| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > boolesineq | Structured version Visualization version GIF version | ||
| Description: Boole's inequality (union bound). For any finite or countable collection of events, the probability of their union is at most the sum of their probabilities. (Suggested by DeepSeek R1.) (Contributed by Ender Ting, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| boolesineq | ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → (𝑃‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ Σ*𝑛 ∈ ℕ(𝑃‘(𝐴‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domprobmeas 34430 | . . 3 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → 𝑃 ∈ (measures‘dom 𝑃)) |
| 3 | domprobsiga 34431 | . . 3 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → 𝐴:ℕ⟶dom 𝑃) | |
| 5 | 4 | ffvelcdmda 7023 | . . . 4 ⊢ (((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ dom 𝑃) |
| 6 | 5 | ralrimiva 3124 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) |
| 7 | sigaclcu2 34140 | . . 3 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) | |
| 8 | 3, 6, 7 | syl2an2r 685 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ∈ dom 𝑃) |
| 9 | ssidd 3953 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ ∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) | |
| 10 | 2, 8, 5, 9 | measiun 34238 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → (𝑃‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ Σ*𝑛 ∈ ℕ(𝑃‘(𝐴‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5093 dom cdm 5619 ran crn 5620 ⟶wf 6483 ‘cfv 6487 ≤ cle 11153 ℕcn 12131 Σ*cesum 34047 sigAlgebracsiga 34128 measurescmeas 34215 Probcprb 34427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-ac2 10360 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9800 df-card 9838 df-acn 9841 df-ac 10013 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13255 df-ioc 13256 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-fac 14187 df-bc 14216 df-hash 14244 df-shft 14980 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-limsup 15384 df-clim 15401 df-rlim 15402 df-sum 15600 df-ef 15980 df-sin 15982 df-cos 15983 df-pi 15985 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-rest 17332 df-topn 17333 df-0g 17351 df-gsum 17352 df-topgen 17353 df-pt 17354 df-prds 17357 df-ordt 17411 df-xrs 17412 df-qtop 17417 df-imas 17418 df-xps 17420 df-mre 17494 df-mrc 17495 df-acs 17497 df-ps 18478 df-tsr 18479 df-plusf 18553 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-subrng 20467 df-subrg 20491 df-abv 20730 df-lmod 20801 df-scaf 20802 df-sra 21113 df-rgmod 21114 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-tmd 23993 df-tgp 23994 df-tsms 24048 df-trg 24081 df-xms 24241 df-ms 24242 df-tms 24243 df-nm 24503 df-ngp 24504 df-nrg 24506 df-nlm 24507 df-ii 24803 df-cncf 24804 df-limc 25800 df-dv 25801 df-log 26498 df-esum 34048 df-siga 34129 df-meas 34216 df-prob 34428 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |