Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2 Structured version   Visualization version   GIF version

Theorem constrextdg2 33729
Description: Any step (𝐶𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with . (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
constrextdg2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑡,𝑁,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2
Dummy variables 𝑛 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrextdg2.n . 2 (𝜑𝑁 ∈ ω)
2 fveq2 6875 . . . . . 6 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3990 . . . . 5 (𝑚 = ∅ → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣)))
43anbi2d 630 . . . 4 (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
54rexbidv 3164 . . 3 (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
6 fveq2 6875 . . . . . . 7 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
76sseq1d 3990 . . . . . 6 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑣)))
87anbi2d 630 . . . . 5 (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
98rexbidv 3164 . . . 4 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
10 fveq1 6874 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
1110eqeq1d 2737 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
12 fveq2 6875 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1312sseq2d 3991 . . . . . 6 (𝑣 = 𝑢 → ((𝐶𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑢)))
1411, 13anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
1514cbvrexvw 3221 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)))
169, 15bitrdi 287 . . 3 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
17 fveq2 6875 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1817sseq1d 3990 . . . . 5 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
1918anbi2d 630 . . . 4 (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
2019rexbidv 3164 . . 3 (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
21 fveq2 6875 . . . . . 6 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
2221sseq1d 3990 . . . . 5 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑁) ⊆ (lastS‘𝑣)))
2322anbi2d 630 . . . 4 (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
2423rexbidv 3164 . . 3 (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
25 fveq1 6874 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (𝑣‘0) = (⟨“ℚ”⟩‘0))
2625eqeq1d 2737 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝑣‘0) = ℚ ↔ (⟨“ℚ”⟩‘0) = ℚ))
27 fveq2 6875 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (lastS‘𝑣) = (lastS‘⟨“ℚ”⟩))
2827sseq2d 3991 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
2926, 28anbi12d 632 . . . . 5 (𝑣 = ⟨“ℚ”⟩ → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩))))
30 cndrng 21359 . . . . . . . 8 fld ∈ DivRing
31 qsubdrg 21385 . . . . . . . . 9 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
3231simpli 483 . . . . . . . 8 ℚ ∈ (SubRing‘ℂfld)
3331simpri 485 . . . . . . . 8 (ℂflds ℚ) ∈ DivRing
34 issdrg 20746 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
3530, 32, 33, 34mpbir3an 1342 . . . . . . 7 ℚ ∈ (SubDRing‘ℂfld)
3635a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
3736s1chn 32936 . . . . 5 (⊤ → ⟨“ℚ”⟩ ∈ ( < Chain(SubDRing‘ℂfld)))
38 s1fv 14626 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) → (⟨“ℚ”⟩‘0) = ℚ)
3936, 38syl 17 . . . . . 6 (⊤ → (⟨“ℚ”⟩‘0) = ℚ)
40 0z 12597 . . . . . . . . 9 0 ∈ ℤ
41 1z 12620 . . . . . . . . 9 1 ∈ ℤ
42 prssi 4797 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
4340, 41, 42mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℤ
44 zssq 12970 . . . . . . . 8 ℤ ⊆ ℚ
4543, 44sstri 3968 . . . . . . 7 {0, 1} ⊆ ℚ
46 constr0.1 . . . . . . . 8 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
4746constr0 33717 . . . . . . 7 (𝐶‘∅) = {0, 1}
48 lsws1 14627 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘⟨“ℚ”⟩) = ℚ)
4935, 48ax-mp 5 . . . . . . 7 (lastS‘⟨“ℚ”⟩) = ℚ
5045, 47, 493sstr4i 4010 . . . . . 6 (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)
5139, 50jctir 520 . . . . 5 (⊤ → ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
5229, 37, 51rspcedvdw 3604 . . . 4 (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))
5352mptru 1547 . . 3 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))
54 constrextdg2.1 . . . . . 6 𝐸 = (ℂflds 𝑒)
55 constrextdg2.2 . . . . . 6 𝐹 = (ℂflds 𝑓)
56 constrextdg2.l . . . . . 6 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
57 simplll 774 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω)
58 simpllr 775 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld)))
59 simplr 768 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ)
60 simpr 484 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝐶𝑛) ⊆ (lastS‘𝑢))
6146, 54, 55, 56, 57, 58, 59, 60constrextdg2lem 33728 . . . . 5 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6261anasss 466 . . . 4 (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6362rexlimdva2 3143 . . 3 (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
645, 16, 20, 24, 53, 63finds 7890 . 2 (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
651, 64syl 17 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  {cpr 4603   class class class wbr 5119  {copab 5181  cmpt 5201  suc csuc 6354  cfv 6530  (class class class)co 7403  ωcom 7859  reccrdg 8421  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  cmin 11464  2c2 12293  cz 12586  cq 12962  lastSclsw 14578  ⟨“cs1 14611  ccj 15113  cim 15115  abscabs 15251  s cress 17249  SubRingcsubrg 20527  DivRingcdr 20687  SubDRingcsdrg 20744  fldccnfld 21313  Chaincchn 32930  /FldExtcfldext 33624  [:]cextdg 33627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-inf2 9653  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-r1 9776  df-rank 9777  df-dju 9913  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-ico 13366  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-word 14530  df-lsw 14579  df-concat 14587  df-s1 14612  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ocomp 17290  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-imas 17520  df-qus 17521  df-mre 17596  df-mrc 17597  df-mri 17598  df-acs 17599  df-proset 18304  df-drs 18305  df-poset 18323  df-ipo 18536  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-gim 19240  df-cntz 19298  df-oppg 19327  df-lsm 19615  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-irred 20317  df-invr 20346  df-dvr 20359  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-drng 20689  df-field 20690  df-sdrg 20745  df-lmod 20817  df-lss 20887  df-lsp 20927  df-lmhm 20978  df-lmim 20979  df-lmic 20980  df-lbs 21031  df-lvec 21059  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-lpidl 21281  df-lpir 21282  df-pid 21296  df-cnfld 21314  df-dsmm 21690  df-frlm 21705  df-uvc 21741  df-lindf 21764  df-linds 21765  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089  df-ig1p 26090  df-chn 32931  df-fldgen 33251  df-mxidl 33421  df-dim 33585  df-fldext 33628  df-extdg 33629  df-irng 33671  df-minply 33680
This theorem is referenced by:  constrext2chnlem  33730
  Copyright terms: Public domain W3C validator