| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem2 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝐴 is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| cos9thpiminply.2 | ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) |
| cos9thpiminply.3 | ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem2 | ⊢ ¬ 𝐴 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (deg1‘(ℂfld ↾s ℚ)) = (deg1‘(ℂfld ↾s ℚ)) | |
| 2 | eqid 2730 | . . 3 ⊢ (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ) | |
| 3 | cos9thpiminply.3 | . . . 4 ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) | |
| 4 | cos9thpiminply.2 | . . . . . 6 ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) | |
| 5 | cos9thpinconstr.1 | . . . . . . . 8 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 6 | ax-icn 11057 | . . . . . . . . . . . 12 ⊢ i ∈ ℂ | |
| 7 | 6 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → i ∈ ℂ) |
| 8 | 2cnd 12195 | . . . . . . . . . . . 12 ⊢ (⊤ → 2 ∈ ℂ) | |
| 9 | picn 26387 | . . . . . . . . . . . . 13 ⊢ π ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → π ∈ ℂ) |
| 11 | 8, 10 | mulcld 11124 | . . . . . . . . . . 11 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 12 | 7, 11 | mulcld 11124 | . . . . . . . . . 10 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 13 | 3cn 12198 | . . . . . . . . . . 11 ⊢ 3 ∈ ℂ | |
| 14 | 13 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 3 ∈ ℂ) |
| 15 | 3ne0 12223 | . . . . . . . . . . 11 ⊢ 3 ≠ 0 | |
| 16 | 15 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 3 ≠ 0) |
| 17 | 12, 14, 16 | divcld 11889 | . . . . . . . . 9 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 18 | 17 | efcld 15982 | . . . . . . . 8 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 19 | 5, 18 | eqeltrid 2833 | . . . . . . 7 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 20 | 13, 15 | reccli 11843 | . . . . . . . 8 ⊢ (1 / 3) ∈ ℂ |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 22 | 19, 21 | cxpcld 26637 | . . . . . 6 ⊢ (⊤ → (𝑂↑𝑐(1 / 3)) ∈ ℂ) |
| 23 | 4, 22 | eqeltrid 2833 | . . . . 5 ⊢ (⊤ → 𝑍 ∈ ℂ) |
| 24 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑍 = (𝑂↑𝑐(1 / 3))) |
| 25 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 26 | 17 | efne0d 15996 | . . . . . . . . 9 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0) |
| 27 | 25, 26 | eqnetrd 2993 | . . . . . . . 8 ⊢ (⊤ → 𝑂 ≠ 0) |
| 28 | 19, 27, 21 | cxpne0d 26642 | . . . . . . 7 ⊢ (⊤ → (𝑂↑𝑐(1 / 3)) ≠ 0) |
| 29 | 24, 28 | eqnetrd 2993 | . . . . . 6 ⊢ (⊤ → 𝑍 ≠ 0) |
| 30 | 23, 29 | reccld 11882 | . . . . 5 ⊢ (⊤ → (1 / 𝑍) ∈ ℂ) |
| 31 | 23, 30 | addcld 11123 | . . . 4 ⊢ (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ) |
| 32 | 3, 31 | eqeltrid 2833 | . . 3 ⊢ (⊤ → 𝐴 ∈ ℂ) |
| 33 | eqidd 2731 | . . 3 ⊢ (⊤ → ((ℂfld minPoly ℚ)‘𝐴) = ((ℂfld minPoly ℚ)‘𝐴)) | |
| 34 | eqid 2730 | . . . . . . . . 9 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 35 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘(Poly1‘(ℂfld ↾s ℚ))) = (+g‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 36 | eqid 2730 | . . . . . . . . 9 ⊢ (.r‘(Poly1‘(ℂfld ↾s ℚ))) = (.r‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 37 | eqid 2730 | . . . . . . . . 9 ⊢ (.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ)))) | |
| 38 | eqid 2730 | . . . . . . . . 9 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 39 | eqid 2730 | . . . . . . . . 9 ⊢ (algSc‘(Poly1‘(ℂfld ↾s ℚ))) = (algSc‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 40 | eqid 2730 | . . . . . . . . 9 ⊢ (var1‘(ℂfld ↾s ℚ)) = (var1‘(ℂfld ↾s ℚ)) | |
| 41 | eqid 2730 | . . . . . . . . 9 ⊢ ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) = ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) | |
| 42 | 5, 4, 3, 34, 35, 36, 37, 38, 39, 40, 1, 41, 2 | cos9thpiminply 33791 | . . . . . . . 8 ⊢ (((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴) ∧ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1)))) = 3) |
| 43 | 42 | simpli 483 | . . . . . . 7 ⊢ ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴) |
| 44 | 43 | fveq2i 6820 | . . . . . 6 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1)))) = ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) |
| 45 | 42 | simpri 485 | . . . . . 6 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1)))) = 3 |
| 46 | 44, 45 | eqtr3i 2755 | . . . . 5 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3 |
| 47 | 3nn0 12391 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 48 | 46, 47 | eqeltri 2825 | . . . 4 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0 |
| 49 | 48 | a1i 11 | . . 3 ⊢ (⊤ → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0) |
| 50 | 46 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3) |
| 51 | 3z 12497 | . . . . . . . . . 10 ⊢ 3 ∈ ℤ | |
| 52 | iddvds 16172 | . . . . . . . . . 10 ⊢ (3 ∈ ℤ → 3 ∥ 3) | |
| 53 | 51, 52 | ax-mp 5 | . . . . . . . . 9 ⊢ 3 ∥ 3 |
| 54 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛)) | |
| 55 | 53, 54 | breqtrid 5126 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛)) |
| 56 | 3prm 16597 | . . . . . . . . . 10 ⊢ 3 ∈ ℙ | |
| 57 | 2prm 16595 | . . . . . . . . . 10 ⊢ 2 ∈ ℙ | |
| 58 | prmdvdsexpr 16620 | . . . . . . . . . 10 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2)) | |
| 59 | 56, 57, 58 | mp3an12 1453 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2)) |
| 60 | 59 | imp 406 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2) |
| 61 | 55, 60 | syldan 591 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2) |
| 62 | 2re 12191 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 63 | 2lt3 12284 | . . . . . . . . . 10 ⊢ 2 < 3 | |
| 64 | 62, 63 | gtneii 11217 | . . . . . . . . 9 ⊢ 3 ≠ 2 |
| 65 | 64 | neii 2928 | . . . . . . . 8 ⊢ ¬ 3 = 2 |
| 66 | 65 | a1i 11 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2) |
| 67 | 61, 66 | pm2.65da 816 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛)) |
| 68 | 67 | neqned 2933 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛)) |
| 69 | 50, 68 | eqnetrd 2993 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛)) |
| 70 | 69 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛)) |
| 71 | 1, 2, 32, 33, 49, 70 | constrcon 33777 | . 2 ⊢ (⊤ → ¬ 𝐴 ∈ Constr) |
| 72 | 71 | mptru 1548 | 1 ⊢ ¬ 𝐴 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2110 ≠ wne 2926 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 1c1 10999 ici 11000 + caddc 11001 · cmul 11003 -cneg 11337 / cdiv 11766 2c2 12172 3c3 12173 ℕ0cn0 12373 ℤcz 12460 ℚcq 12838 ↑cexp 13960 expce 15960 πcpi 15965 ∥ cdvds 16155 ℙcprime 16574 ↾s cress 17133 +gcplusg 17153 .rcmulr 17154 .gcmg 18972 mulGrpcmgp 20051 ℂfldccnfld 21284 algSccascl 21782 var1cv1 22081 Poly1cpl1 22082 deg1cdg1 25979 ↑𝑐ccxp 26484 minPoly cminply 33702 Constrcconstr 33732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-r1 9649 df-rank 9650 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-word 14413 df-lsw 14462 df-concat 14470 df-s1 14496 df-substr 14541 df-pfx 14571 df-shft 14966 df-sgn 14986 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-ef 15966 df-sin 15968 df-cos 15969 df-pi 15971 df-dvds 16156 df-gcd 16398 df-prm 16575 df-pc 16741 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ocomp 17174 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-pws 17345 df-xrs 17398 df-qtop 17403 df-imas 17404 df-qus 17405 df-xps 17406 df-mre 17480 df-mrc 17481 df-mri 17482 df-acs 17483 df-proset 18192 df-drs 18193 df-poset 18211 df-ipo 18426 df-chn 18504 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-nsg 19029 df-eqg 19030 df-ghm 19118 df-gim 19164 df-cntz 19222 df-oppg 19251 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-srg 20098 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-irred 20270 df-invr 20299 df-dvr 20312 df-rhm 20383 df-nzr 20421 df-subrng 20454 df-subrg 20478 df-rlreg 20602 df-domn 20603 df-idom 20604 df-drng 20639 df-field 20640 df-sdrg 20695 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lmim 20950 df-lmic 20951 df-lbs 21002 df-lvec 21030 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-rsp 21139 df-2idl 21180 df-lpidl 21252 df-lpir 21253 df-pid 21267 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-dsmm 21662 df-frlm 21677 df-uvc 21713 df-lindf 21736 df-linds 21737 df-assa 21783 df-asp 21784 df-ascl 21785 df-psr 21839 df-mvr 21840 df-mpl 21841 df-opsr 21843 df-evls 22002 df-evl 22003 df-psr1 22085 df-vr1 22086 df-ply1 22087 df-coe1 22088 df-evls1 22223 df-evl1 22224 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-mdeg 25980 df-deg1 25981 df-mon1 26056 df-uc1p 26057 df-q1p 26058 df-r1p 26059 df-ig1p 26060 df-log 26485 df-cxp 26486 df-fldgen 33267 df-mxidl 33415 df-dim 33602 df-fldext 33644 df-extdg 33645 df-irng 33687 df-minply 33703 df-constr 33733 |
| This theorem is referenced by: cos9thpinconstr 33794 |
| Copyright terms: Public domain | W3C validator |