| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunlem2 | Structured version Visualization version GIF version | ||
| Description: Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunlem2 | ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextrspunfld.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 2 | 1 | flddrngd 20710 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 3 | 2 | drngringd 20706 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 4 | eqidd 2735 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 5 | fldextrspunfld.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 7 | 6 | sdrgss 20763 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 9 | fldextrspunfld.6 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 10 | 6 | sdrgss 20763 | . . . . 5 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 12 | 8, 11 | unssd 4172 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 13 | fldextrspunfld.n | . . . 4 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 15 | fldextrspunfld.c | . . . 4 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 17 | 6, 2, 12 | fldgensdrg 33261 | . . . 4 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿)) |
| 18 | sdrgsubrg 20761 | . . . 4 ⊢ ((𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿) → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) |
| 20 | 6, 2, 12 | fldgenssid 33260 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 21 | 3, 4, 12, 14, 16, 19, 20 | rgspnmin 20584 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 22 | 3, 4, 12, 14, 16 | rgspncl 20582 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 23 | fldextrspunfld.e | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 24 | fldextrspunfld.k | . . . . . . 7 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 25 | fldextrspunfld.i | . . . . . . 7 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 26 | fldextrspunfld.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 27 | fldextrspunfld.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 28 | fldextrspunfld.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 29 | fldextrspunfld.7 | . . . . . . 7 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 30 | 24, 25, 26, 1, 27, 28, 5, 9, 29, 13, 15, 23 | fldextrspunfld 33668 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Field) |
| 31 | 30 | flddrngd 20710 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 32 | 23, 31 | eqeltrrid 2838 | . . . 4 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ DivRing) |
| 33 | issdrg 20758 | . . . 4 ⊢ (𝐶 ∈ (SubDRing‘𝐿) ↔ (𝐿 ∈ DivRing ∧ 𝐶 ∈ (SubRing‘𝐿) ∧ (𝐿 ↾s 𝐶) ∈ DivRing)) | |
| 34 | 2, 22, 32, 33 | syl3anbrc 1343 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubDRing‘𝐿)) |
| 35 | 3, 4, 12, 14, 16 | rgspnssid 20583 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 36 | 6, 2, 34, 35 | fldgenssp 33265 | . 2 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ 𝐶) |
| 37 | 21, 36 | eqssd 3981 | 1 ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 ℕ0cn0 12509 Basecbs 17230 ↾s cress 17253 SubRingcsubrg 20538 RingSpancrgspn 20579 DivRingcdr 20698 Fieldcfield 20699 SubDRingcsdrg 20756 fldGen cfldgen 33257 [:]cextdg 33632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-rpss 7725 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-inf 9465 df-oi 9532 df-r1 9786 df-rank 9787 df-dju 9923 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-xadd 13137 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14353 df-word 14536 df-lsw 14584 df-concat 14592 df-s1 14617 df-substr 14662 df-pfx 14692 df-s2 14870 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ocomp 17295 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-0g 17458 df-gsum 17459 df-prds 17464 df-pws 17466 df-mre 17601 df-mrc 17602 df-mri 17603 df-acs 17604 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cntr 19306 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-cring 20202 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-nzr 20482 df-subrng 20515 df-subrg 20539 df-rgspn 20580 df-rlreg 20663 df-domn 20664 df-idom 20665 df-drng 20700 df-field 20701 df-sdrg 20757 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lmhm 20990 df-lmim 20991 df-lbs 21043 df-lvec 21071 df-sra 21141 df-rgmod 21142 df-cnfld 21328 df-zring 21421 df-dsmm 21707 df-frlm 21722 df-uvc 21758 df-lindf 21781 df-linds 21782 df-assa 21828 df-ind 32781 df-fldgen 33258 df-dim 33590 df-fldext 33633 df-extdg 33634 |
| This theorem is referenced by: fldextrspundgle 33670 fldextrspundgdvdslem 33672 fldextrspundgdvds 33673 |
| Copyright terms: Public domain | W3C validator |