![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dmdsym | Structured version Visualization version GIF version |
Description: Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdsym | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choccl 31358 | . . 3 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
2 | choccl 31358 | . . 3 ⊢ (𝐵 ∈ Cℋ → (⊥‘𝐵) ∈ Cℋ ) | |
3 | mdsym 32464 | . . 3 ⊢ (((⊥‘𝐴) ∈ Cℋ ∧ (⊥‘𝐵) ∈ Cℋ ) → ((⊥‘𝐴) 𝑀ℋ (⊥‘𝐵) ↔ (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴))) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((⊥‘𝐴) 𝑀ℋ (⊥‘𝐵) ↔ (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴))) |
5 | dmdmd 32352 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ (⊥‘𝐵))) | |
6 | dmdmd 32352 | . . 3 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴))) | |
7 | 6 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴))) |
8 | 4, 5, 7 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5167 ‘cfv 6576 Cℋ cch 30981 ⊥cort 30982 𝑀ℋ cmd 31018 𝑀ℋ* cdmd 31019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5304 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-inf2 9713 ax-cc 10507 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 ax-addf 11266 ax-mulf 11267 ax-hilex 31051 ax-hfvadd 31052 ax-hvcom 31053 ax-hvass 31054 ax-hv0cl 31055 ax-hvaddid 31056 ax-hfvmul 31057 ax-hvmulid 31058 ax-hvmulass 31059 ax-hvdistr1 31060 ax-hvdistr2 31061 ax-hvmul0 31062 ax-hfi 31131 ax-his1 31134 ax-his2 31135 ax-his3 31136 ax-his4 31137 ax-hcompl 31254 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4933 df-int 4972 df-iun 5018 df-iin 5019 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-se 5654 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-isom 6585 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-of 7717 df-om 7907 df-1st 8033 df-2nd 8034 df-supp 8205 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-1o 8525 df-2o 8526 df-oadd 8529 df-omul 8530 df-er 8766 df-map 8889 df-pm 8890 df-ixp 8959 df-en 9007 df-dom 9008 df-sdom 9009 df-fin 9010 df-fsupp 9435 df-fi 9483 df-sup 9514 df-inf 9515 df-oi 9582 df-card 10011 df-acn 10014 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-7 12366 df-8 12367 df-9 12368 df-n0 12559 df-z 12646 df-dec 12766 df-uz 12911 df-q 13023 df-rp 13067 df-xneg 13186 df-xadd 13187 df-xmul 13188 df-ioo 13422 df-ico 13424 df-icc 13425 df-fz 13579 df-fzo 13723 df-fl 13859 df-seq 14070 df-exp 14130 df-hash 14397 df-cj 15165 df-re 15166 df-im 15167 df-sqrt 15301 df-abs 15302 df-clim 15551 df-rlim 15552 df-sum 15752 df-struct 17214 df-sets 17231 df-slot 17249 df-ndx 17261 df-base 17279 df-ress 17308 df-plusg 17344 df-mulr 17345 df-starv 17346 df-sca 17347 df-vsca 17348 df-ip 17349 df-tset 17350 df-ple 17351 df-ds 17353 df-unif 17354 df-hom 17355 df-cco 17356 df-rest 17502 df-topn 17503 df-0g 17521 df-gsum 17522 df-topgen 17523 df-pt 17524 df-prds 17527 df-xrs 17582 df-qtop 17587 df-imas 17588 df-xps 17590 df-mre 17664 df-mrc 17665 df-acs 17667 df-mgm 18698 df-sgrp 18777 df-mnd 18793 df-submnd 18839 df-mulg 19128 df-cntz 19377 df-cmn 19844 df-psmet 21399 df-xmet 21400 df-met 21401 df-bl 21402 df-mopn 21403 df-fbas 21404 df-fg 21405 df-cnfld 21408 df-top 22941 df-topon 22958 df-topsp 22980 df-bases 22994 df-cld 23068 df-ntr 23069 df-cls 23070 df-nei 23147 df-cn 23276 df-cnp 23277 df-lm 23278 df-haus 23364 df-tx 23611 df-hmeo 23804 df-fil 23895 df-fm 23987 df-flim 23988 df-flf 23989 df-xms 24371 df-ms 24372 df-tms 24373 df-cfil 25328 df-cau 25329 df-cmet 25330 df-grpo 30545 df-gid 30546 df-ginv 30547 df-gdiv 30548 df-ablo 30597 df-vc 30611 df-nv 30644 df-va 30647 df-ba 30648 df-sm 30649 df-0v 30650 df-vs 30651 df-nmcv 30652 df-ims 30653 df-dip 30753 df-ssp 30774 df-ph 30865 df-cbn 30915 df-hnorm 31020 df-hba 31021 df-hvsub 31023 df-hlim 31024 df-hcau 31025 df-sh 31259 df-ch 31273 df-oc 31304 df-ch0 31305 df-shs 31360 df-span 31361 df-chj 31362 df-chsup 31363 df-pjh 31447 df-cv 32331 df-md 32332 df-dmd 32333 df-at 32390 |
This theorem is referenced by: atdmd2 32466 |
Copyright terms: Public domain | W3C validator |