![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierd | Structured version Visualization version GIF version |
Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 45752. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 45753 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 45758. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierd.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fourierd.t | ⊢ 𝑇 = (2 · π) |
fourierd.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fourierd.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fourierd.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
fourierd.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
fourierd.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fourierd.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fourierd.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierd.l | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
fourierd.r | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
fourierd.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fourierd.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fourierd | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierd.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fourierd.t | . . 3 ⊢ 𝑇 = (2 · π) | |
3 | fourierd.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fourierd.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | fourierd.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
6 | fourierd.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
7 | fourierd.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
8 | fourierd.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
9 | fourierd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
10 | fourierd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) | |
11 | fourierd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) | |
12 | fourierd.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
13 | fourierd.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
14 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑘(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) | |
15 | nfmpt1 5257 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
16 | 12, 15 | nfcxfr 2889 | . . . . . . 7 ⊢ Ⅎ𝑛𝐴 |
17 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑛𝑘 | |
18 | 16, 17 | nffv 6906 | . . . . . 6 ⊢ Ⅎ𝑛(𝐴‘𝑘) |
19 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛 · | |
20 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛(cos‘(𝑘 · 𝑋)) | |
21 | 18, 19, 20 | nfov 7449 | . . . . 5 ⊢ Ⅎ𝑛((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) |
22 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑛 + | |
23 | nfmpt1 5257 | . . . . . . . 8 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
24 | 13, 23 | nfcxfr 2889 | . . . . . . 7 ⊢ Ⅎ𝑛𝐵 |
25 | 24, 17 | nffv 6906 | . . . . . 6 ⊢ Ⅎ𝑛(𝐵‘𝑘) |
26 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛(sin‘(𝑘 · 𝑋)) | |
27 | 25, 19, 26 | nfov 7449 | . . . . 5 ⊢ Ⅎ𝑛((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))) |
28 | 21, 22, 27 | nfov 7449 | . . . 4 ⊢ Ⅎ𝑛(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
29 | fveq2 6896 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) | |
30 | oveq1 7426 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋)) | |
31 | 30 | fveq2d 6900 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋))) |
32 | 29, 31 | oveq12d 7437 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋)))) |
33 | fveq2 6896 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) | |
34 | 30 | fveq2d 6900 | . . . . . 6 ⊢ (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋))) |
35 | 33, 34 | oveq12d 7437 | . . . . 5 ⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
36 | 32, 35 | oveq12d 7437 | . . . 4 ⊢ (𝑛 = 𝑘 → (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
37 | 14, 28, 36 | cbvmpt 5260 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
38 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 37 | fourierdlem115 45747 | . 2 ⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) |
39 | 38 | simprd 494 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∖ cdif 3941 ∅c0 4322 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5678 ↾ cres 5680 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 ℂcc 11138 ℝcr 11139 0cc0 11140 1c1 11141 + caddc 11143 · cmul 11145 +∞cpnf 11277 -∞cmnf 11278 − cmin 11476 -cneg 11477 / cdiv 11903 ℕcn 12245 2c2 12300 ℕ0cn0 12505 (,)cioo 13359 (,]cioc 13360 [,)cico 13361 seqcseq 14002 ⇝ cli 15464 Σcsu 15668 sincsin 16043 cosccos 16044 πcpi 16046 –cn→ccncf 24840 ∫citg 25591 limℂ climc 25835 D cdv 25836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cc 10460 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-symdif 4241 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-acn 9967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-xnn0 12578 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ioc 13364 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-shft 15050 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-limsup 15451 df-clim 15468 df-rlim 15469 df-sum 15669 df-ef 16047 df-sin 16049 df-cos 16050 df-pi 16052 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-0g 17426 df-gsum 17427 df-topgen 17428 df-pt 17429 df-prds 17432 df-xrs 17487 df-qtop 17492 df-imas 17493 df-xps 17495 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-mulg 19032 df-cntz 19280 df-cmn 19749 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lp 23084 df-perf 23085 df-cn 23175 df-cnp 23176 df-t1 23262 df-haus 23263 df-cmp 23335 df-tx 23510 df-hmeo 23703 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-xms 24270 df-ms 24271 df-tms 24272 df-cncf 24842 df-ovol 25437 df-vol 25438 df-mbf 25592 df-itg1 25593 df-itg2 25594 df-ibl 25595 df-itg 25596 df-0p 25643 df-ditg 25820 df-limc 25839 df-dv 25840 |
This theorem is referenced by: fourier 45751 fouriercnp 45752 fourier2 45753 |
Copyright terms: Public domain | W3C validator |