| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrextdg2 | Structured version Visualization version GIF version | ||
| Description: Any step (𝐶‘𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with ℚ. See Theorem 7.11 of [Stewart] p. 97. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| constrextdg2.1 | ⊢ 𝐸 = (ℂfld ↾s 𝑒) |
| constrextdg2.2 | ⊢ 𝐹 = (ℂfld ↾s 𝑓) |
| constrextdg2.l | ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} |
| constrextdg2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| Ref | Expression |
|---|---|
| constrextdg2 | ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrextdg2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
| 3 | 2 | sseq1d 3981 | . . . . 5 ⊢ (𝑚 = ∅ → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 4 | 3 | anbi2d 630 | . . . 4 ⊢ (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 5 | 4 | rexbidv 3158 | . . 3 ⊢ (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 6 | fveq2 6861 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
| 7 | 6 | sseq1d 3981 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑣))) |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 9 | 8 | rexbidv 3158 | . . . 4 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 10 | fveq1 6860 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0)) | |
| 11 | 10 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ)) |
| 12 | fveq2 6861 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢)) | |
| 13 | 12 | sseq2d 3982 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝐶‘𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 14 | 11, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 15 | 14 | cbvrexvw 3217 | . . . 4 ⊢ (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 16 | 9, 15 | bitrdi 287 | . . 3 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 17 | fveq2 6861 | . . . . . 6 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
| 18 | 17 | sseq1d 3981 | . . . . 5 ⊢ (𝑚 = suc 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 19 | 18 | anbi2d 630 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 20 | 19 | rexbidv 3158 | . . 3 ⊢ (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 21 | fveq2 6861 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
| 22 | 21 | sseq1d 3981 | . . . . 5 ⊢ (𝑚 = 𝑁 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 23 | 22 | anbi2d 630 | . . . 4 ⊢ (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 24 | 23 | rexbidv 3158 | . . 3 ⊢ (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 25 | fveq1 6860 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (𝑣‘0) = (〈“ℚ”〉‘0)) | |
| 26 | 25 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝑣‘0) = ℚ ↔ (〈“ℚ”〉‘0) = ℚ)) |
| 27 | fveq2 6861 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (lastS‘𝑣) = (lastS‘〈“ℚ”〉)) | |
| 28 | 27 | sseq2d 3982 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 29 | 26, 28 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 〈“ℚ”〉 → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉)))) |
| 30 | cndrng 21317 | . . . . . . . 8 ⊢ ℂfld ∈ DivRing | |
| 31 | qsubdrg 21343 | . . . . . . . . 9 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 32 | 31 | simpli 483 | . . . . . . . 8 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 33 | 31 | simpri 485 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 34 | issdrg 20704 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 35 | 30, 32, 33, 34 | mpbir3an 1342 | . . . . . . 7 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℚ ∈ (SubDRing‘ℂfld)) |
| 37 | 36 | s1chn 32943 | . . . . 5 ⊢ (⊤ → 〈“ℚ”〉 ∈ ( < Chain(SubDRing‘ℂfld))) |
| 38 | s1fv 14582 | . . . . . . 7 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (〈“ℚ”〉‘0) = ℚ) | |
| 39 | 36, 38 | syl 17 | . . . . . 6 ⊢ (⊤ → (〈“ℚ”〉‘0) = ℚ) |
| 40 | 0z 12547 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 41 | 1z 12570 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 42 | prssi 4788 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ) | |
| 43 | 40, 41, 42 | mp2an 692 | . . . . . . . 8 ⊢ {0, 1} ⊆ ℤ |
| 44 | zssq 12922 | . . . . . . . 8 ⊢ ℤ ⊆ ℚ | |
| 45 | 43, 44 | sstri 3959 | . . . . . . 7 ⊢ {0, 1} ⊆ ℚ |
| 46 | constr0.1 | . . . . . . . 8 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 47 | 46 | constr0 33734 | . . . . . . 7 ⊢ (𝐶‘∅) = {0, 1} |
| 48 | lsws1 14583 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘〈“ℚ”〉) = ℚ) | |
| 49 | 35, 48 | ax-mp 5 | . . . . . . 7 ⊢ (lastS‘〈“ℚ”〉) = ℚ |
| 50 | 45, 47, 49 | 3sstr4i 4001 | . . . . . 6 ⊢ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉) |
| 51 | 39, 50 | jctir 520 | . . . . 5 ⊢ (⊤ → ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 52 | 29, 37, 51 | rspcedvdw 3594 | . . . 4 ⊢ (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 53 | 52 | mptru 1547 | . . 3 ⊢ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) |
| 54 | constrextdg2.1 | . . . . . 6 ⊢ 𝐸 = (ℂfld ↾s 𝑒) | |
| 55 | constrextdg2.2 | . . . . . 6 ⊢ 𝐹 = (ℂfld ↾s 𝑓) | |
| 56 | constrextdg2.l | . . . . . 6 ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} | |
| 57 | simplll 774 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω) | |
| 58 | simpllr 775 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) | |
| 59 | simplr 768 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ) | |
| 60 | simpr 484 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝐶‘𝑛) ⊆ (lastS‘𝑢)) | |
| 61 | 46, 54, 55, 56, 57, 58, 59, 60 | constrextdg2lem 33745 | . . . . 5 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 62 | 61 | anasss 466 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 63 | 62 | rexlimdva2 3137 | . . 3 ⊢ (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 64 | 5, 16, 20, 24, 53, 63 | finds 7875 | . 2 ⊢ (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 65 | 1, 64 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 {cpr 4594 class class class wbr 5110 {copab 5172 ↦ cmpt 5191 suc csuc 6337 ‘cfv 6514 (class class class)co 7390 ωcom 7845 reccrdg 8380 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 2c2 12248 ℤcz 12536 ℚcq 12914 lastSclsw 14534 〈“cs1 14567 ∗ccj 15069 ℑcim 15071 abscabs 15207 ↾s cress 17207 SubRingcsubrg 20485 DivRingcdr 20645 SubDRingcsdrg 20702 ℂfldccnfld 21271 Chaincchn 32937 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-r1 9724 df-rank 9725 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-ico 13319 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ocomp 17248 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-imas 17478 df-qus 17479 df-mre 17554 df-mrc 17555 df-mri 17556 df-acs 17557 df-proset 18262 df-drs 18263 df-poset 18281 df-ipo 18494 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-irred 20275 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-idom 20612 df-drng 20647 df-field 20648 df-sdrg 20703 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lmim 20937 df-lmic 20938 df-lbs 20989 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-lpidl 21239 df-lpir 21240 df-pid 21254 df-cnfld 21272 df-dsmm 21648 df-frlm 21663 df-uvc 21699 df-lindf 21722 df-linds 21723 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-evls 21988 df-evl 21989 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-evls1 22209 df-evl1 22210 df-mdeg 25967 df-deg1 25968 df-mon1 26043 df-uc1p 26044 df-q1p 26045 df-r1p 26046 df-ig1p 26047 df-chn 32938 df-fldgen 33268 df-mxidl 33438 df-dim 33602 df-fldext 33644 df-extdg 33645 df-irng 33686 df-minply 33697 |
| This theorem is referenced by: constrext2chnlem 33747 |
| Copyright terms: Public domain | W3C validator |