| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logled | Structured version Visualization version GIF version | ||
| Description: Natural logarithm preserves ≤. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| relogcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| relogmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| logled | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | relogmuld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | logleb 26545 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 ≤ cle 11153 ℝ+crp 12896 logclog 26496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13255 df-ioc 13256 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-fac 14187 df-bc 14216 df-hash 14244 df-shft 14980 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-limsup 15384 df-clim 15401 df-rlim 15402 df-sum 15600 df-ef 15980 df-sin 15982 df-cos 15983 df-pi 15985 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-rest 17332 df-topn 17333 df-0g 17351 df-gsum 17352 df-topgen 17353 df-pt 17354 df-prds 17357 df-xrs 17412 df-qtop 17417 df-imas 17418 df-xps 17420 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-mulg 18987 df-cntz 19235 df-cmn 19700 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 df-log 26498 |
| This theorem is referenced by: logge0b 26573 logle1b 26575 logdiflbnd 26938 harmoniclbnd 26952 harmonicubnd 26953 harmonicbnd4 26954 lgamgulmlem5 26976 lgambdd 26980 fsumvma2 27158 chpchtsum 27163 chpub 27164 logfacubnd 27165 logexprlim 27169 vmadivsumb 27427 rplogsumlem2 27429 dchrvmasumlem2 27442 mulog2sumlem2 27479 log2sumbnd 27488 selbergb 27493 selberg2lem 27494 selberg2b 27496 chpdifbndlem1 27497 selberg3lem2 27502 pntrlog2bndlem4 27524 pntrlog2bndlem6 27527 pntrlog2bnd 27528 pntpbnd1a 27529 pntpbnd2 27531 pntlemh 27543 pntlemr 27546 pntlemk 27550 xrge0iifcnv 33953 aks4d1p6 42180 lighneallem2 47711 |
| Copyright terms: Public domain | W3C validator |