird 325 . . . . 5 (𝜑 → ¬ 𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹))
88 ovexd 7376 . . . . . 6 (𝜑 → (0...𝐷) ∈ V)
89 eqid 2731 . . . . . . . . 9 (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) = (mulGrp‘((subringAlg ‘𝐸)‘𝐹))
90 eqid 2731 . . . . . . . . 9 (Base‘((subringAlg ‘𝐸)‘𝐹)) = (Base‘((subringAlg ‘𝐸)‘𝐹))
9189, 90mgpbas 20058 . . . . . . . 8 (Base‘((subringAlg ‘𝐸)‘𝐹)) = (Base‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))
92 eqid 2731 . . . . . . . 8 (.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹))) = (.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))
932fldcrngd 20652 . . . . . . . . . . . 12 (𝜑𝐸 ∈ CRing)
9493crngringd 20159 . . . . . . . . . . 11 (𝜑𝐸 ∈ Ring)
9510, 76sraring 21115 . . . . . . . . . . 11 ((𝐸 ∈ Ring ∧ 𝐹𝐵) → ((subringAlg ‘𝐸)‘𝐹) ∈ Ring)
9694, 78, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ Ring)
9789ringmgp 20152 . . . . . . . . . 10 (((subringAlg ‘𝐸)‘𝐹) ∈ Ring → (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd)
9896, 97syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd)
9998adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd)
100 fz0ssnn0 13517 . . . . . . . . . 10 (0...𝐷) ⊆ ℕ0
101100a1i 11 . . . . . . . . 9 (𝜑 → (0...𝐷) ⊆ ℕ0)
102101sselda 3929 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0)
103 extdgfialglem1.4 . . . . . . . . . 10 (𝜑𝑋𝐵)
10475, 79srabase 21106 . . . . . . . . . . 11 (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐹)))
10576, 104eqtr2id 2779 . . . . . . . . . 10 (𝜑 → (Base‘((subringAlg ‘𝐸)‘𝐹)) = 𝐵)
106103, 105eleqtrrd 2834 . . . . . . . . 9 (𝜑𝑋 ∈ (Base‘((subringAlg ‘𝐸)‘𝐹)))
107106adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑋 ∈ (Base‘((subringAlg ‘𝐸)‘𝐹)))
10891, 92, 99, 102, 107mulgnn0cld 19003 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ (Base‘((subringAlg ‘𝐸)‘𝐹)))
109108, 28fmptd 7042 . . . . . 6 (𝜑𝐺:(0...𝐷)⟶(Base‘((subringAlg ‘𝐸)‘𝐹)))
110 eqid 2731 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))
111 eqid 2731 . . . . . . 7 (0g‘((subringAlg ‘𝐸)‘𝐹)) = (0g‘((subringAlg ‘𝐸)‘𝐹))
112 eqid 2731 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))
113 eqid 2731 . . . . . . 7 (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) = (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))
11490, 84, 110, 111, 112, 113islindf4 21770 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (0...𝐷) ∈ V ∧ 𝐺:(0...𝐷)⟶(Base‘((subringAlg ‘𝐸)‘𝐹))) → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
11574, 88, 109, 114syl3anc 1373 . . . . 5 (𝜑 → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
11687, 115mtbid 324 . . . 4 (𝜑 → ¬ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
117 rexanali 3086 . . . 4 (∃𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ¬ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
118116, 117sylibr 234 . . 3 (𝜑 → ∃𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
119 fvex 6830 . . . . . . 7 (Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ V
120 ovex 7374 . . . . . . 7 (0...𝐷) ∈ V
121 eqid 2731 . . . . . . . 8 ((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)) = ((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))
122 eqid 2731 . . . . . . . 8 (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))
123121, 122, 112, 113frlmelbas 21688 . . . . . . 7 (((Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ V ∧ (0...𝐷) ∈ V) → (𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))))
124119, 120, 123mp2an 692 . . . . . 6 (𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))))
125124anbi1i 624 . . . . 5 ((𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ ((𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
126 df-ne 2929 . . . . . . 7 (𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) ↔ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))
127126anbi2i 623 . . . . . 6 (((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
128127anbi2i 623 . . . . 5 ((𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
129 anass 468 . . . . 5 (((𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))))
130125, 128, 1293bitr3i 301 . . . 4 ((𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))))
131130rexbii2 3075 . . 3 (∃𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
132118, 131sylib 218 . 2 (𝜑 → ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
1335, 76ressbas2 17144 . . . . . 6 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
13478, 133syl 17 . . . . 5 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
13580fveq2d 6821 . . . . 5 (𝜑 → (Base‘(𝐸s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))
136134, 135eqtr2d 2767 . . . 4 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = 𝐹)
137136oveq1d 7356 . . 3 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) = (𝐹m (0...𝐷)))
13893crnggrpd 20160 . . . . . . . . 9 (𝜑𝐸 ∈ Grp)
139138grpmndd 18854 . . . . . . . 8 (𝜑𝐸 ∈ Mnd)
140 subrgsubg 20487 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
1419, 140syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubGrp‘𝐸))
142 eqid 2731 . . . . . . . . . 10 (0g𝐸) = (0g𝐸)
143142subg0cl 19042 . . . . . . . . 9 (𝐹 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝐹)
144141, 143syl 17 . . . . . . . 8 (𝜑 → (0g𝐸) ∈ 𝐹)
1455, 76, 142ress0g 18665 . . . . . . . 8 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
146139, 144, 78, 145syl3anc 1373 . . . . . . 7 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
14780fveq2d 6821 . . . . . . 7 (𝜑 → (0g‘(𝐸s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))
148146, 147eqtr2d 2767 . . . . . 6 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (0g𝐸))
149 extdgfialglem1.2 . . . . . 6 𝑍 = (0g𝐸)
150148, 149eqtr4di 2784 . . . . 5 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = 𝑍)
151150breq2d 5098 . . . 4 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↔ 𝑎 finSupp 𝑍))
152 extdgfialglem1.3 . . . . . . . . . . 11 · = (.r𝐸)
15375, 79sravsca 21110 . . . . . . . . . . 11 (𝜑 → (.r𝐸) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)))
154152, 153eqtr2id 2779 . . . . . . . . . 10 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = · )
155154ofeqd 7607 . . . . . . . . 9 (𝜑 → ∘f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = ∘f · )
156155oveqd 7358 . . . . . . . 8 (𝜑 → (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺) = (𝑎f · 𝐺))
157156oveq2d 7357 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f · 𝐺)))
158 ovexd 7376 . . . . . . . 8 (𝜑 → (𝑎f · 𝐺) ∈ V)
15910, 158, 2, 12, 79gsumsra 33019 . . . . . . 7 (𝜑 → (𝐸 Σg (𝑎f · 𝐺)) = (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f · 𝐺)))
160157, 159eqtr4d 2769 . . . . . 6 (𝜑 → (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (𝐸 Σg (𝑎f · 𝐺)))
161149a1i 11 . . . . . . . 8 (𝜑𝑍 = (0g𝐸))
16275, 161, 79sralmod0 21117 . . . . . . 7 (𝜑𝑍 = (0g‘((subringAlg ‘𝐸)‘𝐹)))
163162eqcomd 2737 . . . . . 6 (𝜑 → (0g‘((subringAlg ‘𝐸)‘𝐹)) = 𝑍)
164160, 163eqeq12d 2747 . . . . 5 (𝜑 → ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ↔ (𝐸 Σg (𝑎f · 𝐺)) = 𝑍))
165150sneqd 4583 . . . . . . 7 (𝜑 → {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))} = {𝑍})
166165xpeq2d 5641 . . . . . 6 (𝜑 → ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) = ((0...𝐷) × {𝑍}))
167166neeq2d 2988 . . . . 5 (𝜑 → (𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) ↔ 𝑎 ≠ ((0...𝐷) × {𝑍})))
168164, 167anbi12d 632 . . . 4 (𝜑 → (((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍}))))
169151, 168anbi12d 632 . . 3 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍})))))
170137, 169rexeqbidv 3313 . 2 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ ∃𝑎 ∈ (𝐹m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍})))))
171132, 170mpbid 232 1 (𝜑 → ∃𝑎 ∈ (𝐹m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  {csn 4571   class class class wbr 5086  cmpt 5167   × cxp 5609  dom cdm 5611  ran crn 5612  Fun wfun 6470  wf 6472  1-1wf1 6473  cfv 6476  (class class class)co 7341  f cof 7603  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  cr 11000  0cc0 11001  1c1 11002   + caddc 11004  *cxr 11140   < clt 11141  cle 11142  0cn0 12376  ...cfz 13402  chash 14232  Basecbs 17115  s cress 17136  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  .gcmg 18975  SubGrpcsubg 19028  mulGrpcmgp 20053  Ringcrg 20146  NzRingcnzr 20422  SubRingcsubrg 20479  DivRingcdr 20639  Fieldcfield 20640  SubDRingcsdrg 20696  LModclmod 20788  LBasisclbs 21003  LVecclvec 21031  subringAlg csra 21100   freeLMod cfrlm 21678   LIndF clindf 21736  LIndSclinds 21737  dimcldim 33603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-r1 9652  df-rank 9653  df-dju 9789  df-card 9827  df-acn 9830  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ocomp 17177  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-mri 17485  df-acs 17486  df-proset 18195  df-drs 18196  df-poset 18214  df-ipo 18429  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-nzr 20423  df-subrg 20480  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-lbs 21004  df-lvec 21032  df-sra 21102  df-rgmod 21103  df-dsmm 21664  df-frlm 21679  df-uvc 21715  df-lindf 21738  df-linds 21739  df-dim 33604
This theorem is referenced by:  extdgfialg  33699
  Copyright terms: Public domain W3C validator