Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpinconstrlem2 Structured version   Visualization version   GIF version

Theorem cos9thpinconstrlem2 33780
Description: The complex number 𝐴 is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025.)
Hypotheses
Ref Expression
cos9thpinconstr.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminply.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminply.3 𝐴 = (𝑍 + (1 / 𝑍))
Assertion
Ref Expression
cos9thpinconstrlem2 ¬ 𝐴 ∈ Constr

Proof of Theorem cos9thpinconstrlem2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (deg1‘(ℂflds ℚ)) = (deg1‘(ℂflds ℚ))
2 eqid 2729 . . 3 (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ)
3 cos9thpiminply.3 . . . 4 𝐴 = (𝑍 + (1 / 𝑍))
4 cos9thpiminply.2 . . . . . 6 𝑍 = (𝑂𝑐(1 / 3))
5 cos9thpinconstr.1 . . . . . . . 8 𝑂 = (exp‘((i · (2 · π)) / 3))
6 ax-icn 11127 . . . . . . . . . . . 12 i ∈ ℂ
76a1i 11 . . . . . . . . . . 11 (⊤ → i ∈ ℂ)
8 2cnd 12264 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℂ)
9 picn 26367 . . . . . . . . . . . . 13 π ∈ ℂ
109a1i 11 . . . . . . . . . . . 12 (⊤ → π ∈ ℂ)
118, 10mulcld 11194 . . . . . . . . . . 11 (⊤ → (2 · π) ∈ ℂ)
127, 11mulcld 11194 . . . . . . . . . 10 (⊤ → (i · (2 · π)) ∈ ℂ)
13 3cn 12267 . . . . . . . . . . 11 3 ∈ ℂ
1413a1i 11 . . . . . . . . . 10 (⊤ → 3 ∈ ℂ)
15 3ne0 12292 . . . . . . . . . . 11 3 ≠ 0
1615a1i 11 . . . . . . . . . 10 (⊤ → 3 ≠ 0)
1712, 14, 16divcld 11958 . . . . . . . . 9 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
1817efcld 16049 . . . . . . . 8 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
195, 18eqeltrid 2832 . . . . . . 7 (⊤ → 𝑂 ∈ ℂ)
2013, 15reccli 11912 . . . . . . . 8 (1 / 3) ∈ ℂ
2120a1i 11 . . . . . . 7 (⊤ → (1 / 3) ∈ ℂ)
2219, 21cxpcld 26617 . . . . . 6 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
234, 22eqeltrid 2832 . . . . 5 (⊤ → 𝑍 ∈ ℂ)
244a1i 11 . . . . . . 7 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
255a1i 11 . . . . . . . . 9 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
2617efne0d 16063 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
2725, 26eqnetrd 2992 . . . . . . . 8 (⊤ → 𝑂 ≠ 0)
2819, 27, 21cxpne0d 26622 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
2924, 28eqnetrd 2992 . . . . . 6 (⊤ → 𝑍 ≠ 0)
3023, 29reccld 11951 . . . . 5 (⊤ → (1 / 𝑍) ∈ ℂ)
3123, 30addcld 11193 . . . 4 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
323, 31eqeltrid 2832 . . 3 (⊤ → 𝐴 ∈ ℂ)
33 eqidd 2730 . . 3 (⊤ → ((ℂfld minPoly ℚ)‘𝐴) = ((ℂfld minPoly ℚ)‘𝐴))
34 eqid 2729 . . . . . . . . 9 (ℂflds ℚ) = (ℂflds ℚ)
35 eqid 2729 . . . . . . . . 9 (+g‘(Poly1‘(ℂflds ℚ))) = (+g‘(Poly1‘(ℂflds ℚ)))
36 eqid 2729 . . . . . . . . 9 (.r‘(Poly1‘(ℂflds ℚ))) = (.r‘(Poly1‘(ℂflds ℚ)))
37 eqid 2729 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))
38 eqid 2729 . . . . . . . . 9 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
39 eqid 2729 . . . . . . . . 9 (algSc‘(Poly1‘(ℂflds ℚ))) = (algSc‘(Poly1‘(ℂflds ℚ)))
40 eqid 2729 . . . . . . . . 9 (var1‘(ℂflds ℚ)) = (var1‘(ℂflds ℚ))
41 eqid 2729 . . . . . . . . 9 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1))) = ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))
425, 4, 3, 34, 35, 36, 37, 38, 39, 40, 1, 41, 2cos9thpiminply 33778 . . . . . . . 8 (((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴) ∧ ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))) = 3)
4342simpli 483 . . . . . . 7 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴)
4443fveq2i 6861 . . . . . 6 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))) = ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴))
4542simpri 485 . . . . . 6 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((((algSc‘(Poly1‘(ℂflds ℚ)))‘-3)(.r‘(Poly1‘(ℂflds ℚ)))(var1‘(ℂflds ℚ)))(+g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘1)))) = 3
4644, 45eqtr3i 2754 . . . . 5 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3
47 3nn0 12460 . . . . 5 3 ∈ ℕ0
4846, 47eqeltri 2824 . . . 4 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0
4948a1i 11 . . 3 (⊤ → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0)
5046a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3)
51 3z 12566 . . . . . . . . . 10 3 ∈ ℤ
52 iddvds 16239 . . . . . . . . . 10 (3 ∈ ℤ → 3 ∥ 3)
5351, 52ax-mp 5 . . . . . . . . 9 3 ∥ 3
54 simpr 484 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛))
5553, 54breqtrid 5144 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛))
56 3prm 16664 . . . . . . . . . 10 3 ∈ ℙ
57 2prm 16662 . . . . . . . . . 10 2 ∈ ℙ
58 prmdvdsexpr 16687 . . . . . . . . . 10 ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2))
5956, 57, 58mp3an12 1453 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2))
6059imp 406 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2)
6155, 60syldan 591 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2)
62 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
63 2lt3 12353 . . . . . . . . . 10 2 < 3
6462, 63gtneii 11286 . . . . . . . . 9 3 ≠ 2
6564neii 2927 . . . . . . . 8 ¬ 3 = 2
6665a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2)
6761, 66pm2.65da 816 . . . . . 6 (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛))
6867neqned 2932 . . . . 5 (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛))
6950, 68eqnetrd 2992 . . . 4 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛))
7069adantl 481 . . 3 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛))
711, 2, 32, 33, 49, 70constrcon 33764 . 2 (⊤ → ¬ 𝐴 ∈ Constr)
7271mptru 1547 1 ¬ 𝐴 ∈ Constr
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  -cneg 11406   / cdiv 11835  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cq 12907  cexp 14026  expce 16027  πcpi 16032  cdvds 16222  cprime 16641  s cress 17200  +gcplusg 17220  .rcmulr 17221  .gcmg 18999  mulGrpcmgp 20049  fldccnfld 21264  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  deg1cdg1 25959  𝑐ccxp 26464   minPoly cminply 33689  Constrcconstr 33719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-shft 15033  df-sgn 15053  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ocomp 17241  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-pws 17412  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-irred 20268  df-invr 20297  df-dvr 20310  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lmic 20931  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-lpidl 21232  df-lpir 21233  df-pid 21247  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-ig1p 26040  df-log 26465  df-cxp 26466  df-chn 32931  df-fldgen 33261  df-mxidl 33431  df-dim 33595  df-fldext 33637  df-extdg 33638  df-irng 33679  df-minply 33690  df-constr 33720
This theorem is referenced by:  cos9thpinconstr  33781
  Copyright terms: Public domain W3C validator