MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem5 Structured version   Visualization version   GIF version

Theorem lgsqrlem5 26782
Description: Lemma for lgsqr 26783. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqrlem5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqrlem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (ℤ/nℤ‘𝑃) = (ℤ/nℤ‘𝑃)
2 eqid 2732 . 2 (Poly1‘(ℤ/nℤ‘𝑃)) = (Poly1‘(ℤ/nℤ‘𝑃))
3 eqid 2732 . 2 (Base‘(Poly1‘(ℤ/nℤ‘𝑃))) = (Base‘(Poly1‘(ℤ/nℤ‘𝑃)))
4 eqid 2732 . 2 ( deg1 ‘(ℤ/nℤ‘𝑃)) = ( deg1 ‘(ℤ/nℤ‘𝑃))
5 eqid 2732 . 2 (eval1‘(ℤ/nℤ‘𝑃)) = (eval1‘(ℤ/nℤ‘𝑃))
6 eqid 2732 . 2 (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃)))) = (.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃))))
7 eqid 2732 . 2 (var1‘(ℤ/nℤ‘𝑃)) = (var1‘(ℤ/nℤ‘𝑃))
8 eqid 2732 . 2 (-g‘(Poly1‘(ℤ/nℤ‘𝑃))) = (-g‘(Poly1‘(ℤ/nℤ‘𝑃)))
9 eqid 2732 . 2 (1r‘(Poly1‘(ℤ/nℤ‘𝑃))) = (1r‘(Poly1‘(ℤ/nℤ‘𝑃)))
10 eqid 2732 . 2 ((((𝑃 − 1) / 2)(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃))))(var1‘(ℤ/nℤ‘𝑃)))(-g‘(Poly1‘(ℤ/nℤ‘𝑃)))(1r‘(Poly1‘(ℤ/nℤ‘𝑃)))) = ((((𝑃 − 1) / 2)(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑃))))(var1‘(ℤ/nℤ‘𝑃)))(-g‘(Poly1‘(ℤ/nℤ‘𝑃)))(1r‘(Poly1‘(ℤ/nℤ‘𝑃))))
11 eqid 2732 . 2 (ℤRHom‘(ℤ/nℤ‘𝑃)) = (ℤRHom‘(ℤ/nℤ‘𝑃))
12 simp2 1137 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → 𝑃 ∈ (ℙ ∖ {2}))
13 eqid 2732 . 2 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ ((ℤRHom‘(ℤ/nℤ‘𝑃))‘(𝑦↑2))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ ((ℤRHom‘(ℤ/nℤ‘𝑃))‘(𝑦↑2)))
14 simp1 1136 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → 𝐴 ∈ ℤ)
15 simp3 1138 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → (𝐴 /L 𝑃) = 1)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lgsqrlem4 26781 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  cdif 3942  {csn 4623   class class class wbr 5142  cmpt 5225  cfv 6533  (class class class)co 7394  1c1 11095  cmin 11428   / cdiv 11855  2c2 12251  cz 12542  ...cfz 13468  cexp 14011  cdvds 16181  cprime 16592  Basecbs 17128  -gcsg 18798  .gcmg 18924  mulGrpcmgp 19948  1rcur 19965  ℤRHomczrh 20984  ℤ/nczn 20987  var1cv1 21631  Poly1cpl1 21632  eval1ce1 21764   deg1 cdg1 25500   /L clgs 26726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172  ax-addf 11173  ax-mulf 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-ofr 7655  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-tpos 8195  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-2o 8451  df-oadd 8454  df-er 8688  df-ec 8690  df-qs 8694  df-map 8807  df-pm 8808  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-sup 9421  df-inf 9422  df-oi 9489  df-dju 9880  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-xnn0 12529  df-z 12543  df-dec 12662  df-uz 12807  df-q 12917  df-rp 12959  df-fz 13469  df-fzo 13612  df-fl 13741  df-mod 13819  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-dvds 16182  df-gcd 16420  df-prm 16593  df-phi 16683  df-pc 16754  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-starv 17196  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-unif 17204  df-hom 17205  df-cco 17206  df-0g 17371  df-gsum 17372  df-prds 17377  df-pws 17379  df-imas 17438  df-qus 17439  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-mhm 18649  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-mulg 18925  df-subg 18977  df-nsg 18978  df-eqg 18979  df-ghm 19058  df-cntz 19149  df-cmn 19616  df-abl 19617  df-mgp 19949  df-ur 19966  df-srg 19970  df-ring 20018  df-cring 20019  df-oppr 20104  df-dvdsr 20125  df-unit 20126  df-invr 20156  df-dvr 20167  df-rnghom 20203  df-nzr 20244  df-drng 20269  df-field 20270  df-subrg 20312  df-lmod 20424  df-lss 20494  df-lsp 20534  df-sra 20736  df-rgmod 20737  df-lidl 20738  df-rsp 20739  df-2idl 20805  df-rlreg 20837  df-domn 20838  df-idom 20839  df-cnfld 20881  df-zring 20954  df-zrh 20988  df-zn 20991  df-assa 21343  df-asp 21344  df-ascl 21345  df-psr 21395  df-mvr 21396  df-mpl 21397  df-opsr 21399  df-evls 21566  df-evl 21567  df-psr1 21635  df-vr1 21636  df-ply1 21637  df-coe1 21638  df-evl1 21766  df-mdeg 25501  df-deg1 25502  df-mon1 25579  df-uc1p 25580  df-q1p 25581  df-r1p 25582  df-lgs 26727
This theorem is referenced by:  lgsqr  26783
  Copyright terms: Public domain W3C validator