![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierd | Structured version Visualization version GIF version |
Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 45021. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 45022 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 45027. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierd.f | β’ (π β πΉ:ββΆβ) |
fourierd.t | β’ π = (2 Β· Ο) |
fourierd.per | β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) |
fourierd.g | β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) |
fourierd.dmdv | β’ (π β ((-Ο(,)Ο) β dom πΊ) β Fin) |
fourierd.dvcn | β’ (π β πΊ β (dom πΊβcnββ)) |
fourierd.rlim | β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β ) |
fourierd.llim | β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β ) |
fourierd.x | β’ (π β π β β) |
fourierd.l | β’ (π β πΏ β ((πΉ βΎ (-β(,)π)) limβ π)) |
fourierd.r | β’ (π β π β ((πΉ βΎ (π(,)+β)) limβ π)) |
fourierd.a | β’ π΄ = (π β β0 β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) |
fourierd.b | β’ π΅ = (π β β β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) |
Ref | Expression |
---|---|
fourierd | β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π ) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierd.f | . . 3 β’ (π β πΉ:ββΆβ) | |
2 | fourierd.t | . . 3 β’ π = (2 Β· Ο) | |
3 | fourierd.per | . . 3 β’ ((π β§ π₯ β β) β (πΉβ(π₯ + π)) = (πΉβπ₯)) | |
4 | fourierd.g | . . 3 β’ πΊ = ((β D πΉ) βΎ (-Ο(,)Ο)) | |
5 | fourierd.dmdv | . . 3 β’ (π β ((-Ο(,)Ο) β dom πΊ) β Fin) | |
6 | fourierd.dvcn | . . 3 β’ (π β πΊ β (dom πΊβcnββ)) | |
7 | fourierd.rlim | . . 3 β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΊ)) β ((πΊ βΎ (π₯(,)+β)) limβ π₯) β β ) | |
8 | fourierd.llim | . . 3 β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΊ)) β ((πΊ βΎ (-β(,)π₯)) limβ π₯) β β ) | |
9 | fourierd.x | . . 3 β’ (π β π β β) | |
10 | fourierd.l | . . 3 β’ (π β πΏ β ((πΉ βΎ (-β(,)π)) limβ π)) | |
11 | fourierd.r | . . 3 β’ (π β π β ((πΉ βΎ (π(,)+β)) limβ π)) | |
12 | fourierd.a | . . 3 β’ π΄ = (π β β0 β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) | |
13 | fourierd.b | . . 3 β’ π΅ = (π β β β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) | |
14 | nfcv 2903 | . . . 4 β’ β²π(((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) | |
15 | nfmpt1 5256 | . . . . . . . 8 β’ β²π(π β β0 β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) | |
16 | 12, 15 | nfcxfr 2901 | . . . . . . 7 β’ β²ππ΄ |
17 | nfcv 2903 | . . . . . . 7 β’ β²ππ | |
18 | 16, 17 | nffv 6901 | . . . . . 6 β’ β²π(π΄βπ) |
19 | nfcv 2903 | . . . . . 6 β’ β²π Β· | |
20 | nfcv 2903 | . . . . . 6 β’ β²π(cosβ(π Β· π)) | |
21 | 18, 19, 20 | nfov 7441 | . . . . 5 β’ β²π((π΄βπ) Β· (cosβ(π Β· π))) |
22 | nfcv 2903 | . . . . 5 β’ β²π + | |
23 | nfmpt1 5256 | . . . . . . . 8 β’ β²π(π β β β¦ (β«(-Ο(,)Ο)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) | |
24 | 13, 23 | nfcxfr 2901 | . . . . . . 7 β’ β²ππ΅ |
25 | 24, 17 | nffv 6901 | . . . . . 6 β’ β²π(π΅βπ) |
26 | nfcv 2903 | . . . . . 6 β’ β²π(sinβ(π Β· π)) | |
27 | 25, 19, 26 | nfov 7441 | . . . . 5 β’ β²π((π΅βπ) Β· (sinβ(π Β· π))) |
28 | 21, 22, 27 | nfov 7441 | . . . 4 β’ β²π(((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) |
29 | fveq2 6891 | . . . . . 6 β’ (π = π β (π΄βπ) = (π΄βπ)) | |
30 | oveq1 7418 | . . . . . . 7 β’ (π = π β (π Β· π) = (π Β· π)) | |
31 | 30 | fveq2d 6895 | . . . . . 6 β’ (π = π β (cosβ(π Β· π)) = (cosβ(π Β· π))) |
32 | 29, 31 | oveq12d 7429 | . . . . 5 β’ (π = π β ((π΄βπ) Β· (cosβ(π Β· π))) = ((π΄βπ) Β· (cosβ(π Β· π)))) |
33 | fveq2 6891 | . . . . . 6 β’ (π = π β (π΅βπ) = (π΅βπ)) | |
34 | 30 | fveq2d 6895 | . . . . . 6 β’ (π = π β (sinβ(π Β· π)) = (sinβ(π Β· π))) |
35 | 33, 34 | oveq12d 7429 | . . . . 5 β’ (π = π β ((π΅βπ) Β· (sinβ(π Β· π))) = ((π΅βπ) Β· (sinβ(π Β· π)))) |
36 | 32, 35 | oveq12d 7429 | . . . 4 β’ (π = π β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))) = (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) |
37 | 14, 28, 36 | cbvmpt 5259 | . . 3 β’ (π β β β¦ (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = (π β β β¦ (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) |
38 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 37 | fourierdlem115 45016 | . 2 β’ (π β (seq1( + , (π β β β¦ (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π)))))) β (((πΏ + π ) / 2) β ((π΄β0) / 2)) β§ (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π ) / 2))) |
39 | 38 | simprd 496 | 1 β’ (π β (((π΄β0) / 2) + Ξ£π β β (((π΄βπ) Β· (cosβ(π Β· π))) + ((π΅βπ) Β· (sinβ(π Β· π))))) = ((πΏ + π ) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 β c0 4322 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7411 Fincfn 8941 βcc 11110 βcr 11111 0cc0 11112 1c1 11113 + caddc 11115 Β· cmul 11117 +βcpnf 11247 -βcmnf 11248 β cmin 11446 -cneg 11447 / cdiv 11873 βcn 12214 2c2 12269 β0cn0 12474 (,)cioo 13326 (,]cioc 13327 [,)cico 13328 seqcseq 13968 β cli 15430 Ξ£csu 15634 sincsin 16009 cosccos 16010 Οcpi 16012 βcnβccncf 24399 β«citg 25142 limβ climc 25386 D cdv 25387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-ofr 7673 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-acn 9939 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-xnn0 12547 df-z 12561 df-dec 12680 df-uz 12825 df-q 12935 df-rp 12977 df-xneg 13094 df-xadd 13095 df-xmul 13096 df-ioo 13330 df-ioc 13331 df-ico 13332 df-icc 13333 df-fz 13487 df-fzo 13630 df-fl 13759 df-mod 13837 df-seq 13969 df-exp 14030 df-fac 14236 df-bc 14265 df-hash 14293 df-shft 15016 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-limsup 15417 df-clim 15434 df-rlim 15435 df-sum 15635 df-ef 16013 df-sin 16015 df-cos 16016 df-pi 16018 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-hom 17223 df-cco 17224 df-rest 17370 df-topn 17371 df-0g 17389 df-gsum 17390 df-topgen 17391 df-pt 17392 df-prds 17395 df-xrs 17450 df-qtop 17455 df-imas 17456 df-xps 17458 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-submnd 18674 df-mulg 18953 df-cntz 19183 df-cmn 19652 df-psmet 20942 df-xmet 20943 df-met 20944 df-bl 20945 df-mopn 20946 df-fbas 20947 df-fg 20948 df-cnfld 20951 df-top 22403 df-topon 22420 df-topsp 22442 df-bases 22456 df-cld 22530 df-ntr 22531 df-cls 22532 df-nei 22609 df-lp 22647 df-perf 22648 df-cn 22738 df-cnp 22739 df-t1 22825 df-haus 22826 df-cmp 22898 df-tx 23073 df-hmeo 23266 df-fil 23357 df-fm 23449 df-flim 23450 df-flf 23451 df-xms 23833 df-ms 23834 df-tms 23835 df-cncf 24401 df-ovol 24988 df-vol 24989 df-mbf 25143 df-itg1 25144 df-itg2 25145 df-ibl 25146 df-itg 25147 df-0p 25194 df-ditg 25371 df-limc 25390 df-dv 25391 |
This theorem is referenced by: fourier 45020 fouriercnp 45021 fourier2 45022 |
Copyright terms: Public domain | W3C validator |