Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourier Structured version   Visualization version   GIF version

Theorem fourier 44158
Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 44159. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 44160 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 44165. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourier.f 𝐹:ℝ⟶ℝ
fourier.t 𝑇 = (2 · π)
fourier.per (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourier.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fourier.dmdv ((-π(,)π) ∖ dom 𝐺) ∈ Fin
fourier.dvcn 𝐺 ∈ (dom 𝐺cn→ℂ)
fourier.rlim (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
fourier.llim (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
fourier.x 𝑋 ∈ ℝ
fourier.l 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)
fourier.r 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)
fourier.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourier.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fourier (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)
Distinct variable groups:   𝑛,𝐹,𝑥   𝑥,𝐺   𝑥,𝑇   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑅(𝑥,𝑛)   𝑇(𝑛)   𝐺(𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem fourier
StepHypRef Expression
1 fourier.f . . . 4 𝐹:ℝ⟶ℝ
21a1i 11 . . 3 (⊤ → 𝐹:ℝ⟶ℝ)
3 fourier.t . . 3 𝑇 = (2 · π)
4 fourier.per . . . 4 (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
54adantl 483 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
6 fourier.g . . 3 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
7 fourier.dmdv . . . 4 ((-π(,)π) ∖ dom 𝐺) ∈ Fin
87a1i 11 . . 3 (⊤ → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
9 fourier.dvcn . . . 4 𝐺 ∈ (dom 𝐺cn→ℂ)
109a1i 11 . . 3 (⊤ → 𝐺 ∈ (dom 𝐺cn→ℂ))
11 fourier.rlim . . . 4 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
1211adantl 483 . . 3 ((⊤ ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
13 fourier.llim . . . 4 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
1413adantl 483 . . 3 ((⊤ ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
15 fourier.x . . . 4 𝑋 ∈ ℝ
1615a1i 11 . . 3 (⊤ → 𝑋 ∈ ℝ)
17 fourier.l . . . 4 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)
1817a1i 11 . . 3 (⊤ → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
19 fourier.r . . . 4 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)
2019a1i 11 . . 3 (⊤ → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
21 fourier.a . . 3 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
22 fourier.b . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
232, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22fourierd 44155 . 2 (⊤ → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))
2423mptru 1548 1 (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wtru 1542  wcel 2106  wne 2941  cdif 3905  c0 4280  cmpt 5186  dom cdm 5630  cres 5632  wf 6487  cfv 6491  (class class class)co 7349  Fincfn 8816  cc 10982  cr 10983  0cc0 10984   + caddc 10987   · cmul 10989  +∞cpnf 11119  -∞cmnf 11120  -cneg 11319   / cdiv 11745  cn 12086  2c2 12141  0cn0 12346  (,)cioo 13192  (,]cioc 13193  [,)cico 13194  Σcsu 15504  sincsin 15880  cosccos 15881  πcpi 15883  cnccncf 24152  citg 24895   lim climc 25139   D cdv 25140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-inf2 9510  ax-cc 10304  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062  ax-addf 11063  ax-mulf 11064
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-symdif 4200  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-disj 5069  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-ofr 7608  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-2o 8380  df-oadd 8383  df-omul 8384  df-er 8581  df-map 8700  df-pm 8701  df-ixp 8769  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-fi 9280  df-sup 9311  df-inf 9312  df-oi 9379  df-dju 9770  df-card 9808  df-acn 9811  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-7 12154  df-8 12155  df-9 12156  df-n0 12347  df-xnn0 12419  df-z 12433  df-dec 12551  df-uz 12696  df-q 12802  df-rp 12844  df-xneg 12961  df-xadd 12962  df-xmul 12963  df-ioo 13196  df-ioc 13197  df-ico 13198  df-icc 13199  df-fz 13353  df-fzo 13496  df-fl 13625  df-mod 13703  df-seq 13835  df-exp 13896  df-fac 14101  df-bc 14130  df-hash 14158  df-shft 14885  df-cj 14917  df-re 14918  df-im 14919  df-sqrt 15053  df-abs 15054  df-limsup 15287  df-clim 15304  df-rlim 15305  df-sum 15505  df-ef 15884  df-sin 15886  df-cos 15887  df-pi 15889  df-struct 16953  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-mulr 17081  df-starv 17082  df-sca 17083  df-vsca 17084  df-ip 17085  df-tset 17086  df-ple 17087  df-ds 17089  df-unif 17090  df-hom 17091  df-cco 17092  df-rest 17238  df-topn 17239  df-0g 17257  df-gsum 17258  df-topgen 17259  df-pt 17260  df-prds 17263  df-xrs 17318  df-qtop 17323  df-imas 17324  df-xps 17326  df-mre 17400  df-mrc 17401  df-acs 17403  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-submnd 18536  df-mulg 18805  df-cntz 19027  df-cmn 19491  df-psmet 20702  df-xmet 20703  df-met 20704  df-bl 20705  df-mopn 20706  df-fbas 20707  df-fg 20708  df-cnfld 20711  df-top 22156  df-topon 22173  df-topsp 22195  df-bases 22209  df-cld 22283  df-ntr 22284  df-cls 22285  df-nei 22362  df-lp 22400  df-perf 22401  df-cn 22491  df-cnp 22492  df-t1 22578  df-haus 22579  df-cmp 22651  df-tx 22826  df-hmeo 23019  df-fil 23110  df-fm 23202  df-flim 23203  df-flf 23204  df-xms 23586  df-ms 23587  df-tms 23588  df-cncf 24154  df-ovol 24741  df-vol 24742  df-mbf 24896  df-itg1 24897  df-itg2 24898  df-ibl 24899  df-itg 24900  df-0p 24947  df-ditg 25124  df-limc 25143  df-dv 25144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator