Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27b Structured version   Visualization version   GIF version

Theorem jm2.27b 38944
Description: Lemma for jm2.27 38946. Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1 (𝜑𝐴 ∈ (ℤ‘2))
jm2.27a2 (𝜑𝐵 ∈ ℕ)
jm2.27a3 (𝜑𝐶 ∈ ℕ)
jm2.27a4 (𝜑𝐷 ∈ ℕ0)
jm2.27a5 (𝜑𝐸 ∈ ℕ0)
jm2.27a6 (𝜑𝐹 ∈ ℕ0)
jm2.27a7 (𝜑𝐺 ∈ ℕ0)
jm2.27a8 (𝜑𝐻 ∈ ℕ0)
jm2.27a9 (𝜑𝐼 ∈ ℕ0)
jm2.27a10 (𝜑𝐽 ∈ ℕ0)
jm2.27a11 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
jm2.27a12 (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
jm2.27a13 (𝜑𝐺 ∈ (ℤ‘2))
jm2.27a14 (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
jm2.27a15 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
jm2.27a16 (𝜑𝐹 ∥ (𝐺𝐴))
jm2.27a17 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
jm2.27a18 (𝜑𝐹 ∥ (𝐻𝐶))
jm2.27a19 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
jm2.27a20 (𝜑𝐵𝐶)
Assertion
Ref Expression
jm2.27b (𝜑𝐶 = (𝐴 Yrm 𝐵))

Proof of Theorem jm2.27b
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 jm2.27a11 . . 3 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
2 jm2.27a1 . . . 4 (𝜑𝐴 ∈ (ℤ‘2))
3 jm2.27a4 . . . 4 (𝜑𝐷 ∈ ℕ0)
4 jm2.27a3 . . . . 5 (𝜑𝐶 ∈ ℕ)
54nnzd 11892 . . . 4 (𝜑𝐶 ∈ ℤ)
6 rmxycomplete 38855 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0𝐶 ∈ ℤ) → (((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ↔ ∃𝑝 ∈ ℤ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝))))
72, 3, 5, 6syl3anc 1351 . . 3 (𝜑 → (((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ↔ ∃𝑝 ∈ ℤ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝))))
81, 7mpbid 224 . 2 (𝜑 → ∃𝑝 ∈ ℤ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))
9 jm2.27a12 . . . . 5 (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
109adantr 473 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
112adantr 473 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝐴 ∈ (ℤ‘2))
12 jm2.27a6 . . . . . 6 (𝜑𝐹 ∈ ℕ0)
1312adantr 473 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝐹 ∈ ℕ0)
14 jm2.27a5 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
1514nn0zd 11891 . . . . . 6 (𝜑𝐸 ∈ ℤ)
1615adantr 473 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝐸 ∈ ℤ)
17 rmxycomplete 38855 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐹 ∈ ℕ0𝐸 ∈ ℤ) → (((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ↔ ∃𝑞 ∈ ℤ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞))))
1811, 13, 16, 17syl3anc 1351 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → (((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1 ↔ ∃𝑞 ∈ ℤ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞))))
1910, 18mpbid 224 . . 3 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → ∃𝑞 ∈ ℤ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))
20 jm2.27a14 . . . . . 6 (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
2120ad2antrr 713 . . . . 5 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
22 jm2.27a13 . . . . . . 7 (𝜑𝐺 ∈ (ℤ‘2))
2322ad2antrr 713 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → 𝐺 ∈ (ℤ‘2))
24 jm2.27a9 . . . . . . 7 (𝜑𝐼 ∈ ℕ0)
2524ad2antrr 713 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → 𝐼 ∈ ℕ0)
26 jm2.27a8 . . . . . . . 8 (𝜑𝐻 ∈ ℕ0)
2726nn0zd 11891 . . . . . . 7 (𝜑𝐻 ∈ ℤ)
2827ad2antrr 713 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → 𝐻 ∈ ℤ)
29 rmxycomplete 38855 . . . . . 6 ((𝐺 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0𝐻 ∈ ℤ) → (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ↔ ∃𝑟 ∈ ℤ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟))))
3023, 25, 28, 29syl3anc 1351 . . . . 5 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → (((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1 ↔ ∃𝑟 ∈ ℤ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟))))
3121, 30mpbid 224 . . . 4 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → ∃𝑟 ∈ ℤ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))
322ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐴 ∈ (ℤ‘2))
33 jm2.27a2 . . . . . 6 (𝜑𝐵 ∈ ℕ)
3433ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐵 ∈ ℕ)
354ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐶 ∈ ℕ)
363ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐷 ∈ ℕ0)
3714ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐸 ∈ ℕ0)
3812ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐹 ∈ ℕ0)
39 jm2.27a7 . . . . . 6 (𝜑𝐺 ∈ ℕ0)
4039ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐺 ∈ ℕ0)
4126ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐻 ∈ ℕ0)
4224ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐼 ∈ ℕ0)
43 jm2.27a10 . . . . . 6 (𝜑𝐽 ∈ ℕ0)
4443ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐽 ∈ ℕ0)
451ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
469ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
4722ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐺 ∈ (ℤ‘2))
4820ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
49 jm2.27a15 . . . . . 6 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
5049ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
51 jm2.27a16 . . . . . 6 (𝜑𝐹 ∥ (𝐺𝐴))
5251ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐹 ∥ (𝐺𝐴))
53 jm2.27a17 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
5453ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → (2 · 𝐶) ∥ (𝐺 − 1))
55 jm2.27a18 . . . . . 6 (𝜑𝐹 ∥ (𝐻𝐶))
5655ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐹 ∥ (𝐻𝐶))
57 jm2.27a19 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
5857ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → (2 · 𝐶) ∥ (𝐻𝐵))
59 jm2.27a20 . . . . . 6 (𝜑𝐵𝐶)
6059ad3antrrr 717 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐵𝐶)
61 simprl 758 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝑝 ∈ ℤ)
6261ad2antrr 713 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝑝 ∈ ℤ)
63 simprrl 768 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝐷 = (𝐴 Xrm 𝑝))
6463ad2antrr 713 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐷 = (𝐴 Xrm 𝑝))
65 simprrr 769 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝐶 = (𝐴 Yrm 𝑝))
6665ad2antrr 713 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐶 = (𝐴 Yrm 𝑝))
67 simplrl 764 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝑞 ∈ ℤ)
68 simprl 758 . . . . . 6 ((𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞))) → 𝐹 = (𝐴 Xrm 𝑞))
6968ad2antlr 714 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐹 = (𝐴 Xrm 𝑞))
70 simprr 760 . . . . . 6 ((𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞))) → 𝐸 = (𝐴 Yrm 𝑞))
7170ad2antlr 714 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐸 = (𝐴 Yrm 𝑞))
72 simprl 758 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝑟 ∈ ℤ)
73 simprrl 768 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐼 = (𝐺 Xrm 𝑟))
74 simprrr 769 . . . . 5 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐻 = (𝐺 Yrm 𝑟))
7532, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 72, 73, 74jm2.27a 38943 . . . 4 ((((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) ∧ (𝑟 ∈ ℤ ∧ (𝐼 = (𝐺 Xrm 𝑟) ∧ 𝐻 = (𝐺 Yrm 𝑟)))) → 𝐶 = (𝐴 Yrm 𝐵))
7631, 75rexlimddv 3230 . . 3 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) ∧ (𝑞 ∈ ℤ ∧ (𝐹 = (𝐴 Xrm 𝑞) ∧ 𝐸 = (𝐴 Yrm 𝑞)))) → 𝐶 = (𝐴 Yrm 𝐵))
7719, 76rexlimddv 3230 . 2 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ (𝐷 = (𝐴 Xrm 𝑝) ∧ 𝐶 = (𝐴 Yrm 𝑝)))) → 𝐶 = (𝐴 Yrm 𝐵))
788, 77rexlimddv 3230 1 (𝜑𝐶 = (𝐴 Yrm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wrex 3083   class class class wbr 4923  cfv 6182  (class class class)co 6970  1c1 10328   + caddc 10330   · cmul 10332  cle 10467  cmin 10662  cn 11431  2c2 11488  0cn0 11700  cz 11786  cuz 12051  cexp 13237  cdvds 15457   Xrm crmx 38838   Yrm crmy 38839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-omul 7902  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-acn 9157  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-xnn0 11773  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ioc 12552  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-fac 13442  df-bc 13471  df-hash 13499  df-shft 14277  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-limsup 14679  df-clim 14696  df-rlim 14697  df-sum 14894  df-ef 15271  df-sin 15273  df-cos 15274  df-pi 15276  df-dvds 15458  df-gcd 15694  df-prm 15862  df-numer 15921  df-denom 15922  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-fbas 20234  df-fg 20235  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-nei 21400  df-lp 21438  df-perf 21439  df-cn 21529  df-cnp 21530  df-haus 21617  df-tx 21864  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-xms 22623  df-ms 22624  df-tms 22625  df-cncf 23179  df-limc 24157  df-dv 24158  df-log 24831  df-squarenn 38779  df-pell1qr 38780  df-pell14qr 38781  df-pell1234qr 38782  df-pellfund 38783  df-rmx 38840  df-rmy 38841
This theorem is referenced by:  jm2.27  38946
  Copyright terms: Public domain W3C validator