MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt3 Structured version   Visualization version   GIF version

Theorem pnt3 26188
Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt3 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt3
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑘 𝑙 𝑟 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 26140 . 2 𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏
31pntibnd 26169 . . . 4 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)
4 simpll 765 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑏 ∈ ℝ+)
5 simplr 767 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏)
6 fveq2 6670 . . . . . . . . . . . 12 (𝑟 = 𝑥 → ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) = ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥))
7 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑥𝑟 = 𝑥)
86, 7oveq12d 7174 . . . . . . . . . . 11 (𝑟 = 𝑥 → (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟) = (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥))
98fveq2d 6674 . . . . . . . . . 10 (𝑟 = 𝑥 → (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) = (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)))
109breq1d 5076 . . . . . . . . 9 (𝑟 = 𝑥 → ((abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏))
1110cbvralvw 3449 . . . . . . . 8 (∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
125, 11sylib 220 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
13 simprll 777 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑐 ∈ ℝ+)
14 simprlr 778 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑙 ∈ (0(,)1))
15 eqid 2821 . . . . . . 7 (𝑏 + 1) = (𝑏 + 1)
16 eqid 2821 . . . . . . 7 ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2))) = ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2)))
17 simprr 771 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
18 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑦 < 𝑧𝑦 < 𝑔))
19 oveq2 7164 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔 → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (𝑙 · 𝑒)) · 𝑔))
2019breq1d 5076 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)))
2118, 20anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦))))
22 id 22 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔𝑧 = 𝑔)
2322, 19oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔)))
2423raleqdv 3415 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
2521, 24anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = 𝑔 → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
2625cbvrexvw 3450 . . . . . . . . . . . . . 14 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
27 breq1 5069 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (𝑦 < 𝑔𝑓 < 𝑔))
28 oveq2 7164 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑓 → (𝑘 · 𝑦) = (𝑘 · 𝑓))
2928breq2d 5078 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)))
3027, 29anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑓 → ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ↔ (𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓))))
3130anbi1d 631 . . . . . . . . . . . . . . 15 (𝑦 = 𝑓 → (((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3231rexbidv 3297 . . . . . . . . . . . . . 14 (𝑦 = 𝑓 → (∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3326, 32syl5bb 285 . . . . . . . . . . . . 13 (𝑦 = 𝑓 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3433cbvralvw 3449 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
35 oveq1 7163 . . . . . . . . . . . . 13 (𝑟 = 𝑥 → (𝑟(,)+∞) = (𝑥(,)+∞))
3635raleqdv 3415 . . . . . . . . . . . 12 (𝑟 = 𝑥 → (∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3734, 36syl5bb 285 . . . . . . . . . . 11 (𝑟 = 𝑥 → (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3837ralbidv 3197 . . . . . . . . . 10 (𝑟 = 𝑥 → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3938cbvrexvw 3450 . . . . . . . . 9 (∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4039ralbii 3165 . . . . . . . 8 (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4117, 40sylib 220 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
421, 4, 12, 13, 14, 15, 16, 41pntleml 26187 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4342expr 459 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ (𝑐 ∈ ℝ+𝑙 ∈ (0(,)1))) → (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
4443rexlimdvva 3294 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
453, 44mpi 20 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4645rexlimiva 3281 . 2 (∃𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
472, 46ax-mp 5 1 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wa 398  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  3c3 11694  cdc 12099  +crp 12390  (,)cioo 12739  [,)cico 12741  [,]cicc 12742  cexp 13430  abscabs 14593  𝑟 crli 14842  expce 15415  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-o1 14847  df-lo1 14848  df-sum 15043  df-ef 15421  df-e 15422  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-ulm 24965  df-log 25140  df-cxp 25141  df-atan 25445  df-em 25570  df-cht 25674  df-vma 25675  df-chp 25676  df-ppi 25677  df-mu 25678
This theorem is referenced by:  pnt2  26189
  Copyright terms: Public domain W3C validator