| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierclimd | Structured version Visualization version GIF version | ||
| Description: Fourier series convergence, for piecewise smooth functions. See fourierd 46213 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierclimd.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| fourierclimd.t | ⊢ 𝑇 = (2 · π) |
| fourierclimd.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| fourierclimd.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
| fourierclimd.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
| fourierclimd.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
| fourierclimd.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
| fourierclimd.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
| fourierclimd.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierclimd.l | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
| fourierclimd.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
| fourierclimd.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourierclimd.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
| fourierclimd.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
| Ref | Expression |
|---|---|
| fourierclimd | ⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierclimd.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 2 | fourierclimd.t | . . 3 ⊢ 𝑇 = (2 · π) | |
| 3 | fourierclimd.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
| 4 | fourierclimd.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
| 5 | fourierclimd.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
| 6 | fourierclimd.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
| 7 | fourierclimd.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
| 8 | fourierclimd.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
| 9 | fourierclimd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 10 | fourierclimd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) | |
| 11 | fourierclimd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) | |
| 12 | fourierclimd.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 13 | fourierclimd.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 14 | fourierclimd.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) | |
| 15 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) | |
| 16 | nfmpt1 5191 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 17 | 12, 16 | nfcxfr 2889 | . . . . . . . 8 ⊢ Ⅎ𝑛𝐴 |
| 18 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑛𝑘 | |
| 19 | 17, 18 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑛(𝐴‘𝑘) |
| 20 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑛 · | |
| 21 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑛(cos‘(𝑘 · 𝑋)) | |
| 22 | 19, 20, 21 | nfov 7379 | . . . . . 6 ⊢ Ⅎ𝑛((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) |
| 23 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛 + | |
| 24 | nfmpt1 5191 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
| 25 | 13, 24 | nfcxfr 2889 | . . . . . . . 8 ⊢ Ⅎ𝑛𝐵 |
| 26 | 25, 18 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑛(𝐵‘𝑘) |
| 27 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑛(sin‘(𝑘 · 𝑋)) | |
| 28 | 26, 20, 27 | nfov 7379 | . . . . . 6 ⊢ Ⅎ𝑛((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))) |
| 29 | 22, 23, 28 | nfov 7379 | . . . . 5 ⊢ Ⅎ𝑛(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
| 30 | fveq2 6822 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) | |
| 31 | oveq1 7356 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋)) | |
| 32 | 31 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋))) |
| 33 | 30, 32 | oveq12d 7367 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋)))) |
| 34 | fveq2 6822 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) | |
| 35 | 31 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋))) |
| 36 | 34, 35 | oveq12d 7367 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
| 37 | 33, 36 | oveq12d 7367 | . . . . 5 ⊢ (𝑛 = 𝑘 → (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
| 38 | 15, 29, 37 | cbvmpt 5194 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
| 39 | 14, 38 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 39 | fourierdlem115 46212 | . 2 ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) |
| 41 | 40 | simpld 494 | 1 ⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ∅c0 4284 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ↾ cres 5621 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 +∞cpnf 11146 -∞cmnf 11147 − cmin 11347 -cneg 11348 / cdiv 11777 ℕcn 12128 2c2 12183 ℕ0cn0 12384 (,)cioo 13248 (,]cioc 13249 [,)cico 13250 seqcseq 13908 ⇝ cli 15391 Σcsu 15593 sincsin 15970 cosccos 15971 πcpi 15973 –cn→ccncf 24767 ∫citg 25517 limℂ climc 25761 D cdv 25762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-symdif 4204 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-t1 23199 df-haus 23200 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-ovol 25363 df-vol 25364 df-mbf 25518 df-itg1 25519 df-itg2 25520 df-ibl 25521 df-itg 25522 df-0p 25569 df-ditg 25746 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: fourierclim 46215 |
| Copyright terms: Public domain | W3C validator |