![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunlem2 | Structured version Visualization version GIF version |
Description: Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
Ref | Expression |
---|---|
fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
Ref | Expression |
---|---|
fldextrspunlem2 | ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldextrspunfld.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
2 | 1 | flddrngd 20733 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
3 | 2 | drngringd 20729 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Ring) |
4 | eqidd 2737 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
5 | fldextrspunfld.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
6 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
7 | 6 | sdrgss 20786 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
9 | fldextrspunfld.6 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
10 | 6 | sdrgss 20786 | . . . . 5 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
12 | 8, 11 | unssd 4191 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
13 | fldextrspunfld.n | . . . 4 ⊢ 𝑁 = (RingSpan‘𝐿) | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
15 | fldextrspunfld.c | . . . 4 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
17 | 6, 2, 12 | fldgensdrg 33303 | . . . 4 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿)) |
18 | sdrgsubrg 20784 | . . . 4 ⊢ ((𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿) → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) |
20 | 6, 2, 12 | fldgenssid 33302 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
21 | 3, 4, 12, 14, 16, 19, 20 | rgspnmin 20607 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
22 | 3, 4, 12, 14, 16 | rgspncl 20605 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
23 | fldextrspunfld.e | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
24 | fldextrspunfld.k | . . . . . . 7 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
25 | fldextrspunfld.i | . . . . . . 7 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
26 | fldextrspunfld.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
27 | fldextrspunfld.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
28 | fldextrspunfld.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
29 | fldextrspunfld.7 | . . . . . . 7 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
30 | 24, 25, 26, 1, 27, 28, 5, 9, 29, 13, 15, 23 | fldextrspunfld 33711 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Field) |
31 | 30 | flddrngd 20733 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
32 | 23, 31 | eqeltrrid 2845 | . . . 4 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ DivRing) |
33 | issdrg 20781 | . . . 4 ⊢ (𝐶 ∈ (SubDRing‘𝐿) ↔ (𝐿 ∈ DivRing ∧ 𝐶 ∈ (SubRing‘𝐿) ∧ (𝐿 ↾s 𝐶) ∈ DivRing)) | |
34 | 2, 22, 32, 33 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubDRing‘𝐿)) |
35 | 3, 4, 12, 14, 16 | rgspnssid 20606 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
36 | 6, 2, 34, 35 | fldgenssp 33307 | . 2 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ 𝐶) |
37 | 21, 36 | eqssd 4000 | 1 ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cun 3948 ⊆ wss 3950 ‘cfv 6559 (class class class)co 7429 ℕ0cn0 12522 Basecbs 17243 ↾s cress 17270 SubRingcsubrg 20561 RingSpancrgspn 20602 DivRingcdr 20721 Fieldcfield 20722 SubDRingcsdrg 20779 fldGen cfldgen 33299 [:]cextdg 33679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-reg 9628 ax-inf2 9677 ax-ac2 10499 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 ax-addf 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-of 7694 df-rpss 7739 df-om 7884 df-1st 8010 df-2nd 8011 df-supp 8182 df-tpos 8247 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-oadd 8506 df-er 8741 df-map 8864 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-fsupp 9398 df-sup 9478 df-inf 9479 df-oi 9546 df-r1 9800 df-rank 9801 df-dju 9937 df-card 9975 df-acn 9978 df-ac 10152 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-xnn0 12596 df-z 12610 df-dec 12730 df-uz 12875 df-rp 13031 df-xadd 13151 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-word 14549 df-lsw 14597 df-concat 14605 df-s1 14630 df-substr 14675 df-pfx 14705 df-s2 14883 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-starv 17308 df-sca 17309 df-vsca 17310 df-ip 17311 df-tset 17312 df-ple 17313 df-ocomp 17314 df-ds 17315 df-unif 17316 df-hom 17317 df-cco 17318 df-0g 17482 df-gsum 17483 df-prds 17488 df-pws 17490 df-mre 17625 df-mrc 17626 df-mri 17627 df-acs 17628 df-proset 18336 df-drs 18337 df-poset 18355 df-ipo 18569 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-mhm 18792 df-submnd 18793 df-grp 18950 df-minusg 18951 df-sbg 18952 df-mulg 19082 df-subg 19137 df-ghm 19227 df-cntz 19331 df-cntr 19332 df-lsm 19650 df-cmn 19796 df-abl 19797 df-mgp 20134 df-rng 20146 df-ur 20175 df-ring 20228 df-cring 20229 df-oppr 20326 df-dvdsr 20349 df-unit 20350 df-invr 20380 df-dvr 20393 df-nzr 20505 df-subrng 20538 df-subrg 20562 df-rgspn 20603 df-rlreg 20686 df-domn 20687 df-idom 20688 df-drng 20723 df-field 20724 df-sdrg 20780 df-lmod 20852 df-lss 20922 df-lsp 20962 df-lmhm 21013 df-lmim 21014 df-lbs 21066 df-lvec 21094 df-sra 21164 df-rgmod 21165 df-cnfld 21357 df-zring 21450 df-dsmm 21744 df-frlm 21759 df-uvc 21795 df-lindf 21818 df-linds 21819 df-assa 21865 df-ind 32823 df-fldgen 33300 df-dim 33637 df-fldext 33680 df-extdg 33681 |
This theorem is referenced by: fldextrspundgle 33713 |
Copyright terms: Public domain | W3C validator |