| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrextdg2 | Structured version Visualization version GIF version | ||
| Description: Any step (𝐶‘𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with ℚ. See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| constrextdg2.1 | ⊢ 𝐸 = (ℂfld ↾s 𝑒) |
| constrextdg2.2 | ⊢ 𝐹 = (ℂfld ↾s 𝑓) |
| constrextdg2.l | ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} |
| constrextdg2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| Ref | Expression |
|---|---|
| constrextdg2 | ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrextdg2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 2 | fveq2 6840 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
| 3 | 2 | sseq1d 3975 | . . . . 5 ⊢ (𝑚 = ∅ → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 4 | 3 | anbi2d 630 | . . . 4 ⊢ (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 5 | 4 | rexbidv 3157 | . . 3 ⊢ (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 6 | fveq2 6840 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
| 7 | 6 | sseq1d 3975 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑣))) |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 9 | 8 | rexbidv 3157 | . . . 4 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 10 | fveq1 6839 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0)) | |
| 11 | 10 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ)) |
| 12 | fveq2 6840 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢)) | |
| 13 | 12 | sseq2d 3976 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝐶‘𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 14 | 11, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 15 | 14 | cbvrexvw 3214 | . . . 4 ⊢ (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 16 | 9, 15 | bitrdi 287 | . . 3 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 17 | fveq2 6840 | . . . . . 6 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
| 18 | 17 | sseq1d 3975 | . . . . 5 ⊢ (𝑚 = suc 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 19 | 18 | anbi2d 630 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 20 | 19 | rexbidv 3157 | . . 3 ⊢ (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 21 | fveq2 6840 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
| 22 | 21 | sseq1d 3975 | . . . . 5 ⊢ (𝑚 = 𝑁 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 23 | 22 | anbi2d 630 | . . . 4 ⊢ (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 24 | 23 | rexbidv 3157 | . . 3 ⊢ (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 25 | fveq1 6839 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (𝑣‘0) = (〈“ℚ”〉‘0)) | |
| 26 | 25 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝑣‘0) = ℚ ↔ (〈“ℚ”〉‘0) = ℚ)) |
| 27 | fveq2 6840 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (lastS‘𝑣) = (lastS‘〈“ℚ”〉)) | |
| 28 | 27 | sseq2d 3976 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 29 | 26, 28 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 〈“ℚ”〉 → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉)))) |
| 30 | cndrng 21340 | . . . . . . . 8 ⊢ ℂfld ∈ DivRing | |
| 31 | qsubdrg 21361 | . . . . . . . . 9 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 32 | 31 | simpli 483 | . . . . . . . 8 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 33 | 31 | simpri 485 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 34 | issdrg 20708 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 35 | 30, 32, 33, 34 | mpbir3an 1342 | . . . . . . 7 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℚ ∈ (SubDRing‘ℂfld)) |
| 37 | 36 | s1chn 32982 | . . . . 5 ⊢ (⊤ → 〈“ℚ”〉 ∈ ( < Chain(SubDRing‘ℂfld))) |
| 38 | s1fv 14551 | . . . . . . 7 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (〈“ℚ”〉‘0) = ℚ) | |
| 39 | 36, 38 | syl 17 | . . . . . 6 ⊢ (⊤ → (〈“ℚ”〉‘0) = ℚ) |
| 40 | 0z 12516 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 41 | 1z 12539 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 42 | prssi 4781 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ) | |
| 43 | 40, 41, 42 | mp2an 692 | . . . . . . . 8 ⊢ {0, 1} ⊆ ℤ |
| 44 | zssq 12891 | . . . . . . . 8 ⊢ ℤ ⊆ ℚ | |
| 45 | 43, 44 | sstri 3953 | . . . . . . 7 ⊢ {0, 1} ⊆ ℚ |
| 46 | constr0.1 | . . . . . . . 8 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 47 | 46 | constr0 33720 | . . . . . . 7 ⊢ (𝐶‘∅) = {0, 1} |
| 48 | lsws1 14552 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘〈“ℚ”〉) = ℚ) | |
| 49 | 35, 48 | ax-mp 5 | . . . . . . 7 ⊢ (lastS‘〈“ℚ”〉) = ℚ |
| 50 | 45, 47, 49 | 3sstr4i 3995 | . . . . . 6 ⊢ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉) |
| 51 | 39, 50 | jctir 520 | . . . . 5 ⊢ (⊤ → ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 52 | 29, 37, 51 | rspcedvdw 3588 | . . . 4 ⊢ (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 53 | 52 | mptru 1547 | . . 3 ⊢ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) |
| 54 | constrextdg2.1 | . . . . . 6 ⊢ 𝐸 = (ℂfld ↾s 𝑒) | |
| 55 | constrextdg2.2 | . . . . . 6 ⊢ 𝐹 = (ℂfld ↾s 𝑓) | |
| 56 | constrextdg2.l | . . . . . 6 ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} | |
| 57 | simplll 774 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω) | |
| 58 | simpllr 775 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) | |
| 59 | simplr 768 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ) | |
| 60 | simpr 484 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝐶‘𝑛) ⊆ (lastS‘𝑢)) | |
| 61 | 46, 54, 55, 56, 57, 58, 59, 60 | constrextdg2lem 33731 | . . . . 5 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 62 | 61 | anasss 466 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 63 | 62 | rexlimdva2 3136 | . . 3 ⊢ (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 64 | 5, 16, 20, 24, 53, 63 | finds 7852 | . 2 ⊢ (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 65 | 1, 64 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {cpr 4587 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 suc csuc 6322 ‘cfv 6499 (class class class)co 7369 ωcom 7822 reccrdg 8354 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 − cmin 11381 2c2 12217 ℤcz 12505 ℚcq 12883 lastSclsw 14503 〈“cs1 14536 ∗ccj 15038 ℑcim 15040 abscabs 15176 ↾s cress 17176 SubRingcsubrg 20489 DivRingcdr 20649 SubDRingcsdrg 20706 ℂfldccnfld 21296 Chaincchn 32976 /FldExtcfldext 33627 [:]cextdg 33629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-rpss 7679 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-r1 9693 df-rank 9694 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-imas 17447 df-qus 17448 df-mre 17523 df-mrc 17524 df-mri 17525 df-acs 17526 df-proset 18235 df-drs 18236 df-poset 18254 df-ipo 18469 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-nsg 19038 df-eqg 19039 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-irred 20279 df-invr 20308 df-dvr 20321 df-rhm 20392 df-nzr 20433 df-subrng 20466 df-subrg 20490 df-rlreg 20614 df-domn 20615 df-idom 20616 df-drng 20651 df-field 20652 df-sdrg 20707 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lmhm 20961 df-lmim 20962 df-lmic 20963 df-lbs 21014 df-lvec 21042 df-sra 21112 df-rgmod 21113 df-lidl 21150 df-rsp 21151 df-2idl 21192 df-lpidl 21264 df-lpir 21265 df-pid 21279 df-cnfld 21297 df-dsmm 21674 df-frlm 21689 df-uvc 21725 df-lindf 21748 df-linds 21749 df-assa 21795 df-asp 21796 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-evls 22014 df-evl 22015 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-coe1 22100 df-evls1 22235 df-evl1 22236 df-mdeg 25993 df-deg1 25994 df-mon1 26069 df-uc1p 26070 df-q1p 26071 df-r1p 26072 df-ig1p 26073 df-chn 32977 df-fldgen 33277 df-mxidl 33424 df-dim 33588 df-fldext 33630 df-extdg 33631 df-irng 33672 df-minply 33683 |
| This theorem is referenced by: constrext2chnlem 33733 |
| Copyright terms: Public domain | W3C validator |