| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrextdg2 | Structured version Visualization version GIF version | ||
| Description: Any step (𝐶‘𝑁) of the construction of constructible numbers is contained in the last field of a tower of quadratic field extensions starting with ℚ. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| constr0.1 | ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| constrextdg2.1 | ⊢ 𝐸 = (ℂfld ↾s 𝑒) |
| constrextdg2.2 | ⊢ 𝐹 = (ℂfld ↾s 𝑓) |
| constrextdg2.l | ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} |
| constrextdg2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| Ref | Expression |
|---|---|
| constrextdg2 | ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrextdg2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 2 | fveq2 6906 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) | |
| 3 | 2 | sseq1d 4015 | . . . . 5 ⊢ (𝑚 = ∅ → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 4 | 3 | anbi2d 630 | . . . 4 ⊢ (𝑚 = ∅ → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 5 | 4 | rexbidv 3179 | . . 3 ⊢ (𝑚 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)))) |
| 6 | fveq2 6906 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) | |
| 7 | 6 | sseq1d 4015 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑣))) |
| 8 | 7 | anbi2d 630 | . . . . 5 ⊢ (𝑚 = 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 9 | 8 | rexbidv 3179 | . . . 4 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)))) |
| 10 | fveq1 6905 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0)) | |
| 11 | 10 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ)) |
| 12 | fveq2 6906 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢)) | |
| 13 | 12 | sseq2d 4016 | . . . . . 6 ⊢ (𝑣 = 𝑢 → ((𝐶‘𝑛) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 14 | 11, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 15 | 14 | cbvrexvw 3238 | . . . 4 ⊢ (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) |
| 16 | 9, 15 | bitrdi 287 | . . 3 ⊢ (𝑚 = 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)))) |
| 17 | fveq2 6906 | . . . . . 6 ⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) | |
| 18 | 17 | sseq1d 4015 | . . . . 5 ⊢ (𝑚 = suc 𝑛 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 19 | 18 | anbi2d 630 | . . . 4 ⊢ (𝑚 = suc 𝑛 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 20 | 19 | rexbidv 3179 | . . 3 ⊢ (𝑚 = suc 𝑛 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 21 | fveq2 6906 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) | |
| 22 | 21 | sseq1d 4015 | . . . . 5 ⊢ (𝑚 = 𝑁 → ((𝐶‘𝑚) ⊆ (lastS‘𝑣) ↔ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 23 | 22 | anbi2d 630 | . . . 4 ⊢ (𝑚 = 𝑁 → (((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 24 | 23 | rexbidv 3179 | . . 3 ⊢ (𝑚 = 𝑁 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣)))) |
| 25 | fveq1 6905 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (𝑣‘0) = (〈“ℚ”〉‘0)) | |
| 26 | 25 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝑣‘0) = ℚ ↔ (〈“ℚ”〉‘0) = ℚ)) |
| 27 | fveq2 6906 | . . . . . . 7 ⊢ (𝑣 = 〈“ℚ”〉 → (lastS‘𝑣) = (lastS‘〈“ℚ”〉)) | |
| 28 | 27 | sseq2d 4016 | . . . . . 6 ⊢ (𝑣 = 〈“ℚ”〉 → ((𝐶‘∅) ⊆ (lastS‘𝑣) ↔ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 29 | 26, 28 | anbi12d 632 | . . . . 5 ⊢ (𝑣 = 〈“ℚ”〉 → (((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) ↔ ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉)))) |
| 30 | cndrng 21411 | . . . . . . . 8 ⊢ ℂfld ∈ DivRing | |
| 31 | qsubdrg 21437 | . . . . . . . . 9 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 32 | 31 | simpli 483 | . . . . . . . 8 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 33 | 31 | simpri 485 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 34 | issdrg 20789 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 35 | 30, 32, 33, 34 | mpbir3an 1342 | . . . . . . 7 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 36 | 35 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℚ ∈ (SubDRing‘ℂfld)) |
| 37 | 36 | s1chn 33000 | . . . . 5 ⊢ (⊤ → 〈“ℚ”〉 ∈ ( < Chain(SubDRing‘ℂfld))) |
| 38 | s1fv 14648 | . . . . . . 7 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (〈“ℚ”〉‘0) = ℚ) | |
| 39 | 36, 38 | syl 17 | . . . . . 6 ⊢ (⊤ → (〈“ℚ”〉‘0) = ℚ) |
| 40 | 0z 12624 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 41 | 1z 12647 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 42 | prssi 4821 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ) | |
| 43 | 40, 41, 42 | mp2an 692 | . . . . . . . 8 ⊢ {0, 1} ⊆ ℤ |
| 44 | zssq 12998 | . . . . . . . 8 ⊢ ℤ ⊆ ℚ | |
| 45 | 43, 44 | sstri 3993 | . . . . . . 7 ⊢ {0, 1} ⊆ ℚ |
| 46 | constr0.1 | . . . . . . . 8 ⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 47 | 46 | constr0 33778 | . . . . . . 7 ⊢ (𝐶‘∅) = {0, 1} |
| 48 | lsws1 14649 | . . . . . . . 8 ⊢ (ℚ ∈ (SubDRing‘ℂfld) → (lastS‘〈“ℚ”〉) = ℚ) | |
| 49 | 35, 48 | ax-mp 5 | . . . . . . 7 ⊢ (lastS‘〈“ℚ”〉) = ℚ |
| 50 | 45, 47, 49 | 3sstr4i 4035 | . . . . . 6 ⊢ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉) |
| 51 | 39, 50 | jctir 520 | . . . . 5 ⊢ (⊤ → ((〈“ℚ”〉‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘〈“ℚ”〉))) |
| 52 | 29, 37, 51 | rspcedvdw 3625 | . . . 4 ⊢ (⊤ → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣))) |
| 53 | 52 | mptru 1547 | . . 3 ⊢ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘∅) ⊆ (lastS‘𝑣)) |
| 54 | constrextdg2.1 | . . . . . 6 ⊢ 𝐸 = (ℂfld ↾s 𝑒) | |
| 55 | constrextdg2.2 | . . . . . 6 ⊢ 𝐹 = (ℂfld ↾s 𝑓) | |
| 56 | constrextdg2.l | . . . . . 6 ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} | |
| 57 | simplll 775 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑛 ∈ ω) | |
| 58 | simpllr 776 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) | |
| 59 | simplr 769 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝑢‘0) = ℚ) | |
| 60 | simpr 484 | . . . . . 6 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → (𝐶‘𝑛) ⊆ (lastS‘𝑢)) | |
| 61 | 46, 54, 55, 56, 57, 58, 59, 60 | constrextdg2lem 33789 | . . . . 5 ⊢ ((((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑢‘0) = ℚ) ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 62 | 61 | anasss 466 | . . . 4 ⊢ (((𝑛 ∈ ω ∧ 𝑢 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢))) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣))) |
| 63 | 62 | rexlimdva2 3157 | . . 3 ⊢ (𝑛 ∈ ω → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ (𝐶‘𝑛) ⊆ (lastS‘𝑢)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑛) ⊆ (lastS‘𝑣)))) |
| 64 | 5, 16, 20, 24, 53, 63 | finds 7918 | . 2 ⊢ (𝑁 ∈ ω → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| 65 | 1, 64 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑁) ⊆ (lastS‘𝑣))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 ∧ w3a 1087 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {crab 3436 Vcvv 3480 ⊆ wss 3951 ∅c0 4333 {cpr 4628 class class class wbr 5143 {copab 5205 ↦ cmpt 5225 suc csuc 6386 ‘cfv 6561 (class class class)co 7431 ωcom 7887 reccrdg 8449 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 2c2 12321 ℤcz 12613 ℚcq 12990 lastSclsw 14600 〈“cs1 14633 ∗ccj 15135 ℑcim 15137 abscabs 15273 ↾s cress 17274 SubRingcsubrg 20569 DivRingcdr 20729 SubDRingcsdrg 20787 ℂfldccnfld 21364 Chaincchn 32994 /FldExtcfldext 33689 [:]cextdg 33692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-rpss 7743 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-inf 9483 df-oi 9550 df-r1 9804 df-rank 9805 df-dju 9941 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-lsw 14601 df-concat 14609 df-s1 14634 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ocomp 17318 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-imas 17553 df-qus 17554 df-mre 17629 df-mrc 17630 df-mri 17631 df-acs 17632 df-proset 18340 df-drs 18341 df-poset 18359 df-ipo 18573 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-gim 19277 df-cntz 19335 df-oppg 19364 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-srg 20184 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-irred 20359 df-invr 20388 df-dvr 20401 df-rhm 20472 df-nzr 20513 df-subrng 20546 df-subrg 20570 df-rlreg 20694 df-domn 20695 df-idom 20696 df-drng 20731 df-field 20732 df-sdrg 20788 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lmic 21023 df-lbs 21074 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-lpidl 21332 df-lpir 21333 df-pid 21347 df-cnfld 21365 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lindf 21826 df-linds 21827 df-assa 21873 df-asp 21874 df-ascl 21875 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-evls 22098 df-evl 22099 df-psr1 22181 df-vr1 22182 df-ply1 22183 df-coe1 22184 df-evls1 22319 df-evl1 22320 df-mdeg 26094 df-deg1 26095 df-mon1 26170 df-uc1p 26171 df-q1p 26172 df-r1p 26173 df-ig1p 26174 df-chn 32995 df-fldgen 33313 df-mxidl 33488 df-dim 33650 df-fldext 33693 df-extdg 33694 df-irng 33734 df-minply 33743 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |