Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2 Structured version   Visualization version   GIF version

Theorem constrextdg2 33752
Description: Any step (𝐶𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with . See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
constrextdg2 (𝜑 → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑡,𝑁,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2
Dummy variables 𝑛 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrextdg2.n . 2 (𝜑𝑁 ∈ ω)
2 fveq2 6817 . . . . . 6 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3964 . . . . 5 (𝑚 = ∅ → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣)))
43anbi2d 630 . . . 4 (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
54rexbidv 3154 . . 3 (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
6 fveq2 6817 . . . . . . 7 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
76sseq1d 3964 . . . . . 6 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑣)))
87anbi2d 630 . . . . 5 (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
98rexbidv 3154 . . . 4 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
10 fveq1 6816 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
1110eqeq1d 2732 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
12 fveq2 6817 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1312sseq2d 3965 . . . . . 6 (𝑣 = 𝑢 → ((𝐶𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑢)))
1411, 13anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
1514cbvrexvw 3209 . . . 4 (∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain (SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)))
169, 15bitrdi 287 . . 3 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain (SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
17 fveq2 6817 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1817sseq1d 3964 . . . . 5 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
1918anbi2d 630 . . . 4 (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
2019rexbidv 3154 . . 3 (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
21 fveq2 6817 . . . . . 6 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
2221sseq1d 3964 . . . . 5 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑁) ⊆ (lastS‘𝑣)))
2322anbi2d 630 . . . 4 (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
2423rexbidv 3154 . . 3 (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
25 fveq1 6816 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (𝑣‘0) = (⟨“ℚ”⟩‘0))
2625eqeq1d 2732 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝑣‘0) = ℚ ↔ (⟨“ℚ”⟩‘0) = ℚ))
27 fveq2 6817 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (lastS‘𝑣) = (lastS‘⟨“ℚ”⟩))
2827sseq2d 3965 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
2926, 28anbi12d 632 . . . . 5 (𝑣 = ⟨“ℚ”⟩ → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩))))
30 cndrng 21328 . . . . . . . 8 fld ∈ DivRing
31 qsubdrg 21349 . . . . . . . . 9 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
3231simpli 483 . . . . . . . 8 ℚ ∈ (SubRing‘ℂfld)
3331simpri 485 . . . . . . . 8 (ℂflds ℚ) ∈ DivRing
34 issdrg 20696 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
3530, 32, 33, 34mpbir3an 1342 . . . . . . 7 ℚ ∈ (SubDRing‘ℂfld)
3635a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
3736s1chn 18518 . . . . 5 (⊤ → ⟨“ℚ”⟩ ∈ ( < Chain (SubDRing‘ℂfld)))
38 s1fv 14510 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) → (⟨“ℚ”⟩‘0) = ℚ)
3936, 38syl 17 . . . . . 6 (⊤ → (⟨“ℚ”⟩‘0) = ℚ)
40 0z 12471 . . . . . . . . 9 0 ∈ ℤ
41 1z 12494 . . . . . . . . 9 1 ∈ ℤ
42 prssi 4771 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
4340, 41, 42mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℤ
44 zssq 12846 . . . . . . . 8 ℤ ⊆ ℚ
4543, 44sstri 3942 . . . . . . 7 {0, 1} ⊆ ℚ
46 constr0.1 . . . . . . . 8 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
4746constr0 33740 . . . . . . 7 (𝐶‘∅) = {0, 1}
48 lsws1 14511 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘⟨“ℚ”⟩) = ℚ)
4935, 48ax-mp 5 . . . . . . 7 (lastS‘⟨“ℚ”⟩) = ℚ
5045, 47, 493sstr4i 3984 . . . . . 6 (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)
5139, 50jctir 520 . . . . 5 (⊤ → ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
5229, 37, 51rspcedvdw 3578 . . . 4 (⊤ → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))
5352mptru 1548 . . 3 𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))
54 constrextdg2.1 . . . . . 6 𝐸 = (ℂflds 𝑒)
55 constrextdg2.2 . . . . . 6 𝐹 = (ℂflds 𝑓)
56 constrextdg2.l . . . . . 6 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
57 simplll 774 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain (SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω)
58 simpllr 775 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain (SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain (SubDRing‘ℂfld)))
59 simplr 768 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain (SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ)
60 simpr 484 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain (SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝐶𝑛) ⊆ (lastS‘𝑢))
6146, 54, 55, 56, 57, 58, 59, 60constrextdg2lem 33751 . . . . 5 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain (SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6261anasss 466 . . . 4 (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain (SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6362rexlimdva2 3133 . . 3 (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain (SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
645, 16, 20, 24, 53, 63finds 7821 . 2 (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
651, 64syl 17 1 (𝜑 → ∃𝑣 ∈ ( < Chain (SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wtru 1542  wcel 2110  wne 2926  wrex 3054  {crab 3393  Vcvv 3434  wss 3900  c0 4281  {cpr 4576   class class class wbr 5089  {copab 5151  cmpt 5170  suc csuc 6304  cfv 6477  (class class class)co 7341  ωcom 7791  reccrdg 8323  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  cmin 11336  2c2 12172  cz 12460  cq 12838  lastSclsw 14461  ⟨“cs1 14495  ccj 14995  cim 14997  abscabs 15133  s cress 17133   Chain cchn 18503  SubRingcsubrg 20477  DivRingcdr 20637  SubDRingcsdrg 20694  fldccnfld 21284  /FldExtcfldext 33641  [:]cextdg 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-r1 9649  df-rank 9650  df-dju 9786  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-ico 13243  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-word 14413  df-lsw 14462  df-concat 14470  df-s1 14496  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ocomp 17174  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-imas 17404  df-qus 17405  df-mre 17480  df-mrc 17481  df-mri 17482  df-acs 17483  df-proset 18192  df-drs 18193  df-poset 18211  df-ipo 18426  df-chn 18504  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-gim 19164  df-cntz 19222  df-oppg 19251  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-srg 20098  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-irred 20270  df-invr 20299  df-dvr 20312  df-rhm 20383  df-nzr 20421  df-subrng 20454  df-subrg 20478  df-rlreg 20602  df-domn 20603  df-idom 20604  df-drng 20639  df-field 20640  df-sdrg 20695  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lmhm 20949  df-lmim 20950  df-lmic 20951  df-lbs 21002  df-lvec 21030  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-lpidl 21252  df-lpir 21253  df-pid 21267  df-cnfld 21285  df-dsmm 21662  df-frlm 21677  df-uvc 21713  df-lindf 21736  df-linds 21737  df-assa 21783  df-asp 21784  df-ascl 21785  df-psr 21839  df-mvr 21840  df-mpl 21841  df-opsr 21843  df-evls 22002  df-evl 22003  df-psr1 22085  df-vr1 22086  df-ply1 22087  df-coe1 22088  df-evls1 22223  df-evl1 22224  df-mdeg 25980  df-deg1 25981  df-mon1 26056  df-uc1p 26057  df-q1p 26058  df-r1p 26059  df-ig1p 26060  df-fldgen 33267  df-mxidl 33415  df-dim 33602  df-fldext 33644  df-extdg 33645  df-irng 33687  df-minply 33703
This theorem is referenced by:  constrext2chnlem  33753
  Copyright terms: Public domain W3C validator