Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgfialglem1 Structured version   Visualization version   GIF version

Theorem extdgfialglem1 33678
Description: Lemma for extdgfialg 33680. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
extdgfialg.b 𝐵 = (Base‘𝐸)
extdgfialg.d 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹))
extdgfialg.e (𝜑𝐸 ∈ Field)
extdgfialg.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
extdgfialg.1 (𝜑𝐷 ∈ ℕ0)
extdgfialglem1.2 𝑍 = (0g𝐸)
extdgfialglem1.3 · = (.r𝐸)
extdgfialglem1.r 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
extdgfialglem1.4 (𝜑𝑋𝐵)
Assertion
Ref Expression
extdgfialglem1 (𝜑 → ∃𝑎 ∈ (𝐹m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍}))))
Distinct variable groups:   · ,𝑛   𝐵,𝑛   𝐷,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝑋   𝑛,𝑍   𝜑,𝑛   𝐵,𝑎,𝑛   𝐷,𝑎   𝐸,𝑎   𝐹,𝑎   𝜑,𝑎   𝐺,𝑎   𝑋,𝑎
Allowed substitution hints:   · (𝑎)   𝑍(𝑎)

Proof of Theorem extdgfialglem1
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . . . . . 13 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹)))
2 extdgfialg.e . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸 ∈ Field)
32flddrngd 20645 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ DivRing)
4 extdgfialg.f . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (SubDRing‘𝐸))
5 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝐸s 𝐹) = (𝐸s 𝐹)
65sdrgdrng 20694 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → (𝐸s 𝐹) ∈ DivRing)
74, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸s 𝐹) ∈ DivRing)
8 sdrgsubrg 20695 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
94, 8syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (SubRing‘𝐸))
10 eqid 2729 . . . . . . . . . . . . . . . . . . 19 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
1110, 5sralvec 33570 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ DivRing ∧ (𝐸s 𝐹) ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
123, 7, 9, 11syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
1312ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
1413ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → ((subringAlg ‘𝐸)‘𝐹) ∈ LVec)
15 extdgfialg.d . . . . . . . . . . . . . . . 16 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹))
16 eqid 2729 . . . . . . . . . . . . . . . . 17 (LBasis‘((subringAlg ‘𝐸)‘𝐹)) = (LBasis‘((subringAlg ‘𝐸)‘𝐹))
1716dimval 33586 . . . . . . . . . . . . . . . 16 ((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) → (dim‘((subringAlg ‘𝐸)‘𝐹)) = (♯‘𝑏))
1815, 17eqtrid 2776 . . . . . . . . . . . . . . 15 ((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 = (♯‘𝑏))
1914, 1, 18syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝐷 = (♯‘𝑏))
20 extdgfialg.1 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℕ0)
2120ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝐷 ∈ ℕ0)
2219, 21eqeltrrd 2829 . . . . . . . . . . . . 13 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘𝑏) ∈ ℕ0)
23 hashclb 14284 . . . . . . . . . . . . . 14 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹)) → (𝑏 ∈ Fin ↔ (♯‘𝑏) ∈ ℕ0))
2423biimpar 477 . . . . . . . . . . . . 13 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹)) ∧ (♯‘𝑏) ∈ ℕ0) → 𝑏 ∈ Fin)
251, 22, 24syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → 𝑏 ∈ Fin)
26 hashss 14335 . . . . . . . . . . . 12 ((𝑏 ∈ Fin ∧ ran 𝐺𝑏) → (♯‘ran 𝐺) ≤ (♯‘𝑏))
2725, 26sylancom 588 . . . . . . . . . . 11 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘ran 𝐺) ≤ (♯‘𝑏))
28 extdgfialglem1.r . . . . . . . . . . . . . . 15 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
2928dmeqi 5851 . . . . . . . . . . . . . 14 dom 𝐺 = dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
30 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
31 ovexd 7388 . . . . . . . . . . . . . . . 16 (((𝜑𝐺:dom 𝐺1-1→V) ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ V)
3230, 31dmmptd 6631 . . . . . . . . . . . . . . 15 ((𝜑𝐺:dom 𝐺1-1→V) → dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) = (0...𝐷))
33 ovexd 7388 . . . . . . . . . . . . . . 15 ((𝜑𝐺:dom 𝐺1-1→V) → (0...𝐷) ∈ V)
3432, 33eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → dom (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) ∈ V)
3529, 34eqeltrid 2832 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → dom 𝐺 ∈ V)
36 hashf1rn 14278 . . . . . . . . . . . . 13 ((dom 𝐺 ∈ V ∧ 𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (♯‘ran 𝐺))
3735, 36sylancom 588 . . . . . . . . . . . 12 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (♯‘ran 𝐺))
3837ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘𝐺) = (♯‘ran 𝐺))
3927, 38, 193brtr4d 5127 . . . . . . . . . 10 (((((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))) ∧ ran 𝐺𝑏) → (♯‘𝐺) ≤ 𝐷)
4016islinds4 21761 . . . . . . . . . . . 12 (((subringAlg ‘𝐸)‘𝐹) ∈ LVec → (ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)) ↔ ∃𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺𝑏))
4140biimpa 476 . . . . . . . . . . 11 ((((subringAlg ‘𝐸)‘𝐹) ∈ LVec ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ∃𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺𝑏)
4213, 41sylancom 588 . . . . . . . . . 10 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ∃𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘𝐹))ran 𝐺𝑏)
4339, 42r19.29a 3137 . . . . . . . . 9 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (♯‘𝐺) ≤ 𝐷)
4420nn0red 12465 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 ∈ ℝ)
4645ltp1d 12074 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 < (𝐷 + 1))
47 fzfid 13899 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝐷) ∈ Fin)
4847mptexd 7164 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋)) ∈ V)
4928, 48eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ V)
5049adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → 𝐺 ∈ V)
51 f1f 6724 . . . . . . . . . . . . . . . 16 (𝐺:dom 𝐺1-1→V → 𝐺:dom 𝐺⟶V)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐺:dom 𝐺1-1→V) → 𝐺:dom 𝐺⟶V)
5352ffund 6660 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → Fun 𝐺)
54 hashfundm 14368 . . . . . . . . . . . . . 14 ((𝐺 ∈ V ∧ Fun 𝐺) → (♯‘𝐺) = (♯‘dom 𝐺))
5550, 53, 54syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (♯‘dom 𝐺))
5628, 31dmmptd 6631 . . . . . . . . . . . . . 14 ((𝜑𝐺:dom 𝐺1-1→V) → dom 𝐺 = (0...𝐷))
5756fveq2d 6830 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘dom 𝐺) = (♯‘(0...𝐷)))
58 hashfz0 14358 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ0 → (♯‘(0...𝐷)) = (𝐷 + 1))
5920, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0...𝐷)) = (𝐷 + 1))
6059adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘(0...𝐷)) = (𝐷 + 1))
6155, 57, 603eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝐺:dom 𝐺1-1→V) → (♯‘𝐺) = (𝐷 + 1))
6261adantr 480 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (♯‘𝐺) = (𝐷 + 1))
6346, 62breqtrrd 5123 . . . . . . . . . 10 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 < (♯‘𝐺))
6445rexrd 11184 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐷 ∈ ℝ*)
6550adantr 480 . . . . . . . . . . . 12 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → 𝐺 ∈ V)
66 hashxrcl 14283 . . . . . . . . . . . 12 (𝐺 ∈ V → (♯‘𝐺) ∈ ℝ*)
6765, 66syl 17 . . . . . . . . . . 11 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (♯‘𝐺) ∈ ℝ*)
6864, 67xrltnled 11202 . . . . . . . . . 10 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → (𝐷 < (♯‘𝐺) ↔ ¬ (♯‘𝐺) ≤ 𝐷))
6963, 68mpbid 232 . . . . . . . . 9 (((𝜑𝐺:dom 𝐺1-1→V) ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) → ¬ (♯‘𝐺) ≤ 𝐷)
7043, 69pm2.65da 816 . . . . . . . 8 ((𝜑𝐺:dom 𝐺1-1→V) → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)))
7170ex 412 . . . . . . 7 (𝜑 → (𝐺:dom 𝐺1-1→V → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))))
72 imnan 399 . . . . . . 7 ((𝐺:dom 𝐺1-1→V → ¬ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))) ↔ ¬ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))))
7371, 72sylib 218 . . . . . 6 (𝜑 → ¬ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹))))
7412lveclmodd 21030 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ LMod)
75 eqidd 2730 . . . . . . . . 9 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹))
76 extdgfialg.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐸)
7776sdrgss 20697 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
784, 77syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
7978, 76sseqtrdi 3978 . . . . . . . . 9 (𝜑𝐹 ⊆ (Base‘𝐸))
8075, 79srasca 21103 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) = (Scalar‘((subringAlg ‘𝐸)‘𝐹)))
81 drngnzr 20652 . . . . . . . . 9 ((𝐸s 𝐹) ∈ DivRing → (𝐸s 𝐹) ∈ NzRing)
827, 81syl 17 . . . . . . . 8 (𝜑 → (𝐸s 𝐹) ∈ NzRing)
8380, 82eqeltrrd 2829 . . . . . . 7 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ NzRing)
84 eqid 2729 . . . . . . . 8 (Scalar‘((subringAlg ‘𝐸)‘𝐹)) = (Scalar‘((subringAlg ‘𝐸)‘𝐹))
8584islindf3 21752 . . . . . . 7 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ NzRing) → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)))))
8674, 83, 85syl2anc 584 . . . . . 6 (𝜑 → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ (𝐺:dom 𝐺1-1→V ∧ ran 𝐺 ∈ (LIndS‘((subringAlg ‘𝐸)‘𝐹)))))
8773, 86mtbird 325 . . . . 5 (𝜑 → ¬ 𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹))
88 ovexd 7388 . . . . . 6 (𝜑 → (0...𝐷) ∈ V)
89 eqid 2729 . . . . . . . . 9 (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) = (mulGrp‘((subringAlg ‘𝐸)‘𝐹))
90 eqid 2729 . . . . . . . . 9 (Base‘((subringAlg ‘𝐸)‘𝐹)) = (Base‘((subringAlg ‘𝐸)‘𝐹))
9189, 90mgpbas 20049 . . . . . . . 8 (Base‘((subringAlg ‘𝐸)‘𝐹)) = (Base‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))
92 eqid 2729 . . . . . . . 8 (.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹))) = (.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))
932fldcrngd 20646 . . . . . . . . . . . 12 (𝜑𝐸 ∈ CRing)
9493crngringd 20150 . . . . . . . . . . 11 (𝜑𝐸 ∈ Ring)
9510, 76sraring 21109 . . . . . . . . . . 11 ((𝐸 ∈ Ring ∧ 𝐹𝐵) → ((subringAlg ‘𝐸)‘𝐹) ∈ Ring)
9694, 78, 95syl2anc 584 . . . . . . . . . 10 (𝜑 → ((subringAlg ‘𝐸)‘𝐹) ∈ Ring)
9789ringmgp 20143 . . . . . . . . . 10 (((subringAlg ‘𝐸)‘𝐹) ∈ Ring → (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd)
9896, 97syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd)
9998adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (mulGrp‘((subringAlg ‘𝐸)‘𝐹)) ∈ Mnd)
100 fz0ssnn0 13544 . . . . . . . . . 10 (0...𝐷) ⊆ ℕ0
101100a1i 11 . . . . . . . . 9 (𝜑 → (0...𝐷) ⊆ ℕ0)
102101sselda 3937 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0)
103 extdgfialglem1.4 . . . . . . . . . 10 (𝜑𝑋𝐵)
10475, 79srabase 21100 . . . . . . . . . . 11 (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐹)))
10576, 104eqtr2id 2777 . . . . . . . . . 10 (𝜑 → (Base‘((subringAlg ‘𝐸)‘𝐹)) = 𝐵)
106103, 105eleqtrrd 2831 . . . . . . . . 9 (𝜑𝑋 ∈ (Base‘((subringAlg ‘𝐸)‘𝐹)))
107106adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑋 ∈ (Base‘((subringAlg ‘𝐸)‘𝐹)))
10891, 92, 99, 102, 107mulgnn0cld 18993 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ (Base‘((subringAlg ‘𝐸)‘𝐹)))
109108, 28fmptd 7052 . . . . . 6 (𝜑𝐺:(0...𝐷)⟶(Base‘((subringAlg ‘𝐸)‘𝐹)))
110 eqid 2729 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))
111 eqid 2729 . . . . . . 7 (0g‘((subringAlg ‘𝐸)‘𝐹)) = (0g‘((subringAlg ‘𝐸)‘𝐹))
112 eqid 2729 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))
113 eqid 2729 . . . . . . 7 (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) = (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))
11490, 84, 110, 111, 112, 113islindf4 21764 . . . . . 6 ((((subringAlg ‘𝐸)‘𝐹) ∈ LMod ∧ (0...𝐷) ∈ V ∧ 𝐺:(0...𝐷)⟶(Base‘((subringAlg ‘𝐸)‘𝐹))) → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
11574, 88, 109, 114syl3anc 1373 . . . . 5 (𝜑 → (𝐺 LIndF ((subringAlg ‘𝐸)‘𝐹) ↔ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
11687, 115mtbid 324 . . . 4 (𝜑 → ¬ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
117 rexanali 3083 . . . 4 (∃𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ¬ ∀𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) → 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
118116, 117sylibr 234 . . 3 (𝜑 → ∃𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
119 fvex 6839 . . . . . . 7 (Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ V
120 ovex 7386 . . . . . . 7 (0...𝐷) ∈ V
121 eqid 2729 . . . . . . . 8 ((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)) = ((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))
122 eqid 2729 . . . . . . . 8 (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))
123121, 122, 112, 113frlmelbas 21682 . . . . . . 7 (((Scalar‘((subringAlg ‘𝐸)‘𝐹)) ∈ V ∧ (0...𝐷) ∈ V) → (𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))))
124119, 120, 123mp2an 692 . . . . . 6 (𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))))
125124anbi1i 624 . . . . 5 ((𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ ((𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
126 df-ne 2926 . . . . . . 7 (𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) ↔ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))
127126anbi2i 623 . . . . . 6 (((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))
128127anbi2i 623 . . . . 5 ((𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
129 anass 468 . . . . 5 (((𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ 𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))))
130125, 128, 1293bitr3i 301 . . . 4 ((𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) ∧ (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})))))
131130rexbii2 3072 . . 3 (∃𝑎 ∈ (Base‘((Scalar‘((subringAlg ‘𝐸)‘𝐹)) freeLMod (0...𝐷)))((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ ¬ 𝑎 = ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
132118, 131sylib 218 . 2 (𝜑 → ∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))))
1335, 76ressbas2 17168 . . . . . 6 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
13478, 133syl 17 . . . . 5 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
13580fveq2d 6830 . . . . 5 (𝜑 → (Base‘(𝐸s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))
136134, 135eqtr2d 2765 . . . 4 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = 𝐹)
137136oveq1d 7368 . . 3 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷)) = (𝐹m (0...𝐷)))
13893crnggrpd 20151 . . . . . . . . 9 (𝜑𝐸 ∈ Grp)
139138grpmndd 18844 . . . . . . . 8 (𝜑𝐸 ∈ Mnd)
140 subrgsubg 20481 . . . . . . . . . 10 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
1419, 140syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (SubGrp‘𝐸))
142 eqid 2729 . . . . . . . . . 10 (0g𝐸) = (0g𝐸)
143142subg0cl 19032 . . . . . . . . 9 (𝐹 ∈ (SubGrp‘𝐸) → (0g𝐸) ∈ 𝐹)
144141, 143syl 17 . . . . . . . 8 (𝜑 → (0g𝐸) ∈ 𝐹)
1455, 76, 142ress0g 18655 . . . . . . . 8 ((𝐸 ∈ Mnd ∧ (0g𝐸) ∈ 𝐹𝐹𝐵) → (0g𝐸) = (0g‘(𝐸s 𝐹)))
146139, 144, 78, 145syl3anc 1373 . . . . . . 7 (𝜑 → (0g𝐸) = (0g‘(𝐸s 𝐹)))
14780fveq2d 6830 . . . . . . 7 (𝜑 → (0g‘(𝐸s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))))
148146, 147eqtr2d 2765 . . . . . 6 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = (0g𝐸))
149 extdgfialglem1.2 . . . . . 6 𝑍 = (0g𝐸)
150148, 149eqtr4di 2782 . . . . 5 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) = 𝑍)
151150breq2d 5107 . . . 4 (𝜑 → (𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↔ 𝑎 finSupp 𝑍))
152 extdgfialglem1.3 . . . . . . . . . . 11 · = (.r𝐸)
15375, 79sravsca 21104 . . . . . . . . . . 11 (𝜑 → (.r𝐸) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)))
154152, 153eqtr2id 2777 . . . . . . . . . 10 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = · )
155154ofeqd 7619 . . . . . . . . 9 (𝜑 → ∘f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹)) = ∘f · )
156155oveqd 7370 . . . . . . . 8 (𝜑 → (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺) = (𝑎f · 𝐺))
157156oveq2d 7369 . . . . . . 7 (𝜑 → (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f · 𝐺)))
158 ovexd 7388 . . . . . . . 8 (𝜑 → (𝑎f · 𝐺) ∈ V)
15910, 158, 2, 12, 79gsumsra 33019 . . . . . . 7 (𝜑 → (𝐸 Σg (𝑎f · 𝐺)) = (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f · 𝐺)))
160157, 159eqtr4d 2767 . . . . . 6 (𝜑 → (((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (𝐸 Σg (𝑎f · 𝐺)))
161149a1i 11 . . . . . . . 8 (𝜑𝑍 = (0g𝐸))
16275, 161, 79sralmod0 21111 . . . . . . 7 (𝜑𝑍 = (0g‘((subringAlg ‘𝐸)‘𝐹)))
163162eqcomd 2735 . . . . . 6 (𝜑 → (0g‘((subringAlg ‘𝐸)‘𝐹)) = 𝑍)
164160, 163eqeq12d 2745 . . . . 5 (𝜑 → ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ↔ (𝐸 Σg (𝑎f · 𝐺)) = 𝑍))
165150sneqd 4591 . . . . . . 7 (𝜑 → {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))} = {𝑍})
166165xpeq2d 5653 . . . . . 6 (𝜑 → ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) = ((0...𝐷) × {𝑍}))
167166neeq2d 2985 . . . . 5 (𝜑 → (𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}) ↔ 𝑎 ≠ ((0...𝐷) × {𝑍})))
168164, 167anbi12d 632 . . . 4 (𝜑 → (((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))})) ↔ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍}))))
169151, 168anbi12d 632 . . 3 (𝜑 → ((𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ (𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍})))))
170137, 169rexeqbidv 3311 . 2 (𝜑 → (∃𝑎 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ↑m (0...𝐷))(𝑎 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹))) ∧ ((((subringAlg ‘𝐸)‘𝐹) Σg (𝑎f ( ·𝑠 ‘((subringAlg ‘𝐸)‘𝐹))𝐺)) = (0g‘((subringAlg ‘𝐸)‘𝐹)) ∧ 𝑎 ≠ ((0...𝐷) × {(0g‘(Scalar‘((subringAlg ‘𝐸)‘𝐹)))}))) ↔ ∃𝑎 ∈ (𝐹m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍})))))
171132, 170mpbid 232 1 (𝜑 → ∃𝑎 ∈ (𝐹m (0...𝐷))(𝑎 finSupp 𝑍 ∧ ((𝐸 Σg (𝑎f · 𝐺)) = 𝑍𝑎 ≠ ((0...𝐷) × {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623  ran crn 5624  Fun wfun 6480  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  0cn0 12403  ...cfz 13429  chash 14256  Basecbs 17139  s cress 17160  .rcmulr 17181  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362   Σg cgsu 17363  Mndcmnd 18627  .gcmg 18965  SubGrpcsubg 19018  mulGrpcmgp 20044  Ringcrg 20137  NzRingcnzr 20416  SubRingcsubrg 20473  DivRingcdr 20633  Fieldcfield 20634  SubDRingcsdrg 20690  LModclmod 20782  LBasisclbs 20997  LVecclvec 21025  subringAlg csra 21094   freeLMod cfrlm 21672   LIndF clindf 21730  LIndSclinds 21731  dimcldim 33584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-fzo 13577  df-seq 13928  df-hash 14257  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ocomp 17201  df-ds 17202  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-mre 17507  df-mrc 17508  df-mri 17509  df-acs 17510  df-proset 18219  df-drs 18220  df-poset 18238  df-ipo 18453  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-nzr 20417  df-subrg 20474  df-drng 20635  df-field 20636  df-sdrg 20691  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945  df-lbs 20998  df-lvec 21026  df-sra 21096  df-rgmod 21097  df-dsmm 21658  df-frlm 21673  df-uvc 21709  df-lindf 21732  df-linds 21733  df-dim 33585
This theorem is referenced by:  extdgfialg  33680
  Copyright terms: Public domain W3C validator