| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) |
| 2 | | extdgfialg.e |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐸 ∈ Field) |
| 3 | 2 | flddrngd 20645 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 4 | | extdgfialg.f |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| 5 | | eqid 2729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) |
| 6 | 5 | sdrgdrng 20694 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 7 | 4, 6 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 8 | | sdrgsubrg 20695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
| 9 | 4, 8 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 10 | | eqid 2729 |
. . . . . . . . . . . . . . . . . . 19
⊢
((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) |
| 11 | 10, 5 | sralvec 33570 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ∈ DivRing ∧ (𝐸 ↾s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → ((subringAlg
‘𝐸)‘𝐹) ∈ LVec) |
| 12 | 3, 7, 9, 11 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec) |
| 13 | 12 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → ((subringAlg
‘𝐸)‘𝐹) ∈ LVec) |
| 14 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec) |
| 15 | | extdgfialg.d |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 = (dim‘((subringAlg
‘𝐸)‘𝐹)) |
| 16 | | eqid 2729 |
. . . . . . . . . . . . . . . . 17
⊢
(LBasis‘((subringAlg ‘𝐸)‘𝐹)) = (LBasis‘((subringAlg ‘𝐸)‘𝐹)) |
| 17 | 16 | dimval 33586 |
. . . . . . . . . . . . . . . 16
⊢
((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) →
(dim‘((subringAlg ‘𝐸)‘𝐹)) = (♯‘𝑏)) |
| 18 | 15, 17 | eqtrid 2776 |
. . . . . . . . . . . . . . 15
⊢
((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) → 𝐷 = (♯‘𝑏)) |
| 19 | 14, 1, 18 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → 𝐷 = (♯‘𝑏)) |
| 20 | | extdgfialg.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
| 21 | 20 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → 𝐷 ∈
ℕ0) |
| 22 | 19, 21 | eqeltrrd 2829 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → (♯‘𝑏) ∈
ℕ0) |
| 23 | | hashclb 14284 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈
(LBasis‘((subringAlg ‘𝐸)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈
ℕ0)) |
| 24 | 23 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈
(LBasis‘((subringAlg ‘𝐸)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin) |
| 25 | 1, 22, 24 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → 𝑏 ∈ Fin) |
| 26 | | hashss 14335 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ Fin ∧ ran 𝐺 ⊆ 𝑏) → (♯‘ran 𝐺) ≤ (♯‘𝑏)) |
| 27 | 25, 26 | sylancom 588 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → (♯‘ran 𝐺) ≤ (♯‘𝑏)) |
| 28 | | extdgfialglem1.r |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 29 | 28 | dmeqi 5851 |
. . . . . . . . . . . . . 14
⊢ dom 𝐺 = dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 30 | | eqid 2729 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 31 | | ovexd 7388 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋) ∈ V) |
| 32 | 30, 31 | dmmptd 6631 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) = (0...𝐷)) |
| 33 | | ovexd 7388 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → (0...𝐷) ∈ V) |
| 34 | 32, 33 | eqeltrd 2828 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) ∈ V) |
| 35 | 29, 34 | eqeltrid 2832 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → dom 𝐺 ∈ V) |
| 36 | | hashf1rn 14278 |
. . . . . . . . . . . . 13
⊢ ((dom
𝐺 ∈ V ∧ 𝐺:dom 𝐺–1-1→V) → (♯‘𝐺) = (♯‘ran 𝐺)) |
| 37 | 35, 36 | sylancom 588 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → (♯‘𝐺) = (♯‘ran 𝐺)) |
| 38 | 37 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → (♯‘𝐺) = (♯‘ran 𝐺)) |
| 39 | 27, 38, 19 | 3brtr4d 5127 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg
‘𝐸)‘𝐹))) ∧ ran 𝐺 ⊆ 𝑏) → (♯‘𝐺) ≤ 𝐷) |
| 40 | 16 | islinds4 21761 |
. . . . . . . . . . . 12
⊢
(((subringAlg ‘𝐸)‘𝐹) ∈ LVec → (ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹)) ↔ ∃𝑏 ∈
(LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺 ⊆ 𝑏)) |
| 41 | 40 | biimpa 476 |
. . . . . . . . . . 11
⊢
((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → ∃𝑏 ∈
(LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺 ⊆ 𝑏) |
| 42 | 13, 41 | sylancom 588 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → ∃𝑏 ∈
(LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺 ⊆ 𝑏) |
| 43 | 39, 42 | r19.29a 3137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → (♯‘𝐺) ≤ 𝐷) |
| 44 | 20 | nn0red 12465 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → 𝐷 ∈ ℝ) |
| 46 | 45 | ltp1d 12074 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → 𝐷 < (𝐷 + 1)) |
| 47 | | fzfid 13899 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0...𝐷) ∈ Fin) |
| 48 | 47 | mptexd 7164 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) ∈ V) |
| 49 | 28, 48 | eqeltrid 2832 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ V) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → 𝐺 ∈ V) |
| 51 | | f1f 6724 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:dom 𝐺–1-1→V → 𝐺:dom 𝐺⟶V) |
| 52 | 51 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → 𝐺:dom 𝐺⟶V) |
| 53 | 52 | ffund 6660 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → Fun 𝐺) |
| 54 | | hashfundm 14368 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ V ∧ Fun 𝐺) → (♯‘𝐺) = (♯‘dom 𝐺)) |
| 55 | 50, 53, 54 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → (♯‘𝐺) = (♯‘dom 𝐺)) |
| 56 | 28, 31 | dmmptd 6631 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → dom 𝐺 = (0...𝐷)) |
| 57 | 56 | fveq2d 6830 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → (♯‘dom 𝐺) = (♯‘(0...𝐷))) |
| 58 | | hashfz0 14358 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ ℕ0
→ (♯‘(0...𝐷)) = (𝐷 + 1)) |
| 59 | 20, 58 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘(0...𝐷)) = (𝐷 + 1)) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → (♯‘(0...𝐷)) = (𝐷 + 1)) |
| 61 | 55, 57, 60 | 3eqtrd 2768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → (♯‘𝐺) = (𝐷 + 1)) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → (♯‘𝐺) = (𝐷 + 1)) |
| 63 | 46, 62 | breqtrrd 5123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → 𝐷 < (♯‘𝐺)) |
| 64 | 45 | rexrd 11184 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → 𝐷 ∈
ℝ*) |
| 65 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → 𝐺 ∈ V) |
| 66 | | hashxrcl 14283 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ V →
(♯‘𝐺) ∈
ℝ*) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → (♯‘𝐺) ∈
ℝ*) |
| 68 | 64, 67 | xrltnled 11202 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → (𝐷 < (♯‘𝐺) ↔ ¬ (♯‘𝐺) ≤ 𝐷)) |
| 69 | 63, 68 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) → ¬
(♯‘𝐺) ≤
𝐷) |
| 70 | 43, 69 | pm2.65da 816 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺:dom 𝐺–1-1→V) → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) |
| 71 | 70 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝐺:dom 𝐺–1-1→V → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹)))) |
| 72 | | imnan 399 |
. . . . . . 7
⊢ ((𝐺:dom 𝐺–1-1→V → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))) ↔ ¬ (𝐺:dom 𝐺–1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹)))) |
| 73 | 71, 72 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ¬ (𝐺:dom 𝐺–1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹)))) |
| 74 | 12 | lveclmodd 21030 |
. . . . . . 7
⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod) |
| 75 | | eqidd 2730 |
. . . . . . . . 9
⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)) |
| 76 | | extdgfialg.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐸) |
| 77 | 76 | sdrgss 20697 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝐵) |
| 78 | 4, 77 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
| 79 | 78, 76 | sseqtrdi 3978 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 80 | 75, 79 | srasca 21103 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ↾s 𝐹) = (Scalar‘((subringAlg ‘𝐸)‘𝐹))) |
| 81 | | drngnzr 20652 |
. . . . . . . . 9
⊢ ((𝐸 ↾s 𝐹) ∈ DivRing → (𝐸 ↾s 𝐹) ∈
NzRing) |
| 82 | 7, 81 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ NzRing) |
| 83 | 80, 82 | eqeltrrd 2829 |
. . . . . . 7
⊢ (𝜑 → (Scalar‘((subringAlg
‘𝐸)‘𝐹)) ∈
NzRing) |
| 84 | | eqid 2729 |
. . . . . . . 8
⊢
(Scalar‘((subringAlg ‘𝐸)‘𝐹)) = (Scalar‘((subringAlg ‘𝐸)‘𝐹)) |
| 85 | 84 | islindf3 21752 |
. . . . . . 7
⊢
((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧
(Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ NzRing) → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ (𝐺:dom 𝐺–1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))))) |
| 86 | 74, 83, 85 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ (𝐺:dom 𝐺–1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg
‘𝐸)‘𝐹))))) |
| 87 | 73, 86 | mtbird 325 |
. . . . 5
⊢ (𝜑 → ¬ 𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹)) |
| 88 | | ovexd 7388 |
. . . . . 6
⊢ (𝜑 → (0...𝐷) ∈ V) |
| 89 | | eqid 2729 |
. . . . . . . . 9
⊢
(mulGrp‘((subringAlg ‘𝐸)‘𝐹)) = (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) |
| 90 | | eqid 2729 |
. . . . . . . . 9
⊢
(Base‘((subringAlg ‘𝐸)‘𝐹)) = (Base‘((subringAlg ‘𝐸)‘𝐹)) |
| 91 | 89, 90 | mgpbas 20049 |
. . . . . . . 8
⊢
(Base‘((subringAlg ‘𝐸)‘𝐹)) = (Base‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹))) |
| 92 | | eqid 2729 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹))) =
(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹))) |
| 93 | 2 | fldcrngd 20646 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ CRing) |
| 94 | 93 | crngringd 20150 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Ring) |
| 95 | 10, 76 | sraring 21109 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈ Ring ∧ 𝐹 ⊆ 𝐵) → ((subringAlg ‘𝐸)‘𝐹) ∈ Ring) |
| 96 | 94, 78, 95 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ Ring) |
| 97 | 89 | ringmgp 20143 |
. . . . . . . . . 10
⊢
(((subringAlg ‘𝐸)‘𝐹) ∈ Ring →
(mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘((subringAlg
‘𝐸)‘𝐹)) ∈ Mnd) |
| 99 | 98 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (mulGrp‘((subringAlg
‘𝐸)‘𝐹)) ∈ Mnd) |
| 100 | | fz0ssnn0 13544 |
. . . . . . . . . 10
⊢
(0...𝐷) ⊆
ℕ0 |
| 101 | 100 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0...𝐷) ⊆
ℕ0) |
| 102 | 101 | sselda 3937 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0) |
| 103 | | extdgfialglem1.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 104 | 75, 79 | srabase 21100 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐸) = (Base‘((subringAlg
‘𝐸)‘𝐹))) |
| 105 | 76, 104 | eqtr2id 2777 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘((subringAlg
‘𝐸)‘𝐹)) = 𝐵) |
| 106 | 103, 105 | eleqtrrd 2831 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (Base‘((subringAlg
‘𝐸)‘𝐹))) |
| 107 | 106 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝑋 ∈ (Base‘((subringAlg
‘𝐸)‘𝐹))) |
| 108 | 91, 92, 99, 102, 107 | mulgnn0cld 18993 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋) ∈ (Base‘((subringAlg ‘𝐸)‘𝐹))) |
| 109 | 108, 28 | fmptd 7052 |
. . . . . 6
⊢ (𝜑 → 𝐺:(0...𝐷)⟶(Base‘((subringAlg
‘𝐸)‘𝐹))) |
| 110 | | eqid 2729 |
. . . . . . 7
⊢ (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = ( ·𝑠
‘((subringAlg ‘𝐸)‘𝐹)) |
| 111 | | eqid 2729 |
. . . . . . 7
⊢
(0g‘((subringAlg ‘𝐸)‘𝐹)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) |
| 112 | | eqid 2729 |
. . . . . . 7
⊢
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) =
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) |
| 113 | | eqid 2729 |
. . . . . . 7
⊢
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) =
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) |
| 114 | 90, 84, 110, 111, 112, 113 | islindf4 21764 |
. . . . . 6
⊢
((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (0...𝐷) ∈ V ∧ 𝐺:(0...𝐷)⟶(Base‘((subringAlg
‘𝐸)‘𝐹))) → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ ∀𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))) |
| 115 | 74, 88, 109, 114 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ ∀𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))) |
| 116 | 87, 115 | mtbid 324 |
. . . 4
⊢ (𝜑 → ¬ ∀𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) |
| 117 | | rexanali 3083 |
. . . 4
⊢
(∃𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ¬ ∀𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) |
| 118 | 116, 117 | sylibr 234 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) |
| 119 | | fvex 6839 |
. . . . . . 7
⊢
(Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ V |
| 120 | | ovex 7386 |
. . . . . . 7
⊢
(0...𝐷) ∈
V |
| 121 | | eqid 2729 |
. . . . . . . 8
⊢
((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)) = ((Scalar‘((subringAlg
‘𝐸)‘𝐹)) freeLMod (0...𝐷)) |
| 122 | | eqid 2729 |
. . . . . . . 8
⊢
(Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (Base‘(Scalar‘((subringAlg
‘𝐸)‘𝐹))) |
| 123 | 121, 122,
112, 113 | frlmelbas 21682 |
. . . . . . 7
⊢
(((Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ V ∧ (0...𝐷) ∈ V) → (𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ↔ (𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))))) |
| 124 | 119, 120,
123 | mp2an 692 |
. . . . . 6
⊢ (𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ↔ (𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))) |
| 125 | 124 | anbi1i 624 |
. . . . 5
⊢ ((𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ ((𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))) |
| 126 | | df-ne 2926 |
. . . . . . 7
⊢ (𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) ↔ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) |
| 127 | 126 | anbi2i 623 |
. . . . . 6
⊢
(((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) |
| 128 | 127 | anbi2i 623 |
. . . . 5
⊢ ((𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))) |
| 129 | | anass 468 |
. . . . 5
⊢ (((𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ (𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))) |
| 130 | 125, 128,
129 | 3bitr3i 301 |
. . . 4
⊢ ((𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ (𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))) |
| 131 | 130 | rexbii2 3072 |
. . 3
⊢
(∃𝑎 ∈
(Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ∃𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))) |
| 132 | 118, 131 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))) |
| 133 | 5, 76 | ressbas2 17168 |
. . . . . 6
⊢ (𝐹 ⊆ 𝐵 → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 134 | 78, 133 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 135 | 80 | fveq2d 6830 |
. . . . 5
⊢ (𝜑 → (Base‘(𝐸 ↾s 𝐹)) =
(Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) |
| 136 | 134, 135 | eqtr2d 2765 |
. . . 4
⊢ (𝜑 →
(Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = 𝐹) |
| 137 | 136 | oveq1d 7368 |
. . 3
⊢ (𝜑 →
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) = (𝐹 ↑m (0...𝐷))) |
| 138 | 93 | crnggrpd 20151 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ Grp) |
| 139 | 138 | grpmndd 18844 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 140 | | subrgsubg 20481 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) |
| 141 | 9, 140 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝐸)) |
| 142 | | eqid 2729 |
. . . . . . . . . 10
⊢
(0g‘𝐸) = (0g‘𝐸) |
| 143 | 142 | subg0cl 19032 |
. . . . . . . . 9
⊢ (𝐹 ∈ (SubGrp‘𝐸) →
(0g‘𝐸)
∈ 𝐹) |
| 144 | 141, 143 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝐸) ∈ 𝐹) |
| 145 | 5, 76, 142 | ress0g 18655 |
. . . . . . . 8
⊢ ((𝐸 ∈ Mnd ∧
(0g‘𝐸)
∈ 𝐹 ∧ 𝐹 ⊆ 𝐵) → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝐹))) |
| 146 | 139, 144,
78, 145 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝐸) = (0g‘(𝐸 ↾s 𝐹))) |
| 147 | 80 | fveq2d 6830 |
. . . . . . 7
⊢ (𝜑 →
(0g‘(𝐸
↾s 𝐹)) =
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) |
| 148 | 146, 147 | eqtr2d 2765 |
. . . . . 6
⊢ (𝜑 →
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (0g‘𝐸)) |
| 149 | | extdgfialglem1.2 |
. . . . . 6
⊢ 𝑍 = (0g‘𝐸) |
| 150 | 148, 149 | eqtr4di 2782 |
. . . . 5
⊢ (𝜑 →
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = 𝑍) |
| 151 | 150 | breq2d 5107 |
. . . 4
⊢ (𝜑 → (𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↔ 𝑎 finSupp 𝑍)) |
| 152 | | extdgfialglem1.3 |
. . . . . . . . . . 11
⊢ · =
(.r‘𝐸) |
| 153 | 75, 79 | sravsca 21104 |
. . . . . . . . . . 11
⊢ (𝜑 → (.r‘𝐸) = (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))) |
| 154 | 152, 153 | eqtr2id 2777 |
. . . . . . . . . 10
⊢ (𝜑 → (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = · ) |
| 155 | 154 | ofeqd 7619 |
. . . . . . . . 9
⊢ (𝜑 → ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = ∘f · ) |
| 156 | 155 | oveqd 7370 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺) = (𝑎 ∘f · 𝐺)) |
| 157 | 156 | oveq2d 7369 |
. . . . . . 7
⊢ (𝜑 → (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f · 𝐺))) |
| 158 | | ovexd 7388 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∘f · 𝐺) ∈ V) |
| 159 | 10, 158, 2, 12, 79 | gsumsra 33019 |
. . . . . . 7
⊢ (𝜑 → (𝐸 Σg (𝑎 ∘f · 𝐺)) = (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f · 𝐺))) |
| 160 | 157, 159 | eqtr4d 2767 |
. . . . . 6
⊢ (𝜑 → (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (𝐸 Σg (𝑎 ∘f · 𝐺))) |
| 161 | 149 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 = (0g‘𝐸)) |
| 162 | 75, 161, 79 | sralmod0 21111 |
. . . . . . 7
⊢ (𝜑 → 𝑍 = (0g‘((subringAlg
‘𝐸)‘𝐹))) |
| 163 | 162 | eqcomd 2735 |
. . . . . 6
⊢ (𝜑 →
(0g‘((subringAlg ‘𝐸)‘𝐹)) = 𝑍) |
| 164 | 160, 163 | eqeq12d 2745 |
. . . . 5
⊢ (𝜑 → ((((subringAlg
‘𝐸)‘𝐹) Σg
(𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ↔ (𝐸 Σg (𝑎 ∘f · 𝐺)) = 𝑍)) |
| 165 | 150 | sneqd 4591 |
. . . . . . 7
⊢ (𝜑 →
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))} = {𝑍}) |
| 166 | 165 | xpeq2d 5653 |
. . . . . 6
⊢ (𝜑 → ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) = ((0...𝐷) × {𝑍})) |
| 167 | 166 | neeq2d 2985 |
. . . . 5
⊢ (𝜑 → (𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) ↔ 𝑎 ≠ ((0...𝐷) × {𝑍}))) |
| 168 | 164, 167 | anbi12d 632 |
. . . 4
⊢ (𝜑 → (((((subringAlg
‘𝐸)‘𝐹) Σg
(𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ((𝐸 Σg (𝑎 ∘f · 𝐺)) = 𝑍 ∧ 𝑎 ≠ ((0...𝐷) × {𝑍})))) |
| 169 | 151, 168 | anbi12d 632 |
. . 3
⊢ (𝜑 → ((𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎 ∘f · 𝐺)) = 𝑍 ∧ 𝑎 ≠ ((0...𝐷) × {𝑍}))))) |
| 170 | 137, 169 | rexeqbidv 3311 |
. 2
⊢ (𝜑 → (∃𝑎 ∈
((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎 ∘f (
·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg
‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) ×
{(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ ∃𝑎 ∈ (𝐹 ↑m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎 ∘f · 𝐺)) = 𝑍 ∧ 𝑎 ≠ ((0...𝐷) × {𝑍}))))) |
| 171 | 132, 170 | mpbid 232 |
1
⊢ (𝜑 → ∃𝑎 ∈ (𝐹 ↑m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎 ∘f · 𝐺)) = 𝑍 ∧ 𝑎 ≠ ((0...𝐷) × {𝑍})))) |