![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reeflogd | Structured version Visualization version GIF version |
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
relogcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
reeflogd | ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | reeflog 26648 | . 2 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 ℝ+crp 13041 expce 16103 logclog 26622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-addf 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ioo 13397 df-ioc 13398 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-fl 13838 df-mod 13916 df-seq 14049 df-exp 14109 df-fac 14319 df-bc 14348 df-hash 14376 df-shft 15112 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15729 df-ef 16109 df-sin 16111 df-cos 16112 df-pi 16114 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-rest 17478 df-topn 17479 df-0g 17497 df-gsum 17498 df-topgen 17499 df-pt 17500 df-prds 17503 df-xrs 17558 df-qtop 17563 df-imas 17564 df-xps 17566 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-fbas 21388 df-fg 21389 df-cnfld 21392 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-cld 23052 df-ntr 23053 df-cls 23054 df-nei 23131 df-lp 23169 df-perf 23170 df-cn 23260 df-cnp 23261 df-haus 23348 df-tx 23595 df-hmeo 23788 df-fil 23879 df-fm 23971 df-flim 23972 df-flf 23973 df-xms 24355 df-ms 24356 df-tms 24357 df-cncf 24929 df-limc 25927 df-dv 25928 df-log 26624 |
This theorem is referenced by: divlogrlim 26703 birthdaylem3 27022 amgmlem 27059 logdifbnd 27063 emcllem2 27066 zetacvg 27084 efchtcl 27180 efvmacl 27189 efchtdvds 27228 prmorcht 27247 chtleppi 27280 chtublem 27281 bposlem1 27354 bposlem9 27362 chebbnd1lem1 27539 chtppilimlem1 27543 pntpbnd1a 27655 pntpbnd2 27657 pntibndlem2 27661 pntlemb 27667 ostth2lem4 27706 ostth2 27707 ostth3 27708 amgmwlem 49158 |
Copyright terms: Public domain | W3C validator |