MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2vmadivsum Structured version   Visualization version   GIF version

Theorem 2vmadivsum 25686
Description: The sum Σ𝑚𝑛𝑥, Λ(𝑚)Λ(𝑛) / 𝑚𝑛 is asymptotic to log↑2(𝑥) / 2 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
2vmadivsum (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem 2vmadivsum
Dummy variables 𝑐 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vmadivsumb 25628 . 2 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝑐
2 simpl 476 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝑐) → 𝑐 ∈ ℝ+)
3 simpr 479 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝑐)
42, 32vmadivsumlem 25685 . . 3 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
54rexlimiva 3210 . 2 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
61, 5ax-mp 5 1 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 386  wcel 2107  wral 3090  wrex 3091   class class class wbr 4888  cmpt 4967  cfv 6137  (class class class)co 6924  1c1 10275   · cmul 10279  +∞cpnf 10410  cle 10414  cmin 10608   / cdiv 11034  2c2 11434  +crp 12141  (,)cioo 12491  [,)cico 12493  ...cfz 12647  cfl 12914  abscabs 14385  𝑂(1)co1 14629  Σcsu 14828  logclog 24742  Λcvma 25274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-xnn0 11719  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-mod 12992  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-shft 14218  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-o1 14633  df-lo1 14634  df-sum 14829  df-ef 15204  df-e 15205  df-sin 15206  df-cos 15207  df-pi 15209  df-dvds 15392  df-gcd 15627  df-prm 15795  df-pc 15950  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-mulg 17932  df-cntz 18137  df-cmn 18585  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-fbas 20143  df-fg 20144  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-nei 21314  df-lp 21352  df-perf 21353  df-cn 21443  df-cnp 21444  df-haus 21531  df-cmp 21603  df-tx 21778  df-hmeo 21971  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-xms 22537  df-ms 22538  df-tms 22539  df-cncf 23093  df-limc 24071  df-dv 24072  df-log 24744  df-cxp 24745  df-em 25175  df-cht 25279  df-vma 25280  df-chp 25281  df-ppi 25282
This theorem is referenced by:  selberg4r  25715
  Copyright terms: Public domain W3C validator