| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cos9thpinconstrlem2 | Structured version Visualization version GIF version | ||
| Description: The complex number 𝐴 is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cos9thpinconstr.1 | ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) |
| cos9thpiminply.2 | ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) |
| cos9thpiminply.3 | ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) |
| Ref | Expression |
|---|---|
| cos9thpinconstrlem2 | ⊢ ¬ 𝐴 ∈ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (deg1‘(ℂfld ↾s ℚ)) = (deg1‘(ℂfld ↾s ℚ)) | |
| 2 | eqid 2729 | . . 3 ⊢ (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ) | |
| 3 | cos9thpiminply.3 | . . . 4 ⊢ 𝐴 = (𝑍 + (1 / 𝑍)) | |
| 4 | cos9thpiminply.2 | . . . . . 6 ⊢ 𝑍 = (𝑂↑𝑐(1 / 3)) | |
| 5 | cos9thpinconstr.1 | . . . . . . . 8 ⊢ 𝑂 = (exp‘((i · (2 · π)) / 3)) | |
| 6 | ax-icn 11127 | . . . . . . . . . . . 12 ⊢ i ∈ ℂ | |
| 7 | 6 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → i ∈ ℂ) |
| 8 | 2cnd 12264 | . . . . . . . . . . . 12 ⊢ (⊤ → 2 ∈ ℂ) | |
| 9 | picn 26367 | . . . . . . . . . . . . 13 ⊢ π ∈ ℂ | |
| 10 | 9 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → π ∈ ℂ) |
| 11 | 8, 10 | mulcld 11194 | . . . . . . . . . . 11 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 12 | 7, 11 | mulcld 11194 | . . . . . . . . . 10 ⊢ (⊤ → (i · (2 · π)) ∈ ℂ) |
| 13 | 3cn 12267 | . . . . . . . . . . 11 ⊢ 3 ∈ ℂ | |
| 14 | 13 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 3 ∈ ℂ) |
| 15 | 3ne0 12292 | . . . . . . . . . . 11 ⊢ 3 ≠ 0 | |
| 16 | 15 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 3 ≠ 0) |
| 17 | 12, 14, 16 | divcld 11958 | . . . . . . . . 9 ⊢ (⊤ → ((i · (2 · π)) / 3) ∈ ℂ) |
| 18 | 17 | efcld 16049 | . . . . . . . 8 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ) |
| 19 | 5, 18 | eqeltrid 2832 | . . . . . . 7 ⊢ (⊤ → 𝑂 ∈ ℂ) |
| 20 | 13, 15 | reccli 11912 | . . . . . . . 8 ⊢ (1 / 3) ∈ ℂ |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 22 | 19, 21 | cxpcld 26617 | . . . . . 6 ⊢ (⊤ → (𝑂↑𝑐(1 / 3)) ∈ ℂ) |
| 23 | 4, 22 | eqeltrid 2832 | . . . . 5 ⊢ (⊤ → 𝑍 ∈ ℂ) |
| 24 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑍 = (𝑂↑𝑐(1 / 3))) |
| 25 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3))) |
| 26 | 17 | efne0d 16063 | . . . . . . . . 9 ⊢ (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0) |
| 27 | 25, 26 | eqnetrd 2992 | . . . . . . . 8 ⊢ (⊤ → 𝑂 ≠ 0) |
| 28 | 19, 27, 21 | cxpne0d 26622 | . . . . . . 7 ⊢ (⊤ → (𝑂↑𝑐(1 / 3)) ≠ 0) |
| 29 | 24, 28 | eqnetrd 2992 | . . . . . 6 ⊢ (⊤ → 𝑍 ≠ 0) |
| 30 | 23, 29 | reccld 11951 | . . . . 5 ⊢ (⊤ → (1 / 𝑍) ∈ ℂ) |
| 31 | 23, 30 | addcld 11193 | . . . 4 ⊢ (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ) |
| 32 | 3, 31 | eqeltrid 2832 | . . 3 ⊢ (⊤ → 𝐴 ∈ ℂ) |
| 33 | eqidd 2730 | . . 3 ⊢ (⊤ → ((ℂfld minPoly ℚ)‘𝐴) = ((ℂfld minPoly ℚ)‘𝐴)) | |
| 34 | eqid 2729 | . . . . . . . . 9 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 35 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘(Poly1‘(ℂfld ↾s ℚ))) = (+g‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 36 | eqid 2729 | . . . . . . . . 9 ⊢ (.r‘(Poly1‘(ℂfld ↾s ℚ))) = (.r‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 37 | eqid 2729 | . . . . . . . . 9 ⊢ (.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ)))) | |
| 38 | eqid 2729 | . . . . . . . . 9 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 39 | eqid 2729 | . . . . . . . . 9 ⊢ (algSc‘(Poly1‘(ℂfld ↾s ℚ))) = (algSc‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 40 | eqid 2729 | . . . . . . . . 9 ⊢ (var1‘(ℂfld ↾s ℚ)) = (var1‘(ℂfld ↾s ℚ)) | |
| 41 | eqid 2729 | . . . . . . . . 9 ⊢ ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) = ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) | |
| 42 | 5, 4, 3, 34, 35, 36, 37, 38, 39, 40, 1, 41, 2 | cos9thpiminply 33778 | . . . . . . . 8 ⊢ (((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴) ∧ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1)))) = 3) |
| 43 | 42 | simpli 483 | . . . . . . 7 ⊢ ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1))) = ((ℂfld minPoly ℚ)‘𝐴) |
| 44 | 43 | fveq2i 6861 | . . . . . 6 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1)))) = ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) |
| 45 | 42 | simpri 485 | . . . . . 6 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘-3)(.r‘(Poly1‘(ℂfld ↾s ℚ)))(var1‘(ℂfld ↾s ℚ)))(+g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘1)))) = 3 |
| 46 | 44, 45 | eqtr3i 2754 | . . . . 5 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3 |
| 47 | 3nn0 12460 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 48 | 46, 47 | eqeltri 2824 | . . . 4 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0 |
| 49 | 48 | a1i 11 | . . 3 ⊢ (⊤ → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ∈ ℕ0) |
| 50 | 46 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) = 3) |
| 51 | 3z 12566 | . . . . . . . . . 10 ⊢ 3 ∈ ℤ | |
| 52 | iddvds 16239 | . . . . . . . . . 10 ⊢ (3 ∈ ℤ → 3 ∥ 3) | |
| 53 | 51, 52 | ax-mp 5 | . . . . . . . . 9 ⊢ 3 ∥ 3 |
| 54 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛)) | |
| 55 | 53, 54 | breqtrid 5144 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛)) |
| 56 | 3prm 16664 | . . . . . . . . . 10 ⊢ 3 ∈ ℙ | |
| 57 | 2prm 16662 | . . . . . . . . . 10 ⊢ 2 ∈ ℙ | |
| 58 | prmdvdsexpr 16687 | . . . . . . . . . 10 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2)) | |
| 59 | 56, 57, 58 | mp3an12 1453 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2)) |
| 60 | 59 | imp 406 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2) |
| 61 | 55, 60 | syldan 591 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2) |
| 62 | 2re 12260 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 63 | 2lt3 12353 | . . . . . . . . . 10 ⊢ 2 < 3 | |
| 64 | 62, 63 | gtneii 11286 | . . . . . . . . 9 ⊢ 3 ≠ 2 |
| 65 | 64 | neii 2927 | . . . . . . . 8 ⊢ ¬ 3 = 2 |
| 66 | 65 | a1i 11 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2) |
| 67 | 61, 66 | pm2.65da 816 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛)) |
| 68 | 67 | neqned 2932 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛)) |
| 69 | 50, 68 | eqnetrd 2992 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛)) |
| 70 | 69 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘𝐴)) ≠ (2↑𝑛)) |
| 71 | 1, 2, 32, 33, 49, 70 | constrcon 33764 | . 2 ⊢ (⊤ → ¬ 𝐴 ∈ Constr) |
| 72 | 71 | mptru 1547 | 1 ⊢ ¬ 𝐴 ∈ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 ici 11070 + caddc 11071 · cmul 11073 -cneg 11406 / cdiv 11835 2c2 12241 3c3 12242 ℕ0cn0 12442 ℤcz 12529 ℚcq 12907 ↑cexp 14026 expce 16027 πcpi 16032 ∥ cdvds 16222 ℙcprime 16641 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 .gcmg 18999 mulGrpcmgp 20049 ℂfldccnfld 21264 algSccascl 21761 var1cv1 22060 Poly1cpl1 22061 deg1cdg1 25959 ↑𝑐ccxp 26464 minPoly cminply 33689 Constrcconstr 33719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-r1 9717 df-rank 9718 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-shft 15033 df-sgn 15053 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-dvds 16223 df-gcd 16465 df-prm 16642 df-pc 16808 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ocomp 17241 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-pws 17412 df-xrs 17465 df-qtop 17470 df-imas 17471 df-qus 17472 df-xps 17473 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-irred 20268 df-invr 20297 df-dvr 20310 df-rhm 20381 df-nzr 20422 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-domn 20604 df-idom 20605 df-drng 20640 df-field 20641 df-sdrg 20696 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lmim 20930 df-lmic 20931 df-lbs 20982 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-lpidl 21232 df-lpir 21233 df-pid 21247 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-dsmm 21641 df-frlm 21656 df-uvc 21692 df-lindf 21715 df-linds 21716 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evls1 22202 df-evl1 22203 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-mdeg 25960 df-deg1 25961 df-mon1 26036 df-uc1p 26037 df-q1p 26038 df-r1p 26039 df-ig1p 26040 df-log 26465 df-cxp 26466 df-chn 32931 df-fldgen 33261 df-mxidl 33431 df-dim 33595 df-fldext 33637 df-extdg 33638 df-irng 33679 df-minply 33690 df-constr 33720 |
| This theorem is referenced by: cos9thpinconstr 33781 |
| Copyright terms: Public domain | W3C validator |