Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourier | Structured version Visualization version GIF version |
Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 44159. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 44160 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 44165. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourier.f | ⊢ 𝐹:ℝ⟶ℝ |
fourier.t | ⊢ 𝑇 = (2 · π) |
fourier.per | ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fourier.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fourier.dmdv | ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin |
fourier.dvcn | ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) |
fourier.rlim | ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fourier.llim | ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fourier.x | ⊢ 𝑋 ∈ ℝ |
fourier.l | ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) |
fourier.r | ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) |
fourier.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fourier.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fourier | ⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourier.f | . . . 4 ⊢ 𝐹:ℝ⟶ℝ | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:ℝ⟶ℝ) |
3 | fourier.t | . . 3 ⊢ 𝑇 = (2 · π) | |
4 | fourier.per | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
5 | 4 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
6 | fourier.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
7 | fourier.dmdv | . . . 4 ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
9 | fourier.dvcn | . . . 4 ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
11 | fourier.rlim | . . . 4 ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
12 | 11 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
13 | fourier.llim | . . . 4 ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
14 | 13 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
15 | fourier.x | . . . 4 ⊢ 𝑋 ∈ ℝ | |
16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 ∈ ℝ) |
17 | fourier.l | . . . 4 ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
19 | fourier.r | . . . 4 ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
20 | 19 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
21 | fourier.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
22 | fourier.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
23 | 2, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22 | fourierd 44155 | . 2 ⊢ (⊤ → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) |
24 | 23 | mptru 1548 | 1 ⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2941 ∖ cdif 3905 ∅c0 4280 ↦ cmpt 5186 dom cdm 5630 ↾ cres 5632 ⟶wf 6487 ‘cfv 6491 (class class class)co 7349 Fincfn 8816 ℂcc 10982 ℝcr 10983 0cc0 10984 + caddc 10987 · cmul 10989 +∞cpnf 11119 -∞cmnf 11120 -cneg 11319 / cdiv 11745 ℕcn 12086 2c2 12141 ℕ0cn0 12346 (,)cioo 13192 (,]cioc 13193 [,)cico 13194 Σcsu 15504 sincsin 15880 cosccos 15881 πcpi 15883 –cn→ccncf 24152 ∫citg 24895 limℂ climc 25139 D cdv 25140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-inf2 9510 ax-cc 10304 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-pre-sup 11062 ax-addf 11063 ax-mulf 11064 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-symdif 4200 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-disj 5069 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-se 5586 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-isom 6500 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7607 df-ofr 7608 df-om 7793 df-1st 7911 df-2nd 7912 df-supp 8060 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-2o 8380 df-oadd 8383 df-omul 8384 df-er 8581 df-map 8700 df-pm 8701 df-ixp 8769 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-fsupp 9239 df-fi 9280 df-sup 9311 df-inf 9312 df-oi 9379 df-dju 9770 df-card 9808 df-acn 9811 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-div 11746 df-nn 12087 df-2 12149 df-3 12150 df-4 12151 df-5 12152 df-6 12153 df-7 12154 df-8 12155 df-9 12156 df-n0 12347 df-xnn0 12419 df-z 12433 df-dec 12551 df-uz 12696 df-q 12802 df-rp 12844 df-xneg 12961 df-xadd 12962 df-xmul 12963 df-ioo 13196 df-ioc 13197 df-ico 13198 df-icc 13199 df-fz 13353 df-fzo 13496 df-fl 13625 df-mod 13703 df-seq 13835 df-exp 13896 df-fac 14101 df-bc 14130 df-hash 14158 df-shft 14885 df-cj 14917 df-re 14918 df-im 14919 df-sqrt 15053 df-abs 15054 df-limsup 15287 df-clim 15304 df-rlim 15305 df-sum 15505 df-ef 15884 df-sin 15886 df-cos 15887 df-pi 15889 df-struct 16953 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-ress 17047 df-plusg 17080 df-mulr 17081 df-starv 17082 df-sca 17083 df-vsca 17084 df-ip 17085 df-tset 17086 df-ple 17087 df-ds 17089 df-unif 17090 df-hom 17091 df-cco 17092 df-rest 17238 df-topn 17239 df-0g 17257 df-gsum 17258 df-topgen 17259 df-pt 17260 df-prds 17263 df-xrs 17318 df-qtop 17323 df-imas 17324 df-xps 17326 df-mre 17400 df-mrc 17401 df-acs 17403 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-submnd 18536 df-mulg 18805 df-cntz 19027 df-cmn 19491 df-psmet 20702 df-xmet 20703 df-met 20704 df-bl 20705 df-mopn 20706 df-fbas 20707 df-fg 20708 df-cnfld 20711 df-top 22156 df-topon 22173 df-topsp 22195 df-bases 22209 df-cld 22283 df-ntr 22284 df-cls 22285 df-nei 22362 df-lp 22400 df-perf 22401 df-cn 22491 df-cnp 22492 df-t1 22578 df-haus 22579 df-cmp 22651 df-tx 22826 df-hmeo 23019 df-fil 23110 df-fm 23202 df-flim 23203 df-flf 23204 df-xms 23586 df-ms 23587 df-tms 23588 df-cncf 24154 df-ovol 24741 df-vol 24742 df-mbf 24896 df-itg1 24897 df-itg2 24898 df-ibl 24899 df-itg 24900 df-0p 24947 df-ditg 25124 df-limc 25143 df-dv 25144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |