MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt3 Structured version   Visualization version   GIF version

Theorem pnt3 27570
Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt3 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt3
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑘 𝑙 𝑟 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 27522 . 2 𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏
31pntibnd 27551 . . . 4 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)
4 simpll 766 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑏 ∈ ℝ+)
5 simplr 768 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏)
6 fveq2 6831 . . . . . . . . . . . 12 (𝑟 = 𝑥 → ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) = ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥))
7 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑥𝑟 = 𝑥)
86, 7oveq12d 7373 . . . . . . . . . . 11 (𝑟 = 𝑥 → (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟) = (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥))
98fveq2d 6835 . . . . . . . . . 10 (𝑟 = 𝑥 → (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) = (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)))
109breq1d 5105 . . . . . . . . 9 (𝑟 = 𝑥 → ((abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏))
1110cbvralvw 3211 . . . . . . . 8 (∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
125, 11sylib 218 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
13 simprll 778 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑐 ∈ ℝ+)
14 simprlr 779 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑙 ∈ (0(,)1))
15 eqid 2733 . . . . . . 7 (𝑏 + 1) = (𝑏 + 1)
16 eqid 2733 . . . . . . 7 ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2))) = ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2)))
17 simprr 772 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
18 breq2 5099 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑦 < 𝑧𝑦 < 𝑔))
19 oveq2 7363 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔 → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (𝑙 · 𝑒)) · 𝑔))
2019breq1d 5105 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)))
2118, 20anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦))))
22 id 22 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔𝑧 = 𝑔)
2322, 19oveq12d 7373 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔)))
2423raleqdv 3293 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
2521, 24anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = 𝑔 → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
2625cbvrexvw 3212 . . . . . . . . . . . . . 14 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
27 breq1 5098 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (𝑦 < 𝑔𝑓 < 𝑔))
28 oveq2 7363 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑓 → (𝑘 · 𝑦) = (𝑘 · 𝑓))
2928breq2d 5107 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)))
3027, 29anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑓 → ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ↔ (𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓))))
3130anbi1d 631 . . . . . . . . . . . . . . 15 (𝑦 = 𝑓 → (((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3231rexbidv 3157 . . . . . . . . . . . . . 14 (𝑦 = 𝑓 → (∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3326, 32bitrid 283 . . . . . . . . . . . . 13 (𝑦 = 𝑓 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3433cbvralvw 3211 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
35 oveq1 7362 . . . . . . . . . . . . 13 (𝑟 = 𝑥 → (𝑟(,)+∞) = (𝑥(,)+∞))
3635raleqdv 3293 . . . . . . . . . . . 12 (𝑟 = 𝑥 → (∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3734, 36bitrid 283 . . . . . . . . . . 11 (𝑟 = 𝑥 → (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3837ralbidv 3156 . . . . . . . . . 10 (𝑟 = 𝑥 → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3938cbvrexvw 3212 . . . . . . . . 9 (∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4039ralbii 3079 . . . . . . . 8 (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4117, 40sylib 218 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
421, 4, 12, 13, 14, 15, 16, 41pntleml 27569 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4342expr 456 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ (𝑐 ∈ ℝ+𝑙 ∈ (0(,)1))) → (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
4443rexlimdvva 3190 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
453, 44mpi 20 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4645rexlimiva 3126 . 2 (∃𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
472, 46ax-mp 5 1 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2113  wral 3048  wrex 3057   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  +∞cpnf 11154   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  2c2 12191  3c3 12192  cdc 12598  +crp 12896  (,)cioo 13252  [,)cico 13254  [,]cicc 13255  cexp 13975  abscabs 15148  𝑟 crli 15399  expce 15975  ψcchp 27050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-o1 15404  df-lo1 15405  df-sum 15601  df-ef 15981  df-e 15982  df-sin 15983  df-cos 15984  df-tan 15985  df-pi 15986  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-ulm 26333  df-log 26512  df-cxp 26513  df-atan 26824  df-em 26950  df-cht 27054  df-vma 27055  df-chp 27056  df-ppi 27057  df-mu 27058
This theorem is referenced by:  pnt2  27571
  Copyright terms: Public domain W3C validator