Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chpcl | Structured version Visualization version GIF version |
Description: Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
chpcl | ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpf 25812 | . 2 ⊢ ψ:ℝ⟶ℝ | |
2 | 1 | ffvelrni 6846 | 1 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6339 ℝcr 10579 ψcchp 25782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 ax-mulf 10660 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-2o 8118 df-oadd 8121 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-fi 8913 df-sup 8944 df-inf 8945 df-oi 9012 df-dju 9368 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-ioo 12788 df-ioc 12789 df-ico 12790 df-icc 12791 df-fz 12945 df-fzo 13088 df-fl 13216 df-mod 13292 df-seq 13424 df-exp 13485 df-fac 13689 df-bc 13718 df-hash 13746 df-shft 14479 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-limsup 14881 df-clim 14898 df-rlim 14899 df-sum 15096 df-ef 15474 df-sin 15476 df-cos 15477 df-pi 15479 df-dvds 15661 df-gcd 15899 df-prm 16073 df-pc 16234 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-starv 16643 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-hom 16652 df-cco 16653 df-rest 16759 df-topn 16760 df-0g 16778 df-gsum 16779 df-topgen 16780 df-pt 16781 df-prds 16784 df-xrs 16838 df-qtop 16843 df-imas 16844 df-xps 16846 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-mulg 18297 df-cntz 18519 df-cmn 18980 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-fbas 20168 df-fg 20169 df-cnfld 20172 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-cld 21724 df-ntr 21725 df-cls 21726 df-nei 21803 df-lp 21841 df-perf 21842 df-cn 21932 df-cnp 21933 df-haus 22020 df-tx 22267 df-hmeo 22460 df-fil 22551 df-fm 22643 df-flim 22644 df-flf 22645 df-xms 23027 df-ms 23028 df-tms 23029 df-cncf 23584 df-limc 24570 df-dv 24571 df-log 25252 df-vma 25787 df-chp 25788 |
This theorem is referenced by: chpge0 25815 chprpcl 25895 chpeq0 25896 chpub 25908 chpchtlim 26167 chpo1ub 26168 chpo1ubb 26169 vmadivsum 26170 selberg 26236 selbergb 26237 selberg2lem 26238 selberg2 26239 selberg2b 26240 chpdifbndlem1 26241 selberg3lem1 26245 selberg3lem2 26246 selberg3 26247 selberg4lem1 26248 selberg4 26249 pntrf 26251 pntrmax 26252 pntrsumo1 26253 selbergr 26256 selberg3r 26257 selberg4r 26258 pntsf 26261 pntsval2 26264 pntrlog2bndlem2 26266 pntrlog2bnd 26272 pntpbnd1a 26273 pntibndlem2 26279 pntlem3 26297 pnt2 26301 |
Copyright terms: Public domain | W3C validator |