| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c7lem4 | Structured version Visualization version GIF version | ||
| Description: In the AKS algorithm there exists a unique prime number 𝑝 that divides 𝑁. (Contributed by metakunt, 16-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c7.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| aks6d1c7.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks6d1c7.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks6d1c7.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c7.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks6d1c7.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks6d1c7.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c7.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks6d1c7.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks6d1c7.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks6d1c7.11 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| aks6d1c7.12 | ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| aks6d1c7.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| aks6d1c7.14 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| Ref | Expression |
|---|---|
| aks6d1c7lem4 | ⊢ (𝜑 → ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c7.4 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | aks6d1c7.7 | . . 3 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 3 | aks6d1c7.1 | . . . . . . 7 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
| 4 | aks6d1c7.2 | . . . . . . 7 ⊢ 𝑃 = (chr‘𝐾) | |
| 5 | aks6d1c7.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 6 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝐾 ∈ Field) |
| 7 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑃 ∈ ℙ) |
| 8 | aks6d1c7.5 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 9 | 8 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑅 ∈ ℕ) |
| 10 | aks6d1c7.6 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 11 | 10 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑁 ∈ (ℤ≥‘3)) |
| 12 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑃 ∥ 𝑁) |
| 13 | aks6d1c7.8 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → (𝑁 gcd 𝑅) = 1) |
| 15 | aks6d1c7.9 | . . . . . . 7 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 16 | aks6d1c7.10 | . . . . . . . 8 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 17 | 16 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| 18 | aks6d1c7.11 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
| 19 | 18 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| 20 | aks6d1c7.12 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | |
| 21 | 20 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| 22 | aks6d1c7.13 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
| 23 | 22 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| 24 | aks6d1c7.14 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | |
| 25 | 24 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 26 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑝 ∈ ℙ) | |
| 27 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑝 ∥ 𝑁) | |
| 28 | 26, 27 | jca 511 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑁)) |
| 29 | 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 21, 23, 25, 28 | aks6d1c7lem3 42142 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑃 = 𝑝) |
| 30 | 29 | eqcomd 2740 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ 𝑁) → 𝑝 = 𝑃) |
| 31 | 30 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝑁 → 𝑝 = 𝑃)) |
| 32 | 31 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑁 → 𝑝 = 𝑃)) |
| 33 | 1, 2, 32 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ∥ 𝑁 ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑁 → 𝑝 = 𝑃))) |
| 34 | breq1 5126 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑝 ∥ 𝑁 ↔ 𝑃 ∥ 𝑁)) | |
| 35 | 34 | eqreu 3717 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ 𝑁 ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑁 → 𝑝 = 𝑃)) → ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |
| 36 | 33, 35 | syl 17 | 1 ⊢ (𝜑 → ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 class class class wbr 5123 {copab 5185 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 1c1 11138 · cmul 11142 < clt 11277 ℕcn 12248 2c2 12303 3c3 12304 ℤ≥cuz 12860 ...cfz 13529 ⌊cfl 13812 ↑cexp 14084 √csqrt 15254 ∥ cdvds 16272 gcd cgcd 16513 ℙcprime 16690 odℤcodz 16782 ϕcphi 16783 Basecbs 17229 +gcplusg 17273 .gcmg 19054 mulGrpcmgp 20105 RingIso crs 20438 Fieldcfield 20698 ℤRHomczrh 21472 chrcchr 21474 algSccascl 21826 var1cv1 22125 Poly1cpl1 22126 eval1ce1 22266 logb clogb 26743 PrimRoots cprimroots 42051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-ec 8729 df-qs 8733 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-shft 15088 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-prod 15922 df-fallfac 16025 df-ef 16085 df-sin 16087 df-cos 16088 df-pi 16090 df-dvds 16273 df-gcd 16514 df-prm 16691 df-odz 16784 df-phi 16785 df-pc 16857 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-pt 17460 df-prds 17463 df-pws 17465 df-xrs 17518 df-qtop 17523 df-imas 17524 df-qus 17525 df-xps 17526 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-nsg 19111 df-eqg 19112 df-ghm 19200 df-gim 19246 df-cntz 19304 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-rim 20441 df-nzr 20481 df-subrng 20514 df-subrg 20538 df-rlreg 20662 df-domn 20663 df-idom 20664 df-drng 20699 df-field 20700 df-lmod 20828 df-lss 20898 df-lsp 20938 df-sra 21140 df-rgmod 21141 df-lidl 21180 df-rsp 21181 df-2idl 21222 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-fbas 21323 df-fg 21324 df-cnfld 21327 df-zring 21420 df-zrh 21476 df-chr 21478 df-zn 21479 df-assa 21827 df-asp 21828 df-ascl 21829 df-psr 21883 df-mvr 21884 df-mpl 21885 df-opsr 21887 df-evls 22046 df-evl 22047 df-psr1 22129 df-vr1 22130 df-ply1 22131 df-coe1 22132 df-evl1 22268 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-ntr 22974 df-cls 22975 df-nei 23052 df-lp 23090 df-perf 23091 df-cn 23181 df-cnp 23182 df-haus 23269 df-tx 23516 df-hmeo 23709 df-fil 23800 df-fm 23892 df-flim 23893 df-flf 23894 df-xms 24275 df-ms 24276 df-tms 24277 df-cncf 24840 df-limc 25837 df-dv 25838 df-mdeg 26030 df-deg1 26031 df-mon1 26106 df-uc1p 26107 df-q1p 26108 df-r1p 26109 df-log 26534 df-cxp 26535 df-logb 26744 df-primroots 42052 |
| This theorem is referenced by: aks6d1c7 42144 |
| Copyright terms: Public domain | W3C validator |