MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt3 Structured version   Visualization version   GIF version

Theorem pnt3 26944
Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt3 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt3
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑘 𝑙 𝑟 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 26896 . 2 𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏
31pntibnd 26925 . . . 4 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)
4 simpll 765 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑏 ∈ ℝ+)
5 simplr 767 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏)
6 fveq2 6839 . . . . . . . . . . . 12 (𝑟 = 𝑥 → ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) = ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥))
7 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑥𝑟 = 𝑥)
86, 7oveq12d 7371 . . . . . . . . . . 11 (𝑟 = 𝑥 → (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟) = (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥))
98fveq2d 6843 . . . . . . . . . 10 (𝑟 = 𝑥 → (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) = (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)))
109breq1d 5113 . . . . . . . . 9 (𝑟 = 𝑥 → ((abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏))
1110cbvralvw 3223 . . . . . . . 8 (∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
125, 11sylib 217 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
13 simprll 777 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑐 ∈ ℝ+)
14 simprlr 778 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑙 ∈ (0(,)1))
15 eqid 2736 . . . . . . 7 (𝑏 + 1) = (𝑏 + 1)
16 eqid 2736 . . . . . . 7 ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2))) = ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2)))
17 simprr 771 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
18 breq2 5107 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑦 < 𝑧𝑦 < 𝑔))
19 oveq2 7361 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔 → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (𝑙 · 𝑒)) · 𝑔))
2019breq1d 5113 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)))
2118, 20anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦))))
22 id 22 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔𝑧 = 𝑔)
2322, 19oveq12d 7371 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔)))
2423raleqdv 3311 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
2521, 24anbi12d 631 . . . . . . . . . . . . . . 15 (𝑧 = 𝑔 → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
2625cbvrexvw 3224 . . . . . . . . . . . . . 14 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
27 breq1 5106 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (𝑦 < 𝑔𝑓 < 𝑔))
28 oveq2 7361 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑓 → (𝑘 · 𝑦) = (𝑘 · 𝑓))
2928breq2d 5115 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)))
3027, 29anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑓 → ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ↔ (𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓))))
3130anbi1d 630 . . . . . . . . . . . . . . 15 (𝑦 = 𝑓 → (((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3231rexbidv 3173 . . . . . . . . . . . . . 14 (𝑦 = 𝑓 → (∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3326, 32bitrid 282 . . . . . . . . . . . . 13 (𝑦 = 𝑓 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3433cbvralvw 3223 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
35 oveq1 7360 . . . . . . . . . . . . 13 (𝑟 = 𝑥 → (𝑟(,)+∞) = (𝑥(,)+∞))
3635raleqdv 3311 . . . . . . . . . . . 12 (𝑟 = 𝑥 → (∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3734, 36bitrid 282 . . . . . . . . . . 11 (𝑟 = 𝑥 → (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3837ralbidv 3172 . . . . . . . . . 10 (𝑟 = 𝑥 → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3938cbvrexvw 3224 . . . . . . . . 9 (∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4039ralbii 3094 . . . . . . . 8 (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4117, 40sylib 217 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
421, 4, 12, 13, 14, 15, 16, 41pntleml 26943 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4342expr 457 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ (𝑐 ∈ ℝ+𝑙 ∈ (0(,)1))) → (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
4443rexlimdvva 3203 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
453, 44mpi 20 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4645rexlimiva 3142 . 2 (∃𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
472, 46ax-mp 5 1 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  wral 3062  wrex 3071   class class class wbr 5103  cmpt 5186  cfv 6493  (class class class)co 7353  0cc0 11047  1c1 11048   + caddc 11050   · cmul 11052  +∞cpnf 11182   < clt 11185  cle 11186  cmin 11381   / cdiv 11808  2c2 12204  3c3 12205  cdc 12614  +crp 12907  (,)cioo 13256  [,)cico 13258  [,]cicc 13259  cexp 13959  abscabs 15111  𝑟 crli 15359  expce 15936  ψcchp 26426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-disj 5069  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7613  df-om 7799  df-1st 7917  df-2nd 7918  df-supp 8089  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-2o 8409  df-oadd 8412  df-er 8644  df-map 8763  df-pm 8764  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9302  df-fi 9343  df-sup 9374  df-inf 9375  df-oi 9442  df-dju 9833  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-5 12215  df-6 12216  df-7 12217  df-8 12218  df-9 12219  df-n0 12410  df-xnn0 12482  df-z 12496  df-dec 12615  df-uz 12760  df-q 12866  df-rp 12908  df-xneg 13025  df-xadd 13026  df-xmul 13027  df-ioo 13260  df-ioc 13261  df-ico 13262  df-icc 13263  df-fz 13417  df-fzo 13560  df-fl 13689  df-mod 13767  df-seq 13899  df-exp 13960  df-fac 14166  df-bc 14195  df-hash 14223  df-shft 14944  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-limsup 15345  df-clim 15362  df-rlim 15363  df-o1 15364  df-lo1 15365  df-sum 15563  df-ef 15942  df-e 15943  df-sin 15944  df-cos 15945  df-tan 15946  df-pi 15947  df-dvds 16129  df-gcd 16367  df-prm 16540  df-pc 16701  df-struct 17011  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-mulr 17139  df-starv 17140  df-sca 17141  df-vsca 17142  df-ip 17143  df-tset 17144  df-ple 17145  df-ds 17147  df-unif 17148  df-hom 17149  df-cco 17150  df-rest 17296  df-topn 17297  df-0g 17315  df-gsum 17316  df-topgen 17317  df-pt 17318  df-prds 17321  df-xrs 17376  df-qtop 17381  df-imas 17382  df-xps 17384  df-mre 17458  df-mrc 17459  df-acs 17461  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-submnd 18594  df-mulg 18864  df-cntz 19088  df-cmn 19555  df-psmet 20773  df-xmet 20774  df-met 20775  df-bl 20776  df-mopn 20777  df-fbas 20778  df-fg 20779  df-cnfld 20782  df-top 22227  df-topon 22244  df-topsp 22266  df-bases 22280  df-cld 22354  df-ntr 22355  df-cls 22356  df-nei 22433  df-lp 22471  df-perf 22472  df-cn 22562  df-cnp 22563  df-haus 22650  df-cmp 22722  df-tx 22897  df-hmeo 23090  df-fil 23181  df-fm 23273  df-flim 23274  df-flf 23275  df-xms 23657  df-ms 23658  df-tms 23659  df-cncf 24225  df-limc 25214  df-dv 25215  df-ulm 25720  df-log 25896  df-cxp 25897  df-atan 26201  df-em 26326  df-cht 26430  df-vma 26431  df-chp 26432  df-ppi 26433  df-mu 26434
This theorem is referenced by:  pnt2  26945
  Copyright terms: Public domain W3C validator