Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2 Structured version   Visualization version   GIF version

Theorem constrextdg2 33790
Description: Any step (𝐶𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with . (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
constrextdg2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑡,𝑁,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2
Dummy variables 𝑛 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrextdg2.n . 2 (𝜑𝑁 ∈ ω)
2 fveq2 6906 . . . . . 6 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 4015 . . . . 5 (𝑚 = ∅ → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣)))
43anbi2d 630 . . . 4 (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
54rexbidv 3179 . . 3 (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
6 fveq2 6906 . . . . . . 7 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
76sseq1d 4015 . . . . . 6 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑣)))
87anbi2d 630 . . . . 5 (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
98rexbidv 3179 . . . 4 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
10 fveq1 6905 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
1110eqeq1d 2739 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
12 fveq2 6906 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1312sseq2d 4016 . . . . . 6 (𝑣 = 𝑢 → ((𝐶𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑢)))
1411, 13anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
1514cbvrexvw 3238 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)))
169, 15bitrdi 287 . . 3 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
17 fveq2 6906 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1817sseq1d 4015 . . . . 5 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
1918anbi2d 630 . . . 4 (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
2019rexbidv 3179 . . 3 (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
21 fveq2 6906 . . . . . 6 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
2221sseq1d 4015 . . . . 5 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑁) ⊆ (lastS‘𝑣)))
2322anbi2d 630 . . . 4 (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
2423rexbidv 3179 . . 3 (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
25 fveq1 6905 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (𝑣‘0) = (⟨“ℚ”⟩‘0))
2625eqeq1d 2739 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝑣‘0) = ℚ ↔ (⟨“ℚ”⟩‘0) = ℚ))
27 fveq2 6906 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (lastS‘𝑣) = (lastS‘⟨“ℚ”⟩))
2827sseq2d 4016 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
2926, 28anbi12d 632 . . . . 5 (𝑣 = ⟨“ℚ”⟩ → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩))))
30 cndrng 21411 . . . . . . . 8 fld ∈ DivRing
31 qsubdrg 21437 . . . . . . . . 9 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
3231simpli 483 . . . . . . . 8 ℚ ∈ (SubRing‘ℂfld)
3331simpri 485 . . . . . . . 8 (ℂflds ℚ) ∈ DivRing
34 issdrg 20789 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
3530, 32, 33, 34mpbir3an 1342 . . . . . . 7 ℚ ∈ (SubDRing‘ℂfld)
3635a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
3736s1chn 33000 . . . . 5 (⊤ → ⟨“ℚ”⟩ ∈ ( < Chain(SubDRing‘ℂfld)))
38 s1fv 14648 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) → (⟨“ℚ”⟩‘0) = ℚ)
3936, 38syl 17 . . . . . 6 (⊤ → (⟨“ℚ”⟩‘0) = ℚ)
40 0z 12624 . . . . . . . . 9 0 ∈ ℤ
41 1z 12647 . . . . . . . . 9 1 ∈ ℤ
42 prssi 4821 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
4340, 41, 42mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℤ
44 zssq 12998 . . . . . . . 8 ℤ ⊆ ℚ
4543, 44sstri 3993 . . . . . . 7 {0, 1} ⊆ ℚ
46 constr0.1 . . . . . . . 8 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
4746constr0 33778 . . . . . . 7 (𝐶‘∅) = {0, 1}
48 lsws1 14649 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘⟨“ℚ”⟩) = ℚ)
4935, 48ax-mp 5 . . . . . . 7 (lastS‘⟨“ℚ”⟩) = ℚ
5045, 47, 493sstr4i 4035 . . . . . 6 (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)
5139, 50jctir 520 . . . . 5 (⊤ → ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
5229, 37, 51rspcedvdw 3625 . . . 4 (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))
5352mptru 1547 . . 3 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))
54 constrextdg2.1 . . . . . 6 𝐸 = (ℂflds 𝑒)
55 constrextdg2.2 . . . . . 6 𝐹 = (ℂflds 𝑓)
56 constrextdg2.l . . . . . 6 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
57 simplll 775 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω)
58 simpllr 776 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld)))
59 simplr 769 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ)
60 simpr 484 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝐶𝑛) ⊆ (lastS‘𝑢))
6146, 54, 55, 56, 57, 58, 59, 60constrextdg2lem 33789 . . . . 5 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6261anasss 466 . . . 4 (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6362rexlimdva2 3157 . . 3 (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
645, 16, 20, 24, 53, 63finds 7918 . 2 (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
651, 64syl 17 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  c0 4333  {cpr 4628   class class class wbr 5143  {copab 5205  cmpt 5225  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  2c2 12321  cz 12613  cq 12990  lastSclsw 14600  ⟨“cs1 14633  ccj 15135  cim 15137  abscabs 15273  s cress 17274  SubRingcsubrg 20569  DivRingcdr 20729  SubDRingcsdrg 20787  fldccnfld 21364  Chaincchn 32994  /FldExtcfldext 33689  [:]cextdg 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-r1 9804  df-rank 9805  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ocomp 17318  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-imas 17553  df-qus 17554  df-mre 17629  df-mrc 17630  df-mri 17631  df-acs 17632  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-irred 20359  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-sdrg 20788  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lmhm 21021  df-lmim 21022  df-lmic 21023  df-lbs 21074  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-lpidl 21332  df-lpir 21333  df-pid 21347  df-cnfld 21365  df-dsmm 21752  df-frlm 21767  df-uvc 21803  df-lindf 21826  df-linds 21827  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170  df-uc1p 26171  df-q1p 26172  df-r1p 26173  df-ig1p 26174  df-chn 32995  df-fldgen 33313  df-mxidl 33488  df-dim 33650  df-fldext 33693  df-extdg 33694  df-irng 33734  df-minply 33743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator