Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2 Structured version   Visualization version   GIF version

Theorem constrextdg2 33746
Description: Any step (𝐶𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with . See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
constrextdg2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑡,𝑁,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2
Dummy variables 𝑛 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrextdg2.n . 2 (𝜑𝑁 ∈ ω)
2 fveq2 6861 . . . . . 6 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
32sseq1d 3981 . . . . 5 (𝑚 = ∅ → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣)))
43anbi2d 630 . . . 4 (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
54rexbidv 3158 . . 3 (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))))
6 fveq2 6861 . . . . . . 7 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
76sseq1d 3981 . . . . . 6 (𝑚 = 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑣)))
87anbi2d 630 . . . . 5 (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
98rexbidv 3158 . . . 4 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣))))
10 fveq1 6860 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
1110eqeq1d 2732 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
12 fveq2 6861 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1312sseq2d 3982 . . . . . 6 (𝑣 = 𝑢 → ((𝐶𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶𝑛) ⊆ (lastS‘𝑢)))
1411, 13anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
1514cbvrexvw 3217 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)))
169, 15bitrdi 287 . . 3 (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))))
17 fveq2 6861 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1817sseq1d 3981 . . . . 5 (𝑚 = suc 𝑛 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
1918anbi2d 630 . . . 4 (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
2019rexbidv 3158 . . 3 (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
21 fveq2 6861 . . . . . 6 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
2221sseq1d 3981 . . . . 5 (𝑚 = 𝑁 → ((𝐶𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶𝑁) ⊆ (lastS‘𝑣)))
2322anbi2d 630 . . . 4 (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
2423rexbidv 3158 . . 3 (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣))))
25 fveq1 6860 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (𝑣‘0) = (⟨“ℚ”⟩‘0))
2625eqeq1d 2732 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝑣‘0) = ℚ ↔ (⟨“ℚ”⟩‘0) = ℚ))
27 fveq2 6861 . . . . . . 7 (𝑣 = ⟨“ℚ”⟩ → (lastS‘𝑣) = (lastS‘⟨“ℚ”⟩))
2827sseq2d 3982 . . . . . 6 (𝑣 = ⟨“ℚ”⟩ → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
2926, 28anbi12d 632 . . . . 5 (𝑣 = ⟨“ℚ”⟩ → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩))))
30 cndrng 21317 . . . . . . . 8 fld ∈ DivRing
31 qsubdrg 21343 . . . . . . . . 9 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
3231simpli 483 . . . . . . . 8 ℚ ∈ (SubRing‘ℂfld)
3331simpri 485 . . . . . . . 8 (ℂflds ℚ) ∈ DivRing
34 issdrg 20704 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
3530, 32, 33, 34mpbir3an 1342 . . . . . . 7 ℚ ∈ (SubDRing‘ℂfld)
3635a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
3736s1chn 32943 . . . . 5 (⊤ → ⟨“ℚ”⟩ ∈ ( < Chain(SubDRing‘ℂfld)))
38 s1fv 14582 . . . . . . 7 (ℚ ∈ (SubDRing‘ℂfld) → (⟨“ℚ”⟩‘0) = ℚ)
3936, 38syl 17 . . . . . 6 (⊤ → (⟨“ℚ”⟩‘0) = ℚ)
40 0z 12547 . . . . . . . . 9 0 ∈ ℤ
41 1z 12570 . . . . . . . . 9 1 ∈ ℤ
42 prssi 4788 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
4340, 41, 42mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℤ
44 zssq 12922 . . . . . . . 8 ℤ ⊆ ℚ
4543, 44sstri 3959 . . . . . . 7 {0, 1} ⊆ ℚ
46 constr0.1 . . . . . . . 8 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
4746constr0 33734 . . . . . . 7 (𝐶‘∅) = {0, 1}
48 lsws1 14583 . . . . . . . 8 (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘⟨“ℚ”⟩) = ℚ)
4935, 48ax-mp 5 . . . . . . 7 (lastS‘⟨“ℚ”⟩) = ℚ
5045, 47, 493sstr4i 4001 . . . . . 6 (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)
5139, 50jctir 520 . . . . 5 (⊤ → ((⟨“ℚ”⟩‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘⟨“ℚ”⟩)))
5229, 37, 51rspcedvdw 3594 . . . 4 (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))
5352mptru 1547 . . 3 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))
54 constrextdg2.1 . . . . . 6 𝐸 = (ℂflds 𝑒)
55 constrextdg2.2 . . . . . 6 𝐹 = (ℂflds 𝑓)
56 constrextdg2.l . . . . . 6 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
57 simplll 774 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω)
58 simpllr 775 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld)))
59 simplr 768 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ)
60 simpr 484 . . . . . 6 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → (𝐶𝑛) ⊆ (lastS‘𝑢))
6146, 54, 55, 56, 57, 58, 59, 60constrextdg2lem 33745 . . . . 5 ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6261anasss 466 . . . 4 (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))
6362rexlimdva2 3137 . . 3 (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))))
645, 16, 20, 24, 53, 63finds 7875 . 2 (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
651, 64syl 17 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299  {cpr 4594   class class class wbr 5110  {copab 5172  cmpt 5191  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  2c2 12248  cz 12536  cq 12914  lastSclsw 14534  ⟨“cs1 14567  ccj 15069  cim 15071  abscabs 15207  s cress 17207  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702  fldccnfld 21271  Chaincchn 32937  /FldExtcfldext 33641  [:]cextdg 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lmim 20937  df-lmic 20938  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-lpidl 21239  df-lpir 21240  df-pid 21254  df-cnfld 21272  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-chn 32938  df-fldgen 33268  df-mxidl 33438  df-dim 33602  df-fldext 33644  df-extdg 33645  df-irng 33686  df-minply 33697
This theorem is referenced by:  constrext2chnlem  33747
  Copyright terms: Public domain W3C validator