Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierclimd | Structured version Visualization version GIF version |
Description: Fourier series convergence, for piecewise smooth functions. See fourierd 43744 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierclimd.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fourierclimd.t | ⊢ 𝑇 = (2 · π) |
fourierclimd.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fourierclimd.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fourierclimd.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
fourierclimd.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
fourierclimd.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fourierclimd.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fourierclimd.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierclimd.l | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
fourierclimd.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
fourierclimd.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fourierclimd.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
fourierclimd.s | ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
Ref | Expression |
---|---|
fourierclimd | ⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierclimd.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fourierclimd.t | . . 3 ⊢ 𝑇 = (2 · π) | |
3 | fourierclimd.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fourierclimd.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | fourierclimd.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
6 | fourierclimd.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
7 | fourierclimd.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
8 | fourierclimd.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
9 | fourierclimd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
10 | fourierclimd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) | |
11 | fourierclimd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) | |
12 | fourierclimd.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
13 | fourierclimd.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
14 | fourierclimd.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) | |
15 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑘(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) | |
16 | nfmpt1 5181 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
17 | 12, 16 | nfcxfr 2905 | . . . . . . . 8 ⊢ Ⅎ𝑛𝐴 |
18 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑛𝑘 | |
19 | 17, 18 | nffv 6776 | . . . . . . 7 ⊢ Ⅎ𝑛(𝐴‘𝑘) |
20 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑛 · | |
21 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑛(cos‘(𝑘 · 𝑋)) | |
22 | 19, 20, 21 | nfov 7297 | . . . . . 6 ⊢ Ⅎ𝑛((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) |
23 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑛 + | |
24 | nfmpt1 5181 | . . . . . . . . 9 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
25 | 13, 24 | nfcxfr 2905 | . . . . . . . 8 ⊢ Ⅎ𝑛𝐵 |
26 | 25, 18 | nffv 6776 | . . . . . . 7 ⊢ Ⅎ𝑛(𝐵‘𝑘) |
27 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑛(sin‘(𝑘 · 𝑋)) | |
28 | 26, 20, 27 | nfov 7297 | . . . . . 6 ⊢ Ⅎ𝑛((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))) |
29 | 22, 23, 28 | nfov 7297 | . . . . 5 ⊢ Ⅎ𝑛(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
30 | fveq2 6766 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) | |
31 | oveq1 7274 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋)) | |
32 | 31 | fveq2d 6770 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋))) |
33 | 30, 32 | oveq12d 7285 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋)))) |
34 | fveq2 6766 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) | |
35 | 31 | fveq2d 6770 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋))) |
36 | 34, 35 | oveq12d 7285 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
37 | 33, 36 | oveq12d 7285 | . . . . 5 ⊢ (𝑛 = 𝑘 → (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
38 | 15, 29, 37 | cbvmpt 5184 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
39 | 14, 38 | eqtri 2766 | . . 3 ⊢ 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 39 | fourierdlem115 43743 | . 2 ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) |
41 | 40 | simpld 495 | 1 ⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3883 ∅c0 4256 class class class wbr 5073 ↦ cmpt 5156 dom cdm 5584 ↾ cres 5586 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 ℂcc 10879 ℝcr 10880 0cc0 10881 1c1 10882 + caddc 10884 · cmul 10886 +∞cpnf 11016 -∞cmnf 11017 − cmin 11215 -cneg 11216 / cdiv 11642 ℕcn 11983 2c2 12038 ℕ0cn0 12243 (,)cioo 13089 (,]cioc 13090 [,)cico 13091 seqcseq 13731 ⇝ cli 15203 Σcsu 15407 sincsin 15783 cosccos 15784 πcpi 15786 –cn→ccncf 24049 ∫citg 24792 limℂ climc 25036 D cdv 25037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cc 10201 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-symdif 4176 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-disj 5039 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-ofr 7524 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-oadd 8288 df-omul 8289 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-fi 9157 df-sup 9188 df-inf 9189 df-oi 9256 df-dju 9669 df-card 9707 df-acn 9710 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-xnn0 12316 df-z 12330 df-dec 12448 df-uz 12593 df-q 12699 df-rp 12741 df-xneg 12858 df-xadd 12859 df-xmul 12860 df-ioo 13093 df-ioc 13094 df-ico 13095 df-icc 13096 df-fz 13250 df-fzo 13393 df-fl 13522 df-mod 13600 df-seq 13732 df-exp 13793 df-fac 13998 df-bc 14027 df-hash 14055 df-shft 14788 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-limsup 15190 df-clim 15207 df-rlim 15208 df-sum 15408 df-ef 15787 df-sin 15789 df-cos 15790 df-pi 15792 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-hom 16996 df-cco 16997 df-rest 17143 df-topn 17144 df-0g 17162 df-gsum 17163 df-topgen 17164 df-pt 17165 df-prds 17168 df-xrs 17223 df-qtop 17228 df-imas 17229 df-xps 17231 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-submnd 18441 df-mulg 18711 df-cntz 18933 df-cmn 19398 df-psmet 20599 df-xmet 20600 df-met 20601 df-bl 20602 df-mopn 20603 df-fbas 20604 df-fg 20605 df-cnfld 20608 df-top 22053 df-topon 22070 df-topsp 22092 df-bases 22106 df-cld 22180 df-ntr 22181 df-cls 22182 df-nei 22259 df-lp 22297 df-perf 22298 df-cn 22388 df-cnp 22389 df-t1 22475 df-haus 22476 df-cmp 22548 df-tx 22723 df-hmeo 22916 df-fil 23007 df-fm 23099 df-flim 23100 df-flf 23101 df-xms 23483 df-ms 23484 df-tms 23485 df-cncf 24051 df-ovol 24638 df-vol 24639 df-mbf 24793 df-itg1 24794 df-itg2 24795 df-ibl 24796 df-itg 24797 df-0p 24844 df-ditg 25021 df-limc 25040 df-dv 25041 |
This theorem is referenced by: fourierclim 43746 |
Copyright terms: Public domain | W3C validator |