Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccvonmbl | Structured version Visualization version GIF version |
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
iccvonmbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
iccvonmbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
iccvonmbl.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
iccvonmbl.b | ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
Ref | Expression |
---|---|
iccvonmbl | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccvonmbl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | iccvonmbl.s | . 2 ⊢ 𝑆 = dom (voln‘𝑋) | |
3 | iccvonmbl.a | . 2 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
4 | iccvonmbl.b | . 2 ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) | |
5 | fveq2 6753 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝐴‘𝑗) = (𝐴‘𝑖)) | |
6 | 5 | oveq1d 7267 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝐴‘𝑗) − (1 / 𝑛)) = ((𝐴‘𝑖) − (1 / 𝑛))) |
7 | 6 | cbvmptv 5182 | . . 3 ⊢ (𝑗 ∈ 𝑋 ↦ ((𝐴‘𝑗) − (1 / 𝑛))) = (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛))) |
8 | 7 | mpteq2i 5174 | . 2 ⊢ (𝑛 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐴‘𝑗) − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐴‘𝑖) − (1 / 𝑛)))) |
9 | fveq2 6753 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝐵‘𝑗) = (𝐵‘𝑖)) | |
10 | 9 | oveq1d 7267 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝐵‘𝑗) + (1 / 𝑛)) = ((𝐵‘𝑖) + (1 / 𝑛))) |
11 | 10 | cbvmptv 5182 | . . 3 ⊢ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑛))) = (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛))) |
12 | 11 | mpteq2i 5174 | . 2 ⊢ (𝑛 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (𝑖 ∈ 𝑋 ↦ ((𝐵‘𝑖) + (1 / 𝑛)))) |
13 | 1, 2, 3, 4, 8, 12 | iccvonmbllem 44079 | 1 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)[,](𝐵‘𝑖)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ↦ cmpt 5152 dom cdm 5579 ⟶wf 6411 ‘cfv 6415 (class class class)co 7252 Xcixp 8620 Fincfn 8668 ℝcr 10776 1c1 10778 + caddc 10780 − cmin 11110 / cdiv 11537 ℕcn 11878 [,]cicc 12986 volncvoln 43939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-inf2 9304 ax-cc 10097 ax-ac2 10125 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 ax-addf 10856 ax-mulf 10857 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-of 7508 df-om 7685 df-1st 7801 df-2nd 7802 df-supp 7946 df-tpos 8010 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-2o 8245 df-oadd 8248 df-omul 8249 df-er 8433 df-map 8552 df-pm 8553 df-ixp 8621 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fsupp 9034 df-fi 9075 df-sup 9106 df-inf 9107 df-oi 9174 df-dju 9565 df-card 9603 df-acn 9606 df-ac 9778 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-q 12593 df-rp 12635 df-xneg 12752 df-xadd 12753 df-xmul 12754 df-ioo 12987 df-ico 12989 df-icc 12990 df-fz 13144 df-fzo 13287 df-fl 13415 df-seq 13625 df-exp 13686 df-hash 13948 df-cj 14713 df-re 14714 df-im 14715 df-sqrt 14849 df-abs 14850 df-clim 15100 df-rlim 15101 df-sum 15301 df-prod 15519 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-starv 16878 df-sca 16879 df-vsca 16880 df-ip 16881 df-tset 16882 df-ple 16883 df-ds 16885 df-unif 16886 df-hom 16887 df-cco 16888 df-rest 17025 df-topn 17026 df-0g 17044 df-gsum 17045 df-topgen 17046 df-prds 17050 df-pws 17052 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-mhm 18320 df-submnd 18321 df-grp 18470 df-minusg 18471 df-sbg 18472 df-subg 18642 df-ghm 18722 df-cntz 18813 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-cring 19676 df-oppr 19752 df-dvdsr 19773 df-unit 19774 df-invr 19804 df-dvr 19815 df-rnghom 19849 df-drng 19883 df-field 19884 df-subrg 19912 df-abv 19967 df-staf 19995 df-srng 19996 df-lmod 20015 df-lss 20084 df-lmhm 20174 df-lvec 20255 df-sra 20324 df-rgmod 20325 df-psmet 20477 df-xmet 20478 df-met 20479 df-bl 20480 df-mopn 20481 df-cnfld 20486 df-refld 20697 df-phl 20718 df-dsmm 20824 df-frlm 20839 df-top 21926 df-topon 21943 df-topsp 21965 df-bases 21979 df-cmp 22421 df-xms 23356 df-ms 23357 df-nm 23619 df-ngp 23620 df-tng 23621 df-nrg 23622 df-nlm 23623 df-clm 24107 df-cph 24212 df-tcph 24213 df-rrx 24429 df-ovol 24508 df-vol 24509 df-salg 43713 df-sumge0 43764 df-mea 43851 df-ome 43891 df-caragen 43893 df-ovoln 43938 df-voln 43940 |
This theorem is referenced by: vonicc 44086 snvonmbl 44087 |
Copyright terms: Public domain | W3C validator |