| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunlem2 | Structured version Visualization version GIF version | ||
| Description: Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunlem2 | ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextrspunfld.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 2 | 1 | flddrngd 20651 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 3 | 2 | drngringd 20647 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 4 | eqidd 2732 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 5 | fldextrspunfld.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 7 | 6 | sdrgss 20703 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 9 | fldextrspunfld.6 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 10 | 6 | sdrgss 20703 | . . . . 5 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 12 | 8, 11 | unssd 4137 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 13 | fldextrspunfld.n | . . . 4 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 15 | fldextrspunfld.c | . . . 4 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 17 | 6, 2, 12 | fldgensdrg 33272 | . . . 4 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿)) |
| 18 | sdrgsubrg 20701 | . . . 4 ⊢ ((𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿) → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) |
| 20 | 6, 2, 12 | fldgenssid 33271 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 21 | 3, 4, 12, 14, 16, 19, 20 | rgspnmin 20525 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 22 | 3, 4, 12, 14, 16 | rgspncl 20523 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 23 | fldextrspunfld.e | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 24 | fldextrspunfld.k | . . . . . . 7 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 25 | fldextrspunfld.i | . . . . . . 7 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 26 | fldextrspunfld.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 27 | fldextrspunfld.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 28 | fldextrspunfld.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 29 | fldextrspunfld.7 | . . . . . . 7 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 30 | 24, 25, 26, 1, 27, 28, 5, 9, 29, 13, 15, 23 | fldextrspunfld 33681 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Field) |
| 31 | 30 | flddrngd 20651 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 32 | 23, 31 | eqeltrrid 2836 | . . . 4 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ DivRing) |
| 33 | issdrg 20698 | . . . 4 ⊢ (𝐶 ∈ (SubDRing‘𝐿) ↔ (𝐿 ∈ DivRing ∧ 𝐶 ∈ (SubRing‘𝐿) ∧ (𝐿 ↾s 𝐶) ∈ DivRing)) | |
| 34 | 2, 22, 32, 33 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubDRing‘𝐿)) |
| 35 | 3, 4, 12, 14, 16 | rgspnssid 20524 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 36 | 6, 2, 34, 35 | fldgenssp 33276 | . 2 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ 𝐶) |
| 37 | 21, 36 | eqssd 3947 | 1 ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 ℕ0cn0 12376 Basecbs 17115 ↾s cress 17136 SubRingcsubrg 20479 RingSpancrgspn 20520 DivRingcdr 20639 Fieldcfield 20640 SubDRingcsdrg 20696 fldGen cfldgen 33268 [:]cextdg 33645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-inf 9322 df-oi 9391 df-r1 9652 df-rank 9653 df-dju 9789 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-xadd 13007 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-s2 14750 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ocomp 17177 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-mri 17485 df-acs 17486 df-proset 18195 df-drs 18196 df-poset 18214 df-ipo 18429 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cntr 19225 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-nzr 20423 df-subrng 20456 df-subrg 20480 df-rgspn 20521 df-rlreg 20604 df-domn 20605 df-idom 20606 df-drng 20641 df-field 20642 df-sdrg 20697 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lmhm 20951 df-lmim 20952 df-lbs 21004 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-cnfld 21287 df-zring 21379 df-dsmm 21664 df-frlm 21679 df-uvc 21715 df-lindf 21738 df-linds 21739 df-assa 21785 df-ind 32824 df-fldgen 33269 df-dim 33604 df-fldext 33646 df-extdg 33647 |
| This theorem is referenced by: fldextrspundgle 33683 fldextrspundgdvdslem 33685 fldextrspundgdvds 33686 |
| Copyright terms: Public domain | W3C validator |