List of Theorems
Ref | Description
|
id 59 |
Identity law. (Contribute... |
tt 60 |
Justification of Definitio... |
cm 61 |
Commutative inference rule... |
tr 62 |
Transitive inference rule ... |
3tr1 63 |
Transitive inference usefu... |
3tr2 64 |
Transitive inference usefu... |
3tr 65 |
Triple transitive inferenc... |
con1 66 |
Contraposition inference. ... |
con2 67 |
Contraposition inference. ... |
con3 68 |
Contraposition inference. ... |
con4 69 |
Contraposition inference. ... |
lor 70 |
Inference introducing disj... |
ror 71 |
Inference introducing disj... |
2or 72 |
Join both sides with disju... |
orcom 73 |
Commutative law. (Contrib... |
ancom 74 |
Commutative law. (Contrib... |
orass 75 |
Associative law. (Contrib... |
anass 76 |
Associative law. (Contrib... |
lan 77 |
Introduce conjunct on left... |
ran 78 |
Introduce conjunct on righ... |
2an 79 |
Conjoin both sides of hypo... |
or12 80 |
Swap disjuncts. (Contribu... |
an12 81 |
Swap conjuncts. (Contribu... |
or32 82 |
Swap disjuncts. (Contribu... |
an32 83 |
Swap conjuncts. (Contribu... |
or4 84 |
Swap disjuncts. (Contribu... |
or42 85 |
Rearrange disjuncts. (Con... |
an4 86 |
Swap conjuncts. (Contribu... |
oran 87 |
Disjunction expressed with... |
anor1 88 |
Conjunction expressed with... |
anor2 89 |
Conjunction expressed with... |
anor3 90 |
Conjunction expressed with... |
oran1 91 |
Disjunction expressed with... |
oran2 92 |
Disjunction expressed with... |
oran3 93 |
Disjunction expressed with... |
dfb 94 |
Biconditional expressed wi... |
dfnb 95 |
Negated biconditional. (C... |
bicom 96 |
Commutative law. (Contrib... |
lbi 97 |
Introduce biconditional to... |
rbi 98 |
Introduce biconditional to... |
2bi 99 |
Join both sides with bicon... |
dff2 100 |
Alternate definition of "f... |
dff 101 |
Alternate definition of "f... |
or0 102 |
Disjunction with 0. (Cont... |
or0r 103 |
Disjunction with 0. (Cont... |
or1 104 |
Disjunction with 1. (Cont... |
or1r 105 |
Disjunction with 1. (Cont... |
an1 106 |
Conjunction with 1. (Cont... |
an1r 107 |
Conjunction with 1. (Cont... |
an0 108 |
Conjunction with 0. (Cont... |
an0r 109 |
Conjunction with 0. (Cont... |
oridm 110 |
Idempotent law. (Contribu... |
anidm 111 |
Idempotent law. (Contribu... |
orordi 112 |
Distribution of disjunctio... |
orordir 113 |
Distribution of disjunctio... |
anandi 114 |
Distribution of conjunctio... |
anandir 115 |
Distribution of conjunctio... |
biid 116 |
Identity law. (Contribute... |
1b 117 |
Identity law. (Contribute... |
bi1 118 |
Identity inference. (Cont... |
1bi 119 |
Identity inference. (Cont... |
orabs 120 |
Absorption law. (Contribu... |
anabs 121 |
Absorption law. (Contribu... |
conb 122 |
Contraposition law. (Cont... |
leoa 123 |
Relation between two metho... |
leao 124 |
Relation between two metho... |
mi 125 |
Mittelstaedt implication. ... |
di 126 |
Dishkant implication. (Co... |
omlem1 127 |
Lemma in proof of Thm. 1 o... |
omlem2 128 |
Lemma in proof of Thm. 1 o... |
df2le1 135 |
Alternate definition of "l... |
df2le2 136 |
Alternate definition of "l... |
letr 137 |
Transitive law for "less t... |
bltr 138 |
Transitive inference. (Co... |
lbtr 139 |
Transitive inference. (Co... |
le3tr1 140 |
Transitive inference usefu... |
le3tr2 141 |
Transitive inference usefu... |
bile 142 |
Biconditional to "less tha... |
qlhoml1a 143 |
An ortholattice inequality... |
qlhoml1b 144 |
An ortholattice inequality... |
lebi 145 |
"Less than or equal to" to... |
le1 146 |
Anything is less than or e... |
le0 147 |
0 is less than or equal to... |
leid 148 |
Identity law for "less tha... |
ler 149 |
Add disjunct to right of l... |
lerr 150 |
Add disjunct to right of l... |
lel 151 |
Add conjunct to left of l.... |
leror 152 |
Add disjunct to right of b... |
leran 153 |
Add conjunct to right of b... |
lecon 154 |
Contrapositive for l.e. (... |
lecon1 155 |
Contrapositive for l.e. (... |
lecon2 156 |
Contrapositive for l.e. (... |
lecon3 157 |
Contrapositive for l.e. (... |
leo 158 |
L.e. absorption. (Contrib... |
leor 159 |
L.e. absorption. (Contrib... |
lea 160 |
L.e. absorption. (Contrib... |
lear 161 |
L.e. absorption. (Contrib... |
leao1 162 |
L.e. absorption. (Contrib... |
leao2 163 |
L.e. absorption. (Contrib... |
leao3 164 |
L.e. absorption. (Contrib... |
leao4 165 |
L.e. absorption. (Contrib... |
lelor 166 |
Add disjunct to left of bo... |
lelan 167 |
Add conjunct to left of bo... |
le2or 168 |
Disjunction of 2 l.e.'s. ... |
le2an 169 |
Conjunction of 2 l.e.'s. ... |
lel2or 170 |
Disjunction of 2 l.e.'s. ... |
lel2an 171 |
Conjunction of 2 l.e.'s. ... |
ler2or 172 |
Disjunction of 2 l.e.'s. ... |
ler2an 173 |
Conjunction of 2 l.e.'s. ... |
ledi 174 |
Half of distributive law. ... |
ledir 175 |
Half of distributive law. ... |
ledio 176 |
Half of distributive law. ... |
ledior 177 |
Half of distributive law. ... |
comm0 178 |
Commutation with 0. Kalmb... |
comm1 179 |
Commutation with 1. Kalmb... |
lecom 180 |
Comparable elements commut... |
bctr 181 |
Transitive inference. (Co... |
cbtr 182 |
Transitive inference. (Co... |
comcom2 183 |
Commutation equivalence. ... |
comorr 184 |
Commutation law. Does not... |
coman1 185 |
Commutation law. Does not... |
coman2 186 |
Commutation law. Does not... |
comid 187 |
Identity law for commutati... |
distlem 188 |
Distributive law inference... |
str 189 |
Strengthening rule. (Cont... |
cmtrcom 190 |
Commutative law for commut... |
wa1 191 |
Weak A1. (Contributed by ... |
wa2 192 |
Weak A2. (Contributed by ... |
wa3 193 |
Weak A3. (Contributed by ... |
wa4 194 |
Weak A4. (Contributed by ... |
wa5 195 |
Weak A5. (Contributed by ... |
wa6 196 |
Weak A6. (Contributed by ... |
wr1 197 |
Weak R1. (Contributed by ... |
wr3 198 |
Weak R3. (Contributed by ... |
wr4 199 |
Weak R4. (Contributed by ... |
wa5b 200 |
Absorption law. (Contribu... |
wa5c 201 |
Absorption law. (Contribu... |
wcon 202 |
Contraposition law. (Cont... |
wancom 203 |
Commutative law. (Contrib... |
wanass 204 |
Associative law. (Contrib... |
wwbmp 205 |
Weak weak equivalential de... |
wwbmpr 206 |
Weak weak equivalential de... |
wcon1 207 |
Weak contraposition. (Con... |
wcon2 208 |
Weak contraposition. (Con... |
wcon3 209 |
Weak contraposition. (Con... |
wlem3.1 210 |
Weak analogue to lemma use... |
woml 211 |
Theorem structurally simil... |
wwoml2 212 |
Weak orthomodular law. (C... |
wwoml3 213 |
Weak orthomodular law. (C... |
wwcomd 214 |
Commutation dual (weak). ... |
wwcom3ii 215 |
Lemma 3(ii) (weak) of Kalm... |
wwfh1 216 |
Foulis-Holland Theorem (we... |
wwfh2 217 |
Foulis-Holland Theorem (we... |
wwfh3 218 |
Foulis-Holland Theorem (we... |
wwfh4 219 |
Foulis-Holland Theorem (we... |
womao 220 |
Weak OM-like absorption la... |
womaon 221 |
Weak OM-like absorption la... |
womaa 222 |
Weak OM-like absorption la... |
womaan 223 |
Weak OM-like absorption la... |
anorabs2 224 |
Absorption law for orthola... |
anorabs 225 |
Absorption law for orthola... |
ska2a 226 |
Axiom KA2a in Pavicic and ... |
ska2b 227 |
Axiom KA2b in Pavicic and ... |
ka4lemo 228 |
Lemma for KA4 soundness (O... |
ka4lem 229 |
Lemma for KA4 soundness (A... |
sklem 230 |
Soundness lemma. (Contrib... |
ska1 231 |
Soundness theorem for Kalm... |
ska3 232 |
Soundness theorem for Kalm... |
ska5 233 |
Soundness theorem for Kalm... |
ska6 234 |
Soundness theorem for Kalm... |
ska7 235 |
Soundness theorem for Kalm... |
ska8 236 |
Soundness theorem for Kalm... |
ska9 237 |
Soundness theorem for Kalm... |
ska10 238 |
Soundness theorem for Kalm... |
ska11 239 |
Soundness theorem for Kalm... |
ska12 240 |
Soundness theorem for Kalm... |
ska13 241 |
Soundness theorem for Kalm... |
skr0 242 |
Soundness theorem for Kalm... |
wlem1 243 |
Lemma for 2-variable WOML ... |
ska15 244 |
Soundness theorem for Kalm... |
skmp3 245 |
Soundness proof for KMP3. ... |
lei3 246 |
L.e. to Kalmbach implicati... |
mccune2 247 |
E2 - OL theorem proved by ... |
mccune3 248 |
E3 - OL theorem proved by ... |
i3n1 249 |
Equivalence for Kalmbach i... |
ni31 250 |
Equivalence for Kalmbach i... |
i3id 251 |
Identity for Kalmbach impl... |
li3 252 |
Introduce Kalmbach implica... |
ri3 253 |
Introduce Kalmbach implica... |
2i3 254 |
Join both sides with Kalmb... |
ud1lem0a 255 |
Introduce ` ->1 ` to the l... |
ud1lem0b 256 |
Introduce ` ->1 ` to the r... |
ud1lem0ab 257 |
Join both sides of hypothe... |
ud2lem0a 258 |
Introduce ` ->2 ` to the l... |
ud2lem0b 259 |
Introduce ` ->2 ` to the r... |
ud3lem0a 260 |
Introduce Kalmbach implica... |
ud3lem0b 261 |
Introduce Kalmbach implica... |
ud4lem0a 262 |
Introduce ` ->4 ` to the l... |
ud4lem0b 263 |
Introduce ` ->4 ` to the r... |
ud5lem0a 264 |
Introduce ` ->5 ` to the l... |
ud5lem0b 265 |
Introduce ` ->5 ` to the r... |
i1i2 266 |
Correspondence between Sas... |
i2i1 267 |
Correspondence between Sas... |
i1i2con1 268 |
Correspondence between Sas... |
i1i2con2 269 |
Correspondence between Sas... |
i3i4 270 |
Correspondence between Kal... |
i4i3 271 |
Correspondence between Kal... |
i5con 272 |
Converse of ` ->5 ` . (Co... |
0i1 273 |
Antecedent of 0 on Sasaki ... |
1i1 274 |
Antecedent of 1 on Sasaki ... |
i1id 275 |
Identity law for Sasaki co... |
i2id 276 |
Identity law for Dishkant ... |
ud1lem0c 277 |
Lemma for unified disjunct... |
ud2lem0c 278 |
Lemma for unified disjunct... |
ud3lem0c 279 |
Lemma for unified disjunct... |
ud4lem0c 280 |
Lemma for unified disjunct... |
ud5lem0c 281 |
Lemma for unified disjunct... |
bina1 282 |
Pavicic binary logic ax-a1... |
bina2 283 |
Pavicic binary logic ax-a2... |
bina3 284 |
Pavicic binary logic ax-a3... |
bina4 285 |
Pavicic binary logic ax-a4... |
bina5 286 |
Pavicic binary logic ax-a5... |
wql1lem 287 |
Classical implication infe... |
wql2lem 288 |
Classical implication infe... |
wql2lem2 289 |
Lemma for ` ->2 ` WQL axio... |
wql2lem3 290 |
Lemma for ` ->2 ` WQL axio... |
wql2lem4 291 |
Lemma for ` ->2 ` WQL axio... |
wql2lem5 292 |
Lemma for ` ->2 ` WQL axio... |
wql1 293 |
The 2nd hypothesis is the ... |
oaidlem1 294 |
Lemma for OA identity-like... |
womle2a 295 |
An equivalent to the WOM l... |
womle2b 296 |
An equivalent to the WOM l... |
womle3b 297 |
Implied by the WOM law. (... |
womle 298 |
An equality implying the W... |
nomb41 299 |
Lemma for "Non-Orthomodula... |
nomb32 300 |
Lemma for "Non-Orthomodula... |
nomcon0 301 |
Lemma for "Non-Orthomodula... |
nomcon1 302 |
Lemma for "Non-Orthomodula... |
nomcon2 303 |
Lemma for "Non-Orthomodula... |
nomcon3 304 |
Lemma for "Non-Orthomodula... |
nomcon4 305 |
Lemma for "Non-Orthomodula... |
nomcon5 306 |
Lemma for "Non-Orthomodula... |
nom10 307 |
Part of Lemma 3.3(14) from... |
nom11 308 |
Part of Lemma 3.3(14) from... |
nom12 309 |
Part of Lemma 3.3(14) from... |
nom13 310 |
Part of Lemma 3.3(14) from... |
nom14 311 |
Part of Lemma 3.3(14) from... |
nom15 312 |
Part of Lemma 3.3(14) from... |
nom20 313 |
Part of Lemma 3.3(14) from... |
nom21 314 |
Part of Lemma 3.3(14) from... |
nom22 315 |
Part of Lemma 3.3(14) from... |
nom23 316 |
Part of Lemma 3.3(14) from... |
nom24 317 |
Part of Lemma 3.3(14) from... |
nom25 318 |
Part of Lemma 3.3(14) from... |
nom30 319 |
Part of Lemma 3.3(14) from... |
nom31 320 |
Part of Lemma 3.3(14) from... |
nom32 321 |
Part of Lemma 3.3(14) from... |
nom33 322 |
Part of Lemma 3.3(14) from... |
nom34 323 |
Part of Lemma 3.3(14) from... |
nom35 324 |
Part of Lemma 3.3(14) from... |
nom40 325 |
Part of Lemma 3.3(15) from... |
nom41 326 |
Part of Lemma 3.3(15) from... |
nom42 327 |
Part of Lemma 3.3(15) from... |
nom43 328 |
Part of Lemma 3.3(15) from... |
nom44 329 |
Part of Lemma 3.3(15) from... |
nom45 330 |
Part of Lemma 3.3(15) from... |
nom50 331 |
Part of Lemma 3.3(15) from... |
nom51 332 |
Part of Lemma 3.3(15) from... |
nom52 333 |
Part of Lemma 3.3(15) from... |
nom53 334 |
Part of Lemma 3.3(15) from... |
nom54 335 |
Part of Lemma 3.3(15) from... |
nom55 336 |
Part of Lemma 3.3(15) from... |
nom60 337 |
Part of Lemma 3.3(15) from... |
nom61 338 |
Part of Lemma 3.3(15) from... |
nom62 339 |
Part of Lemma 3.3(15) from... |
nom63 340 |
Part of Lemma 3.3(15) from... |
nom64 341 |
Part of Lemma 3.3(15) from... |
nom65 342 |
Part of Lemma 3.3(15) from... |
go1 343 |
Lemma for proof of Mayet 8... |
i2or 344 |
Lemma for disjunction of `... |
i1or 345 |
Lemma for disjunction of `... |
lei2 346 |
"Less than" analogue is eq... |
i5lei1 347 |
Relevance implication is l... |
i5lei2 348 |
Relevance implication is l... |
i5lei3 349 |
Relevance implication is l... |
i5lei4 350 |
Relevance implication is l... |
id5leid0 351 |
Quantum identity is less t... |
id5id0 352 |
Show that classical identi... |
k1-6 353 |
Statement (6) in proof of ... |
k1-7 354 |
Statement (7) in proof of ... |
k1-8a 355 |
First part of statement (8... |
k1-8b 356 |
Second part of statement (... |
k1-2 357 |
Statement (2) in proof of ... |
k1-3 358 |
Statement (3) in proof of ... |
k1-4 359 |
Statement (4) in proof of ... |
k1-5 360 |
Statement (5) in proof of ... |
2vwomr2 362 |
2-variable WOML rule. (Co... |
2vwomr1a 363 |
2-variable WOML rule. (Co... |
2vwomr2a 364 |
2-variable WOML rule. (Co... |
2vwomlem 365 |
Lemma from 2-variable WOML... |
wr5-2v 366 |
WOML derived from 2-variab... |
wom3 367 |
Weak orthomodular law for ... |
wlor 368 |
Weak orthomodular law. (C... |
wran 369 |
Weak orthomodular law. (C... |
wlan 370 |
Weak orthomodular law. (C... |
wr2 371 |
Inference rule of AUQL. (C... |
w2or 372 |
Join both sides with disju... |
w2an 373 |
Join both sides with conju... |
w3tr1 374 |
Transitive inference usefu... |
w3tr2 375 |
Transitive inference usefu... |
wleoa 376 |
Relation between two metho... |
wleao 377 |
Relation between two metho... |
wdf-le1 378 |
Define "less than or equal... |
wdf-le2 379 |
Define "less than or equal... |
wom4 380 |
Orthomodular law. Kalmbac... |
wom5 381 |
Orthomodular law. Kalmbac... |
wcomlem 382 |
Analogue of commutation is... |
wdf-c1 383 |
Show that commutator is a ... |
wdf-c2 384 |
Show that commutator is a ... |
wdf2le1 385 |
Alternate definition of "l... |
wdf2le2 386 |
Alternate definition of "l... |
wleo 387 |
L.e. absorption. (Contrib... |
wlea 388 |
L.e. absorption. (Contrib... |
wle1 389 |
Anything is less than or e... |
wle0 390 |
0 is less than or equal to... |
wler 391 |
Add disjunct to right of l... |
wlel 392 |
Add conjunct to left of l.... |
wleror 393 |
Add disjunct to right of b... |
wleran 394 |
Add conjunct to right of b... |
wlecon 395 |
Contrapositive for l.e. (... |
wletr 396 |
Transitive law for l.e. (... |
wbltr 397 |
Transitive inference. (Co... |
wlbtr 398 |
Transitive inference. (Co... |
wle3tr1 399 |
Transitive inference usefu... |
wle3tr2 400 |
Transitive inference usefu... |
wbile 401 |
Biconditional to l.e. (Co... |
wlebi 402 |
L.e. to biconditional. (C... |
wle2or 403 |
Disjunction of 2 l.e.'s. ... |
wle2an 404 |
Conjunction of 2 l.e.'s. ... |
wledi 405 |
Half of distributive law. ... |
wledio 406 |
Half of distributive law. ... |
wcom0 407 |
Commutation with 0. Kalmb... |
wcom1 408 |
Commutation with 1. Kalmb... |
wlecom 409 |
Comparable elements commut... |
wbctr 410 |
Transitive inference. (Co... |
wcbtr 411 |
Transitive inference. (Co... |
wcomorr 412 |
Weak commutation law. (Co... |
wcoman1 413 |
Weak commutation law. (Co... |
wcomcom 414 |
Commutation is symmetric. ... |
wcomcom2 415 |
Commutation equivalence. ... |
wcomcom3 416 |
Commutation equivalence. ... |
wcomcom4 417 |
Commutation equivalence. ... |
wcomd 418 |
Commutation dual. Kalmbac... |
wcom3ii 419 |
Lemma 3(ii) of Kalmbach 83... |
wcomcom5 420 |
Commutation equivalence. ... |
wcomdr 421 |
Commutation dual. Kalmbac... |
wcom3i 422 |
Lemma 3(i) of Kalmbach 83 ... |
wfh1 423 |
Weak structural analog of ... |
wfh2 424 |
Weak structural analog of ... |
wfh3 425 |
Weak structural analog of ... |
wfh4 426 |
Weak structural analog of ... |
wcom2or 427 |
Thm. 4.2 Beran p. 49. (Co... |
wcom2an 428 |
Thm. 4.2 Beran p. 49. (Co... |
wnbdi 429 |
Negated biconditional (dis... |
wlem14 430 |
Lemma for KA14 soundness. ... |
wr5 431 |
Proof of weak orthomodular... |
ska2 432 |
Soundness theorem for Kalm... |
ska4 433 |
Soundness theorem for Kalm... |
wom2 434 |
Weak orthomodular law for ... |
ka4ot 435 |
3-variable version of weak... |
woml6 436 |
Variant of weakly orthomod... |
woml7 437 |
Variant of weakly orthomod... |
ortha 438 |
Property of orthogonality.... |
r3a 440 |
Orthomodular law restated.... |
wed 441 |
Weak equivalential detachm... |
r3b 442 |
Orthomodular law from weak... |
lem3.1 443 |
Lemma used in proof of Thm... |
lem3a.1 444 |
Lemma used in proof of Thm... |
oml 445 |
Orthomodular law. Compare... |
omln 446 |
Orthomodular law. (Contri... |
omla 447 |
Orthomodular law. (Contri... |
omlan 448 |
Orthomodular law. (Contri... |
oml5 449 |
Orthomodular law. (Contri... |
oml5a 450 |
Orthomodular law. (Contri... |
oml2 451 |
Orthomodular law. Kalmbac... |
oml3 452 |
Orthomodular law. Kalmbac... |
comcom 453 |
Commutation is symmetric. ... |
comcom3 454 |
Commutation equivalence. ... |
comcom4 455 |
Commutation equivalence. ... |
comd 456 |
Commutation dual. Kalmbac... |
com3ii 457 |
Lemma 3(ii) of Kalmbach 83... |
comcom5 458 |
Commutation equivalence. ... |
comcom6 459 |
Commutation equivalence. ... |
comcom7 460 |
Commutation equivalence. ... |
comor1 461 |
Commutation law. (Contrib... |
comor2 462 |
Commutation law. (Contrib... |
comorr2 463 |
Commutation law. (Contrib... |
comanr1 464 |
Commutation law. (Contrib... |
comanr2 465 |
Commutation law. (Contrib... |
comdr 466 |
Commutation dual. Kalmbac... |
com3i 467 |
Lemma 3(i) of Kalmbach 83 ... |
df2c1 468 |
Dual 'commutes' analogue f... |
fh1 469 |
Foulis-Holland Theorem. (... |
fh2 470 |
Foulis-Holland Theorem. (... |
fh3 471 |
Foulis-Holland Theorem. (... |
fh4 472 |
Foulis-Holland Theorem. (... |
fh1r 473 |
Foulis-Holland Theorem. (... |
fh2r 474 |
Foulis-Holland Theorem. (... |
fh3r 475 |
Foulis-Holland Theorem. (... |
fh4r 476 |
Foulis-Holland Theorem. (... |
fh2c 477 |
Foulis-Holland Theorem. (... |
fh4c 478 |
Foulis-Holland Theorem. (... |
fh1rc 479 |
Foulis-Holland Theorem. (... |
fh2rc 480 |
Foulis-Holland Theorem. (... |
fh3rc 481 |
Foulis-Holland Theorem. (... |
fh4rc 482 |
Foulis-Holland Theorem. (... |
com2or 483 |
Thm. 4.2 Beran p. 49. (Co... |
com2an 484 |
Thm. 4.2 Beran p. 49. (Co... |
combi 485 |
Commutation theorem for Sa... |
nbdi 486 |
Negated biconditional (dis... |
oml4 487 |
Orthomodular law. (Contri... |
oml6 488 |
Orthomodular law. (Contri... |
gsth 489 |
Gudder-Schelp's Theorem. ... |
gsth2 490 |
Stronger version of Gudder... |
gstho 491 |
"OR" version of Gudder-Sch... |
gt1 492 |
Part of Lemma 1 from Gaisi... |
cmtr1com 493 |
Commutator equal to 1 comm... |
comcmtr1 494 |
Commutation implies commut... |
i0cmtrcom 495 |
Commutator element ` ->0 `... |
i3bi 496 |
Kalmbach implication and b... |
i3or 497 |
Kalmbach implication OR bu... |
df2i3 498 |
Alternate definition for K... |
dfi3b 499 |
Alternate Kalmbach conditi... |
dfi4b 500 |
Alternate non-tollens cond... |
i3n2 501 |
Equivalence for Kalmbach i... |
ni32 502 |
Equivalence for Kalmbach i... |
oi3ai3 503 |
Theorem for Kalmbach impli... |
i3lem1 504 |
Lemma for Kalmbach implica... |
i3lem2 505 |
Lemma for Kalmbach implica... |
i3lem3 506 |
Lemma for Kalmbach implica... |
i3lem4 507 |
Lemma for Kalmbach implica... |
comi31 508 |
Commutation theorem. (Con... |
com2i3 509 |
Commutation theorem. (Con... |
comi32 510 |
Commutation theorem. (Con... |
lem4 511 |
Lemma 4 of Kalmbach p. 240... |
i0i3 512 |
Translation to Kalmbach im... |
i3i0 513 |
Translation from Kalmbach ... |
ska14 514 |
Soundness proof for KA14. ... |
i3le 515 |
L.e. to Kalmbach implicati... |
bii3 516 |
Biconditional implies Kalm... |
binr1 517 |
Pavicic binary logic ~ ax-... |
binr2 518 |
Pavicic binary logic ~ ax-... |
binr3 519 |
Pavicic binary logic ~ ax-... |
i31 520 |
Theorem for Kalmbach impli... |
i3aa 521 |
Add antecedent. (Contribu... |
i3abs1 522 |
Antecedent absorption. (C... |
i3abs2 523 |
Antecedent absorption. (C... |
i3abs3 524 |
Antecedent absorption. (C... |
i3orcom 525 |
Commutative law for conjun... |
i3ancom 526 |
Commutative law for disjun... |
bi3tr 527 |
Transitive inference. (Co... |
i3btr 528 |
Transitive inference. (Co... |
i33tr1 529 |
Transitive inference usefu... |
i33tr2 530 |
Transitive inference usefu... |
i3con1 531 |
Contrapositive. (Contribu... |
i3ror 532 |
WQL (Weak Quantum Logic) r... |
i3lor 533 |
WQL (Weak Quantum Logic) r... |
i32or 534 |
WQL (Weak Quantum Logic) r... |
i3ran 535 |
WQL (Weak Quantum Logic) r... |
i3lan 536 |
WQL (Weak Quantum Logic) r... |
i32an 537 |
WQL (Weak Quantum Logic) r... |
i3ri3 538 |
WQL (Weak Quantum Logic) r... |
i3li3 539 |
WQL (Weak Quantum Logic) r... |
i32i3 540 |
WQL (Weak Quantum Logic) r... |
i0i3tr 541 |
Transitive inference. (Co... |
i3i0tr 542 |
Transitive inference. (Co... |
i3th1 543 |
Theorem for Kalmbach impli... |
i3th2 544 |
Theorem for Kalmbach impli... |
i3th3 545 |
Theorem for Kalmbach impli... |
i3th4 546 |
Theorem for Kalmbach impli... |
i3th5 547 |
Theorem for Kalmbach impli... |
i3th6 548 |
Theorem for Kalmbach impli... |
i3th7 549 |
Theorem for Kalmbach impli... |
i3th8 550 |
Theorem for Kalmbach impli... |
i3con 551 |
Theorem for Kalmbach impli... |
i3orlem1 552 |
Lemma for Kalmbach implica... |
i3orlem2 553 |
Lemma for Kalmbach implica... |
i3orlem3 554 |
Lemma for Kalmbach implica... |
i3orlem4 555 |
Lemma for Kalmbach implica... |
i3orlem5 556 |
Lemma for Kalmbach implica... |
i3orlem6 557 |
Lemma for Kalmbach implica... |
i3orlem7 558 |
Lemma for Kalmbach implica... |
i3orlem8 559 |
Lemma for Kalmbach implica... |
ud1lem1 560 |
Lemma for unified disjunct... |
ud1lem2 561 |
Lemma for unified disjunct... |
ud1lem3 562 |
Lemma for unified disjunct... |
ud2lem1 563 |
Lemma for unified disjunct... |
ud2lem2 564 |
Lemma for unified disjunct... |
ud2lem3 565 |
Lemma for unified disjunct... |
ud3lem1a 566 |
Lemma for unified disjunct... |
ud3lem1b 567 |
Lemma for unified disjunct... |
ud3lem1c 568 |
Lemma for unified disjunct... |
ud3lem1d 569 |
Lemma for unified disjunct... |
ud3lem1 570 |
Lemma for unified disjunct... |
ud3lem2 571 |
Lemma for unified disjunct... |
ud3lem3a 572 |
Lemma for unified disjunct... |
ud3lem3b 573 |
Lemma for unified disjunct... |
ud3lem3c 574 |
Lemma for unified disjunct... |
ud3lem3d 575 |
Lemma for unified disjunct... |
ud3lem3 576 |
Lemma for unified disjunct... |
ud4lem1a 577 |
Lemma for unified disjunct... |
ud4lem1b 578 |
Lemma for unified disjunct... |
ud4lem1c 579 |
Lemma for unified disjunct... |
ud4lem1d 580 |
Lemma for unified disjunct... |
ud4lem1 581 |
Lemma for unified disjunct... |
ud4lem2 582 |
Lemma for unified disjunct... |
ud4lem3a 583 |
Lemma for unified disjunct... |
ud4lem3b 584 |
Lemma for unified disjunct... |
ud4lem3 585 |
Lemma for unified disjunct... |
ud5lem1a 586 |
Lemma for unified disjunct... |
ud5lem1b 587 |
Lemma for unified disjunct... |
ud5lem1c 588 |
Lemma for unified disjunct... |
ud5lem1 589 |
Lemma for unified disjunct... |
ud5lem2 590 |
Lemma for unified disjunct... |
ud5lem3a 591 |
Lemma for unified disjunct... |
ud5lem3b 592 |
Lemma for unified disjunct... |
ud5lem3c 593 |
Lemma for unified disjunct... |
ud5lem3 594 |
Lemma for unified disjunct... |
ud1 595 |
Unified disjunction for Sa... |
ud2 596 |
Unified disjunction for Di... |
ud3 597 |
Unified disjunction for Ka... |
ud4 598 |
Unified disjunction for no... |
ud5 599 |
Unified disjunction for re... |
u1lemaa 600 |
Lemma for Sasaki implicati... |
u2lemaa 601 |
Lemma for Dishkant implica... |
u3lemaa 602 |
Lemma for Kalmbach implica... |
u4lemaa 603 |
Lemma for non-tollens impl... |
u5lemaa 604 |
Lemma for relevance implic... |
u1lemana 605 |
Lemma for Sasaki implicati... |
u2lemana 606 |
Lemma for Dishkant implica... |
u3lemana 607 |
Lemma for Kalmbach implica... |
u4lemana 608 |
Lemma for non-tollens impl... |
u5lemana 609 |
Lemma for relevance implic... |
u1lemab 610 |
Lemma for Sasaki implicati... |
u2lemab 611 |
Lemma for Dishkant implica... |
u3lemab 612 |
Lemma for Kalmbach implica... |
u4lemab 613 |
Lemma for non-tollens impl... |
u5lemab 614 |
Lemma for relevance implic... |
u1lemanb 615 |
Lemma for Sasaki implicati... |
u2lemanb 616 |
Lemma for Dishkant implica... |
u3lemanb 617 |
Lemma for Kalmbach implica... |
u4lemanb 618 |
Lemma for non-tollens impl... |
u5lemanb 619 |
Lemma for relevance implic... |
u1lemoa 620 |
Lemma for Sasaki implicati... |
u2lemoa 621 |
Lemma for Dishkant implica... |
u3lemoa 622 |
Lemma for Kalmbach implica... |
u4lemoa 623 |
Lemma for non-tollens impl... |
u5lemoa 624 |
Lemma for relevance implic... |
u1lemona 625 |
Lemma for Sasaki implicati... |
u2lemona 626 |
Lemma for Dishkant implica... |
u3lemona 627 |
Lemma for Kalmbach implica... |
u4lemona 628 |
Lemma for non-tollens impl... |
u5lemona 629 |
Lemma for relevance implic... |
u1lemob 630 |
Lemma for Sasaki implicati... |
u2lemob 631 |
Lemma for Dishkant implica... |
u3lemob 632 |
Lemma for Kalmbach implica... |
u4lemob 633 |
Lemma for non-tollens impl... |
u5lemob 634 |
Lemma for relevance implic... |
u1lemonb 635 |
Lemma for Sasaki implicati... |
u2lemonb 636 |
Lemma for Dishkant implica... |
u3lemonb 637 |
Lemma for Kalmbach implica... |
u4lemonb 638 |
Lemma for non-tollens impl... |
u5lemonb 639 |
Lemma for relevance implic... |
u1lemnaa 640 |
Lemma for Sasaki implicati... |
u2lemnaa 641 |
Lemma for Dishkant implica... |
u3lemnaa 642 |
Lemma for Kalmbach implica... |
u4lemnaa 643 |
Lemma for non-tollens impl... |
u5lemnaa 644 |
Lemma for relevance implic... |
u1lemnana 645 |
Lemma for Sasaki implicati... |
u2lemnana 646 |
Lemma for Dishkant implica... |
u3lemnana 647 |
Lemma for Kalmbach implica... |
u4lemnana 648 |
Lemma for non-tollens impl... |
u5lemnana 649 |
Lemma for relevance implic... |
u1lemnab 650 |
Lemma for Sasaki implicati... |
u2lemnab 651 |
Lemma for Dishkant implica... |
u3lemnab 652 |
Lemma for Kalmbach implica... |
u4lemnab 653 |
Lemma for non-tollens impl... |
u5lemnab 654 |
Lemma for relevance implic... |
u1lemnanb 655 |
Lemma for Sasaki implicati... |
u2lemnanb 656 |
Lemma for Dishkant implica... |
u3lemnanb 657 |
Lemma for Kalmbach implica... |
u4lemnanb 658 |
Lemma for non-tollens impl... |
u5lemnanb 659 |
Lemma for relevance implic... |
u1lemnoa 660 |
Lemma for Sasaki implicati... |
u2lemnoa 661 |
Lemma for Dishkant implica... |
u3lemnoa 662 |
Lemma for Kalmbach implica... |
u4lemnoa 663 |
Lemma for non-tollens impl... |
u5lemnoa 664 |
Lemma for relevance implic... |
u1lemnona 665 |
Lemma for Sasaki implicati... |
u2lemnona 666 |
Lemma for Dishkant implica... |
u3lemnona 667 |
Lemma for Kalmbach implica... |
u4lemnona 668 |
Lemma for non-tollens impl... |
u5lemnona 669 |
Lemma for relevance implic... |
u1lemnob 670 |
Lemma for Sasaki implicati... |
u2lemnob 671 |
Lemma for Dishkant implica... |
u3lemnob 672 |
Lemma for Kalmbach implica... |
u4lemnob 673 |
Lemma for non-tollens impl... |
u5lemnob 674 |
Lemma for relevance implic... |
u1lemnonb 675 |
Lemma for Sasaki implicati... |
u2lemnonb 676 |
Lemma for Dishkant implica... |
u3lemnonb 677 |
Lemma for Kalmbach implica... |
u4lemnonb 678 |
Lemma for non-tollens impl... |
u5lemnonb 679 |
Lemma for relevance implic... |
u1lemc1 680 |
Commutation theorem for Sa... |
u2lemc1 681 |
Commutation theorem for Di... |
u3lemc1 682 |
Commutation theorem for Ka... |
u4lemc1 683 |
Commutation theorem for no... |
u5lemc1 684 |
Commutation theorem for re... |
u5lemc1b 685 |
Commutation theorem for re... |
u1lemc2 686 |
Commutation theorem for Sa... |
u2lemc2 687 |
Commutation theorem for Di... |
u3lemc2 688 |
Commutation theorem for Ka... |
u4lemc2 689 |
Commutation theorem for no... |
u5lemc2 690 |
Commutation theorem for re... |
u1lemc3 691 |
Commutation theorem for Sa... |
u2lemc3 692 |
Commutation theorem for Di... |
u3lemc3 693 |
Commutation theorem for Ka... |
u4lemc3 694 |
Commutation theorem for no... |
u5lemc3 695 |
Commutation theorem for re... |
u1lemc5 696 |
Commutation theorem for Sa... |
u2lemc5 697 |
Commutation theorem for Di... |
u3lemc5 698 |
Commutation theorem for Ka... |
u4lemc5 699 |
Commutation theorem for no... |
u5lemc5 700 |
Commutation theorem for re... |
u1lemc4 701 |
Lemma for Sasaki implicati... |
u2lemc4 702 |
Lemma for Dishkant implica... |
u3lemc4 703 |
Lemma for Kalmbach implica... |
u4lemc4 704 |
Lemma for non-tollens impl... |
u5lemc4 705 |
Lemma for relevance implic... |
u1lemc6 706 |
Commutation theorem for Sa... |
comi12 707 |
Commutation theorem for ` ... |
i1com 708 |
Commutation expressed with... |
comi1 709 |
Commutation expressed with... |
u1lemle1 710 |
L.e. to Sasaki implication... |
u2lemle1 711 |
L.e. to Dishkant implicati... |
u3lemle1 712 |
L.e. to Kalmbach implicati... |
u4lemle1 713 |
L.e. to non-tollens implic... |
u5lemle1 714 |
L.e. to relevance implicat... |
u1lemle2 715 |
Sasaki implication to l.e.... |
u2lemle2 716 |
Dishkant implication to l.... |
u3lemle2 717 |
Kalmbach implication to l.... |
u4lemle2 718 |
Non-tollens implication to... |
u5lemle2 719 |
Relevance implication to l... |
u1lembi 720 |
Sasaki implication and bic... |
u2lembi 721 |
Dishkant implication and b... |
i2bi 722 |
Dishkant implication expre... |
u3lembi 723 |
Kalmbach implication and b... |
u4lembi 724 |
Non-tollens implication an... |
u5lembi 725 |
Relevance implication and ... |
u12lembi 726 |
Sasaki/Dishkant implicatio... |
u21lembi 727 |
Dishkant/Sasaki implicatio... |
ublemc1 728 |
Commutation theorem for bi... |
ublemc2 729 |
Commutation theorem for bi... |
u1lemn1b 730 |
This theorem continues the... |
u1lem3var1 731 |
A 3-variable formula. (Co... |
oi3oa3lem1 732 |
An attempt at the OA3 conj... |
oi3oa3 733 |
An attempt at the OA3 conj... |
u1lem1 734 |
Lemma for unified implicat... |
u2lem1 735 |
Lemma for unified implicat... |
u3lem1 736 |
Lemma for unified implicat... |
u4lem1 737 |
Lemma for unified implicat... |
u5lem1 738 |
Lemma for unified implicat... |
u1lem1n 739 |
Lemma for unified implicat... |
u2lem1n 740 |
Lemma for unified implicat... |
u3lem1n 741 |
Lemma for unified implicat... |
u4lem1n 742 |
Lemma for unified implicat... |
u5lem1n 743 |
Lemma for unified implicat... |
u1lem2 744 |
Lemma for unified implicat... |
u2lem2 745 |
Lemma for unified implicat... |
u3lem2 746 |
Lemma for unified implicat... |
u4lem2 747 |
Lemma for unified implicat... |
u5lem2 748 |
Lemma for unified implicat... |
u1lem3 749 |
Lemma for unified implicat... |
u2lem3 750 |
Lemma for unified implicat... |
u3lem3 751 |
Lemma for unified implicat... |
u4lem3 752 |
Lemma for unified implicat... |
u5lem3 753 |
Lemma for unified implicat... |
u3lem3n 754 |
Lemma for unified implicat... |
u4lem3n 755 |
Lemma for unified implicat... |
u5lem3n 756 |
Lemma for unified implicat... |
u1lem4 757 |
Lemma for unified implicat... |
u3lem4 758 |
Lemma for unified implicat... |
u4lem4 759 |
Lemma for unified implicat... |
u5lem4 760 |
Lemma for unified implicat... |
u1lem5 761 |
Lemma for unified implicat... |
u2lem5 762 |
Lemma for unified implicat... |
u3lem5 763 |
Lemma for unified implicat... |
u4lem5 764 |
Lemma for unified implicat... |
u5lem5 765 |
Lemma for unified implicat... |
u4lem5n 766 |
Lemma for unified implicat... |
u3lem6 767 |
Lemma for unified implicat... |
u4lem6 768 |
Lemma for unified implicat... |
u5lem6 769 |
Lemma for unified implicat... |
u24lem 770 |
Lemma for unified implicat... |
u12lem 771 |
Implication lemma. (Contr... |
u1lem7 772 |
Lemma for unified implicat... |
u2lem7 773 |
Lemma for unified implicat... |
u3lem7 774 |
Lemma for unified implicat... |
u2lem7n 775 |
Lemma for unified implicat... |
u1lem8 776 |
Lemma used in study of ort... |
u1lem9a 777 |
Lemma used in study of ort... |
u1lem9b 778 |
Lemma used in study of ort... |
u1lem9ab 779 |
Lemma used in study of ort... |
u1lem11 780 |
Lemma used in study of ort... |
u1lem12 781 |
Lemma used in study of ort... |
u2lem8 782 |
Lemma for unified implicat... |
u3lem8 783 |
Lemma for unified implicat... |
u3lem9 784 |
Lemma for unified implicat... |
u3lem10 785 |
Lemma for unified implicat... |
u3lem11 786 |
Lemma for unified implicat... |
u3lem11a 787 |
Lemma for unified implicat... |
u3lem12 788 |
Lemma for unified implicat... |
u3lem13a 789 |
Lemma for unified implicat... |
u3lem13b 790 |
Lemma for unified implicat... |
u3lem14a 791 |
Lemma for unified implicat... |
u3lem14aa 792 |
Used to prove ` ->1 ` "add... |
u3lem14aa2 793 |
Used to prove ` ->1 ` "add... |
u3lem14mp 794 |
Used to prove ` ->1 ` modu... |
u3lem15 795 |
Lemma for Kalmbach implica... |
u3lemax4 796 |
Possible axiom for Kalmbac... |
u3lemax5 797 |
Possible axiom for Kalmbac... |
bi1o1a 798 |
Equivalence to bicondition... |
biao 799 |
Equivalence to bicondition... |
i2i1i1 800 |
Equivalence to ` ->2 ` . ... |
i1abs 801 |
An absorption law for ` ->... |
test 802 |
Part of an attempt to crac... |
test2 803 |
Part of an attempt to crac... |
3vth1 804 |
A 3-variable theorem. Equ... |
3vth2 805 |
A 3-variable theorem. Equ... |
3vth3 806 |
A 3-variable theorem. Equ... |
3vth4 807 |
A 3-variable theorem. (Co... |
3vth5 808 |
A 3-variable theorem. (Co... |
3vth6 809 |
A 3-variable theorem. (Co... |
3vth7 810 |
A 3-variable theorem. (Co... |
3vth8 811 |
A 3-variable theorem. (Co... |
3vth9 812 |
A 3-variable theorem. (Co... |
3vcom 813 |
3-variable commutation the... |
3vded11 814 |
A 3-variable theorem. Exp... |
3vded12 815 |
A 3-variable theorem. Exp... |
3vded13 816 |
A 3-variable theorem. Exp... |
3vded21 817 |
A 3-variable theorem. Exp... |
3vded22 818 |
A 3-variable theorem. Exp... |
3vded3 819 |
A 3-variable theorem. Exp... |
1oa 820 |
Orthoarguesian-like law wi... |
1oai1 821 |
Orthoarguesian-like OM law... |
2oai1u 822 |
Orthoarguesian-like OM law... |
1oaiii 823 |
OML analog to orthoarguesi... |
1oaii 824 |
OML analog to orthoarguesi... |
2oalem1 825 |
Lemma for OA-like stuff wi... |
2oath1 826 |
OA-like theorem with ` ->2... |
2oath1i1 827 |
Orthoarguesian-like OM law... |
1oath1i1u 828 |
Orthoarguesian-like OM law... |
oale 829 |
Relation for studying OA. ... |
oaeqv 830 |
Weakened OA implies OA). ... |
3vroa 831 |
OA-like inference rule (re... |
mlalem 832 |
Lemma for Mladen's OML. (C... |
mlaoml 833 |
Mladen's OML. (Contributed... |
eqtr4 834 |
4-variable transitive law ... |
sac 835 |
Theorem showing "Sasaki co... |
sa5 836 |
Possible axiom for a "Sasa... |
salem1 837 |
Lemma for attempt at Sasak... |
sadm3 838 |
Weak DeMorgan's law for at... |
bi3 839 |
Chained biconditional. (C... |
bi4 840 |
Chained biconditional. (C... |
imp3 841 |
Implicational product with... |
orbi 842 |
Disjunction of bicondition... |
orbile 843 |
Disjunction of bicondition... |
mlaconj4 844 |
For 4GO proof of Mladen's ... |
mlaconj 845 |
For 5GO proof of Mladen's ... |
mlaconj2 846 |
For 5GO proof of Mladen's ... |
i1orni1 847 |
Complemented antecedent le... |
negantlem1 848 |
Lemma for negated antecede... |
negantlem2 849 |
Lemma for negated antecede... |
negantlem3 850 |
Lemma for negated antecede... |
negantlem4 851 |
Lemma for negated antecede... |
negant 852 |
Negated antecedent identit... |
negantlem5 853 |
Negated antecedent identit... |
negantlem6 854 |
Negated antecedent identit... |
negantlem7 855 |
Negated antecedent identit... |
negantlem8 856 |
Negated antecedent identit... |
negant0 857 |
Negated antecedent identit... |
negant2 858 |
Negated antecedent identit... |
negantlem9 859 |
Negated antecedent identit... |
negant3 860 |
Negated antecedent identit... |
negantlem10 861 |
Lemma for negated antecede... |
negant4 862 |
Negated antecedent identit... |
negant5 863 |
Negated antecedent identit... |
neg3antlem1 864 |
Lemma for negated antecede... |
neg3antlem2 865 |
Lemma for negated antecede... |
neg3ant1 866 |
Lemma for negated antecede... |
elimconslem 867 |
Lemma for consequent elimi... |
elimcons 868 |
Consequent elimination law... |
elimcons2 869 |
Consequent elimination law... |
comanblem1 870 |
Lemma for biconditional co... |
comanblem2 871 |
Lemma for biconditional co... |
comanb 872 |
Biconditional commutation ... |
comanbn 873 |
Biconditional commutation ... |
mhlemlem1 874 |
Lemma for Lemma 7.1 of Kal... |
mhlemlem2 875 |
Lemma for Lemma 7.1 of Kal... |
mhlem 876 |
Lemma 7.1 of Kalmbach, p. ... |
mhlem1 877 |
Lemma for Marsden-Herman d... |
mhlem2 878 |
Lemma for Marsden-Herman d... |
mh 879 |
Marsden-Herman distributiv... |
marsdenlem1 880 |
Lemma for Marsden-Herman d... |
marsdenlem2 881 |
Lemma for Marsden-Herman d... |
marsdenlem3 882 |
Lemma for Marsden-Herman d... |
marsdenlem4 883 |
Lemma for Marsden-Herman d... |
mh2 884 |
Marsden-Herman distributiv... |
mlaconjolem 885 |
Lemma for OML proof of Mla... |
mlaconjo 886 |
OML proof of Mladen's conj... |
distid 887 |
Distributive law for ident... |
mhcor1 888 |
Corollary of Marsden-Herma... |
oago3.29 889 |
Equation (3.29) of "Equati... |
oago3.21x 890 |
4-variable extension of Eq... |
cancellem 891 |
Lemma for cancellation law... |
cancel 892 |
Cancellation law eliminati... |
kb10iii 893 |
Exercise 10(iii) of Kalmba... |
e2ast2 894 |
Show that the E*_2 derivat... |
e2astlem1 895 |
Lemma towards a possible p... |
govar 896 |
Lemma for converting n-var... |
govar2 897 |
Lemma for converting n-var... |
gon2n 898 |
Lemma for converting n-var... |
go2n4 899 |
8-variable Godowski equati... |
gomaex4 900 |
Proof of Mayet Example 4 f... |
go2n6 901 |
12-variable Godowski equat... |
gomaex3h1 902 |
Hypothesis for Godowski 6-... |
gomaex3h2 903 |
Hypothesis for Godowski 6-... |
gomaex3h3 904 |
Hypothesis for Godowski 6-... |
gomaex3h4 905 |
Hypothesis for Godowski 6-... |
gomaex3h5 906 |
Hypothesis for Godowski 6-... |
gomaex3h6 907 |
Hypothesis for Godowski 6-... |
gomaex3h7 908 |
Hypothesis for Godowski 6-... |
gomaex3h8 909 |
Hypothesis for Godowski 6-... |
gomaex3h9 910 |
Hypothesis for Godowski 6-... |
gomaex3h10 911 |
Hypothesis for Godowski 6-... |
gomaex3h11 912 |
Hypothesis for Godowski 6-... |
gomaex3h12 913 |
Hypothesis for Godowski 6-... |
gomaex3lem1 914 |
Lemma for Godowski 6-var -... |
gomaex3lem2 915 |
Lemma for Godowski 6-var -... |
gomaex3lem3 916 |
Lemma for Godowski 6-var -... |
gomaex3lem4 917 |
Lemma for Godowski 6-var -... |
gomaex3lem5 918 |
Lemma for Godowski 6-var -... |
gomaex3lem6 919 |
Lemma for Godowski 6-var -... |
gomaex3lem7 920 |
Lemma for Godowski 6-var -... |
gomaex3lem8 921 |
Lemma for Godowski 6-var -... |
gomaex3lem9 922 |
Lemma for Godowski 6-var -... |
gomaex3lem10 923 |
Lemma for Godowski 6-var -... |
gomaex3 924 |
Proof of Mayet Example 3 f... |
oas 925 |
"Strengthening" lemma for ... |
oasr 926 |
Reverse of ~ oas lemma for... |
oat 927 |
Transformation lemma for s... |
oatr 928 |
Reverse transformation lem... |
oau 929 |
Transformation lemma for s... |
oaur 930 |
Transformation lemma for s... |
oaidlem2 931 |
Lemma for identity-like OA... |
oaidlem2g 932 |
Lemma for identity-like OA... |
oa6v4v 933 |
6-variable OA to 4-variabl... |
oa4v3v 934 |
4-variable OA to 3-variabl... |
oal42 935 |
Derivation of Godowski/Gre... |
oa23 936 |
Derivation of OA from Godo... |
oa4lem1 937 |
Lemma for 3-var to 4-var O... |
oa4lem2 938 |
Lemma for 3-var to 4-var O... |
oa4lem3 939 |
Lemma for 3-var to 4-var O... |
distoah1 940 |
Satisfaction of distributi... |
distoah2 941 |
Satisfaction of distributi... |
distoah3 942 |
Satisfaction of distributi... |
distoah4 943 |
Satisfaction of distributi... |
distoa 944 |
Derivation in OM of OA, as... |
oa3to4lem1 945 |
Lemma for orthoarguesian l... |
oa3to4lem2 946 |
Lemma for orthoarguesian l... |
oa3to4lem3 947 |
Lemma for orthoarguesian l... |
oa3to4lem4 948 |
Lemma for orthoarguesian l... |
oa3to4lem5 949 |
Lemma for orthoarguesian l... |
oa3to4lem6 950 |
Orthoarguesian law (Godows... |
oa3to4 951 |
Orthoarguesian law (Godows... |
oa6todual 952 |
Conventional to dual 6-var... |
oa6fromdual 953 |
Dual to conventional 6-var... |
oa6fromdualn 954 |
Dual to conventional 6-var... |
oa6to4h1 955 |
Satisfaction of 6-variable... |
oa6to4h2 956 |
Satisfaction of 6-variable... |
oa6to4h3 957 |
Satisfaction of 6-variable... |
oa6to4 958 |
Derivation of 4-variable p... |
oa4b 959 |
Derivation of 4-OA law var... |
oa4to6lem1 960 |
Lemma for orthoarguesian l... |
oa4to6lem2 961 |
Lemma for orthoarguesian l... |
oa4to6lem3 962 |
Lemma for orthoarguesian l... |
oa4to6lem4 963 |
Lemma for orthoarguesian l... |
oa4to6dual 964 |
Lemma for orthoarguesian l... |
oa4to6 965 |
Orthoarguesian law (4-vari... |
oa4btoc 966 |
Derivation of 4-OA law var... |
oa4ctob 967 |
Derivation of 4-OA law var... |
oa4ctod 968 |
Derivation of 4-OA law var... |
oa4dtoc 969 |
Derivation of 4-OA law var... |
oa4dcom 970 |
Lemma commuting terms. (C... |
oa8todual 971 |
Conventional to dual 8-var... |
oa8to5 972 |
Orthoarguesian law 5OA con... |
oa4to4u 973 |
A "universal" 4-OA. The hy... |
oa4to4u2 974 |
A weaker-looking "universa... |
oa4uto4g 975 |
Derivation of "Godowski/Gr... |
oa4gto4u 976 |
A "universal" 4-OA derived... |
oa4uto4 977 |
Derivation of standard 4-v... |
oa3-2lema 978 |
Lemma for 3-OA(2). Equiva... |
oa3-2lemb 979 |
Lemma for 3-OA(2). Equiva... |
oa3-6lem 980 |
Lemma for 3-OA(6). Equiva... |
oa3-3lem 981 |
Lemma for 3-OA(3). Equiva... |
oa3-1lem 982 |
Lemma for 3-OA(1). Equiva... |
oa3-4lem 983 |
Lemma for 3-OA(4). Equiva... |
oa3-5lem 984 |
Lemma for 3-OA(5). Equiva... |
oa3-u1lem 985 |
Lemma for a "universal" 3-... |
oa3-u2lem 986 |
Lemma for a "universal" 3-... |
oa3-6to3 987 |
Derivation of 3-OA variant... |
oa3-2to4 988 |
Derivation of 3-OA variant... |
oa3-2wto2 989 |
Derivation of 3-OA variant... |
oa3-2to2s 990 |
Derivation of 3-OA variant... |
oa3-u1 991 |
Derivation of a "universal... |
oa3-u2 992 |
Derivation of a "universal... |
oa3-1to5 993 |
Derivation of an equivalen... |
d3oa 995 |
Derivation of 3-OA from OA... |
d4oa 996 |
Variant of proper 4-OA pro... |
d6oa 997 |
Derivation of 6-variable o... |
oal2 999 |
Orthoarguesian law - ` ->2... |
oal1 1000 |
Orthoarguesian law - ` ->1... |
oaliii 1001 |
Orthoarguesian law. Godow... |
oalii 1002 |
Orthoarguesian law. Godow... |
oaliv 1003 |
Orthoarguesian law. Godow... |
oath1 1004 |
OA theorem. (Contributed ... |
oalem1 1005 |
Lemma. (Contributed by NM... |
oalem2 1006 |
Lemma. (Contributed by NM... |
oadist2a 1007 |
Distributive inference der... |
oadist2b 1008 |
Distributive inference der... |
oadist2 1009 |
Distributive inference der... |
oadist12 1010 |
Distributive law derived f... |
oacom 1011 |
Commutation law requiring ... |
oacom2 1012 |
Commutation law requiring ... |
oacom3 1013 |
Commutation law requiring ... |
oagen1 1014 |
"Generalized" OA. (Contrib... |
oagen1b 1015 |
"Generalized" OA. (Contrib... |
oagen2 1016 |
"Generalized" OA. (Contrib... |
oagen2b 1017 |
"Generalized" OA. (Contrib... |
mloa 1018 |
Mladen's OA. (Contributed ... |
oadist 1019 |
Distributive law derived f... |
oadistb 1020 |
Distributive law derived f... |
oadistc0 1021 |
Pre-distributive law. Not... |
oadistc 1022 |
Distributive law. (Contri... |
oadistd 1023 |
OA distributive law. (Con... |
3oa2 1024 |
Alternate form for the 3-v... |
3oa3 1025 |
3-variable orthoarguesion ... |
oa4cl 1027 |
4-variable OA closed equat... |
oa43v 1028 |
Derivation of 3-variable O... |
oa3moa3 1029 |
4-variable 3OA to 5-variab... |
oa64v 1031 |
Derivation of 4-variable O... |
oa63v 1032 |
Derivation of 3-variable O... |
axoa4 1034 |
The proper 4-variable OA l... |
axoa4b 1035 |
Proper 4-variable OA law v... |
oa6 1036 |
Derivation of 6-variable o... |
axoa4a 1037 |
Proper 4-variable OA law v... |
axoa4d 1038 |
Proper 4-variable OA law v... |
4oa 1039 |
Variant of proper 4-OA. (C... |
4oaiii 1040 |
Proper OA analog to Godows... |
4oath1 1041 |
Proper 4-OA theorem. (Con... |
4oagen1 1042 |
"Generalized" 4-OA. (Contr... |
4oagen1b 1043 |
"Generalized" OA. (Contrib... |
4oadist 1044 |
OA Distributive law. This... |
lem3.3.2 1046 |
Equation 3.2 of [PavMeg199... |
lem3.3.3lem1 1049 |
Lemma for ~ lem3.3.3 . (C... |
lem3.3.3lem2 1050 |
Lemma for ~ lem3.3.3 . (C... |
lem3.3.3lem3 1051 |
Lemma for ~ lem3.3.3 . (C... |
lem3.3.3 1052 |
Equation 3.3 of [PavMeg199... |
lem3.3.4 1053 |
Equation 3.4 of [PavMeg199... |
lem3.3.5lem 1054 |
A fundamental property in ... |
lem3.3.5 1055 |
Equation 3.5 of [PavMeg199... |
lem3.3.6 1056 |
Equation 3.6 of [PavMeg199... |
lem3.3.7i0e1 1057 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i0e2 1058 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i0e3 1059 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i1e1 1060 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i1e2 1061 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i1e3 1062 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i2e1 1063 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i2e2 1064 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i2e3 1065 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i3e1 1066 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i3e2 1067 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i3e3 1068 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i4e1 1069 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i4e2 1070 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i4e3 1071 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i5e1 1072 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i5e2 1073 |
Equation 3.7 of [PavMeg199... |
lem3.3.7i5e3 1074 |
Equation 3.7 of [PavMeg199... |
lem3.4.1 1075 |
Equation 3.9 of [PavMeg199... |
lem3.4.3 1076 |
Equation 3.11 of [PavMeg19... |
lem3.4.4 1077 |
Equation 3.12 of [PavMeg19... |
lem3.4.5 1078 |
Equation 3.13 of [PavMeg19... |
lem3.4.6 1079 |
Equation 3.14 of [PavMeg19... |
thm3.8i1lem 1080 |
Lemma intended for ~~ thm3... |
thm3.8i5 1081 |
(Contributed by Roy F. Lon... |
lem4.6.2e1 1082 |
Equation 4.10 of [MegPav20... |
lem4.6.2e2 1083 |
Equation 4.10 of [MegPav20... |
lem4.6.3le1 1084 |
Equation 4.11 of [MegPav20... |
lem4.6.3le2 1085 |
Equation 4.11 of [MegPav20... |
lem4.6.4 1086 |
Equation 4.12 of [MegPav20... |
lem4.6.5 1087 |
Equation 4.13 of [MegPav20... |
lem4.6.6i0j1 1088 |
Equation 4.14 of [MegPav20... |
lem4.6.6i0j2 1089 |
Equation 4.14 of [MegPav20... |
lem4.6.6i0j3 1090 |
Equation 4.14 of [MegPav20... |
lem4.6.6i0j4 1091 |
Equation 4.14 of [MegPav20... |
lem4.6.6i1j0 1092 |
Equation 4.14 of [MegPav20... |
lem4.6.6i1j2 1093 |
Equation 4.14 of [MegPav20... |
lem4.6.6i1j3 1094 |
Equation 4.14 of [MegPav20... |
lem4.6.6i2j0 1095 |
Equation 4.14 of [MegPav20... |
lem4.6.6i2j1 1096 |
Equation 4.14 of [MegPav20... |
lem4.6.6i2j4 1097 |
Equation 4.14 of [MegPav20... |
lem4.6.6i3j0 1098 |
Equation 4.14 of [MegPav20... |
lem4.6.6i3j1 1099 |
Equation 4.14 of [MegPav20... |
lem4.6.6i4j0 1100 |
Equation 4.14 of [MegPav20... |
lem4.6.6i4j2 1101 |
Equation 4.14 of [MegPav20... |
com3iia 1102 |
The dual of ~ com3ii . (C... |
lem4.6.7 1103 |
Equation 4.15 of [MegPav20... |
wdcom 1105 |
Any two variables (weakly)... |
wdwom 1106 |
Prove 2-variable WOML rule... |
wddi1 1107 |
Prove the weak distributiv... |
wddi2 1108 |
The weak distributive law ... |
wddi3 1109 |
The weak distributive law ... |
wddi4 1110 |
The weak distributive law ... |
wdid0id5 1111 |
Show that quantum identity... |
wdid0id1 1112 |
Show a quantum identity th... |
wdid0id2 1113 |
Show a quantum identity th... |
wdid0id3 1114 |
Show a quantum identity th... |
wdid0id4 1115 |
Show a quantum identity th... |
wdka4o 1116 |
Show WDOL analog of WOM la... |
wddi-0 1117 |
The weak distributive law ... |
wddi-1 1118 |
The weak distributive law ... |
wddi-2 1119 |
The weak distributive law ... |
wddi-3 1120 |
The weak distributive law ... |
wddi-4 1121 |
The weak distributive law ... |
ml 1123 |
Modular law in equational ... |
mldual 1124 |
Dual of modular law. (Con... |
ml2i 1125 |
Inference version of modul... |
mli 1126 |
Inference version of modul... |
mldual2i 1127 |
Inference version of dual ... |
mlduali 1128 |
Inference version of dual ... |
ml3le 1129 |
Form of modular law that s... |
ml3 1130 |
Form of modular law that s... |
vneulem1 1131 |
Part of von Neumann's lemm... |
vneulem2 1132 |
Part of von Neumann's lemm... |
vneulem3 1133 |
Part of von Neumann's lemm... |
vneulem4 1134 |
Part of von Neumann's lemm... |
vneulem5 1135 |
Part of von Neumann's lemm... |
vneulem6 1136 |
Part of von Neumann's lemm... |
vneulem7 1137 |
Part of von Neumann's lemm... |
vneulem8 1138 |
Part of von Neumann's lemm... |
vneulem9 1139 |
Part of von Neumann's lemm... |
vneulem10 1140 |
Part of von Neumann's lemm... |
vneulem11 1141 |
Part of von Neumann's lemm... |
vneulem12 1142 |
Part of von Neumann's lemm... |
vneulem13 1143 |
Part of von Neumann's lemm... |
vneulem14 1144 |
Part of von Neumann's lemm... |
vneulem15 1145 |
Part of von Neumann's lemm... |
vneulem16 1146 |
Part of von Neumann's lemm... |
vneulem 1147 |
von Neumann's modular law ... |
vneulemexp 1148 |
Expanded version of ~ vneu... |
l42modlem1 1149 |
Lemma for ~ l42mod . (Con... |
l42modlem2 1150 |
Lemma for ~ l42mod . (Con... |
l42mod 1151 |
An equation that fails in ... |
modexp 1152 |
Expansion by modular law. ... |
dp15lema 1154 |
Part of proof (1)=>(5) in ... |
dp15lemb 1155 |
Part of proof (1)=>(5) in ... |
dp15lemc 1156 |
Part of proof (1)=>(5) in ... |
dp15lemd 1157 |
Part of proof (1)=>(5) in ... |
dp15leme 1158 |
Part of proof (1)=>(5) in ... |
dp15lemf 1159 |
Part of proof (1)=>(5) in ... |
dp15lemg 1160 |
Part of proof (1)=>(5) in ... |
dp15lemh 1161 |
Part of proof (1)=>(5) in ... |
dp15 1162 |
Part of theorem from Alan ... |
dp53lema 1163 |
Part of proof (5)=>(3) in ... |
dp53lemb 1164 |
Part of proof (5)=>(3) in ... |
dp53lemc 1165 |
Part of proof (5)=>(3) in ... |
dp53lemd 1166 |
Part of proof (5)=>(3) in ... |
dp53leme 1167 |
Part of proof (5)=>(3) in ... |
dp53lemf 1168 |
Part of proof (5)=>(3) in ... |
dp53lemg 1169 |
Part of proof (5)=>(3) in ... |
dp53 1170 |
Part of theorem from Alan ... |
dp35lemg 1171 |
Part of proof (3)=>(5) in ... |
dp35lemf 1172 |
Part of proof (3)=>(5) in ... |
dp35leme 1173 |
Part of proof (3)=>(5) in ... |
dp35lemd 1174 |
Part of proof (3)=>(5) in ... |
dp35lemc 1175 |
Part of proof (3)=>(5) in ... |
dp35lemb 1176 |
Part of proof (3)=>(5) in ... |
dp35lembb 1177 |
Part of proof (3)=>(5) in ... |
dp35lema 1178 |
Part of proof (3)=>(5) in ... |
dp35lem0 1179 |
Part of proof (3)=>(5) in ... |
dp35 1180 |
Part of theorem from Alan ... |
dp34 1181 |
Part of theorem from Alan ... |
dp41lema 1182 |
Part of proof (4)=>(1) in ... |
dp41lemb 1183 |
Part of proof (4)=>(1) in ... |
dp41lemc0 1184 |
Part of proof (4)=>(1) in ... |
dp41lemc 1185 |
Part of proof (4)=>(1) in ... |
dp41lemd 1186 |
Part of proof (4)=>(1) in ... |
dp41leme 1187 |
Part of proof (4)=>(1) in ... |
dp41lemf 1188 |
Part of proof (4)=>(1) in ... |
dp41lemg 1189 |
Part of proof (4)=>(1) in ... |
dp41lemh 1190 |
Part of proof (4)=>(1) in ... |
dp41lemj 1191 |
Part of proof (4)=>(1) in ... |
dp41lemk 1192 |
Part of proof (4)=>(1) in ... |
dp41leml 1193 |
Part of proof (4)=>(1) in ... |
dp41lemm 1194 |
Part of proof (4)=>(1) in ... |
dp41 1195 |
Part of theorem from Alan ... |
dp32 1196 |
Part of theorem from Alan ... |
dp23 1197 |
Part of theorem from Alan ... |
xdp41 1198 |
Part of proof (4)=>(1) in ... |
xdp15 1199 |
Part of proof (1)=>(5) in ... |
xdp53 1200 |
Part of proof (5)=>(3) in ... |
xxdp41 1201 |
Part of proof (4)=>(1) in ... |
xxdp15 1202 |
Part of proof (1)=>(5) in ... |
xxdp53 1203 |
Part of proof (5)=>(3) in ... |
xdp45lem 1204 |
Part of proof (4)=>(5) in ... |
xdp43lem 1205 |
Part of proof (4)=>(3) in ... |
xdp45 1206 |
Part of proof (4)=>(5) in ... |
xdp43 1207 |
Part of proof (4)=>(3) in ... |
3dp43 1208 |
"3OA" version of ~ xdp43 .... |
oadp35lemg 1209 |
Part of proof (3)=>(5) in ... |
oadp35lemf 1210 |
Part of proof (3)=>(5) in ... |
oadp35lemc 1211 |
Part of proof (3)=>(5) in ... |
oadp35 1212 |
Part of theorem from Alan ... |
testmod 1213 |
A modular law experiment. ... |
testmod1 1214 |
A modular law experiment. ... |
testmod2 1215 |
A modular law experiment. ... |
testmod2expanded 1216 |
A modular law experiment. ... |
testmod3 1217 |
A modular law experiment. ... |