![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stirling | Structured version Visualization version GIF version |
Description: Stirling's approximation formula for 𝑛 factorial. The proof follows two major steps: first it is proven that 𝑆 and 𝑛 factorial are asymptotically equivalent, up to an unknown constant. Then, using Wallis' formula for π it is proven that the unknown constant is the square root of π and then the exact Stirling's formula is established. This is Metamath 100 proof #90. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
stirling.1 | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) |
Ref | Expression |
---|---|
stirling | ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) | |
2 | eqid 2736 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ (log‘((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘𝑛))) = (𝑛 ∈ ℕ ↦ (log‘((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘𝑛))) | |
3 | 1, 2 | stirlinglem14 46054 | . 2 ⊢ ∃𝑐 ∈ ℝ+ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐 |
4 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑛 𝑐 ∈ ℝ+ | |
5 | nfmpt1 5257 | . . . . . 6 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) | |
6 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑛 ⇝ | |
7 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑛𝑐 | |
8 | 5, 6, 7 | nfbr 5196 | . . . . 5 ⊢ Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐 |
9 | 4, 8 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑛(𝑐 ∈ ℝ+ ∧ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐) |
10 | stirling.1 | . . . 4 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) | |
11 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘(2 · 𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘(2 · 𝑛))) | |
12 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) | |
13 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) | |
14 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘𝑛)↑4) / (((𝑛 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘(2 · 𝑛)))‘𝑛)↑2))) = (𝑛 ∈ ℕ ↦ ((((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘𝑛)↑4) / (((𝑛 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))‘(2 · 𝑛)))‘𝑛)↑2))) | |
15 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) | |
16 | simpl 482 | . . . 4 ⊢ ((𝑐 ∈ ℝ+ ∧ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐) → 𝑐 ∈ ℝ+) | |
17 | simpr 484 | . . . 4 ⊢ ((𝑐 ∈ ℝ+ ∧ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐) → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐) | |
18 | 9, 10, 1, 11, 12, 13, 14, 15, 16, 17 | stirlinglem15 46055 | . . 3 ⊢ ((𝑐 ∈ ℝ+ ∧ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐) → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) |
19 | 18 | rexlimiva 3146 | . 2 ⊢ (∃𝑐 ∈ ℝ+ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇝ 𝑐 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) |
20 | 3, 19 | ax-mp 5 | 1 ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∃wrex 3069 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6566 (class class class)co 7435 1c1 11160 + caddc 11162 · cmul 11164 / cdiv 11924 ℕcn 12270 2c2 12325 4c4 12327 ℕ0cn0 12530 ℝ+crp 13038 ↑cexp 14105 !cfa 14315 √csqrt 15275 ⇝ cli 15523 eceu 16101 πcpi 16105 logclog 26619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cc 10479 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-symdif 4260 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-disj 5117 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-ofr 7702 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-oadd 8515 df-omul 8516 df-er 8750 df-map 8873 df-pm 8874 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-dju 9945 df-card 9983 df-acn 9986 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-xnn0 12604 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-ioc 13395 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-fl 13835 df-mod 13913 df-seq 14046 df-exp 14106 df-fac 14316 df-bc 14345 df-hash 14373 df-shft 15109 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-limsup 15510 df-clim 15527 df-rlim 15528 df-sum 15726 df-ef 16106 df-e 16107 df-sin 16108 df-cos 16109 df-tan 16110 df-pi 16111 df-dvds 16294 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-lp 23166 df-perf 23167 df-cn 23257 df-cnp 23258 df-haus 23345 df-cmp 23417 df-tx 23592 df-hmeo 23785 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-xms 24352 df-ms 24353 df-tms 24354 df-cncf 24926 df-ovol 25521 df-vol 25522 df-mbf 25676 df-itg1 25677 df-itg2 25678 df-ibl 25679 df-itg 25680 df-0p 25727 df-limc 25924 df-dv 25925 df-ulm 26443 df-log 26621 df-cxp 26622 |
This theorem is referenced by: stirlingr 46057 |
Copyright terms: Public domain | W3C validator |