| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierclim | Structured version Visualization version GIF version | ||
| Description: Fourier series convergence, for piecewise smooth functions. See fourier 46226 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierclim.f | ⊢ 𝐹:ℝ⟶ℝ |
| fourierclim.t | ⊢ 𝑇 = (2 · π) |
| fourierclim.per | ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| fourierclim.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
| fourierclim.dmdv | ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin |
| fourierclim.dvcn | ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) |
| fourierclim.rlim | ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| fourierclim.llim | ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| fourierclim.x | ⊢ 𝑋 ∈ ℝ |
| fourierclim.l | ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) |
| fourierclim.r | ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) |
| fourierclim.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourierclim.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourierclim.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
| Ref | Expression |
|---|---|
| fourierclim | ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierclim.f | . . . 4 ⊢ 𝐹:ℝ⟶ℝ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:ℝ⟶ℝ) |
| 3 | fourierclim.t | . . 3 ⊢ 𝑇 = (2 · π) | |
| 4 | fourierclim.per | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 6 | fourierclim.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
| 7 | fourierclim.dmdv | . . . 4 ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
| 9 | fourierclim.dvcn | . . . 4 ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
| 11 | fourierclim.rlim | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 13 | fourierclim.llim | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 15 | fourierclim.x | . . . 4 ⊢ 𝑋 ∈ ℝ | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 ∈ ℝ) |
| 17 | fourierclim.l | . . . 4 ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 19 | fourierclim.r | . . . 4 ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 21 | fourierclim.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 22 | fourierclim.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 23 | fourierclim.s | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) | |
| 24 | 2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23 | fourierclimd 46224 | . 2 ⊢ (⊤ → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
| 25 | 24 | mptru 1547 | 1 ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 ∅c0 4286 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5623 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 +∞cpnf 11165 -∞cmnf 11166 − cmin 11366 -cneg 11367 / cdiv 11796 ℕcn 12147 2c2 12202 ℕ0cn0 12403 (,)cioo 13267 (,]cioc 13268 [,)cico 13269 seqcseq 13927 ⇝ cli 15410 sincsin 15989 cosccos 15990 πcpi 15992 –cn→ccncf 24786 ∫citg 25536 limℂ climc 25780 D cdv 25781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-symdif 4206 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ioc 13272 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-fac 14200 df-bc 14229 df-hash 14257 df-shft 14993 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-limsup 15397 df-clim 15414 df-rlim 15415 df-sum 15613 df-ef 15993 df-sin 15995 df-cos 15996 df-pi 15998 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-lp 23040 df-perf 23041 df-cn 23131 df-cnp 23132 df-t1 23218 df-haus 23219 df-cmp 23291 df-tx 23466 df-hmeo 23659 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24788 df-ovol 25382 df-vol 25383 df-mbf 25537 df-itg1 25538 df-itg2 25539 df-ibl 25540 df-itg 25541 df-0p 25588 df-ditg 25765 df-limc 25784 df-dv 25785 |
| This theorem is referenced by: fouriersw 46232 |
| Copyright terms: Public domain | W3C validator |