| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > boolesineq | Structured version Visualization version GIF version | ||
| Description: Boole's inequality (union bound). For any finite or countable collection of events, the probability of their union is at most the sum of their probabilities. (Suggested by DeepSeek R1.) (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| boolesineq | ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → (𝑃‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ Σ*𝑛 ∈ ℕ(𝑃‘(𝐴‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domprobmeas 34391 | . . 3 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → 𝑃 ∈ (measures‘dom 𝑃)) |
| 3 | domprobsiga 34392 | . . 3 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → 𝐴:ℕ⟶dom 𝑃) | |
| 5 | 4 | ffvelcdmda 7011 | . . . 4 ⊢ (((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ dom 𝑃) |
| 6 | 5 | ralrimiva 3121 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) |
| 7 | sigaclcu2 34101 | . . 3 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) | |
| 8 | 3, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) |
| 9 | ssidd 3955 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ ∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) | |
| 10 | 2, 8, 5, 9 | measiun 34199 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → (𝑃‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ Σ*𝑛 ∈ ℕ(𝑃‘(𝐴‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∪ cuni 4856 ∪ ciun 4938 class class class wbr 5088 dom cdm 5613 ran crn 5614 ⟶wf 6472 ‘cfv 6476 ≤ cle 11138 ℕcn 12116 Σ*cesum 34008 sigAlgebracsiga 34089 measurescmeas 34176 Probcprb 34388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-inf2 9525 ax-ac2 10345 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 ax-pre-sup 11075 ax-addf 11076 ax-mulf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-disj 5056 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-of 7604 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-map 8746 df-pm 8747 df-ixp 8816 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-fi 9289 df-sup 9320 df-inf 9321 df-oi 9390 df-dju 9785 df-card 9823 df-acn 9826 df-ac 9998 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-div 11766 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-z 12460 df-dec 12580 df-uz 12724 df-q 12838 df-rp 12882 df-xneg 13002 df-xadd 13003 df-xmul 13004 df-ioo 13240 df-ioc 13241 df-ico 13242 df-icc 13243 df-fz 13399 df-fzo 13546 df-fl 13684 df-mod 13762 df-seq 13897 df-exp 13957 df-fac 14169 df-bc 14198 df-hash 14226 df-shft 14961 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-limsup 15365 df-clim 15382 df-rlim 15383 df-sum 15581 df-ef 15961 df-sin 15963 df-cos 15964 df-pi 15966 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-starv 17163 df-sca 17164 df-vsca 17165 df-ip 17166 df-tset 17167 df-ple 17168 df-ds 17170 df-unif 17171 df-hom 17172 df-cco 17173 df-rest 17313 df-topn 17314 df-0g 17332 df-gsum 17333 df-topgen 17334 df-pt 17335 df-prds 17338 df-ordt 17392 df-xrs 17393 df-qtop 17398 df-imas 17399 df-xps 17401 df-mre 17475 df-mrc 17476 df-acs 17478 df-ps 18459 df-tsr 18460 df-plusf 18500 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mhm 18644 df-submnd 18645 df-grp 18802 df-minusg 18803 df-sbg 18804 df-mulg 18934 df-subg 18989 df-cntz 19183 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-ring 20107 df-cring 20108 df-subrng 20415 df-subrg 20439 df-abv 20678 df-lmod 20749 df-scaf 20750 df-sra 21061 df-rgmod 21062 df-psmet 21237 df-xmet 21238 df-met 21239 df-bl 21240 df-mopn 21241 df-fbas 21242 df-fg 21243 df-cnfld 21246 df-top 22763 df-topon 22780 df-topsp 22802 df-bases 22815 df-cld 22888 df-ntr 22889 df-cls 22890 df-nei 22967 df-lp 23005 df-perf 23006 df-cn 23096 df-cnp 23097 df-haus 23184 df-tx 23431 df-hmeo 23624 df-fil 23715 df-fm 23807 df-flim 23808 df-flf 23809 df-tmd 23941 df-tgp 23942 df-tsms 23996 df-trg 24029 df-xms 24189 df-ms 24190 df-tms 24191 df-nm 24451 df-ngp 24452 df-nrg 24454 df-nlm 24455 df-ii 24751 df-cncf 24752 df-limc 25748 df-dv 25749 df-log 26446 df-esum 34009 df-siga 34090 df-meas 34177 df-prob 34389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |