Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c7lem3 Structured version   Visualization version   GIF version

Theorem aks6d1c7lem3 42164
Description: Remove lots of hypotheses now that we have the AKS contradiction. (Contributed by metakunt, 16-May-2025.)
Hypotheses
Ref Expression
aks6d1c7.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c7.2 𝑃 = (chr‘𝐾)
aks6d1c7.3 (𝜑𝐾 ∈ Field)
aks6d1c7.4 (𝜑𝑃 ∈ ℙ)
aks6d1c7.5 (𝜑𝑅 ∈ ℕ)
aks6d1c7.6 (𝜑𝑁 ∈ (ℤ‘3))
aks6d1c7.7 (𝜑𝑃𝑁)
aks6d1c7.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c7.9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks6d1c7.10 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks6d1c7.11 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c7.12 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c7.13 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c7.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c7lem3.1 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
Assertion
Ref Expression
aks6d1c7lem3 (𝜑𝑃 = 𝑄)
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑒,𝑓,𝑦   𝑥,𝐴,𝑦   𝐾,𝑎   𝐾,𝑏   𝑒,𝐾,𝑓,𝑦   𝑥,𝐾   𝑀,𝑎   𝑀,𝑏   𝑥,𝑀,𝑦   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓,𝑦   𝑥,𝑁   𝑃,𝑎   𝑃,𝑏   𝑃,𝑒,𝑓,𝑦   𝑥,𝑃   𝑄,𝑎   𝑄,𝑏   𝑥,𝑄,𝑦   𝑅,𝑎   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝜑,𝑏   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝑄(𝑒,𝑓)   (𝑥,𝑦,𝑒,𝑓,𝑏)   𝑅(𝑏)   𝑀(𝑒,𝑓)

Proof of Theorem aks6d1c7lem3
Dummy variables 𝑘 𝑙 𝑣 𝑚 𝑛 𝑔 𝑜 𝑝 𝑞 𝑢 𝑤 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c7.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c7.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c7.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c7.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c7.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c7.6 . 2 (𝜑𝑁 ∈ (ℤ‘3))
7 aks6d1c7.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c7.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 nfcv 2903 . . 3 𝑘((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))
10 nfcv 2903 . . 3 𝑙((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))
11 nfcv 2903 . . 3 𝑖((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))
12 nfcv 2903 . . 3 𝑗((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))
13 simpl 482 . . . . 5 ((𝑖 = 𝑘𝑗 = 𝑙) → 𝑖 = 𝑘)
1413oveq2d 7447 . . . 4 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑃𝑖) = (𝑃𝑘))
15 simpr 484 . . . . 5 ((𝑖 = 𝑘𝑗 = 𝑙) → 𝑗 = 𝑙)
1615oveq2d 7447 . . . 4 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑁 / 𝑃)↑𝑗) = ((𝑁 / 𝑃)↑𝑙))
1714, 16oveq12d 7449 . . 3 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗)) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
189, 10, 11, 12, 17cbvmpo 7527 . 2 (𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
19 eqid 2735 . 2 (ℤRHom‘(ℤ/nℤ‘𝑅)) = (ℤRHom‘(ℤ/nℤ‘𝑅))
20 eqid 2735 . 2 (♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))) = (♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0))))
21 aks6d1c7.9 . 2 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
22 aks6d1c7.10 . 2 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
23 aks6d1c7.11 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
24 aks6d1c7.12 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
25 nfcv 2903 . . 3 𝑣(((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤))‘𝑀)
26 nfcv 2903 . . 3 𝑤(((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))‘𝑀)
27 2fveq3 6912 . . . 4 (𝑤 = 𝑣 → ((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤)) = ((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣)))
2827fveq1d 6909 . . 3 (𝑤 = 𝑣 → (((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤))‘𝑀) = (((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))‘𝑀))
2925, 26, 28cbvmpt 5259 . 2 (𝑤 ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑤))‘𝑀)) = (𝑣 ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘((𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))))‘𝑣))‘𝑀))
30 eqid 2735 . 2 (⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))))) = (⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0))))))
31 eqid 2735 . 2 ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ ((0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0))))))) × (0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0))))))))) = ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ ((0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0))))))) × (0...(⌊‘(√‘(♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))))))))
32 aks6d1c7lem3.1 . 2 (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))
33 aks6d1c7.13 . 2 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
34 nfcv 2903 . . 3 𝑔((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))))))
35 nfcv 2903 . . 3 𝑚((mulGrp‘(Poly1𝐾)) Σg ( ∈ (0...𝐴) ↦ ((𝑔)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))))
36 nfcv 2903 . . . . . . 7 ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))))
37 nfcv 2903 . . . . . . 7 𝑛((𝑚)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))
38 fveq2 6907 . . . . . . . 8 (𝑛 = → (𝑚𝑛) = (𝑚))
39 2fveq3 6912 . . . . . . . . 9 (𝑛 = → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))
4039oveq2d 7447 . . . . . . . 8 (𝑛 = → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))
4138, 40oveq12d 7449 . . . . . . 7 (𝑛 = → ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))) = ((𝑚)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))))
4236, 37, 41cbvmpt 5259 . . . . . 6 (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))))) = ( ∈ (0...𝐴) ↦ ((𝑚)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))))
4342a1i 11 . . . . 5 (𝑚 = 𝑔 → (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))))) = ( ∈ (0...𝐴) ↦ ((𝑚)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))))
44 simpl 482 . . . . . . . 8 ((𝑚 = 𝑔 ∈ (0...𝐴)) → 𝑚 = 𝑔)
4544fveq1d 6909 . . . . . . 7 ((𝑚 = 𝑔 ∈ (0...𝐴)) → (𝑚) = (𝑔))
4645oveq1d 7446 . . . . . 6 ((𝑚 = 𝑔 ∈ (0...𝐴)) → ((𝑚)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))) = ((𝑔)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))))
4746mpteq2dva 5248 . . . . 5 (𝑚 = 𝑔 → ( ∈ (0...𝐴) ↦ ((𝑚)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))) = ( ∈ (0...𝐴) ↦ ((𝑔)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))))
4843, 47eqtrd 2775 . . . 4 (𝑚 = 𝑔 → (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))))) = ( ∈ (0...𝐴) ↦ ((𝑔)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘))))))
4948oveq2d 7447 . . 3 (𝑚 = 𝑔 → ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛)))))) = ((mulGrp‘(Poly1𝐾)) Σg ( ∈ (0...𝐴) ↦ ((𝑔)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))))))
5034, 35, 49cbvmpt 5259 . 2 (𝑚 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑛 ∈ (0...𝐴) ↦ ((𝑚𝑛)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑛))))))) = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg ( ∈ (0...𝐴) ↦ ((𝑔)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘)))))))
51 aks6d1c7.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
52 nfcv 2903 . . 3 𝑢(ℕ0m (0...𝐴))
53 nfcv 2903 . . 3 𝑜(ℕ0m (0...𝐴))
54 nfv 1912 . . 3 𝑜Σ𝑞 ∈ (0...𝐴)(𝑢𝑞) ≤ ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0)))) − 1)
55 nfv 1912 . . 3 𝑢Σ𝑝 ∈ (0...𝐴)(𝑜𝑝) ≤ ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))) − 1)
56 simpl 482 . . . . . . 7 ((𝑢 = 𝑜𝑞 ∈ (0...𝐴)) → 𝑢 = 𝑜)
5756fveq1d 6909 . . . . . 6 ((𝑢 = 𝑜𝑞 ∈ (0...𝐴)) → (𝑢𝑞) = (𝑜𝑞))
5857sumeq2dv 15735 . . . . 5 (𝑢 = 𝑜 → Σ𝑞 ∈ (0...𝐴)(𝑢𝑞) = Σ𝑞 ∈ (0...𝐴)(𝑜𝑞))
59 fveq2 6907 . . . . . . 7 (𝑞 = 𝑝 → (𝑜𝑞) = (𝑜𝑝))
60 nfcv 2903 . . . . . . 7 𝑝(𝑜𝑞)
61 nfcv 2903 . . . . . . 7 𝑞(𝑜𝑝)
6259, 60, 61cbvsum 15728 . . . . . 6 Σ𝑞 ∈ (0...𝐴)(𝑜𝑞) = Σ𝑝 ∈ (0...𝐴)(𝑜𝑝)
6362a1i 11 . . . . 5 (𝑢 = 𝑜 → Σ𝑞 ∈ (0...𝐴)(𝑜𝑞) = Σ𝑝 ∈ (0...𝐴)(𝑜𝑝))
6458, 63eqtrd 2775 . . . 4 (𝑢 = 𝑜 → Σ𝑞 ∈ (0...𝐴)(𝑢𝑞) = Σ𝑝 ∈ (0...𝐴)(𝑜𝑝))
6518eqcomi 2744 . . . . . . . . 9 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗)))
6665a1i 11 . . . . . . . 8 (𝑢 = 𝑜 → (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))))
6766imaeq1d 6079 . . . . . . 7 (𝑢 = 𝑜 → ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0)) = ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))
6867imaeq2d 6080 . . . . . 6 (𝑢 = 𝑜 → ((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0))) = ((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0))))
6968fveq2d 6911 . . . . 5 (𝑢 = 𝑜 → (♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0)))) = (♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))))
7069oveq1d 7446 . . . 4 (𝑢 = 𝑜 → ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0)))) − 1) = ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))) − 1))
7164, 70breq12d 5161 . . 3 (𝑢 = 𝑜 → (Σ𝑞 ∈ (0...𝐴)(𝑢𝑞) ≤ ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0)))) − 1) ↔ Σ𝑝 ∈ (0...𝐴)(𝑜𝑝) ≤ ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))) − 1)))
7252, 53, 54, 55, 71cbvrabw 3471 . 2 {𝑢 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑞 ∈ (0...𝐴)(𝑢𝑞) ≤ ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) “ (ℕ0 × ℕ0)))) − 1)} = {𝑜 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑝 ∈ (0...𝐴)(𝑜𝑝) ≤ ((♯‘((ℤRHom‘(ℤ/nℤ‘𝑅)) “ ((𝑖 ∈ ℕ0, 𝑗 ∈ ℕ0 ↦ ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑗))) “ (ℕ0 × ℕ0)))) − 1)}
731, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 50, 51, 72aks6d1c7lem2 42163 1 (𝜑𝑃 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5687  cima 5692  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  0cn0 12524  cuz 12876  ...cfz 13544  cfl 13827  cexp 14099  chash 14366  csqrt 15269  Σcsu 15719  cdvds 16287   gcd cgcd 16528  cprime 16705  odcodz 16797  ϕcphi 16798  Basecbs 17245  +gcplusg 17298   Σg cgsu 17487  .gcmg 19098  mulGrpcmgp 20152   RingIso crs 20487  Fieldcfield 20747  ℤRHomczrh 21528  chrcchr 21530  ℤ/nczn 21531  algSccascl 21890  var1cv1 22193  Poly1cpl1 22194  eval1ce1 22334   logb clogb 26822   PrimRoots cprimroots 42073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-fallfac 16040  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-prm 16706  df-odz 16799  df-phi 16800  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-pws 17496  df-xrs 17549  df-qtop 17554  df-imas 17555  df-qus 17556  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-gim 19290  df-cntz 19348  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-rim 20490  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-domn 20712  df-idom 20713  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-chr 21534  df-zn 21535  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evl1 22336  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-mdeg 26109  df-deg1 26110  df-mon1 26185  df-uc1p 26186  df-q1p 26187  df-r1p 26188  df-log 26613  df-cxp 26614  df-logb 26823  df-primroots 42074
This theorem is referenced by:  aks6d1c7lem4  42165
  Copyright terms: Public domain W3C validator