Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpinconstrlem2 Structured version   Visualization version   GIF version

Theorem cos9thpinconstrlem2 33756
Description: The complex number 𝐴 is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025.)
Hypotheses
Ref Expression
cos9thpinconstr.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminply.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminply.3 𝐴 = (𝑍 + (1 / 𝑍))
Assertion
Ref Expression
cos9thpinconstrlem2 ¬ 𝐴 ∈ Constr

Proof of Theorem cos9thpinconstrlem2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (deg1‘(ℂflds ℚ)) = (deg1‘(ℂflds ℚ))
2 eqid 2729 . . 3 (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ)
3 cos9thpiminply.3 . . . 4 𝐴 = (𝑍 + (1 / 𝑍))
4 cos9thpiminply.2 . . . . . 6 𝑍 = (𝑂𝑐(1 / 3))
5 cos9thpinconstr.1 . . . . . . . 8 𝑂 = (exp‘((i · (2 · π)) / 3))
6 ax-icn 11087 . . . . . . . . . . . 12 i ∈ ℂ
76a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
8 2cnd 12224 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℂ)
9 picn 26383 . . . . . . . . . . . . 13 π ∈ ℂ
109a1i 11 . . . . . . . . . . . 12 (⊤ → π ∈ ℂ)
118, 10mulcld 11154 . . . . . . . . . . 11 (⊤ → (2 · π) ∈ ℂ)
127, 11mulcld 11154 . . . . . . . . . 10 (⊤ → (i · (2 · π)) ∈ ℂ)
13 3cn 12227 . . . . . . . . . . 11 3 ∈ ℂ
1413a1i 11 . . . . . . . . . 10 (⊤ → 3 ∈ ℂ)
15 3ne0 12252 . . . . . . . . . . 11 3 ≠ 0
1615a1i 11 . . . . . . . . . 10 (⊤ → 3 ≠ 0)
1712, 14, 16divcld 11918 . . . . . . . . 9 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
1817efcld 16008 . . . . . . . 8 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
195, 18eqeltrid 2832 . . . . . . 7 (⊤ → 𝑂 ∈ ℂ)
2013, 15reccli 11872 . . . . . . . 8 (1 / 3) ∈ ℂ
2120a1i 11 . . . . . . 7 (⊤ → (1 / 3) ∈ ℂ)
2219, 21cxpcld 26633 . . . . . 6 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
234, 22eqeltrid 2832 . . . . 5 (⊤ → 𝑍 ∈ ℂ)
244a1i 11 . . . . . . 7 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
255a1i 11 . . . . . . . . 9 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
2617efne0d 16022 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
2725, 26eqnetrd 2992 . . . . . . . 8 (⊤ → 𝑂 ≠ 0)
2819, 27, 21cxpne0d 26638 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
2924, 28eqnetrd 2992 . . . . . 6 (⊤ → 𝑍 ≠ 0)
3023, 29reccld 11911 . . . . 5 (⊤ → (1 / 𝑍) ∈ ℂ)
3123, 30addcld 11153 . . . 4 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
323, 31eqeltrid 2832 . . 3 (⊤ → 𝐴 ∈ ℂ)
33 eqidd 2730 . . 3 (⊤ → ((ℂfld minPoly ℚ)‘𝐴) = ((ℂfld minPoly ℚ)‘𝐴))
34 eqid 2729 . . . . . . . . 9 (ℂflds ℚ) = (ℂflds ℚ)
35 eqid 2729 . . . . . . . . 9 (+g‘(Poly1‘(ℂflds ℚ))) = (+g‘(Poly1‘(ℂflds ℚ)))
36 eqid 2729 . . . . . . . . 9 (.r‘(Poly1‘(ℂflds ℚ))) = (.r‘(Poly1‘(ℂflds ℚ)))
37 eqid 2729 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))
38 eqid 2729 . . . . . . . . 9 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
39 eqid 2729 . . . . . . . . 9 (algSc‘(Poly1‘(ℂflds ℚ))) = (algSc‘(Poly1‘(ℂflds ℚ)))
40 eqid 2729 . . . . . . . . 9 (var1‘(ℂflds ℚ)) = (var1‘(ℂflds ℚ))
41 eqid 2729 . . . . . . . . 9 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1))) = ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))
425, 4, 3, 34, 35, 36, 37, 38, 39, 40, 1, 41, 2cos9thpiminply 33754 . . . . . . . 8 (((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴) ∧ ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))) = 3)
4342simpli 483 . . . . . . 7 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴)
4443fveq2i 6829 . . . . . 6 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))) = ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴))
4542simpri 485 . . . . . 6 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))) = 3
4644, 45eqtr3i 2754 . . . . 5 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3
47 3nn0 12420 . . . . 5 3 ∈ ℕ0
4846, 47eqeltri 2824 . . . 4 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0
4948a1i 11 . . 3 (⊤ → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0)
5046a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3)
51 3z 12526 . . . . . . . . . 10 3 ∈ ℤ
52 iddvds 16198 . . . . . . . . . 10 (3 ∈ ℤ → 3 ∥ 3)
5351, 52ax-mp 5 . . . . . . . . 9 3 ∥ 3
54 simpr 484 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛))
5553, 54breqtrid 5132 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛))
56 3prm 16623 . . . . . . . . . 10 3 ∈ ℙ
57 2prm 16621 . . . . . . . . . 10 2 ∈ ℙ
58 prmdvdsexpr 16646 . . . . . . . . . 10 ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2))
5956, 57, 58mp3an12 1453 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2))
6059imp 406 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2)
6155, 60syldan 591 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2)
62 2re 12220 . . . . . . . . . 10 2 ∈ ℝ
63 2lt3 12313 . . . . . . . . . 10 2 < 3
6462, 63gtneii 11246 . . . . . . . . 9 3 ≠ 2
6564neii 2927 . . . . . . . 8 ¬ 3 = 2
6665a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2)
6761, 66pm2.65da 816 . . . . . 6 (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛))
6867neqned 2932 . . . . 5 (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛))
6950, 68eqnetrd 2992 . . . 4 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛))
7069adantl 481 . . 3 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛))
711, 2, 32, 33, 49, 70constrcon 33740 . 2 (⊤ → ¬ 𝐴 ∈ Constr)
7271mptru 1547 1 ¬ 𝐴 ∈ Constr
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  -cneg 11366   / cdiv 11795  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cq 12867  cexp 13986  expce 15986  πcpi 15991  cdvds 16181  cprime 16600  s cress 17159  +gcplusg 17179  .rcmulr 17180  .gcmg 18964  mulGrpcmgp 20043  fldccnfld 21279  algSccascl 21777  var1cv1 22076  Poly1cpl1 22077  deg1cdg1 25975  𝑐ccxp 26480   minPoly cminply 33665  Constrcconstr 33695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-shft 14992  df-sgn 15012  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-pws 17371  df-xrs 17424  df-qtop 17429  df-imas 17430  df-qus 17431  df-xps 17432  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-irred 20262  df-invr 20291  df-dvr 20304  df-rhm 20375  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-rlreg 20597  df-domn 20598  df-idom 20599  df-drng 20634  df-field 20635  df-sdrg 20690  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lmim 20945  df-lmic 20946  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-lpidl 21247  df-lpir 21248  df-pid 21262  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-evls1 22218  df-evl1 22219  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-mdeg 25976  df-deg1 25977  df-mon1 26052  df-uc1p 26053  df-q1p 26054  df-r1p 26055  df-ig1p 26056  df-log 26481  df-cxp 26482  df-chn 32960  df-fldgen 33260  df-mxidl 33407  df-dim 33571  df-fldext 33613  df-extdg 33614  df-irng 33655  df-minply 33666  df-constr 33696
This theorem is referenced by:  cos9thpinconstr  33757
  Copyright terms: Public domain W3C validator