New Foundations Explorer Home New Foundations Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  NFE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the New Foundations Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Higher-Order Logic Explorer
Bibliographic Reference DescriptionHigher-Order Logic Explorer Page(s)
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2208
[BellMachover] p. 460Notationdf-mo 2209
[BellMachover] p. 460Definitionmo3 2235
[BellMachover] p. 461Axiom Extax-ext 2334
[BellMachover] p. 462Theorem 1.1bm1.1 2338
[ChoquetDD] p. 2Definition of mappingdf-mpt 5653
[Eisenberg] p. 125Definition 8.21df-map 6002
[Enderton] p. 19Definitiondf-tp 3744
[Enderton] p. 26Exercise 5unissb 3922
[Enderton] p. 30Theorem "Distributive laws"iinin1 4038  iinin2 4037  iinun2 4033  iunin1 4032  iunin2 4031
[Enderton] p. 31Theorem "De Morgan's laws"iindif2 4036  iundif2 4034
[Enderton] p. 32Exercise 20unineq 3506
[Enderton] p. 33Exercise 23iinuni 4050
[Enderton] p. 33Exercise 25iununi 4051
[Enderton] p. 33Exercise 24(a)iinpw 4055
[Enderton] p. 33Exercise 24(b)iunpwss 4056
[Enderton] p. 38Exercise 6(a)unipw 4118
[Enderton] p. 41Lemma 3Drnex 5108  rnexg 5105
[Enderton] p. 41Exercise 8dmuni 4915  rnuni 5039
[Enderton] p. 42Definition of a functiondffun7 5134  dffun8 5135
[Enderton] p. 43Definition of function valuefunfv2 5377
[Enderton] p. 43Definition of single-rootedfuncnv 5157
[Enderton] p. 44Definition (d)dfima4 4953
[Enderton] p. 47Theorem 3Hfvco2 5383
[Enderton] p. 50Theorem 3K(a)imauni 5466
[Enderton] p. 52Definitiondf-map 6002
[Enderton] p. 53Exercise 21coass 5098
[Enderton] p. 53Exercise 27dmco 5090
[Enderton] p. 53Exercise 14(a)funin 5164
[Enderton] p. 53Exercise 22(a)imass2 5025
[Enderton] p. 56Theorem 3Merref 5960
[Enderton] p. 57Lemma 3Nerthi 5971
[Enderton] p. 57Definitiondf-ec 5948
[Enderton] p. 58Definitiondf-qs 5952
[Enderton] p. 61Exercise 35df-ec 5948
[Enderton] p. 65Exercise 56(a)dmun 4913
[Enderton] p. 79Definition of operation valuedf-ov 5527
[Enderton] p. 129Definitiondf-en 6030
[Enderton] p. 144Corollary 6Kundif2 3627
[Enderton] p. 145Figure 38ffoss 5315
[Gleason] p. 119Proposition 9-2.4caovmo 5646
[Hailperin] p. 6Axiom P1ax-nin 4079  df-nin 3212
[Hailperin] p. 10Axiom P2ax-si 4084
[Hailperin] p. 10Axiom P3ax-ins2 4085
[Hailperin] p. 10Axiom P4ax-ins3 4086
[Hailperin] p. 10Axiom P5ax-xp 4080
[Hailperin] p. 10Axiom P6ax-typlower 4087
[Hailperin] p. 10Axiom P7ax-cnv 4081
[Hailperin] p. 10Axiom P8ax-1c 4082
[Hailperin] p. 10Axiom P9ax-sset 4083
[Hamilton] p. 28Definition 2.1ax-1 6
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1546
[Hitchcock] p. 5Rule A3mpto1 1533
[Hitchcock] p. 5Rule A4mpto2 1534
[Hitchcock] p. 5Rule A5mtp-xor 1536
[Holmes] p. 40Definitiondf-txp 5737
[Holmes] p. 134Definitiondf-scan 6327
[Holmes], p. 134Observationscancan 6332
[Jech] p. 4Definition of classcv 1641  cvjust 2348
[KalishMontague] p. 81Note 1ax-9 1654
[KalishMontague] p. 85Lemma 2equid 1676
[KalishMontague] p. 85Lemma 3equcomi 1679
[KalishMontague] p. 86Lemma 7cbvalivw 1674  cbvaliw 1673
[KalishMontague] p. 87Lemma 8spimvw 1669  spimw 1668
[KalishMontague] p. 87Lemma 9spfw 1691  spw 1694
[Kunen] p. 10Axiom 0a9e 1951
[Kunen] p. 24Definition 10.24mapval 6012  mapvalg 6010
[Kunen] p. 31Definition 10.24mapex 6007  mapexi 6004
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3980
[Levy] p. 338Axiomdf-clab 2340  df-clel 2349  df-cleq 2346
[Lopez-Astorga] p. 12Rule 1mpto1 1533
[Lopez-Astorga] p. 12Rule 2mpto2 1534
[Lopez-Astorga] p. 12Rule 3mtp-xor 1536
[Margaris] p. 40Rule Cexlimiv 1634
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3ax-3 8
[Margaris] p. 49Definitiondf-an 360  df-ex 1542  df-or 359  dfbi2 609
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 40
[Margaris] p. 60Theorem 8mth8 138
[Margaris] p. 89Theorem 19.219.2 1659  19.2g 1757  r19.2z 3640
[Margaris] p. 89Theorem 19.319.3 1785  19.3v 1665  rr19.3v 2981
[Margaris] p. 89Theorem 19.5alcom 1737
[Margaris] p. 89Theorem 19.6alex 1572
[Margaris] p. 89Theorem 19.7alnex 1543
[Margaris] p. 89Theorem 19.819.8a 1756
[Margaris] p. 89Theorem 19.919.9 1783  19.9h 1780  19.9v 1664
[Margaris] p. 89Theorem 19.11excom 1741  excomim 1742
[Margaris] p. 89Theorem 19.1219.12 1847  r19.12 2728
[Margaris] p. 90Theorem 19.14exnal 1574
[Margaris] p. 90Theorem 19.15albi 1564  ralbi 2751
[Margaris] p. 90Theorem 19.1619.16 1860
[Margaris] p. 90Theorem 19.1719.17 1861
[Margaris] p. 90Theorem 19.18exbi 1581
[Margaris] p. 90Theorem 19.1919.19 1862
[Margaris] p. 90Theorem 19.20alim 1558  alimd 1764  alimdh 1563  alimdv 1621  ralimdaa 2692  ralimdv 2694  ralimdva 2693  sbcimdv 3108
[Margaris] p. 90Theorem 19.2119.21-2 1864  19.21 1796  19.21bi 1758  19.21h 1797  19.21t 1795  19.21v 1890  alrimd 1769  alrimdd 1768  alrimdh 1587  alrimdv 1633  alrimi 1765  alrimih 1565  alrimiv 1631  alrimivv 1632  r19.21 2701  r19.21be 2716  r19.21bi 2713  r19.21t 2700  r19.21v 2702  ralrimd 2703  ralrimdv 2704  ralrimdva 2705  ralrimdvv 2709  ralrimdvva 2710  ralrimi 2696  ralrimiv 2697  ralrimiva 2698  ralrimivv 2706  ralrimivva 2707  ralrimivvva 2708  ralrimivw 2699  rexlimi 2732
[Margaris] p. 90Theorem 19.222alimdv 1623  2eximdv 1624  exim 1575  eximd 1770  eximdh 1588  eximdv 1622  rexim 2719  reximdai 2723  reximdv 2726  reximdv2 2724  reximdva 2727  reximdvai 2725  reximi2 2721
[Margaris] p. 90Theorem 19.2319.23 1801  19.23bi 1759  19.23h 1802  19.23t 1800  19.23v 1891  19.23vv 1892  exlimd 1806  exlimdh 1807  exlimdv 1636  exlimdvv 1637  exlimi 1803  exlimih 1804  exlimiv 1634  exlimivv 1635  r19.23 2730  r19.23v 2731  rexlimd 2736  rexlimdv 2738  rexlimdv3a 2741  rexlimdva 2739  rexlimdvaa 2740  rexlimdvv 2745  rexlimdvva 2746  rexlimdvw 2742  rexlimiv 2733  rexlimiva 2734  rexlimivv 2744
[Margaris] p. 90Theorem 19.2419.24 1662
[Margaris] p. 90Theorem 19.2519.25 1603
[Margaris] p. 90Theorem 19.2619.26-2 1594  19.26-3an 1595  19.26 1593  r19.26-2 2748  r19.26-3 2749  r19.26 2747  r19.26m 2750
[Margaris] p. 90Theorem 19.2719.27 1869  19.27v 1894  r19.27av 2753  r19.27z 3649  r19.27zv 3650
[Margaris] p. 90Theorem 19.2819.28 1870  19.28v 1895  r19.28av 2754  r19.28z 3643  r19.28zv 3646  rr19.28v 2982
[Margaris] p. 90Theorem 19.2919.29 1596  19.29r 1597  19.29r2 1598  19.29x 1599  r19.29 2755  r19.29r 2756
[Margaris] p. 90Theorem 19.3019.30 1604  r19.30 2757
[Margaris] p. 90Theorem 19.3119.31 1876
[Margaris] p. 90Theorem 19.3219.32 1875  r19.32v 2758
[Margaris] p. 90Theorem 19.3319.33 1607  19.33b 1608
[Margaris] p. 90Theorem 19.3419.34 1663
[Margaris] p. 90Theorem 19.3519.35 1600  19.35i 1601  19.35ri 1602  r19.35 2759
[Margaris] p. 90Theorem 19.3619.36 1871  19.36aiv 1897  19.36i 1872  19.36v 1896  r19.36av 2760  r19.36zv 3651
[Margaris] p. 90Theorem 19.3719.37 1873  19.37aiv 1900  19.37v 1899  r19.37 2761  r19.37av 2762  r19.37zv 3647
[Margaris] p. 90Theorem 19.3819.38 1794
[Margaris] p. 90Theorem 19.3919.39 1661
[Margaris] p. 90Theorem 19.4019.40-2 1610  19.40 1609  r19.40 2763
[Margaris] p. 90Theorem 19.4119.41 1879  19.41v 1901  19.41vv 1902  19.41vvv 1903  19.41vvvv 1904  r19.41 2764  r19.41v 2765
[Margaris] p. 90Theorem 19.4219.42 1880  19.42v 1905  19.42vv 1907  19.42vvv 1908  r19.42v 2766
[Margaris] p. 90Theorem 19.4319.43 1605  r19.43 2767
[Margaris] p. 90Theorem 19.4419.44 1877  r19.44av 2768
[Margaris] p. 90Theorem 19.4519.45 1878  r19.45av 2769  r19.45zv 3648
[Margaris] p. 110Exercise 2(b)eu1 2225
[Megill] p. 444Axiom C5ax-17 1616  ax17o 2157
[Megill] p. 445Lemma L12aecom-o 2151  aecom 1946  ax-10 2140
[Megill] p. 446Lemma L17equtrr 1683
[Megill] p. 446Lemma L18ax9from9o 2148
[Megill] p. 446Lemma L19hbnae-o 2179  hbnae 1955
[Megill] p. 447Remark 9.1df-sb 1649  sbid 1922
[Megill] p. 448Remark 9.6ax15 2021
[Megill] p. 448Scheme C4'ax-5o 2136
[Megill] p. 448Scheme C5'ax-4 2135  sp 1747
[Megill] p. 448Scheme C6'ax-7 1734
[Megill] p. 448Scheme C7'ax-6o 2137
[Megill] p. 448Scheme C8'ax-8 1675
[Megill] p. 448Scheme C9'ax-12o 2142
[Megill] p. 448Scheme C10'ax-9 1654  ax-9o 2138
[Megill] p. 448Scheme C11'ax-10o 2139
[Megill] p. 448Scheme C12'ax-13 1712
[Megill] p. 448Scheme C13'ax-14 1714
[Megill] p. 448Scheme C14'ax-15 2143
[Megill] p. 448Scheme C15'ax-11o 2141
[Megill] p. 448Scheme C16'ax-16 2144
[Megill] p. 448Theorem 9.4dral1-o 2154  dral1 1965  dral2-o 2181  dral2 1966  drex1 1967  drex2 1968  drsb1 2022  drsb2 2061
[Megill] p. 449Theorem 9.7sbcom2 2114  sbequ 2060  sbid2v 2123
[Megill] p. 450Example in Appendixhba1-o 2149  hba1 1786
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3125  rspsbca 3126  stdpc4 2024
[Mendelson] p. 69Axiom 5ax-5o 2136  ra5 3131  stdpc5 1798
[Mendelson] p. 81Rule Cexlimiv 1634
[Mendelson] p. 95Axiom 6stdpc6 1687
[Mendelson] p. 95Axiom 7stdpc7 1917
[Mendelson] p. 225Axiom system NBGru 3046
[Mendelson] p. 231Exercise 4.10(k)inv1 3578
[Mendelson] p. 231Exercise 4.10(l)unv 3579
[Mendelson] p. 231Exercise 4.10(n)dfin3 3495
[Mendelson] p. 231Exercise 4.10(o)df-nul 3552
[Mendelson] p. 231Exercise 4.10(q)dfin4 3496
[Mendelson] p. 231Exercise 4.10(s)ddif 3399
[Mendelson] p. 231Definition of uniondfun3 3494
[Mendelson] p. 235Exercise 4.12(d)pwv 3887
[Mendelson] p. 235Exercise 4.12(n)uniin 3912
[Mendelson] p. 235Exercise 4.12(t)ssdmrn 5100
[Mendelson] p. 254Proposition 4.22(b)xpen 6056
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6050  xpsneng 6051
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6053  xpcomeng 6054
[Mendelson] p. 254Proposition 4.22(e)xpassen 6058
[Mendelson] p. 255Exercise 4.39endisj 6052
[Mendelson] p. 255Exercise 4.41mapprc 6005
[Mendelson] p. 287Axiom system MKru 3046
[Monk1] p. 26Theorem 2.8(vii)ssin 3478
[Monk1] p. 33Theorem 3.2(i)ssrel 4845
[Monk1] p. 33Theorem 3.2(ii)eqrel 4846
[Monk1] p. 34Definition 3.3df-opab 4624
[Monk1] p. 36Theorem 3.7(i)coi1 5095  coi2 5096
[Monk1] p. 36Theorem 3.8(v)dm0 4919  rn0 4970
[Monk1] p. 36Theorem 3.7(ii)cnvi 5033
[Monk1] p. 37Theorem 3.13(x)dmxp 4924  rnxp 5052
[Monk1] p. 37Theorem 3.13(ii)xp0 5045  xp0r 4843
[Monk1] p. 38Theorem 3.16(ii)ima0 5014
[Monk1] p. 38Theorem 3.16(viii)imai 5011
[Monk1] p. 39Theorem 3.16(xi)imassrn 5010
[Monk1] p. 41Theorem 4.3(i)fnopfv 5413  funfvop 5401
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5362
[Monk1] p. 42Theorem 4.4(iii)fvelima 5370
[Monk1] p. 43Theorem 4.6funun 5147
[Monk1] p. 43Theorem 4.8(iv)dff13 5472  dff13f 5473
[Monk1] p. 50Definition 5.4fniunfv 5467
[Monk1] p. 52Theorem 5.11(viii)ssint 3943
[Monk2] p. 105Axiom C4ax-5 1557
[Monk2] p. 105Axiom C7ax-8 1675
[Monk2] p. 105Axiom C8ax-11 1746  ax-11o 2141
[Monk2] p. 105Axiom (C8)ax11v 2096
[Monk2] p. 108Lemma 5ax-5o 2136
[Monk2] p. 109Lemma 12ax-7 1734
[Monk2] p. 109Lemma 15equvin 2001  equvini 1987  eqvinop 4607
[Monk2] p. 113Axiom C5-1ax-17 1616  ax17o 2157
[Monk2] p. 113Axiom C5-2ax-6 1729
[Monk2] p. 113Axiom C5-3ax-7 1734
[Monk2] p. 114Lemma 21sp 1747
[Monk2] p. 114Lemma 22ax5o 1749  hba1-o 2149  hba1 1786
[Monk2] p. 114Lemma 23nfia1 1856
[Monk2] p. 114Lemma 24nfa2 1855  nfra2 2669
[Pfenning] p. 17Definition NNCnotnotrd 105
[Quine] p. 16Definition 2.1df-clab 2340  rabid 2788
[Quine] p. 17Definition 2.1''dfsb7 2119
[Quine] p. 18Definition 2.7df-cleq 2346
[Quine] p. 19Definition 2.9df-v 2862
[Quine] p. 34Theorem 5.1abeq2 2459
[Quine] p. 35Theorem 5.2abid2 2471  abid2f 2515
[Quine] p. 40Theorem 6.1sb5 2100
[Quine] p. 40Theorem 6.2sb56 2098  sb6 2099
[Quine] p. 41Theorem 6.3df-clel 2349
[Quine] p. 41Theorem 6.4eqid 2353
[Quine] p. 41Theorem 6.5eqcom 2355
[Quine] p. 42Theorem 6.6df-sbc 3048
[Quine] p. 42Theorem 6.7dfsbcq 3049  dfsbcq2 3050
[Quine] p. 43Theorem 6.8vex 2863
[Quine] p. 43Theorem 6.9isset 2864
[Quine] p. 44Theorem 7.3spcgf 2935  spcgv 2940  spcimgf 2933
[Quine] p. 44Theorem 6.11spsbc 3059  spsbcd 3060
[Quine] p. 44Theorem 6.12elex 2868
[Quine] p. 44Theorem 6.13elab 2986  elabg 2987  elabgf 2984
[Quine] p. 44Theorem 6.14noel 3555
[Quine] p. 48Theorem 7.2snprc 3789
[Quine] p. 48Definition 7.1df-pr 3743  df-sn 3742
[Quine] p. 49Theorem 7.4snss 3839  snssg 3845
[Quine] p. 49Theorem 7.5prss 3862  prssg 3863
[Quine] p. 49Theorem 7.6prid1 3828  prid1g 3826  prid2 3829  prid2g 3827  snid 3761  snidg 3759
[Quine] p. 53Theorem 8.2unisn 3908  unisng 3909
[Quine] p. 53Theorem 8.3uniun 3911
[Quine] p. 54Theorem 8.6elssuni 3920
[Quine] p. 54Theorem 8.7uni0 3919
[Quine] p. 56Theorem 8.17uniabio 4350
[Quine] p. 56Definition 8.18dfiota2 4341
[Quine] p. 57Theorem 8.19iotaval 4351
[Quine] p. 57Theorem 8.22iotanul 4355
[Quine] p. 58Theorem 8.23iotaex 4357
[Quine] p. 61Theorem 9.5opabid 4696  opelopab 4709  opelopaba 4704  opelopabaf 4711  opelopabf 4712  opelopabg 4706  opelopabga 4701  oprabid 5551
[Quine] p. 64Definition 9.11df-xp 4785
[Quine] p. 64Definition 9.12df-cnv 4786
[Quine] p. 64Definition 9.15df-id 4768
[Quine] p. 65Theorem 10.3fun0 5155
[Quine] p. 65Theorem 10.4funi 5138
[Quine] p. 65Theorem 10.5funsn 5148
[Quine] p. 65Definition 10.1df-fun 4790
[Quine] p. 68Definition 10.11fv2 5325
[Quine] p. 331Axiom system NFru 3046
[Rosser] p. 236Theorem IX.4.21dfpss4 3889
[Rosser] p. 238Definition IX.9.10, df-symdif 3217
[Rosser] p. 245Definitiondf-clos1 5874
[Rosser] p. 246Theorem IX.5.13clos1base 5879
[Rosser] p. 246Theorem IX.5.14clos1conn 5880
[Rosser] p. 247Theorem IX.5.15clos1induct 5881
[Rosser] p. 248Theorem IX.5.16clos1basesuc 5883  clos1basesucg 5885
[Rosser] p. 252Definitiondf-pw1 4138
[Rosser] p. 255Theorem IX.6.14sspw1 4336
[Rosser] p. 275Definitiondf-addc 4379  df-nnc 4380
[Rosser] p. 275Theorem X.1.1eladdc 4399
[Rosser] p. 275Theorem X.1.20cnsuc 4402
[Rosser] p. 276Theorem X.1.3dfnnc3 5886
[Rosser] p. 276Theorem X.1.4peano1 4403
[Rosser] p. 276Theorem X.1.5peano2 4404
[Rosser] p. 276Theorem X.1.6peano5 4410
[Rosser] p. 276Theorem X.1.7nnc0suc 4413
[Rosser] p. 276Theorem X.1.8addcid1 4406  addcid2 4408
[Rosser] p. 276Theorem X.1.9addccom 4407
[Rosser] p. 277Corollary 1addcass 4416
[Rosser] p. 277Theorem X.1.121cnnc 4409
[Rosser] p. 277Theorem X.1.13finds 4412  findsd 4411
[Rosser] p. 278Theorem X.1.14nncaddccl 4420
[Rosser] p. 279Theorem X.1.16elsuc 4414
[Rosser] p. 279Definition from Ex. X.1.4df-lefin 4441
[Rosser] p. 281Definitiondf-op 4567  df-proj1 4568  df-proj2 4569
[Rosser] p. 282Theorem X.2.2phi11 4597
[Rosser] p. 282Theorem X.2.30cnelphi 4598
[Rosser] p. 282Theorem X.2.4phi011 4600
[Rosser] p. 282Theorem X.2.7proj1op 4601
[Rosser] p. 283Theorem X.2.8proj2op 4602
[Rosser] p. 301Theorem X.4.29.Idmsi 5520
[Rosser] p. 302Theorem X.4.29.IIrnsi 5522
[Rosser] p. 303Theorem X.4.37clos1baseima 5884
[Rosser] p. 347Definitiondf-can 6325  df-can 6325
[Rosser] p. 347Theorem XI.1.6nenpw1pw 6087
[Rosser] p. 348Theorem XI.1.8vncan 6338
[Rosser] p. 348Theorem XI.1.10ensn 6059
[Rosser] p. 348Theorem XI.1.13enadj 6061
[Rosser] p. 350Theorem XI.1.14sbthlem1 6204  sbthlem2 6205
[Rosser] p. 353Theorem XI.1.15sbthlem3 6206
[Rosser] p. 357Theorem XI.1.22enmap2 6069
[Rosser] p. 357Theorem XI.1.23enmap1 6075
[Rosser] p. 360Theorem XI.1.28enprmap 6083  enprmapc 6084
[Rosser] p. 368Theorem XI.1.33enpw1 6063
[Rosser] p. 368Theorem XI.1.35enpw1pw 6076
[Rosser] p. 369Theorem XI.1.36enpw 6088
[Rosser] p. 371Definitiondf-nc 6102
[Rosser] p. 372Definitiondf-ncs 6099
[Rosser] p. 372Theorem XI.2.4ncpw1pwneg 6202
[Rosser] p. 372Theorem XI.2.7df0c2 6138
[Rosser] p. 373Theorem XI.2.70cnc 6139
[Rosser] p. 373Theorem XI.2.81cnc 6140  df1c3 6141  df1c3g 6142
[Rosser] p. 374Theorem XI.2.10ncaddccl 6145
[Rosser] p. 374Theorem XI.2.11nnssnc 6148
[Rosser] p. 375Definitiondf-lec 6100  df-ltc 6101
[Rosser] p. 375Theorem XI.2.12peano4nc 6151
[Rosser] p. 375Theorem XI.2.14lecidg 6197
[Rosser] p. 376Theorem XI.2.14nclecid 6198
[Rosser] p. 376Theorem XI.2.15le0nc 6201  lec0cg 6199
[Rosser] p. 376Theorem XI.2.16lecncvg 6200
[Rosser] p. 376Theorem XI.2.17ltcpw1pwg 6203
[Rosser] p. 376Theorem XI.2.19addlec 6209  addlecncs 6210
[Rosser] p. 376Theorem XI.2.20sbth 6207
[Rosser] p. 377Theorem XI.2.21ltlenlec 6208
[Rosser] p. 377Theorem XI.2.22dflec2 6211
[Rosser] p. 377Theorem XI.2.23leaddc1 6215  leaddc2 6216
[Rosser] p. 377Theorem XI.2.24nc0le1 6217  nc0suc 6218
[Rosser] p. 378Definitiondf-muc 6103
[Rosser] p. 378Theorem XI.2.27mucnc 6132
[Rosser] p. 378Theorem XI.2.28muccom 6135
[Rosser] p. 378Theorem XI.2.29mucass 6136
[Rosser] p. 379Theorem XI.2.30addcdir 6252
[Rosser] p. 379Theorem XI.2.31addcdi 6251
[Rosser] p. 379Theorem XI.2.32muc0 6143
[Rosser] p. 380Theorem XI.2.34muc0or 6253
[Rosser] p. 380Theorem XI.2.35lemuc1 6254
[Rosser] p. 381Definitiondf-ce 6107
[Rosser] p. 381Theorem XI.2.36ncslemuc 6256
[Rosser] p. 381Theorem XI.2.37ncvsq 6257  vvsqenvv 6258
[Rosser] p. 382Theorem XI.2.38elce 6176
[Rosser] p. 382Theorem XI.2.39cenc 6182
[Rosser] p. 382Theorem XI.2.42ce0nnul 6178
[Rosser] p. 383Theorem XI.2.43ce0addcnnul 6180
[Rosser] p. 383Theorem XI.2.44ce0nn 6181
[Rosser] p. 384Theorem XI.2.38ce0nulnc 6185
[Rosser] p. 384Theorem XI.2.47ce0nnulb 6183
[Rosser] p. 384Theorem XI.2.48ce0ncpw1 6186  cecl 6187  ceclb 6184
[Rosser] p. 385Theorem XI.2.49ce0 6191
[Rosser] p. 389Theorem XI.2.70ce2 6193
[Rosser] p. 390Theorem XI.2.71ce2lt 6221
[Rosser] p. 391Theorem XI.3.2addccan2nc 6266  lecadd2 6267
[Rosser] p. 391Theorem XI.3.3nclenn 6250
[Rosser] p. 412Theorem XI.3.24df-frec 6311
[Rosser] p. 525Theorem X.1.17nnsucelr 4429
[Rosser] p. 526Corollary 1addcnul1 4453
[Rosser] p. 526Theorem X.1.18nndisjeq 4430
[Rosser] p. 526Theorem X.1.19prepeano4 4452
[Rosser] p. 526Theorem X.1.20addcnnul 4454
[Rosser] p. 527Definitiondf-ltfin 4442  df-ncfin 4443
[Rosser] p. 527Theorem X.1.21ssfin 4471
[Rosser] p. 527Theorem X.1.22vfinnc 4472
[Rosser] p. 527Theorem X.1.23ncfinprop 4475
[Rosser] p. 527Theorem X.1.24ncfineleq 4478
[Rosser] p. 527Theorem X.1.25ncfinraise 4482
[Rosser] p. 527Theorem X.1.26ncfinlower 4484
[Rosser] p. 528Definitiondf-tfin 4444
[Rosser] p. 528Theorem X.1.27nnpw1ex 4485
[Rosser] p. 528Theorem X.1.28tfinnnul 4491  tfinprop 4490
[Rosser] p. 528Theorem X.1.29tfinnul 4492
[Rosser] p. 528Theorem X.1.30tfin11 4494
[Rosser] p. 528Theorem X.1.31tfinpw1 4495
[Rosser] p. 528Definition adapteddf-tc 6104
[Rosser] p. 529Definitiondf-evenfin 4445  df-oddfin 4446
[Rosser] p. 529Theorem X.1.31ncfintfin 4496
[Rosser] p. 529Theorem X.1.32tfindi 4497
[Rosser] p. 529Theorem X.1.33tfinlefin 4503  tfinltfin 4502
[Rosser] p. 529Theorem X.1.35evenoddnnnul 4515
[Rosser] p. 529Theorem X.1.36evenodddisj 4517
[Rosser] p. 529Theorem X.1.34(a)tfin1c 4500
[Rosser] p. 530Definitiondf-sfin 4447
[Rosser] p. 530Theorem X.1.37eventfin 4518
[Rosser] p. 530Theorem X.1.38oddtfin 4519
[Rosser] p. 530Theorem X.1.39nnadjoin 4521
[Rosser] p. 530Theorem X.1.40nnadjoinpw 4522
[Rosser] p. 530Theorem X.1.41nnpweq 4524
[Rosser] p. 530Theorem X.1.42sfin01 4529
[Rosser] p. 530Theorem X.1.43sfin112 4530
[Rosser] p. 531Theorem X.1.44sfindbl 4531
[Rosser] p. 532Theorem X.1.45sfintfin 4533
[Rosser] p. 532Theorem X.1.46tfinnn 4535
[Rosser] p. 532Theorem X.1.47sfinltfin 4536
[Rosser] p. 533Definitiondf-spfin 4448
[Rosser] p. 533Theorem X.1.48sfin111 4537
[Rosser] p. 534Theorem X.1.49ncvspfin 4539
[Rosser] p. 534Theorem X.1.50spfinsfincl 4540
[Rosser] p. 534Theorem X.1.51spfininduct 4541
[Rosser] p. 534Theorem X.1.53vfinspnn 4542
[Rosser] p. 534Theorem X.1.541cspfin 4544  1cvsfin 4543
[Rosser] p. 534Theorem X.1.55tncveqnc1fin 4545
[Rosser] p. 534Theorem X.1.56t1csfin1c 4546  vfintle 4547
[Rosser] p. 534Theorem X.1.57vfin1cltv 4548
[Rosser] p. 534Theorem X.1.58vfinncvntnn 4549  vfinncvntsp 4550
[Rosser] p. 534Theorem X.1.59vfinspss 4552
[Rosser] p. 536Theorem X.1.60vfinspclt 4553
[Rosser] p. 536Theorem X.1.61vfinspeqtncv 4554
[Rosser] p. 536Theorem X.1.62vfinncsp 4555
[Rosser] p. 536Theorem X.1.63vinf 4556
[Rosser] p. 536Theorem X.1.65nulnnn 4557
[Rosser] p. 537Theorem X.1.66peano4 4558
[Rosser], p. 417Definitiondf-fin 4381
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtp-xor 1536
[Sanford] p. 39Rule 4mpto2 1534
[Sanford] p. 39Rule says, "if ` ` is not true, and ` ` implies ` ` , then ` ` must also be not true." Modus tollens is short for "modus tollendo tollens," a Latin phrase that means "the mood that by denying affirms" mto 167
[Sanford] p. 40Rule 1mpto1 1533
[Schechter] p. 51Definition of antisymmetryintasym 5029
[Schechter] p. 51Definition of irreflexivityintirr 5030
[Schechter] p. 51Definition of symmetrycnvsym 5028
[Schechter] p. 51Definition of transitivitycotr 5027
[Specker] p. 972Theorem 2.4tc11 6229
[Specker] p. 973Theorem 3.4nnc3n3p1 6279  nnc3n3p2 6280  nnc3p1n3p2 6281  nncdiv3 6278
[Specker] p. 973Theorem 4.3ce2nc1 6194
[Specker] p. 973Theorem 4.4ce2ncpw11c 6195
[Specker] p. 973Theorem 4.5nchoicelem8 6297
[Specker] p. 973Theorem 4.8ce2le 6234
[Specker] p. 973Theorem 5.2tcnc1c 6228  tcncv 6227
[Specker] p. 973Theorem 5.5tlecg 6231
[Specker] p. 973Theorem 5.6letc 6232
[Specker] p. 973Theorem 5.8ce2t 6236
[Specker] p. 973Theorem 6.2nchoicelem3 6292
[Specker] p. 973Theorem 6.4nchoicelem4 6293
[Specker] p. 973Theorem 6.5nchoicelem5 6294
[Specker] p. 973Theorem 6.6nchoicelem6 6295
[Specker] p. 973Definition 6.1df-spac 6275
[Specker] p. 974Theorem 6.7nchoicelem7 6296
[Specker] p. 974Theorem 6.8nchoicelem9 6298
[Specker] p. 974Theorem 7.1nchoicelem12 6301
[Specker] p. 974Theorem 7.2nchoicelem17 6306
[Specker] p. 974Theorem 7.3nchoicelem19 6308
[Specker] p. 974Theorem 7.5nchoice 6309
[Stoll] p. 13Definition of symmetric differencesymdif1 3520
[Stoll] p. 16Exercise 4.40dif 3622  dif0 3621
[Stoll] p. 16Exercise 4.8difdifdir 3638
[Stoll] p. 17Theorem 5.1(5)undifv 3625
[Stoll] p. 19Theorem 5.2(13)undm 3513
[Stoll] p. 19Theorem 5.2(13')indm 3514
[Stoll] p. 20Remarkinvdif 3497
[Stoll] p. 43Definitionuniiun 4020
[Stoll] p. 44Definitionintiin 4021
[Stoll] p. 45Definitiondf-iin 3973
[Stoll] p. 45Definition indexed uniondf-iun 3972
[Stoll] p. 176Theorem 3.4(27)iman 413
[Stoll] p. 262Example 4.1symdif1 3520
[Suppes] p. 22Theorem 2eq0 3565
[Suppes] p. 22Theorem 4eqss 3288  eqssd 3290  eqssi 3289
[Suppes] p. 23Theorem 5ss0 3582  ss0b 3581
[Suppes] p. 23Theorem 6sstr 3281
[Suppes] p. 23Theorem 7pssirr 3370
[Suppes] p. 23Theorem 8pssn2lp 3371
[Suppes] p. 23Theorem 9psstr 3374
[Suppes] p. 23Theorem 10pssss 3365
[Suppes] p. 26Theorem 15inidm 3465
[Suppes] p. 26Theorem 16in0 3577
[Suppes] p. 27Theorem 23unidm 3408
[Suppes] p. 27Theorem 24un0 3576
[Suppes] p. 27Theorem 25ssun1 3427
[Suppes] p. 27Theorem 26ssequn1 3434
[Suppes] p. 27Theorem 27unss 3438
[Suppes] p. 27Theorem 28indir 3504
[Suppes] p. 27Theorem 29undir 3505
[Suppes] p. 28Theorem 32difid 3619  difidALT 3620
[Suppes] p. 29Theorem 33difin 3493
[Suppes] p. 29Theorem 34indif 3498
[Suppes] p. 29Theorem 35undif1 3626
[Suppes] p. 29Theorem 36difun2 3630
[Suppes] p. 29Theorem 37difin0 3624
[Suppes] p. 29Theorem 38disjdif 3623
[Suppes] p. 29Theorem 39difundi 3508
[Suppes] p. 29Theorem 40difindi 3510
[Suppes] p. 39Theorem 61uniss 3913
[Suppes] p. 41Theorem 70intsn 3963
[Suppes] p. 42Theorem 71intpr 3960  intprg 3961
[Suppes] p. 42Theorem 78intun 3959
[Suppes] p. 44Definition 15(a)dfiun2 4002  dfiun2g 4000
[Suppes] p. 44Definition 15(b)dfiin2 4003
[Suppes] p. 47Theorem 86elpw 3729  elpwg 3730
[Suppes] p. 47Theorem 87pwid 3736
[Suppes] p. 47Theorem 89pw0 4161
[Suppes] p. 48Theorem 90pwpw0 3856
[Suppes] p. 52Theorem 101xpss12 4856
[Suppes] p. 52Theorem 102xpindi 4865  xpindir 4866
[Suppes] p. 52Theorem 103xpundi 4833  xpundir 4834
[Suppes] p. 59Theorem 4eldm 4899  eldm2 4900
[Suppes] p. 60Theorem 6dmin 4914
[Suppes] p. 60Theorem 8rnun 5037
[Suppes] p. 60Theorem 9rnin 5038
[Suppes] p. 60Definition 4dfrn2 4903
[Suppes] p. 61Theorem 11brcnv 4893
[Suppes] p. 62Equation 5elcnv 4890  elcnv2 4891
[Suppes] p. 62Theorem 15cnvin 5036
[Suppes] p. 62Theorem 16cnvun 5034
[Suppes] p. 63Theorem 20co02 5093
[Suppes] p. 63Theorem 21dmcoss 4972
[Suppes] p. 64Theorem 26cnvco 4895
[Suppes] p. 64Theorem 27coass 5098
[Suppes] p. 65Theorem 31resundi 4982
[Suppes] p. 65Theorem 34elima 4755  elima2 4756  elima3 4757
[Suppes] p. 65Theorem 35imaundi 5040
[Suppes] p. 66Theorem 40dminss 5042
[Suppes] p. 66Theorem 41imainss 5043
[Suppes] p. 67Exercise 11cnvxp 5044
[Suppes] p. 81Definition 34dfec2 5949
[Suppes] p. 82Theorem 72elec 5965
[Suppes] p. 82Theorem 73erth 5969  erth2 5970
[Suppes] p. 83Theorem 74erdisj 5973
[Suppes] p. 89Theorem 96map0b 6025
[Suppes] p. 89Theorem 97map0 6026
[Suppes] p. 89Theorem 98mapsn 6027
[Suppes] p. 89Theorem 99mapss 6028
[Suppes] p. 92Theorem 4unen 6049
[Suppes] p. 98Exercise 4fundmen 6044  fundmeng 6045
[TakeutiZaring] p. 8Axiom 1ax-ext 2334
[TakeutiZaring] p. 13Definition 4.5df-cleq 2346
[TakeutiZaring] p. 13Proposition 4.6df-clel 2349
[TakeutiZaring] p. 13Proposition 4.9cvjust 2348
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2370
[TakeutiZaring] p. 14Definition 4.16df-oprab 5529
[TakeutiZaring] p. 14Proposition 4.14ru 3046
[TakeutiZaring] p. 15Exercise 1elpr 3752  elpr2 3753  elprg 3751
[TakeutiZaring] p. 15Exercise 2elsn 3749  elsnc 3757  elsnc2 3763  elsnc2g 3762  elsncg 3756
[TakeutiZaring] p. 15Exercise 4sneq 3745  sneqr 3873
[TakeutiZaring] p. 15Definition 5.1dfpr2 3750  dfsn2 3748
[TakeutiZaring] p. 16Definition 5.3dftp2 3773
[TakeutiZaring] p. 16Definition 5.5df-uni 3893
[TakeutiZaring] p. 16Proposition 5.7unipr 3906  uniprg 3907
[TakeutiZaring] p. 17Exercise 1eltp 3772
[TakeutiZaring] p. 17Exercise 5sstr2 3280
[TakeutiZaring] p. 17Exercise 6uncom 3409
[TakeutiZaring] p. 17Exercise 7incom 3449
[TakeutiZaring] p. 17Exercise 8unass 3421
[TakeutiZaring] p. 17Exercise 9inass 3466
[TakeutiZaring] p. 17Exercise 10indi 3502
[TakeutiZaring] p. 17Exercise 11undi 3503
[TakeutiZaring] p. 17Definition 5.9df-pss 3262  dfss2 3263
[TakeutiZaring] p. 17Definition 5.10df-pw 3725
[TakeutiZaring] p. 18Exercise 7unss2 3435
[TakeutiZaring] p. 18Exercise 9df-ss 3260  sseqin2 3475
[TakeutiZaring] p. 18Exercise 10ssid 3291
[TakeutiZaring] p. 18Exercise 12inss1 3476  inss2 3477
[TakeutiZaring] p. 18Exercise 13nss 3330
[TakeutiZaring] p. 18Exercise 15unieq 3901
[TakeutiZaring] p. 18Exercise 18sspwb 4119
[TakeutiZaring] p. 20Definitiondf-rab 2624
[TakeutiZaring] p. 20Definition 5.14dfnul2 3553
[TakeutiZaring] p. 20Proposition 5.15difid 3619  difidALT 3620
[TakeutiZaring] p. 20Proposition 5.17(1)n0 3560  n0f 3559  neq0 3561
[TakeutiZaring] p. 21Definition 5.20df-v 2862
[TakeutiZaring] p. 22Exercise 10ss 3580
[TakeutiZaring] p. 22Exercise 7ssdif0 3610
[TakeutiZaring] p. 22Exercise 11difdif 3393
[TakeutiZaring] p. 22Exercise 13undif3 3516
[TakeutiZaring] p. 22Exercise 14difss 3394
[TakeutiZaring] p. 22Exercise 15sscon 3401
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2620
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2621
[TakeutiZaring] p. 23Proposition 6.2xpex 5116  xpexg 5115
[TakeutiZaring] p. 24Definition 6.4(3)f1funfun 5264  fun11 5160
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5122
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4902
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4904
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4789
[TakeutiZaring] p. 25Exercise 9inxp 4864
[TakeutiZaring] p. 25Exercise 13opelres 4951
[TakeutiZaring] p. 25Exercise 14dmres 4987
[TakeutiZaring] p. 25Exercise 15resss 4989
[TakeutiZaring] p. 25Exercise 17resabs1 4993
[TakeutiZaring] p. 25Exercise 18funres 5144
[TakeutiZaring] p. 25Exercise 29funco 5143
[TakeutiZaring] p. 25Exercise 30f1co 5265
[TakeutiZaring] p. 26Definition 6.10eu2 2229
[TakeutiZaring] p. 26Definition 6.11fv3 5342
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5103  cnvexg 5102
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 5107  dmexg 5106
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 5108  rnexg 5105
[TakeutiZaring] p. 27Corollary 6.13fvex 5340
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5345  tz6.12 5346  tz6.12c 5348
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5347  tz6.12i 5349
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 4791
[TakeutiZaring] p. 27Definition 6.15(3)df-f 4792
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 4794  wfo 4780
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 4793  wf1 4779
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 4795  wf1o 4781
[TakeutiZaring] p. 28Exercise 4eqfnfv 5393  eqfnfv2 5394  eqfnfv2f 5397
[TakeutiZaring] p. 28Exercise 5fvco 5384
[TakeutiZaring] p. 29Definition 6.18df-br 4641
[TakeutiZaring] p. 30Definition 6.21eliniseg 5021  iniseg 5023
[TakeutiZaring] p. 30Definition 6.22df-eprel 4765
[TakeutiZaring] p. 32Definition 6.28df-iso 4797
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5491
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5492
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5496
[TakeutiZaring] p. 33Proposition 6.31(1)isomin 5497
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5498
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5500
[TakeutiZaring] p. 40Proposition 7.20elssuni 3920
[TakeutiZaring] p. 44Exercise 2int0 3941
[TakeutiZaring] p. 44Exercise 4intss1 3942
[TakeutiZaring] p. 44Definition 7.35df-int 3928
[TakeutiZaring] p. 53Proposition 7.532eu5 2288
[TakeutiZaring] p. 59Proposition 8.6iunss2 4012  uniss2 3923
[TakeutiZaring] p. 88Exercise 1en0 6043
[TakeutiZaring] p. 95Definition 10.42df-map 6002
[Tarski] p. 67Axiom B5ax-4 2135
[Tarski] p. 67Scheme B5sp 1747
[Tarski] p. 68Lemma 6equid 1676  equid1 2158  equid1ALT 2176
[Tarski] p. 69Lemma 7equcomi 1679
[Tarski] p. 70Lemma 14spim 1975  spime 1976  spimeh 1667
[Tarski] p. 70Lemma 16ax-11 1746  ax-11o 2141  ax11i 1647
[Tarski] p. 70Lemmas 16 and 17sb6 2099
[Tarski] p. 75Axiom B7ax9v 1655
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1616  ax17o 2157
[Tarski], p. 75Scheme B8 of system S2ax-13 1712  ax-14 1714  ax-8 1675
[WhiteheadRussell] p. 86Theorem *110.641p1e2c 6156
[WhiteheadRussell] p. 96Axiom *1.2pm1.2 499
[WhiteheadRussell] p. 96Axiom *1.3olc 373
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 375
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 508
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 814
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 160
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 108
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 76
[WhiteheadRussell] p. 100Theorem *2.05imim2 49
[WhiteheadRussell] p. 100Theorem *2.06imim1 70
[WhiteheadRussell] p. 101Theorem *2.1pm2.1 406
[WhiteheadRussell] p. 101Theorem *2.06barbara 2301  syl 15
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 385
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmid 404
[WhiteheadRussell] p. 101Theorem *2.12notnot1 114
[WhiteheadRussell] p. 101Theorem *2.13pm2.13 407
[WhiteheadRussell] p. 102Theorem *2.14notnot2 104
[WhiteheadRussell] p. 102Theorem *2.15con1 120
[WhiteheadRussell] p. 103Theorem *2.16con3 126  con3th 924
[WhiteheadRussell] p. 103Theorem *2.17ax-3 8
[WhiteheadRussell] p. 103Theorem *2.18pm2.18 102
[WhiteheadRussell] p. 104Theorem *2.2orc 374
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 555
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 100
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 101
[WhiteheadRussell] p. 104Theorem *2.25pm2.25 393
[WhiteheadRussell] p. 104Theorem *2.26pm2.26 853
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 35
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 511
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 512
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 816
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 817
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 815
[WhiteheadRussell] p. 105Definition *2.33df-3or 935
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 558
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 556
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 557
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 47
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 386
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 387
[WhiteheadRussell] p. 107Theorem *2.5pm2.5 144
[WhiteheadRussell] p. 107Theorem *2.6pm2.6 162
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 388
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 389
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 390
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 145
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 147
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 362
[WhiteheadRussell] p. 107Theorem *2.54pm2.54 363
[WhiteheadRussell] p. 107Theorem *2.55orel1 371
[WhiteheadRussell] p. 107Theorem *2.56orel2 372
[WhiteheadRussell] p. 107Theorem *2.61pm2.61 163
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 398
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 763
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 764
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 164
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 391  pm2.67 392
[WhiteheadRussell] p. 107Theorem *2.521pm2.521 146
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 397
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 823
[WhiteheadRussell] p. 108Theorem *2.68pm2.68 399
[WhiteheadRussell] p. 108Theorem *2.69looinv 174
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 818
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 819
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 822
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 821
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 824
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 825
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 71
[WhiteheadRussell] p. 108Theorem *2.85pm2.85 826
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 94
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 484
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 434  pm3.2im 137
[WhiteheadRussell] p. 111Theorem *3.11pm3.11 485
[WhiteheadRussell] p. 111Theorem *3.12pm3.12 486
[WhiteheadRussell] p. 111Theorem *3.13pm3.13 487
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 488
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 435
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 436
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 852
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 570
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 431
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 432
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 443  simplim 143
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 447  simprim 142
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 568
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 569
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 562
[WhiteheadRussell] p. 113Fact)pm3.45 807
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 544
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 542
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 543
[WhiteheadRussell] p. 113Theorem *3.44jao 498  pm3.44 497
[WhiteheadRussell] p. 113Theorem *3.47prth 554
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 832
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 806
[WhiteheadRussell] p. 116Theorem *4.1con34b 283
[WhiteheadRussell] p. 117Theorem *4.2biid 227
[WhiteheadRussell] p. 117Theorem *4.11notbi 286
[WhiteheadRussell] p. 117Theorem *4.12con2bi 318
[WhiteheadRussell] p. 117Theorem *4.13notnot 282
[WhiteheadRussell] p. 117Theorem *4.14pm4.14 561
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 564
[WhiteheadRussell] p. 117Theorem *4.21bicom 191
[WhiteheadRussell] p. 117Theorem *4.22biantr 897  bitr 689
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 624
[WhiteheadRussell] p. 117Theorem *4.25oridm 500  pm4.25 501
[WhiteheadRussell] p. 118Theorem *4.3ancom 437
[WhiteheadRussell] p. 118Theorem *4.4andi 837
[WhiteheadRussell] p. 118Theorem *4.31orcom 376
[WhiteheadRussell] p. 118Theorem *4.32anass 630
[WhiteheadRussell] p. 118Theorem *4.33orass 510
[WhiteheadRussell] p. 118Theorem *4.36anbi1 687
[WhiteheadRussell] p. 118Theorem *4.37orbi1 686
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 842
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 841
[WhiteheadRussell] p. 118Definition *4.34df-3an 936
[WhiteheadRussell] p. 119Theorem *4.41ordi 834
[WhiteheadRussell] p. 119Theorem *4.42pm4.42 926
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 893
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 560
[WhiteheadRussell] p. 119Theorem *4.45orabs 828  pm4.45 669  pm4.45im 545
[WhiteheadRussell] p. 120Theorem *4.5anor 475
[WhiteheadRussell] p. 120Theorem *4.6imor 401
[WhiteheadRussell] p. 120Theorem *4.7anclb 530
[WhiteheadRussell] p. 120Theorem *4.51ianor 474
[WhiteheadRussell] p. 120Theorem *4.52pm4.52 477
[WhiteheadRussell] p. 120Theorem *4.53pm4.53 478
[WhiteheadRussell] p. 120Theorem *4.54pm4.54 479
[WhiteheadRussell] p. 120Theorem *4.55pm4.55 480
[WhiteheadRussell] p. 120Theorem *4.56ioran 476  pm4.56 481
[WhiteheadRussell] p. 120Theorem *4.57oran 482  pm4.57 483
[WhiteheadRussell] p. 120Theorem *4.61pm4.61 415
[WhiteheadRussell] p. 120Theorem *4.62pm4.62 408
[WhiteheadRussell] p. 120Theorem *4.63pm4.63 410
[WhiteheadRussell] p. 120Theorem *4.64pm4.64 361
[WhiteheadRussell] p. 120Theorem *4.65pm4.65 416
[WhiteheadRussell] p. 120Theorem *4.66pm4.66 409
[WhiteheadRussell] p. 120Theorem *4.67pm4.67 417
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 611  pm4.71d 615  pm4.71i 613  pm4.71r 612  pm4.71rd 616  pm4.71ri 614
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 846
[WhiteheadRussell] p. 121Theorem *4.73iba 489
[WhiteheadRussell] p. 121Theorem *4.74biorf 394
[WhiteheadRussell] p. 121Theorem *4.76jcab 833  pm4.76 836
[WhiteheadRussell] p. 121Theorem *4.77jaob 758  pm4.77 762
[WhiteheadRussell] p. 121Theorem *4.78pm4.78 565
[WhiteheadRussell] p. 121Theorem *4.79pm4.79 566
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 354
[WhiteheadRussell] p. 122Theorem *4.81pm4.81 355
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 894
[WhiteheadRussell] p. 122Theorem *4.83pm4.83 895
[WhiteheadRussell] p. 122Theorem *4.84imbi1 313
[WhiteheadRussell] p. 122Theorem *4.85imbi2 314
[WhiteheadRussell] p. 122Theorem *4.86bibi1 317
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 350  impexp 433  pm4.87 567
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 830
[WhiteheadRussell] p. 123Theorem *5.11pm5.11 854
[WhiteheadRussell] p. 123Theorem *5.12pm5.12 855
[WhiteheadRussell] p. 123Theorem *5.13pm5.13 857
[WhiteheadRussell] p. 123Theorem *5.14pm5.14 856
[WhiteheadRussell] p. 124Theorem *5.15pm5.15 859
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 860
[WhiteheadRussell] p. 124Theorem *5.17pm5.17 858
[WhiteheadRussell] p. 124Theorem *5.18nbbn 347  pm5.18 345
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 349
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 831
[WhiteheadRussell] p. 124Theorem *5.22xor 861
[WhiteheadRussell] p. 124Theorem *5.23dfbi3 863
[WhiteheadRussell] p. 124Theorem *5.24pm5.24 864
[WhiteheadRussell] p. 124Theorem *5.25dfor2 400
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 692
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 351
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 326
[WhiteheadRussell] p. 125Theorem *5.6pm5.6 878
[WhiteheadRussell] p. 125Theorem *5.7pm5.7 900
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 571
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 617
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 848
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 869
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 849
[WhiteheadRussell] p. 125Theorem *5.41imdi 352  pm5.41 353
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 531
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 877
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 771
[WhiteheadRussell] p. 125Theorem *5.54pm5.54 870
[WhiteheadRussell] p. 125Theorem *5.55pm5.55 867
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 693
[WhiteheadRussell] p. 125Theorem *5.62pm5.62 889
[WhiteheadRussell] p. 125Theorem *5.63pm5.63 890
[WhiteheadRussell] p. 125Theorem *5.71pm5.71 902
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 330
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 235
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 903
[WhiteheadRussell] p. 147Theorem *10.2219.26 1593
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1615
[WhiteheadRussell] p. 159Theorem *11.07pm11.07 2115
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1738
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1610
[WhiteheadRussell] p. 164Theorem *11.52nalexn 1573
[WhiteheadRussell] p. 164Theorem *11.512exnexn 1580
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1893
[WhiteheadRussell] p. 175Definition *14.02df-eu 2208
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2589
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2590
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2980
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3099
[WhiteheadRussell] p. 190Theorem *14.22iota4 4358
[WhiteheadRussell] p. 191Theorem *14.23iota4an 4359
[WhiteheadRussell] p. 192Theorem *14.26eupick 2267  eupickbi 2270

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]