MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt3 Structured version   Visualization version   GIF version

Theorem pnt3 25757
Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt3 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt3
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑘 𝑙 𝑟 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . 3 (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 25709 . 2 𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏
31pntibnd 25738 . . . 4 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)
4 simpll 757 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑏 ∈ ℝ+)
5 simplr 759 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏)
6 fveq2 6448 . . . . . . . . . . . 12 (𝑟 = 𝑥 → ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) = ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥))
7 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑥𝑟 = 𝑥)
86, 7oveq12d 6942 . . . . . . . . . . 11 (𝑟 = 𝑥 → (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟) = (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥))
98fveq2d 6452 . . . . . . . . . 10 (𝑟 = 𝑥 → (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) = (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)))
109breq1d 4898 . . . . . . . . 9 (𝑟 = 𝑥 → ((abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏))
1110cbvralv 3367 . . . . . . . 8 (∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
125, 11sylib 210 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
13 simprll 769 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑐 ∈ ℝ+)
14 simprlr 770 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑙 ∈ (0(,)1))
15 eqid 2778 . . . . . . 7 (𝑏 + 1) = (𝑏 + 1)
16 eqid 2778 . . . . . . 7 ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2))) = ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2)))
17 simprr 763 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
18 breq2 4892 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑦 < 𝑧𝑦 < 𝑔))
19 oveq2 6932 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔 → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (𝑙 · 𝑒)) · 𝑔))
2019breq1d 4898 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)))
2118, 20anbi12d 624 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦))))
22 id 22 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔𝑧 = 𝑔)
2322, 19oveq12d 6942 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔)))
2423raleqdv 3340 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
2521, 24anbi12d 624 . . . . . . . . . . . . . . 15 (𝑧 = 𝑔 → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
2625cbvrexv 3368 . . . . . . . . . . . . . 14 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
27 breq1 4891 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (𝑦 < 𝑔𝑓 < 𝑔))
28 oveq2 6932 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑓 → (𝑘 · 𝑦) = (𝑘 · 𝑓))
2928breq2d 4900 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)))
3027, 29anbi12d 624 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑓 → ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ↔ (𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓))))
3130anbi1d 623 . . . . . . . . . . . . . . 15 (𝑦 = 𝑓 → (((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3231rexbidv 3237 . . . . . . . . . . . . . 14 (𝑦 = 𝑓 → (∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3326, 32syl5bb 275 . . . . . . . . . . . . 13 (𝑦 = 𝑓 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3433cbvralv 3367 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
35 oveq1 6931 . . . . . . . . . . . . 13 (𝑟 = 𝑥 → (𝑟(,)+∞) = (𝑥(,)+∞))
3635raleqdv 3340 . . . . . . . . . . . 12 (𝑟 = 𝑥 → (∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3734, 36syl5bb 275 . . . . . . . . . . 11 (𝑟 = 𝑥 → (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3837ralbidv 3168 . . . . . . . . . 10 (𝑟 = 𝑥 → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3938cbvrexv 3368 . . . . . . . . 9 (∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4039ralbii 3162 . . . . . . . 8 (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4117, 40sylib 210 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
421, 4, 12, 13, 14, 15, 16, 41pntleml 25756 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4342expr 450 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ (𝑐 ∈ ℝ+𝑙 ∈ (0(,)1))) → (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
4443rexlimdvva 3221 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
453, 44mpi 20 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4645rexlimiva 3210 . 2 (∃𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
472, 46ax-mp 5 1 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wa 386  wcel 2107  wral 3090  wrex 3091   class class class wbr 4888  cmpt 4967  cfv 6137  (class class class)co 6924  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279  +∞cpnf 10410   < clt 10413  cle 10414  cmin 10608   / cdiv 11034  2c2 11434  3c3 11435  cdc 11849  +crp 12141  (,)cioo 12491  [,)cico 12493  [,]cicc 12494  cexp 13182  abscabs 14385  𝑟 crli 14628  expce 15198  ψcchp 25275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-disj 4857  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-xnn0 11719  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-mod 12992  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-shft 14218  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-o1 14633  df-lo1 14634  df-sum 14829  df-ef 15204  df-e 15205  df-sin 15206  df-cos 15207  df-pi 15209  df-dvds 15392  df-gcd 15627  df-prm 15795  df-pc 15950  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-mulg 17932  df-cntz 18137  df-cmn 18585  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-fbas 20143  df-fg 20144  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-nei 21314  df-lp 21352  df-perf 21353  df-cn 21443  df-cnp 21444  df-haus 21531  df-cmp 21603  df-tx 21778  df-hmeo 21971  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-xms 22537  df-ms 22538  df-tms 22539  df-cncf 23093  df-limc 24071  df-dv 24072  df-log 24744  df-cxp 24745  df-em 25175  df-cht 25279  df-vma 25280  df-chp 25281  df-ppi 25282  df-mu 25283
This theorem is referenced by:  pnt2  25758
  Copyright terms: Public domain W3C validator