| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierclim | Structured version Visualization version GIF version | ||
| Description: Fourier series convergence, for piecewise smooth functions. See fourier 46223 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierclim.f | ⊢ 𝐹:ℝ⟶ℝ |
| fourierclim.t | ⊢ 𝑇 = (2 · π) |
| fourierclim.per | ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| fourierclim.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
| fourierclim.dmdv | ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin |
| fourierclim.dvcn | ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) |
| fourierclim.rlim | ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| fourierclim.llim | ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| fourierclim.x | ⊢ 𝑋 ∈ ℝ |
| fourierclim.l | ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) |
| fourierclim.r | ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) |
| fourierclim.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourierclim.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourierclim.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
| Ref | Expression |
|---|---|
| fourierclim | ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierclim.f | . . . 4 ⊢ 𝐹:ℝ⟶ℝ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:ℝ⟶ℝ) |
| 3 | fourierclim.t | . . 3 ⊢ 𝑇 = (2 · π) | |
| 4 | fourierclim.per | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 6 | fourierclim.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
| 7 | fourierclim.dmdv | . . . 4 ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
| 9 | fourierclim.dvcn | . . . 4 ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
| 11 | fourierclim.rlim | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 13 | fourierclim.llim | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 15 | fourierclim.x | . . . 4 ⊢ 𝑋 ∈ ℝ | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 ∈ ℝ) |
| 17 | fourierclim.l | . . . 4 ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 19 | fourierclim.r | . . . 4 ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 21 | fourierclim.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 22 | fourierclim.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 23 | fourierclim.s | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) | |
| 24 | 2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23 | fourierclimd 46221 | . 2 ⊢ (⊤ → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
| 25 | 24 | mptru 1547 | 1 ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ∅c0 4296 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 +∞cpnf 11205 -∞cmnf 11206 − cmin 11405 -cneg 11406 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 (,)cioo 13306 (,]cioc 13307 [,)cico 13308 seqcseq 13966 ⇝ cli 15450 sincsin 16029 cosccos 16030 πcpi 16032 –cn→ccncf 24769 ∫citg 25519 limℂ climc 25763 D cdv 25764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-symdif 4216 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-t1 23201 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 df-ibl 25523 df-itg 25524 df-0p 25571 df-ditg 25748 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: fouriersw 46229 |
| Copyright terms: Public domain | W3C validator |