![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asin1half | Structured version Visualization version GIF version |
Description: The arcsine of 1 / 2 is π / 6. (Contributed by SN, 31-Aug-2025.) |
Ref | Expression |
---|---|
asin1half | ⊢ (arcsin‘(1 / 2)) = (π / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sincos6thpi 26568 | . . . 4 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
2 | 1 | simpli 483 | . . 3 ⊢ (sin‘(π / 6)) = (1 / 2) |
3 | 2 | fveq2i 6918 | . 2 ⊢ (arcsin‘(sin‘(π / 6))) = (arcsin‘(1 / 2)) |
4 | pire 26510 | . . . . 5 ⊢ π ∈ ℝ | |
5 | 6re 12377 | . . . . 5 ⊢ 6 ∈ ℝ | |
6 | 0re 11286 | . . . . . 6 ⊢ 0 ∈ ℝ | |
7 | 6pos 12397 | . . . . . 6 ⊢ 0 < 6 | |
8 | 6, 7 | gtneii 11396 | . . . . 5 ⊢ 6 ≠ 0 |
9 | 4, 5, 8 | redivcli 12055 | . . . 4 ⊢ (π / 6) ∈ ℝ |
10 | neghalfpire 26517 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
11 | halfpire 26516 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
12 | 2re 12361 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
13 | pipos 26512 | . . . . . . . . 9 ⊢ 0 < π | |
14 | 2pos 12390 | . . . . . . . . 9 ⊢ 0 < 2 | |
15 | 4, 12, 13, 14 | divgt0ii 12206 | . . . . . . . 8 ⊢ 0 < (π / 2) |
16 | lt0neg2 11791 | . . . . . . . 8 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
17 | 15, 16 | mpbii 233 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ → -(π / 2) < 0) |
18 | 11, 17 | ax-mp 5 | . . . . . 6 ⊢ -(π / 2) < 0 |
19 | 4, 5, 13, 7 | divgt0ii 12206 | . . . . . 6 ⊢ 0 < (π / 6) |
20 | 10, 6, 9, 18, 19 | lttrii 42244 | . . . . 5 ⊢ -(π / 2) < (π / 6) |
21 | 10, 9, 20 | ltleii 11407 | . . . 4 ⊢ -(π / 2) ≤ (π / 6) |
22 | 2lt6 12471 | . . . . . . 7 ⊢ 2 < 6 | |
23 | 2rp 13056 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ+) |
25 | 6rp 42282 | . . . . . . . . 9 ⊢ 6 ∈ ℝ+ | |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 6 ∈ ℝ+) |
27 | pirp 26513 | . . . . . . . . 9 ⊢ π ∈ ℝ+ | |
28 | 27 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → π ∈ ℝ+) |
29 | 24, 26, 28 | ltdiv2d 13116 | . . . . . . 7 ⊢ (⊤ → (2 < 6 ↔ (π / 6) < (π / 2))) |
30 | 22, 29 | mpbii 233 | . . . . . 6 ⊢ (⊤ → (π / 6) < (π / 2)) |
31 | 30 | mptru 1544 | . . . . 5 ⊢ (π / 6) < (π / 2) |
32 | 9, 11, 31 | ltleii 11407 | . . . 4 ⊢ (π / 6) ≤ (π / 2) |
33 | 10, 11 | elicc2i 13467 | . . . 4 ⊢ ((π / 6) ∈ (-(π / 2)[,](π / 2)) ↔ ((π / 6) ∈ ℝ ∧ -(π / 2) ≤ (π / 6) ∧ (π / 6) ≤ (π / 2))) |
34 | 9, 21, 32, 33 | mpbir3an 1341 | . . 3 ⊢ (π / 6) ∈ (-(π / 2)[,](π / 2)) |
35 | reasinsin 26949 | . . 3 ⊢ ((π / 6) ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘(π / 6))) = (π / 6)) | |
36 | 34, 35 | ax-mp 5 | . 2 ⊢ (arcsin‘(sin‘(π / 6))) = (π / 6) |
37 | 3, 36 | eqtr3i 2770 | 1 ⊢ (arcsin‘(1 / 2)) = (π / 6) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6568 (class class class)co 7443 ℝcr 11177 0cc0 11178 1c1 11179 < clt 11318 ≤ cle 11319 -cneg 11515 / cdiv 11941 2c2 12342 3c3 12343 6c6 12346 ℝ+crp 13051 [,]cicc 13404 √csqrt 15276 sincsin 16105 cosccos 16106 πcpi 16108 arcsincasin 26915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-inf2 9704 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 ax-addf 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-fi 9474 df-sup 9505 df-inf 9506 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-q 13008 df-rp 13052 df-xneg 13169 df-xadd 13170 df-xmul 13171 df-ioo 13405 df-ioc 13406 df-ico 13407 df-icc 13408 df-fz 13562 df-fzo 13706 df-fl 13837 df-mod 13915 df-seq 14047 df-exp 14107 df-fac 14317 df-bc 14346 df-hash 14374 df-shft 15110 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-limsup 15511 df-clim 15528 df-rlim 15529 df-sum 15729 df-ef 16109 df-sin 16111 df-cos 16112 df-pi 16114 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-rest 17476 df-topn 17477 df-0g 17495 df-gsum 17496 df-topgen 17497 df-pt 17498 df-prds 17501 df-xrs 17556 df-qtop 17561 df-imas 17562 df-xps 17564 df-mre 17638 df-mrc 17639 df-acs 17641 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18813 df-mulg 19102 df-cntz 19351 df-cmn 19818 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22913 df-topon 22930 df-topsp 22952 df-bases 22966 df-cld 23040 df-ntr 23041 df-cls 23042 df-nei 23119 df-lp 23157 df-perf 23158 df-cn 23248 df-cnp 23249 df-haus 23336 df-tx 23583 df-hmeo 23776 df-fil 23867 df-fm 23959 df-flim 23960 df-flf 23961 df-xms 24343 df-ms 24344 df-tms 24345 df-cncf 24915 df-limc 25913 df-dv 25914 df-log 26608 df-asin 26918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |