| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > asin1half | Structured version Visualization version GIF version | ||
| Description: The arcsine of 1 / 2 is π / 6. (Contributed by SN, 31-Aug-2025.) |
| Ref | Expression |
|---|---|
| asin1half | ⊢ (arcsin‘(1 / 2)) = (π / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sincos6thpi 26548 | . . . 4 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
| 2 | 1 | simpli 483 | . . 3 ⊢ (sin‘(π / 6)) = (1 / 2) |
| 3 | 2 | fveq2i 6907 | . 2 ⊢ (arcsin‘(sin‘(π / 6))) = (arcsin‘(1 / 2)) |
| 4 | pire 26490 | . . . . 5 ⊢ π ∈ ℝ | |
| 5 | 6re 12352 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 6 | 0re 11259 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 7 | 6pos 12372 | . . . . . 6 ⊢ 0 < 6 | |
| 8 | 6, 7 | gtneii 11369 | . . . . 5 ⊢ 6 ≠ 0 |
| 9 | 4, 5, 8 | redivcli 12030 | . . . 4 ⊢ (π / 6) ∈ ℝ |
| 10 | neghalfpire 26497 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
| 11 | halfpire 26496 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
| 12 | 2re 12336 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 13 | pipos 26492 | . . . . . . . . 9 ⊢ 0 < π | |
| 14 | 2pos 12365 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 15 | 4, 12, 13, 14 | divgt0ii 12181 | . . . . . . . 8 ⊢ 0 < (π / 2) |
| 16 | lt0neg2 11766 | . . . . . . . 8 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
| 17 | 15, 16 | mpbii 233 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ → -(π / 2) < 0) |
| 18 | 11, 17 | ax-mp 5 | . . . . . 6 ⊢ -(π / 2) < 0 |
| 19 | 4, 5, 13, 7 | divgt0ii 12181 | . . . . . 6 ⊢ 0 < (π / 6) |
| 20 | 10, 6, 9, 18, 19 | lttrii 42275 | . . . . 5 ⊢ -(π / 2) < (π / 6) |
| 21 | 10, 9, 20 | ltleii 11380 | . . . 4 ⊢ -(π / 2) ≤ (π / 6) |
| 22 | 2lt6 12446 | . . . . . . 7 ⊢ 2 < 6 | |
| 23 | 2rp 13035 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ+) |
| 25 | 6rp 42313 | . . . . . . . . 9 ⊢ 6 ∈ ℝ+ | |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 6 ∈ ℝ+) |
| 27 | pirp 26493 | . . . . . . . . 9 ⊢ π ∈ ℝ+ | |
| 28 | 27 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℝ+) |
| 29 | 24, 26, 28 | ltdiv2d 13096 | . . . . . . 7 ⊢ (⊤ → (2 < 6 ↔ (π / 6) < (π / 2))) |
| 30 | 22, 29 | mpbii 233 | . . . . . 6 ⊢ (⊤ → (π / 6) < (π / 2)) |
| 31 | 30 | mptru 1547 | . . . . 5 ⊢ (π / 6) < (π / 2) |
| 32 | 9, 11, 31 | ltleii 11380 | . . . 4 ⊢ (π / 6) ≤ (π / 2) |
| 33 | 10, 11 | elicc2i 13449 | . . . 4 ⊢ ((π / 6) ∈ (-(π / 2)[,](π / 2)) ↔ ((π / 6) ∈ ℝ ∧ -(π / 2) ≤ (π / 6) ∧ (π / 6) ≤ (π / 2))) |
| 34 | 9, 21, 32, 33 | mpbir3an 1342 | . . 3 ⊢ (π / 6) ∈ (-(π / 2)[,](π / 2)) |
| 35 | reasinsin 26929 | . . 3 ⊢ ((π / 6) ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘(π / 6))) = (π / 6)) | |
| 36 | 34, 35 | ax-mp 5 | . 2 ⊢ (arcsin‘(sin‘(π / 6))) = (π / 6) |
| 37 | 3, 36 | eqtr3i 2766 | 1 ⊢ (arcsin‘(1 / 2)) = (π / 6) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 ℝcr 11150 0cc0 11151 1c1 11152 < clt 11291 ≤ cle 11292 -cneg 11489 / cdiv 11916 2c2 12317 3c3 12318 6c6 12321 ℝ+crp 13030 [,]cicc 13386 √csqrt 15268 sincsin 16095 cosccos 16096 πcpi 16098 arcsincasin 26895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-inf2 9677 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 ax-addf 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-of 7694 df-om 7884 df-1st 8010 df-2nd 8011 df-supp 8182 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-er 8741 df-map 8864 df-pm 8865 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-fsupp 9398 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-q 12987 df-rp 13031 df-xneg 13150 df-xadd 13151 df-xmul 13152 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-shft 15102 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-ef 16099 df-sin 16101 df-cos 16102 df-pi 16104 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-starv 17308 df-sca 17309 df-vsca 17310 df-ip 17311 df-tset 17312 df-ple 17313 df-ds 17315 df-unif 17316 df-hom 17317 df-cco 17318 df-rest 17463 df-topn 17464 df-0g 17482 df-gsum 17483 df-topgen 17484 df-pt 17485 df-prds 17488 df-xrs 17543 df-qtop 17548 df-imas 17549 df-xps 17551 df-mre 17625 df-mrc 17626 df-acs 17628 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-submnd 18793 df-mulg 19082 df-cntz 19331 df-cmn 19796 df-psmet 21348 df-xmet 21349 df-met 21350 df-bl 21351 df-mopn 21352 df-fbas 21353 df-fg 21354 df-cnfld 21357 df-top 22890 df-topon 22907 df-topsp 22929 df-bases 22943 df-cld 23017 df-ntr 23018 df-cls 23019 df-nei 23096 df-lp 23134 df-perf 23135 df-cn 23225 df-cnp 23226 df-haus 23313 df-tx 23560 df-hmeo 23753 df-fil 23844 df-fm 23936 df-flim 23937 df-flf 23938 df-xms 24320 df-ms 24321 df-tms 24322 df-cncf 24894 df-limc 25891 df-dv 25892 df-log 26588 df-asin 26898 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |