| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourier | Structured version Visualization version GIF version | ||
| Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 46197. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 46198 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 46203. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourier.f | ⊢ 𝐹:ℝ⟶ℝ |
| fourier.t | ⊢ 𝑇 = (2 · π) |
| fourier.per | ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| fourier.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
| fourier.dmdv | ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin |
| fourier.dvcn | ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) |
| fourier.rlim | ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| fourier.llim | ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| fourier.x | ⊢ 𝑋 ∈ ℝ |
| fourier.l | ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) |
| fourier.r | ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) |
| fourier.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourier.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
| Ref | Expression |
|---|---|
| fourier | ⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourier.f | . . . 4 ⊢ 𝐹:ℝ⟶ℝ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:ℝ⟶ℝ) |
| 3 | fourier.t | . . 3 ⊢ 𝑇 = (2 · π) | |
| 4 | fourier.per | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 6 | fourier.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
| 7 | fourier.dmdv | . . . 4 ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
| 9 | fourier.dvcn | . . . 4 ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
| 11 | fourier.rlim | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| 13 | fourier.llim | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| 15 | fourier.x | . . . 4 ⊢ 𝑋 ∈ ℝ | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 ∈ ℝ) |
| 17 | fourier.l | . . . 4 ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| 19 | fourier.r | . . . 4 ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| 21 | fourier.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 22 | fourier.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 23 | 2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22 | fourierd 46193 | . 2 ⊢ (⊤ → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) |
| 24 | 23 | mptru 1547 | 1 ⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2927 ∖ cdif 3919 ∅c0 4304 ↦ cmpt 5196 dom cdm 5646 ↾ cres 5648 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 Fincfn 8922 ℂcc 11084 ℝcr 11085 0cc0 11086 + caddc 11089 · cmul 11091 +∞cpnf 11223 -∞cmnf 11224 -cneg 11424 / cdiv 11851 ℕcn 12197 2c2 12252 ℕ0cn0 12458 (,)cioo 13319 (,]cioc 13320 [,)cico 13321 Σcsu 15659 sincsin 16036 cosccos 16037 πcpi 16039 –cn→ccncf 24775 ∫citg 25526 limℂ climc 25770 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cc 10406 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-symdif 4224 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-disj 5083 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-ofr 7661 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-omul 8448 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-dju 9872 df-card 9910 df-acn 9913 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-xnn0 12532 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-t1 23207 df-haus 23208 df-cmp 23280 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 df-ibl 25530 df-itg 25531 df-0p 25578 df-ditg 25755 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |