![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rplogcld | Structured version Visualization version GIF version |
Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
relogefd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rplogcld.2 | ⊢ (𝜑 → 1 < 𝐴) |
Ref | Expression |
---|---|
rplogcld | ⊢ (𝜑 → (log‘𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogefd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rplogcld.2 | . 2 ⊢ (𝜑 → 1 < 𝐴) | |
3 | rplogcl 24691 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anc 580 | 1 ⊢ (𝜑 → (log‘𝐴) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 class class class wbr 4843 ‘cfv 6101 ℝcr 10223 1c1 10225 < clt 10363 ℝ+crp 12074 logclog 24642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ioc 12429 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-mod 12924 df-seq 13056 df-exp 13115 df-fac 13314 df-bc 13343 df-hash 13371 df-shft 14148 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-ef 15134 df-sin 15136 df-cos 15137 df-pi 15139 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-mulg 17857 df-cntz 18062 df-cmn 18510 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-lp 21269 df-perf 21270 df-cn 21360 df-cnp 21361 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cncf 23009 df-limc 23971 df-dv 23972 df-log 24644 |
This theorem is referenced by: divlogrlim 24722 logno1 24723 logbleb 24865 logblt 24866 cxploglim 25056 cxploglim2 25057 emcllem4 25077 emcllem6 25079 chtge0 25190 isppw 25192 chtwordi 25234 fsumvma2 25291 chpval2 25295 chpchtsum 25296 chpub 25297 bposlem1 25361 chebbnd1lem1 25510 chebbnd1lem3 25512 chebbnd1 25513 chtppilimlem1 25514 chtppilimlem2 25515 chtppilim 25516 chebbnd2 25518 chto1lb 25519 rplogsumlem2 25526 rpvmasumlem 25528 vmalogdivsum2 25579 vmalogdivsum 25580 2vmadivsumlem 25581 chpdifbndlem1 25594 selberg3lem1 25598 selberg3 25600 selberg4lem1 25601 selberg4 25602 selberg3r 25610 selberg4r 25611 selberg34r 25612 pntrlog2bndlem1 25618 pntrlog2bndlem2 25619 pntrlog2bndlem3 25620 pntrlog2bndlem4 25621 pntrlog2bndlem5 25622 pntrlog2bndlem6 25624 pntrlog2bnd 25625 pntibndlem2 25632 pntlemb 25638 pntlemg 25639 pntlemh 25640 pntlemr 25643 pntlemj 25644 pntlemf 25646 pntlemo 25648 pnt 25655 ostth2lem3 25676 ostth2lem4 25677 ostth2 25678 ostth3 25679 hgt750leme 31256 |
Copyright terms: Public domain | W3C validator |