| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunlem2 | Structured version Visualization version GIF version | ||
| Description: Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunlem2 | ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextrspunfld.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 2 | 1 | flddrngd 20626 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 3 | 2 | drngringd 20622 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 4 | eqidd 2730 | . . 3 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 5 | fldextrspunfld.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 7 | 6 | sdrgss 20678 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 9 | fldextrspunfld.6 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 10 | 6 | sdrgss 20678 | . . . . 5 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 12 | 8, 11 | unssd 4151 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 13 | fldextrspunfld.n | . . . 4 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 15 | fldextrspunfld.c | . . . 4 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 17 | 6, 2, 12 | fldgensdrg 33237 | . . . 4 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿)) |
| 18 | sdrgsubrg 20676 | . . . 4 ⊢ ((𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubDRing‘𝐿) → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ∈ (SubRing‘𝐿)) |
| 20 | 6, 2, 12 | fldgenssid 33236 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 21 | 3, 4, 12, 14, 16, 19, 20 | rgspnmin 20500 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 22 | 3, 4, 12, 14, 16 | rgspncl 20498 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 23 | fldextrspunfld.e | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 24 | fldextrspunfld.k | . . . . . . 7 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 25 | fldextrspunfld.i | . . . . . . 7 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 26 | fldextrspunfld.j | . . . . . . 7 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 27 | fldextrspunfld.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 28 | fldextrspunfld.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 29 | fldextrspunfld.7 | . . . . . . 7 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 30 | 24, 25, 26, 1, 27, 28, 5, 9, 29, 13, 15, 23 | fldextrspunfld 33644 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Field) |
| 31 | 30 | flddrngd 20626 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 32 | 23, 31 | eqeltrrid 2833 | . . . 4 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ DivRing) |
| 33 | issdrg 20673 | . . . 4 ⊢ (𝐶 ∈ (SubDRing‘𝐿) ↔ (𝐿 ∈ DivRing ∧ 𝐶 ∈ (SubRing‘𝐿) ∧ (𝐿 ↾s 𝐶) ∈ DivRing)) | |
| 34 | 2, 22, 32, 33 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubDRing‘𝐿)) |
| 35 | 3, 4, 12, 14, 16 | rgspnssid 20499 | . . 3 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 36 | 6, 2, 34, 35 | fldgenssp 33241 | . 2 ⊢ (𝜑 → (𝐿 fldGen (𝐺 ∪ 𝐻)) ⊆ 𝐶) |
| 37 | 21, 36 | eqssd 3961 | 1 ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 SubRingcsubrg 20454 RingSpancrgspn 20495 DivRingcdr 20614 Fieldcfield 20615 SubDRingcsdrg 20671 fldGen cfldgen 33233 [:]cextdg 33609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-rpss 7679 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-r1 9693 df-rank 9694 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-xadd 13049 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-s2 14790 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-mri 17525 df-acs 17526 df-proset 18231 df-drs 18232 df-poset 18250 df-ipo 18463 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cntr 19226 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rgspn 20496 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-sdrg 20672 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lmhm 20905 df-lmim 20906 df-lbs 20958 df-lvec 20986 df-sra 21056 df-rgmod 21057 df-cnfld 21241 df-zring 21333 df-dsmm 21617 df-frlm 21632 df-uvc 21668 df-lindf 21691 df-linds 21692 df-assa 21738 df-ind 32747 df-fldgen 33234 df-dim 33568 df-fldext 33610 df-extdg 33611 |
| This theorem is referenced by: fldextrspundgle 33646 fldextrspundgdvdslem 33648 fldextrspundgdvds 33649 |
| Copyright terms: Public domain | W3C validator |