MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem5 Structured version   Visualization version   GIF version

Theorem lgsqrlem5 27288
Description: Lemma for lgsqr 27289. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqrlem5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqrlem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
2 eqid 2731 . 2 (Poly1‘(ℤ/nℤ‘𝑃)) = (Poly1‘(ℤ/nℤ‘𝑃))
3 eqid 2731 . 2 (Base‘(Poly1‘(ℤ/nℤ‘𝑃))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑃)))
4 eqid 2731 . 2 (deg1‘(ℤ/nℤ‘𝑃)) = (deg1‘(ℤ/nℤ‘𝑃))
5 eqid 2731 . 2 (eval1‘(ℤ/nℤ‘𝑃)) = (eval1‘(ℤ/nℤ‘𝑃))
6 eqid 2731 . 2 (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃)))) = (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃))))
7 eqid 2731 . 2 (var1‘(ℤ/nℤ‘𝑃)) = (var1‘(ℤ/nℤ‘𝑃))
8 eqid 2731 . 2 (-g‘(Poly1‘(ℤ/nℤ‘𝑃))) = (-g‘(Poly1‘(ℤ/nℤ‘𝑃)))
9 eqid 2731 . 2 (1r‘(Poly1‘(ℤ/nℤ‘𝑃))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑃)))
10 eqid 2731 . 2 ((((𝑃 − 1) / 2)(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃))))(var1‘(ℤ/nℤ‘𝑃)))(-g‘(Poly1‘(ℤ/nℤ‘𝑃)))(1r‘(Poly1‘(ℤ/nℤ‘𝑃)))) = ((((𝑃 − 1) / 2)(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃))))(var1‘(ℤ/nℤ‘𝑃)))(-g‘(Poly1‘(ℤ/nℤ‘𝑃)))(1r‘(Poly1‘(ℤ/nℤ‘𝑃))))
11 eqid 2731 . 2 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
12 simp2 1137 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → 𝑃 ∈ (ℙ ∖ {2}))
13 eqid 2731 . 2 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ ((ℤRHom‘(ℤ/nℤ‘𝑃))‘(𝑦↑2))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ ((ℤRHom‘(ℤ/nℤ‘𝑃))‘(𝑦↑2)))
14 simp1 1136 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → 𝐴 ∈ ℤ)
15 simp3 1138 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → (𝐴 /L 𝑃) = 1)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lgsqrlem4 27287 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  {csn 4573   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  1c1 11007  cmin 11344   / cdiv 11774  2c2 12180  cz 12468  ...cfz 13407  cexp 13968  cdvds 16163  cprime 16582  Basecbs 17120  -gcsg 18848  .gcmg 18980  mulGrpcmgp 20058  1rcur 20099  ℤRHomczrh 21436  ℤ/nczn 21439  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229  deg1cdg1 25986   /L clgs 27232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evl1 22231  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-lgs 27233
This theorem is referenced by:  lgsqr  27289
  Copyright terms: Public domain W3C validator