| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjsumi | Structured version Visualization version GIF version | ||
| Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjsumt.1 | ⊢ 𝐺 ∈ Cℋ |
| pjsumt.2 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjsumi | ⊢ (𝐴 ∈ ℋ → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjsumt.1 | . . . . . . 7 ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjsumt.2 | . . . . . . 7 ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1, 2 | osumi 31604 | . . . . . 6 ⊢ (𝐺 ⊆ (⊥‘𝐻) → (𝐺 +ℋ 𝐻) = (𝐺 ∨ℋ 𝐻)) |
| 4 | 3 | fveq2d 6891 | . . . . 5 ⊢ (𝐺 ⊆ (⊥‘𝐻) → (projℎ‘(𝐺 +ℋ 𝐻)) = (projℎ‘(𝐺 ∨ℋ 𝐻))) |
| 5 | 4 | fveq1d 6889 | . . . 4 ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝐴)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐺 ⊆ (⊥‘𝐻)) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝐴)) |
| 7 | pjcjt2 31654 | . . . . 5 ⊢ ((𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))) | |
| 8 | 1, 2, 7 | mp3an12 1452 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))) |
| 9 | 8 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐺 ⊆ (⊥‘𝐻)) → ((projℎ‘(𝐺 ∨ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴))) |
| 10 | 6, 9 | eqtrd 2769 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐺 ⊆ (⊥‘𝐻)) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴))) |
| 11 | 10 | ex 412 | 1 ⊢ (𝐴 ∈ ℋ → (𝐺 ⊆ (⊥‘𝐻) → ((projℎ‘(𝐺 +ℋ 𝐻))‘𝐴) = (((projℎ‘𝐺)‘𝐴) +ℎ ((projℎ‘𝐻)‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ‘cfv 6542 (class class class)co 7414 ℋchba 30881 +ℎ cva 30882 Cℋ cch 30891 ⊥cort 30892 +ℋ cph 30893 ∨ℋ chj 30895 projℎcpjh 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvmulass 30969 ax-hvdistr1 30970 ax-hvdistr2 30971 ax-hvmul0 30972 ax-hfi 31041 ax-his1 31044 ax-his2 31045 ax-his3 31046 ax-his4 31047 ax-hcompl 31164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-omul 8494 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-fl 13815 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19769 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-fbas 21324 df-fg 21325 df-cnfld 21328 df-top 22863 df-topon 22880 df-topsp 22902 df-bases 22915 df-cld 22988 df-ntr 22989 df-cls 22990 df-nei 23067 df-cn 23196 df-cnp 23197 df-lm 23198 df-haus 23284 df-tx 23531 df-hmeo 23724 df-fil 23815 df-fm 23907 df-flim 23908 df-flf 23909 df-xms 24290 df-ms 24291 df-tms 24292 df-cfil 25240 df-cau 25241 df-cmet 25242 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ims 30563 df-dip 30663 df-ssp 30684 df-ph 30775 df-cbn 30825 df-hnorm 30930 df-hba 30931 df-hvsub 30933 df-hlim 30934 df-hcau 30935 df-sh 31169 df-ch 31183 df-oc 31214 df-ch0 31215 df-shs 31270 df-chj 31272 df-pjh 31357 |
| This theorem is referenced by: pjdsi 31674 pjds3i 31675 |
| Copyright terms: Public domain | W3C validator |