| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrextdg2 | Structured version Visualization version GIF version | ||
| Description: Any step (𝐶‘𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with ℚ. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| constrextdg2.1 | ⊢ 𝐸 = (ℂfld ↾s 𝑒) |
| constrextdg2.2 | ⊢ 𝐹 = (ℂfld ↾s 𝑓) |
| constrextdg2.l | ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} |
| constrextdg2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| Ref | Expression |
|---|---|
| constrextdg2 | ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrextdg2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 2 | fveq2 6875 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
| 3 | 2 | sseq1d 3990 | . . . . 5 ⊢ (𝑚 = ∅ → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 4 | 3 | anbi2d 630 | . . . 4 ⊢ (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 5 | 4 | rexbidv 3164 | . . 3 ⊢ (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 6 | fveq2 6875 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
| 7 | 6 | sseq1d 3990 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑣))) |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 9 | 8 | rexbidv 3164 | . . . 4 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 10 | fveq1 6874 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0)) | |
| 11 | 10 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ)) |
| 12 | fveq2 6875 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢)) | |
| 13 | 12 | sseq2d 3991 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝐶‘𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 14 | 11, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 15 | 14 | cbvrexvw 3221 | . . . 4 ⊢ (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 16 | 9, 15 | bitrdi 287 | . . 3 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 17 | fveq2 6875 | . . . . . 6 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
| 18 | 17 | sseq1d 3990 | . . . . 5 ⊢ (𝑚 = suc 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 19 | 18 | anbi2d 630 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 20 | 19 | rexbidv 3164 | . . 3 ⊢ (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 21 | fveq2 6875 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
| 22 | 21 | sseq1d 3990 | . . . . 5 ⊢ (𝑚 = 𝑁 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 23 | 22 | anbi2d 630 | . . . 4 ⊢ (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 24 | 23 | rexbidv 3164 | . . 3 ⊢ (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 25 | fveq1 6874 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (𝑣‘0) = (〈“ℚ”〉‘0)) | |
| 26 | 25 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝑣‘0) = ℚ ↔ (〈“ℚ”〉‘0) = ℚ)) |
| 27 | fveq2 6875 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (lastS‘𝑣) = (lastS‘〈“ℚ”〉)) | |
| 28 | 27 | sseq2d 3991 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 29 | 26, 28 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 〈“ℚ”〉 → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉)))) |
| 30 | cndrng 21359 | . . . . . . . 8 ⊢ ℂfld ∈ DivRing | |
| 31 | qsubdrg 21385 | . . . . . . . . 9 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 32 | 31 | simpli 483 | . . . . . . . 8 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 33 | 31 | simpri 485 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 34 | issdrg 20746 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 35 | 30, 32, 33, 34 | mpbir3an 1342 | . . . . . . 7 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℚ ∈ (SubDRing‘ℂfld)) |
| 37 | 36 | s1chn 32936 | . . . . 5 ⊢ (⊤ → 〈“ℚ”〉 ∈ ( < Chain(SubDRing‘ℂfld))) |
| 38 | s1fv 14626 | . . . . . . 7 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (〈“ℚ”〉‘0) = ℚ) | |
| 39 | 36, 38 | syl 17 | . . . . . 6 ⊢ (⊤ → (〈“ℚ”〉‘0) = ℚ) |
| 40 | 0z 12597 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 41 | 1z 12620 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 42 | prssi 4797 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ) | |
| 43 | 40, 41, 42 | mp2an 692 | . . . . . . . 8 ⊢ {0, 1} ⊆ ℤ |
| 44 | zssq 12970 | . . . . . . . 8 ⊢ ℤ ⊆ ℚ | |
| 45 | 43, 44 | sstri 3968 | . . . . . . 7 ⊢ {0, 1} ⊆ ℚ |
| 46 | constr0.1 | . . . . . . . 8 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 47 | 46 | constr0 33717 | . . . . . . 7 ⊢ (𝐶‘∅) = {0, 1} |
| 48 | lsws1 14627 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘〈“ℚ”〉) = ℚ) | |
| 49 | 35, 48 | ax-mp 5 | . . . . . . 7 ⊢ (lastS‘〈“ℚ”〉) = ℚ |
| 50 | 45, 47, 49 | 3sstr4i 4010 | . . . . . 6 ⊢ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉) |
| 51 | 39, 50 | jctir 520 | . . . . 5 ⊢ (⊤ → ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 52 | 29, 37, 51 | rspcedvdw 3604 | . . . 4 ⊢ (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 53 | 52 | mptru 1547 | . . 3 ⊢ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) |
| 54 | constrextdg2.1 | . . . . . 6 ⊢ 𝐸 = (ℂfld ↾s 𝑒) | |
| 55 | constrextdg2.2 | . . . . . 6 ⊢ 𝐹 = (ℂfld ↾s 𝑓) | |
| 56 | constrextdg2.l | . . . . . 6 ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} | |
| 57 | simplll 774 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω) | |
| 58 | simpllr 775 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) | |
| 59 | simplr 768 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ) | |
| 60 | simpr 484 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝐶‘𝑛) ⊆ (lastS‘𝑢)) | |
| 61 | 46, 54, 55, 56, 57, 58, 59, 60 | constrextdg2lem 33728 | . . . . 5 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 62 | 61 | anasss 466 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 63 | 62 | rexlimdva2 3143 | . . 3 ⊢ (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 64 | 5, 16, 20, 24, 53, 63 | finds 7890 | . 2 ⊢ (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 65 | 1, 64 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 {cpr 4603 class class class wbr 5119 {copab 5181 ↦ cmpt 5201 suc csuc 6354 ‘cfv 6530 (class class class)co 7403 ωcom 7859 reccrdg 8421 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 − cmin 11464 2c2 12293 ℤcz 12586 ℚcq 12962 lastSclsw 14578 〈“cs1 14611 ∗ccj 15113 ℑcim 15115 abscabs 15251 ↾s cress 17249 SubRingcsubrg 20527 DivRingcdr 20687 SubDRingcsdrg 20744 ℂfldccnfld 21313 Chaincchn 32930 /FldExtcfldext 33624 [:]cextdg 33627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-reg 9604 ax-inf2 9653 ax-ac2 10475 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-rpss 7715 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-ec 8719 df-qs 8723 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-inf 9453 df-oi 9522 df-r1 9776 df-rank 9777 df-dju 9913 df-card 9951 df-acn 9954 df-ac 10128 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-ico 13366 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-word 14530 df-lsw 14579 df-concat 14587 df-s1 14612 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ocomp 17290 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-imas 17520 df-qus 17521 df-mre 17596 df-mrc 17597 df-mri 17598 df-acs 17599 df-proset 18304 df-drs 18305 df-poset 18323 df-ipo 18536 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-nsg 19105 df-eqg 19106 df-ghm 19194 df-gim 19240 df-cntz 19298 df-oppg 19327 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-srg 20145 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-irred 20317 df-invr 20346 df-dvr 20359 df-rhm 20430 df-nzr 20471 df-subrng 20504 df-subrg 20528 df-rlreg 20652 df-domn 20653 df-idom 20654 df-drng 20689 df-field 20690 df-sdrg 20745 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lmhm 20978 df-lmim 20979 df-lmic 20980 df-lbs 21031 df-lvec 21059 df-sra 21129 df-rgmod 21130 df-lidl 21167 df-rsp 21168 df-2idl 21209 df-lpidl 21281 df-lpir 21282 df-pid 21296 df-cnfld 21314 df-dsmm 21690 df-frlm 21705 df-uvc 21741 df-lindf 21764 df-linds 21765 df-assa 21811 df-asp 21812 df-ascl 21813 df-psr 21867 df-mvr 21868 df-mpl 21869 df-opsr 21871 df-evls 22030 df-evl 22031 df-psr1 22113 df-vr1 22114 df-ply1 22115 df-coe1 22116 df-evls1 22251 df-evl1 22252 df-mdeg 26010 df-deg1 26011 df-mon1 26086 df-uc1p 26087 df-q1p 26088 df-r1p 26089 df-ig1p 26090 df-chn 32931 df-fldgen 33251 df-mxidl 33421 df-dim 33585 df-fldext 33628 df-extdg 33629 df-irng 33671 df-minply 33680 |
| This theorem is referenced by: constrext2chnlem 33730 |
| Copyright terms: Public domain | W3C validator |