![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitgclcn | Structured version Visualization version GIF version |
Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the complex numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
sitgclcn.1 | ⊢ (𝜑 → 𝑊 ∈ Ban) |
sitgclcn.2 | ⊢ (𝜑 → (Scalar‘𝑊) = ℂfld) |
Ref | Expression |
---|---|
sitgclcn | ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | . 2 ⊢ 𝐵 = (Base‘𝑊) | |
2 | sitgval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | sitgval.s | . 2 ⊢ 𝑆 = (sigaGen‘𝐽) | |
4 | sitgval.0 | . 2 ⊢ 0 = (0g‘𝑊) | |
5 | sitgval.x | . 2 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | sitgval.h | . 2 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
7 | sitgval.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
8 | sitgval.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
9 | sibfmbl.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
10 | sitgclcn.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ Ban) | |
11 | sitgclcn.2 | . . 3 ⊢ (𝜑 → (Scalar‘𝑊) = ℂfld) | |
12 | cnrrext 33948 | . . 3 ⊢ ℂfld ∈ ℝExt | |
13 | 11, 12 | eqeltrdi 2852 | . 2 ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 | sitgclbn 34300 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 dom cdm 5695 ran crn 5696 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 Scalarcsca 17308 ·𝑠 cvsca 17309 TopOpenctopn 17475 0gc0g 17493 ℂfldccnfld 21381 Bancbn 25378 ℝHomcrrh 33931 ℝExt crrext 33932 sigaGencsigagen 34094 measurescmeas 34151 sitgcsitg 34286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 ax-addf 11257 ax-mulf 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-tpos 8261 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-fi 9474 df-sup 9505 df-inf 9506 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-q 13008 df-rp 13052 df-xneg 13169 df-xadd 13170 df-xmul 13171 df-ioo 13405 df-ico 13407 df-icc 13408 df-fz 13562 df-fzo 13706 df-fl 13837 df-mod 13915 df-seq 14047 df-exp 14107 df-hash 14374 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-dvds 16297 df-gcd 16535 df-numer 16776 df-denom 16777 df-gz 16971 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-rest 17476 df-topn 17477 df-0g 17495 df-gsum 17496 df-topgen 17497 df-pt 17498 df-prds 17501 df-xrs 17556 df-qtop 17561 df-imas 17562 df-xps 17564 df-mre 17638 df-mrc 17639 df-acs 17641 df-proset 18359 df-poset 18377 df-plt 18394 df-toset 18481 df-ps 18630 df-tsr 18631 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-submnd 18813 df-grp 18970 df-minusg 18971 df-sbg 18972 df-mulg 19102 df-subg 19157 df-ghm 19247 df-cntz 19351 df-od 19564 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-ring 20256 df-cring 20257 df-oppr 20354 df-dvdsr 20377 df-unit 20378 df-invr 20408 df-dvr 20421 df-rhm 20492 df-nzr 20533 df-subrng 20566 df-subrg 20591 df-drng 20747 df-field 20748 df-abv 20826 df-lmod 20876 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-metu 21380 df-cnfld 21382 df-zring 21475 df-zrh 21531 df-zlm 21532 df-chr 21533 df-refld 21640 df-top 22913 df-topon 22930 df-topsp 22952 df-bases 22966 df-cld 23040 df-ntr 23041 df-cls 23042 df-nei 23119 df-cn 23248 df-cnp 23249 df-haus 23336 df-reg 23337 df-cmp 23408 df-tx 23583 df-hmeo 23776 df-fil 23867 df-fm 23959 df-flim 23960 df-flf 23961 df-fcls 23962 df-cnext 24081 df-ust 24222 df-utop 24253 df-uss 24278 df-usp 24279 df-ucn 24298 df-cfilu 24309 df-cusp 24320 df-xms 24343 df-ms 24344 df-tms 24345 df-nm 24608 df-ngp 24609 df-nrg 24611 df-nlm 24612 df-nvc 24613 df-cncf 24915 df-cfil 25300 df-cmet 25302 df-cms 25380 df-bn 25381 df-omnd 33041 df-ogrp 33042 df-orng 33284 df-ofld 33285 df-qqh 33911 df-rrh 33933 df-rrext 33937 df-esum 33984 df-siga 34065 df-sigagen 34095 df-meas 34152 df-mbfm 34206 df-sitg 34287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |