Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2 Structured version   Visualization version   GIF version

Theorem constrextdg2 33732
Description: Any step (𝐶𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with . See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
constrextdg2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑡,𝑁,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2
Dummy variables 𝑛 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrextdg2.n . 2 (𝜑𝑁 ∈ ω)
2 fveq2 6840 . . . . . 6 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3975 . . . . 5 (𝑚 = ∅ → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣)))
43anbi2d 630 . . . 4 (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
54rexbidv 3157 . . 3 (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
6 fveq2 6840 . . . . . . 7 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
76sseq1d 3975 . . . . . 6 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑣)))
87anbi2d 630 . . . . 5 (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
98rexbidv 3157 . . . 4 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
10 fveq1 6839 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
1110eqeq1d 2731 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
12 fveq2 6840 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1312sseq2d 3976 . . . . . 6 (𝑣 = 𝑢 → ((𝐶𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑢)))
1411, 13anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
1514cbvrexvw 3214 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)))
169, 15bitrdi 287 . . 3 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
17 fveq2 6840 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1817sseq1d 3975 . . . . 5 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
1918anbi2d 630 . . . 4 (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
2019rexbidv 3157 . . 3 (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
21 fveq2 6840 . . . . . 6 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
2221sseq1d 3975 . . . . 5 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑁) ⊆ (lastS‘𝑣)))
2322anbi2d 630 . . . 4 (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
2423rexbidv 3157 . . 3 (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
25 fveq1 6839 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (𝑣‘0) = (⟨“ℚ”⟩‘0))
2625eqeq1d 2731 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝑣‘0) = ℚ ↔ (⟨“ℚ”⟩‘0) = ℚ))
27 fveq2 6840 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (lastS‘𝑣) = (lastS‘⟨“ℚ”⟩))
2827sseq2d 3976 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
2926, 28anbi12d 632 . . . . 5 (𝑣 = ⟨“ℚ”⟩ → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩))))
30 cndrng 21340 . . . . . . . 8 fld ∈ DivRing
31 qsubdrg 21361 . . . . . . . . 9 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
3231simpli 483 . . . . . . . 8 ℚ ∈ (SubRing‘ℂfld)
3331simpri 485 . . . . . . . 8 (ℂflds ℚ) ∈ DivRing
34 issdrg 20708 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
3530, 32, 33, 34mpbir3an 1342 . . . . . . 7 ℚ ∈ (SubDRing‘ℂfld)
3635a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
3736s1chn 32982 . . . . 5 (⊤ → ⟨“ℚ”⟩ ∈ ( < Chain(SubDRing‘ℂfld)))
38 s1fv 14551 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) → (⟨“ℚ”⟩‘0) = ℚ)
3936, 38syl 17 . . . . . 6 (⊤ → (⟨“ℚ”⟩‘0) = ℚ)
40 0z 12516 . . . . . . . . 9 0 ∈ ℤ
41 1z 12539 . . . . . . . . 9 1 ∈ ℤ
42 prssi 4781 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
4340, 41, 42mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℤ
44 zssq 12891 . . . . . . . 8 ℤ ⊆ ℚ
4543, 44sstri 3953 . . . . . . 7 {0, 1} ⊆ ℚ
46 constr0.1 . . . . . . . 8 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
4746constr0 33720 . . . . . . 7 (𝐶‘∅) = {0, 1}
48 lsws1 14552 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘⟨“ℚ”⟩) = ℚ)
4935, 48ax-mp 5 . . . . . . 7 (lastS‘⟨“ℚ”⟩) = ℚ
5045, 47, 493sstr4i 3995 . . . . . 6 (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)
5139, 50jctir 520 . . . . 5 (⊤ → ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
5229, 37, 51rspcedvdw 3588 . . . 4 (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))
5352mptru 1547 . . 3 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))
54 constrextdg2.1 . . . . . 6 𝐸 = (ℂflds 𝑒)
55 constrextdg2.2 . . . . . 6 𝐹 = (ℂflds 𝑓)
56 constrextdg2.l . . . . . 6 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
57 simplll 774 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω)
58 simpllr 775 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld)))
59 simplr 768 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ)
60 simpr 484 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝐶𝑛) ⊆ (lastS‘𝑢))
6146, 54, 55, 56, 57, 58, 59, 60constrextdg2lem 33731 . . . . 5 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6261anasss 466 . . . 4 (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6362rexlimdva2 3136 . . 3 (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
645, 16, 20, 24, 53, 63finds 7852 . 2 (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
651, 64syl 17 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292  {cpr 4587   class class class wbr 5102  {copab 5164  cmpt 5183  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  2c2 12217  cz 12505  cq 12883  lastSclsw 14503  ⟨“cs1 14536  ccj 15038  cim 15040  abscabs 15176  s cress 17176  SubRingcsubrg 20489  DivRingcdr 20649  SubDRingcsdrg 20706  fldccnfld 21296  Chaincchn 32976  /FldExtcfldext 33627  [:]cextdg 33629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18235  df-drs 18236  df-poset 18254  df-ipo 18469  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-irred 20279  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lmhm 20961  df-lmim 20962  df-lmic 20963  df-lbs 21014  df-lvec 21042  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-lpidl 21264  df-lpir 21265  df-pid 21279  df-cnfld 21297  df-dsmm 21674  df-frlm 21689  df-uvc 21725  df-lindf 21748  df-linds 21749  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-q1p 26071  df-r1p 26072  df-ig1p 26073  df-chn 32977  df-fldgen 33277  df-mxidl 33424  df-dim 33588  df-fldext 33630  df-extdg 33631  df-irng 33672  df-minply 33683
This theorem is referenced by:  constrext2chnlem  33733
  Copyright terms: Public domain W3C validator