Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlem2 Structured version   Visualization version   GIF version

Theorem fldextrspunlem2 33645
Description: Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunlem2 (𝜑𝐶 = (𝐿 fldGen (𝐺𝐻)))

Proof of Theorem fldextrspunlem2
StepHypRef Expression
1 fldextrspunfld.2 . . . . 5 (𝜑𝐿 ∈ Field)
21flddrngd 20626 . . . 4 (𝜑𝐿 ∈ DivRing)
32drngringd 20622 . . 3 (𝜑𝐿 ∈ Ring)
4 eqidd 2730 . . 3 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
5 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
6 eqid 2729 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
76sdrgss 20678 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
85, 7syl 17 . . . 4 (𝜑𝐺 ⊆ (Base‘𝐿))
9 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
106sdrgss 20678 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
119, 10syl 17 . . . 4 (𝜑𝐻 ⊆ (Base‘𝐿))
128, 11unssd 4151 . . 3 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
13 fldextrspunfld.n . . . 4 𝑁 = (RingSpan‘𝐿)
1413a1i 11 . . 3 (𝜑𝑁 = (RingSpan‘𝐿))
15 fldextrspunfld.c . . . 4 𝐶 = (𝑁‘(𝐺𝐻))
1615a1i 11 . . 3 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
176, 2, 12fldgensdrg 33237 . . . 4 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿))
18 sdrgsubrg 20676 . . . 4 ((𝐿 fldGen (𝐺𝐻)) ∈ (SubDRing‘𝐿) → (𝐿 fldGen (𝐺𝐻)) ∈ (SubRing‘𝐿))
1917, 18syl 17 . . 3 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ∈ (SubRing‘𝐿))
206, 2, 12fldgenssid 33236 . . 3 (𝜑 → (𝐺𝐻) ⊆ (𝐿 fldGen (𝐺𝐻)))
213, 4, 12, 14, 16, 19, 20rgspnmin 20500 . 2 (𝜑𝐶 ⊆ (𝐿 fldGen (𝐺𝐻)))
223, 4, 12, 14, 16rgspncl 20498 . . . 4 (𝜑𝐶 ∈ (SubRing‘𝐿))
23 fldextrspunfld.e . . . . 5 𝐸 = (𝐿s 𝐶)
24 fldextrspunfld.k . . . . . . 7 𝐾 = (𝐿s 𝐹)
25 fldextrspunfld.i . . . . . . 7 𝐼 = (𝐿s 𝐺)
26 fldextrspunfld.j . . . . . . 7 𝐽 = (𝐿s 𝐻)
27 fldextrspunfld.3 . . . . . . 7 (𝜑𝐹 ∈ (SubDRing‘𝐼))
28 fldextrspunfld.4 . . . . . . 7 (𝜑𝐹 ∈ (SubDRing‘𝐽))
29 fldextrspunfld.7 . . . . . . 7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
3024, 25, 26, 1, 27, 28, 5, 9, 29, 13, 15, 23fldextrspunfld 33644 . . . . . 6 (𝜑𝐸 ∈ Field)
3130flddrngd 20626 . . . . 5 (𝜑𝐸 ∈ DivRing)
3223, 31eqeltrrid 2833 . . . 4 (𝜑 → (𝐿s 𝐶) ∈ DivRing)
33 issdrg 20673 . . . 4 (𝐶 ∈ (SubDRing‘𝐿) ↔ (𝐿 ∈ DivRing ∧ 𝐶 ∈ (SubRing‘𝐿) ∧ (𝐿s 𝐶) ∈ DivRing))
342, 22, 32, 33syl3anbrc 1344 . . 3 (𝜑𝐶 ∈ (SubDRing‘𝐿))
353, 4, 12, 14, 16rgspnssid 20499 . . 3 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
366, 2, 34, 35fldgenssp 33241 . 2 (𝜑 → (𝐿 fldGen (𝐺𝐻)) ⊆ 𝐶)
3721, 36eqssd 3961 1 (𝜑𝐶 = (𝐿 fldGen (𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3909  wss 3911  cfv 6499  (class class class)co 7369  0cn0 12418  Basecbs 17155  s cress 17176  SubRingcsubrg 20454  RingSpancrgspn 20495  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671   fldGen cfldgen 33233  [:]cextdg 33609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-xadd 13049  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-s2 14790  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18231  df-drs 18232  df-poset 18250  df-ipo 18463  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cntr 19226  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rgspn 20496  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lmhm 20905  df-lmim 20906  df-lbs 20958  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-zring 21333  df-dsmm 21617  df-frlm 21632  df-uvc 21668  df-lindf 21691  df-linds 21692  df-assa 21738  df-ind 32747  df-fldgen 33234  df-dim 33568  df-fldext 33610  df-extdg 33611
This theorem is referenced by:  fldextrspundgle  33646  fldextrspundgdvdslem  33648  fldextrspundgdvds  33649
  Copyright terms: Public domain W3C validator