Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6ib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
syl6ib.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ib.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
syl6ib | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ib.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ib.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 215 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Copyright terms: Public domain | W3C validator |