Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccvonmbl Structured version   Visualization version   GIF version

Theorem iccvonmbl 44543
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iccvonmbl.x (𝜑𝑋 ∈ Fin)
iccvonmbl.s 𝑆 = dom (voln‘𝑋)
iccvonmbl.a (𝜑𝐴:𝑋⟶ℝ)
iccvonmbl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
iccvonmbl (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem iccvonmbl
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccvonmbl.x . 2 (𝜑𝑋 ∈ Fin)
2 iccvonmbl.s . 2 𝑆 = dom (voln‘𝑋)
3 iccvonmbl.a . 2 (𝜑𝐴:𝑋⟶ℝ)
4 iccvonmbl.b . 2 (𝜑𝐵:𝑋⟶ℝ)
5 fveq2 6819 . . . . 5 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
65oveq1d 7344 . . . 4 (𝑗 = 𝑖 → ((𝐴𝑗) − (1 / 𝑛)) = ((𝐴𝑖) − (1 / 𝑛)))
76cbvmptv 5202 . . 3 (𝑗𝑋 ↦ ((𝐴𝑗) − (1 / 𝑛))) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))
87mpteq2i 5194 . 2 (𝑛 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
9 fveq2 6819 . . . . 5 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
109oveq1d 7344 . . . 4 (𝑗 = 𝑖 → ((𝐵𝑗) + (1 / 𝑛)) = ((𝐵𝑖) + (1 / 𝑛)))
1110cbvmptv 5202 . . 3 (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑛))) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))
1211mpteq2i 5194 . 2 (𝑛 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
131, 2, 3, 4, 8, 12iccvonmbllem 44542 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cmpt 5172  dom cdm 5614  wf 6469  cfv 6473  (class class class)co 7329  Xcixp 8748  Fincfn 8796  cr 10963  1c1 10965   + caddc 10967  cmin 11298   / cdiv 11725  cn 12066  [,]cicc 13175  volncvoln 44402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cc 10284  ax-ac2 10312  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-disj 5055  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-tpos 8104  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-oadd 8363  df-omul 8364  df-er 8561  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-dju 9750  df-card 9788  df-acn 9791  df-ac 9965  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-ioo 13176  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-fl 13605  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-rlim 15289  df-sum 15489  df-prod 15707  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-prds 17247  df-pws 17249  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-mhm 18519  df-submnd 18520  df-grp 18668  df-minusg 18669  df-sbg 18670  df-subg 18840  df-ghm 18920  df-cntz 19011  df-cmn 19475  df-abl 19476  df-mgp 19808  df-ur 19825  df-ring 19872  df-cring 19873  df-oppr 19949  df-dvdsr 19970  df-unit 19971  df-invr 20001  df-dvr 20012  df-rnghom 20046  df-drng 20087  df-field 20088  df-subrg 20119  df-abv 20175  df-staf 20203  df-srng 20204  df-lmod 20223  df-lss 20292  df-lmhm 20382  df-lvec 20463  df-sra 20532  df-rgmod 20533  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-cnfld 20696  df-refld 20908  df-phl 20929  df-dsmm 21037  df-frlm 21052  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cmp 22636  df-xms 23571  df-ms 23572  df-nm 23836  df-ngp 23837  df-tng 23838  df-nrg 23839  df-nlm 23840  df-clm 24324  df-cph 24430  df-tcph 24431  df-rrx 24647  df-ovol 24726  df-vol 24727  df-salg 44175  df-sumge0 44227  df-mea 44314  df-ome 44354  df-caragen 44356  df-ovoln 44401  df-voln 44403
This theorem is referenced by:  vonicc  44549  snvonmbl  44550
  Copyright terms: Public domain W3C validator