![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierclim | Structured version Visualization version GIF version |
Description: Fourier series convergence, for piecewise smooth functions. See fourier 46209 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierclim.f | ⊢ 𝐹:ℝ⟶ℝ |
fourierclim.t | ⊢ 𝑇 = (2 · π) |
fourierclim.per | ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fourierclim.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fourierclim.dmdv | ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin |
fourierclim.dvcn | ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) |
fourierclim.rlim | ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fourierclim.llim | ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fourierclim.x | ⊢ 𝑋 ∈ ℝ |
fourierclim.l | ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) |
fourierclim.r | ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) |
fourierclim.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fourierclim.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
fourierclim.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
Ref | Expression |
---|---|
fourierclim | ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierclim.f | . . . 4 ⊢ 𝐹:ℝ⟶ℝ | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:ℝ⟶ℝ) |
3 | fourierclim.t | . . 3 ⊢ 𝑇 = (2 · π) | |
4 | fourierclim.per | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
6 | fourierclim.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
7 | fourierclim.dmdv | . . . 4 ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
9 | fourierclim.dvcn | . . . 4 ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
11 | fourierclim.rlim | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
13 | fourierclim.llim | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
15 | fourierclim.x | . . . 4 ⊢ 𝑋 ∈ ℝ | |
16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 ∈ ℝ) |
17 | fourierclim.l | . . . 4 ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
19 | fourierclim.r | . . . 4 ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
20 | 19 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
21 | fourierclim.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
22 | fourierclim.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
23 | fourierclim.s | . . 3 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) | |
24 | 2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23 | fourierclimd 46207 | . 2 ⊢ (⊤ → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
25 | 24 | mptru 1546 | 1 ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3963 ∅c0 4342 class class class wbr 5151 ↦ cmpt 5234 dom cdm 5693 ↾ cres 5695 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 ℂcc 11160 ℝcr 11161 0cc0 11162 1c1 11163 + caddc 11165 · cmul 11167 +∞cpnf 11299 -∞cmnf 11300 − cmin 11499 -cneg 11500 / cdiv 11927 ℕcn 12273 2c2 12328 ℕ0cn0 12533 (,)cioo 13393 (,]cioc 13394 [,)cico 13395 seqcseq 14048 ⇝ cli 15526 sincsin 16105 cosccos 16106 πcpi 16108 –cn→ccncf 24927 ∫citg 25678 limℂ climc 25923 D cdv 25924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cc 10482 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 ax-addf 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-symdif 4262 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-ofr 7705 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-omul 8519 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-dju 9948 df-card 9986 df-acn 9989 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-xnn0 12607 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ioo 13397 df-ioc 13398 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-fl 13838 df-mod 13916 df-seq 14049 df-exp 14109 df-fac 14319 df-bc 14348 df-hash 14376 df-shft 15112 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15729 df-ef 16109 df-sin 16111 df-cos 16112 df-pi 16114 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-rest 17478 df-topn 17479 df-0g 17497 df-gsum 17498 df-topgen 17499 df-pt 17500 df-prds 17503 df-xrs 17558 df-qtop 17563 df-imas 17564 df-xps 17566 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-fbas 21388 df-fg 21389 df-cnfld 21392 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-cld 23052 df-ntr 23053 df-cls 23054 df-nei 23131 df-lp 23169 df-perf 23170 df-cn 23260 df-cnp 23261 df-t1 23347 df-haus 23348 df-cmp 23420 df-tx 23595 df-hmeo 23788 df-fil 23879 df-fm 23971 df-flim 23972 df-flf 23973 df-xms 24355 df-ms 24356 df-tms 24357 df-cncf 24929 df-ovol 25524 df-vol 25525 df-mbf 25679 df-itg1 25680 df-itg2 25681 df-ibl 25682 df-itg 25683 df-0p 25730 df-ditg 25908 df-limc 25927 df-dv 25928 |
This theorem is referenced by: fouriersw 46215 |
Copyright terms: Public domain | W3C validator |