Step | Hyp | Ref
| Expression |
1 | | aks6d1c7.1 |
. 2
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
2 | | aks6d1c7.2 |
. 2
⊢ 𝑃 = (chr‘𝐾) |
3 | | aks6d1c7.3 |
. 2
⊢ (𝜑 → 𝐾 ∈ Field) |
4 | | aks6d1c7.4 |
. 2
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | | aks6d1c7.5 |
. 2
⊢ (𝜑 → 𝑅 ∈ ℕ) |
6 | | aks6d1c7.6 |
. 2
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
7 | | aks6d1c7.7 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
8 | | aks6d1c7.8 |
. 2
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
9 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑘((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗)) |
10 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑙((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗)) |
11 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑖((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) |
12 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑗((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) |
13 | | simpl 482 |
. . . . 5
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → 𝑖 = 𝑘) |
14 | 13 | oveq2d 7464 |
. . . 4
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑃↑𝑖) = (𝑃↑𝑘)) |
15 | | simpr 484 |
. . . . 5
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → 𝑗 = 𝑙) |
16 | 15 | oveq2d 7464 |
. . . 4
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → ((𝑁 / 𝑃)↑𝑗) = ((𝑁 / 𝑃)↑𝑙)) |
17 | 14, 16 | oveq12d 7466 |
. . 3
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗)) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
18 | 9, 10, 11, 12, 17 | cbvmpo 7544 |
. 2
⊢ (𝑖 ∈ ℕ0,
𝑗 ∈
ℕ0 ↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
19 | | eqid 2740 |
. 2
⊢
(ℤRHom‘(ℤ/nℤ‘𝑅)) =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
20 | | eqid 2740 |
. 2
⊢
(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) =
(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) |
21 | | aks6d1c7.9 |
. 2
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
22 | | aks6d1c7.10 |
. 2
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
23 | | aks6d1c7.11 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
24 | | aks6d1c7.12 |
. 2
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
25 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑣(((eval1‘𝐾)‘((𝑚 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤))‘𝑀) |
26 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑤(((eval1‘𝐾)‘((𝑚 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))‘𝑀) |
27 | | 2fveq3 6925 |
. . . 4
⊢ (𝑤 = 𝑣 → ((eval1‘𝐾)‘((𝑚 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤)) = ((eval1‘𝐾)‘((𝑚
∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))) |
28 | 27 | fveq1d 6922 |
. . 3
⊢ (𝑤 = 𝑣 → (((eval1‘𝐾)‘((𝑚 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤))‘𝑀) =
(((eval1‘𝐾)‘((𝑚 ∈ (ℕ0 ↑m
(0...𝐴)) ↦
((mulGrp‘(Poly1‘𝐾))
Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))‘𝑀)) |
29 | 25, 26, 28 | cbvmpt 5277 |
. 2
⊢ (𝑤 ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘((𝑚 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤))‘𝑀))
= (𝑣 ∈ (ℕ0
↑m (0...𝐴)) ↦
(((eval1‘𝐾)‘((𝑚 ∈ (ℕ0 ↑m
(0...𝐴)) ↦
((mulGrp‘(Poly1‘𝐾))
Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))‘𝑀)) |
30 | | eqid 2740 |
. 2
⊢
(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
(ℕ0 × ℕ0)))))) =
(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
(ℕ0 × ℕ0)))))) |
31 | | eqid 2740 |
. 2
⊢ ((𝑖 ∈ ℕ0,
𝑗 ∈
ℕ0 ↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “
((0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
(ℕ0 × ℕ0))))))) ×
(0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
(ℕ0 × ℕ0))))))))) = ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
((0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
(ℕ0 × ℕ0))))))) ×
(0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) ·
((𝑁 / 𝑃)↑𝑗))) “
(ℕ0 × ℕ0))))))))) |
32 | | aks6d1c7lem3.1 |
. 2
⊢ (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁)) |
33 | | aks6d1c7.13 |
. 2
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
34 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑔((mulGrp‘(Poly1‘𝐾)) Σg
(𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))) |
35 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑚((mulGrp‘(Poly1‘𝐾)) Σg
(ℎ ∈ (0...𝐴) ↦ ((𝑔‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))))) |
36 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎℎ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))) |
37 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑛((𝑚‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))) |
38 | | fveq2 6920 |
. . . . . . . 8
⊢ (𝑛 = ℎ → (𝑚‘𝑛) = (𝑚‘ℎ)) |
39 | | 2fveq3 6925 |
. . . . . . . . 9
⊢ (𝑛 = ℎ →
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)) =
((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))) |
40 | 39 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑛 = ℎ → ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛))) = ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))) |
41 | 38, 40 | oveq12d 7466 |
. . . . . . 7
⊢ (𝑛 = ℎ → ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))) = ((𝑚‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))))) |
42 | 36, 37, 41 | cbvmpt 5277 |
. . . . . 6
⊢ (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛))))) = (ℎ
∈ (0...𝐴) ↦ ((𝑚‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))))) |
43 | 42 | a1i 11 |
. . . . 5
⊢ (𝑚 = 𝑔 → (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛))))) = (ℎ
∈ (0...𝐴) ↦ ((𝑚‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))))) |
44 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑚 = 𝑔 ∧ ℎ ∈ (0...𝐴)) → 𝑚 = 𝑔) |
45 | 44 | fveq1d 6922 |
. . . . . . 7
⊢ ((𝑚 = 𝑔 ∧ ℎ ∈ (0...𝐴)) → (𝑚‘ℎ) = (𝑔‘ℎ)) |
46 | 45 | oveq1d 7463 |
. . . . . 6
⊢ ((𝑚 = 𝑔 ∧ ℎ ∈ (0...𝐴)) → ((𝑚‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))) = ((𝑔‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))))) |
47 | 46 | mpteq2dva 5266 |
. . . . 5
⊢ (𝑚 = 𝑔 → (ℎ ∈ (0...𝐴) ↦ ((𝑚‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))))) = (ℎ
∈ (0...𝐴) ↦ ((𝑔‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))))) |
48 | 43, 47 | eqtrd 2780 |
. . . 4
⊢ (𝑚 = 𝑔 → (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛))))) = (ℎ
∈ (0...𝐴) ↦ ((𝑔‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ)))))) |
49 | 48 | oveq2d 7464 |
. . 3
⊢ (𝑚 = 𝑔 →
((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))) = ((mulGrp‘(Poly1‘𝐾)) Σg (ℎ ∈ (0...𝐴) ↦ ((𝑔‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))))))) |
50 | 34, 35, 49 | cbvmpt 5277 |
. 2
⊢ (𝑚 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚‘𝑛)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑛))))))) = (𝑔
∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (ℎ ∈ (0...𝐴) ↦ ((𝑔‘ℎ)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘ℎ))))))) |
51 | | aks6d1c7.14 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
52 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑢(ℕ0 ↑m
(0...𝐴)) |
53 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑜(ℕ0 ↑m
(0...𝐴)) |
54 | | nfv 1913 |
. . 3
⊢
Ⅎ𝑜Σ𝑞 ∈ (0...𝐴)(𝑢‘𝑞) ≤
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0)))) − 1) |
55 | | nfv 1913 |
. . 3
⊢
Ⅎ𝑢Σ𝑝 ∈ (0...𝐴)(𝑜‘𝑝) ≤
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) − 1) |
56 | | simpl 482 |
. . . . . . 7
⊢ ((𝑢 = 𝑜 ∧ 𝑞 ∈ (0...𝐴)) → 𝑢 = 𝑜) |
57 | 56 | fveq1d 6922 |
. . . . . 6
⊢ ((𝑢 = 𝑜 ∧ 𝑞 ∈ (0...𝐴)) → (𝑢‘𝑞) = (𝑜‘𝑞)) |
58 | 57 | sumeq2dv 15750 |
. . . . 5
⊢ (𝑢 = 𝑜 → Σ𝑞 ∈ (0...𝐴)(𝑢‘𝑞) = Σ𝑞 ∈ (0...𝐴)(𝑜‘𝑞)) |
59 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝑜‘𝑞) = (𝑜‘𝑝)) |
60 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑝(𝑜‘𝑞) |
61 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑞(𝑜‘𝑝) |
62 | 59, 60, 61 | cbvsum 15743 |
. . . . . 6
⊢
Σ𝑞 ∈
(0...𝐴)(𝑜‘𝑞) = Σ𝑝 ∈ (0...𝐴)(𝑜‘𝑝) |
63 | 62 | a1i 11 |
. . . . 5
⊢ (𝑢 = 𝑜 → Σ𝑞 ∈ (0...𝐴)(𝑜‘𝑞) = Σ𝑝 ∈ (0...𝐴)(𝑜‘𝑝)) |
64 | 58, 63 | eqtrd 2780 |
. . . 4
⊢ (𝑢 = 𝑜 → Σ𝑞 ∈ (0...𝐴)(𝑢‘𝑞) = Σ𝑝 ∈ (0...𝐴)(𝑜‘𝑝)) |
65 | 18 | eqcomi 2749 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0,
𝑙 ∈
ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) |
66 | 65 | a1i 11 |
. . . . . . . 8
⊢ (𝑢 = 𝑜 → (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗)))) |
67 | 66 | imaeq1d 6088 |
. . . . . . 7
⊢ (𝑢 = 𝑜 → ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0)) = ((𝑖
∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0))) |
68 | 67 | imaeq2d 6089 |
. . . . . 6
⊢ (𝑢 = 𝑜 →
((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0))) =
((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) |
69 | 68 | fveq2d 6924 |
. . . . 5
⊢ (𝑢 = 𝑜 →
(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0)))) =
(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0))))) |
70 | 69 | oveq1d 7463 |
. . . 4
⊢ (𝑢 = 𝑜 →
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0)))) − 1) =
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) − 1)) |
71 | 64, 70 | breq12d 5179 |
. . 3
⊢ (𝑢 = 𝑜 → (Σ𝑞 ∈ (0...𝐴)(𝑢‘𝑞) ≤
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0)))) − 1) ↔ Σ𝑝 ∈ (0...𝐴)(𝑜‘𝑝) ≤
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) − 1))) |
72 | 52, 53, 54, 55, 71 | cbvrabw 3481 |
. 2
⊢ {𝑢 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑞 ∈
(0...𝐴)(𝑢‘𝑞) ≤
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 ×
ℕ0)))) − 1)} = {𝑜 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑝 ∈
(0...𝐴)(𝑜‘𝑝) ≤
((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0
↦ ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 ×
ℕ0)))) − 1)} |
73 | 1, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 50, 51, 72 | aks6d1c7lem2 42138 |
1
⊢ (𝜑 → 𝑃 = 𝑄) |