MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff Β¬ πœ‘
wi 4wff (πœ‘ β†’ πœ“)
ax-mp 5πœ‘    &   (πœ‘ β†’ πœ“)    β‡’   πœ“
ax-1 6(πœ‘ β†’ (πœ“ β†’ πœ‘))
ax-2 7((πœ‘ β†’ (πœ“ β†’ πœ’)) β†’ ((πœ‘ β†’ πœ“) β†’ (πœ‘ β†’ πœ’)))
ax-3 8((Β¬ πœ‘ β†’ Β¬ πœ“) β†’ (πœ“ β†’ πœ‘))
wb 205wff (πœ‘ ↔ πœ“)
df-bi 206 Β¬ (((πœ‘ ↔ πœ“) β†’ Β¬ ((πœ‘ β†’ πœ“) β†’ Β¬ (πœ“ β†’ πœ‘))) β†’ Β¬ (Β¬ ((πœ‘ β†’ πœ“) β†’ Β¬ (πœ“ β†’ πœ‘)) β†’ (πœ‘ ↔ πœ“)))
wa 395wff (πœ‘ ∧ πœ“)
df-an 396((πœ‘ ∧ πœ“) ↔ Β¬ (πœ‘ β†’ Β¬ πœ“))
wo 844wff (πœ‘ ∨ πœ“)
df-or 845((πœ‘ ∨ πœ“) ↔ (Β¬ πœ‘ β†’ πœ“))
wif 1059wff if-(πœ‘, πœ“, πœ’)
df-ifp 1060(if-(πœ‘, πœ“, πœ’) ↔ ((πœ‘ ∧ πœ“) ∨ (Β¬ πœ‘ ∧ πœ’)))
w3o 1083wff (πœ‘ ∨ πœ“ ∨ πœ’)
w3a 1084wff (πœ‘ ∧ πœ“ ∧ πœ’)
df-3or 1085((πœ‘ ∨ πœ“ ∨ πœ’) ↔ ((πœ‘ ∨ πœ“) ∨ πœ’))
df-3an 1086((πœ‘ ∧ πœ“ ∧ πœ’) ↔ ((πœ‘ ∧ πœ“) ∧ πœ’))
wnan 1484wff (πœ‘ ⊼ πœ“)
df-nan 1485((πœ‘ ⊼ πœ“) ↔ Β¬ (πœ‘ ∧ πœ“))
wxo 1504wff (πœ‘ ⊻ πœ“)
df-xor 1505((πœ‘ ⊻ πœ“) ↔ Β¬ (πœ‘ ↔ πœ“))
wnor 1521wff (πœ‘ ⊽ πœ“)
df-nor 1522((πœ‘ ⊽ πœ“) ↔ Β¬ (πœ‘ ∨ πœ“))
wal 1531wff βˆ€π‘₯πœ‘
cv 1532class π‘₯
wceq 1533wff 𝐴 = 𝐡
wtru 1534wff ⊀
df-tru 1536(⊀ ↔ (βˆ€π‘₯ π‘₯ = π‘₯ β†’ βˆ€π‘₯ π‘₯ = π‘₯))
wfal 1545wff βŠ₯
df-fal 1546(βŠ₯ ↔ Β¬ ⊀)
whad 1586wff hadd(πœ‘, πœ“, πœ’)
df-had 1587(hadd(πœ‘, πœ“, πœ’) ↔ ((πœ‘ ⊻ πœ“) ⊻ πœ’))
wcad 1599wff cadd(πœ‘, πœ“, πœ’)
df-cad 1600(cadd(πœ‘, πœ“, πœ’) ↔ ((πœ‘ ∧ πœ“) ∨ (πœ’ ∧ (πœ‘ ⊻ πœ“))))
wex 1773wff βˆƒπ‘₯πœ‘
df-ex 1774(βˆƒπ‘₯πœ‘ ↔ Β¬ βˆ€π‘₯ Β¬ πœ‘)
wnf 1777wff β„²π‘₯πœ‘
df-nf 1778(β„²π‘₯πœ‘ ↔ (βˆƒπ‘₯πœ‘ β†’ βˆ€π‘₯πœ‘))
ax-gen 1789πœ‘    β‡’   βˆ€π‘₯πœ‘
ax-4 1803(βˆ€π‘₯(πœ‘ β†’ πœ“) β†’ (βˆ€π‘₯πœ‘ β†’ βˆ€π‘₯πœ“))
ax-5 1905(πœ‘ β†’ βˆ€π‘₯πœ‘)
ax-6 1963 Β¬ βˆ€π‘₯ Β¬ π‘₯ = 𝑦
ax-7 2003(π‘₯ = 𝑦 β†’ (π‘₯ = 𝑧 β†’ 𝑦 = 𝑧))
wsb 2059wff [𝑦 / π‘₯]πœ‘
df-sb 2060([𝑑 / π‘₯]πœ‘ ↔ βˆ€π‘¦(𝑦 = 𝑑 β†’ βˆ€π‘₯(π‘₯ = 𝑦 β†’ πœ‘)))
wcel 2098wff 𝐴 ∈ 𝐡
ax-8 2100(π‘₯ = 𝑦 β†’ (π‘₯ ∈ 𝑧 β†’ 𝑦 ∈ 𝑧))
ax-9 2108(π‘₯ = 𝑦 β†’ (𝑧 ∈ π‘₯ β†’ 𝑧 ∈ 𝑦))
ax-10 2129(Β¬ βˆ€π‘₯πœ‘ β†’ βˆ€π‘₯ Β¬ βˆ€π‘₯πœ‘)
ax-11 2146(βˆ€π‘₯βˆ€π‘¦πœ‘ β†’ βˆ€π‘¦βˆ€π‘₯πœ‘)
ax-12 2163(π‘₯ = 𝑦 β†’ (βˆ€π‘¦πœ‘ β†’ βˆ€π‘₯(π‘₯ = 𝑦 β†’ πœ‘)))
ax-13 2363(Β¬ π‘₯ = 𝑦 β†’ (𝑦 = 𝑧 β†’ βˆ€π‘₯ 𝑦 = 𝑧))
wmo 2524wff βˆƒ*π‘₯πœ‘
df-mo 2526(βˆƒ*π‘₯πœ‘ ↔ βˆƒπ‘¦βˆ€π‘₯(πœ‘ β†’ π‘₯ = 𝑦))
weu 2554wff βˆƒ!π‘₯πœ‘
df-eu 2555(βˆƒ!π‘₯πœ‘ ↔ (βˆƒπ‘₯πœ‘ ∧ βˆƒ*π‘₯πœ‘))
ax-ext 2695(βˆ€π‘§(𝑧 ∈ π‘₯ ↔ 𝑧 ∈ 𝑦) β†’ π‘₯ = 𝑦)
cab 2701class {π‘₯ ∣ πœ‘}
df-clab 2702(π‘₯ ∈ {𝑦 ∣ πœ‘} ↔ [π‘₯ / 𝑦]πœ‘)
df-cleq 2716(𝑦 = 𝑧 ↔ βˆ€π‘’(𝑒 ∈ 𝑦 ↔ 𝑒 ∈ 𝑧))    &   (𝑑 = 𝑑 ↔ βˆ€π‘£(𝑣 ∈ 𝑑 ↔ 𝑣 ∈ 𝑑))    β‡’   (𝐴 = 𝐡 ↔ βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ π‘₯ ∈ 𝐡))
df-clel 2802(𝑦 ∈ 𝑧 ↔ βˆƒπ‘’(𝑒 = 𝑦 ∧ 𝑒 ∈ 𝑧))    &   (𝑑 ∈ 𝑑 ↔ βˆƒπ‘£(𝑣 = 𝑑 ∧ 𝑣 ∈ 𝑑))    β‡’   (𝐴 ∈ 𝐡 ↔ βˆƒπ‘₯(π‘₯ = 𝐴 ∧ π‘₯ ∈ 𝐡))
wnfc 2875wff β„²π‘₯𝐴
df-nfc 2877(β„²π‘₯𝐴 ↔ βˆ€π‘¦β„²π‘₯ 𝑦 ∈ 𝐴)
wne 2932wff 𝐴 β‰  𝐡
df-ne 2933(𝐴 β‰  𝐡 ↔ Β¬ 𝐴 = 𝐡)
wnel 3038wff 𝐴 βˆ‰ 𝐡
df-nel 3039(𝐴 βˆ‰ 𝐡 ↔ Β¬ 𝐴 ∈ 𝐡)
wral 3053wff βˆ€π‘₯ ∈ 𝐴 πœ‘
df-ral 3054(βˆ€π‘₯ ∈ 𝐴 πœ‘ ↔ βˆ€π‘₯(π‘₯ ∈ 𝐴 β†’ πœ‘))
wrex 3062wff βˆƒπ‘₯ ∈ 𝐴 πœ‘
df-rex 3063(βˆƒπ‘₯ ∈ 𝐴 πœ‘ ↔ βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
wreu 3366wff βˆƒ!π‘₯ ∈ 𝐴 πœ‘
wrmo 3367wff βˆƒ*π‘₯ ∈ 𝐴 πœ‘
df-rmo 3368(βˆƒ*π‘₯ ∈ 𝐴 πœ‘ ↔ βˆƒ*π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
df-reu 3369(βˆƒ!π‘₯ ∈ 𝐴 πœ‘ ↔ βˆƒ!π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
crab 3424class {π‘₯ ∈ 𝐴 ∣ πœ‘}
df-rab 3425{π‘₯ ∈ 𝐴 ∣ πœ‘} = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∧ πœ‘)}
cvv 3466class V
df-v 3468V = {π‘₯ ∣ π‘₯ = π‘₯}
wcdeq 3751wff CondEq(π‘₯ = 𝑦 β†’ πœ‘)
df-cdeq 3752(CondEq(π‘₯ = 𝑦 β†’ πœ‘) ↔ (π‘₯ = 𝑦 β†’ πœ‘))
wsbc 3769wff [𝐴 / π‘₯]πœ‘
df-sbc 3770([𝐴 / π‘₯]πœ‘ ↔ 𝐴 ∈ {π‘₯ ∣ πœ‘})
csb 3885class ⦋𝐴 / π‘₯⦌𝐡
df-csb 3886⦋𝐴 / π‘₯⦌𝐡 = {𝑦 ∣ [𝐴 / π‘₯]𝑦 ∈ 𝐡}
cdif 3937class (𝐴 βˆ– 𝐡)
cun 3938class (𝐴 βˆͺ 𝐡)
cin 3939class (𝐴 ∩ 𝐡)
wss 3940wff 𝐴 βŠ† 𝐡
wpss 3941wff 𝐴 ⊊ 𝐡
df-dif 3943(𝐴 βˆ– 𝐡) = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∧ Β¬ π‘₯ ∈ 𝐡)}
df-un 3945(𝐴 βˆͺ 𝐡) = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∨ π‘₯ ∈ 𝐡)}
df-in 3947(𝐴 ∩ 𝐡) = {π‘₯ ∣ (π‘₯ ∈ 𝐴 ∧ π‘₯ ∈ 𝐡)}
df-ss 3957(𝐴 βŠ† 𝐡 ↔ (𝐴 ∩ 𝐡) = 𝐴)
df-pss 3959(𝐴 ⊊ 𝐡 ↔ (𝐴 βŠ† 𝐡 ∧ 𝐴 β‰  𝐡))
csymdif 4233class (𝐴 β–³ 𝐡)
df-symdif 4234(𝐴 β–³ 𝐡) = ((𝐴 βˆ– 𝐡) βˆͺ (𝐡 βˆ– 𝐴))
c0 4314class βˆ…
df-nul 4315βˆ… = (V βˆ– V)
cif 4520class if(πœ‘, 𝐴, 𝐡)
df-if 4521if(πœ‘, 𝐴, 𝐡) = {π‘₯ ∣ ((π‘₯ ∈ 𝐴 ∧ πœ‘) ∨ (π‘₯ ∈ 𝐡 ∧ Β¬ πœ‘))}
cpw 4594class 𝒫 𝐴
df-pw 4596𝒫 𝐴 = {π‘₯ ∣ π‘₯ βŠ† 𝐴}
csn 4620class {𝐴}
df-sn 4621{𝐴} = {π‘₯ ∣ π‘₯ = 𝐴}
cpr 4622class {𝐴, 𝐡}
df-pr 4623{𝐴, 𝐡} = ({𝐴} βˆͺ {𝐡})
ctp 4624class {𝐴, 𝐡, 𝐢}
df-tp 4625{𝐴, 𝐡, 𝐢} = ({𝐴, 𝐡} βˆͺ {𝐢})
cop 4626class ⟨𝐴, 𝐡⟩
df-op 4627⟨𝐴, 𝐡⟩ = {π‘₯ ∣ (𝐴 ∈ V ∧ 𝐡 ∈ V ∧ π‘₯ ∈ {{𝐴}, {𝐴, 𝐡}})}
cotp 4628class ⟨𝐴, 𝐡, 𝐢⟩
df-ot 4629⟨𝐴, 𝐡, 𝐢⟩ = ⟨⟨𝐴, 𝐡⟩, 𝐢⟩
cuni 4899class βˆͺ 𝐴
df-uni 4900βˆͺ 𝐴 = {π‘₯ ∣ βˆƒπ‘¦(π‘₯ ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)}
cint 4940class ∩ 𝐴
df-int 4941∩ 𝐴 = {π‘₯ ∣ βˆ€π‘¦(𝑦 ∈ 𝐴 β†’ π‘₯ ∈ 𝑦)}
ciun 4987class βˆͺ π‘₯ ∈ 𝐴 𝐡
ciin 4988class ∩ π‘₯ ∈ 𝐴 𝐡
df-iun 4989βˆͺ π‘₯ ∈ 𝐴 𝐡 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 ∈ 𝐡}
df-iin 4990∩ π‘₯ ∈ 𝐴 𝐡 = {𝑦 ∣ βˆ€π‘₯ ∈ 𝐴 𝑦 ∈ 𝐡}
wdisj 5103wff Disj π‘₯ ∈ 𝐴 𝐡
df-disj 5104(Disj π‘₯ ∈ 𝐴 𝐡 ↔ βˆ€π‘¦βˆƒ*π‘₯ ∈ 𝐴 𝑦 ∈ 𝐡)
wbr 5138wff 𝐴𝑅𝐡
df-br 5139(𝐴𝑅𝐡 ↔ ⟨𝐴, 𝐡⟩ ∈ 𝑅)
copab 5200class {⟨π‘₯, π‘¦βŸ© ∣ πœ‘}
df-opab 5201{⟨π‘₯, π‘¦βŸ© ∣ πœ‘} = {𝑧 ∣ βˆƒπ‘₯βˆƒπ‘¦(𝑧 = ⟨π‘₯, π‘¦βŸ© ∧ πœ‘)}
cmpt 5221class (π‘₯ ∈ 𝐴 ↦ 𝐡)
df-mpt 5222(π‘₯ ∈ 𝐴 ↦ 𝐡) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 = 𝐡)}
wtr 5255wff Tr 𝐴
df-tr 5256(Tr 𝐴 ↔ βˆͺ 𝐴 βŠ† 𝐴)
ax-rep 5275(βˆ€π‘€βˆƒπ‘¦βˆ€π‘§(βˆ€π‘¦πœ‘ β†’ 𝑧 = 𝑦) β†’ βˆƒπ‘¦βˆ€π‘§(𝑧 ∈ 𝑦 ↔ βˆƒπ‘€(𝑀 ∈ π‘₯ ∧ βˆ€π‘¦πœ‘)))
ax-sep 5289βˆƒπ‘¦βˆ€π‘₯(π‘₯ ∈ 𝑦 ↔ (π‘₯ ∈ 𝑧 ∧ πœ‘))
ax-nul 5296βˆƒπ‘₯βˆ€π‘¦ Β¬ 𝑦 ∈ π‘₯
ax-pow 5353βˆƒπ‘¦βˆ€π‘§(βˆ€π‘€(𝑀 ∈ 𝑧 β†’ 𝑀 ∈ π‘₯) β†’ 𝑧 ∈ 𝑦)
ax-pr 5417βˆƒπ‘§βˆ€π‘€((𝑀 = π‘₯ ∨ 𝑀 = 𝑦) β†’ 𝑀 ∈ 𝑧)
cid 5563class I
df-id 5564 I = {⟨π‘₯, π‘¦βŸ© ∣ π‘₯ = 𝑦}
cep 5569class E
df-eprel 5570 E = {⟨π‘₯, π‘¦βŸ© ∣ π‘₯ ∈ 𝑦}
wpo 5576wff 𝑅 Po 𝐴
wor 5577wff 𝑅 Or 𝐴
df-po 5578(𝑅 Po 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐴 (Β¬ π‘₯𝑅π‘₯ ∧ ((π‘₯𝑅𝑦 ∧ 𝑦𝑅𝑧) β†’ π‘₯𝑅𝑧)))
df-so 5579(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦𝑅π‘₯)))
wfr 5618wff 𝑅 Fr 𝐴
wse 5619wff 𝑅 Se 𝐴
wwe 5620wff 𝑅 We 𝐴
df-fr 5621(𝑅 Fr 𝐴 ↔ βˆ€π‘₯((π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰  βˆ…) β†’ βˆƒπ‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ Β¬ 𝑧𝑅𝑦))
df-se 5622(𝑅 Se 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅π‘₯} ∈ V)
df-we 5623(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))
cxp 5664class (𝐴 Γ— 𝐡)
ccnv 5665class ◑𝐴
cdm 5666class dom 𝐴
crn 5667class ran 𝐴
cres 5668class (𝐴 β†Ύ 𝐡)
cima 5669class (𝐴 β€œ 𝐡)
ccom 5670class (𝐴 ∘ 𝐡)
wrel 5671wff Rel 𝐴
df-xp 5672(𝐴 Γ— 𝐡) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)}
df-rel 5673(Rel 𝐴 ↔ 𝐴 βŠ† (V Γ— V))
df-cnv 5674◑𝐴 = {⟨π‘₯, π‘¦βŸ© ∣ 𝑦𝐴π‘₯}
df-co 5675(𝐴 ∘ 𝐡) = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘§(π‘₯𝐡𝑧 ∧ 𝑧𝐴𝑦)}
df-dm 5676dom 𝐴 = {π‘₯ ∣ βˆƒπ‘¦ π‘₯𝐴𝑦}
df-rn 5677ran 𝐴 = dom ◑𝐴
df-res 5678(𝐴 β†Ύ 𝐡) = (𝐴 ∩ (𝐡 Γ— V))
df-ima 5679(𝐴 β€œ 𝐡) = ran (𝐴 β†Ύ 𝐡)
cpred 6289class Pred(𝑅, 𝐴, 𝑋)
df-pred 6290Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◑𝑅 β€œ {𝑋}))
word 6353wff Ord 𝐴
con0 6354class On
wlim 6355wff Lim 𝐴
csuc 6356class suc 𝐴
df-ord 6357(Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
df-on 6358On = {π‘₯ ∣ Ord π‘₯}
df-lim 6359(Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 β‰  βˆ… ∧ 𝐴 = βˆͺ 𝐴))
df-suc 6360suc 𝐴 = (𝐴 βˆͺ {𝐴})
cio 6483class (β„©π‘₯πœ‘)
df-iota 6485(β„©π‘₯πœ‘) = βˆͺ {𝑦 ∣ {π‘₯ ∣ πœ‘} = {𝑦}}
wfun 6527wff Fun 𝐴
wfn 6528wff 𝐴 Fn 𝐡
wf 6529wff 𝐹:𝐴⟢𝐡
wf1 6530wff 𝐹:𝐴–1-1→𝐡
wfo 6531wff 𝐹:𝐴–onto→𝐡
wf1o 6532wff 𝐹:𝐴–1-1-onto→𝐡
cfv 6533class (πΉβ€˜π΄)
wiso 6534wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐡)
df-fun 6535(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◑𝐴) βŠ† I ))
df-fn 6536(𝐴 Fn 𝐡 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐡))
df-f 6537(𝐹:𝐴⟢𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡))
df-f1 6538(𝐹:𝐴–1-1→𝐡 ↔ (𝐹:𝐴⟢𝐡 ∧ Fun ◑𝐹))
df-fo 6539(𝐹:𝐴–onto→𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐡))
df-f1o 6540(𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹:𝐴–1-1→𝐡 ∧ 𝐹:𝐴–onto→𝐡))
df-fv 6541(πΉβ€˜π΄) = (β„©π‘₯𝐴𝐹π‘₯)
df-isom 6542(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐡) ↔ (𝐻:𝐴–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 ↔ (π»β€˜π‘₯)𝑆(π»β€˜π‘¦))))
crio 7356class (β„©π‘₯ ∈ 𝐴 πœ‘)
df-riota 7357(β„©π‘₯ ∈ 𝐴 πœ‘) = (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘))
co 7401class (𝐴𝐹𝐡)
coprab 7402class {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘}
cmpo 7403class (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)
df-ov 7404(𝐴𝐹𝐡) = (πΉβ€˜βŸ¨π΄, 𝐡⟩)
df-oprab 7405{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘} = {𝑀 ∣ βˆƒπ‘₯βˆƒπ‘¦βˆƒπ‘§(𝑀 = ⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∧ πœ‘)}
df-mpo 7406(π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) ∧ 𝑧 = 𝐢)}
cof 7661class ∘f 𝑅
cofr 7662class ∘r 𝑅
df-of 7663 ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (π‘₯ ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((π‘“β€˜π‘₯)𝑅(π‘”β€˜π‘₯))))
df-ofr 7664 ∘r 𝑅 = {βŸ¨π‘“, π‘”βŸ© ∣ βˆ€π‘₯ ∈ (dom 𝑓 ∩ dom 𝑔)(π‘“β€˜π‘₯)𝑅(π‘”β€˜π‘₯)}
crpss 7705class [⊊]
df-rpss 7706 [⊊] = {⟨π‘₯, π‘¦βŸ© ∣ π‘₯ ⊊ 𝑦}
ax-un 7718βˆƒπ‘¦βˆ€π‘§(βˆƒπ‘€(𝑧 ∈ 𝑀 ∧ 𝑀 ∈ π‘₯) β†’ 𝑧 ∈ 𝑦)
com 7848class Ο‰
df-om 7849Ο‰ = {π‘₯ ∈ On ∣ βˆ€π‘¦(Lim 𝑦 β†’ π‘₯ ∈ 𝑦)}
c1st 7966class 1st
c2nd 7967class 2nd
df-1st 79681st = (π‘₯ ∈ V ↦ βˆͺ dom {π‘₯})
df-2nd 79692nd = (π‘₯ ∈ V ↦ βˆͺ ran {π‘₯})
csupp 8140class supp
df-supp 8141 supp = (π‘₯ ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom π‘₯ ∣ (π‘₯ β€œ {𝑖}) β‰  {𝑧}})
ctpos 8205class tpos 𝐹
df-tpos 8206tpos 𝐹 = (𝐹 ∘ (π‘₯ ∈ (β—‘dom 𝐹 βˆͺ {βˆ…}) ↦ βˆͺ β—‘{π‘₯}))
ccur 8245class curry 𝐴
cunc 8246class uncurry 𝐴
df-cur 8247curry 𝐹 = (π‘₯ ∈ dom dom 𝐹 ↦ {βŸ¨π‘¦, π‘§βŸ© ∣ ⟨π‘₯, π‘¦βŸ©πΉπ‘§})
df-unc 8248uncurry 𝐹 = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ 𝑦(πΉβ€˜π‘₯)𝑧}
cund 8252class Undef
df-undef 8253Undef = (𝑠 ∈ V ↦ 𝒫 βˆͺ 𝑠)
cfrecs 8260class frecs(𝑅, 𝐴, 𝐹)
df-frecs 8261frecs(𝑅, 𝐴, 𝐹) = βˆͺ {𝑓 ∣ βˆƒπ‘₯(𝑓 Fn π‘₯ ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘¦ ∈ π‘₯ Pred(𝑅, 𝐴, 𝑦) βŠ† π‘₯) ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (𝑦𝐹(𝑓 β†Ύ Pred(𝑅, 𝐴, 𝑦))))}
cwrecs 8291class wrecs(𝑅, 𝐴, 𝐹)
df-wrecs 8292wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
wsmo 8340wff Smo 𝐴
df-smo 8341(Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
crecs 8365class recs(𝐹)
df-recs 8366recs(𝐹) = wrecs( E , On, 𝐹)
crdg 8404class rec(𝐹, 𝐼)
df-rdg 8405rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = βˆ…, 𝐼, if(Lim dom 𝑔, βˆͺ ran 𝑔, (πΉβ€˜(π‘”β€˜βˆͺ dom 𝑔))))))
cseqom 8442class seqΟ‰(𝐹, 𝐼)
df-seqom 8443seqΟ‰(𝐹, 𝐼) = (rec((𝑖 ∈ Ο‰, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), βŸ¨βˆ…, ( I β€˜πΌ)⟩) β€œ Ο‰)
c1o 8454class 1o
c2o 8455class 2o
c3o 8456class 3o
c4o 8457class 4o
coa 8458class +o
comu 8459class Β·o
coe 8460class ↑o
df-1o 84611o = suc βˆ…
df-2o 84622o = suc 1o
df-3o 84633o = suc 2o
df-4o 84644o = suc 3o
df-oadd 8465 +o = (π‘₯ ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), π‘₯)β€˜π‘¦))
df-omul 8466 Β·o = (π‘₯ ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o π‘₯)), βˆ…)β€˜π‘¦))
df-oexp 8467 ↑o = (π‘₯ ∈ On, 𝑦 ∈ On ↦ if(π‘₯ = βˆ…, (1o βˆ– 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 Β·o π‘₯)), 1o)β€˜π‘¦)))
cnadd 8660class +no
df-nadd 8661 +no = frecs({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (On Γ— On) ∧ 𝑦 ∈ (On Γ— On) ∧ (((1st β€˜π‘₯) E (1st β€˜π‘¦) ∨ (1st β€˜π‘₯) = (1st β€˜π‘¦)) ∧ ((2nd β€˜π‘₯) E (2nd β€˜π‘¦) ∨ (2nd β€˜π‘₯) = (2nd β€˜π‘¦)) ∧ π‘₯ β‰  𝑦))}, (On Γ— On), (𝑧 ∈ V, π‘Ž ∈ V ↦ ∩ {𝑀 ∈ On ∣ ((π‘Ž β€œ ({(1st β€˜π‘§)} Γ— (2nd β€˜π‘§))) βŠ† 𝑀 ∧ (π‘Ž β€œ ((1st β€˜π‘§) Γ— {(2nd β€˜π‘§)})) βŠ† 𝑀)}))
wer 8696wff 𝑅 Er 𝐴
cec 8697class [𝐴]𝑅
cqs 8698class (𝐴 / 𝑅)
df-er 8699(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◑𝑅 βˆͺ (𝑅 ∘ 𝑅)) βŠ† 𝑅))
df-ec 8701[𝐴]𝑅 = (𝑅 β€œ {𝐴})
df-qs 8705(𝐴 / 𝑅) = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = [π‘₯]𝑅}
cmap 8816class ↑m
cpm 8817class ↑pm
df-map 8818 ↑m = (π‘₯ ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:π‘¦βŸΆπ‘₯})
df-pm 8819 ↑pm = (π‘₯ ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 Γ— π‘₯) ∣ Fun 𝑓})
cixp 8887class Xπ‘₯ ∈ 𝐴 𝐡
df-ixp 8888Xπ‘₯ ∈ 𝐴 𝐡 = {𝑓 ∣ (𝑓 Fn {π‘₯ ∣ π‘₯ ∈ 𝐴} ∧ βˆ€π‘₯ ∈ 𝐴 (π‘“β€˜π‘₯) ∈ 𝐡)}
cen 8932class β‰ˆ
cdom 8933class β‰Ό
csdm 8934class β‰Ί
cfn 8935class Fin
df-en 8936 β‰ˆ = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘“ 𝑓:π‘₯–1-1-onto→𝑦}
df-dom 8937 β‰Ό = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘“ 𝑓:π‘₯–1-1→𝑦}
df-sdom 8938 β‰Ί = ( β‰Ό βˆ– β‰ˆ )
df-fin 8939Fin = {π‘₯ ∣ βˆƒπ‘¦ ∈ Ο‰ π‘₯ β‰ˆ 𝑦}
cfsupp 9357class finSupp
df-fsupp 9358 finSupp = {βŸ¨π‘Ÿ, π‘§βŸ© ∣ (Fun π‘Ÿ ∧ (π‘Ÿ supp 𝑧) ∈ Fin)}
cfi 9401class fi
df-fi 9402fi = (π‘₯ ∈ V ↦ {𝑧 ∣ βˆƒπ‘¦ ∈ (𝒫 π‘₯ ∩ Fin)𝑧 = ∩ 𝑦})
csup 9431class sup(𝐴, 𝐡, 𝑅)
cinf 9432class inf(𝐴, 𝐡, 𝑅)
df-sup 9433sup(𝐴, 𝐡, 𝑅) = βˆͺ {π‘₯ ∈ 𝐡 ∣ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐡 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦𝑅𝑧))}
df-inf 9434inf(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐡, ◑𝑅)
coi 9500class OrdIso(𝑅, 𝐴)
df-oi 9501OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((β„Ž ∈ V ↦ (℩𝑣 ∈ {𝑀 ∈ 𝐴 ∣ βˆ€π‘— ∈ ran β„Ž 𝑗𝑅𝑀}βˆ€π‘’ ∈ {𝑀 ∈ 𝐴 ∣ βˆ€π‘— ∈ ran β„Ž 𝑗𝑅𝑀} Β¬ 𝑒𝑅𝑣))) β†Ύ {π‘₯ ∈ On ∣ βˆƒπ‘‘ ∈ 𝐴 βˆ€π‘§ ∈ (recs((β„Ž ∈ V ↦ (℩𝑣 ∈ {𝑀 ∈ 𝐴 ∣ βˆ€π‘— ∈ ran β„Ž 𝑗𝑅𝑀}βˆ€π‘’ ∈ {𝑀 ∈ 𝐴 ∣ βˆ€π‘— ∈ ran β„Ž 𝑗𝑅𝑀} Β¬ 𝑒𝑅𝑣))) β€œ π‘₯)𝑧𝑅𝑑}), βˆ…)
char 9547class har
df-har 9548har = (π‘₯ ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 β‰Ό π‘₯})
cwdom 9555class β‰Ό*
df-wdom 9556 β‰Ό* = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ = βˆ… ∨ βˆƒπ‘§ 𝑧:𝑦–ontoβ†’π‘₯)}
ax-reg 9583(βˆƒπ‘¦ 𝑦 ∈ π‘₯ β†’ βˆƒπ‘¦(𝑦 ∈ π‘₯ ∧ βˆ€π‘§(𝑧 ∈ 𝑦 β†’ Β¬ 𝑧 ∈ π‘₯)))
ax-inf 9629βˆƒπ‘¦(π‘₯ ∈ 𝑦 ∧ βˆ€π‘§(𝑧 ∈ 𝑦 β†’ βˆƒπ‘€(𝑧 ∈ 𝑀 ∧ 𝑀 ∈ 𝑦)))
ax-inf2 9632βˆƒπ‘₯(βˆƒπ‘¦(𝑦 ∈ π‘₯ ∧ βˆ€π‘§ Β¬ 𝑧 ∈ 𝑦) ∧ βˆ€π‘¦(𝑦 ∈ π‘₯ β†’ βˆƒπ‘§(𝑧 ∈ π‘₯ ∧ βˆ€π‘€(𝑀 ∈ 𝑧 ↔ (𝑀 ∈ 𝑦 ∨ 𝑀 = 𝑦)))))
ccnf 9652class CNF
df-cnf 9653 CNF = (π‘₯ ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (π‘₯ ↑m 𝑦) ∣ 𝑔 finSupp βˆ…} ↦ ⦋OrdIso( E , (𝑓 supp βˆ…)) / β„Žβ¦Œ(seqΟ‰((π‘˜ ∈ V, 𝑧 ∈ V ↦ (((π‘₯ ↑o (β„Žβ€˜π‘˜)) Β·o (π‘“β€˜(β„Žβ€˜π‘˜))) +o 𝑧)), βˆ…)β€˜dom β„Ž)))
cttrcl 9698class t++𝑅
df-ttrcl 9699t++𝑅 = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘› ∈ (Ο‰ βˆ– 1o)βˆƒπ‘“(𝑓 Fn suc 𝑛 ∧ ((π‘“β€˜βˆ…) = π‘₯ ∧ (π‘“β€˜π‘›) = 𝑦) ∧ βˆ€π‘š ∈ 𝑛 (π‘“β€˜π‘š)𝑅(π‘“β€˜suc π‘š))}
ctc 9727class TC
df-tc 9728TC = (π‘₯ ∈ V ↦ ∩ {𝑦 ∣ (π‘₯ βŠ† 𝑦 ∧ Tr 𝑦)})
cr1 9753class 𝑅1
crnk 9754class rank
df-r1 9755𝑅1 = rec((π‘₯ ∈ V ↦ 𝒫 π‘₯), βˆ…)
df-rank 9756rank = (π‘₯ ∈ V ↦ ∩ {𝑦 ∈ On ∣ π‘₯ ∈ (𝑅1β€˜suc 𝑦)})
cdju 9889class (𝐴 βŠ” 𝐡)
cinl 9890class inl
cinr 9891class inr
df-dju 9892(𝐴 βŠ” 𝐡) = (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡))
df-inl 9893inl = (π‘₯ ∈ V ↦ βŸ¨βˆ…, π‘₯⟩)
df-inr 9894inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
ccrd 9926class card
cale 9927class β„΅
ccf 9928class cf
wacn 9929class AC 𝐴
df-card 9930card = (π‘₯ ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 β‰ˆ π‘₯})
df-aleph 9931β„΅ = rec(har, Ο‰)
df-cf 9932cf = (π‘₯ ∈ On ↦ ∩ {𝑦 ∣ βˆƒπ‘§(𝑦 = (cardβ€˜π‘§) ∧ (𝑧 βŠ† π‘₯ ∧ βˆ€π‘£ ∈ π‘₯ βˆƒπ‘’ ∈ 𝑧 𝑣 βŠ† 𝑒))})
df-acn 9933AC 𝐴 = {π‘₯ ∣ (𝐴 ∈ V ∧ βˆ€π‘“ ∈ ((𝒫 π‘₯ βˆ– {βˆ…}) ↑m 𝐴)βˆƒπ‘”βˆ€π‘¦ ∈ 𝐴 (π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦))}
wac 10106wff CHOICE
df-ac 10107(CHOICE ↔ βˆ€π‘₯βˆƒπ‘“(𝑓 βŠ† π‘₯ ∧ 𝑓 Fn dom π‘₯))
cfin1a 10269class FinIa
cfin2 10270class FinII
cfin4 10271class FinIV
cfin3 10272class FinIII
cfin5 10273class FinV
cfin6 10274class FinVI
cfin7 10275class FinVII
df-fin1a 10276FinIa = {π‘₯ ∣ βˆ€π‘¦ ∈ 𝒫 π‘₯(𝑦 ∈ Fin ∨ (π‘₯ βˆ– 𝑦) ∈ Fin)}
df-fin2 10277FinII = {π‘₯ ∣ βˆ€π‘¦ ∈ 𝒫 𝒫 π‘₯((𝑦 β‰  βˆ… ∧ [⊊] Or 𝑦) β†’ βˆͺ 𝑦 ∈ 𝑦)}
df-fin4 10278FinIV = {π‘₯ ∣ Β¬ βˆƒπ‘¦(𝑦 ⊊ π‘₯ ∧ 𝑦 β‰ˆ π‘₯)}
df-fin3 10279FinIII = {π‘₯ ∣ 𝒫 π‘₯ ∈ FinIV}
df-fin5 10280FinV = {π‘₯ ∣ (π‘₯ = βˆ… ∨ π‘₯ β‰Ί (π‘₯ βŠ” π‘₯))}
df-fin6 10281FinVI = {π‘₯ ∣ (π‘₯ β‰Ί 2o ∨ π‘₯ β‰Ί (π‘₯ Γ— π‘₯))}
df-fin7 10282FinVII = {π‘₯ ∣ Β¬ βˆƒπ‘¦ ∈ (On βˆ– Ο‰)π‘₯ β‰ˆ 𝑦}
ax-cc 10426(π‘₯ β‰ˆ Ο‰ β†’ βˆƒπ‘“βˆ€π‘§ ∈ π‘₯ (𝑧 β‰  βˆ… β†’ (π‘“β€˜π‘§) ∈ 𝑧))
ax-dc 10437((βˆƒπ‘¦βˆƒπ‘§ 𝑦π‘₯𝑧 ∧ ran π‘₯ βŠ† dom π‘₯) β†’ βˆƒπ‘“βˆ€π‘› ∈ Ο‰ (π‘“β€˜π‘›)π‘₯(π‘“β€˜suc 𝑛))
ax-ac 10450βˆƒπ‘¦βˆ€π‘§βˆ€π‘€((𝑧 ∈ 𝑀 ∧ 𝑀 ∈ π‘₯) β†’ βˆƒπ‘£βˆ€π‘’(βˆƒπ‘‘((𝑒 ∈ 𝑀 ∧ 𝑀 ∈ 𝑑) ∧ (𝑒 ∈ 𝑑 ∧ 𝑑 ∈ 𝑦)) ↔ 𝑒 = 𝑣))
ax-ac2 10454βˆƒπ‘¦βˆ€π‘§βˆƒπ‘£βˆ€π‘’((𝑦 ∈ π‘₯ ∧ (𝑧 ∈ 𝑦 β†’ ((𝑣 ∈ π‘₯ ∧ Β¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (Β¬ 𝑦 ∈ π‘₯ ∧ (𝑧 ∈ π‘₯ β†’ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑒 ∈ 𝑧 ∧ 𝑒 ∈ 𝑦) β†’ 𝑒 = 𝑣)))))
cgch 10611class GCH
df-gch 10612GCH = (Fin βˆͺ {π‘₯ ∣ βˆ€π‘¦ Β¬ (π‘₯ β‰Ί 𝑦 ∧ 𝑦 β‰Ί 𝒫 π‘₯)})
cwina 10673class Inaccw
cina 10674class Inacc
df-wina 10675Inaccw = {π‘₯ ∣ (π‘₯ β‰  βˆ… ∧ (cfβ€˜π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ π‘₯ 𝑦 β‰Ί 𝑧)}
df-ina 10676Inacc = {π‘₯ ∣ (π‘₯ β‰  βˆ… ∧ (cfβ€˜π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ 𝒫 𝑦 β‰Ί π‘₯)}
cwun 10691class WUni
cwunm 10692class wUniCl
df-wun 10693WUni = {𝑒 ∣ (Tr 𝑒 ∧ 𝑒 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝑒 (βˆͺ π‘₯ ∈ 𝑒 ∧ 𝒫 π‘₯ ∈ 𝑒 ∧ βˆ€π‘¦ ∈ 𝑒 {π‘₯, 𝑦} ∈ 𝑒))}
df-wunc 10694wUniCl = (π‘₯ ∈ V ↦ ∩ {𝑒 ∈ WUni ∣ π‘₯ βŠ† 𝑒})
ctsk 10739class Tarski
df-tsk 10740Tarski = {𝑦 ∣ (βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) ∧ βˆ€π‘§ ∈ 𝒫 𝑦(𝑧 β‰ˆ 𝑦 ∨ 𝑧 ∈ 𝑦))}
cgru 10781class Univ
df-gru 10782Univ = {𝑒 ∣ (Tr 𝑒 ∧ βˆ€π‘₯ ∈ 𝑒 (𝒫 π‘₯ ∈ 𝑒 ∧ βˆ€π‘¦ ∈ 𝑒 {π‘₯, 𝑦} ∈ 𝑒 ∧ βˆ€π‘¦ ∈ (𝑒 ↑m π‘₯)βˆͺ ran 𝑦 ∈ 𝑒))}
ax-groth 10814βˆƒπ‘¦(π‘₯ ∈ 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (βˆ€π‘€(𝑀 βŠ† 𝑧 β†’ 𝑀 ∈ 𝑦) ∧ βˆƒπ‘€ ∈ 𝑦 βˆ€π‘£(𝑣 βŠ† 𝑧 β†’ 𝑣 ∈ 𝑀)) ∧ βˆ€π‘§(𝑧 βŠ† 𝑦 β†’ (𝑧 β‰ˆ 𝑦 ∨ 𝑧 ∈ 𝑦)))
ctskm 10828class tarskiMap
df-tskm 10829tarskiMap = (π‘₯ ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ π‘₯ ∈ 𝑦})
cnpi 10835class N
cpli 10836class +N
cmi 10837class Β·N
clti 10838class <N
cplpq 10839class +pQ
cmpq 10840class Β·pQ
cltpq 10841class <pQ
ceq 10842class ~Q
cnq 10843class Q
c1q 10844class 1Q
cerq 10845class [Q]
cplq 10846class +Q
cmq 10847class Β·Q
crq 10848class *Q
cltq 10849class <Q
cnp 10850class P
c1p 10851class 1P
cpp 10852class +P
cmp 10853class Β·P
cltp 10854class <P
cer 10855class ~R
cnr 10856class R
c0r 10857class 0R
c1r 10858class 1R
cm1r 10859class -1R
cplr 10860class +R
cmr 10861class Β·R
cltr 10862class <R
df-ni 10863N = (Ο‰ βˆ– {βˆ…})
df-pli 10864 +N = ( +o β†Ύ (N Γ— N))
df-mi 10865 Β·N = ( Β·o β†Ύ (N Γ— N))
df-lti 10866 <N = ( E ∩ (N Γ— N))
df-plpq 10899 +pQ = (π‘₯ ∈ (N Γ— N), 𝑦 ∈ (N Γ— N) ↦ ⟨(((1st β€˜π‘₯) Β·N (2nd β€˜π‘¦)) +N ((1st β€˜π‘¦) Β·N (2nd β€˜π‘₯))), ((2nd β€˜π‘₯) Β·N (2nd β€˜π‘¦))⟩)
df-mpq 10900 Β·pQ = (π‘₯ ∈ (N Γ— N), 𝑦 ∈ (N Γ— N) ↦ ⟨((1st β€˜π‘₯) Β·N (1st β€˜π‘¦)), ((2nd β€˜π‘₯) Β·N (2nd β€˜π‘¦))⟩)
df-ltpq 10901 <pQ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (N Γ— N) ∧ 𝑦 ∈ (N Γ— N)) ∧ ((1st β€˜π‘₯) Β·N (2nd β€˜π‘¦)) <N ((1st β€˜π‘¦) Β·N (2nd β€˜π‘₯)))}
df-enq 10902 ~Q = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (N Γ— N) ∧ 𝑦 ∈ (N Γ— N)) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = βŸ¨π‘§, π‘€βŸ© ∧ 𝑦 = βŸ¨π‘£, π‘’βŸ©) ∧ (𝑧 Β·N 𝑒) = (𝑀 Β·N 𝑣)))}
df-nq 10903Q = {π‘₯ ∈ (N Γ— N) ∣ βˆ€π‘¦ ∈ (N Γ— N)(π‘₯ ~Q 𝑦 β†’ Β¬ (2nd β€˜π‘¦) <N (2nd β€˜π‘₯))}
df-erq 10904[Q] = ( ~Q ∩ ((N Γ— N) Γ— Q))
df-plq 10905 +Q = (([Q] ∘ +pQ ) β†Ύ (Q Γ— Q))
df-mq 10906 Β·Q = (([Q] ∘ Β·pQ ) β†Ύ (Q Γ— Q))
df-1nq 109071Q = ⟨1o, 1o⟩
df-rq 10908*Q = (β—‘ Β·Q β€œ {1Q})
df-ltnq 10909 <Q = ( <pQ ∩ (Q Γ— Q))
df-np 10972P = {π‘₯ ∣ ((βˆ… ⊊ π‘₯ ∧ π‘₯ ⊊ Q) ∧ βˆ€π‘¦ ∈ π‘₯ (βˆ€π‘§(𝑧 <Q 𝑦 β†’ 𝑧 ∈ π‘₯) ∧ βˆƒπ‘§ ∈ π‘₯ 𝑦 <Q 𝑧))}
df-1p 109731P = {π‘₯ ∣ π‘₯ <Q 1Q}
df-plp 10974 +P = (π‘₯ ∈ P, 𝑦 ∈ P ↦ {𝑀 ∣ βˆƒπ‘£ ∈ π‘₯ βˆƒπ‘’ ∈ 𝑦 𝑀 = (𝑣 +Q 𝑒)})
df-mp 10975 Β·P = (π‘₯ ∈ P, 𝑦 ∈ P ↦ {𝑀 ∣ βˆƒπ‘£ ∈ π‘₯ βˆƒπ‘’ ∈ 𝑦 𝑀 = (𝑣 Β·Q 𝑒)})
df-ltp 10976<P = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ P ∧ 𝑦 ∈ P) ∧ π‘₯ ⊊ 𝑦)}
df-enr 11046 ~R = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (P Γ— P) ∧ 𝑦 ∈ (P Γ— P)) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = βŸ¨π‘§, π‘€βŸ© ∧ 𝑦 = βŸ¨π‘£, π‘’βŸ©) ∧ (𝑧 +P 𝑒) = (𝑀 +P 𝑣)))}
df-nr 11047R = ((P Γ— P) / ~R )
df-plr 11048 +R = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ R ∧ 𝑦 ∈ R) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~R ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~R ) ∧ 𝑧 = [⟨(𝑀 +P 𝑒), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 11049 Β·R = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ R ∧ 𝑦 ∈ R) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = [βŸ¨π‘€, π‘£βŸ©] ~R ∧ 𝑦 = [βŸ¨π‘’, π‘“βŸ©] ~R ) ∧ 𝑧 = [⟨((𝑀 Β·P 𝑒) +P (𝑣 Β·P 𝑓)), ((𝑀 Β·P 𝑓) +P (𝑣 Β·P 𝑒))⟩] ~R ))}
df-ltr 11050 <R = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ R ∧ 𝑦 ∈ R) ∧ βˆƒπ‘§βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’((π‘₯ = [βŸ¨π‘§, π‘€βŸ©] ~R ∧ 𝑦 = [βŸ¨π‘£, π‘’βŸ©] ~R ) ∧ (𝑧 +P 𝑒)<P (𝑀 +P 𝑣)))}
df-0r 110510R = [⟨1P, 1P⟩] ~R
df-1r 110521R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 11053-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 11104class β„‚
cr 11105class ℝ
cc0 11106class 0
c1 11107class 1
ci 11108class i
caddc 11109class +
cltrr 11110class <ℝ
cmul 11111class Β·
df-c 11112β„‚ = (R Γ— R)
df-0 111130 = ⟨0R, 0R⟩
df-1 111141 = ⟨1R, 0R⟩
df-i 11115i = ⟨0R, 1R⟩
df-r 11116ℝ = (R Γ— {0R})
df-add 11117 + = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = βŸ¨π‘€, π‘£βŸ© ∧ 𝑦 = βŸ¨π‘’, π‘“βŸ©) ∧ 𝑧 = ⟨(𝑀 +R 𝑒), (𝑣 +R 𝑓)⟩))}
df-mul 11118 Β· = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = βŸ¨π‘€, π‘£βŸ© ∧ 𝑦 = βŸ¨π‘’, π‘“βŸ©) ∧ 𝑧 = ⟨((𝑀 Β·R 𝑒) +R (-1R Β·R (𝑣 Β·R 𝑓))), ((𝑣 Β·R 𝑒) +R (𝑀 Β·R 𝑓))⟩))}
df-lt 11119 <ℝ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ βˆƒπ‘§βˆƒπ‘€((π‘₯ = βŸ¨π‘§, 0R⟩ ∧ 𝑦 = βŸ¨π‘€, 0R⟩) ∧ 𝑧 <R 𝑀))}
ax-cnex 11162β„‚ ∈ V
ax-resscn 11163ℝ βŠ† β„‚
ax-1cn 111641 ∈ β„‚
ax-icn 11165i ∈ β„‚
ax-addcl 11166((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) ∈ β„‚)
ax-addrcl 11167((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + 𝐡) ∈ ℝ)
ax-mulcl 11168((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
ax-mulrcl 11169((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 Β· 𝐡) ∈ ℝ)
ax-mulcom 11170((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
ax-addass 11171((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
ax-mulass 11172((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
ax-distr 11173((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
ax-i2m1 11174((i Β· i) + 1) = 0
ax-1ne0 111751 β‰  0
ax-1rid 11176(𝐴 ∈ ℝ β†’ (𝐴 Β· 1) = 𝐴)
ax-rnegex 11177(𝐴 ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ (𝐴 + π‘₯) = 0)
ax-rrecex 11178((𝐴 ∈ ℝ ∧ 𝐴 β‰  0) β†’ βˆƒπ‘₯ ∈ ℝ (𝐴 Β· π‘₯) = 1)
ax-cnre 11179(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘¦ ∈ ℝ 𝐴 = (π‘₯ + (i Β· 𝑦)))
ax-pre-lttri 11180((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 ↔ Β¬ (𝐴 = 𝐡 ∨ 𝐡 <ℝ 𝐴)))
ax-pre-lttrn 11181((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 <ℝ 𝐡 ∧ 𝐡 <ℝ 𝐢) β†’ 𝐴 <ℝ 𝐢))
ax-pre-ltadd 11182((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐢 + 𝐴) <ℝ (𝐢 + 𝐡)))
ax-pre-mulgt0 11183((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐡) β†’ 0 <ℝ (𝐴 Β· 𝐡)))
ax-pre-sup 11184((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
ax-addf 11185 + :(β„‚ Γ— β„‚)βŸΆβ„‚
ax-mulf 11186 Β· :(β„‚ Γ— β„‚)βŸΆβ„‚
cpnf 11242class +∞
cmnf 11243class -∞
cxr 11244class ℝ*
clt 11245class <
cle 11246class ≀
df-pnf 11247+∞ = 𝒫 βˆͺ β„‚
df-mnf 11248-∞ = 𝒫 +∞
df-xr 11249ℝ* = (ℝ βˆͺ {+∞, -∞})
df-ltxr 11250 < = ({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ π‘₯ <ℝ 𝑦)} βˆͺ (((ℝ βˆͺ {-∞}) Γ— {+∞}) βˆͺ ({-∞} Γ— ℝ)))
df-le 11251 ≀ = ((ℝ* Γ— ℝ*) βˆ– β—‘ < )
cmin 11441class βˆ’
cneg 11442class -𝐴
df-sub 11443 βˆ’ = (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (℩𝑧 ∈ β„‚ (𝑦 + 𝑧) = π‘₯))
df-neg 11444-𝐴 = (0 βˆ’ 𝐴)
cdiv 11868class /
df-div 11869 / = (π‘₯ ∈ β„‚, 𝑦 ∈ (β„‚ βˆ– {0}) ↦ (℩𝑧 ∈ β„‚ (𝑦 Β· 𝑧) = π‘₯))
cn 12209class β„•
df-nn 12210β„• = (rec((π‘₯ ∈ V ↦ (π‘₯ + 1)), 1) β€œ Ο‰)
c2 12264class 2
c3 12265class 3
c4 12266class 4
c5 12267class 5
c6 12268class 6
c7 12269class 7
c8 12270class 8
c9 12271class 9
df-2 122722 = (1 + 1)
df-3 122733 = (2 + 1)
df-4 122744 = (3 + 1)
df-5 122755 = (4 + 1)
df-6 122766 = (5 + 1)
df-7 122777 = (6 + 1)
df-8 122788 = (7 + 1)
df-9 122799 = (8 + 1)
cn0 12469class β„•0
df-n0 12470β„•0 = (β„• βˆͺ {0})
cxnn0 12541class β„•0*
df-xnn0 12542β„•0* = (β„•0 βˆͺ {+∞})
cz 12555class β„€
df-z 12556β„€ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ β„• ∨ -𝑛 ∈ β„•)}
cdc 12674class 𝐴𝐡
df-dec 12675𝐴𝐡 = (((9 + 1) Β· 𝐴) + 𝐡)
cuz 12819class β„€β‰₯
df-uz 12820β„€β‰₯ = (𝑗 ∈ β„€ ↦ {π‘˜ ∈ β„€ ∣ 𝑗 ≀ π‘˜})
cq 12929class β„š
df-q 12930β„š = ( / β€œ (β„€ Γ— β„•))
crp 12971class ℝ+
df-rp 12972ℝ+ = {π‘₯ ∈ ℝ ∣ 0 < π‘₯}
cxne 13086class -𝑒𝐴
cxad 13087class +𝑒
cxmu 13088class Β·e
df-xneg 13089-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 13090 +𝑒 = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(π‘₯ = +∞, if(𝑦 = -∞, 0, +∞), if(π‘₯ = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (π‘₯ + 𝑦))))))
df-xmul 13091 Β·e = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((π‘₯ = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ π‘₯ = +∞) ∨ (𝑦 < 0 ∧ π‘₯ = -∞)) ∨ ((0 < π‘₯ ∧ 𝑦 = +∞) ∨ (π‘₯ < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ π‘₯ = -∞) ∨ (𝑦 < 0 ∧ π‘₯ = +∞)) ∨ ((0 < π‘₯ ∧ 𝑦 = -∞) ∨ (π‘₯ < 0 ∧ 𝑦 = +∞))), -∞, (π‘₯ Β· 𝑦)))))
cioo 13321class (,)
cioc 13322class (,]
cico 13323class [,)
cicc 13324class [,]
df-ioo 13325(,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ < 𝑧 ∧ 𝑧 < 𝑦)})
df-ioc 13326(,] = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ < 𝑧 ∧ 𝑧 ≀ 𝑦)})
df-ico 13327[,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 < 𝑦)})
df-icc 13328[,] = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 ≀ 𝑦)})
cfz 13481class ...
df-fz 13482... = (π‘š ∈ β„€, 𝑛 ∈ β„€ ↦ {π‘˜ ∈ β„€ ∣ (π‘š ≀ π‘˜ ∧ π‘˜ ≀ 𝑛)})
cfzo 13624class ..^
df-fzo 13625..^ = (π‘š ∈ β„€, 𝑛 ∈ β„€ ↦ (π‘š...(𝑛 βˆ’ 1)))
cfl 13752class ⌊
cceil 13753class ⌈
df-fl 13754⌊ = (π‘₯ ∈ ℝ ↦ (℩𝑦 ∈ β„€ (𝑦 ≀ π‘₯ ∧ π‘₯ < (𝑦 + 1))))
df-ceil 13755⌈ = (π‘₯ ∈ ℝ ↦ -(βŒŠβ€˜-π‘₯))
cmo 13831class mod
df-mod 13832 mod = (π‘₯ ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (π‘₯ βˆ’ (𝑦 Β· (βŒŠβ€˜(π‘₯ / 𝑦)))))
cseq 13963class seq𝑀( + , 𝐹)
df-seq 13964seq𝑀( + , 𝐹) = (rec((π‘₯ ∈ V, 𝑦 ∈ V ↦ ⟨(π‘₯ + 1), (𝑦 + (πΉβ€˜(π‘₯ + 1)))⟩), βŸ¨π‘€, (πΉβ€˜π‘€)⟩) β€œ Ο‰)
cexp 14024class ↑
df-exp 14025↑ = (π‘₯ ∈ β„‚, 𝑦 ∈ β„€ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( Β· , (β„• Γ— {π‘₯}))β€˜π‘¦), (1 / (seq1( Β· , (β„• Γ— {π‘₯}))β€˜-𝑦)))))
cfa 14230class !
df-fac 14231! = ({⟨0, 1⟩} βˆͺ seq1( Β· , I ))
cbc 14259class C
df-bc 14260C = (𝑛 ∈ β„•0, π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ (0...𝑛), ((!β€˜π‘›) / ((!β€˜(𝑛 βˆ’ π‘˜)) Β· (!β€˜π‘˜))), 0))
chash 14287class β™―
df-hash 14288β™― = (((rec((π‘₯ ∈ V ↦ (π‘₯ + 1)), 0) β†Ύ Ο‰) ∘ card) βˆͺ ((V βˆ– Fin) Γ— {+∞}))
cword 14461class Word 𝑆
df-word 14462Word 𝑆 = {𝑀 ∣ βˆƒπ‘™ ∈ β„•0 𝑀:(0..^𝑙)βŸΆπ‘†}
clsw 14509class lastS
df-lsw 14510lastS = (𝑀 ∈ V ↦ (π‘€β€˜((β™―β€˜π‘€) βˆ’ 1)))
cconcat 14517class ++
df-concat 14518 ++ = (𝑠 ∈ V, 𝑑 ∈ V ↦ (π‘₯ ∈ (0..^((β™―β€˜π‘ ) + (β™―β€˜π‘‘))) ↦ if(π‘₯ ∈ (0..^(β™―β€˜π‘ )), (π‘ β€˜π‘₯), (π‘‘β€˜(π‘₯ βˆ’ (β™―β€˜π‘ ))))))
cs1 14542class βŸ¨β€œπ΄β€βŸ©
df-s1 14543βŸ¨β€œπ΄β€βŸ© = {⟨0, ( I β€˜π΄)⟩}
csubstr 14587class substr
df-substr 14588 substr = (𝑠 ∈ V, 𝑏 ∈ (β„€ Γ— β„€) ↦ if(((1st β€˜π‘)..^(2nd β€˜π‘)) βŠ† dom 𝑠, (π‘₯ ∈ (0..^((2nd β€˜π‘) βˆ’ (1st β€˜π‘))) ↦ (π‘ β€˜(π‘₯ + (1st β€˜π‘)))), βˆ…))
cpfx 14617class prefix
df-pfx 14618 prefix = (𝑠 ∈ V, 𝑙 ∈ β„•0 ↦ (𝑠 substr ⟨0, π‘™βŸ©))
csplice 14696class splice
df-splice 14697 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st β€˜(1st β€˜π‘))) ++ (2nd β€˜π‘)) ++ (𝑠 substr ⟨(2nd β€˜(1st β€˜π‘)), (β™―β€˜π‘ )⟩)))
creverse 14705class reverse
df-reverse 14706reverse = (𝑠 ∈ V ↦ (π‘₯ ∈ (0..^(β™―β€˜π‘ )) ↦ (π‘ β€˜(((β™―β€˜π‘ ) βˆ’ 1) βˆ’ π‘₯))))
creps 14715class repeatS
df-reps 14716 repeatS = (𝑠 ∈ V, 𝑛 ∈ β„•0 ↦ (π‘₯ ∈ (0..^𝑛) ↦ 𝑠))
ccsh 14735class cyclShift
df-csh 14736 cyclShift = (𝑀 ∈ {𝑓 ∣ βˆƒπ‘™ ∈ β„•0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ β„€ ↦ if(𝑀 = βˆ…, βˆ…, ((𝑀 substr ⟨(𝑛 mod (β™―β€˜π‘€)), (β™―β€˜π‘€)⟩) ++ (𝑀 prefix (𝑛 mod (β™―β€˜π‘€))))))
cs2 14789class βŸ¨β€œπ΄π΅β€βŸ©
cs3 14790class βŸ¨β€œπ΄π΅πΆβ€βŸ©
cs4 14791class βŸ¨β€œπ΄π΅πΆπ·β€βŸ©
cs5 14792class βŸ¨β€œπ΄π΅πΆπ·πΈβ€βŸ©
cs6 14793class βŸ¨β€œπ΄π΅πΆπ·πΈπΉβ€βŸ©
cs7 14794class βŸ¨β€œπ΄π΅πΆπ·πΈπΉπΊβ€βŸ©
cs8 14795class βŸ¨β€œπ΄π΅πΆπ·πΈπΉπΊπ»β€βŸ©
df-s2 14796βŸ¨β€œπ΄π΅β€βŸ© = (βŸ¨β€œπ΄β€βŸ© ++ βŸ¨β€œπ΅β€βŸ©)
df-s3 14797βŸ¨β€œπ΄π΅πΆβ€βŸ© = (βŸ¨β€œπ΄π΅β€βŸ© ++ βŸ¨β€œπΆβ€βŸ©)
df-s4 14798βŸ¨β€œπ΄π΅πΆπ·β€βŸ© = (βŸ¨β€œπ΄π΅πΆβ€βŸ© ++ βŸ¨β€œπ·β€βŸ©)
df-s5 14799βŸ¨β€œπ΄π΅πΆπ·πΈβ€βŸ© = (βŸ¨β€œπ΄π΅πΆπ·β€βŸ© ++ βŸ¨β€œπΈβ€βŸ©)
df-s6 14800βŸ¨β€œπ΄π΅πΆπ·πΈπΉβ€βŸ© = (βŸ¨β€œπ΄π΅πΆπ·πΈβ€βŸ© ++ βŸ¨β€œπΉβ€βŸ©)
df-s7 14801βŸ¨β€œπ΄π΅πΆπ·πΈπΉπΊβ€βŸ© = (βŸ¨β€œπ΄π΅πΆπ·πΈπΉβ€βŸ© ++ βŸ¨β€œπΊβ€βŸ©)
df-s8 14802βŸ¨β€œπ΄π΅πΆπ·πΈπΉπΊπ»β€βŸ© = (βŸ¨β€œπ΄π΅πΆπ·πΈπΉπΊβ€βŸ© ++ βŸ¨β€œπ»β€βŸ©)
ctcl 14929class t+
crtcl 14930class t*
df-trcl 14931t+ = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
df-rtrcl 14932t* = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (( I β†Ύ (dom π‘₯ βˆͺ ran π‘₯)) βŠ† 𝑧 ∧ π‘₯ βŠ† 𝑧 ∧ (𝑧 ∘ 𝑧) βŠ† 𝑧)})
crelexp 14963class β†‘π‘Ÿ
df-relexp 14964β†‘π‘Ÿ = (π‘Ÿ ∈ V, 𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( I β†Ύ (dom π‘Ÿ βˆͺ ran π‘Ÿ)), (seq1((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ∘ π‘Ÿ)), (𝑧 ∈ V ↦ π‘Ÿ))β€˜π‘›)))
crtrcl 14999class t*rec
df-rtrclrec 15000t*rec = (π‘Ÿ ∈ V ↦ βˆͺ 𝑛 ∈ β„•0 (π‘Ÿβ†‘π‘Ÿπ‘›))
cshi 15010class shift
df-shft 15011 shift = (𝑓 ∈ V, π‘₯ ∈ β„‚ ↦ {βŸ¨π‘¦, π‘§βŸ© ∣ (𝑦 ∈ β„‚ ∧ (𝑦 βˆ’ π‘₯)𝑓𝑧)})
csgn 15030class sgn
df-sgn 15031sgn = (π‘₯ ∈ ℝ* ↦ if(π‘₯ = 0, 0, if(π‘₯ < 0, -1, 1)))
ccj 15040class βˆ—
cre 15041class β„œ
cim 15042class β„‘
df-cj 15043βˆ— = (π‘₯ ∈ β„‚ ↦ (℩𝑦 ∈ β„‚ ((π‘₯ + 𝑦) ∈ ℝ ∧ (i Β· (π‘₯ βˆ’ 𝑦)) ∈ ℝ)))
df-re 15044β„œ = (π‘₯ ∈ β„‚ ↦ ((π‘₯ + (βˆ—β€˜π‘₯)) / 2))
df-im 15045β„‘ = (π‘₯ ∈ β„‚ ↦ (β„œβ€˜(π‘₯ / i)))
csqrt 15177class √
cabs 15178class abs
df-sqrt 15179√ = (π‘₯ ∈ β„‚ ↦ (℩𝑦 ∈ β„‚ ((𝑦↑2) = π‘₯ ∧ 0 ≀ (β„œβ€˜π‘¦) ∧ (i Β· 𝑦) βˆ‰ ℝ+)))
df-abs 15180abs = (π‘₯ ∈ β„‚ ↦ (βˆšβ€˜(π‘₯ Β· (βˆ—β€˜π‘₯))))
clsp 15411class lim sup
df-limsup 15412lim sup = (π‘₯ ∈ V ↦ inf(ran (π‘˜ ∈ ℝ ↦ sup(((π‘₯ β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
cli 15425class ⇝
crli 15426class β‡π‘Ÿ
co1 15427class 𝑂(1)
clo1 15428class ≀𝑂(1)
df-clim 15429 ⇝ = {βŸ¨π‘“, π‘¦βŸ© ∣ (𝑦 ∈ β„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((π‘“β€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((π‘“β€˜π‘˜) βˆ’ 𝑦)) < π‘₯))}
df-rlim 15430 β‡π‘Ÿ = {βŸ¨π‘“, π‘₯⟩ ∣ ((𝑓 ∈ (β„‚ ↑pm ℝ) ∧ π‘₯ ∈ β„‚) ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ βˆ€π‘€ ∈ dom 𝑓(𝑧 ≀ 𝑀 β†’ (absβ€˜((π‘“β€˜π‘€) βˆ’ π‘₯)) < 𝑦))}
df-o1 15431𝑂(1) = {𝑓 ∈ (β„‚ ↑pm ℝ) ∣ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘š ∈ ℝ βˆ€π‘¦ ∈ (dom 𝑓 ∩ (π‘₯[,)+∞))(absβ€˜(π‘“β€˜π‘¦)) ≀ π‘š}
df-lo1 15432≀𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘š ∈ ℝ βˆ€π‘¦ ∈ (dom 𝑓 ∩ (π‘₯[,)+∞))(π‘“β€˜π‘¦) ≀ π‘š}
csu 15629class Ξ£π‘˜ ∈ 𝐴 𝐡
df-sum 15630Ξ£π‘˜ ∈ 𝐴 𝐡 = (β„©π‘₯(βˆƒπ‘š ∈ β„€ (𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ seqπ‘š( + , (𝑛 ∈ β„€ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / π‘˜β¦Œπ΅, 0))) ⇝ π‘₯) ∨ βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ π‘₯ = (seq1( + , (𝑛 ∈ β„• ↦ ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅))β€˜π‘š))))
cprod 15846class βˆπ‘˜ ∈ 𝐴 𝐡
df-prod 15847βˆπ‘˜ ∈ 𝐴 𝐡 = (β„©π‘₯(βˆƒπ‘š ∈ β„€ (𝐴 βŠ† (β„€β‰₯β€˜π‘š) ∧ βˆƒπ‘› ∈ (β„€β‰₯β€˜π‘š)βˆƒπ‘¦(𝑦 β‰  0 ∧ seq𝑛( Β· , (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 1))) ⇝ 𝑦) ∧ seqπ‘š( Β· , (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 1))) ⇝ π‘₯) ∨ βˆƒπ‘š ∈ β„• βˆƒπ‘“(𝑓:(1...π‘š)–1-1-onto→𝐴 ∧ π‘₯ = (seq1( Β· , (𝑛 ∈ β„• ↦ ⦋(π‘“β€˜π‘›) / π‘˜β¦Œπ΅))β€˜π‘š))))
cfallfac 15945class FallFac
crisefac 15946class RiseFac
df-risefac 15947 RiseFac = (π‘₯ ∈ β„‚, 𝑛 ∈ β„•0 ↦ βˆπ‘˜ ∈ (0...(𝑛 βˆ’ 1))(π‘₯ + π‘˜))
df-fallfac 15948 FallFac = (π‘₯ ∈ β„‚, 𝑛 ∈ β„•0 ↦ βˆπ‘˜ ∈ (0...(𝑛 βˆ’ 1))(π‘₯ βˆ’ π‘˜))
cbp 15987class BernPoly
df-bpoly 15988 BernPoly = (π‘š ∈ β„•0, π‘₯ ∈ β„‚ ↦ (wrecs( < , β„•0, (𝑔 ∈ V ↦ ⦋(β™―β€˜dom 𝑔) / π‘›β¦Œ((π‘₯↑𝑛) βˆ’ Ξ£π‘˜ ∈ dom 𝑔((𝑛Cπ‘˜) Β· ((π‘”β€˜π‘˜) / ((𝑛 βˆ’ π‘˜) + 1))))))β€˜π‘š))
ce 16002class exp
ceu 16003class e
csin 16004class sin
ccos 16005class cos
ctan 16006class tan
cpi 16007class Ο€
df-ef 16008exp = (π‘₯ ∈ β„‚ ↦ Ξ£π‘˜ ∈ β„•0 ((π‘₯β†‘π‘˜) / (!β€˜π‘˜)))
df-e 16009e = (expβ€˜1)
df-sin 16010sin = (π‘₯ ∈ β„‚ ↦ (((expβ€˜(i Β· π‘₯)) βˆ’ (expβ€˜(-i Β· π‘₯))) / (2 Β· i)))
df-cos 16011cos = (π‘₯ ∈ β„‚ ↦ (((expβ€˜(i Β· π‘₯)) + (expβ€˜(-i Β· π‘₯))) / 2))
df-tan 16012tan = (π‘₯ ∈ (β—‘cos β€œ (β„‚ βˆ– {0})) ↦ ((sinβ€˜π‘₯) / (cosβ€˜π‘₯)))
df-pi 16013Ο€ = inf((ℝ+ ∩ (β—‘sin β€œ {0})), ℝ, < )
ctau 16142class Ο„
df-tau 16143Ο„ = inf((ℝ+ ∩ (β—‘cos β€œ {1})), ℝ, < )
cdvds 16194class βˆ₯
df-dvds 16195 βˆ₯ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) ∧ βˆƒπ‘› ∈ β„€ (𝑛 Β· π‘₯) = 𝑦)}
cbits 16357class bits
csad 16358class sadd
csmu 16359class smul
df-bits 16360bits = (𝑛 ∈ β„€ ↦ {π‘š ∈ β„•0 ∣ Β¬ 2 βˆ₯ (βŒŠβ€˜(𝑛 / (2β†‘π‘š)))})
df-sad 16389 sadd = (π‘₯ ∈ 𝒫 β„•0, 𝑦 ∈ 𝒫 β„•0 ↦ {π‘˜ ∈ β„•0 ∣ hadd(π‘˜ ∈ π‘₯, π‘˜ ∈ 𝑦, βˆ… ∈ (seq0((𝑐 ∈ 2o, π‘š ∈ β„•0 ↦ if(cadd(π‘š ∈ π‘₯, π‘š ∈ 𝑦, βˆ… ∈ 𝑐), 1o, βˆ…)), (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1))))β€˜π‘˜))})
df-smu 16414 smul = (π‘₯ ∈ 𝒫 β„•0, 𝑦 ∈ 𝒫 β„•0 ↦ {π‘˜ ∈ β„•0 ∣ π‘˜ ∈ (seq0((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ π‘₯ ∧ (𝑛 βˆ’ π‘š) ∈ 𝑦)})), (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1))))β€˜(π‘˜ + 1))})
cgcd 16432class gcd
df-gcd 16433 gcd = (π‘₯ ∈ β„€, 𝑦 ∈ β„€ ↦ if((π‘₯ = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ β„€ ∣ (𝑛 βˆ₯ π‘₯ ∧ 𝑛 βˆ₯ 𝑦)}, ℝ, < )))
clcm 16522class lcm
clcmf 16523class lcm
df-lcm 16524 lcm = (π‘₯ ∈ β„€, 𝑦 ∈ β„€ ↦ if((π‘₯ = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ β„• ∣ (π‘₯ βˆ₯ 𝑛 ∧ 𝑦 βˆ₯ 𝑛)}, ℝ, < )))
df-lcmf 16525lcm = (𝑧 ∈ 𝒫 β„€ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ β„• ∣ βˆ€π‘š ∈ 𝑧 π‘š βˆ₯ 𝑛}, ℝ, < )))
cprime 16605class β„™
df-prm 16606β„™ = {𝑝 ∈ β„• ∣ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑝} β‰ˆ 2o}
cnumer 16668class numer
cdenom 16669class denom
df-numer 16670numer = (𝑦 ∈ β„š ↦ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝑦 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
df-denom 16671denom = (𝑦 ∈ β„š ↦ (2nd β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝑦 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
codz 16695class odβ„€
cphi 16696class Ο•
df-odz 16697odβ„€ = (𝑛 ∈ β„• ↦ (π‘₯ ∈ {π‘₯ ∈ β„€ ∣ (π‘₯ gcd 𝑛) = 1} ↦ inf({π‘š ∈ β„• ∣ 𝑛 βˆ₯ ((π‘₯β†‘π‘š) βˆ’ 1)}, ℝ, < )))
df-phi 16698Ο• = (𝑛 ∈ β„• ↦ (β™―β€˜{π‘₯ ∈ (1...𝑛) ∣ (π‘₯ gcd 𝑛) = 1}))
cpc 16768class pCnt
df-pc 16769 pCnt = (𝑝 ∈ β„™, π‘Ÿ ∈ β„š ↦ if(π‘Ÿ = 0, +∞, (β„©π‘§βˆƒπ‘₯ ∈ β„€ βˆƒπ‘¦ ∈ β„• (π‘Ÿ = (π‘₯ / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ β„•0 ∣ (𝑝↑𝑛) βˆ₯ π‘₯}, ℝ, < ) βˆ’ sup({𝑛 ∈ β„•0 ∣ (𝑝↑𝑛) βˆ₯ 𝑦}, ℝ, < ))))))
cgz 16861class β„€[i]
df-gz 16862β„€[i] = {π‘₯ ∈ β„‚ ∣ ((β„œβ€˜π‘₯) ∈ β„€ ∧ (β„‘β€˜π‘₯) ∈ β„€)}
cvdwa 16897class AP
cvdwm 16898class MonoAP
cvdwp 16899class PolyAP
df-vdwap 16900AP = (π‘˜ ∈ β„•0 ↦ (π‘Ž ∈ β„•, 𝑑 ∈ β„• ↦ ran (π‘š ∈ (0...(π‘˜ βˆ’ 1)) ↦ (π‘Ž + (π‘š Β· 𝑑)))))
df-vdwmc 16901 MonoAP = {βŸ¨π‘˜, π‘“βŸ© ∣ βˆƒπ‘(ran (APβ€˜π‘˜) ∩ 𝒫 (◑𝑓 β€œ {𝑐})) β‰  βˆ…}
df-vdwpc 16902 PolyAP = {βŸ¨βŸ¨π‘š, π‘˜βŸ©, π‘“βŸ© ∣ βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ (β„• ↑m (1...π‘š))(βˆ€π‘– ∈ (1...π‘š)((π‘Ž + (π‘‘β€˜π‘–))(APβ€˜π‘˜)(π‘‘β€˜π‘–)) βŠ† (◑𝑓 β€œ {(π‘“β€˜(π‘Ž + (π‘‘β€˜π‘–)))}) ∧ (β™―β€˜ran (𝑖 ∈ (1...π‘š) ↦ (π‘“β€˜(π‘Ž + (π‘‘β€˜π‘–))))) = π‘š)}
cram 16931class Ramsey
df-ram 16933 Ramsey = (π‘š ∈ β„•0, π‘Ÿ ∈ V ↦ inf({𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (dom π‘Ÿ ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (β™―β€˜π‘¦) = π‘š})βˆƒπ‘ ∈ dom π‘Ÿβˆƒπ‘₯ ∈ 𝒫 𝑠((π‘Ÿβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ βˆ€π‘¦ ∈ 𝒫 π‘₯((β™―β€˜π‘¦) = π‘š β†’ (π‘“β€˜π‘¦) = 𝑐)))}, ℝ*, < ))
cprmo 16963class #p
df-prmo 16964#p = (𝑛 ∈ β„•0 ↦ βˆπ‘˜ ∈ (1...𝑛)if(π‘˜ ∈ β„™, π‘˜, 1))
cstr 17078class Struct
df-struct 17079 Struct = {βŸ¨π‘“, π‘₯⟩ ∣ (π‘₯ ∈ ( ≀ ∩ (β„• Γ— β„•)) ∧ Fun (𝑓 βˆ– {βˆ…}) ∧ dom 𝑓 βŠ† (...β€˜π‘₯))}
csts 17095class sSet
df-sets 17096 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 β†Ύ (V βˆ– dom {𝑒})) βˆͺ {𝑒}))
cslot 17113class Slot 𝐴
df-slot 17114Slot 𝐴 = (π‘₯ ∈ V ↦ (π‘₯β€˜π΄))
cnx 17125class ndx
df-ndx 17126ndx = ( I β†Ύ β„•)
cbs 17143class Base
df-base 17144Base = Slot 1
cress 17172class β†Ύs
df-ress 17173 β†Ύs = (𝑀 ∈ V, π‘₯ ∈ V ↦ if((Baseβ€˜π‘€) βŠ† π‘₯, 𝑀, (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩)))
cplusg 17196class +g
cmulr 17197class .r
cstv 17198class *π‘Ÿ
csca 17199class Scalar
cvsca 17200class ·𝑠
cip 17201class ·𝑖
cts 17202class TopSet
cple 17203class le
coc 17204class oc
cds 17205class dist
cunif 17206class UnifSet
chom 17207class Hom
cco 17208class comp
df-plusg 17209+g = Slot 2
df-mulr 17210.r = Slot 3
df-starv 17211*π‘Ÿ = Slot 4
df-sca 17212Scalar = Slot 5
df-vsca 17213 ·𝑠 = Slot 6
df-ip 17214·𝑖 = Slot 8
df-tset 17215TopSet = Slot 9
df-ple 17216le = Slot 10
df-ocomp 17217oc = Slot 11
df-ds 17218dist = Slot 12
df-unif 17219UnifSet = Slot 13
df-hom 17220Hom = Slot 14
df-cco 17221comp = Slot 15
crest 17365class β†Ύt
ctopn 17366class TopOpen
df-rest 17367 β†Ύt = (𝑗 ∈ V, π‘₯ ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ π‘₯)))
df-topn 17368TopOpen = (𝑀 ∈ V ↦ ((TopSetβ€˜π‘€) β†Ύt (Baseβ€˜π‘€)))
ctg 17382class topGen
cpt 17383class ∏t
c0g 17384class 0g
cgsu 17385class Ξ£g
df-0g 173860g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Baseβ€˜π‘”) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘”)((𝑒(+gβ€˜π‘”)π‘₯) = π‘₯ ∧ (π‘₯(+gβ€˜π‘”)𝑒) = π‘₯))))
df-gsum 17387 Ξ£g = (𝑀 ∈ V, 𝑓 ∈ V ↦ ⦋{π‘₯ ∈ (Baseβ€˜π‘€) ∣ βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((π‘₯(+gβ€˜π‘€)𝑦) = 𝑦 ∧ (𝑦(+gβ€˜π‘€)π‘₯) = 𝑦)} / π‘œβ¦Œif(ran 𝑓 βŠ† π‘œ, (0gβ€˜π‘€), if(dom 𝑓 ∈ ran ..., (β„©π‘₯βˆƒπ‘šβˆƒπ‘› ∈ (β„€β‰₯β€˜π‘š)(dom 𝑓 = (π‘š...𝑛) ∧ π‘₯ = (seqπ‘š((+gβ€˜π‘€), 𝑓)β€˜π‘›))), (β„©π‘₯βˆƒπ‘”[(◑𝑓 β€œ (V βˆ– π‘œ)) / 𝑦](𝑔:(1...(β™―β€˜π‘¦))–1-1-onto→𝑦 ∧ π‘₯ = (seq1((+gβ€˜π‘€), (𝑓 ∘ 𝑔))β€˜(β™―β€˜π‘¦)))))))
df-topgen 17388topGen = (π‘₯ ∈ V ↦ {𝑦 ∣ 𝑦 βŠ† βˆͺ (π‘₯ ∩ 𝒫 𝑦)})
df-pt 17389∏t = (𝑓 ∈ V ↦ (topGenβ€˜{π‘₯ ∣ βˆƒπ‘”((𝑔 Fn dom 𝑓 ∧ βˆ€π‘¦ ∈ dom 𝑓(π‘”β€˜π‘¦) ∈ (π‘“β€˜π‘¦) ∧ βˆƒπ‘§ ∈ Fin βˆ€π‘¦ ∈ (dom 𝑓 βˆ– 𝑧)(π‘”β€˜π‘¦) = βˆͺ (π‘“β€˜π‘¦)) ∧ π‘₯ = X𝑦 ∈ dom 𝑓(π‘”β€˜π‘¦))}))
cprds 17390class Xs
cpws 17391class ↑s
df-prds 17392Xs = (𝑠 ∈ V, π‘Ÿ ∈ V ↦ ⦋Xπ‘₯ ∈ dom π‘Ÿ(Baseβ€˜(π‘Ÿβ€˜π‘₯)) / π‘£β¦Œβ¦‹(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) / β„Žβ¦Œ(({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘ βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘ ), 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ (𝑓( ·𝑠 β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Ξ£g (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ π‘Ÿ))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ dom π‘Ÿ(π‘“β€˜π‘₯)(leβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), β„ŽβŸ©, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝑣 Γ— 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)β„Žπ‘), 𝑒 ∈ (β„Žβ€˜π‘Ž) ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘Ÿβ€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
df-pws 17394 ↑s = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ ((Scalarβ€˜π‘Ÿ)Xs(𝑖 Γ— {π‘Ÿ})))
cordt 17444class ordTop
cxrs 17445class ℝ*𝑠
df-ordt 17446ordTop = (π‘Ÿ ∈ V ↦ (topGenβ€˜(fiβ€˜({dom π‘Ÿ} βˆͺ ran ((π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘¦π‘Ÿπ‘₯}) βˆͺ (π‘₯ ∈ dom π‘Ÿ ↦ {𝑦 ∈ dom π‘Ÿ ∣ Β¬ π‘₯π‘Ÿπ‘¦}))))))
df-xrs 17447ℝ*𝑠 = ({⟨(Baseβ€˜ndx), ℝ*⟩, ⟨(+gβ€˜ndx), +𝑒 ⟩, ⟨(.rβ€˜ndx), Β·e ⟩} βˆͺ {⟨(TopSetβ€˜ndx), (ordTopβ€˜ ≀ )⟩, ⟨(leβ€˜ndx), ≀ ⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(π‘₯ ≀ 𝑦, (𝑦 +𝑒 -𝑒π‘₯), (π‘₯ +𝑒 -𝑒𝑦)))⟩})
cqtop 17448class qTop
cimas 17449class β€œs
cqus 17450class /s
cxps 17451class Γ—s
df-qtop 17452 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 β€œ βˆͺ 𝑗) ∣ ((◑𝑓 β€œ 𝑠) ∩ βˆͺ 𝑗) ∈ 𝑗})
df-imas 17453 β€œs = (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ(({⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘Ÿ)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑣 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘Ÿ)), π‘₯ ∈ {(π‘“β€˜π‘ž)} ↦ (π‘“β€˜(𝑝( ·𝑠 β€˜π‘Ÿ)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘Ÿ)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘Ÿ) qTop 𝑓)⟩, ⟨(leβ€˜ndx), ((𝑓 ∘ (leβ€˜π‘Ÿ)) ∘ ◑𝑓)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑣 Γ— 𝑣) ↑m (1...𝑛)) ∣ ((π‘“β€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (π‘“β€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(π‘“β€˜(2nd β€˜(β„Žβ€˜π‘–))) = (π‘“β€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘Ÿ) ∘ 𝑔))), ℝ*, < ))⟩}))
df-qus 17454 /s = (π‘Ÿ ∈ V, 𝑒 ∈ V ↦ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ [π‘₯]𝑒) β€œs π‘Ÿ))
df-xps 17455 Γ—s = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (β—‘(π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘Ÿ)Xs{βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©})))
cmre 17525class Moore
cmrc 17526class mrCls
cmri 17527class mrInd
cacs 17528class ACS
df-mre 17529Moore = (π‘₯ ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 π‘₯ ∣ (π‘₯ ∈ 𝑐 ∧ βˆ€π‘  ∈ 𝒫 𝑐(𝑠 β‰  βˆ… β†’ ∩ 𝑠 ∈ 𝑐))})
df-mrc 17530mrCls = (𝑐 ∈ βˆͺ ran Moore ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}))
df-mri 17531mrInd = (𝑐 ∈ βˆͺ ran Moore ↦ {𝑠 ∈ 𝒫 βˆͺ 𝑐 ∣ βˆ€π‘₯ ∈ 𝑠 Β¬ π‘₯ ∈ ((mrClsβ€˜π‘)β€˜(𝑠 βˆ– {π‘₯}))})
df-acs 17532ACS = (π‘₯ ∈ V ↦ {𝑐 ∈ (Mooreβ€˜π‘₯) ∣ βˆƒπ‘“(𝑓:𝒫 π‘₯βŸΆπ’« π‘₯ ∧ βˆ€π‘  ∈ 𝒫 π‘₯(𝑠 ∈ 𝑐 ↔ βˆͺ (𝑓 β€œ (𝒫 𝑠 ∩ Fin)) βŠ† 𝑠))})
ccat 17607class Cat
ccid 17608class Id
chomf 17609class Homf
ccomf 17610class compf
df-cat 17611Cat = {𝑐 ∣ [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž][(compβ€˜π‘) / π‘œ]βˆ€π‘₯ ∈ 𝑏 (βˆƒπ‘” ∈ (π‘₯β„Žπ‘₯)βˆ€π‘¦ ∈ 𝑏 (βˆ€π‘“ ∈ (π‘¦β„Žπ‘₯)(𝑔(βŸ¨π‘¦, π‘₯βŸ©π‘œπ‘₯)𝑓) = 𝑓 ∧ βˆ€π‘“ ∈ (π‘₯β„Žπ‘¦)(𝑓(⟨π‘₯, π‘₯βŸ©π‘œπ‘¦)𝑔) = 𝑓) ∧ βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘“ ∈ (π‘₯β„Žπ‘¦)βˆ€π‘” ∈ (π‘¦β„Žπ‘§)((𝑔(⟨π‘₯, π‘¦βŸ©π‘œπ‘§)𝑓) ∈ (π‘₯β„Žπ‘§) ∧ βˆ€π‘€ ∈ 𝑏 βˆ€π‘˜ ∈ (π‘§β„Žπ‘€)((π‘˜(βŸ¨π‘¦, π‘§βŸ©π‘œπ‘€)𝑔)(⟨π‘₯, π‘¦βŸ©π‘œπ‘€)𝑓) = (π‘˜(⟨π‘₯, π‘§βŸ©π‘œπ‘€)(𝑔(⟨π‘₯, π‘¦βŸ©π‘œπ‘§)𝑓))))}
df-cid 17612Id = (𝑐 ∈ Cat ↦ ⦋(Baseβ€˜π‘) / π‘β¦Œβ¦‹(Hom β€˜π‘) / β„Žβ¦Œβ¦‹(compβ€˜π‘) / π‘œβ¦Œ(π‘₯ ∈ 𝑏 ↦ (℩𝑔 ∈ (π‘₯β„Žπ‘₯)βˆ€π‘¦ ∈ 𝑏 (βˆ€π‘“ ∈ (π‘¦β„Žπ‘₯)(𝑔(βŸ¨π‘¦, π‘₯βŸ©π‘œπ‘₯)𝑓) = 𝑓 ∧ βˆ€π‘“ ∈ (π‘₯β„Žπ‘¦)(𝑓(⟨π‘₯, π‘₯βŸ©π‘œπ‘¦)𝑔) = 𝑓))))
df-homf 17613Homf = (𝑐 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘), 𝑦 ∈ (Baseβ€˜π‘) ↦ (π‘₯(Hom β€˜π‘)𝑦)))
df-comf 17614compf = (𝑐 ∈ V ↦ (π‘₯ ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑦 ∈ (Baseβ€˜π‘) ↦ (𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜π‘)𝑦), 𝑓 ∈ ((Hom β€˜π‘)β€˜π‘₯) ↦ (𝑔(π‘₯(compβ€˜π‘)𝑦)𝑓))))
coppc 17654class oppCat
df-oppc 17655oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))⟩))
cmon 17674class Mono
cepi 17675class Epi
df-mon 17676Mono = (𝑐 ∈ Cat ↦ ⦋(Baseβ€˜π‘) / π‘β¦Œβ¦‹(Hom β€˜π‘) / β„Žβ¦Œ(π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (π‘₯β„Žπ‘¦) ∣ βˆ€π‘§ ∈ 𝑏 Fun β—‘(𝑔 ∈ (π‘§β„Žπ‘₯) ↦ (𝑓(βŸ¨π‘§, π‘₯⟩(compβ€˜π‘)𝑦)𝑔))}))
df-epi 17677Epi = (𝑐 ∈ Cat ↦ tpos (Monoβ€˜(oppCatβ€˜π‘)))
csect 17690class Sect
cinv 17691class Inv
ciso 17692class Iso
df-sect 17693Sect = (𝑐 ∈ Cat ↦ (π‘₯ ∈ (Baseβ€˜π‘), 𝑦 ∈ (Baseβ€˜π‘) ↦ {βŸ¨π‘“, π‘”βŸ© ∣ [(Hom β€˜π‘) / β„Ž]((𝑓 ∈ (π‘₯β„Žπ‘¦) ∧ 𝑔 ∈ (π‘¦β„Žπ‘₯)) ∧ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)π‘₯)𝑓) = ((Idβ€˜π‘)β€˜π‘₯))}))
df-inv 17694Inv = (𝑐 ∈ Cat ↦ (π‘₯ ∈ (Baseβ€˜π‘), 𝑦 ∈ (Baseβ€˜π‘) ↦ ((π‘₯(Sectβ€˜π‘)𝑦) ∩ β—‘(𝑦(Sectβ€˜π‘)π‘₯))))
df-iso 17695Iso = (𝑐 ∈ Cat ↦ ((π‘₯ ∈ V ↦ dom π‘₯) ∘ (Invβ€˜π‘)))
ccic 17741class ≃𝑐
df-cic 17742 ≃𝑐 = (𝑐 ∈ Cat ↦ ((Isoβ€˜π‘) supp βˆ…))
cssc 17753class βŠ†cat
cresc 17754class β†Ύcat
csubc 17755class Subcat
df-ssc 17756 βŠ†cat = {βŸ¨β„Ž, π‘—βŸ© ∣ βˆƒπ‘‘(𝑗 Fn (𝑑 Γ— 𝑑) ∧ βˆƒπ‘  ∈ 𝒫 π‘‘β„Ž ∈ Xπ‘₯ ∈ (𝑠 Γ— 𝑠)𝒫 (π‘—β€˜π‘₯))}
df-resc 17757 β†Ύcat = (𝑐 ∈ V, β„Ž ∈ V ↦ ((𝑐 β†Ύs dom dom β„Ž) sSet ⟨(Hom β€˜ndx), β„ŽβŸ©))
df-subc 17758Subcat = (𝑐 ∈ Cat ↦ {β„Ž ∣ (β„Ž βŠ†cat (Homf β€˜π‘) ∧ [dom dom β„Ž / 𝑠]βˆ€π‘₯ ∈ 𝑠 (((Idβ€˜π‘)β€˜π‘₯) ∈ (π‘₯β„Žπ‘₯) ∧ βˆ€π‘¦ ∈ 𝑠 βˆ€π‘§ ∈ 𝑠 βˆ€π‘“ ∈ (π‘₯β„Žπ‘¦)βˆ€π‘” ∈ (π‘¦β„Žπ‘§)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘)𝑧)𝑓) ∈ (π‘₯β„Žπ‘§)))})
cfunc 17803class Func
cidfu 17804class idfunc
ccofu 17805class ∘func
cresf 17806class β†Ύf
df-func 17807 Func = (𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ {βŸ¨π‘“, π‘”βŸ© ∣ [(Baseβ€˜π‘‘) / 𝑏](𝑓:π‘βŸΆ(Baseβ€˜π‘’) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 Γ— 𝑏)(((π‘“β€˜(1st β€˜π‘§))(Hom β€˜π‘’)(π‘“β€˜(2nd β€˜π‘§))) ↑m ((Hom β€˜π‘‘)β€˜π‘§)) ∧ βˆ€π‘₯ ∈ 𝑏 (((π‘₯𝑔π‘₯)β€˜((Idβ€˜π‘‘)β€˜π‘₯)) = ((Idβ€˜π‘’)β€˜(π‘“β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 βˆ€π‘š ∈ (π‘₯(Hom β€˜π‘‘)𝑦)βˆ€π‘› ∈ (𝑦(Hom β€˜π‘‘)𝑧)((π‘₯𝑔𝑧)β€˜(𝑛(⟨π‘₯, π‘¦βŸ©(compβ€˜π‘‘)𝑧)π‘š)) = (((𝑦𝑔𝑧)β€˜π‘›)(⟨(π‘“β€˜π‘₯), (π‘“β€˜π‘¦)⟩(compβ€˜π‘’)(π‘“β€˜π‘§))((π‘₯𝑔𝑦)β€˜π‘š))))})
df-idfu 17808idfunc = (𝑑 ∈ Cat ↦ ⦋(Baseβ€˜π‘‘) / π‘β¦ŒβŸ¨( I β†Ύ 𝑏), (𝑧 ∈ (𝑏 Γ— 𝑏) ↦ ( I β†Ύ ((Hom β€˜π‘‘)β€˜π‘§)))⟩)
df-cofu 17809 ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st β€˜π‘”) ∘ (1st β€˜π‘“)), (π‘₯ ∈ dom dom (2nd β€˜π‘“), 𝑦 ∈ dom dom (2nd β€˜π‘“) ↦ ((((1st β€˜π‘“)β€˜π‘₯)(2nd β€˜π‘”)((1st β€˜π‘“)β€˜π‘¦)) ∘ (π‘₯(2nd β€˜π‘“)𝑦)))⟩)
df-resf 17810 β†Ύf = (𝑓 ∈ V, β„Ž ∈ V ↦ ⟨((1st β€˜π‘“) β†Ύ dom dom β„Ž), (π‘₯ ∈ dom β„Ž ↦ (((2nd β€˜π‘“)β€˜π‘₯) β†Ύ (β„Žβ€˜π‘₯)))⟩)
cful 17854class Full
cfth 17855class Faith
df-full 17856 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {βŸ¨π‘“, π‘”βŸ© ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)ran (π‘₯𝑔𝑦) = ((π‘“β€˜π‘₯)(Hom β€˜π‘‘)(π‘“β€˜π‘¦)))})
df-fth 17857 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {βŸ¨π‘“, π‘”βŸ© ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘)Fun β—‘(π‘₯𝑔𝑦))})
cnat 17894class Nat
cfuc 17895class FuncCat
df-nat 17896 Nat = (𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ (𝑓 ∈ (𝑑 Func 𝑒), 𝑔 ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘“) / π‘Ÿβ¦Œβ¦‹(1st β€˜π‘”) / π‘ β¦Œ{π‘Ž ∈ Xπ‘₯ ∈ (Baseβ€˜π‘‘)((π‘Ÿβ€˜π‘₯)(Hom β€˜π‘’)(π‘ β€˜π‘₯)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘‘)βˆ€π‘¦ ∈ (Baseβ€˜π‘‘)βˆ€β„Ž ∈ (π‘₯(Hom β€˜π‘‘)𝑦)((π‘Žβ€˜π‘¦)(⟨(π‘Ÿβ€˜π‘₯), (π‘Ÿβ€˜π‘¦)⟩(compβ€˜π‘’)(π‘ β€˜π‘¦))((π‘₯(2nd β€˜π‘“)𝑦)β€˜β„Ž)) = (((π‘₯(2nd β€˜π‘”)𝑦)β€˜β„Ž)(⟨(π‘Ÿβ€˜π‘₯), (π‘ β€˜π‘₯)⟩(compβ€˜π‘’)(π‘ β€˜π‘¦))(π‘Žβ€˜π‘₯))}))
df-fuc 17897 FuncCat = (𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ {⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩, ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
cinito 17933class InitO
ctermo 17934class TermO
czeroo 17935class ZeroO
df-inito 17936InitO = (𝑐 ∈ Cat ↦ {π‘Ž ∈ (Baseβ€˜π‘) ∣ βˆ€π‘ ∈ (Baseβ€˜π‘)βˆƒ!β„Ž β„Ž ∈ (π‘Ž(Hom β€˜π‘)𝑏)})
df-termo 17937TermO = (𝑐 ∈ Cat ↦ {π‘Ž ∈ (Baseβ€˜π‘) ∣ βˆ€π‘ ∈ (Baseβ€˜π‘)βˆƒ!β„Ž β„Ž ∈ (𝑏(Hom β€˜π‘)π‘Ž)})
df-zeroo 17938ZeroO = (𝑐 ∈ Cat ↦ ((InitOβ€˜π‘) ∩ (TermOβ€˜π‘)))
cdoma 17972class doma
ccoda 17973class coda
carw 17974class Arrow
choma 17975class Homa
df-doma 17976doma = (1st ∘ 1st )
df-coda 17977coda = (2nd ∘ 1st )
df-homa 17978Homa = (𝑐 ∈ Cat ↦ (π‘₯ ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)) ↦ ({π‘₯} Γ— ((Hom β€˜π‘)β€˜π‘₯))))
df-arw 17979Arrow = (𝑐 ∈ Cat ↦ βˆͺ ran (Homaβ€˜π‘))
cida 18005class Ida
ccoa 18006class compa
df-ida 18007Ida = (𝑐 ∈ Cat ↦ (π‘₯ ∈ (Baseβ€˜π‘) ↦ ⟨π‘₯, π‘₯, ((Idβ€˜π‘)β€˜π‘₯)⟩))
df-coa 18008compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrowβ€˜π‘), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
csetc 18027class SetCat
df-setc 18028SetCat = (𝑒 ∈ V ↦ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ (𝑦 ↑m π‘₯))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩})
ccatc 18050class CatCat
df-catc 18051CatCat = (𝑒 ∈ V ↦ ⦋(𝑒 ∩ Cat) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)))⟩})
cestrc 18075class ExtStrCat
df-estrc 18076ExtStrCat = (𝑒 ∈ V ↦ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ ((Baseβ€˜π‘§) ↑m (Baseβ€˜(2nd β€˜π‘£))), 𝑓 ∈ ((Baseβ€˜(2nd β€˜π‘£)) ↑m (Baseβ€˜(1st β€˜π‘£))) ↦ (𝑔 ∘ 𝑓)))⟩})
cxpc 18122class Γ—c
c1stf 18123class 1stF
c2ndf 18124class 2ndF
cprf 18125class ⟨,⟩F
df-xpc 18126 Γ—c = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ ⦋((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘ )) / π‘β¦Œβ¦‹(𝑒 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st β€˜π‘’)(Hom β€˜π‘Ÿ)(1st β€˜π‘£)) Γ— ((2nd β€˜π‘’)(Hom β€˜π‘ )(2nd β€˜π‘£)))) / β„Žβ¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), β„ŽβŸ©, ⟨(compβ€˜ndx), (π‘₯ ∈ (𝑏 Γ— 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘₯)β„Žπ‘¦), 𝑓 ∈ (β„Žβ€˜π‘₯) ↦ ⟨((1st β€˜π‘”)(⟨(1st β€˜(1st β€˜π‘₯)), (1st β€˜(2nd β€˜π‘₯))⟩(compβ€˜π‘Ÿ)(1st β€˜π‘¦))(1st β€˜π‘“)), ((2nd β€˜π‘”)(⟨(2nd β€˜(1st β€˜π‘₯)), (2nd β€˜(2nd β€˜π‘₯))⟩(compβ€˜π‘ )(2nd β€˜π‘¦))(2nd β€˜π‘“))⟩))⟩})
df-1stf 18127 1stF = (π‘Ÿ ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘ )) / π‘β¦ŒβŸ¨(1st β†Ύ 𝑏), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st β†Ύ (π‘₯(Hom β€˜(π‘Ÿ Γ—c 𝑠))𝑦)))⟩)
df-2ndf 18128 2ndF = (π‘Ÿ ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘ )) / π‘β¦ŒβŸ¨(2nd β†Ύ 𝑏), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd β†Ύ (π‘₯(Hom β€˜(π‘Ÿ Γ—c 𝑠))𝑦)))⟩)
df-prf 18129 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom (1st β€˜π‘“) / π‘β¦ŒβŸ¨(π‘₯ ∈ 𝑏 ↦ ⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (β„Ž ∈ dom (π‘₯(2nd β€˜π‘“)𝑦) ↦ ⟨((π‘₯(2nd β€˜π‘“)𝑦)β€˜β„Ž), ((π‘₯(2nd β€˜π‘”)𝑦)β€˜β„Ž)⟩))⟩)
cevlf 18164class evalF
ccurf 18165class curryF
cuncf 18166class uncurryF
cdiag 18167class Ξ”func
df-evlf 18168 evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ⟨(𝑓 ∈ (𝑐 Func 𝑑), π‘₯ ∈ (Baseβ€˜π‘) ↦ ((1st β€˜π‘“)β€˜π‘₯)), (π‘₯ ∈ ((𝑐 Func 𝑑) Γ— (Baseβ€˜π‘)), 𝑦 ∈ ((𝑐 Func 𝑑) Γ— (Baseβ€˜π‘)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜π‘)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π‘‘)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))))⟩)
df-curf 18169 curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ ⦋(1st β€˜π‘’) / π‘β¦Œβ¦‹(2nd β€˜π‘’) / π‘‘β¦ŒβŸ¨(π‘₯ ∈ (Baseβ€˜π‘) ↦ ⟨(𝑦 ∈ (Baseβ€˜π‘‘) ↦ (π‘₯(1st β€˜π‘“)𝑦)), (𝑦 ∈ (Baseβ€˜π‘‘), 𝑧 ∈ (Baseβ€˜π‘‘) ↦ (𝑔 ∈ (𝑦(Hom β€˜π‘‘)𝑧) ↦ (((Idβ€˜π‘)β€˜π‘₯)(⟨π‘₯, π‘¦βŸ©(2nd β€˜π‘“)⟨π‘₯, π‘§βŸ©)𝑔)))⟩), (π‘₯ ∈ (Baseβ€˜π‘), 𝑦 ∈ (Baseβ€˜π‘) ↦ (𝑔 ∈ (π‘₯(Hom β€˜π‘)𝑦) ↦ (𝑧 ∈ (Baseβ€˜π‘‘) ↦ (𝑔(⟨π‘₯, π‘§βŸ©(2nd β€˜π‘“)βŸ¨π‘¦, π‘§βŸ©)((Idβ€˜π‘‘)β€˜π‘§)))))⟩)
df-uncf 18170 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((π‘β€˜1) evalF (π‘β€˜2)) ∘func ((𝑓 ∘func ((π‘β€˜0) 1stF (π‘β€˜1))) ⟨,⟩F ((π‘β€˜0) 2ndF (π‘β€˜1)))))
df-diag 18171Ξ”func = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (βŸ¨π‘, π‘‘βŸ© curryF (𝑐 1stF 𝑑)))
chof 18203class HomF
cyon 18204class Yon
df-hof 18205HomF = (𝑐 ∈ Cat ↦ ⟨(Homf β€˜π‘), ⦋(Baseβ€˜π‘) / π‘β¦Œ(π‘₯ ∈ (𝑏 Γ— 𝑏), 𝑦 ∈ (𝑏 Γ— 𝑏) ↦ (𝑓 ∈ ((1st β€˜π‘¦)(Hom β€˜π‘)(1st β€˜π‘₯)), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜π‘)(2nd β€˜π‘¦)) ↦ (β„Ž ∈ ((Hom β€˜π‘)β€˜π‘₯) ↦ ((𝑔(π‘₯(compβ€˜π‘)(2nd β€˜π‘¦))β„Ž)(⟨(1st β€˜π‘¦), (1st β€˜π‘₯)⟩(compβ€˜π‘)(2nd β€˜π‘¦))𝑓))))⟩)
df-yon 18206Yon = (𝑐 ∈ Cat ↦ (βŸ¨π‘, (oppCatβ€˜π‘)⟩ curryF (HomFβ€˜(oppCatβ€˜π‘))))
codu 18241class ODual
df-odu 18242ODual = (𝑀 ∈ V ↦ (𝑀 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘€)⟩))
cproset 18248class Proset
cdrs 18249class Dirset
df-proset 18250 Proset = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§))}
df-drs 18251Dirset = {𝑓 ∈ Proset ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ](𝑏 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆƒπ‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘§ ∧ π‘¦π‘Ÿπ‘§))}
cpo 18262class Poset
cplt 18263class lt
club 18264class lub
cglb 18265class glb
cjn 18266class join
cmee 18267class meet
df-poset 18268Poset = {𝑓 ∣ βˆƒπ‘βˆƒπ‘Ÿ(𝑏 = (Baseβ€˜π‘“) ∧ π‘Ÿ = (leβ€˜π‘“) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘Ÿπ‘₯ ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯π‘Ÿπ‘¦ ∧ π‘¦π‘Ÿπ‘§) β†’ π‘₯π‘Ÿπ‘§)))}
df-plt 18285lt = (𝑝 ∈ V ↦ ((leβ€˜π‘) βˆ– I ))
df-lub 18301lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Baseβ€˜π‘) ↦ (β„©π‘₯ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜π‘)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜π‘)𝑧 β†’ π‘₯(leβ€˜π‘)𝑧)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜π‘)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜π‘)𝑧 β†’ π‘₯(leβ€˜π‘)𝑧))}))
df-glb 18302glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Baseβ€˜π‘) ↦ (β„©π‘₯ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜π‘)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜π‘)𝑦 β†’ 𝑧(leβ€˜π‘)π‘₯)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜π‘)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜π‘)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜π‘)𝑦 β†’ 𝑧(leβ€˜π‘)π‘₯))}))
df-join 18303join = (𝑝 ∈ V ↦ {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ {π‘₯, 𝑦} (lubβ€˜π‘)𝑧})
df-meet 18304meet = (𝑝 ∈ V ↦ {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ {π‘₯, 𝑦} (glbβ€˜π‘)𝑧})
ctos 18371class Toset
df-toset 18372Toset = {𝑓 ∈ Poset ∣ [(Baseβ€˜π‘“) / 𝑏][(leβ€˜π‘“) / π‘Ÿ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘Ÿπ‘¦ ∨ π‘¦π‘Ÿπ‘₯)}
cp0 18378class 0.
cp1 18379class 1.
df-p0 183800. = (𝑝 ∈ V ↦ ((glbβ€˜π‘)β€˜(Baseβ€˜π‘)))
df-p1 183811. = (𝑝 ∈ V ↦ ((lubβ€˜π‘)β€˜(Baseβ€˜π‘)))
clat 18386class Lat
df-lat 18387Lat = {𝑝 ∈ Poset ∣ (dom (joinβ€˜π‘) = ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)) ∧ dom (meetβ€˜π‘) = ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)))}
ccla 18453class CLat
df-clat 18454CLat = {𝑝 ∈ Poset ∣ (dom (lubβ€˜π‘) = 𝒫 (Baseβ€˜π‘) ∧ dom (glbβ€˜π‘) = 𝒫 (Baseβ€˜π‘))}
cdlat 18475class DLat
df-dlat 18476DLat = {π‘˜ ∈ Lat ∣ [(Baseβ€˜π‘˜) / 𝑏][(joinβ€˜π‘˜) / 𝑗][(meetβ€˜π‘˜) / π‘š]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 (π‘₯π‘š(𝑦𝑗𝑧)) = ((π‘₯π‘šπ‘¦)𝑗(π‘₯π‘šπ‘§))}
cipo 18482class toInc
df-ipo 18483toInc = (𝑓 ∈ V ↦ ⦋{⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝑓 ∧ π‘₯ βŠ† 𝑦)} / π‘œβ¦Œ({⟨(Baseβ€˜ndx), π‘“βŸ©, ⟨(TopSetβ€˜ndx), (ordTopβ€˜π‘œ)⟩} βˆͺ {⟨(leβ€˜ndx), π‘œβŸ©, ⟨(ocβ€˜ndx), (π‘₯ ∈ 𝑓 ↦ βˆͺ {𝑦 ∈ 𝑓 ∣ (𝑦 ∩ π‘₯) = βˆ…})⟩}))
cps 18519class PosetRel
ctsr 18520class TosetRel
df-ps 18521PosetRel = {π‘Ÿ ∣ (Rel π‘Ÿ ∧ (π‘Ÿ ∘ π‘Ÿ) βŠ† π‘Ÿ ∧ (π‘Ÿ ∩ β—‘π‘Ÿ) = ( I β†Ύ βˆͺ βˆͺ π‘Ÿ))}
df-tsr 18522 TosetRel = {π‘Ÿ ∈ PosetRel ∣ (dom π‘Ÿ Γ— dom π‘Ÿ) βŠ† (π‘Ÿ βˆͺ β—‘π‘Ÿ)}
cdir 18549class DirRel
ctail 18550class tail
df-dir 18551DirRel = {π‘Ÿ ∣ ((Rel π‘Ÿ ∧ ( I β†Ύ βˆͺ βˆͺ π‘Ÿ) βŠ† π‘Ÿ) ∧ ((π‘Ÿ ∘ π‘Ÿ) βŠ† π‘Ÿ ∧ (βˆͺ βˆͺ π‘Ÿ Γ— βˆͺ βˆͺ π‘Ÿ) βŠ† (β—‘π‘Ÿ ∘ π‘Ÿ)))}
df-tail 18552tail = (π‘Ÿ ∈ DirRel ↦ (π‘₯ ∈ βˆͺ βˆͺ π‘Ÿ ↦ (π‘Ÿ β€œ {π‘₯})))
cplusf 18560class +𝑓
cmgm 18561class Mgm
df-plusf 18562+𝑓 = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯(+gβ€˜π‘”)𝑦)))
df-mgm 18563Mgm = {𝑔 ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯π‘œπ‘¦) ∈ 𝑏}
cmgmhm 18613class MgmHom
csubmgm 18614class SubMgm
df-mgmhm 18615 MgmHom = (𝑠 ∈ Mgm, 𝑑 ∈ Mgm ↦ {𝑓 ∈ ((Baseβ€˜π‘‘) ↑m (Baseβ€˜π‘ )) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘ )βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯(+gβ€˜π‘ )𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘‘)(π‘“β€˜π‘¦))})
df-submgm 18616SubMgm = (𝑠 ∈ Mgm ↦ {𝑑 ∈ 𝒫 (Baseβ€˜π‘ ) ∣ βˆ€π‘₯ ∈ 𝑑 βˆ€π‘¦ ∈ 𝑑 (π‘₯(+gβ€˜π‘ )𝑦) ∈ 𝑑})
csgrp 18641class Smgrp
df-sgrp 18642Smgrp = {𝑔 ∈ Mgm ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§))}
cmnd 18657class Mnd
df-mnd 18658Mnd = {𝑔 ∈ Smgrp ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / 𝑝]βˆƒπ‘’ ∈ 𝑏 βˆ€π‘₯ ∈ 𝑏 ((𝑒𝑝π‘₯) = π‘₯ ∧ (π‘₯𝑝𝑒) = π‘₯)}
cmhm 18701class MndHom
csubmnd 18702class SubMnd
df-mhm 18703 MndHom = (𝑠 ∈ Mnd, 𝑑 ∈ Mnd ↦ {𝑓 ∈ ((Baseβ€˜π‘‘) ↑m (Baseβ€˜π‘ )) ∣ (βˆ€π‘₯ ∈ (Baseβ€˜π‘ )βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯(+gβ€˜π‘ )𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘‘)(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(0gβ€˜π‘ )) = (0gβ€˜π‘‘))})
df-submnd 18704SubMnd = (𝑠 ∈ Mnd ↦ {𝑑 ∈ 𝒫 (Baseβ€˜π‘ ) ∣ ((0gβ€˜π‘ ) ∈ 𝑑 ∧ βˆ€π‘₯ ∈ 𝑑 βˆ€π‘¦ ∈ 𝑑 (π‘₯(+gβ€˜π‘ )𝑦) ∈ 𝑑)})
cfrmd 18762class freeMnd
cvrmd 18763class varFMnd
df-frmd 18764freeMnd = (𝑖 ∈ V ↦ {⟨(Baseβ€˜ndx), Word π‘–βŸ©, ⟨(+gβ€˜ndx), ( ++ β†Ύ (Word 𝑖 Γ— Word 𝑖))⟩})
df-vrmd 18765varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ βŸ¨β€œπ‘—β€βŸ©))
cefmnd 18783class EndoFMnd
df-efmnd 18784EndoFMnd = (π‘₯ ∈ V ↦ ⦋(π‘₯ ↑m π‘₯) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(π‘₯ Γ— {𝒫 π‘₯}))⟩})
cgrp 18853class Grp
cminusg 18854class invg
csg 18855class -g
df-grp 18856Grp = {𝑔 ∈ Mnd ∣ βˆ€π‘Ž ∈ (Baseβ€˜π‘”)βˆƒπ‘š ∈ (Baseβ€˜π‘”)(π‘š(+gβ€˜π‘”)π‘Ž) = (0gβ€˜π‘”)}
df-minusg 18857invg = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”) ↦ (℩𝑀 ∈ (Baseβ€˜π‘”)(𝑀(+gβ€˜π‘”)π‘₯) = (0gβ€˜π‘”))))
df-sbg 18858-g = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯(+gβ€˜π‘”)((invgβ€˜π‘”)β€˜π‘¦))))
cmg 18985class .g
df-mulg 18986.g = (𝑔 ∈ V ↦ (𝑛 ∈ β„€, π‘₯ ∈ (Baseβ€˜π‘”) ↦ if(𝑛 = 0, (0gβ€˜π‘”), ⦋seq1((+gβ€˜π‘”), (β„• Γ— {π‘₯})) / π‘ β¦Œif(0 < 𝑛, (π‘ β€˜π‘›), ((invgβ€˜π‘”)β€˜(π‘ β€˜-𝑛))))))
csubg 19037class SubGrp
cnsg 19038class NrmSGrp
cqg 19039class ~QG
df-subg 19040SubGrp = (𝑀 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ Grp})
df-nsg 19041NrmSGrp = (𝑀 ∈ Grp ↦ {𝑠 ∈ (SubGrpβ€˜π‘€) ∣ [(Baseβ€˜π‘€) / 𝑏][(+gβ€˜π‘€) / 𝑝]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 ((π‘₯𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝π‘₯) ∈ 𝑠)})
df-eqg 19042 ~QG = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† (Baseβ€˜π‘Ÿ) ∧ (((invgβ€˜π‘Ÿ)β€˜π‘₯)(+gβ€˜π‘Ÿ)𝑦) ∈ 𝑖)})
cghm 19128class GrpHom
df-ghm 19129 GrpHom = (𝑠 ∈ Grp, 𝑑 ∈ Grp ↦ {𝑔 ∣ [(Baseβ€˜π‘ ) / 𝑀](𝑔:π‘€βŸΆ(Baseβ€˜π‘‘) ∧ βˆ€π‘₯ ∈ 𝑀 βˆ€π‘¦ ∈ 𝑀 (π‘”β€˜(π‘₯(+gβ€˜π‘ )𝑦)) = ((π‘”β€˜π‘₯)(+gβ€˜π‘‘)(π‘”β€˜π‘¦)))})
cgim 19172class GrpIso
cgic 19173class ≃𝑔
df-gim 19174 GrpIso = (𝑠 ∈ Grp, 𝑑 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑑) ∣ 𝑔:(Baseβ€˜π‘ )–1-1-ontoβ†’(Baseβ€˜π‘‘)})
df-gic 19175 ≃𝑔 = (β—‘ GrpIso β€œ (V βˆ– 1o))
cga 19195class GrpAct
df-ga 19196 GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ ⦋(Baseβ€˜π‘”) / π‘β¦Œ{π‘š ∈ (𝑠 ↑m (𝑏 Γ— 𝑠)) ∣ βˆ€π‘₯ ∈ 𝑠 (((0gβ€˜π‘”)π‘šπ‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((𝑦(+gβ€˜π‘”)𝑧)π‘šπ‘₯) = (π‘¦π‘š(π‘§π‘šπ‘₯)))})
ccntz 19221class Cntz
ccntr 19222class Cntr
df-cntz 19223Cntz = (π‘š ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘š) ↦ {π‘₯ ∈ (Baseβ€˜π‘š) ∣ βˆ€π‘¦ ∈ 𝑠 (π‘₯(+gβ€˜π‘š)𝑦) = (𝑦(+gβ€˜π‘š)π‘₯)}))
df-cntr 19224Cntr = (π‘š ∈ V ↦ ((Cntzβ€˜π‘š)β€˜(Baseβ€˜π‘š)))
coppg 19251class oppg
df-oppg 19252oppg = (𝑀 ∈ V ↦ (𝑀 sSet ⟨(+gβ€˜ndx), tpos (+gβ€˜π‘€)⟩))
csymg 19276class SymGrp
df-symg 19277SymGrp = (π‘₯ ∈ V ↦ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}))
cpmtr 19351class pmTrsp
df-pmtr 19352pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 β‰ˆ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, βˆͺ (𝑝 βˆ– {𝑧}), 𝑧))))
cpsgn 19399class pmSgn
cevpm 19400class pmEven
df-psgn 19401pmSgn = (𝑑 ∈ V ↦ (π‘₯ ∈ {𝑝 ∈ (Baseβ€˜(SymGrpβ€˜π‘‘)) ∣ dom (𝑝 βˆ– I ) ∈ Fin} ↦ (β„©π‘ βˆƒπ‘€ ∈ Word ran (pmTrspβ€˜π‘‘)(π‘₯ = ((SymGrpβ€˜π‘‘) Ξ£g 𝑀) ∧ 𝑠 = (-1↑(β™―β€˜π‘€))))))
df-evpm 19402pmEven = (𝑑 ∈ V ↦ (β—‘(pmSgnβ€˜π‘‘) β€œ {1}))
cod 19434class od
cgex 19435class gEx
cpgp 19436class pGrp
cslw 19437class pSyl
df-od 19438od = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”) ↦ ⦋{𝑛 ∈ β„• ∣ (𝑛(.gβ€˜π‘”)π‘₯) = (0gβ€˜π‘”)} / π‘–β¦Œif(𝑖 = βˆ…, 0, inf(𝑖, ℝ, < ))))
df-gex 19439gEx = (𝑔 ∈ V ↦ ⦋{𝑛 ∈ β„• ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘”)(𝑛(.gβ€˜π‘”)π‘₯) = (0gβ€˜π‘”)} / π‘–β¦Œif(𝑖 = βˆ…, 0, inf(𝑖, ℝ, < )))
df-pgp 19440 pGrp = {βŸ¨π‘, π‘”βŸ© ∣ ((𝑝 ∈ β„™ ∧ 𝑔 ∈ Grp) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘”)βˆƒπ‘› ∈ β„•0 ((odβ€˜π‘”)β€˜π‘₯) = (𝑝↑𝑛))}
df-slw 19441 pSyl = (𝑝 ∈ β„™, 𝑔 ∈ Grp ↦ {β„Ž ∈ (SubGrpβ€˜π‘”) ∣ βˆ€π‘˜ ∈ (SubGrpβ€˜π‘”)((β„Ž βŠ† π‘˜ ∧ 𝑝 pGrp (𝑔 β†Ύs π‘˜)) ↔ β„Ž = π‘˜)})
clsm 19544class LSSum
cpj1 19545class proj1
df-lsm 19546LSSum = (𝑀 ∈ V ↦ (𝑑 ∈ 𝒫 (Baseβ€˜π‘€), 𝑒 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ran (π‘₯ ∈ 𝑑, 𝑦 ∈ 𝑒 ↦ (π‘₯(+gβ€˜π‘€)𝑦))))
df-pj1 19547proj1 = (𝑀 ∈ V ↦ (𝑑 ∈ 𝒫 (Baseβ€˜π‘€), 𝑒 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑧 ∈ (𝑑(LSSumβ€˜π‘€)𝑒) ↦ (β„©π‘₯ ∈ 𝑑 βˆƒπ‘¦ ∈ 𝑒 𝑧 = (π‘₯(+gβ€˜π‘€)𝑦)))))
cefg 19616class ~FG
cfrgp 19617class freeGrp
cvrgp 19618class varFGrp
df-efg 19619 ~FG = (𝑖 ∈ V ↦ ∩ {π‘Ÿ ∣ (π‘Ÿ Er Word (𝑖 Γ— 2o) ∧ βˆ€π‘₯ ∈ Word (𝑖 Γ— 2o)βˆ€π‘› ∈ (0...(β™―β€˜π‘₯))βˆ€π‘¦ ∈ 𝑖 βˆ€π‘§ ∈ 2o π‘₯π‘Ÿ(π‘₯ splice βŸ¨π‘›, 𝑛, βŸ¨β€œβŸ¨π‘¦, π‘§βŸ©βŸ¨π‘¦, (1o βˆ– 𝑧)βŸ©β€βŸ©βŸ©))})
df-frgp 19620freeGrp = (𝑖 ∈ V ↦ ((freeMndβ€˜(𝑖 Γ— 2o)) /s ( ~FG β€˜π‘–)))
df-vrgp 19621varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [βŸ¨β€œβŸ¨π‘—, βˆ…βŸ©β€βŸ©]( ~FG β€˜π‘–)))
ccmn 19690class CMnd
cabl 19691class Abel
df-cmn 19692CMnd = {𝑔 ∈ Mnd ∣ βˆ€π‘Ž ∈ (Baseβ€˜π‘”)βˆ€π‘ ∈ (Baseβ€˜π‘”)(π‘Ž(+gβ€˜π‘”)𝑏) = (𝑏(+gβ€˜π‘”)π‘Ž)}
df-abl 19693Abel = (Grp ∩ CMnd)
ccyg 19787class CycGrp
df-cyg 19788CycGrp = {𝑔 ∈ Grp ∣ βˆƒπ‘₯ ∈ (Baseβ€˜π‘”)ran (𝑛 ∈ β„€ ↦ (𝑛(.gβ€˜π‘”)π‘₯)) = (Baseβ€˜π‘”)}
cdprd 19905class DProd
cdpj 19906class dProj
df-dprd 19907 DProd = (𝑔 ∈ Grp, 𝑠 ∈ {β„Ž ∣ (β„Ž:dom β„ŽβŸΆ(SubGrpβ€˜π‘”) ∧ βˆ€π‘₯ ∈ dom β„Ž(βˆ€π‘¦ ∈ (dom β„Ž βˆ– {π‘₯})(β„Žβ€˜π‘₯) βŠ† ((Cntzβ€˜π‘”)β€˜(β„Žβ€˜π‘¦)) ∧ ((β„Žβ€˜π‘₯) ∩ ((mrClsβ€˜(SubGrpβ€˜π‘”))β€˜βˆͺ (β„Ž β€œ (dom β„Ž βˆ– {π‘₯})))) = {(0gβ€˜π‘”)}))} ↦ ran (𝑓 ∈ {β„Ž ∈ Xπ‘₯ ∈ dom 𝑠(π‘ β€˜π‘₯) ∣ β„Ž finSupp (0gβ€˜π‘”)} ↦ (𝑔 Ξ£g 𝑓)))
df-dpj 19908dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd β€œ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((π‘ β€˜π‘–)(proj1β€˜π‘”)(𝑔 DProd (𝑠 β†Ύ (dom 𝑠 βˆ– {𝑖}))))))
csimpg 20002class SimpGrp
df-simpg 20003SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrpβ€˜π‘”) β‰ˆ 2o}
cmgp 20029class mulGrp
df-mgp 20030mulGrp = (𝑀 ∈ V ↦ (𝑀 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘€)⟩))
crng 20047class Rng
df-rng 20048Rng = {𝑓 ∈ Abel ∣ ((mulGrpβ€˜π‘“) ∈ Smgrp ∧ [(Baseβ€˜π‘“) / 𝑏][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))))}
cur 20076class 1r
df-ur 200771r = (0g ∘ mulGrp)
csrg 20081class SRing
df-srg 20082SRing = {𝑓 ∈ CMnd ∣ ((mulGrpβ€˜π‘“) ∈ Mnd ∧ [(Baseβ€˜π‘“) / π‘Ÿ][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑][(0gβ€˜π‘“) / 𝑛]βˆ€π‘₯ ∈ π‘Ÿ (βˆ€π‘¦ ∈ π‘Ÿ βˆ€π‘§ ∈ π‘Ÿ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))) ∧ ((𝑛𝑑π‘₯) = 𝑛 ∧ (π‘₯𝑑𝑛) = 𝑛)))}
crg 20128class Ring
ccrg 20129class CRing
df-ring 20130Ring = {𝑓 ∈ Grp ∣ ((mulGrpβ€˜π‘“) ∈ Mnd ∧ [(Baseβ€˜π‘“) / π‘Ÿ][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑]βˆ€π‘₯ ∈ π‘Ÿ βˆ€π‘¦ ∈ π‘Ÿ βˆ€π‘§ ∈ π‘Ÿ ((π‘₯𝑑(𝑦𝑝𝑧)) = ((π‘₯𝑑𝑦)𝑝(π‘₯𝑑𝑧)) ∧ ((π‘₯𝑝𝑦)𝑑𝑧) = ((π‘₯𝑑𝑧)𝑝(𝑦𝑑𝑧))))}
df-cring 20131CRing = {𝑓 ∈ Ring ∣ (mulGrpβ€˜π‘“) ∈ CMnd}
coppr 20225class oppr
df-oppr 20226oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘“)⟩))
cdsr 20246class βˆ₯r
cui 20247class Unit
cir 20248class Irred
df-dvdsr 20249βˆ₯r = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘§ ∈ (Baseβ€˜π‘€)(𝑧(.rβ€˜π‘€)π‘₯) = 𝑦)})
df-unit 20250Unit = (𝑀 ∈ V ↦ (β—‘((βˆ₯rβ€˜π‘€) ∩ (βˆ₯rβ€˜(opprβ€˜π‘€))) β€œ {(1rβ€˜π‘€)}))
df-irred 20251Irred = (𝑀 ∈ V ↦ ⦋((Baseβ€˜π‘€) βˆ– (Unitβ€˜π‘€)) / π‘β¦Œ{𝑧 ∈ 𝑏 ∣ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘€)𝑦) β‰  𝑧})
cinvr 20279class invr
df-invr 20280invr = (π‘Ÿ ∈ V ↦ (invgβ€˜((mulGrpβ€˜π‘Ÿ) β†Ύs (Unitβ€˜π‘Ÿ))))
cdvr 20292class /r
df-dvr 20293/r = (π‘Ÿ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Unitβ€˜π‘Ÿ) ↦ (π‘₯(.rβ€˜π‘Ÿ)((invrβ€˜π‘Ÿ)β€˜π‘¦))))
crpm 20324class RPrime
df-rprm 20325RPrime = (𝑀 ∈ V ↦ ⦋(Baseβ€˜π‘€) / π‘β¦Œ{𝑝 ∈ (𝑏 βˆ– ((Unitβ€˜π‘€) βˆͺ {(0gβ€˜π‘€)})) ∣ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 [(βˆ₯rβ€˜π‘€) / 𝑑](𝑝𝑑(π‘₯(.rβ€˜π‘€)𝑦) β†’ (𝑝𝑑π‘₯ ∨ 𝑝𝑑𝑦))})
crnghm 20326class RngHom
crngim 20327class RngIso
df-rnghm 20328 RngHom = (π‘Ÿ ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 ↑m 𝑣) ∣ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦)))})
df-rngim 20329 RngIso = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (π‘Ÿ RngHom 𝑠) ∣ ◑𝑓 ∈ (𝑠 RngHom π‘Ÿ)})
crh 20361class RingHom
crs 20362class RingIso
cric 20363class β‰ƒπ‘Ÿ
df-rhm 20364 RingHom = (π‘Ÿ ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 ↑m 𝑣) ∣ ((π‘“β€˜(1rβ€˜π‘Ÿ)) = (1rβ€˜π‘ ) ∧ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦))))})
df-rim 20365 RingIso = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (π‘Ÿ RingHom 𝑠) ∣ ◑𝑓 ∈ (𝑠 RingHom π‘Ÿ)})
df-ric 20367 β‰ƒπ‘Ÿ = (β—‘ RingIso β€œ (V βˆ– 1o))
cnzr 20404class NzRing
df-nzr 20405NzRing = {π‘Ÿ ∈ Ring ∣ (1rβ€˜π‘Ÿ) β‰  (0gβ€˜π‘Ÿ)}
clring 20428class LRing
df-lring 20429LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
csubrng 20435class SubRng
df-subrng 20436SubRng = (𝑀 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ Rng})
csubrg 20459class SubRing
crgspn 20460class RingSpan
df-subrg 20461SubRing = (𝑀 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ((𝑀 β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘€) ∈ 𝑠)})
df-rgspn 20462RingSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
crngc 20502class RngCat
df-rngc 20503RngCat = (𝑒 ∈ V ↦ ((ExtStrCatβ€˜π‘’) β†Ύcat ( RngHom β†Ύ ((𝑒 ∩ Rng) Γ— (𝑒 ∩ Rng)))))
cringc 20531class RingCat
df-ringc 20532RingCat = (𝑒 ∈ V ↦ ((ExtStrCatβ€˜π‘’) β†Ύcat ( RingHom β†Ύ ((𝑒 ∩ Ring) Γ— (𝑒 ∩ Ring)))))
cdr 20577class DivRing
cfield 20578class Field
df-drng 20579DivRing = {π‘Ÿ ∈ Ring ∣ (Unitβ€˜π‘Ÿ) = ((Baseβ€˜π‘Ÿ) βˆ– {(0gβ€˜π‘Ÿ)})}
df-field 20580Field = (DivRing ∩ CRing)
csdrg 20627class SubDRing
df-sdrg 20628SubDRing = (𝑀 ∈ DivRing ↦ {𝑠 ∈ (SubRingβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ DivRing})
cabv 20649class AbsVal
df-abv 20650AbsVal = (π‘Ÿ ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Baseβ€˜π‘Ÿ)) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)(((π‘“β€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘Ÿ)) ∧ βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯) Β· (π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) ≀ ((π‘“β€˜π‘₯) + (π‘“β€˜π‘¦))))})
cstf 20676class *rf
csr 20677class *-Ring
df-staf 20678*rf = (𝑓 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘“) ↦ ((*π‘Ÿβ€˜π‘“)β€˜π‘₯)))
df-srng 20679*-Ring = {𝑓 ∣ [(*rfβ€˜π‘“) / 𝑖](𝑖 ∈ (𝑓 RingHom (opprβ€˜π‘“)) ∧ 𝑖 = ◑𝑖)}
clmod 20696class LMod
cscaf 20697class Β·sf
df-lmod 20698LMod = {𝑔 ∈ Grp ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / π‘Ž][(Scalarβ€˜π‘”) / 𝑓][( ·𝑠 β€˜π‘”) / 𝑠][(Baseβ€˜π‘“) / π‘˜][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑](𝑓 ∈ Ring ∧ βˆ€π‘ž ∈ π‘˜ βˆ€π‘Ÿ ∈ π‘˜ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘€ ∈ 𝑣 (((π‘Ÿπ‘ π‘€) ∈ 𝑣 ∧ (π‘Ÿπ‘ (π‘€π‘Žπ‘₯)) = ((π‘Ÿπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘₯)) ∧ ((π‘žπ‘π‘Ÿ)𝑠𝑀) = ((π‘žπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘€))) ∧ (((π‘žπ‘‘π‘Ÿ)𝑠𝑀) = (π‘žπ‘ (π‘Ÿπ‘ π‘€)) ∧ ((1rβ€˜π‘“)𝑠𝑀) = 𝑀)))}
df-scaf 20699 Β·sf = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘”)), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯( ·𝑠 β€˜π‘”)𝑦)))
clss 20768class LSubSp
df-lss 20769LSubSp = (𝑀 ∈ V ↦ {𝑠 ∈ (𝒫 (Baseβ€˜π‘€) βˆ– {βˆ…}) ∣ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠})
clspn 20808class LSpan
df-lsp 20809LSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
clmhm 20857class LMHom
clmim 20858class LMIso
clmic 20859class β‰ƒπ‘š
df-lmhm 20860 LMHom = (𝑠 ∈ LMod, 𝑑 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑑) ∣ [(Scalarβ€˜π‘ ) / 𝑀]((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)))})
df-lmim 20861 LMIso = (𝑠 ∈ LMod, 𝑑 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑑) ∣ 𝑔:(Baseβ€˜π‘ )–1-1-ontoβ†’(Baseβ€˜π‘‘)})
df-lmic 20862 β‰ƒπ‘š = (β—‘ LMIso β€œ (V βˆ– 1o))
clbs 20912class LBasis
df-lbs 20913LBasis = (𝑀 ∈ V ↦ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))})
clvec 20940class LVec
df-lvec 20941LVec = {𝑓 ∈ LMod ∣ (Scalarβ€˜π‘“) ∈ DivRing}
csra 21009class subringAlg
crglmod 21010class ringLMod
df-sra 21011subringAlg = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (((𝑀 sSet ⟨(Scalarβ€˜ndx), (𝑀 β†Ύs 𝑠)⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘€)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘€)⟩)))
df-rgmod 21012ringLMod = (𝑀 ∈ V ↦ ((subringAlg β€˜π‘€)β€˜(Baseβ€˜π‘€)))
clidl 21055class LIdeal
crsp 21056class RSpan
df-lidl 21057LIdeal = (LSubSp ∘ ringLMod)
df-rsp 21058RSpan = (LSpan ∘ ringLMod)
c2idl 21096class 2Ideal
df-2idl 210972Ideal = (π‘Ÿ ∈ V ↦ ((LIdealβ€˜π‘Ÿ) ∩ (LIdealβ€˜(opprβ€˜π‘Ÿ))))
clpidl 21163class LPIdeal
clpir 21164class LPIR
df-lpidl 21165LPIdeal = (𝑀 ∈ Ring ↦ βˆͺ 𝑔 ∈ (Baseβ€˜π‘€){((RSpanβ€˜π‘€)β€˜{𝑔})})
df-lpir 21166LPIR = {𝑀 ∈ Ring ∣ (LIdealβ€˜π‘€) = (LPIdealβ€˜π‘€)}
crlreg 21179class RLReg
cdomn 21180class Domn
cidom 21181class IDomn
cpid 21182class PID
df-rlreg 21183RLReg = (π‘Ÿ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘Ÿ) ∣ βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(.rβ€˜π‘Ÿ)𝑦) = (0gβ€˜π‘Ÿ) β†’ 𝑦 = (0gβ€˜π‘Ÿ))})
df-domn 21184Domn = {π‘Ÿ ∈ NzRing ∣ [(Baseβ€˜π‘Ÿ) / 𝑏][(0gβ€˜π‘Ÿ) / 𝑧]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 ((π‘₯(.rβ€˜π‘Ÿ)𝑦) = 𝑧 β†’ (π‘₯ = 𝑧 ∨ 𝑦 = 𝑧))}
df-idom 21185IDomn = (CRing ∩ Domn)
df-pid 21186PID = (IDomn ∩ LPIR)
cpsmet 21212class PsMet
cxmet 21213class ∞Met
cmet 21214class Met
cbl 21215class ball
cfbas 21216class fBas
cfg 21217class filGen
cmopn 21218class MetOpen
cmetu 21219class metUnif
df-psmet 21220PsMet = (π‘₯ ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (π‘₯ Γ— π‘₯)) ∣ βˆ€π‘¦ ∈ π‘₯ ((𝑦𝑑𝑦) = 0 ∧ βˆ€π‘§ ∈ π‘₯ βˆ€π‘€ ∈ π‘₯ (𝑦𝑑𝑧) ≀ ((𝑀𝑑𝑦) +𝑒 (𝑀𝑑𝑧)))})
df-xmet 21221∞Met = (π‘₯ ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (π‘₯ Γ— π‘₯)) ∣ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ βˆ€π‘€ ∈ π‘₯ (𝑦𝑑𝑧) ≀ ((𝑀𝑑𝑦) +𝑒 (𝑀𝑑𝑧)))})
df-met 21222Met = (π‘₯ ∈ V ↦ {𝑑 ∈ (ℝ ↑m (π‘₯ Γ— π‘₯)) ∣ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ βˆ€π‘€ ∈ π‘₯ (𝑦𝑑𝑧) ≀ ((𝑀𝑑𝑦) + (𝑀𝑑𝑧)))})
df-bl 21223ball = (𝑑 ∈ V ↦ (π‘₯ ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (π‘₯𝑑𝑦) < 𝑧}))
df-mopn 21224MetOpen = (𝑑 ∈ βˆͺ ran ∞Met ↦ (topGenβ€˜ran (ballβ€˜π‘‘)))
df-fbas 21225fBas = (𝑀 ∈ V ↦ {π‘₯ ∈ 𝒫 𝒫 𝑀 ∣ (π‘₯ β‰  βˆ… ∧ βˆ… βˆ‰ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (π‘₯ ∩ 𝒫 (𝑦 ∩ 𝑧)) β‰  βˆ…)})
df-fg 21226filGen = (𝑀 ∈ V, π‘₯ ∈ (fBasβ€˜π‘€) ↦ {𝑦 ∈ 𝒫 𝑀 ∣ (π‘₯ ∩ 𝒫 𝑦) β‰  βˆ…})
df-metu 21227metUnif = (𝑑 ∈ βˆͺ ran PsMet ↦ ((dom dom 𝑑 Γ— dom dom 𝑑)filGenran (π‘Ž ∈ ℝ+ ↦ (◑𝑑 β€œ (0[,)π‘Ž)))))
ccnfld 21228class β„‚fld
df-cnfld 21229β„‚fld = (({⟨(Baseβ€˜ndx), β„‚βŸ©, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Β· ⟩} βˆͺ {⟨(*π‘Ÿβ€˜ndx), βˆ—βŸ©}) βˆͺ ({⟨(TopSetβ€˜ndx), (MetOpenβ€˜(abs ∘ βˆ’ ))⟩, ⟨(leβ€˜ndx), ≀ ⟩, ⟨(distβ€˜ndx), (abs ∘ βˆ’ )⟩} βˆͺ {⟨(UnifSetβ€˜ndx), (metUnifβ€˜(abs ∘ βˆ’ ))⟩}))
czring 21301class β„€ring
df-zring 21302β„€ring = (β„‚fld β†Ύs β„€)
czrh 21354class β„€RHom
czlm 21355class β„€Mod
cchr 21356class chr
czn 21357class β„€/nβ„€
df-zrh 21358β„€RHom = (π‘Ÿ ∈ V ↦ βˆͺ (β„€ring RingHom π‘Ÿ))
df-zlm 21359β„€Mod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalarβ€˜ndx), β„€ring⟩) sSet ⟨( ·𝑠 β€˜ndx), (.gβ€˜π‘”)⟩))
df-chr 21360chr = (𝑔 ∈ V ↦ ((odβ€˜π‘”)β€˜(1rβ€˜π‘”)))
df-zn 21361β„€/nβ„€ = (𝑛 ∈ β„•0 ↦ ⦋℀ring / π‘§β¦Œβ¦‹(𝑧 /s (𝑧 ~QG ((RSpanβ€˜π‘§)β€˜{𝑛}))) / π‘ β¦Œ(𝑠 sSet ⟨(leβ€˜ndx), ⦋((β„€RHomβ€˜π‘ ) β†Ύ if(𝑛 = 0, β„€, (0..^𝑛))) / π‘“β¦Œ((𝑓 ∘ ≀ ) ∘ ◑𝑓)⟩))
crefld 21465class ℝfld
df-refld 21466ℝfld = (β„‚fld β†Ύs ℝ)
cphl 21485class PreHil
cipf 21486class Β·if
df-phl 21487PreHil = {𝑔 ∈ LVec ∣ [(Baseβ€˜π‘”) / 𝑣][(Β·π‘–β€˜π‘”) / β„Ž][(Scalarβ€˜π‘”) / 𝑓](𝑓 ∈ *-Ring ∧ βˆ€π‘₯ ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (π‘¦β„Žπ‘₯)) ∈ (𝑔 LMHom (ringLModβ€˜π‘“)) ∧ ((π‘₯β„Žπ‘₯) = (0gβ€˜π‘“) β†’ π‘₯ = (0gβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ 𝑣 ((*π‘Ÿβ€˜π‘“)β€˜(π‘₯β„Žπ‘¦)) = (π‘¦β„Žπ‘₯)))}
df-ipf 21488Β·if = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘”), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯(Β·π‘–β€˜π‘”)𝑦)))
cocv 21521class ocv
ccss 21522class ClSubSp
cthl 21523class toHL
df-ocv 21524ocv = (β„Ž ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜β„Ž) ↦ {π‘₯ ∈ (Baseβ€˜β„Ž) ∣ βˆ€π‘¦ ∈ 𝑠 (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = (0gβ€˜(Scalarβ€˜β„Ž))}))
df-css 21525ClSubSp = (β„Ž ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocvβ€˜β„Ž)β€˜((ocvβ€˜β„Ž)β€˜π‘ ))})
df-thl 21526toHL = (β„Ž ∈ V ↦ ((toIncβ€˜(ClSubSpβ€˜β„Ž)) sSet ⟨(ocβ€˜ndx), (ocvβ€˜β„Ž)⟩))
cpj 21563class proj
chil 21564class Hil
cobs 21565class OBasis
df-pj 21566proj = (β„Ž ∈ V ↦ ((π‘₯ ∈ (LSubSpβ€˜β„Ž) ↦ (π‘₯(proj1β€˜β„Ž)((ocvβ€˜β„Ž)β€˜π‘₯))) ∩ (V Γ— ((Baseβ€˜β„Ž) ↑m (Baseβ€˜β„Ž)))))
df-hil 21567Hil = {β„Ž ∈ PreHil ∣ dom (projβ€˜β„Ž) = (ClSubSpβ€˜β„Ž)}
df-obs 21568OBasis = (β„Ž ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Baseβ€˜β„Ž) ∣ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(Β·π‘–β€˜β„Ž)𝑦) = if(π‘₯ = 𝑦, (1rβ€˜(Scalarβ€˜β„Ž)), (0gβ€˜(Scalarβ€˜β„Ž))) ∧ ((ocvβ€˜β„Ž)β€˜π‘) = {(0gβ€˜β„Ž)})})
cdsmm 21594class βŠ•m
df-dsmm 21595 βŠ•m = (𝑠 ∈ V, π‘Ÿ ∈ V ↦ ((𝑠Xsπ‘Ÿ) β†Ύs {𝑓 ∈ Xπ‘₯ ∈ dom π‘Ÿ(Baseβ€˜(π‘Ÿβ€˜π‘₯)) ∣ {π‘₯ ∈ dom π‘Ÿ ∣ (π‘“β€˜π‘₯) β‰  (0gβ€˜(π‘Ÿβ€˜π‘₯))} ∈ Fin}))
cfrlm 21609class freeLMod
df-frlm 21610 freeLMod = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ (π‘Ÿ βŠ•m (𝑖 Γ— {(ringLModβ€˜π‘Ÿ)})))
cuvc 21645class unitVec
df-uvc 21646 unitVec = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (π‘˜ ∈ 𝑖 ↦ if(π‘˜ = 𝑗, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)))))
clindf 21667class LIndF
clinds 21668class LIndS
df-lindf 21669 LIndF = {βŸ¨π‘“, π‘€βŸ© ∣ (𝑓:dom π‘“βŸΆ(Baseβ€˜π‘€) ∧ [(Scalarβ€˜π‘€) / 𝑠]βˆ€π‘₯ ∈ dom π‘“βˆ€π‘˜ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (π‘˜( ·𝑠 β€˜π‘€)(π‘“β€˜π‘₯)) ∈ ((LSpanβ€˜π‘€)β€˜(𝑓 β€œ (dom 𝑓 βˆ– {π‘₯}))))}
df-linds 21670LIndS = (𝑀 ∈ V ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ( I β†Ύ 𝑠) LIndF 𝑀})
casa 21713class AssAlg
casp 21714class AlgSpan
cascl 21715class algSc
df-assa 21716AssAlg = {𝑀 ∈ (LMod ∩ Ring) ∣ [(Scalarβ€˜π‘€) / 𝑓]βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))}
df-asp 21717AlgSpan = (𝑀 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ ((SubRingβ€˜π‘€) ∩ (LSubSpβ€˜π‘€)) ∣ 𝑠 βŠ† 𝑑}))
df-ascl 21718algSc = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ↦ (π‘₯( ·𝑠 β€˜π‘€)(1rβ€˜π‘€))))
cmps 21766class mPwSer
cmvr 21767class mVar
cmpl 21768class mPoly
cltb 21769class <bag
copws 21770class ordPwSer
df-psr 21771 mPwSer = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ ⦋{β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} / π‘‘β¦Œβ¦‹((Baseβ€˜π‘Ÿ) ↑m 𝑑) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), ( ∘f (+gβ€˜π‘Ÿ) β†Ύ (𝑏 Γ— 𝑏))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (π‘˜ ∈ 𝑑 ↦ (π‘Ÿ Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯)(.rβ€˜π‘Ÿ)(π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘ŸβŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑓 ∈ 𝑏 ↦ ((𝑑 Γ— {π‘₯}) ∘f (.rβ€˜π‘Ÿ)𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝑑 Γ— {(TopOpenβ€˜π‘Ÿ)}))⟩}))
df-mvr 21772 mVar = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (π‘₯ ∈ 𝑖 ↦ (𝑓 ∈ {β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = π‘₯, 1, 0)), (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)))))
df-mpl 21773 mPoly = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ ⦋(𝑖 mPwSer π‘Ÿ) / π‘€β¦Œ(𝑀 β†Ύs {𝑓 ∈ (Baseβ€˜π‘€) ∣ 𝑓 finSupp (0gβ€˜π‘Ÿ)}))
df-ltbag 21774 <bag = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† {β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∧ βˆƒπ‘§ ∈ 𝑖 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝑖 (π‘§π‘Ÿπ‘€ β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))))})
df-opsr 21775 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (π‘Ÿ ∈ 𝒫 (𝑖 Γ— 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / π‘β¦Œ(𝑝 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† (Baseβ€˜π‘) ∧ ([{β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} / 𝑑]βˆƒπ‘§ ∈ 𝑑 ((π‘₯β€˜π‘§)(ltβ€˜π‘ )(π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝑑 (𝑀(π‘Ÿ <bag 𝑖)𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩)))
ces 21943class evalSub
cevl 21944class eval
df-evls 21945 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Baseβ€˜π‘ ) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))))
df-evl 21946 eval = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ ((𝑖 evalSub π‘Ÿ)β€˜(Baseβ€˜π‘Ÿ)))
cslv 21981class selectVars
cmhp 21982class mHomP
cpsd 21983class mPSDer
cai 21984class AlgInd
df-selv 21985 selectVars = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ ⦋((𝑖 βˆ– 𝑗) mPoly π‘Ÿ) / π‘’β¦Œβ¦‹(𝑗 mPoly 𝑒) / π‘‘β¦Œβ¦‹(algScβ€˜π‘‘) / π‘β¦Œβ¦‹(𝑐 ∘ (algScβ€˜π‘’)) / π‘‘β¦Œ((((𝑖 evalSub 𝑑)β€˜ran 𝑑)β€˜(𝑑 ∘ 𝑓))β€˜(π‘₯ ∈ 𝑖 ↦ if(π‘₯ ∈ 𝑗, ((𝑗 mVar 𝑒)β€˜π‘₯), (π‘β€˜(((𝑖 βˆ– 𝑗) mVar π‘Ÿ)β€˜π‘₯))))))))
df-mhp 21989 mHomP = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑛 ∈ β„•0 ↦ {𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ∣ (𝑓 supp (0gβ€˜π‘Ÿ)) βŠ† {𝑔 ∈ {β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ∣ ((β„‚fld β†Ύs β„•0) Ξ£g 𝑔) = 𝑛}}))
df-psd 22007 mPSDer = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (π‘₯ ∈ 𝑖 ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPwSer π‘Ÿ)) ↦ (π‘˜ ∈ {β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} ↦ (((π‘˜β€˜π‘₯) + 1)(.gβ€˜π‘Ÿ)(π‘“β€˜(π‘˜ ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = π‘₯, 1, 0)))))))))
df-algind 22016 AlgInd = (𝑀 ∈ V, π‘˜ ∈ 𝒫 (Baseβ€˜π‘€) ↦ {𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ∣ Fun β—‘(𝑓 ∈ (Baseβ€˜(𝑣 mPoly (𝑀 β†Ύs π‘˜))) ↦ ((((𝑣 evalSub 𝑀)β€˜π‘˜)β€˜π‘“)β€˜( I β†Ύ 𝑣)))})
cps1 22017class PwSer1
cv1 22018class var1
cpl1 22019class Poly1
cco1 22020class coe1
ctp1 22021class toPoly1
df-psr1 22022PwSer1 = (π‘Ÿ ∈ V ↦ ((1o ordPwSer π‘Ÿ)β€˜βˆ…))
df-vr1 22023var1 = (π‘Ÿ ∈ V ↦ ((1o mVar π‘Ÿ)β€˜βˆ…))
df-ply1 22024Poly1 = (π‘Ÿ ∈ V ↦ ((PwSer1β€˜π‘Ÿ) β†Ύs (Baseβ€˜(1o mPoly π‘Ÿ))))
df-coe1 22025coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (π‘“β€˜(1o Γ— {𝑛}))))
df-toply1 22026toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (β„•0 ↑m 1o) ↦ (π‘“β€˜(π‘›β€˜βˆ…))))
ces1 22154class evalSub1
ce1 22155class eval1
df-evls1 22156 evalSub1 = (𝑠 ∈ V, π‘Ÿ ∈ 𝒫 (Baseβ€˜π‘ ) ↦ ⦋(Baseβ€˜π‘ ) / π‘β¦Œ((π‘₯ ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (π‘₯ ∘ (𝑦 ∈ 𝑏 ↦ (1o Γ— {𝑦})))) ∘ ((1o evalSub 𝑠)β€˜π‘Ÿ)))
df-evl1 22157eval1 = (π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘β¦Œ((π‘₯ ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (π‘₯ ∘ (𝑦 ∈ 𝑏 ↦ (1o Γ— {𝑦})))) ∘ (1o eval π‘Ÿ)))
cmmul 22207class maMul
df-mamu 22208 maMul = (π‘Ÿ ∈ V, π‘œ ∈ V ↦ ⦋(1st β€˜(1st β€˜π‘œ)) / π‘šβ¦Œβ¦‹(2nd β€˜(1st β€˜π‘œ)) / π‘›β¦Œβ¦‹(2nd β€˜π‘œ) / π‘β¦Œ(π‘₯ ∈ ((Baseβ€˜π‘Ÿ) ↑m (π‘š Γ— 𝑛)), 𝑦 ∈ ((Baseβ€˜π‘Ÿ) ↑m (𝑛 Γ— 𝑝)) ↦ (𝑖 ∈ π‘š, π‘˜ ∈ 𝑝 ↦ (π‘Ÿ Ξ£g (𝑗 ∈ 𝑛 ↦ ((𝑖π‘₯𝑗)(.rβ€˜π‘Ÿ)(π‘—π‘¦π‘˜)))))))
cmat 22229class Mat
df-mat 22230 Mat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ((π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) sSet ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩))
cdmat 22312class DMat
cscmat 22313class ScMat
df-dmat 22314 DMat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ {π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ∣ βˆ€π‘– ∈ 𝑛 βˆ€π‘— ∈ 𝑛 (𝑖 β‰  𝑗 β†’ (π‘–π‘šπ‘—) = (0gβ€˜π‘Ÿ))})
df-scmat 22315 ScMat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ⦋(𝑛 Mat π‘Ÿ) / π‘Žβ¦Œ{π‘š ∈ (Baseβ€˜π‘Ž) ∣ βˆƒπ‘ ∈ (Baseβ€˜π‘Ÿ)π‘š = (𝑐( ·𝑠 β€˜π‘Ž)(1rβ€˜π‘Ž))})
cmvmul 22364class maVecMul
df-mvmul 22365 maVecMul = (π‘Ÿ ∈ V, π‘œ ∈ V ↦ ⦋(1st β€˜π‘œ) / π‘šβ¦Œβ¦‹(2nd β€˜π‘œ) / π‘›β¦Œ(π‘₯ ∈ ((Baseβ€˜π‘Ÿ) ↑m (π‘š Γ— 𝑛)), 𝑦 ∈ ((Baseβ€˜π‘Ÿ) ↑m 𝑛) ↦ (𝑖 ∈ π‘š ↦ (π‘Ÿ Ξ£g (𝑗 ∈ 𝑛 ↦ ((𝑖π‘₯𝑗)(.rβ€˜π‘Ÿ)(π‘¦β€˜π‘—)))))))
cmarrep 22380class matRRep
cmatrepV 22381class matRepV
df-marrep 22382 matRRep = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)), 𝑠 ∈ (Baseβ€˜π‘Ÿ) ↦ (π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = π‘˜, if(𝑗 = 𝑙, 𝑠, (0gβ€˜π‘Ÿ)), (π‘–π‘šπ‘—))))))
df-marepv 22383 matRepV = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)), 𝑣 ∈ ((Baseβ€˜π‘Ÿ) ↑m 𝑛) ↦ (π‘˜ ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = π‘˜, (π‘£β€˜π‘–), (π‘–π‘šπ‘—))))))
csubma 22400class subMat
df-subma 22401 subMat = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 βˆ– {π‘˜}), 𝑗 ∈ (𝑛 βˆ– {𝑙}) ↦ (π‘–π‘šπ‘—)))))
cmdat 22408class maDet
df-mdet 22409 maDet = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (π‘Ÿ Ξ£g (𝑝 ∈ (Baseβ€˜(SymGrpβ€˜π‘›)) ↦ ((((β„€RHomβ€˜π‘Ÿ) ∘ (pmSgnβ€˜π‘›))β€˜π‘)(.rβ€˜π‘Ÿ)((mulGrpβ€˜π‘Ÿ) Ξ£g (π‘₯ ∈ 𝑛 ↦ ((π‘β€˜π‘₯)π‘šπ‘₯))))))))
cmadu 22456class maAdju
cminmar1 22457class minMatR1
df-madu 22458 maAdju = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))))))
df-minmar1 22459 minMatR1 = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = π‘˜, if(𝑗 = 𝑙, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘–π‘šπ‘—))))))
ccpmat 22527class ConstPolyMat
cmat2pmat 22528class matToPolyMat
ccpmat2mat 22529class cPolyMatToMat
df-cpmat 22530 ConstPolyMat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ {π‘š ∈ (Baseβ€˜(𝑛 Mat (Poly1β€˜π‘Ÿ))) ∣ βˆ€π‘– ∈ 𝑛 βˆ€π‘— ∈ 𝑛 βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘–π‘šπ‘—))β€˜π‘˜) = (0gβ€˜π‘Ÿ)})
df-mat2pmat 22531 matToPolyMat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (π‘₯ ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((algScβ€˜(Poly1β€˜π‘Ÿ))β€˜(π‘₯π‘šπ‘¦)))))
df-cpmat2mat 22532 cPolyMatToMat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ (π‘š ∈ (𝑛 ConstPolyMat π‘Ÿ) ↦ (π‘₯ ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1β€˜(π‘₯π‘šπ‘¦))β€˜0))))
cdecpmat 22586class decompPMat
df-decpmat 22587 decompPMat = (π‘š ∈ V, π‘˜ ∈ β„•0 ↦ (𝑖 ∈ dom dom π‘š, 𝑗 ∈ dom dom π‘š ↦ ((coe1β€˜(π‘–π‘šπ‘—))β€˜π‘˜)))
cpm2mp 22616class pMatToMatPoly
df-pm2mp 22617 pMatToMatPoly = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat (Poly1β€˜π‘Ÿ))) ↦ ⦋(𝑛 Mat π‘Ÿ) / π‘Žβ¦Œβ¦‹(Poly1β€˜π‘Ž) / π‘žβ¦Œ(π‘ž Ξ£g (π‘˜ ∈ β„•0 ↦ ((π‘š decompPMat π‘˜)( ·𝑠 β€˜π‘ž)(π‘˜(.gβ€˜(mulGrpβ€˜π‘ž))(var1β€˜π‘Ž)))))))
cchpmat 22650class CharPlyMat
df-chpmat 22651 CharPlyMat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ ((𝑛 maDet (Poly1β€˜π‘Ÿ))β€˜(((var1β€˜π‘Ÿ)( ·𝑠 β€˜(𝑛 Mat (Poly1β€˜π‘Ÿ)))(1rβ€˜(𝑛 Mat (Poly1β€˜π‘Ÿ))))(-gβ€˜(𝑛 Mat (Poly1β€˜π‘Ÿ)))((𝑛 matToPolyMat π‘Ÿ)β€˜π‘š)))))
ctop 22717class Top
df-top 22718Top = {π‘₯ ∣ (βˆ€π‘¦ ∈ 𝒫 π‘₯βˆͺ 𝑦 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (𝑦 ∩ 𝑧) ∈ π‘₯)}
ctopon 22734class TopOn
df-topon 22735TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = βˆͺ 𝑗})
ctps 22756class TopSp
df-topsp 22757TopSp = {𝑓 ∣ (TopOpenβ€˜π‘“) ∈ (TopOnβ€˜(Baseβ€˜π‘“))}
ctb 22770class TopBases
df-bases 22771TopBases = {π‘₯ ∣ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (𝑦 ∩ 𝑧) βŠ† βˆͺ (π‘₯ ∩ 𝒫 (𝑦 ∩ 𝑧))}
ccld 22842class Clsd
cnt 22843class int
ccl 22844class cls
df-cld 22845Clsd = (𝑗 ∈ Top ↦ {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ (βˆͺ 𝑗 βˆ– π‘₯) ∈ 𝑗})
df-ntr 22846int = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ βˆͺ (𝑗 ∩ 𝒫 π‘₯)))
df-cls 22847cls = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ ∩ {𝑦 ∈ (Clsdβ€˜π‘—) ∣ π‘₯ βŠ† 𝑦}))
cnei 22923class nei
df-nei 22924nei = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑦 ∈ 𝒫 βˆͺ 𝑗 ∣ βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑦)}))
clp 22960class limPt
cperf 22961class Perf
df-lp 22962limPt = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((clsβ€˜π‘—)β€˜(π‘₯ βˆ– {𝑦}))}))
df-perf 22963Perf = {𝑗 ∈ Top ∣ ((limPtβ€˜π‘—)β€˜βˆͺ 𝑗) = βˆͺ 𝑗}
ccn 23050class Cn
ccnp 23051class CnP
clm 23052class ⇝𝑑
df-cn 23053 Cn = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗})
df-cnp 23054 CnP = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑓 ∈ (βˆͺ π‘˜ ↑m βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ ((π‘“β€˜π‘₯) ∈ 𝑦 β†’ βˆƒπ‘” ∈ 𝑗 (π‘₯ ∈ 𝑔 ∧ (𝑓 β€œ 𝑔) βŠ† 𝑦))}))
df-lm 23055⇝𝑑 = (𝑗 ∈ Top ↦ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
ct0 23132class Kol2
ct1 23133class Fre
cha 23134class Haus
creg 23135class Reg
cnrm 23136class Nrm
ccnrm 23137class CNrm
cpnrm 23138class PNrm
df-t0 23139Kol2 = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ βˆͺ π‘—βˆ€π‘¦ ∈ βˆͺ 𝑗(βˆ€π‘œ ∈ 𝑗 (π‘₯ ∈ π‘œ ↔ 𝑦 ∈ π‘œ) β†’ π‘₯ = 𝑦)}
df-t1 23140Fre = {π‘₯ ∈ Top ∣ βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯)}
df-haus 23141Haus = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ βˆͺ π‘—βˆ€π‘¦ ∈ βˆͺ 𝑗(π‘₯ β‰  𝑦 β†’ βˆƒπ‘› ∈ 𝑗 βˆƒπ‘š ∈ 𝑗 (π‘₯ ∈ 𝑛 ∧ 𝑦 ∈ π‘š ∧ (𝑛 ∩ π‘š) = βˆ…))}
df-reg 23142Reg = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((clsβ€˜π‘—)β€˜π‘§) βŠ† π‘₯)}
df-nrm 23143Nrm = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ ((Clsdβ€˜π‘—) ∩ 𝒫 π‘₯)βˆƒπ‘§ ∈ 𝑗 (𝑦 βŠ† 𝑧 ∧ ((clsβ€˜π‘—)β€˜π‘§) βŠ† π‘₯)}
df-cnrm 23144CNrm = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝒫 βˆͺ 𝑗(𝑗 β†Ύt π‘₯) ∈ Nrm}
df-pnrm 23145PNrm = {𝑗 ∈ Nrm ∣ (Clsdβ€˜π‘—) βŠ† ran (𝑓 ∈ (𝑗 ↑m β„•) ↦ ∩ ran 𝑓)}
ccmp 23212class Comp
df-cmp 23213Comp = {π‘₯ ∈ Top ∣ βˆ€π‘¦ ∈ 𝒫 π‘₯(βˆͺ π‘₯ = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ (𝒫 𝑦 ∩ Fin)βˆͺ π‘₯ = βˆͺ 𝑧)}
cconn 23237class Conn
df-conn 23238Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsdβ€˜π‘—)) = {βˆ…, βˆͺ 𝑗}}
c1stc 23263class 1stΟ‰
c2ndc 23264class 2ndΟ‰
df-1stc 232651stΟ‰ = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ βˆͺ π‘—βˆƒπ‘¦ ∈ 𝒫 𝑗(𝑦 β‰Ό Ο‰ ∧ βˆ€π‘§ ∈ 𝑗 (π‘₯ ∈ 𝑧 β†’ π‘₯ ∈ βˆͺ (𝑦 ∩ 𝒫 𝑧)))}
df-2ndc 232662ndΟ‰ = {𝑗 ∣ βˆƒπ‘₯ ∈ TopBases (π‘₯ β‰Ό Ο‰ ∧ (topGenβ€˜π‘₯) = 𝑗)}
clly 23290class Locally 𝐴
cnlly 23291class 𝑛-Locally 𝐴
df-lly 23292Locally 𝐴 = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (𝑗 ∩ 𝒫 π‘₯)(𝑦 ∈ 𝑒 ∧ (𝑗 β†Ύt 𝑒) ∈ 𝐴)}
df-nlly 23293𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐴}
cref 23328class Ref
cptfin 23329class PtFin
clocfin 23330class LocFin
df-ref 23331Ref = {⟨π‘₯, π‘¦βŸ© ∣ (βˆͺ 𝑦 = βˆͺ π‘₯ ∧ βˆ€π‘§ ∈ π‘₯ βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)}
df-ptfin 23332PtFin = {π‘₯ ∣ βˆ€π‘¦ ∈ βˆͺ π‘₯{𝑧 ∈ π‘₯ ∣ 𝑦 ∈ 𝑧} ∈ Fin}
df-locfin 23333LocFin = (π‘₯ ∈ Top ↦ {𝑦 ∣ (βˆͺ π‘₯ = βˆͺ 𝑦 ∧ βˆ€π‘ ∈ βˆͺ π‘₯βˆƒπ‘› ∈ π‘₯ (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))})
ckgen 23359class π‘˜Gen
df-kgen 23360π‘˜Gen = (𝑗 ∈ Top ↦ {π‘₯ ∈ 𝒫 βˆͺ 𝑗 ∣ βˆ€π‘˜ ∈ 𝒫 βˆͺ 𝑗((𝑗 β†Ύt π‘˜) ∈ Comp β†’ (π‘₯ ∩ π‘˜) ∈ (𝑗 β†Ύt π‘˜))})
ctx 23386class Γ—t
cxko 23387class ↑ko
df-tx 23388 Γ—t = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (topGenβ€˜ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦))))
df-xko 23389 ↑ko = (𝑠 ∈ Top, π‘Ÿ ∈ Top ↦ (topGenβ€˜(fiβ€˜ran (π‘˜ ∈ {π‘₯ ∈ 𝒫 βˆͺ π‘Ÿ ∣ (π‘Ÿ β†Ύt π‘₯) ∈ Comp}, 𝑣 ∈ 𝑠 ↦ {𝑓 ∈ (π‘Ÿ Cn 𝑠) ∣ (𝑓 β€œ π‘˜) βŠ† 𝑣}))))
ckq 23519class KQ
df-kq 23520KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ π‘₯ ∈ 𝑦})))
chmeo 23579class Homeo
chmph 23580class ≃
df-hmeo 23581Homeo = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (𝑗 Cn π‘˜) ∣ ◑𝑓 ∈ (π‘˜ Cn 𝑗)})
df-hmph 23582 ≃ = (β—‘Homeo β€œ (V βˆ– 1o))
cfil 23671class Fil
df-fil 23672Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBasβ€˜π‘§) ∣ βˆ€π‘₯ ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 π‘₯) β‰  βˆ… β†’ π‘₯ ∈ 𝑓)})
cufil 23725class UFil
cufl 23726class UFL
df-ufil 23727UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Filβ€˜π‘”) ∣ βˆ€π‘₯ ∈ 𝒫 𝑔(π‘₯ ∈ 𝑓 ∨ (𝑔 βˆ– π‘₯) ∈ 𝑓)})
df-ufl 23728UFL = {π‘₯ ∣ βˆ€π‘“ ∈ (Filβ€˜π‘₯)βˆƒπ‘” ∈ (UFilβ€˜π‘₯)𝑓 βŠ† 𝑔}
cfm 23759class FilMap
cflim 23760class fLim
cflf 23761class fLimf
cfcls 23762class fClus
cfcf 23763class fClusf
df-fm 23764 FilMap = (π‘₯ ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBasβ€˜dom 𝑓) ↦ (π‘₯filGenran (𝑑 ∈ 𝑦 ↦ (𝑓 β€œ 𝑑)))))
df-flim 23765 fLim = (𝑗 ∈ Top, 𝑓 ∈ βˆͺ ran Fil ↦ {π‘₯ ∈ βˆͺ 𝑗 ∣ (((neiβ€˜π‘—)β€˜{π‘₯}) βŠ† 𝑓 ∧ 𝑓 βŠ† 𝒫 βˆͺ 𝑗)})
df-flf 23766 fLimf = (π‘₯ ∈ Top, 𝑦 ∈ βˆͺ ran Fil ↦ (𝑓 ∈ (βˆͺ π‘₯ ↑m βˆͺ 𝑦) ↦ (π‘₯ fLim ((βˆͺ π‘₯ FilMap 𝑓)β€˜π‘¦))))
df-fcls 23767 fClus = (𝑗 ∈ Top, 𝑓 ∈ βˆͺ ran Fil ↦ if(βˆͺ 𝑗 = βˆͺ 𝑓, ∩ π‘₯ ∈ 𝑓 ((clsβ€˜π‘—)β€˜π‘₯), βˆ…))
df-fcf 23768 fClusf = (𝑗 ∈ Top, 𝑓 ∈ βˆͺ ran Fil ↦ (𝑔 ∈ (βˆͺ 𝑗 ↑m βˆͺ 𝑓) ↦ (𝑗 fClus ((βˆͺ 𝑗 FilMap 𝑔)β€˜π‘“))))
ccnext 23885class CnExt
df-cnext 23886CnExt = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ (𝑓 ∈ (βˆͺ π‘˜ ↑pm βˆͺ 𝑗) ↦ βˆͺ π‘₯ ∈ ((clsβ€˜π‘—)β€˜dom 𝑓)({π‘₯} Γ— ((π‘˜ fLimf (((neiβ€˜π‘—)β€˜{π‘₯}) β†Ύt dom 𝑓))β€˜π‘“))))
ctmd 23896class TopMnd
ctgp 23897class TopGrp
df-tmd 23898TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpenβ€˜π‘“) / 𝑗](+π‘“β€˜π‘“) ∈ ((𝑗 Γ—t 𝑗) Cn 𝑗)}
df-tgp 23899TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpenβ€˜π‘“) / 𝑗](invgβ€˜π‘“) ∈ (𝑗 Cn 𝑗)}
ctsu 23952class tsums
df-tsms 23953 tsums = (𝑀 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / π‘ β¦Œ(((TopOpenβ€˜π‘€) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 βŠ† 𝑦})))β€˜(𝑦 ∈ 𝑠 ↦ (𝑀 Ξ£g (𝑓 β†Ύ 𝑦)))))
ctrg 23982class TopRing
ctdrg 23983class TopDRing
ctlm 23984class TopMod
ctvc 23985class TopVec
df-trg 23986TopRing = {π‘Ÿ ∈ (TopGrp ∩ Ring) ∣ (mulGrpβ€˜π‘Ÿ) ∈ TopMnd}
df-tdrg 23987TopDRing = {π‘Ÿ ∈ (TopRing ∩ DivRing) ∣ ((mulGrpβ€˜π‘Ÿ) β†Ύs (Unitβ€˜π‘Ÿ)) ∈ TopGrp}
df-tlm 23988TopMod = {𝑀 ∈ (TopMnd ∩ LMod) ∣ ((Scalarβ€˜π‘€) ∈ TopRing ∧ ( Β·sf β€˜π‘€) ∈ (((TopOpenβ€˜(Scalarβ€˜π‘€)) Γ—t (TopOpenβ€˜π‘€)) Cn (TopOpenβ€˜π‘€)))}
df-tvc 23989TopVec = {𝑀 ∈ TopMod ∣ (Scalarβ€˜π‘€) ∈ TopDRing}
cust 24026class UnifOn
df-ust 24027UnifOn = (π‘₯ ∈ V ↦ {𝑒 ∣ (𝑒 βŠ† 𝒫 (π‘₯ Γ— π‘₯) ∧ (π‘₯ Γ— π‘₯) ∈ 𝑒 ∧ βˆ€π‘£ ∈ 𝑒 (βˆ€π‘€ ∈ 𝒫 (π‘₯ Γ— π‘₯)(𝑣 βŠ† 𝑀 β†’ 𝑀 ∈ 𝑒) ∧ βˆ€π‘€ ∈ 𝑒 (𝑣 ∩ 𝑀) ∈ 𝑒 ∧ (( I β†Ύ π‘₯) βŠ† 𝑣 ∧ ◑𝑣 ∈ 𝑒 ∧ βˆƒπ‘€ ∈ 𝑒 (𝑀 ∘ 𝑀) βŠ† 𝑣)))})
cutop 24057class unifTop
df-utop 24058unifTop = (𝑒 ∈ βˆͺ ran UnifOn ↦ {π‘Ž ∈ 𝒫 dom βˆͺ 𝑒 ∣ βˆ€π‘₯ ∈ π‘Ž βˆƒπ‘£ ∈ 𝑒 (𝑣 β€œ {π‘₯}) βŠ† π‘Ž})
cuss 24080class UnifSt
cusp 24081class UnifSp
ctus 24082class toUnifSp
df-uss 24083UnifSt = (𝑓 ∈ V ↦ ((UnifSetβ€˜π‘“) β†Ύt ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))))
df-usp 24084UnifSp = {𝑓 ∣ ((UnifStβ€˜π‘“) ∈ (UnifOnβ€˜(Baseβ€˜π‘“)) ∧ (TopOpenβ€˜π‘“) = (unifTopβ€˜(UnifStβ€˜π‘“)))}
df-tus 24085toUnifSp = (𝑒 ∈ βˆͺ ran UnifOn ↦ ({⟨(Baseβ€˜ndx), dom βˆͺ π‘’βŸ©, ⟨(UnifSetβ€˜ndx), π‘’βŸ©} sSet ⟨(TopSetβ€˜ndx), (unifTopβ€˜π‘’)⟩))
cucn 24102class Cnu
df-ucn 24103 Cnu = (𝑒 ∈ βˆͺ ran UnifOn, 𝑣 ∈ βˆͺ ran UnifOn ↦ {𝑓 ∈ (dom βˆͺ 𝑣 ↑m dom βˆͺ 𝑒) ∣ βˆ€π‘  ∈ 𝑣 βˆƒπ‘Ÿ ∈ 𝑒 βˆ€π‘₯ ∈ dom βˆͺ π‘’βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
ccfilu 24113class CauFilu
df-cfilu 24114CauFilu = (𝑒 ∈ βˆͺ ran UnifOn ↦ {𝑓 ∈ (fBasβ€˜dom βˆͺ 𝑒) ∣ βˆ€π‘£ ∈ 𝑒 βˆƒπ‘Ž ∈ 𝑓 (π‘Ž Γ— π‘Ž) βŠ† 𝑣})
ccusp 24124class CUnifSp
df-cusp 24125CUnifSp = {𝑀 ∈ UnifSp ∣ βˆ€π‘ ∈ (Filβ€˜(Baseβ€˜π‘€))(𝑐 ∈ (CauFiluβ€˜(UnifStβ€˜π‘€)) β†’ ((TopOpenβ€˜π‘€) fLim 𝑐) β‰  βˆ…)}
cxms 24145class ∞MetSp
cms 24146class MetSp
ctms 24147class toMetSp
df-xms 24148∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpenβ€˜π‘“) = (MetOpenβ€˜((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))))}
df-ms 24149MetSp = {𝑓 ∈ ∞MetSp ∣ ((distβ€˜π‘“) β†Ύ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))) ∈ (Metβ€˜(Baseβ€˜π‘“))}
df-tms 24150toMetSp = (𝑑 ∈ βˆͺ ran ∞Met ↦ ({⟨(Baseβ€˜ndx), dom dom π‘‘βŸ©, ⟨(distβ€˜ndx), π‘‘βŸ©} sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜π‘‘)⟩))
cnm 24407class norm
cngp 24408class NrmGrp
ctng 24409class toNrmGrp
cnrg 24410class NrmRing
cnlm 24411class NrmMod
cnvc 24412class NrmVec
df-nm 24413norm = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€))))
df-ngp 24414NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((normβ€˜π‘”) ∘ (-gβ€˜π‘”)) βŠ† (distβ€˜π‘”)}
df-tng 24415 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(distβ€˜ndx), (𝑓 ∘ (-gβ€˜π‘”))⟩) sSet ⟨(TopSetβ€˜ndx), (MetOpenβ€˜(𝑓 ∘ (-gβ€˜π‘”)))⟩))
df-nrg 24416NrmRing = {𝑀 ∈ NrmGrp ∣ (normβ€˜π‘€) ∈ (AbsValβ€˜π‘€)}
df-nlm 24417NrmMod = {𝑀 ∈ (NrmGrp ∩ LMod) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))}
df-nvc 24418NrmVec = (NrmMod ∩ LVec)
cnmo 24544class normOp
cnghm 24545class NGHom
cnmhm 24546class NMHom
df-nmo 24547 normOp = (𝑠 ∈ NrmGrp, 𝑑 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑑) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘ )((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯))}, ℝ*, < )))
df-nghm 24548 NGHom = (𝑠 ∈ NrmGrp, 𝑑 ∈ NrmGrp ↦ (β—‘(𝑠 normOp 𝑑) β€œ ℝ))
df-nmhm 24549 NMHom = (𝑠 ∈ NrmMod, 𝑑 ∈ NrmMod ↦ ((𝑠 LMHom 𝑑) ∩ (𝑠 NGHom 𝑑)))
cii 24717class II
ccncf 24718class –cnβ†’
df-ii 24719II = (MetOpenβ€˜((abs ∘ βˆ’ ) β†Ύ ((0[,]1) Γ— (0[,]1))))
df-cncf 24720–cnβ†’ = (π‘Ž ∈ 𝒫 β„‚, 𝑏 ∈ 𝒫 β„‚ ↦ {𝑓 ∈ (𝑏 ↑m π‘Ž) ∣ βˆ€π‘₯ ∈ π‘Ž βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘¦ ∈ π‘Ž ((absβ€˜(π‘₯ βˆ’ 𝑦)) < 𝑑 β†’ (absβ€˜((π‘“β€˜π‘₯) βˆ’ (π‘“β€˜π‘¦))) < 𝑒)})
chtpy 24815class Htpy
cphtpy 24816class PHtpy
cphtpc 24817class ≃ph
df-htpy 24818 Htpy = (π‘₯ ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (π‘₯ Cn 𝑦), 𝑔 ∈ (π‘₯ Cn 𝑦) ↦ {β„Ž ∈ ((π‘₯ Γ—t II) Cn 𝑦) ∣ βˆ€π‘  ∈ βˆͺ π‘₯((π‘ β„Ž0) = (π‘“β€˜π‘ ) ∧ (π‘ β„Ž1) = (π‘”β€˜π‘ ))}))
df-phtpy 24819PHtpy = (π‘₯ ∈ Top ↦ (𝑓 ∈ (II Cn π‘₯), 𝑔 ∈ (II Cn π‘₯) ↦ {β„Ž ∈ (𝑓(II Htpy π‘₯)𝑔) ∣ βˆ€π‘  ∈ (0[,]1)((0β„Žπ‘ ) = (π‘“β€˜0) ∧ (1β„Žπ‘ ) = (π‘“β€˜1))}))
df-phtpc 24840 ≃ph = (π‘₯ ∈ Top ↦ {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† (II Cn π‘₯) ∧ (𝑓(PHtpyβ€˜π‘₯)𝑔) β‰  βˆ…)})
cpco 24849class *𝑝
comi 24850class Ξ©1
comn 24851class Ω𝑛
cpi1 24852class Ο€1
cpin 24853class Ο€n
df-pco 24854*𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (π‘₯ ∈ (0[,]1) ↦ if(π‘₯ ≀ (1 / 2), (π‘“β€˜(2 Β· π‘₯)), (π‘”β€˜((2 Β· π‘₯) βˆ’ 1))))))
df-om1 24855 Ξ©1 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ {⟨(Baseβ€˜ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((π‘“β€˜0) = 𝑦 ∧ (π‘“β€˜1) = 𝑦)}⟩, ⟨(+gβ€˜ndx), (*π‘β€˜π‘—)⟩, ⟨(TopSetβ€˜ndx), (𝑗 ↑ko II)⟩})
df-omn 24856 Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ seq0(((π‘₯ ∈ V, 𝑝 ∈ V ↦ ⟨((TopOpenβ€˜(1st β€˜π‘₯)) Ξ©1 (2nd β€˜π‘₯)), ((0[,]1) Γ— {(2nd β€˜π‘₯)})⟩) ∘ 1st ), ⟨{⟨(Baseβ€˜ndx), βˆͺ π‘—βŸ©, ⟨(TopSetβ€˜ndx), π‘—βŸ©}, π‘¦βŸ©))
df-pi1 24857 Ο€1 = (𝑗 ∈ Top, 𝑦 ∈ βˆͺ 𝑗 ↦ ((𝑗 Ξ©1 𝑦) /s ( ≃phβ€˜π‘—)))
df-pin 24858 Ο€n = (𝑗 ∈ Top, 𝑝 ∈ βˆͺ 𝑗 ↦ (𝑛 ∈ β„•0 ↦ ((1st β€˜((𝑗 Ω𝑛 𝑝)β€˜π‘›)) /s if(𝑛 = 0, {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘“ ∈ (II Cn 𝑗)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}, ( ≃phβ€˜(TopOpenβ€˜(1st β€˜((𝑗 Ω𝑛 𝑝)β€˜(𝑛 βˆ’ 1)))))))))
cclm 24911class β„‚Mod
df-clm 24912β„‚Mod = {𝑀 ∈ LMod ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ π‘˜ ∈ (SubRingβ€˜β„‚fld))}
ccvs 24972class β„‚Vec
df-cvs 24973β„‚Vec = (β„‚Mod ∩ LVec)
ccph 25016class β„‚PreHil
ctcph 25017class toβ„‚PreHil
df-cph 25018β„‚PreHil = {𝑀 ∈ (PreHil ∩ NrmMod) ∣ [(Scalarβ€˜π‘€) / 𝑓][(Baseβ€˜π‘“) / π‘˜](𝑓 = (β„‚fld β†Ύs π‘˜) ∧ (√ β€œ (π‘˜ ∩ (0[,)+∞))) βŠ† π‘˜ ∧ (normβ€˜π‘€) = (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯))))}
df-tcph 25019toβ„‚PreHil = (𝑀 ∈ V ↦ (𝑀 toNrmGrp (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (βˆšβ€˜(π‘₯(Β·π‘–β€˜π‘€)π‘₯)))))
ccfil 25102class CauFil
ccau 25103class Cau
ccmet 25104class CMet
df-cfil 25105CauFil = (𝑑 ∈ βˆͺ ran ∞Met ↦ {𝑓 ∈ (Filβ€˜dom dom 𝑑) ∣ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ 𝑓 (𝑑 β€œ (𝑦 Γ— 𝑦)) βŠ† (0[,)π‘₯)})
df-cau 25106Cau = (𝑑 ∈ βˆͺ ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑 ↑pm β„‚) ∣ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘“β€˜π‘—)(ballβ€˜π‘‘)π‘₯)})
df-cmet 25107CMet = (π‘₯ ∈ V ↦ {𝑑 ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…})
ccms 25182class CMetSp
cbn 25183class Ban
chl 25184class β„‚Hil
df-cms 25185CMetSp = {𝑀 ∈ MetSp ∣ [(Baseβ€˜π‘€) / 𝑏]((distβ€˜π‘€) β†Ύ (𝑏 Γ— 𝑏)) ∈ (CMetβ€˜π‘)}
df-bn 25186Ban = {𝑀 ∈ (NrmVec ∩ CMetSp) ∣ (Scalarβ€˜π‘€) ∈ CMetSp}
df-hl 25187β„‚Hil = (Ban ∩ β„‚PreHil)
crrx 25233class ℝ^
cehl 25234class 𝔼hil
df-rrx 25235ℝ^ = (𝑖 ∈ V ↦ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)))
df-ehl 25236𝔼hil = (𝑛 ∈ β„•0 ↦ (ℝ^β€˜(1...𝑛)))
covol 25313class vol*
cvol 25314class vol
df-ovol 25315vol* = (π‘₯ ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(π‘₯ βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
df-vol 25316vol = (vol* β†Ύ {π‘₯ ∣ βˆ€π‘¦ ∈ (β—‘vol* β€œ ℝ)(vol*β€˜π‘¦) = ((vol*β€˜(𝑦 ∩ π‘₯)) + (vol*β€˜(𝑦 βˆ– π‘₯)))})
cmbf 25465class MblFn
citg1 25466class ∫1
citg2 25467class ∫2
cibl 25468class 𝐿1
citg 25469class ∫𝐴𝐡 dπ‘₯
df-mbf 25470MblFn = {𝑓 ∈ (β„‚ ↑pm ℝ) ∣ βˆ€π‘₯ ∈ ran (,)((β—‘(β„œ ∘ 𝑓) β€œ π‘₯) ∈ dom vol ∧ (β—‘(β„‘ ∘ 𝑓) β€œ π‘₯) ∈ dom vol)}
df-itg1 25471∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
df-itg2 25472∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({π‘₯ ∣ βˆƒπ‘” ∈ dom ∫1(𝑔 ∘r ≀ 𝑓 ∧ π‘₯ = (∫1β€˜π‘”))}, ℝ*, < ))
df-ibl 25473𝐿1 = {𝑓 ∈ MblFn ∣ βˆ€π‘˜ ∈ (0...3)(∫2β€˜(π‘₯ ∈ ℝ ↦ ⦋(β„œβ€˜((π‘“β€˜π‘₯) / (iβ†‘π‘˜))) / π‘¦β¦Œif((π‘₯ ∈ dom 𝑓 ∧ 0 ≀ 𝑦), 𝑦, 0))) ∈ ℝ}
df-itg 25474∫𝐴𝐡 dπ‘₯ = Ξ£π‘˜ ∈ (0...3)((iβ†‘π‘˜) Β· (∫2β€˜(π‘₯ ∈ ℝ ↦ ⦋(β„œβ€˜(𝐡 / (iβ†‘π‘˜))) / π‘¦β¦Œif((π‘₯ ∈ 𝐴 ∧ 0 ≀ 𝑦), 𝑦, 0))))
c0p 25520class 0𝑝
df-0p 255210𝑝 = (β„‚ Γ— {0})
cdit 25697class ⨜[𝐴 β†’ 𝐡]𝐢 dπ‘₯
df-ditg 25698⨜[𝐴 β†’ 𝐡]𝐢 dπ‘₯ = if(𝐴 ≀ 𝐡, ∫(𝐴(,)𝐡)𝐢 dπ‘₯, -∫(𝐡(,)𝐴)𝐢 dπ‘₯)
climc 25713class limβ„‚
cdv 25714class D
cdvn 25715class D𝑛
ccpn 25716class 𝓑C𝑛
df-limc 25717 limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∣ [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)})
df-dv 25718 D = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ βˆͺ π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)))
df-dvn 25719 D𝑛 = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ seq0(((π‘₯ ∈ V ↦ (𝑠 D π‘₯)) ∘ 1st ), (β„•0 Γ— {𝑓})))
df-cpn 25720𝓑C𝑛 = (𝑠 ∈ 𝒫 β„‚ ↦ (π‘₯ ∈ β„•0 ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)β€˜π‘₯) ∈ (dom 𝑓–cnβ†’β„‚)}))
cmdg 25908class mDeg
cdg1 25909class deg1
df-mdeg 25910 mDeg = (𝑖 ∈ V, π‘Ÿ ∈ V ↦ (𝑓 ∈ (Baseβ€˜(𝑖 mPoly π‘Ÿ)) ↦ sup(ran (β„Ž ∈ (𝑓 supp (0gβ€˜π‘Ÿ)) ↦ (β„‚fld Ξ£g β„Ž)), ℝ*, < )))
df-deg1 25911 deg1 = (π‘Ÿ ∈ V ↦ (1o mDeg π‘Ÿ))
cmn1 25983class Monic1p
cuc1p 25984class Unic1p
cq1p 25985class quot1p
cr1p 25986class rem1p
cig1p 25987class idlGen1p
df-mon1 25988Monic1p = (π‘Ÿ ∈ V ↦ {𝑓 ∈ (Baseβ€˜(Poly1β€˜π‘Ÿ)) ∣ (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) = (1rβ€˜π‘Ÿ))})
df-uc1p 25989Unic1p = (π‘Ÿ ∈ V ↦ {𝑓 ∈ (Baseβ€˜(Poly1β€˜π‘Ÿ)) ∣ (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ))})
df-q1p 25990quot1p = (π‘Ÿ ∈ V ↦ ⦋(Poly1β€˜π‘Ÿ) / π‘β¦Œβ¦‹(Baseβ€˜π‘) / π‘β¦Œ(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (β„©π‘ž ∈ 𝑏 (( deg1 β€˜π‘Ÿ)β€˜(𝑓(-gβ€˜π‘)(π‘ž(.rβ€˜π‘)𝑔))) < (( deg1 β€˜π‘Ÿ)β€˜π‘”))))
df-r1p 25991rem1p = (π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜(Poly1β€˜π‘Ÿ)) / π‘β¦Œ(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-gβ€˜(Poly1β€˜π‘Ÿ))((𝑓(quot1pβ€˜π‘Ÿ)𝑔)(.rβ€˜(Poly1β€˜π‘Ÿ))𝑔))))
df-ig1p 25992idlGen1p = (π‘Ÿ ∈ V ↦ (𝑖 ∈ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) ↦ if(𝑖 = {(0gβ€˜(Poly1β€˜π‘Ÿ))}, (0gβ€˜(Poly1β€˜π‘Ÿ)), (℩𝑔 ∈ (𝑖 ∩ (Monic1pβ€˜π‘Ÿ))(( deg1 β€˜π‘Ÿ)β€˜π‘”) = inf((( deg1 β€˜π‘Ÿ) β€œ (𝑖 βˆ– {(0gβ€˜(Poly1β€˜π‘Ÿ))})), ℝ, < )))))
cply 26038class Poly
cidp 26039class Xp
ccoe 26040class coeff
cdgr 26041class deg
df-ply 26042Poly = (π‘₯ ∈ 𝒫 β„‚ ↦ {𝑓 ∣ βˆƒπ‘› ∈ β„•0 βˆƒπ‘Ž ∈ ((π‘₯ βˆͺ {0}) ↑m β„•0)𝑓 = (𝑧 ∈ β„‚ ↦ Ξ£π‘˜ ∈ (0...𝑛)((π‘Žβ€˜π‘˜) Β· (π‘§β†‘π‘˜)))})
df-idp 26043Xp = ( I β†Ύ β„‚)
df-coe 26044coeff = (𝑓 ∈ (Polyβ€˜β„‚) ↦ (β„©π‘Ž ∈ (β„‚ ↑m β„•0)βˆƒπ‘› ∈ β„•0 ((π‘Ž β€œ (β„€β‰₯β€˜(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ β„‚ ↦ Ξ£π‘˜ ∈ (0...𝑛)((π‘Žβ€˜π‘˜) Β· (π‘§β†‘π‘˜))))))
df-dgr 26045deg = (𝑓 ∈ (Polyβ€˜β„‚) ↦ sup((β—‘(coeffβ€˜π‘“) β€œ (β„‚ βˆ– {0})), β„•0, < ))
cquot 26144class quot
df-quot 26145 quot = (𝑓 ∈ (Polyβ€˜β„‚), 𝑔 ∈ ((Polyβ€˜β„‚) βˆ– {0𝑝}) ↦ (β„©π‘ž ∈ (Polyβ€˜β„‚)[(𝑓 ∘f βˆ’ (𝑔 ∘f Β· π‘ž)) / π‘Ÿ](π‘Ÿ = 0𝑝 ∨ (degβ€˜π‘Ÿ) < (degβ€˜π‘”))))
caa 26168class 𝔸
df-aa 26169𝔸 = βˆͺ 𝑓 ∈ ((Polyβ€˜β„€) βˆ– {0𝑝})(◑𝑓 β€œ {0})
ctayl 26206class Tayl
cana 26207class Ana
df-tayl 26208 Tayl = (𝑠 ∈ {ℝ, β„‚}, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ (𝑛 ∈ (β„•0 βˆͺ {+∞}), π‘Ž ∈ ∩ π‘˜ ∈ ((0[,]𝑛) ∩ β„€)dom ((𝑠 D𝑛 𝑓)β€˜π‘˜) ↦ βˆͺ π‘₯ ∈ β„‚ ({π‘₯} Γ— (β„‚fld tsums (π‘˜ ∈ ((0[,]𝑛) ∩ β„€) ↦ (((((𝑠 D𝑛 𝑓)β€˜π‘˜)β€˜π‘Ž) / (!β€˜π‘˜)) Β· ((π‘₯ βˆ’ π‘Ž)β†‘π‘˜)))))))
df-ana 26209Ana = (𝑠 ∈ {ℝ, β„‚} ↦ {𝑓 ∈ (β„‚ ↑pm 𝑠) ∣ βˆ€π‘₯ ∈ dom 𝑓 π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)π‘₯)))})
culm 26229class ⇝𝑒
df-ulm 26230⇝𝑒 = (𝑠 ∈ V ↦ {βŸ¨π‘“, π‘¦βŸ© ∣ βˆƒπ‘› ∈ β„€ (𝑓:(β„€β‰₯β€˜π‘›)⟢(β„‚ ↑m 𝑠) ∧ 𝑦:π‘ βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘›)βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)βˆ€π‘§ ∈ 𝑠 (absβ€˜(((π‘“β€˜π‘˜)β€˜π‘§) βˆ’ (π‘¦β€˜π‘§))) < π‘₯)})
clog 26405class log
ccxp 26406class ↑𝑐
df-log 26407log = β—‘(exp β†Ύ (β—‘β„‘ β€œ (-Ο€(,]Ο€)))
df-cxp 26408↑𝑐 = (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ if(π‘₯ = 0, if(𝑦 = 0, 1, 0), (expβ€˜(𝑦 Β· (logβ€˜π‘₯)))))
clogb 26612class logb
df-logb 26613 logb = (π‘₯ ∈ (β„‚ βˆ– {0, 1}), 𝑦 ∈ (β„‚ βˆ– {0}) ↦ ((logβ€˜π‘¦) / (logβ€˜π‘₯)))
casin 26710class arcsin
cacos 26711class arccos
catan 26712class arctan
df-asin 26713arcsin = (π‘₯ ∈ β„‚ ↦ (-i Β· (logβ€˜((i Β· π‘₯) + (βˆšβ€˜(1 βˆ’ (π‘₯↑2)))))))
df-acos 26714arccos = (π‘₯ ∈ β„‚ ↦ ((Ο€ / 2) βˆ’ (arcsinβ€˜π‘₯)))
df-atan 26715arctan = (π‘₯ ∈ (β„‚ βˆ– {-i, i}) ↦ ((i / 2) Β· ((logβ€˜(1 βˆ’ (i Β· π‘₯))) βˆ’ (logβ€˜(1 + (i Β· π‘₯))))))
carea 26803class area
df-area 26804area = (𝑠 ∈ {𝑑 ∈ 𝒫 (ℝ Γ— ℝ) ∣ (βˆ€π‘₯ ∈ ℝ (𝑑 β€œ {π‘₯}) ∈ (β—‘vol β€œ ℝ) ∧ (π‘₯ ∈ ℝ ↦ (volβ€˜(𝑑 β€œ {π‘₯}))) ∈ 𝐿1)} ↦ βˆ«β„(volβ€˜(𝑠 β€œ {π‘₯})) dπ‘₯)
cem 26840class Ξ³
df-em 26841Ξ³ = Ξ£π‘˜ ∈ β„• ((1 / π‘˜) βˆ’ (logβ€˜(1 + (1 / π‘˜))))
czeta 26861class ΞΆ
df-zeta 26862ΞΆ = (℩𝑓 ∈ ((β„‚ βˆ– {1})–cnβ†’β„‚)βˆ€π‘  ∈ (β„‚ βˆ– {1})((1 βˆ’ (2↑𝑐(1 βˆ’ 𝑠))) Β· (π‘“β€˜π‘ )) = Σ𝑛 ∈ β„•0 (Ξ£π‘˜ ∈ (0...𝑛)(((-1β†‘π‘˜) Β· (𝑛Cπ‘˜)) Β· ((π‘˜ + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
clgam 26864class log Ξ“
cgam 26865class Ξ“
cigam 26866class 1/Ξ“
df-lgam 26867log Ξ“ = (𝑧 ∈ (β„‚ βˆ– (β„€ βˆ– β„•)) ↦ (Ξ£π‘š ∈ β„• ((𝑧 Β· (logβ€˜((π‘š + 1) / π‘š))) βˆ’ (logβ€˜((𝑧 / π‘š) + 1))) βˆ’ (logβ€˜π‘§)))
df-gam 26868Ξ“ = (exp ∘ log Ξ“)
df-igam 268691/Ξ“ = (π‘₯ ∈ β„‚ ↦ if(π‘₯ ∈ (β„€ βˆ– β„•), 0, (1 / (Ξ“β€˜π‘₯))))
ccht 26939class ΞΈ
cvma 26940class Ξ›
cchp 26941class ψ
cppi 26942class Ο€
cmu 26943class ΞΌ
csgm 26944class Οƒ
df-cht 26945ΞΈ = (π‘₯ ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]π‘₯) ∩ β„™)(logβ€˜π‘))
df-vma 26946Ξ› = (π‘₯ ∈ β„• ↦ ⦋{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯} / π‘ β¦Œif((β™―β€˜π‘ ) = 1, (logβ€˜βˆͺ 𝑠), 0))
df-chp 26947ψ = (π‘₯ ∈ ℝ ↦ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(Ξ›β€˜π‘›))
df-ppi 26948Ο€ = (π‘₯ ∈ ℝ ↦ (β™―β€˜((0[,]π‘₯) ∩ β„™)))
df-mu 26949ΞΌ = (π‘₯ ∈ β„• ↦ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ π‘₯, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ π‘₯}))))
df-sgm 26950 Οƒ = (π‘₯ ∈ β„‚, 𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝑛} (π‘˜β†‘π‘π‘₯))
cdchr 27081class DChr
df-dchr 27082DChr = (𝑛 ∈ β„• ↦ ⦋(β„€/nβ„€β€˜π‘›) / π‘§β¦Œβ¦‹{π‘₯ ∈ ((mulGrpβ€˜π‘§) MndHom (mulGrpβ€˜β„‚fld)) ∣ (((Baseβ€˜π‘§) βˆ– (Unitβ€˜π‘§)) Γ— {0}) βŠ† π‘₯} / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), ( ∘f Β· β†Ύ (𝑏 Γ— 𝑏))⟩})
clgs 27143class /L
df-lgs 27144 /L = (π‘Ž ∈ β„€, 𝑛 ∈ β„€ ↦ if(𝑛 = 0, if((π‘Žβ†‘2) = 1, 1, 0), (if((𝑛 < 0 ∧ π‘Ž < 0), -1, 1) Β· (seq1( Β· , (π‘š ∈ β„• ↦ if(π‘š ∈ β„™, (if(π‘š = 2, if(2 βˆ₯ π‘Ž, 0, if((π‘Ž mod 8) ∈ {1, 7}, 1, -1)), ((((π‘Žβ†‘((π‘š βˆ’ 1) / 2)) + 1) mod π‘š) βˆ’ 1))↑(π‘š pCnt 𝑛)), 1)))β€˜(absβ€˜π‘›)))))
csur 27489class No
cslt 27490class <s
cbday 27491class bday
df-no 27492 No = {𝑓 ∣ βˆƒπ‘Ž ∈ On 𝑓:π‘ŽβŸΆ{1o, 2o}}
df-slt 27493 <s = {βŸ¨π‘“, π‘”βŸ© ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ βˆƒπ‘₯ ∈ On (βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (π‘”β€˜π‘¦) ∧ (π‘“β€˜π‘₯){⟨1o, βˆ…βŸ©, ⟨1o, 2o⟩, βŸ¨βˆ…, 2o⟩} (π‘”β€˜π‘₯)))}
df-bday 27494 bday = (π‘₯ ∈ No ↦ dom π‘₯)
csle 27593class ≀s
df-sle 27594 ≀s = (( No Γ— No ) βˆ– β—‘ <s )
csslt 27629class <<s
df-sslt 27630 <<s = {βŸ¨π‘Ž, π‘βŸ© ∣ (π‘Ž βŠ† No ∧ 𝑏 βŠ† No ∧ βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 π‘₯ <s 𝑦)}
cscut 27631class |s
df-scut 27632 |s = (π‘Ž ∈ 𝒫 No , 𝑏 ∈ ( <<s β€œ {π‘Ž}) ↦ (β„©π‘₯ ∈ {𝑦 ∈ No ∣ (π‘Ž <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday β€˜π‘₯) = ∩ ( bday β€œ {𝑦 ∈ No ∣ (π‘Ž <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
c0s 27671class 0s
c1s 27672class 1s
df-0s 27673 0s = (βˆ… |s βˆ…)
df-1s 27674 1s = ({ 0s } |s βˆ…)
cmade 27685class M
cold 27686class O
cnew 27687class N
cleft 27688class L
cright 27689class R
df-made 27690 M = recs((𝑓 ∈ V ↦ ( |s β€œ (𝒫 βˆͺ ran 𝑓 Γ— 𝒫 βˆͺ ran 𝑓))))
df-old 27691 O = (π‘₯ ∈ On ↦ βˆͺ ( M β€œ π‘₯))
df-new 27692 N = (π‘₯ ∈ On ↦ (( M β€˜π‘₯) βˆ– ( O β€˜π‘₯)))
df-left 27693 L = (π‘₯ ∈ No ↦ {𝑦 ∈ ( O β€˜( bday β€˜π‘₯)) ∣ 𝑦 <s π‘₯})
df-right 27694 R = (π‘₯ ∈ No ↦ {𝑦 ∈ ( O β€˜( bday β€˜π‘₯)) ∣ π‘₯ <s 𝑦})
cnorec 27770class norec (𝐹)
df-norec 27771 norec (𝐹) = frecs({⟨π‘₯, π‘¦βŸ© ∣ π‘₯ ∈ (( L β€˜π‘¦) βˆͺ ( R β€˜π‘¦))}, No , 𝐹)
cnorec2 27781class norec2 (𝐹)
df-norec2 27782 norec2 (𝐹) = frecs({βŸ¨π‘Ž, π‘βŸ© ∣ (π‘Ž ∈ ( No Γ— No ) ∧ 𝑏 ∈ ( No Γ— No ) ∧ (((1st β€˜π‘Ž){βŸ¨π‘, π‘‘βŸ© ∣ 𝑐 ∈ (( L β€˜π‘‘) βˆͺ ( R β€˜π‘‘))} (1st β€˜π‘) ∨ (1st β€˜π‘Ž) = (1st β€˜π‘)) ∧ ((2nd β€˜π‘Ž){βŸ¨π‘, π‘‘βŸ© ∣ 𝑐 ∈ (( L β€˜π‘‘) βˆͺ ( R β€˜π‘‘))} (2nd β€˜π‘) ∨ (2nd β€˜π‘Ž) = (2nd β€˜π‘)) ∧ π‘Ž β‰  𝑏))}, ( No Γ— No ), 𝐹)
cadds 27792class +s
df-adds 27793 +s = norec2 ((π‘₯ ∈ V, π‘Ž ∈ V ↦ (({𝑦 ∣ βˆƒπ‘™ ∈ ( L β€˜(1st β€˜π‘₯))𝑦 = (π‘™π‘Ž(2nd β€˜π‘₯))} βˆͺ {𝑧 ∣ βˆƒπ‘™ ∈ ( L β€˜(2nd β€˜π‘₯))𝑧 = ((1st β€˜π‘₯)π‘Žπ‘™)}) |s ({𝑦 ∣ βˆƒπ‘Ÿ ∈ ( R β€˜(1st β€˜π‘₯))𝑦 = (π‘Ÿπ‘Ž(2nd β€˜π‘₯))} βˆͺ {𝑧 ∣ βˆƒπ‘Ÿ ∈ ( R β€˜(2nd β€˜π‘₯))𝑧 = ((1st β€˜π‘₯)π‘Žπ‘Ÿ)}))))
cnegs 27848class -us
csubs 27849class -s
df-negs 27850 -us = norec ((π‘₯ ∈ V, 𝑛 ∈ V ↦ ((𝑛 β€œ ( R β€˜π‘₯)) |s (𝑛 β€œ ( L β€˜π‘₯)))))
df-subs 27851 -s = (π‘₯ ∈ No , 𝑦 ∈ No ↦ (π‘₯ +s ( -us β€˜π‘¦)))
cmuls 27922class Β·s
df-muls 27923 Β·s = norec2 ((𝑧 ∈ V, π‘š ∈ V ↦ ⦋(1st β€˜π‘§) / π‘₯β¦Œβ¦‹(2nd β€˜π‘§) / π‘¦β¦Œ(({π‘Ž ∣ βˆƒπ‘ ∈ ( L β€˜π‘₯)βˆƒπ‘ž ∈ ( L β€˜π‘¦)π‘Ž = (((π‘π‘šπ‘¦) +s (π‘₯π‘šπ‘ž)) -s (π‘π‘šπ‘ž))} βˆͺ {𝑏 ∣ βˆƒπ‘Ÿ ∈ ( R β€˜π‘₯)βˆƒπ‘  ∈ ( R β€˜π‘¦)𝑏 = (((π‘Ÿπ‘šπ‘¦) +s (π‘₯π‘šπ‘ )) -s (π‘Ÿπ‘šπ‘ ))}) |s ({𝑐 ∣ βˆƒπ‘‘ ∈ ( L β€˜π‘₯)βˆƒπ‘’ ∈ ( R β€˜π‘¦)𝑐 = (((π‘‘π‘šπ‘¦) +s (π‘₯π‘šπ‘’)) -s (π‘‘π‘šπ‘’))} βˆͺ {𝑑 ∣ βˆƒπ‘£ ∈ ( R β€˜π‘₯)βˆƒπ‘€ ∈ ( L β€˜π‘¦)𝑑 = (((π‘£π‘šπ‘¦) +s (π‘₯π‘šπ‘€)) -s (π‘£π‘šπ‘€))}))))
cdivs 28003class /su
df-divs 28004 /su = (π‘₯ ∈ No , 𝑦 ∈ ( No βˆ– { 0s }) ↦ (℩𝑧 ∈ No (𝑦 Β·s 𝑧) = π‘₯))
cabss 28047class abss
df-abss 28048abss = (π‘₯ ∈ No ↦ if( 0s ≀s π‘₯, π‘₯, ( -us β€˜π‘₯)))
cons 28060class Ons
df-ons 28061Ons = {π‘₯ ∈ No ∣ ( R β€˜π‘₯) = βˆ…}
cseqs 28072class seqs𝑀( + , 𝐹)
df-seqs 28073seqs𝑀( + , 𝐹) = (rec((π‘₯ ∈ V, 𝑦 ∈ V ↦ ⟨(π‘₯ +s 1s ), (𝑦 + (πΉβ€˜(π‘₯ +s 1s )))⟩), βŸ¨π‘€, (πΉβ€˜π‘€)⟩) β€œ Ο‰)
cnn0s 28101class β„•0s
cnns 28102class β„•s
df-n0s 28103β„•0s = (rec((π‘₯ ∈ V ↦ (π‘₯ +s 1s )), 0s ) β€œ Ο‰)
df-nns 28104β„•s = (β„•0s βˆ– { 0s })
creno 28137class ℝs
df-reno 28138ℝs = {π‘₯ ∈ No ∣ (βˆƒπ‘› ∈ β„•s (( -us β€˜π‘›) <s π‘₯ ∧ π‘₯ <s 𝑛) ∧ π‘₯ = ({𝑦 ∣ βˆƒπ‘› ∈ β„•s 𝑦 = (π‘₯ -s ( 1s /su 𝑛))} |s {𝑦 ∣ βˆƒπ‘› ∈ β„•s 𝑦 = (π‘₯ +s ( 1s /su 𝑛))}))}
cstrkg 28147class TarskiG
cstrkgc 28148class TarskiGC
cstrkgb 28149class TarskiGB
cstrkgcb 28150class TarskiGCB
cstrkgld 28151class DimTarskiGβ‰₯
cstrkge 28152class TarskiGE
citv 28153class Itv
clng 28154class LineG
df-itv 28155Itv = Slot 16
df-lng 28156LineG = Slot 17
df-trkgc 28168TarskiGC = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(distβ€˜π‘“) / 𝑑](βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 (π‘₯𝑑𝑦) = (𝑦𝑑π‘₯) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 ((π‘₯𝑑𝑦) = (𝑧𝑑𝑧) β†’ π‘₯ = 𝑦))}
df-trkgb 28169TarskiGB = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 (𝑦 ∈ (π‘₯𝑖π‘₯) β†’ π‘₯ = 𝑦) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((𝑒 ∈ (π‘₯𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) β†’ βˆƒπ‘Ž ∈ 𝑝 (π‘Ž ∈ (𝑒𝑖𝑦) ∧ π‘Ž ∈ (𝑣𝑖π‘₯))) ∧ βˆ€π‘  ∈ 𝒫 π‘βˆ€π‘‘ ∈ 𝒫 𝑝(βˆƒπ‘Ž ∈ 𝑝 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 π‘₯ ∈ (π‘Žπ‘–π‘¦) β†’ βˆƒπ‘ ∈ 𝑝 βˆ€π‘₯ ∈ 𝑠 βˆ€π‘¦ ∈ 𝑑 𝑏 ∈ (π‘₯𝑖𝑦)))}
df-trkgcb 28170TarskiGCB = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(distβ€˜π‘“) / 𝑑][(Itvβ€˜π‘“) / 𝑖](βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘Ž ∈ 𝑝 βˆ€π‘ ∈ 𝑝 βˆ€π‘ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 (((π‘₯ β‰  𝑦 ∧ 𝑦 ∈ (π‘₯𝑖𝑧) ∧ 𝑏 ∈ (π‘Žπ‘–π‘)) ∧ (((π‘₯𝑑𝑦) = (π‘Žπ‘‘π‘) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((π‘₯𝑑𝑒) = (π‘Žπ‘‘π‘£) ∧ (𝑦𝑑𝑒) = (𝑏𝑑𝑣)))) β†’ (𝑧𝑑𝑒) = (𝑐𝑑𝑣)) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘Ž ∈ 𝑝 βˆ€π‘ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 (𝑦 ∈ (π‘₯𝑖𝑧) ∧ (𝑦𝑑𝑧) = (π‘Žπ‘‘π‘)))}
df-trkge 28171TarskiGE = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖]βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((𝑒 ∈ (π‘₯𝑖𝑣) ∧ 𝑒 ∈ (𝑦𝑖𝑧) ∧ π‘₯ β‰  𝑒) β†’ βˆƒπ‘Ž ∈ 𝑝 βˆƒπ‘ ∈ 𝑝 (𝑦 ∈ (π‘₯π‘–π‘Ž) ∧ 𝑧 ∈ (π‘₯𝑖𝑏) ∧ 𝑣 ∈ (π‘Žπ‘–π‘)))}
df-trkgld 28172DimTarskiGβ‰₯ = {βŸ¨π‘”, π‘›βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘“(𝑓:(1..^𝑛)–1-1→𝑝 ∧ βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 (βˆ€π‘— ∈ (2..^𝑛)(((π‘“β€˜1)𝑑π‘₯) = ((π‘“β€˜π‘—)𝑑π‘₯) ∧ ((π‘“β€˜1)𝑑𝑦) = ((π‘“β€˜π‘—)𝑑𝑦) ∧ ((π‘“β€˜1)𝑑𝑧) = ((π‘“β€˜π‘—)𝑑𝑧)) ∧ Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))}
df-trkg 28173TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(Itvβ€˜π‘“) / 𝑖](LineGβ€˜π‘“) = (π‘₯ ∈ 𝑝, 𝑦 ∈ (𝑝 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})}))
ccgrg 28230class cgrG
df-cgrg 28231cgrG = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑pm ℝ) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑pm ℝ)) ∧ (dom π‘Ž = dom 𝑏 ∧ βˆ€π‘– ∈ dom π‘Žβˆ€π‘— ∈ dom π‘Ž((π‘Žβ€˜π‘–)(distβ€˜π‘”)(π‘Žβ€˜π‘—)) = ((π‘β€˜π‘–)(distβ€˜π‘”)(π‘β€˜π‘—))))})
cismt 28252class Ismt
df-ismt 28253Ismt = (𝑔 ∈ V, β„Ž ∈ V ↦ {𝑓 ∣ (𝑓:(Baseβ€˜π‘”)–1-1-ontoβ†’(Baseβ€˜β„Ž) ∧ βˆ€π‘Ž ∈ (Baseβ€˜π‘”)βˆ€π‘ ∈ (Baseβ€˜π‘”)((π‘“β€˜π‘Ž)(distβ€˜β„Ž)(π‘“β€˜π‘)) = (π‘Ž(distβ€˜π‘”)𝑏))})
cleg 28302class ≀G
df-leg 28303≀G = (𝑔 ∈ V ↦ {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))})
chlg 28320class hlG
df-hlg 28321hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Baseβ€˜π‘”) ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž))))}))
cmir 28372class pInvG
df-mir 28373pInvG = (𝑔 ∈ V ↦ (π‘š ∈ (Baseβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))))))
crag 28413class ∟G
df-rag 28414∟G = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Baseβ€˜π‘”) ∣ ((β™―β€˜π‘€) = 3 ∧ ((π‘€β€˜0)(distβ€˜π‘”)(π‘€β€˜2)) = ((π‘€β€˜0)(distβ€˜π‘”)(((pInvGβ€˜π‘”)β€˜(π‘€β€˜1))β€˜(π‘€β€˜2))))})
cperpg 28415class βŸ‚G
df-perpg 28416βŸ‚G = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran (LineGβ€˜π‘”) ∧ 𝑏 ∈ ran (LineGβ€˜π‘”)) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”))})
chpg 28477class hpG
df-hpg 28478hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineGβ€˜π‘”) ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘ ∈ 𝑝 (((π‘Ž ∈ (𝑝 βˆ– 𝑑) ∧ 𝑐 ∈ (𝑝 βˆ– 𝑑)) ∧ βˆƒπ‘‘ ∈ 𝑑 𝑑 ∈ (π‘Žπ‘–π‘)) ∧ ((𝑏 ∈ (𝑝 βˆ– 𝑑) ∧ 𝑐 ∈ (𝑝 βˆ– 𝑑)) ∧ βˆƒπ‘‘ ∈ 𝑑 𝑑 ∈ (𝑏𝑖𝑐)))}))
cmid 28492class midG
clmi 28493class lInvG
df-mid 28494midG = (𝑔 ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘”), 𝑏 ∈ (Baseβ€˜π‘”) ↦ (β„©π‘š ∈ (Baseβ€˜π‘”)𝑏 = (((pInvGβ€˜π‘”)β€˜π‘š)β€˜π‘Ž))))
df-lmi 28495lInvG = (𝑔 ∈ V ↦ (π‘š ∈ ran (LineGβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘Ž(midGβ€˜π‘”)𝑏) ∈ π‘š ∧ (π‘š(βŸ‚Gβ€˜π‘”)(π‘Ž(LineGβ€˜π‘”)𝑏) ∨ π‘Ž = 𝑏))))))
ccgra 28527class cgrA
df-cgra 28528cgrA = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(hlGβ€˜π‘”) / π‘˜]((π‘Ž ∈ (𝑝 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑝 ↑m (0..^3))) ∧ βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (π‘Ž(cgrGβ€˜π‘”)βŸ¨β€œπ‘₯(π‘β€˜1)π‘¦β€βŸ© ∧ π‘₯(π‘˜β€˜(π‘β€˜1))(π‘β€˜0) ∧ 𝑦(π‘˜β€˜(π‘β€˜1))(π‘β€˜2)))})
cinag 28555class inA
cleag 28556class β‰€βˆ 
df-inag 28557inA = (𝑔 ∈ V ↦ {βŸ¨π‘, π‘‘βŸ© ∣ ((𝑝 ∈ (Baseβ€˜π‘”) ∧ 𝑑 ∈ ((Baseβ€˜π‘”) ↑m (0..^3))) ∧ (((π‘‘β€˜0) β‰  (π‘‘β€˜1) ∧ (π‘‘β€˜2) β‰  (π‘‘β€˜1) ∧ 𝑝 β‰  (π‘‘β€˜1)) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜π‘”)(π‘₯ ∈ ((π‘‘β€˜0)(Itvβ€˜π‘”)(π‘‘β€˜2)) ∧ (π‘₯ = (π‘‘β€˜1) ∨ π‘₯((hlGβ€˜π‘”)β€˜(π‘‘β€˜1))𝑝))))})
df-leag 28566β‰€βˆ  = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ((Baseβ€˜π‘”) ↑m (0..^3)) ∧ 𝑏 ∈ ((Baseβ€˜π‘”) ↑m (0..^3))) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜π‘”)(π‘₯(inAβ€˜π‘”)βŸ¨β€œ(π‘β€˜0)(π‘β€˜1)(π‘β€˜2)β€βŸ© ∧ βŸ¨β€œ(π‘Žβ€˜0)(π‘Žβ€˜1)(π‘Žβ€˜2)β€βŸ©(cgrAβ€˜π‘”)βŸ¨β€œ(π‘β€˜0)(π‘β€˜1)π‘₯β€βŸ©))})
ceqlg 28585class eqltrG
df-eqlg 28586eqltrG = (𝑔 ∈ V ↦ {π‘₯ ∈ ((Baseβ€˜π‘”) ↑m (0..^3)) ∣ π‘₯(cgrGβ€˜π‘”)βŸ¨β€œ(π‘₯β€˜1)(π‘₯β€˜2)(π‘₯β€˜0)β€βŸ©})
cttg 28593class toTG
df-ttg 28594toTG = (𝑀 ∈ V ↦ ⦋(π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ (Baseβ€˜π‘€) ↦ {𝑧 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘˜ ∈ (0[,]1)(𝑧(-gβ€˜π‘€)π‘₯) = (π‘˜( ·𝑠 β€˜π‘€)(𝑦(-gβ€˜π‘€)π‘₯))}) / π‘–β¦Œ((𝑀 sSet ⟨(Itvβ€˜ndx), π‘–βŸ©) sSet ⟨(LineGβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ (Baseβ€˜π‘€) ↦ {𝑧 ∈ (Baseβ€˜π‘€) ∣ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))})⟩))
cee 28615class 𝔼
cbtwn 28616class Btwn
ccgr 28617class Cgr
df-ee 28618𝔼 = (𝑛 ∈ β„• ↦ (ℝ ↑m (1...𝑛)))
df-btwn 28619 Btwn = β—‘{⟨⟨π‘₯, π‘§βŸ©, π‘¦βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑧 ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ (π”Όβ€˜π‘›)) ∧ βˆƒπ‘‘ ∈ (0[,]1)βˆ€π‘– ∈ (1...𝑛)(π‘¦β€˜π‘–) = (((1 βˆ’ 𝑑) Β· (π‘₯β€˜π‘–)) + (𝑑 Β· (π‘§β€˜π‘–))))}
df-cgr 28620Cgr = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘₯ ∈ ((π”Όβ€˜π‘›) Γ— (π”Όβ€˜π‘›)) ∧ 𝑦 ∈ ((π”Όβ€˜π‘›) Γ— (π”Όβ€˜π‘›))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st β€˜π‘₯)β€˜π‘–) βˆ’ ((2nd β€˜π‘₯)β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st β€˜π‘¦)β€˜π‘–) βˆ’ ((2nd β€˜π‘¦)β€˜π‘–))↑2))}
ceeng 28704class EEG
df-eeng 28705EEG = (𝑛 ∈ β„• ↦ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
cedgf 28715class .ef
df-edgf 28716.ef = Slot 18
cvtx 28725class Vtx
ciedg 28726class iEdg
df-vtx 28727Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V Γ— V), (1st β€˜π‘”), (Baseβ€˜π‘”)))
df-iedg 28728iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V Γ— V), (2nd β€˜π‘”), (.efβ€˜π‘”)))
cedg 28776class Edg
df-edg 28777Edg = (𝑔 ∈ V ↦ ran (iEdgβ€˜π‘”))
cuhgr 28785class UHGraph
cushgr 28786class USHGraph
df-uhgr 28787UHGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣][(iEdgβ€˜π‘”) / 𝑒]𝑒:dom π‘’βŸΆ(𝒫 𝑣 βˆ– {βˆ…})}
df-ushgr 28788USHGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣][(iEdgβ€˜π‘”) / 𝑒]𝑒:dom 𝑒–1-1β†’(𝒫 𝑣 βˆ– {βˆ…})}
cupgr 28809class UPGraph
cumgr 28810class UMGraph
df-upgr 28811UPGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣][(iEdgβ€˜π‘”) / 𝑒]𝑒:dom π‘’βŸΆ{π‘₯ ∈ (𝒫 𝑣 βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}}
df-umgr 28812UMGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣][(iEdgβ€˜π‘”) / 𝑒]𝑒:dom π‘’βŸΆ{π‘₯ ∈ (𝒫 𝑣 βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) = 2}}
cuspgr 28877class USPGraph
cusgr 28878class USGraph
df-uspgr 28879USPGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣][(iEdgβ€˜π‘”) / 𝑒]𝑒:dom 𝑒–1-1β†’{π‘₯ ∈ (𝒫 𝑣 βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}}
df-usgr 28880USGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣][(iEdgβ€˜π‘”) / 𝑒]𝑒:dom 𝑒–1-1β†’{π‘₯ ∈ (𝒫 𝑣 βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) = 2}}
csubgr 28993class SubGraph
df-subgr 28994 SubGraph = {βŸ¨π‘ , π‘”βŸ© ∣ ((Vtxβ€˜π‘ ) βŠ† (Vtxβ€˜π‘”) ∧ (iEdgβ€˜π‘ ) = ((iEdgβ€˜π‘”) β†Ύ dom (iEdgβ€˜π‘ )) ∧ (Edgβ€˜π‘ ) βŠ† 𝒫 (Vtxβ€˜π‘ ))}
cfusgr 29042class FinUSGraph
df-fusgr 29043FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtxβ€˜π‘”) ∈ Fin}
cnbgr 29058class NeighbVtx
df-nbgr 29059 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtxβ€˜π‘”) ↦ {𝑛 ∈ ((Vtxβ€˜π‘”) βˆ– {𝑣}) ∣ βˆƒπ‘’ ∈ (Edgβ€˜π‘”){𝑣, 𝑛} βŠ† 𝑒})
cuvtx 29111class UnivVtx
df-uvtx 29112UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtxβ€˜π‘”) ∣ βˆ€π‘› ∈ ((Vtxβ€˜π‘”) βˆ– {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
ccplgr 29135class ComplGraph
ccusgr 29136class ComplUSGraph
df-cplgr 29137ComplGraph = {𝑔 ∣ (UnivVtxβ€˜π‘”) = (Vtxβ€˜π‘”)}
df-cusgr 29138ComplUSGraph = (USGraph ∩ ComplGraph)
cvtxdg 29191class VtxDeg
df-vtxdg 29192VtxDeg = (𝑔 ∈ V ↦ ⦋(Vtxβ€˜π‘”) / π‘£β¦Œβ¦‹(iEdgβ€˜π‘”) / π‘’β¦Œ(𝑒 ∈ 𝑣 ↦ ((β™―β€˜{π‘₯ ∈ dom 𝑒 ∣ 𝑒 ∈ (π‘’β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝑒 ∣ (π‘’β€˜π‘₯) = {𝑒}}))))
crgr 29281class RegGraph
crusgr 29282class RegUSGraph
df-rgr 29283 RegGraph = {βŸ¨π‘”, π‘˜βŸ© ∣ (π‘˜ ∈ β„•0* ∧ βˆ€π‘£ ∈ (Vtxβ€˜π‘”)((VtxDegβ€˜π‘”)β€˜π‘£) = π‘˜)}
df-rusgr 29284 RegUSGraph = {βŸ¨π‘”, π‘˜βŸ© ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph π‘˜)}
cewlks 29321class EdgWalks
cwlks 29322class Walks
cwlkson 29323class WalksOn
df-ewlks 29324 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ β„•0* ↦ {𝑓 ∣ [(iEdgβ€˜π‘”) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘“))𝑠 ≀ (β™―β€˜((π‘–β€˜(π‘“β€˜(π‘˜ βˆ’ 1))) ∩ (π‘–β€˜(π‘“β€˜π‘˜)))))})
df-wlks 29325Walks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))if-((π‘β€˜π‘˜) = (π‘β€˜(π‘˜ + 1)), ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜)}, {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜))))})
df-wlkson 29326WalksOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = π‘Ž ∧ (π‘β€˜(β™―β€˜π‘“)) = 𝑏)}))
ctrls 29416class Trails
ctrlson 29417class TrailsOn
df-trls 29418Trails = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ Fun ◑𝑓)})
df-trlson 29419TrailsOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Ž(WalksOnβ€˜π‘”)𝑏)𝑝 ∧ 𝑓(Trailsβ€˜π‘”)𝑝)}))
cpths 29438class Paths
cspths 29439class SPaths
cpthson 29440class PathsOn
cspthson 29441class SPathsOn
df-pths 29442Paths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“))) ∧ ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…)})
df-spths 29443SPaths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun ◑𝑝)})
df-pthson 29444PathsOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Ž(TrailsOnβ€˜π‘”)𝑏)𝑝 ∧ 𝑓(Pathsβ€˜π‘”)𝑝)}))
df-spthson 29445SPathsOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Ž(TrailsOnβ€˜π‘”)𝑏)𝑝 ∧ 𝑓(SPathsβ€˜π‘”)𝑝)}))
cclwlks 29496class ClWalks
df-clwlks 29497ClWalks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))})
ccrcts 29510class Circuits
ccycls 29511class Cycles
df-crcts 29512Circuits = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))})
df-cycls 29513Cycles = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Pathsβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))})
cwwlks 29548class WWalks
cwwlksn 29549class WWalksN
cwwlksnon 29550class WWalksNOn
cwwspthsn 29551class WSPathsN
cwwspthsnon 29552class WSPathsNOn
df-wwlks 29553WWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”))})
df-wwlksn 29554 WWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)})
df-wwlksnon 29555 WWalksNOn = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((π‘€β€˜0) = π‘Ž ∧ (π‘€β€˜π‘›) = 𝑏)}))
df-wspthsn 29556 WSPathsN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜π‘”)𝑀})
df-wspthsnon 29557 WSPathsNOn = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {𝑀 ∈ (π‘Ž(𝑛 WWalksNOn 𝑔)𝑏) ∣ βˆƒπ‘“ 𝑓(π‘Ž(SPathsOnβ€˜π‘”)𝑏)𝑀}))
cclwwlk 29703class ClWWalks
df-clwwlk 29704ClWWalks = (𝑔 ∈ V ↦ {𝑀 ∈ Word (Vtxβ€˜π‘”) ∣ (𝑀 β‰  βˆ… ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜π‘”) ∧ {(lastSβ€˜π‘€), (π‘€β€˜0)} ∈ (Edgβ€˜π‘”))})
cclwwlkn 29746class ClWWalksN
df-clwwlkn 29747 ClWWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (ClWWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = 𝑛})
cclwwlknon 29809class ClWWalksNOn
df-clwwlknon 29810ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtxβ€˜π‘”), 𝑛 ∈ β„•0 ↦ {𝑀 ∈ (𝑛 ClWWalksN 𝑔) ∣ (π‘€β€˜0) = 𝑣}))
cconngr 29908class ConnGraph
df-conngr 29909ConnGraph = {𝑔 ∣ [(Vtxβ€˜π‘”) / 𝑣]βˆ€π‘˜ ∈ 𝑣 βˆ€π‘› ∈ 𝑣 βˆƒπ‘“βˆƒπ‘ 𝑓(π‘˜(PathsOnβ€˜π‘”)𝑛)𝑝}
ceupth 29919class EulerPaths
df-eupth 29920EulerPaths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ 𝑓:(0..^(β™―β€˜π‘“))–ontoβ†’dom (iEdgβ€˜π‘”))})
cfrgr 29980class FriendGraph
df-frgr 29981 FriendGraph = {𝑔 ∈ USGraph ∣ [(Vtxβ€˜π‘”) / 𝑣][(Edgβ€˜π‘”) / 𝑒]βˆ€π‘˜ ∈ 𝑣 βˆ€π‘™ ∈ (𝑣 βˆ– {π‘˜})βˆƒ!π‘₯ ∈ 𝑣 {{π‘₯, π‘˜}, {π‘₯, 𝑙}} βŠ† 𝑒}
ax-flt 30194((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (𝑋 ∈ β„• ∧ π‘Œ ∈ β„• ∧ 𝑍 ∈ β„•)) β†’ ((𝑋↑𝑁) + (π‘Œβ†‘π‘)) β‰  (𝑍↑𝑁))
cplig 30196class Plig
df-plig 30197Plig = {π‘₯ ∣ (βˆ€π‘Ž ∈ βˆͺ π‘₯βˆ€π‘ ∈ βˆͺ π‘₯(π‘Ž β‰  𝑏 β†’ βˆƒ!𝑙 ∈ π‘₯ (π‘Ž ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ βˆ€π‘™ ∈ π‘₯ βˆƒπ‘Ž ∈ βˆͺ π‘₯βˆƒπ‘ ∈ βˆͺ π‘₯(π‘Ž β‰  𝑏 ∧ π‘Ž ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ βˆƒπ‘Ž ∈ βˆͺ π‘₯βˆƒπ‘ ∈ βˆͺ π‘₯βˆƒπ‘ ∈ βˆͺ π‘₯βˆ€π‘™ ∈ π‘₯ Β¬ (π‘Ž ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))}
cgr 30211class GrpOp
cgi 30212class GId
cgn 30213class inv
cgs 30214class /𝑔
df-grpo 30215GrpOp = {𝑔 ∣ βˆƒπ‘‘(𝑔:(𝑑 Γ— 𝑑)βŸΆπ‘‘ ∧ βˆ€π‘₯ ∈ 𝑑 βˆ€π‘¦ ∈ 𝑑 βˆ€π‘§ ∈ 𝑑 ((π‘₯𝑔𝑦)𝑔𝑧) = (π‘₯𝑔(𝑦𝑔𝑧)) ∧ βˆƒπ‘’ ∈ 𝑑 βˆ€π‘₯ ∈ 𝑑 ((𝑒𝑔π‘₯) = π‘₯ ∧ βˆƒπ‘¦ ∈ 𝑑 (𝑦𝑔π‘₯) = 𝑒))}
df-gid 30216GId = (𝑔 ∈ V ↦ (℩𝑒 ∈ ran π‘”βˆ€π‘₯ ∈ ran 𝑔((𝑒𝑔π‘₯) = π‘₯ ∧ (π‘₯𝑔𝑒) = π‘₯)))
df-ginv 30217inv = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔π‘₯) = (GIdβ€˜π‘”))))
df-gdiv 30218 /𝑔 = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))))
cablo 30266class AbelOp
df-ablo 30267AbelOp = {𝑔 ∈ GrpOp ∣ βˆ€π‘₯ ∈ ran π‘”βˆ€π‘¦ ∈ ran 𝑔(π‘₯𝑔𝑦) = (𝑦𝑔π‘₯)}
cvc 30280class CVecOLD
df-vc 30281CVecOLD = {βŸ¨π‘”, π‘ βŸ© ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(β„‚ Γ— ran 𝑔)⟢ran 𝑔 ∧ βˆ€π‘₯ ∈ ran 𝑔((1𝑠π‘₯) = π‘₯ ∧ βˆ€π‘¦ ∈ β„‚ (βˆ€π‘§ ∈ ran 𝑔(𝑦𝑠(π‘₯𝑔𝑧)) = ((𝑦𝑠π‘₯)𝑔(𝑦𝑠𝑧)) ∧ βˆ€π‘§ ∈ β„‚ (((𝑦 + 𝑧)𝑠π‘₯) = ((𝑦𝑠π‘₯)𝑔(𝑧𝑠π‘₯)) ∧ ((𝑦 Β· 𝑧)𝑠π‘₯) = (𝑦𝑠(𝑧𝑠π‘₯))))))}
cnv 30306class NrmCVec
cpv 30307class +𝑣
cba 30308class BaseSet
cns 30309class ·𝑠OLD
cn0v 30310class 0vec
cnsb 30311class βˆ’π‘£
cnmcv 30312class normCV
cims 30313class IndMet
df-nv 30314NrmCVec = {βŸ¨βŸ¨π‘”, π‘ βŸ©, π‘›βŸ© ∣ (βŸ¨π‘”, π‘ βŸ© ∈ CVecOLD ∧ 𝑛:ran π‘”βŸΆβ„ ∧ βˆ€π‘₯ ∈ ran 𝑔(((π‘›β€˜π‘₯) = 0 β†’ π‘₯ = (GIdβ€˜π‘”)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘›β€˜(𝑦𝑠π‘₯)) = ((absβ€˜π‘¦) Β· (π‘›β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ ran 𝑔(π‘›β€˜(π‘₯𝑔𝑦)) ≀ ((π‘›β€˜π‘₯) + (π‘›β€˜π‘¦))))}
df-va 30317 +𝑣 = (1st ∘ 1st )
df-ba 30318BaseSet = (π‘₯ ∈ V ↦ ran ( +𝑣 β€˜π‘₯))
df-sm 30319 ·𝑠OLD = (2nd ∘ 1st )
df-0v 303200vec = (GId ∘ +𝑣 )
df-vs 30321 βˆ’π‘£ = ( /𝑔 ∘ +𝑣 )
df-nmcv 30322normCV = 2nd
df-ims 30323IndMet = (𝑒 ∈ NrmCVec ↦ ((normCVβ€˜π‘’) ∘ ( βˆ’π‘£ β€˜π‘’)))
cdip 30422class ·𝑖OLD
df-dip 30423·𝑖OLD = (𝑒 ∈ NrmCVec ↦ (π‘₯ ∈ (BaseSetβ€˜π‘’), 𝑦 ∈ (BaseSetβ€˜π‘’) ↦ (Ξ£π‘˜ ∈ (1...4)((iβ†‘π‘˜) Β· (((normCVβ€˜π‘’)β€˜(π‘₯( +𝑣 β€˜π‘’)((iβ†‘π‘˜)( ·𝑠OLD β€˜π‘’)𝑦)))↑2)) / 4)))
css 30443class SubSp
df-ssp 30444SubSp = (𝑒 ∈ NrmCVec ↦ {𝑀 ∈ NrmCVec ∣ (( +𝑣 β€˜π‘€) βŠ† ( +𝑣 β€˜π‘’) ∧ ( ·𝑠OLD β€˜π‘€) βŠ† ( ·𝑠OLD β€˜π‘’) ∧ (normCVβ€˜π‘€) βŠ† (normCVβ€˜π‘’))})
clno 30462class LnOp
cnmoo 30463class normOpOLD
cblo 30464class BLnOp
c0o 30465class 0op
df-lno 30466 LnOp = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))})
df-nmoo 30467 normOpOLD = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ (𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ (BaseSetβ€˜π‘’)(((normCVβ€˜π‘’)β€˜π‘§) ≀ 1 ∧ π‘₯ = ((normCVβ€˜π‘€)β€˜(π‘‘β€˜π‘§)))}, ℝ*, < )))
df-blo 30468 BLnOp = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {𝑑 ∈ (𝑒 LnOp 𝑀) ∣ ((𝑒 normOpOLD 𝑀)β€˜π‘‘) < +∞})
df-0o 30469 0op = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ ((BaseSetβ€˜π‘’) Γ— {(0vecβ€˜π‘€)}))
caj 30470class adj
chmo 30471class HmOp
df-aj 30472adj = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:(BaseSetβ€˜π‘’)⟢(BaseSetβ€˜π‘€) ∧ 𝑠:(BaseSetβ€˜π‘€)⟢(BaseSetβ€˜π‘’) ∧ βˆ€π‘₯ ∈ (BaseSetβ€˜π‘’)βˆ€π‘¦ ∈ (BaseSetβ€˜π‘€)((π‘‘β€˜π‘₯)(·𝑖OLDβ€˜π‘€)𝑦) = (π‘₯(·𝑖OLDβ€˜π‘’)(π‘ β€˜π‘¦)))})
df-hmo 30473HmOp = (𝑒 ∈ NrmCVec ↦ {𝑑 ∈ dom (𝑒adj𝑒) ∣ ((𝑒adj𝑒)β€˜π‘‘) = 𝑑})
ccphlo 30534class CPreHilOLD
df-ph 30535CPreHilOLD = (NrmCVec ∩ {βŸ¨βŸ¨π‘”, π‘ βŸ©, π‘›βŸ© ∣ βˆ€π‘₯ ∈ ran π‘”βˆ€π‘¦ ∈ ran 𝑔(((π‘›β€˜(π‘₯𝑔𝑦))↑2) + ((π‘›β€˜(π‘₯𝑔(-1𝑠𝑦)))↑2)) = (2 Β· (((π‘›β€˜π‘₯)↑2) + ((π‘›β€˜π‘¦)↑2)))})
ccbn 30584class CBan
df-cbn 30585CBan = {𝑒 ∈ NrmCVec ∣ (IndMetβ€˜π‘’) ∈ (CMetβ€˜(BaseSetβ€˜π‘’))}
chlo 30607class CHilOLD
df-hlo 30608CHilOLD = (CBan ∩ CPreHilOLD)
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
chba 30641class β„‹
cva 30642class +β„Ž
csm 30643class Β·β„Ž
csp 30644class Β·ih
cno 30645class normβ„Ž
c0v 30646class 0β„Ž
cmv 30647class βˆ’β„Ž
ccauold 30648class Cauchy
chli 30649class ⇝𝑣
csh 30650class Sβ„‹
cch 30651class Cβ„‹
cort 30652class βŠ₯
cph 30653class +β„‹
cspn 30654class span
chj 30655class βˆ¨β„‹
chsup 30656class βˆ¨β„‹
c0h 30657class 0β„‹
ccm 30658class 𝐢ℋ
cpjh 30659class projβ„Ž
chos 30660class +op
chot 30661class Β·op
chod 30662class βˆ’op
chfs 30663class +fn
chft 30664class Β·fn
ch0o 30665class 0hop
chio 30666class Iop
cnop 30667class normop
ccop 30668class ContOp
clo 30669class LinOp
cbo 30670class BndLinOp
cuo 30671class UniOp
cho 30672class HrmOp
cnmf 30673class normfn
cnl 30674class null
ccnfn 30675class ContFn
clf 30676class LinFn
cado 30677class adjβ„Ž
cbr 30678class bra
ck 30679class ketbra
cleo 30680class ≀op
cei 30681class eigvec
cel 30682class eigval
cspc 30683class Lambda
cst 30684class States
chst 30685class CHStates
ccv 30686class β‹–β„‹
cat 30687class HAtoms
cmd 30688class 𝑀ℋ
cdmd 30689class 𝑀ℋ*
df-hnorm 30690normβ„Ž = (π‘₯ ∈ dom dom Β·ih ↦ (βˆšβ€˜(π‘₯ Β·ih π‘₯)))
df-hba 30691 β„‹ = (BaseSetβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
df-h0v 306920β„Ž = (0vecβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
df-hvsub 30693 βˆ’β„Ž = (π‘₯ ∈ β„‹, 𝑦 ∈ β„‹ ↦ (π‘₯ +β„Ž (-1 Β·β„Ž 𝑦)))
df-hlim 30694 ⇝𝑣 = {βŸ¨π‘“, π‘€βŸ© ∣ ((𝑓:β„•βŸΆ β„‹ ∧ 𝑀 ∈ β„‹) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ β„• βˆ€π‘§ ∈ (β„€β‰₯β€˜π‘¦)(normβ„Žβ€˜((π‘“β€˜π‘§) βˆ’β„Ž 𝑀)) < π‘₯)}
df-hcau 30695Cauchy = {𝑓 ∈ ( β„‹ ↑m β„•) ∣ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘¦ ∈ β„• βˆ€π‘§ ∈ (β„€β‰₯β€˜π‘¦)(normβ„Žβ€˜((π‘“β€˜π‘¦) βˆ’β„Ž (π‘“β€˜π‘§))) < π‘₯}
ax-hilex 30721 β„‹ ∈ V
ax-hfvadd 30722 +β„Ž :( β„‹ Γ— β„‹)⟢ β„‹
ax-hvcom 30723((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 +β„Ž 𝐡) = (𝐡 +β„Ž 𝐴))
ax-hvass 30724((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 +β„Ž 𝐡) +β„Ž 𝐢) = (𝐴 +β„Ž (𝐡 +β„Ž 𝐢)))
ax-hv0cl 307250β„Ž ∈ β„‹
ax-hvaddid 30726(𝐴 ∈ β„‹ β†’ (𝐴 +β„Ž 0β„Ž) = 𝐴)
ax-hfvmul 30727 Β·β„Ž :(β„‚ Γ— β„‹)⟢ β„‹
ax-hvmulid 30728(𝐴 ∈ β„‹ β†’ (1 Β·β„Ž 𝐴) = 𝐴)
ax-hvmulass 30729((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 Β· 𝐡) Β·β„Ž 𝐢) = (𝐴 Β·β„Ž (𝐡 Β·β„Ž 𝐢)))
ax-hvdistr1 30730((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (𝐴 Β·β„Ž (𝐡 +β„Ž 𝐢)) = ((𝐴 Β·β„Ž 𝐡) +β„Ž (𝐴 Β·β„Ž 𝐢)))
ax-hvdistr2 30731((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 + 𝐡) Β·β„Ž 𝐢) = ((𝐴 Β·β„Ž 𝐢) +β„Ž (𝐡 Β·β„Ž 𝐢)))
ax-hvmul0 30732(𝐴 ∈ β„‹ β†’ (0 Β·β„Ž 𝐴) = 0β„Ž)
ax-hfi 30801 Β·ih :( β„‹ Γ— β„‹)βŸΆβ„‚
ax-his1 30804((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 Β·ih 𝐡) = (βˆ—β€˜(𝐡 Β·ih 𝐴)))
ax-his2 30805((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 +β„Ž 𝐡) Β·ih 𝐢) = ((𝐴 Β·ih 𝐢) + (𝐡 Β·ih 𝐢)))
ax-his3 30806((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 Β·β„Ž 𝐡) Β·ih 𝐢) = (𝐴 Β· (𝐡 Β·ih 𝐢)))
ax-his4 30807((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 < (𝐴 Β·ih 𝐴))
ax-hcompl 30924(𝐹 ∈ Cauchy β†’ βˆƒπ‘₯ ∈ β„‹ 𝐹 ⇝𝑣 π‘₯)
df-sh 30929 Sβ„‹ = {β„Ž ∈ 𝒫 β„‹ ∣ (0β„Ž ∈ β„Ž ∧ ( +β„Ž β€œ (β„Ž Γ— β„Ž)) βŠ† β„Ž ∧ ( Β·β„Ž β€œ (β„‚ Γ— β„Ž)) βŠ† β„Ž)}
df-ch 30943 Cβ„‹ = {β„Ž ∈ Sβ„‹ ∣ ( ⇝𝑣 β€œ (β„Ž ↑m β„•)) βŠ† β„Ž}
df-oc 30974βŠ₯ = (π‘₯ ∈ 𝒫 β„‹ ↦ {𝑦 ∈ β„‹ ∣ βˆ€π‘§ ∈ π‘₯ (𝑦 Β·ih 𝑧) = 0})
df-ch0 309750β„‹ = {0β„Ž}
df-shs 31030 +β„‹ = (π‘₯ ∈ Sβ„‹ , 𝑦 ∈ Sβ„‹ ↦ ( +β„Ž β€œ (π‘₯ Γ— 𝑦)))
df-span 31031span = (π‘₯ ∈ 𝒫 β„‹ ↦ ∩ {𝑦 ∈ Sβ„‹ ∣ π‘₯ βŠ† 𝑦})
df-chj 31032 βˆ¨β„‹ = (π‘₯ ∈ 𝒫 β„‹, 𝑦 ∈ 𝒫 β„‹ ↦ (βŠ₯β€˜(βŠ₯β€˜(π‘₯ βˆͺ 𝑦))))
df-chsup 31033 βˆ¨β„‹ = (π‘₯ ∈ 𝒫 𝒫 β„‹ ↦ (βŠ₯β€˜(βŠ₯β€˜βˆͺ π‘₯)))
df-pjh 31117projβ„Ž = (β„Ž ∈ Cβ„‹ ↦ (π‘₯ ∈ β„‹ ↦ (℩𝑧 ∈ β„Ž βˆƒπ‘¦ ∈ (βŠ₯β€˜β„Ž)π‘₯ = (𝑧 +β„Ž 𝑦))))
df-cm 31305 𝐢ℋ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ Cβ„‹ ∧ 𝑦 ∈ Cβ„‹ ) ∧ π‘₯ = ((π‘₯ ∩ 𝑦) βˆ¨β„‹ (π‘₯ ∩ (βŠ₯β€˜π‘¦))))}
df-hosum 31452 +op = (𝑓 ∈ ( β„‹ ↑m β„‹), 𝑔 ∈ ( β„‹ ↑m β„‹) ↦ (π‘₯ ∈ β„‹ ↦ ((π‘“β€˜π‘₯) +β„Ž (π‘”β€˜π‘₯))))
df-homul 31453 Β·op = (𝑓 ∈ β„‚, 𝑔 ∈ ( β„‹ ↑m β„‹) ↦ (π‘₯ ∈ β„‹ ↦ (𝑓 Β·β„Ž (π‘”β€˜π‘₯))))
df-hodif 31454 βˆ’op = (𝑓 ∈ ( β„‹ ↑m β„‹), 𝑔 ∈ ( β„‹ ↑m β„‹) ↦ (π‘₯ ∈ β„‹ ↦ ((π‘“β€˜π‘₯) βˆ’β„Ž (π‘”β€˜π‘₯))))
df-hfsum 31455 +fn = (𝑓 ∈ (β„‚ ↑m β„‹), 𝑔 ∈ (β„‚ ↑m β„‹) ↦ (π‘₯ ∈ β„‹ ↦ ((π‘“β€˜π‘₯) + (π‘”β€˜π‘₯))))
df-hfmul 31456 Β·fn = (𝑓 ∈ β„‚, 𝑔 ∈ (β„‚ ↑m β„‹) ↦ (π‘₯ ∈ β„‹ ↦ (𝑓 Β· (π‘”β€˜π‘₯))))
df-h0op 31470 0hop = (projβ„Žβ€˜0β„‹)
df-iop 31471 Iop = (projβ„Žβ€˜ β„‹)
df-nmop 31561normop = (𝑑 ∈ ( β„‹ ↑m β„‹) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ β„‹ ((normβ„Žβ€˜π‘§) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‘β€˜π‘§)))}, ℝ*, < ))
df-cnop 31562ContOp = {𝑑 ∈ ( β„‹ ↑m β„‹) ∣ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (normβ„Žβ€˜((π‘‘β€˜π‘€) βˆ’β„Ž (π‘‘β€˜π‘₯))) < 𝑦)}
df-lnop 31563LinOp = {𝑑 ∈ ( β„‹ ↑m β„‹) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ β„‹ βˆ€π‘§ ∈ β„‹ (π‘‘β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β·β„Ž (π‘‘β€˜π‘¦)) +β„Ž (π‘‘β€˜π‘§))}
df-bdop 31564BndLinOp = {𝑑 ∈ LinOp ∣ (normopβ€˜π‘‘) < +∞}
df-unop 31565UniOp = {𝑑 ∣ (𝑑: ℋ–ontoβ†’ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ ((π‘‘β€˜π‘₯) Β·ih (π‘‘β€˜π‘¦)) = (π‘₯ Β·ih 𝑦))}
df-hmop 31566HrmOp = {𝑑 ∈ ( β„‹ ↑m β„‹) ∣ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ (π‘₯ Β·ih (π‘‘β€˜π‘¦)) = ((π‘‘β€˜π‘₯) Β·ih 𝑦)}
df-nmfn 31567normfn = (𝑑 ∈ (β„‚ ↑m β„‹) ↦ sup({π‘₯ ∣ βˆƒπ‘§ ∈ β„‹ ((normβ„Žβ€˜π‘§) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‘β€˜π‘§)))}, ℝ*, < ))
df-nlfn 31568null = (𝑑 ∈ (β„‚ ↑m β„‹) ↦ (◑𝑑 β€œ {0}))
df-cnfn 31569ContFn = {𝑑 ∈ (β„‚ ↑m β„‹) ∣ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‘β€˜π‘€) βˆ’ (π‘‘β€˜π‘₯))) < 𝑦)}
df-lnfn 31570LinFn = {𝑑 ∈ (β„‚ ↑m β„‹) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ β„‹ βˆ€π‘§ ∈ β„‹ (π‘‘β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β· (π‘‘β€˜π‘¦)) + (π‘‘β€˜π‘§))}
df-adjh 31571adjβ„Ž = {βŸ¨π‘‘, π‘’βŸ© ∣ (𝑑: β„‹βŸΆ β„‹ ∧ 𝑒: β„‹βŸΆ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ ((π‘‘β€˜π‘₯) Β·ih 𝑦) = (π‘₯ Β·ih (π‘’β€˜π‘¦)))}
df-bra 31572bra = (π‘₯ ∈ β„‹ ↦ (𝑦 ∈ β„‹ ↦ (𝑦 Β·ih π‘₯)))
df-kb 31573 ketbra = (π‘₯ ∈ β„‹, 𝑦 ∈ β„‹ ↦ (𝑧 ∈ β„‹ ↦ ((𝑧 Β·ih 𝑦) Β·β„Ž π‘₯)))
df-leop 31574 ≀op = {βŸ¨π‘‘, π‘’βŸ© ∣ ((𝑒 βˆ’op 𝑑) ∈ HrmOp ∧ βˆ€π‘₯ ∈ β„‹ 0 ≀ (((𝑒 βˆ’op 𝑑)β€˜π‘₯) Β·ih π‘₯))}
df-eigvec 31575eigvec = (𝑑 ∈ ( β„‹ ↑m β„‹) ↦ {π‘₯ ∈ ( β„‹ βˆ– 0β„‹) ∣ βˆƒπ‘§ ∈ β„‚ (π‘‘β€˜π‘₯) = (𝑧 Β·β„Ž π‘₯)})
df-eigval 31576eigval = (𝑑 ∈ ( β„‹ ↑m β„‹) ↦ (π‘₯ ∈ (eigvecβ€˜π‘‘) ↦ (((π‘‘β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
df-spec 31577Lambda = (𝑑 ∈ ( β„‹ ↑m β„‹) ↦ {π‘₯ ∈ β„‚ ∣ Β¬ (𝑑 βˆ’op (π‘₯ Β·op ( I β†Ύ β„‹))): ℋ–1-1β†’ β„‹})
df-st 31933States = {𝑓 ∈ ((0[,]1) ↑m Cβ„‹ ) ∣ ((π‘“β€˜ β„‹) = 1 ∧ βˆ€π‘₯ ∈ Cβ„‹ βˆ€π‘¦ ∈ Cβ„‹ (π‘₯ βŠ† (βŠ₯β€˜π‘¦) β†’ (π‘“β€˜(π‘₯ βˆ¨β„‹ 𝑦)) = ((π‘“β€˜π‘₯) + (π‘“β€˜π‘¦))))}
df-hst 31934CHStates = {𝑓 ∈ ( β„‹ ↑m Cβ„‹ ) ∣ ((normβ„Žβ€˜(π‘“β€˜ β„‹)) = 1 ∧ βˆ€π‘₯ ∈ Cβ„‹ βˆ€π‘¦ ∈ Cβ„‹ (π‘₯ βŠ† (βŠ₯β€˜π‘¦) β†’ (((π‘“β€˜π‘₯) Β·ih (π‘“β€˜π‘¦)) = 0 ∧ (π‘“β€˜(π‘₯ βˆ¨β„‹ 𝑦)) = ((π‘“β€˜π‘₯) +β„Ž (π‘“β€˜π‘¦)))))}
df-cv 32001 β‹–β„‹ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ Cβ„‹ ∧ 𝑦 ∈ Cβ„‹ ) ∧ (π‘₯ ⊊ 𝑦 ∧ Β¬ βˆƒπ‘§ ∈ Cβ„‹ (π‘₯ ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))}
df-md 32002 𝑀ℋ = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ Cβ„‹ ∧ 𝑦 ∈ Cβ„‹ ) ∧ βˆ€π‘§ ∈ Cβ„‹ (𝑧 βŠ† 𝑦 β†’ ((𝑧 βˆ¨β„‹ π‘₯) ∩ 𝑦) = (𝑧 βˆ¨β„‹ (π‘₯ ∩ 𝑦))))}
df-dmd 32003 𝑀ℋ* = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ Cβ„‹ ∧ 𝑦 ∈ Cβ„‹ ) ∧ βˆ€π‘§ ∈ Cβ„‹ (𝑦 βŠ† 𝑧 β†’ ((𝑧 ∩ π‘₯) βˆ¨β„‹ 𝑦) = (𝑧 ∩ (π‘₯ βˆ¨β„‹ 𝑦))))}
df-at 32060HAtoms = {π‘₯ ∈ Cβ„‹ ∣ 0β„‹ β‹–β„‹ π‘₯}
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
w2reu 32187wff βˆƒ!π‘₯ ∈ 𝐴 , 𝑦 ∈ π΅πœ‘
df-2reu 32188(βˆƒ!π‘₯ ∈ 𝐴 , 𝑦 ∈ π΅πœ‘ ↔ (βˆƒ!π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 πœ‘ ∧ βˆƒ!𝑦 ∈ 𝐡 βˆƒπ‘₯ ∈ 𝐴 πœ‘))
cdp2 32504class 𝐴𝐡
df-dp2 32505𝐴𝐡 = (𝐴 + (𝐡 / 10))
cdp 32521class .
df-dp 32522. = (π‘₯ ∈ β„•0, 𝑦 ∈ ℝ ↦ π‘₯𝑦)
cxdiv 32550class /𝑒
df-xdiv 32551 /𝑒 = (π‘₯ ∈ ℝ*, 𝑦 ∈ (ℝ βˆ– {0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 Β·e 𝑧) = π‘₯))
cmnt 32615class Monot
cmgc 32616class MGalConn
df-mnt 32617Monot = (𝑣 ∈ V, 𝑀 ∈ V ↦ ⦋(Baseβ€˜π‘£) / π‘Žβ¦Œ{𝑓 ∈ ((Baseβ€˜π‘€) ↑m π‘Ž) ∣ βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ π‘Ž (π‘₯(leβ€˜π‘£)𝑦 β†’ (π‘“β€˜π‘₯)(leβ€˜π‘€)(π‘“β€˜π‘¦))})
df-mgc 32618MGalConn = (𝑣 ∈ V, 𝑀 ∈ V ↦ ⦋(Baseβ€˜π‘£) / π‘Žβ¦Œβ¦‹(Baseβ€˜π‘€) / π‘β¦Œ{βŸ¨π‘“, π‘”βŸ© ∣ ((𝑓 ∈ (𝑏 ↑m π‘Ž) ∧ 𝑔 ∈ (π‘Ž ↑m 𝑏)) ∧ βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 ((π‘“β€˜π‘₯)(leβ€˜π‘€)𝑦 ↔ π‘₯(leβ€˜π‘£)(π‘”β€˜π‘¦)))})
ax-xrssca 32641ℝfld = (Scalarβ€˜β„*𝑠)
ax-xrsvsca 32642 Β·e = ( ·𝑠 β€˜β„*𝑠)
comnd 32683class oMnd
cogrp 32684class oGrp
df-omnd 32685oMnd = {𝑔 ∈ Mnd ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / 𝑝][(leβ€˜π‘”) / 𝑙](𝑔 ∈ Toset ∧ βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 βˆ€π‘ ∈ 𝑣 (π‘Žπ‘™π‘ β†’ (π‘Žπ‘π‘)𝑙(𝑏𝑝𝑐)))}
df-ogrp 32686oGrp = (Grp ∩ oMnd)
ctocyc 32733class toCyc
df-tocyc 32734toCyc = (𝑑 ∈ V ↦ (𝑀 ∈ {𝑒 ∈ Word 𝑑 ∣ 𝑒:dom 𝑒–1-1→𝑑} ↦ (( I β†Ύ (𝑑 βˆ– ran 𝑀)) βˆͺ ((𝑀 cyclShift 1) ∘ ◑𝑀))))
csgns 32785class sgns
df-sgns 32786sgns = (π‘Ÿ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↦ if(π‘₯ = (0gβ€˜π‘Ÿ), 0, if((0gβ€˜π‘Ÿ)(ltβ€˜π‘Ÿ)π‘₯, 1, -1))))
cinftm 32790class β‹˜
carchi 32791class Archi
df-inftm 32792β‹˜ = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ ((0gβ€˜π‘€)(ltβ€˜π‘€)π‘₯ ∧ βˆ€π‘› ∈ β„• (𝑛(.gβ€˜π‘€)π‘₯)(ltβ€˜π‘€)𝑦))})
df-archi 32793Archi = {𝑀 ∣ (β‹˜β€˜π‘€) = βˆ…}
cslmd 32813class SLMod
df-slmd 32814SLMod = {𝑔 ∈ CMnd ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / π‘Ž][( ·𝑠 β€˜π‘”) / 𝑠][(Scalarβ€˜π‘”) / 𝑓][(Baseβ€˜π‘“) / π‘˜][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑](𝑓 ∈ SRing ∧ βˆ€π‘ž ∈ π‘˜ βˆ€π‘Ÿ ∈ π‘˜ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘€ ∈ 𝑣 (((π‘Ÿπ‘ π‘€) ∈ 𝑣 ∧ (π‘Ÿπ‘ (π‘€π‘Žπ‘₯)) = ((π‘Ÿπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘₯)) ∧ ((π‘žπ‘π‘Ÿ)𝑠𝑀) = ((π‘žπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘€))) ∧ (((π‘žπ‘‘π‘Ÿ)𝑠𝑀) = (π‘žπ‘ (π‘Ÿπ‘ π‘€)) ∧ ((1rβ€˜π‘“)𝑠𝑀) = 𝑀 ∧ ((0gβ€˜π‘“)𝑠𝑀) = (0gβ€˜π‘”))))}
ceuf 32854class EuclF
df-euf 32855EuclF = Slot 21
cedom 32858class EDomn
df-edom 32859EDomn = {𝑑 ∈ IDomn ∣ [(EuclFβ€˜π‘‘) / 𝑒][(Baseβ€˜π‘‘) / 𝑣](Fun 𝑒 ∧ (𝑒 β€œ (𝑣 βˆ– {(0gβ€˜π‘‘)})) βŠ† (0[,)+∞) ∧ βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ (𝑣 βˆ– {(0gβ€˜π‘‘)})βˆƒπ‘ž ∈ 𝑣 βˆƒπ‘Ÿ ∈ 𝑣 (π‘Ž = ((𝑏(.rβ€˜π‘‘)π‘ž)(+gβ€˜π‘‘)π‘Ÿ) ∧ (π‘Ÿ = (0gβ€˜π‘‘) ∨ (π‘’β€˜π‘Ÿ) < (π‘’β€˜π‘))))}
cfldgen 32866class fldGen
df-fldgen 32867 fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {π‘Ž ∈ (SubDRingβ€˜π‘“) ∣ 𝑠 βŠ† π‘Ž})
corng 32879class oRing
cofld 32880class oField
df-orng 32881oRing = {π‘Ÿ ∈ (Ring ∩ oGrp) ∣ [(Baseβ€˜π‘Ÿ) / 𝑣][(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))}
df-ofld 32882oField = (Field ∩ oRing)
cresv 32904class β†Ύv
df-resv 32905 β†Ύv = (𝑀 ∈ V, π‘₯ ∈ V ↦ if((Baseβ€˜(Scalarβ€˜π‘€)) βŠ† π‘₯, 𝑀, (𝑀 sSet ⟨(Scalarβ€˜ndx), ((Scalarβ€˜π‘€) β†Ύs π‘₯)⟩)))
cprmidl 33022class PrmIdeal
df-prmidl 33023PrmIdeal = (π‘Ÿ ∈ Ring ↦ {𝑖 ∈ (LIdealβ€˜π‘Ÿ) ∣ (𝑖 β‰  (Baseβ€˜π‘Ÿ) ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘Ÿ)βˆ€π‘ ∈ (LIdealβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))})
cmxidl 33044class MaxIdeal
df-mxidl 33045MaxIdeal = (π‘Ÿ ∈ Ring ↦ {𝑖 ∈ (LIdealβ€˜π‘Ÿ) ∣ (𝑖 β‰  (Baseβ€˜π‘Ÿ) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘Ÿ)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ))))})
cidlsrg 33083class IDLsrg
df-idlsrg 33084IDLsrg = (π‘Ÿ ∈ V ↦ ⦋(LIdealβ€˜π‘Ÿ) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (LSSumβ€˜π‘Ÿ)⟩, ⟨(.rβ€˜ndx), (𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpanβ€˜π‘Ÿ)β€˜(𝑖(LSSumβ€˜(mulGrpβ€˜π‘Ÿ))𝑗)))⟩} βˆͺ {⟨(TopSetβ€˜ndx), ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ Β¬ 𝑖 βŠ† 𝑗})⟩, ⟨(leβ€˜ndx), {βŸ¨π‘–, π‘—βŸ© ∣ ({𝑖, 𝑗} βŠ† 𝑏 ∧ 𝑖 βŠ† 𝑗)}⟩}))
cufd 33099class UFD
df-ufd 33100UFD = {π‘Ÿ ∈ CRing ∣ ((AbsValβ€˜π‘Ÿ) β‰  βˆ… ∧ βˆ€π‘– ∈ (PrmIdealβ€˜π‘Ÿ)(𝑖 ∩ (RPrimeβ€˜π‘Ÿ)) β‰  βˆ…)}
cldim 33162class dim
df-dim 33163dim = (𝑓 ∈ V ↦ βˆͺ (β™― β€œ (LBasisβ€˜π‘“)))
cfldext 33196class /FldExt
cfinext 33197class /FinExt
calgext 33198class /AlgExt
cextdg 33199class [:]
df-fldext 33200/FldExt = {βŸ¨π‘’, π‘“βŸ© ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 β†Ύs (Baseβ€˜π‘“)) ∧ (Baseβ€˜π‘“) ∈ (SubRingβ€˜π‘’)))}
df-extdg 33201[:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt β€œ {𝑒}) ↦ (dimβ€˜((subringAlg β€˜π‘’)β€˜(Baseβ€˜π‘“))))
df-finext 33202/FinExt = {βŸ¨π‘’, π‘“βŸ© ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ β„•0)}
df-algext 33203/AlgExt = {βŸ¨π‘’, π‘“βŸ© ∣ (𝑒/FldExt𝑓 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘’)βˆƒπ‘ ∈ (Poly1β€˜π‘“)(((eval1β€˜π‘“)β€˜π‘)β€˜π‘₯) = (0gβ€˜π‘’))}
cirng 33227class IntgRing
df-irng 33228 IntgRing = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ βˆͺ 𝑓 ∈ (Monic1pβ€˜(π‘Ÿ β†Ύs 𝑠))(β—‘((π‘Ÿ evalSub1 𝑠)β€˜π‘“) β€œ {(0gβ€˜π‘Ÿ)}))
cminply 33236class minPoly
df-minply 33237 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘’) ↦ ((idlGen1pβ€˜(𝑒 β†Ύs 𝑓))β€˜{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)β€˜π‘)β€˜π‘₯) = (0gβ€˜π‘’)})))
csmat 33262class subMat1
df-smat 33263subMat1 = (π‘š ∈ V ↦ (π‘˜ ∈ β„•, 𝑙 ∈ β„• ↦ (π‘š ∘ (𝑖 ∈ β„•, 𝑗 ∈ β„• ↦ ⟨if(𝑖 < π‘˜, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
clmat 33280class litMat
df-lmat 33281litMat = (π‘š ∈ V ↦ (𝑖 ∈ (1...(β™―β€˜π‘š)), 𝑗 ∈ (1...(β™―β€˜(π‘šβ€˜0))) ↦ ((π‘šβ€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))))
ccref 33311class CovHasRef𝐴
df-cref 33312CovHasRef𝐴 = {𝑗 ∈ Top ∣ βˆ€π‘¦ ∈ 𝒫 𝑗(βˆͺ 𝑗 = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)}
cldlf 33321class Ldlf
df-ldlf 33322Ldlf = CovHasRef{π‘₯ ∣ π‘₯ β‰Ό Ο‰}
cpcmp 33324class Paracomp
df-pcmp 33325Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFinβ€˜π‘—)}
crspec 33331class Spec
df-rspec 33332Spec = (π‘Ÿ ∈ Ring ↦ ((IDLsrgβ€˜π‘Ÿ) β†Ύs (PrmIdealβ€˜π‘Ÿ)))
cmetid 33355class ~Met
cpstm 33356class pstoMet
df-metid 33357~Met = (𝑑 ∈ βˆͺ ran PsMet ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (π‘₯𝑑𝑦) = 0)})
df-pstm 33358pstoMet = (𝑑 ∈ βˆͺ ran PsMet ↦ (π‘Ž ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)), 𝑏 ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}))
chcmp 33425class HCmp
df-hcmp 33426HCmp = {βŸ¨π‘’, π‘€βŸ© ∣ ((𝑒 ∈ βˆͺ ran UnifOn ∧ 𝑀 ∈ CUnifSp) ∧ ((UnifStβ€˜π‘€) β†Ύt dom βˆͺ 𝑒) = 𝑒 ∧ ((clsβ€˜(TopOpenβ€˜π‘€))β€˜dom βˆͺ 𝑒) = (Baseβ€˜π‘€))}
cqqh 33441class β„šHom
df-qqh 33442β„šHom = (π‘Ÿ ∈ V ↦ ran (π‘₯ ∈ β„€, 𝑦 ∈ (β—‘(β„€RHomβ€˜π‘Ÿ) β€œ (Unitβ€˜π‘Ÿ)) ↦ ⟨(π‘₯ / 𝑦), (((β„€RHomβ€˜π‘Ÿ)β€˜π‘₯)(/rβ€˜π‘Ÿ)((β„€RHomβ€˜π‘Ÿ)β€˜π‘¦))⟩))
crrh 33462class ℝHom
crrext 33463class ℝExt
df-rrh 33464ℝHom = (π‘Ÿ ∈ V ↦ (((topGenβ€˜ran (,))CnExt(TopOpenβ€˜π‘Ÿ))β€˜(β„šHomβ€˜π‘Ÿ)))
df-rrext 33468 ℝExt = {π‘Ÿ ∈ (NrmRing ∩ DivRing) ∣ (((β„€Modβ€˜π‘Ÿ) ∈ NrmMod ∧ (chrβ€˜π‘Ÿ) = 0) ∧ (π‘Ÿ ∈ CUnifSp ∧ (UnifStβ€˜π‘Ÿ) = (metUnifβ€˜((distβ€˜π‘Ÿ) β†Ύ ((Baseβ€˜π‘Ÿ) Γ— (Baseβ€˜π‘Ÿ))))))}
cxrh 33485class ℝ*Hom
df-xrh 33486ℝ*Hom = (π‘Ÿ ∈ V ↦ (π‘₯ ∈ ℝ* ↦ if(π‘₯ ∈ ℝ, ((ℝHomβ€˜π‘Ÿ)β€˜π‘₯), if(π‘₯ = +∞, ((lubβ€˜π‘Ÿ)β€˜((ℝHomβ€˜π‘Ÿ) β€œ ℝ)), ((glbβ€˜π‘Ÿ)β€˜((ℝHomβ€˜π‘Ÿ) β€œ ℝ))))))
cmntop 33491class ManTop
df-mntop 33492ManTop = {βŸ¨π‘›, π‘—βŸ© ∣ (𝑛 ∈ β„•0 ∧ (𝑗 ∈ 2ndΟ‰ ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpenβ€˜(𝔼hilβ€˜π‘›))] ≃ ))}
cind 33497class 𝟭
df-ind 33498𝟭 = (π‘œ ∈ V ↦ (π‘Ž ∈ 𝒫 π‘œ ↦ (π‘₯ ∈ π‘œ ↦ if(π‘₯ ∈ π‘Ž, 1, 0))))
cesum 33514class Ξ£*π‘˜ ∈ 𝐴𝐡
df-esum 33515Ξ£*π‘˜ ∈ 𝐴𝐡 = βˆͺ ((ℝ*𝑠 β†Ύs (0[,]+∞)) tsums (π‘˜ ∈ 𝐴 ↦ 𝐡))
cofc 33582class ∘f/c 𝑅
df-ofc 33583 ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (π‘₯ ∈ dom 𝑓 ↦ ((π‘“β€˜π‘₯)𝑅𝑐)))
csiga 33595class sigAlgebra
df-siga 33596sigAlgebra = (π‘œ ∈ V ↦ {𝑠 ∣ (𝑠 βŠ† 𝒫 π‘œ ∧ (π‘œ ∈ 𝑠 ∧ βˆ€π‘₯ ∈ 𝑠 (π‘œ βˆ– π‘₯) ∈ 𝑠 ∧ βˆ€π‘₯ ∈ 𝒫 𝑠(π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝑠)))})
csigagen 33625class sigaGen
df-sigagen 33626sigaGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ π‘₯) ∣ π‘₯ βŠ† 𝑠})
cbrsiga 33668class 𝔅ℝ
df-brsiga 33669𝔅ℝ = (sigaGenβ€˜(topGenβ€˜ran (,)))
csx 33675class Γ—s
df-sx 33676 Γ—s = (𝑠 ∈ V, 𝑑 ∈ V ↦ (sigaGenβ€˜ran (π‘₯ ∈ 𝑠, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦))))
cmeas 33682class measures
df-meas 33683measures = (𝑠 ∈ βˆͺ ran sigAlgebra ↦ {π‘š ∣ (π‘š:π‘ βŸΆ(0[,]+∞) ∧ (π‘šβ€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 𝑠((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘šβ€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘šβ€˜π‘¦)))})
cdde 33719class Ξ΄
df-dde 33720Ξ΄ = (π‘Ž ∈ 𝒫 ℝ ↦ if(0 ∈ π‘Ž, 1, 0))
cae 33724class a.e.
cfae 33725class ~ a.e.
df-ae 33726a.e. = {βŸ¨π‘Ž, π‘šβŸ© ∣ (π‘šβ€˜(βˆͺ dom π‘š βˆ– π‘Ž)) = 0}
df-fae 33732~ a.e. = (π‘Ÿ ∈ V, π‘š ∈ βˆͺ ran measures ↦ {βŸ¨π‘“, π‘”βŸ© ∣ ((𝑓 ∈ (dom π‘Ÿ ↑m βˆͺ dom π‘š) ∧ 𝑔 ∈ (dom π‘Ÿ ↑m βˆͺ dom π‘š)) ∧ {π‘₯ ∈ βˆͺ dom π‘š ∣ (π‘“β€˜π‘₯)π‘Ÿ(π‘”β€˜π‘₯)}a.e.π‘š)})
cmbfm 33736class MblFnM
df-mbfm 33737MblFnM = (𝑠 ∈ βˆͺ ran sigAlgebra, 𝑑 ∈ βˆͺ ran sigAlgebra ↦ {𝑓 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∣ βˆ€π‘₯ ∈ 𝑑 (◑𝑓 β€œ π‘₯) ∈ 𝑠})
coms 33779class toOMeas
df-oms 33780toOMeas = (π‘Ÿ ∈ V ↦ (π‘Ž ∈ 𝒫 βˆͺ dom π‘Ÿ ↦ inf(ran (π‘₯ ∈ {𝑧 ∈ 𝒫 dom π‘Ÿ ∣ (π‘Ž βŠ† βˆͺ 𝑧 ∧ 𝑧 β‰Ό Ο‰)} ↦ Ξ£*𝑦 ∈ π‘₯(π‘Ÿβ€˜π‘¦)), (0[,]+∞), < )))
ccarsg 33789class toCaraSiga
df-carsg 33790toCaraSiga = (π‘š ∈ V ↦ {π‘Ž ∈ 𝒫 βˆͺ dom π‘š ∣ βˆ€π‘’ ∈ 𝒫 βˆͺ dom π‘š((π‘šβ€˜(𝑒 ∩ π‘Ž)) +𝑒 (π‘šβ€˜(𝑒 βˆ– π‘Ž))) = (π‘šβ€˜π‘’)})
citgm 33815class itgm
csitm 33816class sitm
csitg 33817class sitg
df-sitg 33818sitg = (𝑀 ∈ V, π‘š ∈ βˆͺ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom π‘šMblFnM(sigaGenβ€˜(TopOpenβ€˜π‘€))) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– {(0gβ€˜π‘€)})(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (𝑀 Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– {(0gβ€˜π‘€)}) ↦ (((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯})))( ·𝑠 β€˜π‘€)π‘₯)))))
df-sitm 33819sitm = (𝑀 ∈ V, π‘š ∈ βˆͺ ran measures ↦ (𝑓 ∈ dom (𝑀sitgπ‘š), 𝑔 ∈ dom (𝑀sitgπ‘š) ↦ (((ℝ*𝑠 β†Ύs (0[,]+∞))sitgπ‘š)β€˜(𝑓 ∘f (distβ€˜π‘€)𝑔))))
df-itgm 33841itgm = (𝑀 ∈ V, π‘š ∈ βˆͺ ran measures ↦ (((metUnifβ€˜(𝑀sitmπ‘š))CnExt(UnifStβ€˜π‘€))β€˜(𝑀sitgπ‘š)))
csseq 33871class seqstr
df-sseq 33872seqstr = (π‘š ∈ V, 𝑓 ∈ V ↦ (π‘š βˆͺ (lastS ∘ seq(β™―β€˜π‘š)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(π‘“β€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(π‘š ++ βŸ¨β€œ(π‘“β€˜π‘š)β€βŸ©)})))))
cfib 33884class Fibci
df-fib 33885Fibci = (βŸ¨β€œ01β€βŸ©seqstr(𝑀 ∈ (Word β„•0 ∩ (β—‘β™― β€œ (β„€β‰₯β€˜2))) ↦ ((π‘€β€˜((β™―β€˜π‘€) βˆ’ 2)) + (π‘€β€˜((β™―β€˜π‘€) βˆ’ 1)))))
cprb 33895class Prob
df-prob 33896Prob = {𝑝 ∈ βˆͺ ran measures ∣ (π‘β€˜βˆͺ dom 𝑝) = 1}
ccprob 33919class cprob
df-cndprob 33920cprob = (𝑝 ∈ Prob ↦ (π‘Ž ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((π‘β€˜(π‘Ž ∩ 𝑏)) / (π‘β€˜π‘))))
crrv 33928class rRndVar
df-rrv 33929rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ))
corvc 33943class ∘RV/𝑐𝑅
df-orvc 33944∘RV/𝑐𝑅 = (π‘₯ ∈ {π‘₯ ∣ Fun π‘₯}, π‘Ž ∈ V ↦ (β—‘π‘₯ β€œ {𝑦 ∣ π‘¦π‘…π‘Ž}))
crepr 34109class repr
df-repr 34110repr = (𝑠 ∈ β„•0 ↦ (𝑏 ∈ 𝒫 β„•, π‘š ∈ β„€ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Ξ£π‘Ž ∈ (0..^𝑠)(π‘β€˜π‘Ž) = π‘š}))
cvts 34136class vts
df-vts 34137vts = (𝑙 ∈ (β„‚ ↑m β„•), 𝑛 ∈ β„•0 ↦ (π‘₯ ∈ β„‚ ↦ Ξ£π‘Ž ∈ (1...𝑛)((π‘™β€˜π‘Ž) Β· (expβ€˜((i Β· (2 Β· Ο€)) Β· (π‘Ž Β· π‘₯))))))
ax-hgt749 34145βˆ€π‘› ∈ {𝑧 ∈ β„€ ∣ Β¬ 2 βˆ₯ 𝑧} ((10↑27) ≀ 𝑛 β†’ βˆƒβ„Ž ∈ ((0[,)+∞) ↑m β„•)βˆƒπ‘˜ ∈ ((0[,)+∞) ↑m β„•)(βˆ€π‘š ∈ β„• (π‘˜β€˜π‘š) ≀ (1.079955) ∧ βˆ€π‘š ∈ β„• (β„Žβ€˜π‘š) ≀ (1.414) ∧ ((0.00042248) Β· (𝑛↑2)) ≀ ∫(0(,)1)(((((Ξ› ∘f Β· β„Ž)vts𝑛)β€˜π‘₯) Β· ((((Ξ› ∘f Β· π‘˜)vts𝑛)β€˜π‘₯)↑2)) Β· (expβ€˜((i Β· (2 Β· Ο€)) Β· (-𝑛 Β· π‘₯)))) dπ‘₯))
ax-ros335 34146βˆ€π‘₯ ∈ ℝ+ (Οˆβ€˜π‘₯) < ((1.03883) Β· π‘₯)
ax-ros336 34147βˆ€π‘₯ ∈ ℝ+ ((Οˆβ€˜π‘₯) βˆ’ (ΞΈβ€˜π‘₯)) < ((1.4262) Β· (βˆšβ€˜π‘₯))
cstrkg2d 34165class TarskiG2D
df-trkg2d 34166TarskiG2D = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(distβ€˜π‘“) / 𝑑][(Itvβ€˜π‘“) / 𝑖](βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))}
cafs 34170class AFS
df-afs 34171AFS = (𝑔 ∈ TarskiG ↦ {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / β„Ž][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘Ž ∈ 𝑝 βˆƒπ‘ ∈ 𝑝 βˆƒπ‘ ∈ 𝑝 βˆƒπ‘‘ ∈ 𝑝 βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 βˆƒπ‘€ ∈ 𝑝 (𝑒 = βŸ¨βŸ¨π‘Ž, π‘βŸ©, βŸ¨π‘, π‘‘βŸ©βŸ© ∧ 𝑓 = ⟨⟨π‘₯, π‘¦βŸ©, βŸ¨π‘§, π‘€βŸ©βŸ© ∧ ((𝑏 ∈ (π‘Žπ‘–π‘) ∧ 𝑦 ∈ (π‘₯𝑖𝑧)) ∧ ((π‘Žβ„Žπ‘) = (π‘₯β„Žπ‘¦) ∧ (π‘β„Žπ‘) = (π‘¦β„Žπ‘§)) ∧ ((π‘Žβ„Žπ‘‘) = (π‘₯β„Žπ‘€) ∧ (π‘β„Žπ‘‘) = (π‘¦β„Žπ‘€))))})
clpad 34175class leftpad
df-lpad 34176 leftpad = (𝑐 ∈ V, 𝑀 ∈ V ↦ (𝑙 ∈ β„•0 ↦ (((0..^(𝑙 βˆ’ (β™―β€˜π‘€))) Γ— {𝑐}) ++ 𝑀)))
w-bnj17 34186wff (πœ‘ ∧ πœ“ ∧ πœ’ ∧ πœƒ)
df-bnj17 34187((πœ‘ ∧ πœ“ ∧ πœ’ ∧ πœƒ) ↔ ((πœ‘ ∧ πœ“ ∧ πœ’) ∧ πœƒ))
c-bnj14 34188class pred(𝑋, 𝐴, 𝑅)
df-bnj14 34189 pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}
w-bnj13 34190wff 𝑅 Se 𝐴
df-bnj13 34191(𝑅 Se 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 pred(π‘₯, 𝐴, 𝑅) ∈ V)
w-bnj15 34192wff 𝑅 FrSe 𝐴
df-bnj15 34193(𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴))
c-bnj18 34194class trCl(𝑋, 𝐴, 𝑅)
df-bnj18 34195 trCl(𝑋, 𝐴, 𝑅) = βˆͺ 𝑓 ∈ {𝑓 ∣ βˆƒπ‘› ∈ (Ο‰ βˆ– {βˆ…})(𝑓 Fn 𝑛 ∧ (π‘“β€˜βˆ…) = pred(𝑋, 𝐴, 𝑅) ∧ βˆ€π‘– ∈ Ο‰ (suc 𝑖 ∈ 𝑛 β†’ (π‘“β€˜suc 𝑖) = βˆͺ 𝑦 ∈ (π‘“β€˜π‘–) pred(𝑦, 𝐴, 𝑅)))}βˆͺ 𝑖 ∈ dom 𝑓(π‘“β€˜π‘–)
w-bnj19 34196wff TrFo(𝐡, 𝐴, 𝑅)
df-bnj19 34197( TrFo(𝐡, 𝐴, 𝑅) ↔ βˆ€π‘₯ ∈ 𝐡 pred(π‘₯, 𝐴, 𝑅) βŠ† 𝐡)
cacycgr 34622class AcyclicGraph
df-acycgr 34623AcyclicGraph = {𝑔 ∣ Β¬ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜π‘”)𝑝 ∧ 𝑓 β‰  βˆ…)}
ax-7d 34639(βˆ€π‘₯βˆ€π‘¦πœ‘ β†’ βˆ€π‘¦βˆ€π‘₯πœ‘)
ax-8d 34640(π‘₯ = 𝑦 β†’ (π‘₯ = 𝑧 β†’ 𝑦 = 𝑧))
ax-9d1 34641 Β¬ βˆ€π‘₯ Β¬ π‘₯ = π‘₯
ax-9d2 34642 Β¬ βˆ€π‘₯ Β¬ π‘₯ = 𝑦
ax-10d 34643(βˆ€π‘₯ π‘₯ = 𝑦 β†’ βˆ€π‘¦ 𝑦 = π‘₯)
ax-11d 34644(π‘₯ = 𝑦 β†’ (βˆ€π‘¦πœ‘ β†’ βˆ€π‘₯(π‘₯ = 𝑦 β†’ πœ‘)))
cretr 34697class Retr
df-retr 34698 Retr = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {π‘Ÿ ∈ (𝑗 Cn π‘˜) ∣ βˆƒπ‘  ∈ (π‘˜ Cn 𝑗)((π‘Ÿ ∘ 𝑠)(𝑗 Htpy 𝑗)( I β†Ύ βˆͺ 𝑗)) β‰  βˆ…})
cpconn 34699class PConn
csconn 34700class SConn
df-pconn 34701PConn = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ βˆͺ π‘—βˆ€π‘¦ ∈ βˆͺ π‘—βˆƒπ‘“ ∈ (II Cn 𝑗)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}
df-sconn 34702SConn = {𝑗 ∈ PConn ∣ βˆ€π‘“ ∈ (II Cn 𝑗)((π‘“β€˜0) = (π‘“β€˜1) β†’ 𝑓( ≃phβ€˜π‘—)((0[,]1) Γ— {(π‘“β€˜0)}))}
ccvm 34735class CovMap
df-cvm 34736 CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ βˆ€π‘₯ ∈ βˆͺ π‘—βˆƒπ‘˜ ∈ 𝑗 (π‘₯ ∈ π‘˜ ∧ βˆƒπ‘  ∈ (𝒫 𝑐 βˆ– {βˆ…})(βˆͺ 𝑠 = (◑𝑓 β€œ π‘˜) ∧ βˆ€π‘’ ∈ 𝑠 (βˆ€π‘£ ∈ (𝑠 βˆ– {𝑒})(𝑒 ∩ 𝑣) = βˆ… ∧ (𝑓 β†Ύ 𝑒) ∈ ((𝑐 β†Ύt 𝑒)Homeo(𝑗 β†Ύt π‘˜)))))})
cgoe 34813class βˆˆπ‘”
cgna 34814class βŠΌπ‘”
cgol 34815class βˆ€π‘”π‘π‘ˆ
csat 34816class Sat
cfmla 34817class Fmla
csate 34818class Sat∈
cprv 34819class ⊧
df-goel 34820βˆˆπ‘” = (π‘₯ ∈ (Ο‰ Γ— Ο‰) ↦ βŸ¨βˆ…, π‘₯⟩)
df-gona 34821βŠΌπ‘” = (π‘₯ ∈ (V Γ— V) ↦ ⟨1o, π‘₯⟩)
df-goal 34822βˆ€π‘”π‘π‘ˆ = ⟨2o, βŸ¨π‘, π‘ˆβŸ©βŸ©
df-sat 34823 Sat = (π‘š ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 βˆͺ {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘’ ∈ 𝑓 (βˆƒπ‘£ ∈ 𝑓 (π‘₯ = ((1st β€˜π‘’)βŠΌπ‘”(1st β€˜π‘£)) ∧ 𝑦 = ((π‘š ↑m Ο‰) βˆ– ((2nd β€˜π‘’) ∩ (2nd β€˜π‘£)))) ∨ βˆƒπ‘– ∈ Ο‰ (π‘₯ = βˆ€π‘”π‘–(1st β€˜π‘’) ∧ 𝑦 = {π‘Ž ∈ (π‘š ↑m Ο‰) ∣ βˆ€π‘§ ∈ π‘š ({βŸ¨π‘–, π‘§βŸ©} βˆͺ (π‘Ž β†Ύ (Ο‰ βˆ– {𝑖}))) ∈ (2nd β€˜π‘’)}))})), {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘– ∈ Ο‰ βˆƒπ‘— ∈ Ο‰ (π‘₯ = (π‘–βˆˆπ‘”π‘—) ∧ 𝑦 = {π‘Ž ∈ (π‘š ↑m Ο‰) ∣ (π‘Žβ€˜π‘–)𝑒(π‘Žβ€˜π‘—)})}) β†Ύ suc Ο‰))
df-sate 34824 Sat∈ = (π‘š ∈ V, 𝑒 ∈ V ↦ (((π‘š Sat ( E ∩ (π‘š Γ— π‘š)))β€˜Ο‰)β€˜π‘’))
df-fmla 34825Fmla = (𝑛 ∈ suc Ο‰ ↦ dom ((βˆ… Sat βˆ…)β€˜π‘›))
df-prv 34826⊧ = {βŸ¨π‘š, π‘’βŸ© ∣ (π‘š Sat∈ 𝑒) = (π‘š ↑m Ο‰)}
cgon 34912class Β¬π‘”π‘ˆ
cgoa 34913class βˆ§π‘”
cgoi 34914class →𝑔
cgoo 34915class βˆ¨π‘”
cgob 34916class ↔𝑔
cgoq 34917class =𝑔
cgox 34918class βˆƒπ‘”π‘π‘ˆ
df-gonot 34919Β¬π‘”π‘ˆ = (π‘ˆβŠΌπ‘”π‘ˆ)
df-goan 34920βˆ§π‘” = (𝑒 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(π‘’βŠΌπ‘”π‘£))
df-goim 34921 →𝑔 = (𝑒 ∈ V, 𝑣 ∈ V ↦ (π‘’βŠΌπ‘”Β¬π‘”π‘£))
df-goor 34922 βˆ¨π‘” = (𝑒 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑒 →𝑔 𝑣))
df-gobi 34923 ↔𝑔 = (𝑒 ∈ V, 𝑣 ∈ V ↦ ((𝑒 →𝑔 𝑣)βˆ§π‘”(𝑣 →𝑔 𝑒)))
df-goeq 34924=𝑔 = (𝑒 ∈ Ο‰, 𝑣 ∈ Ο‰ ↦ ⦋suc (𝑒 βˆͺ 𝑣) / π‘€β¦Œβˆ€π‘”π‘€((π‘€βˆˆπ‘”π‘’) ↔𝑔 (π‘€βˆˆπ‘”π‘£)))
df-goex 34925βˆƒπ‘”π‘π‘ˆ = Β¬π‘”βˆ€π‘”π‘Β¬π‘”π‘ˆ
cgze 34926class AxExt
cgzr 34927class AxRep
cgzp 34928class AxPow
cgzu 34929class AxUn
cgzg 34930class AxReg
cgzi 34931class AxInf
cgzf 34932class ZF
df-gzext 34933AxExt = (βˆ€π‘”2o((2oβˆˆπ‘”βˆ…) ↔𝑔 (2oβˆˆπ‘”1o)) →𝑔 (βˆ…=𝑔1o))
df-gzrep 34934AxRep = (𝑒 ∈ (Fmlaβ€˜Ο‰) ↦ (βˆ€π‘”3oβˆƒπ‘”1oβˆ€π‘”2o(βˆ€π‘”1o𝑒 →𝑔 (2o=𝑔1o)) →𝑔 βˆ€π‘”1oβˆ€π‘”2o((2oβˆˆπ‘”1o) ↔𝑔 βˆƒπ‘”3o((3oβˆˆπ‘”βˆ…)βˆ§π‘”βˆ€π‘”1o𝑒))))
df-gzpow 34935AxPow = βˆƒπ‘”1oβˆ€π‘”2o(βˆ€π‘”1o((1oβˆˆπ‘”2o) ↔𝑔 (1oβˆˆπ‘”βˆ…)) →𝑔 (2oβˆˆπ‘”1o))
df-gzun 34936AxUn = βˆƒπ‘”1oβˆ€π‘”2o(βˆƒπ‘”1o((2oβˆˆπ‘”1o)βˆ§π‘”(1oβˆˆπ‘”βˆ…)) →𝑔 (2oβˆˆπ‘”1o))
df-gzreg 34937AxReg = (βˆƒπ‘”1o(1oβˆˆπ‘”βˆ…) →𝑔 βˆƒπ‘”1o((1oβˆˆπ‘”βˆ…)βˆ§π‘”βˆ€π‘”2o((2oβˆˆπ‘”1o) →𝑔 ¬𝑔(2oβˆˆπ‘”βˆ…))))
df-gzinf 34938AxInf = βˆƒπ‘”1o((βˆ…βˆˆπ‘”1o)βˆ§π‘”βˆ€π‘”2o((2oβˆˆπ‘”1o) →𝑔 βˆƒπ‘”βˆ…((2oβˆˆπ‘”βˆ…)βˆ§π‘”(βˆ…βˆˆπ‘”1o))))
df-gzf 34939ZF = {π‘š ∣ ((Tr π‘š ∧ π‘šβŠ§AxExt ∧ π‘šβŠ§AxPow) ∧ (π‘šβŠ§AxUn ∧ π‘šβŠ§AxReg ∧ π‘šβŠ§AxInf) ∧ βˆ€π‘’ ∈ (Fmlaβ€˜Ο‰)π‘šβŠ§(AxRepβ€˜π‘’))}
cmcn 34940class mCN
cmvar 34941class mVR
cmty 34942class mType
cmvt 34943class mVT
cmtc 34944class mTC
cmax 34945class mAx
cmrex 34946class mREx
cmex 34947class mEx
cmdv 34948class mDV
cmvrs 34949class mVars
cmrsub 34950class mRSubst
cmsub 34951class mSubst
cmvh 34952class mVH
cmpst 34953class mPreSt
cmsr 34954class mStRed
cmsta 34955class mStat
cmfs 34956class mFS
cmcls 34957class mCls
cmpps 34958class mPPSt
cmthm 34959class mThm
df-mcn 34960mCN = Slot 1
df-mvar 34961mVR = Slot 2
df-mty 34962mType = Slot 3
df-mtc 34963mTC = Slot 4
df-mmax 34964mAx = Slot 5
df-mvt 34965mVT = (𝑑 ∈ V ↦ ran (mTypeβ€˜π‘‘))
df-mrex 34966mREx = (𝑑 ∈ V ↦ Word ((mCNβ€˜π‘‘) βˆͺ (mVRβ€˜π‘‘)))
df-mex 34967mEx = (𝑑 ∈ V ↦ ((mTCβ€˜π‘‘) Γ— (mRExβ€˜π‘‘)))
df-mdv 34968mDV = (𝑑 ∈ V ↦ (((mVRβ€˜π‘‘) Γ— (mVRβ€˜π‘‘)) βˆ– I ))
df-mvrs 34969mVars = (𝑑 ∈ V ↦ (𝑒 ∈ (mExβ€˜π‘‘) ↦ (ran (2nd β€˜π‘’) ∩ (mVRβ€˜π‘‘))))
df-mrsub 34970mRSubst = (𝑑 ∈ V ↦ (𝑓 ∈ ((mRExβ€˜π‘‘) ↑pm (mVRβ€˜π‘‘)) ↦ (𝑒 ∈ (mRExβ€˜π‘‘) ↦ ((freeMndβ€˜((mCNβ€˜π‘‘) βˆͺ (mVRβ€˜π‘‘))) Ξ£g ((𝑣 ∈ ((mCNβ€˜π‘‘) βˆͺ (mVRβ€˜π‘‘)) ↦ if(𝑣 ∈ dom 𝑓, (π‘“β€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑒)))))
df-msub 34971mSubst = (𝑑 ∈ V ↦ (𝑓 ∈ ((mRExβ€˜π‘‘) ↑pm (mVRβ€˜π‘‘)) ↦ (𝑒 ∈ (mExβ€˜π‘‘) ↦ ⟨(1st β€˜π‘’), (((mRSubstβ€˜π‘‘)β€˜π‘“)β€˜(2nd β€˜π‘’))⟩)))
df-mvh 34972mVH = (𝑑 ∈ V ↦ (𝑣 ∈ (mVRβ€˜π‘‘) ↦ ⟨((mTypeβ€˜π‘‘)β€˜π‘£), βŸ¨β€œπ‘£β€βŸ©βŸ©))
df-mpst 34973mPreSt = (𝑑 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDVβ€˜π‘‘) ∣ ◑𝑑 = 𝑑} Γ— (𝒫 (mExβ€˜π‘‘) ∩ Fin)) Γ— (mExβ€˜π‘‘)))
df-msr 34974mStRed = (𝑑 ∈ V ↦ (𝑠 ∈ (mPreStβ€˜π‘‘) ↦ ⦋(2nd β€˜(1st β€˜π‘ )) / β„Žβ¦Œβ¦‹(2nd β€˜π‘ ) / π‘Žβ¦ŒβŸ¨((1st β€˜(1st β€˜π‘ )) ∩ ⦋βˆͺ ((mVarsβ€˜π‘‘) β€œ (β„Ž βˆͺ {π‘Ž})) / π‘§β¦Œ(𝑧 Γ— 𝑧)), β„Ž, π‘ŽβŸ©))
df-msta 34975mStat = (𝑑 ∈ V ↦ ran (mStRedβ€˜π‘‘))
df-mfs 34976mFS = {𝑑 ∣ ((((mCNβ€˜π‘‘) ∩ (mVRβ€˜π‘‘)) = βˆ… ∧ (mTypeβ€˜π‘‘):(mVRβ€˜π‘‘)⟢(mTCβ€˜π‘‘)) ∧ ((mAxβ€˜π‘‘) βŠ† (mStatβ€˜π‘‘) ∧ βˆ€π‘£ ∈ (mVTβ€˜π‘‘) Β¬ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin))}
df-mcls 34977mCls = (𝑑 ∈ V ↦ (𝑑 ∈ 𝒫 (mDVβ€˜π‘‘), β„Ž ∈ 𝒫 (mExβ€˜π‘‘) ↦ ∩ {𝑐 ∣ ((β„Ž βˆͺ ran (mVHβ€˜π‘‘)) βŠ† 𝑐 ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(((𝑠 β€œ (π‘œ βˆͺ ran (mVHβ€˜π‘‘))) βŠ† 𝑐 ∧ βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑)) β†’ (π‘ β€˜π‘) ∈ 𝑐)))}))
df-mpps 34978mPPSt = (𝑑 ∈ V ↦ {βŸ¨βŸ¨π‘‘, β„ŽβŸ©, π‘ŽβŸ© ∣ (βŸ¨π‘‘, β„Ž, π‘ŽβŸ© ∈ (mPreStβ€˜π‘‘) ∧ π‘Ž ∈ (𝑑(mClsβ€˜π‘‘)β„Ž))})
df-mthm 34979mThm = (𝑑 ∈ V ↦ (β—‘(mStRedβ€˜π‘‘) β€œ ((mStRedβ€˜π‘‘) β€œ (mPPStβ€˜π‘‘))))
cm0s 35065class m0St
cmsa 35066class mSA
cmwgfs 35067class mWGFS
cmsy 35068class mSyn
cmesy 35069class mESyn
cmgfs 35070class mGFS
cmtree 35071class mTree
cmst 35072class mST
cmsax 35073class mSAX
cmufs 35074class mUFS
df-m0s 35075m0St = (π‘Ž ∈ V ↦ βŸ¨βˆ…, βˆ…, π‘ŽβŸ©)
df-msa 35076mSA = (𝑑 ∈ V ↦ {π‘Ž ∈ (mExβ€˜π‘‘) ∣ ((m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘) ∧ Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘)))})
df-mwgfs 35077mWGFS = {𝑑 ∈ mFS ∣ βˆ€π‘‘βˆ€β„Žβˆ€π‘Ž((βŸ¨π‘‘, β„Ž, π‘ŽβŸ© ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘)) β†’ βˆƒπ‘  ∈ ran (mSubstβ€˜π‘‘)π‘Ž ∈ (𝑠 β€œ (mSAβ€˜π‘‘)))}
df-msyn 35078mSyn = Slot 6
df-mesyn 35079mESyn = (𝑑 ∈ V ↦ (𝑐 ∈ (mTCβ€˜π‘‘), 𝑒 ∈ (mRExβ€˜π‘‘) ↦ (((mSynβ€˜π‘‘)β€˜π‘)m0St𝑒)))
df-mgfs 35080mGFS = {𝑑 ∈ mWGFS ∣ ((mSynβ€˜π‘‘):(mTCβ€˜π‘‘)⟢(mVTβ€˜π‘‘) ∧ βˆ€π‘ ∈ (mVTβ€˜π‘‘)((mSynβ€˜π‘‘)β€˜π‘) = 𝑐 ∧ βˆ€π‘‘βˆ€β„Žβˆ€π‘Ž(βŸ¨π‘‘, β„Ž, π‘ŽβŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘’ ∈ (β„Ž βˆͺ {π‘Ž})((mESynβ€˜π‘‘)β€˜π‘’) ∈ (mPPStβ€˜π‘‘)))}
df-mtree 35081mTree = (𝑑 ∈ V ↦ (𝑑 ∈ 𝒫 (mDVβ€˜π‘‘), β„Ž ∈ 𝒫 (mExβ€˜π‘‘) ↦ ∩ {π‘Ÿ ∣ (βˆ€π‘’ ∈ ran (mVHβ€˜π‘‘)π‘’π‘ŸβŸ¨(m0Stβ€˜π‘’), βˆ…βŸ© ∧ βˆ€π‘’ ∈ β„Ž π‘’π‘ŸβŸ¨((mStRedβ€˜π‘‘)β€˜βŸ¨π‘‘, β„Ž, π‘’βŸ©), βˆ…βŸ© ∧ βˆ€π‘šβˆ€π‘œβˆ€π‘(βŸ¨π‘š, π‘œ, π‘βŸ© ∈ (mAxβ€˜π‘‘) β†’ βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)(βˆ€π‘₯βˆ€π‘¦(π‘₯π‘šπ‘¦ β†’ (((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘₯))) Γ— ((mVarsβ€˜π‘‘)β€˜(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘¦)))) βŠ† 𝑑) β†’ ({(π‘ β€˜π‘)} Γ— X𝑒 ∈ (π‘œ βˆͺ ((mVHβ€˜π‘‘) β€œ βˆͺ ((mVarsβ€˜π‘‘) β€œ (π‘œ βˆͺ {𝑝}))))(π‘Ÿ β€œ {(π‘ β€˜π‘’)})) βŠ† π‘Ÿ)))}))
df-mst 35082mST = (𝑑 ∈ V ↦ ((βˆ…(mTreeβ€˜π‘‘)βˆ…) β†Ύ ((mExβ€˜π‘‘) β†Ύ (mVTβ€˜π‘‘))))
df-msax 35083mSAX = (𝑑 ∈ V ↦ (𝑝 ∈ (mSAβ€˜π‘‘) ↦ ((mVHβ€˜π‘‘) β€œ ((mVarsβ€˜π‘‘)β€˜π‘))))
df-mufs 35084mUFS = {𝑑 ∈ mGFS ∣ Fun (mSTβ€˜π‘‘)}
cmuv 35085class mUV
cmvl 35086class mVL
cmvsb 35087class mVSubst
cmfsh 35088class mFresh
cmfr 35089class mFRel
cmevl 35090class mEval
cmdl 35091class mMdl
cusyn 35092class mUSyn
cgmdl 35093class mGMdl
cmitp 35094class mItp
cmfitp 35095class mFromItp
df-muv 35096mUV = Slot 7
df-mfsh 35097mFresh = Slot 19
df-mevl 35098mEval = Slot 20
df-mvl 35099mVL = (𝑑 ∈ V ↦ X𝑣 ∈ (mVRβ€˜π‘‘)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘£)}))
df-mvsb 35100mVSubst = (𝑑 ∈ V ↦ {βŸ¨βŸ¨π‘ , π‘šβŸ©, π‘₯⟩ ∣ ((𝑠 ∈ ran (mSubstβ€˜π‘‘) ∧ π‘š ∈ (mVLβ€˜π‘‘)) ∧ βˆ€π‘£ ∈ (mVRβ€˜π‘‘)π‘šdom (mEvalβ€˜π‘‘)(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘£)) ∧ π‘₯ = (𝑣 ∈ (mVRβ€˜π‘‘) ↦ (π‘š(mEvalβ€˜π‘‘)(π‘ β€˜((mVHβ€˜π‘‘)β€˜π‘£)))))})
df-mfrel 35101mFRel = (𝑑 ∈ V ↦ {π‘Ÿ ∈ 𝒫 ((mUVβ€˜π‘‘) Γ— (mUVβ€˜π‘‘)) ∣ (β—‘π‘Ÿ = π‘Ÿ ∧ βˆ€π‘ ∈ (mVTβ€˜π‘‘)βˆ€π‘€ ∈ (𝒫 (mUVβ€˜π‘‘) ∩ Fin)βˆƒπ‘£ ∈ ((mUVβ€˜π‘‘) β€œ {𝑐})𝑀 βŠ† (π‘Ÿ β€œ {𝑣}))})
df-mdl 35102mMdl = {𝑑 ∈ mFS ∣ [(mUVβ€˜π‘‘) / 𝑒][(mExβ€˜π‘‘) / π‘₯][(mVLβ€˜π‘‘) / 𝑣][(mEvalβ€˜π‘‘) / 𝑛][(mFreshβ€˜π‘‘) / 𝑓]((𝑒 βŠ† ((mTCβ€˜π‘‘) Γ— V) ∧ 𝑓 ∈ (mFRelβ€˜π‘‘) ∧ 𝑛 ∈ (𝑒 ↑pm (𝑣 Γ— (mExβ€˜π‘‘)))) ∧ βˆ€π‘š ∈ 𝑣 ((βˆ€π‘’ ∈ π‘₯ (𝑛 β€œ {βŸ¨π‘š, π‘’βŸ©}) βŠ† (𝑒 β€œ {(1st β€˜π‘’)}) ∧ βˆ€π‘¦ ∈ (mVRβ€˜π‘‘)βŸ¨π‘š, ((mVHβ€˜π‘‘)β€˜π‘¦)βŸ©π‘›(π‘šβ€˜π‘¦) ∧ βˆ€π‘‘βˆ€β„Žβˆ€π‘Ž(βŸ¨π‘‘, β„Ž, π‘ŽβŸ© ∈ (mAxβ€˜π‘‘) β†’ ((βˆ€π‘¦βˆ€π‘§(𝑦𝑑𝑧 β†’ (π‘šβ€˜π‘¦)𝑓(π‘šβ€˜π‘§)) ∧ β„Ž βŠ† (dom 𝑛 β€œ {π‘š})) β†’ π‘šdom 𝑛 π‘Ž))) ∧ (βˆ€π‘  ∈ ran (mSubstβ€˜π‘‘)βˆ€π‘’ ∈ (mExβ€˜π‘‘)βˆ€π‘¦(βŸ¨π‘ , π‘šβŸ©(mVSubstβ€˜π‘‘)𝑦 β†’ (𝑛 β€œ {βŸ¨π‘š, (π‘ β€˜π‘’)⟩}) = (𝑛 β€œ {βŸ¨π‘¦, π‘’βŸ©})) ∧ βˆ€π‘ ∈ 𝑣 βˆ€π‘’ ∈ π‘₯ ((π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘’)) = (𝑝 β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘’)) β†’ (𝑛 β€œ {βŸ¨π‘š, π‘’βŸ©}) = (𝑛 β€œ {βŸ¨π‘, π‘’βŸ©})) ∧ βˆ€π‘¦ ∈ 𝑒 βˆ€π‘’ ∈ π‘₯ ((π‘š β€œ ((mVarsβ€˜π‘‘)β€˜π‘’)) βŠ† (𝑓 β€œ {𝑦}) β†’ (𝑛 β€œ {βŸ¨π‘š, π‘’βŸ©}) βŠ† (𝑓 β€œ {𝑦})))))}
df-musyn 35103mUSyn = (𝑑 ∈ V ↦ (𝑣 ∈ (mUVβ€˜π‘‘) ↦ ⟨((mSynβ€˜π‘‘)β€˜(1st β€˜π‘£)), (2nd β€˜π‘£)⟩))
df-gmdl 35104mGMdl = {𝑑 ∈ (mGFS ∩ mMdl) ∣ (βˆ€π‘ ∈ (mTCβ€˜π‘‘)((mUVβ€˜π‘‘) β€œ {𝑐}) βŠ† ((mUVβ€˜π‘‘) β€œ {((mSynβ€˜π‘‘)β€˜π‘)}) ∧ βˆ€π‘£ ∈ (mUVβ€˜π‘)βˆ€π‘€ ∈ (mUVβ€˜π‘)(𝑣(mFreshβ€˜π‘‘)𝑀 ↔ 𝑣(mFreshβ€˜π‘‘)((mUSynβ€˜π‘‘)β€˜π‘€)) ∧ βˆ€π‘š ∈ (mVLβ€˜π‘‘)βˆ€π‘’ ∈ (mExβ€˜π‘‘)((mEvalβ€˜π‘‘) β€œ {βŸ¨π‘š, π‘’βŸ©}) = (((mEvalβ€˜π‘‘) β€œ {βŸ¨π‘š, ((mESynβ€˜π‘‘)β€˜π‘’)⟩}) ∩ ((mUVβ€˜π‘‘) β€œ {(1st β€˜π‘’)})))}
df-mitp 35105mItp = (𝑑 ∈ V ↦ (π‘Ž ∈ (mSAβ€˜π‘‘) ↦ (𝑔 ∈ X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)}) ↦ (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))))))
df-mfitp 35106mFromItp = (𝑑 ∈ V ↦ (𝑓 ∈ Xπ‘Ž ∈ (mSAβ€˜π‘‘)(((mUVβ€˜π‘‘) β€œ {((1st β€˜π‘‘)β€˜π‘Ž)}) ↑m X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)})) ↦ (℩𝑛 ∈ ((mUVβ€˜π‘‘) ↑pm ((mVLβ€˜π‘‘) Γ— (mExβ€˜π‘‘)))βˆ€π‘š ∈ (mVLβ€˜π‘‘)(βˆ€π‘£ ∈ (mVRβ€˜π‘‘)βŸ¨π‘š, ((mVHβ€˜π‘‘)β€˜π‘£)βŸ©π‘›(π‘šβ€˜π‘£) ∧ βˆ€π‘’βˆ€π‘Žβˆ€π‘”(𝑒(mSTβ€˜π‘‘)βŸ¨π‘Ž, π‘”βŸ© β†’ βŸ¨π‘š, π‘’βŸ©π‘›(π‘“β€˜(𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž) ↦ (π‘šπ‘›(π‘”β€˜((mVHβ€˜π‘‘)β€˜π‘–)))))) ∧ βˆ€π‘’ ∈ (mExβ€˜π‘‘)(𝑛 β€œ {βŸ¨π‘š, π‘’βŸ©}) = ((𝑛 β€œ {βŸ¨π‘š, ((mESynβ€˜π‘‘)β€˜π‘’)⟩}) ∩ ((mUVβ€˜π‘‘) β€œ {(1st β€˜π‘’)}))))))
ccpms 35107class cplMetSp
chlb 35108class HomLimB
chlim 35109class HomLim
cpfl 35110class polyFld
csf1 35111class splitFld1
csf 35112class splitFld
cpsl 35113class polySplitLim
df-cplmet 35114 cplMetSp = (𝑀 ∈ V ↦ ⦋((𝑀 ↑s β„•) β†Ύs (Cauβ€˜(distβ€˜π‘€))) / π‘Ÿβ¦Œβ¦‹(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹{βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ β„€ (𝑓 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)⟢((π‘”β€˜π‘—)(ballβ€˜(distβ€˜π‘€))π‘₯))} / π‘’β¦Œ((π‘Ÿ /s 𝑒) sSet {⟨(distβ€˜ndx), {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘ ∈ 𝑣 βˆƒπ‘ž ∈ 𝑣 ((π‘₯ = [𝑝]𝑒 ∧ 𝑦 = [π‘ž]𝑒) ∧ (𝑝 ∘f (distβ€˜π‘Ÿ)π‘ž) ⇝ 𝑧)}⟩}))
df-homlimb 35115 HomLimB = (𝑓 ∈ V ↦ ⦋βˆͺ 𝑛 ∈ β„• ({𝑛} Γ— dom (π‘“β€˜π‘›)) / π‘£β¦Œβ¦‹βˆ© {𝑠 ∣ (𝑠 Er 𝑣 ∧ (π‘₯ ∈ 𝑣 ↦ ⟨((1st β€˜π‘₯) + 1), ((π‘“β€˜(1st β€˜π‘₯))β€˜(2nd β€˜π‘₯))⟩) βŠ† 𝑠)} / π‘’β¦ŒβŸ¨(𝑣 / 𝑒), (𝑛 ∈ β„• ↦ (π‘₯ ∈ dom (π‘“β€˜π‘›) ↦ [βŸ¨π‘›, π‘₯⟩]𝑒))⟩)
df-homlim 35116 HomLim = (π‘Ÿ ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB β€˜π‘“) / π‘’β¦Œβ¦‹(1st β€˜π‘’) / π‘£β¦Œβ¦‹(2nd β€˜π‘’) / π‘”β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(+gβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom (π‘”β€˜π‘›), 𝑦 ∈ dom (π‘”β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, ((π‘”β€˜π‘›)β€˜(π‘₯(.rβ€˜(π‘Ÿβ€˜π‘›))𝑦))⟩)⟩} βˆͺ {⟨(TopOpenβ€˜ndx), {𝑠 ∈ 𝒫 𝑣 ∣ βˆ€π‘› ∈ β„• (β—‘(π‘”β€˜π‘›) β€œ 𝑠) ∈ (TopOpenβ€˜(π‘Ÿβ€˜π‘›))}⟩, ⟨(distβ€˜ndx), βˆͺ 𝑛 ∈ β„• ran (π‘₯ ∈ dom ((π‘”β€˜π‘›)β€˜π‘›), 𝑦 ∈ dom ((π‘”β€˜π‘›)β€˜π‘›) ↦ ⟨⟨((π‘”β€˜π‘›)β€˜π‘₯), ((π‘”β€˜π‘›)β€˜π‘¦)⟩, (π‘₯(distβ€˜(π‘Ÿβ€˜π‘›))𝑦)⟩)⟩, ⟨(leβ€˜ndx), βˆͺ 𝑛 ∈ β„• (β—‘(π‘”β€˜π‘›) ∘ ((leβ€˜(π‘Ÿβ€˜π‘›)) ∘ (π‘”β€˜π‘›)))⟩}))
df-plfl 35117 polyFld = (π‘Ÿ ∈ V, 𝑝 ∈ V ↦ ⦋(Poly1β€˜π‘Ÿ) / π‘ β¦Œβ¦‹((RSpanβ€˜π‘ )β€˜{𝑝}) / π‘–β¦Œβ¦‹(𝑧 ∈ (Baseβ€˜π‘Ÿ) ↦ [(𝑧( ·𝑠 β€˜π‘ )(1rβ€˜π‘ ))](𝑠 ~QG 𝑖)) / π‘“β¦ŒβŸ¨β¦‹(𝑠 /s (𝑠 ~QG 𝑖)) / π‘‘β¦Œ((𝑑 toNrmGrp (℩𝑛 ∈ (AbsValβ€˜π‘‘)(𝑛 ∘ 𝑓) = (normβ€˜π‘Ÿ))) sSet ⟨(leβ€˜ndx), ⦋(𝑧 ∈ (Baseβ€˜π‘‘) ↦ (β„©π‘ž ∈ 𝑧 (π‘Ÿ deg1 π‘ž) < (π‘Ÿ deg1 𝑝))) / π‘”β¦Œ(◑𝑔 ∘ ((leβ€˜π‘ ) ∘ 𝑔))⟩), π‘“βŸ©)
df-sfl1 35118 splitFld1 = (π‘Ÿ ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1β€˜π‘Ÿ) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)β€˜(cardβ€˜(1...(π‘Ÿ deg1 𝑝))))))
df-sfl 35119 splitFld = (π‘Ÿ ∈ V, 𝑝 ∈ V ↦ (β„©π‘₯βˆƒπ‘“(𝑓 Isom < , (ltβ€˜π‘Ÿ)((1...(β™―β€˜π‘)), 𝑝) ∧ π‘₯ = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((π‘Ÿ splitFld1 𝑒)β€˜π‘”)), (𝑓 βˆͺ {⟨0, βŸ¨π‘Ÿ, ( I β†Ύ (Baseβ€˜π‘Ÿ))⟩⟩}))β€˜(β™―β€˜π‘)))))
df-psl 35120 polySplitLim = (π‘Ÿ ∈ V, 𝑝 ∈ ((𝒫 (Baseβ€˜π‘Ÿ) ∩ Fin) ↑m β„•) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, π‘ž ∈ V ↦ ⦋(1st β€˜π‘”) / π‘’β¦Œβ¦‹(1st β€˜π‘’) / π‘ β¦Œβ¦‹(𝑠 splitFld ran (π‘₯ ∈ π‘ž ↦ (π‘₯ ∘ (2nd β€˜π‘”)))) / π‘“β¦ŒβŸ¨π‘“, ((2nd β€˜π‘”) ∘ (2nd β€˜π‘“))⟩), (𝑝 βˆͺ {⟨0, βŸ¨βŸ¨π‘Ÿ, βˆ…βŸ©, ( I β†Ύ (Baseβ€˜π‘Ÿ))⟩⟩}))) / π‘“β¦Œ((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘ 𝑓)))
czr 35121class ZRing
cgf 35122class GF
cgfo 35123class GF∞
ceqp 35124class ~Qp
crqp 35125class /Qp
cqp 35126class Qp
czp 35127class Zp
cqpa 35128class _Qp
ccp 35129class Cp
df-zrng 35130ZRing = (π‘Ÿ ∈ V ↦ (π‘Ÿ IntgRing ran (β„€RHomβ€˜π‘Ÿ)))
df-gf 35131 GF = (𝑝 ∈ β„™, 𝑛 ∈ β„• ↦ ⦋(β„€/nβ„€β€˜π‘) / π‘Ÿβ¦Œ(1st β€˜(π‘Ÿ splitFld {⦋(Poly1β€˜π‘Ÿ) / π‘ β¦Œβ¦‹(var1β€˜π‘Ÿ) / π‘₯⦌(((𝑝↑𝑛)(.gβ€˜(mulGrpβ€˜π‘ ))π‘₯)(-gβ€˜π‘ )π‘₯)})))
df-gfoo 35132GF∞ = (𝑝 ∈ β„™ ↦ ⦋(β„€/nβ„€β€˜π‘) / π‘Ÿβ¦Œ(π‘Ÿ polySplitLim (𝑛 ∈ β„• ↦ {⦋(Poly1β€˜π‘Ÿ) / π‘ β¦Œβ¦‹(var1β€˜π‘Ÿ) / π‘₯⦌(((𝑝↑𝑛)(.gβ€˜(mulGrpβ€˜π‘ ))π‘₯)(-gβ€˜π‘ )π‘₯)})))
df-eqp 35133~Qp = (𝑝 ∈ β„™ ↦ {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† (β„€ ↑m β„€) ∧ βˆ€π‘› ∈ β„€ Ξ£π‘˜ ∈ (β„€β‰₯β€˜-𝑛)(((π‘“β€˜-π‘˜) βˆ’ (π‘”β€˜-π‘˜)) / (𝑝↑(π‘˜ + (𝑛 + 1)))) ∈ β„€)})
df-rqp 35134/Qp = (𝑝 ∈ β„™ ↦ (~Qp ∩ ⦋{𝑓 ∈ (β„€ ↑m β„€) ∣ βˆƒπ‘₯ ∈ ran β„€β‰₯(◑𝑓 β€œ (β„€ βˆ– {0})) βŠ† π‘₯} / π‘¦β¦Œ(𝑦 Γ— (𝑦 ∩ (β„€ ↑m (0...(𝑝 βˆ’ 1)))))))
df-qp 35135Qp = (𝑝 ∈ β„™ ↦ ⦋{β„Ž ∈ (β„€ ↑m (0...(𝑝 βˆ’ 1))) ∣ βˆƒπ‘₯ ∈ ran β„€β‰₯(β—‘β„Ž β€œ (β„€ βˆ– {0})) βŠ† π‘₯} / π‘β¦Œ(({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qpβ€˜π‘)β€˜(𝑓 ∘f + 𝑔)))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qpβ€˜π‘)β€˜(𝑛 ∈ β„€ ↦ Ξ£π‘˜ ∈ β„€ ((π‘“β€˜π‘˜) Β· (π‘”β€˜(𝑛 βˆ’ π‘˜))))))⟩} βˆͺ {⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑏 ∧ Ξ£π‘˜ ∈ β„€ ((π‘“β€˜-π‘˜) Β· ((𝑝 + 1)↑-π‘˜)) < Ξ£π‘˜ ∈ β„€ ((π‘”β€˜-π‘˜) Β· ((𝑝 + 1)↑-π‘˜)))}⟩}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (β„€ Γ— {0}), 0, (𝑝↑-inf((◑𝑓 β€œ (β„€ βˆ– {0})), ℝ, < ))))))
df-zp 35136Zp = (ZRing ∘ Qp)
df-qpa 35137_Qp = (𝑝 ∈ β„™ ↦ ⦋(Qpβ€˜π‘) / π‘Ÿβ¦Œ(π‘Ÿ polySplitLim (𝑛 ∈ β„• ↦ {𝑓 ∈ (Poly1β€˜π‘Ÿ) ∣ ((π‘Ÿ deg1 𝑓) ≀ 𝑛 ∧ βˆ€π‘‘ ∈ ran (coe1β€˜π‘“)(◑𝑑 β€œ (β„€ βˆ– {0})) βŠ† (0...𝑛))})))
df-cp 35138Cp = ( cplMetSp ∘ _Qp)
ccloneop 35159class CloneOp
df-cloneop 35160CloneOp = (π‘Ž ∈ V ↦ {π‘₯ ∣ βˆƒπ‘› ∈ (Ο‰ βˆ– 1o)π‘₯ ∈ (π‘Ž ↑m (π‘Ž ↑m 𝑛))})
cprj 35161class prj
df-prj 35162prj = (π‘Ž ∈ V ↦ (𝑛 ∈ (Ο‰ βˆ– 1o), 𝑖 ∈ 𝑛 ↦ (π‘₯ ∈ (π‘Ž ↑m 𝑛) ↦ (π‘₯β€˜π‘–))))
csuppos 35163class suppos
df-suppos 35164suppos = (π‘Ž ∈ V ↦ (𝑛 ∈ (Ο‰ βˆ– 1o), π‘š ∈ (Ο‰ βˆ– 1o) ↦ (𝑓 ∈ (π‘Ž ↑m (π‘Ž ↑m 𝑛)), 𝑔 ∈ ((π‘Ž ↑m (π‘Ž ↑m π‘š)) ↑m 𝑛) ↦ (π‘₯ ∈ (π‘Ž ↑m π‘š) ↦ (π‘“β€˜(𝑖 ∈ 𝑛 ↦ ((π‘”β€˜π‘–)β€˜π‘₯)))))))
cwsuc 35277class wsuc(𝑅, 𝐴, 𝑋)
cwlim 35278class WLim(𝑅, 𝐴)
df-wsuc 35279wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◑𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
df-wlim 35280WLim(𝑅, 𝐴) = {π‘₯ ∈ 𝐴 ∣ (π‘₯ β‰  inf(𝐴, 𝐴, 𝑅) ∧ π‘₯ = sup(Pred(𝑅, 𝐴, π‘₯), 𝐴, 𝑅))}
ctxp 35297class (𝐴 βŠ— 𝐡)
cpprod 35298class pprod(𝑅, 𝑆)
csset 35299class SSet
ctrans 35300class Trans
cbigcup 35301class Bigcup
cfix 35302class Fix 𝐴
climits 35303class Limits
cfuns 35304class Funs
csingle 35305class Singleton
csingles 35306class Singletons
cimage 35307class Image𝐴
ccart 35308class Cart
cimg 35309class Img
cdomain 35310class Domain
crange 35311class Range
capply 35312class Apply
ccup 35313class Cup
ccap 35314class Cap
csuccf 35315class Succ
cfunpart 35316class Funpart𝐹
cfullfn 35317class FullFun𝐹
crestrict 35318class Restrict
cub 35319class UB𝑅
clb 35320class LB𝑅
df-txp 35321(𝐴 βŠ— 𝐡) = ((β—‘(1st β†Ύ (V Γ— V)) ∘ 𝐴) ∩ (β—‘(2nd β†Ύ (V Γ— V)) ∘ 𝐡))
df-pprod 35322pprod(𝐴, 𝐡) = ((𝐴 ∘ (1st β†Ύ (V Γ— V))) βŠ— (𝐡 ∘ (2nd β†Ύ (V Γ— V))))
df-sset 35323 SSet = ((V Γ— V) βˆ– ran ( E βŠ— (V βˆ– E )))
df-trans 35324 Trans = (V βˆ– ran (( E ∘ E ) βˆ– E ))
df-bigcup 35325 Bigcup = ((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E ∘ E ) βŠ— V)))
df-fix 35326 Fix 𝐴 = dom (𝐴 ∩ I )
df-limits 35327 Limits = ((On ∩ Fix Bigcup ) βˆ– {βˆ…})
df-funs 35328 Funs = (𝒫 (V Γ— V) βˆ– Fix ( E ∘ ((1st βŠ— ((V βˆ– I ) ∘ 2nd )) ∘ β—‘ E )))
df-singleton 35329Singleton = ((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ ( I βŠ— V)))
df-singles 35330 Singletons = ran Singleton
df-image 35331Image𝐴 = ((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E ∘ ◑𝐴) βŠ— V)))
df-cart 35332Cart = (((V Γ— V) Γ— V) βˆ– ran ((V βŠ— E ) β–³ (pprod( E , E ) βŠ— V)))
df-img 35333Img = (Image((2nd ∘ 1st ) β†Ύ (1st β†Ύ (V Γ— V))) ∘ Cart)
df-domain 35334Domain = Image(1st β†Ύ (V Γ— V))
df-range 35335Range = Image(2nd β†Ύ (V Γ— V))
df-cup 35336Cup = (((V Γ— V) Γ— V) βˆ– ran ((V βŠ— E ) β–³ (((β—‘1st ∘ E ) βˆͺ (β—‘2nd ∘ E )) βŠ— V)))
df-cap 35337Cap = (((V Γ— V) Γ— V) βˆ– ran ((V βŠ— E ) β–³ (((β—‘1st ∘ E ) ∩ (β—‘2nd ∘ E )) βŠ— V)))
df-restrict 35338Restrict = (Cap ∘ (1st βŠ— (Cart ∘ (2nd βŠ— (Range ∘ 1st )))))
df-succf 35339Succ = (Cup ∘ ( I βŠ— Singleton))
df-apply 35340Apply = (( Bigcup ∘ Bigcup ) ∘ (((V Γ— V) βˆ– ran ((V βŠ— E ) β–³ (( E β†Ύ Singletons ) βŠ— V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
df-funpart 35341Funpart𝐹 = (𝐹 β†Ύ dom ((Image𝐹 ∘ Singleton) ∩ (V Γ— Singletons )))
df-fullfun 35342FullFun𝐹 = (Funpart𝐹 βˆͺ ((V βˆ– dom Funpart𝐹) Γ— {βˆ…}))
df-ub 35343UB𝑅 = ((V Γ— V) βˆ– ((V βˆ– 𝑅) ∘ β—‘ E ))
df-lb 35344LB𝑅 = UB◑𝑅
caltop 35423class βŸͺ𝐴, 𝐡⟫
caltxp 35424class (𝐴 Γ—Γ— 𝐡)
df-altop 35425βŸͺ𝐴, 𝐡⟫ = {{𝐴}, {𝐴, {𝐡}}}
df-altxp 35426(𝐴 Γ—Γ— 𝐡) = {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 𝑧 = βŸͺπ‘₯, π‘¦βŸ«}
cofs 35449class OuterFiveSeg
df-ofs 35450 OuterFiveSeg = {βŸ¨π‘, π‘žβŸ© ∣ βˆƒπ‘› ∈ β„• βˆƒπ‘Ž ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘₯ ∈ (π”Όβ€˜π‘›)βˆƒπ‘¦ ∈ (π”Όβ€˜π‘›)βˆƒπ‘§ ∈ (π”Όβ€˜π‘›)βˆƒπ‘€ ∈ (π”Όβ€˜π‘›)(𝑝 = βŸ¨βŸ¨π‘Ž, π‘βŸ©, βŸ¨π‘, π‘‘βŸ©βŸ© ∧ π‘ž = ⟨⟨π‘₯, π‘¦βŸ©, βŸ¨π‘§, π‘€βŸ©βŸ© ∧ ((𝑏 Btwn βŸ¨π‘Ž, π‘βŸ© ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©) ∧ (βŸ¨π‘Ž, π‘βŸ©Cgr⟨π‘₯, π‘¦βŸ© ∧ βŸ¨π‘, π‘βŸ©CgrβŸ¨π‘¦, π‘§βŸ©) ∧ (βŸ¨π‘Ž, π‘‘βŸ©Cgr⟨π‘₯, π‘€βŸ© ∧ βŸ¨π‘, π‘‘βŸ©CgrβŸ¨π‘¦, π‘€βŸ©)))}
ctransport 35496class TransportTo
df-transport 35497TransportTo = {βŸ¨βŸ¨π‘, π‘žβŸ©, π‘₯⟩ ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ ((π”Όβ€˜π‘›) Γ— (π”Όβ€˜π‘›)) ∧ π‘ž ∈ ((π”Όβ€˜π‘›) Γ— (π”Όβ€˜π‘›)) ∧ (1st β€˜π‘ž) β‰  (2nd β€˜π‘ž)) ∧ π‘₯ = (β„©π‘Ÿ ∈ (π”Όβ€˜π‘›)((2nd β€˜π‘ž) Btwn ⟨(1st β€˜π‘ž), π‘ŸβŸ© ∧ ⟨(2nd β€˜π‘ž), π‘ŸβŸ©Cgr𝑝)))}
cifs 35502class InnerFiveSeg
ccgr3 35503class Cgr3
ccolin 35504class Colinear
cfs 35505class FiveSeg
df-colinear 35506 Colinear = β—‘{βŸ¨βŸ¨π‘, π‘βŸ©, π‘ŽβŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝑐 ∈ (π”Όβ€˜π‘›)) ∧ (π‘Ž Btwn βŸ¨π‘, π‘βŸ© ∨ 𝑏 Btwn βŸ¨π‘, π‘ŽβŸ© ∨ 𝑐 Btwn βŸ¨π‘Ž, π‘βŸ©))}
df-ifs 35507 InnerFiveSeg = {βŸ¨π‘, π‘žβŸ© ∣ βˆƒπ‘› ∈ β„• βˆƒπ‘Ž ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘₯ ∈ (π”Όβ€˜π‘›)βˆƒπ‘¦ ∈ (π”Όβ€˜π‘›)βˆƒπ‘§ ∈ (π”Όβ€˜π‘›)βˆƒπ‘€ ∈ (π”Όβ€˜π‘›)(𝑝 = βŸ¨βŸ¨π‘Ž, π‘βŸ©, βŸ¨π‘, π‘‘βŸ©βŸ© ∧ π‘ž = ⟨⟨π‘₯, π‘¦βŸ©, βŸ¨π‘§, π‘€βŸ©βŸ© ∧ ((𝑏 Btwn βŸ¨π‘Ž, π‘βŸ© ∧ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©) ∧ (βŸ¨π‘Ž, π‘βŸ©Cgr⟨π‘₯, π‘§βŸ© ∧ βŸ¨π‘, π‘βŸ©CgrβŸ¨π‘¦, π‘§βŸ©) ∧ (βŸ¨π‘Ž, π‘‘βŸ©Cgr⟨π‘₯, π‘€βŸ© ∧ βŸ¨π‘, π‘‘βŸ©CgrβŸ¨π‘§, π‘€βŸ©)))}
df-cgr3 35508Cgr3 = {βŸ¨π‘, π‘žβŸ© ∣ βˆƒπ‘› ∈ β„• βˆƒπ‘Ž ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘’ ∈ (π”Όβ€˜π‘›)βˆƒπ‘“ ∈ (π”Όβ€˜π‘›)(𝑝 = βŸ¨π‘Ž, βŸ¨π‘, π‘βŸ©βŸ© ∧ π‘ž = βŸ¨π‘‘, βŸ¨π‘’, π‘“βŸ©βŸ© ∧ (βŸ¨π‘Ž, π‘βŸ©CgrβŸ¨π‘‘, π‘’βŸ© ∧ βŸ¨π‘Ž, π‘βŸ©CgrβŸ¨π‘‘, π‘“βŸ© ∧ βŸ¨π‘, π‘βŸ©CgrβŸ¨π‘’, π‘“βŸ©))}
df-fs 35509 FiveSeg = {βŸ¨π‘, π‘žβŸ© ∣ βˆƒπ‘› ∈ β„• βˆƒπ‘Ž ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘₯ ∈ (π”Όβ€˜π‘›)βˆƒπ‘¦ ∈ (π”Όβ€˜π‘›)βˆƒπ‘§ ∈ (π”Όβ€˜π‘›)βˆƒπ‘€ ∈ (π”Όβ€˜π‘›)(𝑝 = βŸ¨βŸ¨π‘Ž, π‘βŸ©, βŸ¨π‘, π‘‘βŸ©βŸ© ∧ π‘ž = ⟨⟨π‘₯, π‘¦βŸ©, βŸ¨π‘§, π‘€βŸ©βŸ© ∧ (π‘Ž Colinear βŸ¨π‘, π‘βŸ© ∧ βŸ¨π‘Ž, βŸ¨π‘, π‘βŸ©βŸ©Cgr3⟨π‘₯, βŸ¨π‘¦, π‘§βŸ©βŸ© ∧ (βŸ¨π‘Ž, π‘‘βŸ©Cgr⟨π‘₯, π‘€βŸ© ∧ βŸ¨π‘, π‘‘βŸ©CgrβŸ¨π‘¦, π‘€βŸ©)))}
csegle 35573class Seg≀
df-segle 35574 Seg≀ = {βŸ¨π‘, π‘žβŸ© ∣ βˆƒπ‘› ∈ β„• βˆƒπ‘Ž ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘ ∈ (π”Όβ€˜π‘›)βˆƒπ‘‘ ∈ (π”Όβ€˜π‘›)(𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ π‘ž = βŸ¨π‘, π‘‘βŸ© ∧ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘›)(𝑦 Btwn βŸ¨π‘, π‘‘βŸ© ∧ βŸ¨π‘Ž, π‘βŸ©CgrβŸ¨π‘, π‘¦βŸ©))}
coutsideof 35586class OutsideOf
df-outsideof 35587OutsideOf = ( Colinear βˆ– Btwn )
cline2 35601class Line
cray 35602class Ray
clines2 35603class LinesEE
df-line2 35604Line = {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )}
df-ray 35605Ray = {βŸ¨βŸ¨π‘, π‘ŽβŸ©, π‘ŸβŸ© ∣ βˆƒπ‘› ∈ β„• ((𝑝 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑝 β‰  π‘Ž) ∧ π‘Ÿ = {π‘₯ ∈ (π”Όβ€˜π‘›) ∣ 𝑝OutsideOfβŸ¨π‘Ž, π‘₯⟩})}
df-lines2 35606LinesEE = ran Line
cfwddif 35625class β–³
df-fwddif 35626 β–³ = (𝑓 ∈ (β„‚ ↑pm β„‚) ↦ (π‘₯ ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((π‘“β€˜(π‘₯ + 1)) βˆ’ (π‘“β€˜π‘₯))))
cfwddifn 35627class β–³n
df-fwddifn 35628 β–³n = (𝑛 ∈ β„•0, 𝑓 ∈ (β„‚ ↑pm β„‚) ↦ (π‘₯ ∈ {𝑦 ∈ β„‚ ∣ βˆ€π‘˜ ∈ (0...𝑛)(𝑦 + π‘˜) ∈ dom 𝑓} ↦ Ξ£π‘˜ ∈ (0...𝑛)((𝑛Cπ‘˜) Β· ((-1↑(𝑛 βˆ’ π‘˜)) Β· (π‘“β€˜(π‘₯ + π‘˜))))))
chf 35639class Hf
df-hf 35640 Hf = βˆͺ (𝑅1 β€œ Ο‰)
cfne 35711class Fne
df-fne 35712Fne = {⟨π‘₯, π‘¦βŸ© ∣ (βˆͺ π‘₯ = βˆͺ 𝑦 ∧ βˆ€π‘§ ∈ π‘₯ 𝑧 βŠ† βˆͺ (𝑦 ∩ 𝒫 𝑧))}
w3nand 35772wff (πœ‘ ⊼ πœ“ ⊼ πœ’)
df-3nand 35773((πœ‘ ⊼ πœ“ ⊼ πœ’) ↔ (πœ‘ β†’ (πœ“ β†’ Β¬ πœ’)))
cgcdOLD 35834class gcdOLD (𝐴, 𝐡)
df-gcdOLD 35835 gcdOLD (𝐴, 𝐡) = sup({π‘₯ ∈ β„• ∣ ((𝐴 / π‘₯) ∈ β„• ∧ (𝐡 / π‘₯) ∈ β„•)}, β„•, < )
cprvb 35965wff Prv πœ‘
ax-prv1 35966πœ‘    β‡’   Prv πœ‘
ax-prv2 35967(Prv (πœ‘ β†’ πœ“) β†’ (Prv πœ‘ β†’ Prv πœ“))
ax-prv3 35968(Prv πœ‘ β†’ Prv Prv πœ‘)
wmoo 36018wff βˆƒ**π‘₯πœ‘
df-bj-mo 36019(βˆƒ**π‘₯πœ‘ ↔ βˆ€π‘§βˆƒπ‘¦βˆ€π‘₯(πœ‘ β†’ π‘₯ = 𝑦))
wnnf 36091wff β„²'π‘₯πœ‘
df-bj-nnf 36092(β„²'π‘₯πœ‘ ↔ ((βˆƒπ‘₯πœ‘ β†’ πœ‘) ∧ (πœ‘ β†’ βˆ€π‘₯πœ‘)))
bj-cgab 36303class {𝐴 ∣ π‘₯ ∣ πœ‘}
df-bj-gab 36304{𝐴 ∣ π‘₯ ∣ πœ‘} = {𝑦 ∣ βˆƒπ‘₯(𝐴 = 𝑦 ∧ πœ‘)}
wrnf 36311wff β„²π‘₯ ∈ π΄πœ‘
df-bj-rnf 36312(β„²π‘₯ ∈ π΄πœ‘ ↔ (βˆƒπ‘₯ ∈ 𝐴 πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 πœ‘))
bj-csngl 36336class sngl 𝐴
df-bj-sngl 36337sngl 𝐴 = {π‘₯ ∣ βˆƒπ‘¦ ∈ 𝐴 π‘₯ = {𝑦}}
bj-ctag 36345class tag 𝐴
df-bj-tag 36346tag 𝐴 = (sngl 𝐴 βˆͺ {βˆ…})
bj-cproj 36361class (𝐴 Proj 𝐡)
df-bj-proj 36362(𝐴 Proj 𝐡) = {π‘₯ ∣ {π‘₯} ∈ (𝐡 β€œ {𝐴})}
bj-c1upl 36368class ⦅𝐴⦆
df-bj-1upl 36369⦅𝐴⦆ = ({βˆ…} Γ— tag 𝐴)
bj-cpr1 36371class pr1 𝐴
df-bj-pr1 36372pr1 𝐴 = (βˆ… Proj 𝐴)
bj-c2uple 36381class ⦅𝐴, 𝐡⦆
df-bj-2upl 36382⦅𝐴, 𝐡⦆ = (⦅𝐴⦆ βˆͺ ({1o} Γ— tag 𝐡))
bj-cpr2 36385class pr2 𝐴
df-bj-pr2 36386pr2 𝐴 = (1o Proj 𝐴)
ax-bj-sn 36404βˆ€π‘₯βˆƒπ‘¦βˆ€π‘§(𝑧 ∈ 𝑦 ↔ 𝑧 = π‘₯)
ax-bj-bun 36408βˆ€π‘₯βˆ€π‘¦βˆƒπ‘§βˆ€π‘‘(𝑑 ∈ 𝑧 ↔ (𝑑 ∈ π‘₯ ∨ 𝑑 ∈ 𝑦))
ax-bj-adj 36413βˆ€π‘₯βˆ€π‘¦βˆƒπ‘§βˆ€π‘‘(𝑑 ∈ 𝑧 ↔ (𝑑 ∈ π‘₯ ∨ 𝑑 = 𝑦))
celwise 36450class elwise
df-elwise 36451elwise = (π‘œ ∈ V ↦ (π‘₯ ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ βˆƒπ‘’ ∈ π‘₯ βˆƒπ‘£ ∈ 𝑦 𝑧 = (π‘’π‘œπ‘£)}))
cmoore 36474class Moore
df-bj-moore 36475Moore = {π‘₯ ∣ βˆ€π‘¦ ∈ 𝒫 π‘₯(βˆͺ π‘₯ ∩ ∩ 𝑦) ∈ π‘₯}
cmpt3 36491class (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡, 𝑧 ∈ 𝐢 ↦ 𝐷)
df-bj-mpt3 36492(π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡, 𝑧 ∈ 𝐢 ↦ 𝐷) = {βŸ¨π‘ , π‘‘βŸ© ∣ βˆƒπ‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐢 (𝑠 = ⟨π‘₯, 𝑦, π‘§βŸ© ∧ 𝑑 = 𝐷)}
csethom 36493class Set⟢
df-bj-sethom 36494 Set⟢ = (π‘₯ ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:π‘₯βŸΆπ‘¦})
ctophom 36495class Top⟢
df-bj-tophom 36496 Top⟢ = (π‘₯ ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Baseβ€˜π‘₯) Set⟢ (Baseβ€˜π‘¦)) ∣ βˆ€π‘’ ∈ (TopOpenβ€˜π‘¦)(◑𝑓 β€œ 𝑒) ∈ (TopOpenβ€˜π‘₯)})
cmgmhom 36497class Mgm⟢
df-bj-mgmhom 36498 Mgm⟢ = (π‘₯ ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Baseβ€˜π‘₯) Set⟢ (Baseβ€˜π‘¦)) ∣ βˆ€π‘’ ∈ (Baseβ€˜π‘₯)βˆ€π‘£ ∈ (Baseβ€˜π‘₯)(π‘“β€˜(𝑒(+gβ€˜π‘₯)𝑣)) = ((π‘“β€˜π‘’)(+gβ€˜π‘¦)(π‘“β€˜π‘£))})
ctopmgmhom 36499class TopMgm⟢
df-bj-topmgmhom 36500 TopMgm⟢ = (π‘₯ ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((π‘₯ Top⟢ 𝑦) ∩ (π‘₯ Mgm⟢ 𝑦)))
ccur- 36501class curry_
df-bj-cur 36502curry_ = (π‘₯ ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((π‘₯ Γ— 𝑦) Set⟢ 𝑧) ↦ (π‘Ž ∈ π‘₯ ↦ (𝑏 ∈ 𝑦 ↦ (π‘“β€˜βŸ¨π‘Ž, π‘βŸ©)))))
cunc- 36503class uncurry_
df-bj-unc 36504uncurry_ = (π‘₯ ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (π‘₯ Set⟢ (𝑦 Set⟢ 𝑧)) ↦ (π‘Ž ∈ π‘₯, 𝑏 ∈ 𝑦 ↦ ((π‘“β€˜π‘Ž)β€˜π‘))))
cstrset 36505class [𝐡 / 𝐴]struct𝑆
df-strset 36506[𝐡 / 𝐴]struct𝑆 = ((𝑆 β†Ύ (V βˆ– {(π΄β€˜ndx)})) βˆͺ {⟨(π΄β€˜ndx), 𝐡⟩})
cdiag2 36543class Id
df-bj-diag 36544Id = (π‘₯ ∈ V ↦ ( I β†Ύ π‘₯))
cimdir 36549class 𝒫*
df-imdir 36550𝒫* = (π‘Ž ∈ V, 𝑏 ∈ V ↦ (π‘Ÿ ∈ 𝒫 (π‘Ž Γ— 𝑏) ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ βŠ† π‘Ž ∧ 𝑦 βŠ† 𝑏) ∧ (π‘Ÿ β€œ π‘₯) = 𝑦)}))
ciminv 36562class 𝒫*
df-iminv 36563𝒫* = (π‘Ž ∈ V, 𝑏 ∈ V ↦ (π‘Ÿ ∈ 𝒫 (π‘Ž Γ— 𝑏) ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ βŠ† π‘Ž ∧ 𝑦 βŠ† 𝑏) ∧ π‘₯ = (β—‘π‘Ÿ β€œ 𝑦))}))
cfractemp 36567class {R
df-bj-fractemp 36568{R = (π‘₯ ∈ R ↦ (℩𝑦 ∈ R ((𝑦 = 0R ∨ (0R <R 𝑦 ∧ 𝑦 <R 1R)) ∧ βˆƒπ‘› ∈ Ο‰ ([⟨{𝑧 ∈ Q ∣ 𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = π‘₯)))
cinftyexpitau 36569class +∞eiΟ„
df-bj-inftyexpitau 36570+∞eiΟ„ = (π‘₯ ∈ ℝ ↦ ⟨({Rβ€˜(1st β€˜π‘₯)), {R}⟩)
cccinftyN 36571class β„‚βˆžN
df-bj-ccinftyN 36572β„‚βˆžN = ran +∞eiΟ„
chalf 36574class 1/2
df-bj-onehalf 365751/2 = (β„©π‘₯ ∈ R (π‘₯ +R π‘₯) = 1R)
cinftyexpi 36577class +∞ei
df-bj-inftyexpi 36578+∞ei = (π‘₯ ∈ (-Ο€(,]Ο€) ↦ ⟨π‘₯, β„‚βŸ©)
cccinfty 36582class β„‚βˆž
df-bj-ccinfty 36583β„‚βˆž = ran +∞ei
cccbar 36586class β„‚Μ…
df-bj-ccbar 36587β„‚Μ… = (β„‚ βˆͺ β„‚βˆž)
cpinfty 36590class +∞
df-bj-pinfty 36591+∞ = (+∞eiβ€˜0)
cminfty 36594class -∞
df-bj-minfty 36595-∞ = (+∞eiβ€˜Ο€)
crrbar 36599class ℝ̅
df-bj-rrbar 36600ℝ̅ = (ℝ βˆͺ {-∞, +∞})
cinfty 36601class ∞
df-bj-infty 36602∞ = 𝒫 βˆͺ β„‚
ccchat 36603class β„‚Μ‚
df-bj-cchat 36604β„‚Μ‚ = (β„‚ βˆͺ {∞})
crrhat 36605class ℝ̂
df-bj-rrhat 36606ℝ̂ = (ℝ βˆͺ {∞})
caddcc 36608class +β„‚Μ…
df-bj-addc 36609 +β„‚Μ… = (π‘₯ ∈ (((β„‚ Γ— β„‚Μ…) βˆͺ (β„‚Μ… Γ— β„‚)) βˆͺ ((β„‚Μ‚ Γ— β„‚Μ‚) βˆͺ ( I β†Ύ β„‚βˆž))) ↦ if(((1st β€˜π‘₯) = ∞ ∨ (2nd β€˜π‘₯) = ∞), ∞, if((1st β€˜π‘₯) ∈ β„‚, if((2nd β€˜π‘₯) ∈ β„‚, ⟨((1st β€˜(1st β€˜π‘₯)) +R (1st β€˜(2nd β€˜π‘₯))), ((2nd β€˜(1st β€˜π‘₯)) +R (2nd β€˜(2nd β€˜π‘₯)))⟩, (2nd β€˜π‘₯)), (1st β€˜π‘₯))))
coppcc 36610class -β„‚Μ…
df-bj-oppc 36611-β„‚Μ… = (π‘₯ ∈ (β„‚Μ… βˆͺ β„‚Μ‚) ↦ if(π‘₯ = ∞, ∞, if(π‘₯ ∈ β„‚, (℩𝑦 ∈ β„‚ (π‘₯ +β„‚Μ… 𝑦) = 0), (+∞eiΟ„β€˜(π‘₯ +β„‚Μ… ⟨1/2, 0R⟩)))))
cltxr 36612class <ℝ̅
df-bj-lt 36613<ℝ̅ = ({π‘₯ ∈ (ℝ̅ Γ— ℝ̅) ∣ βˆƒπ‘¦βˆƒπ‘§(((1st β€˜π‘₯) = βŸ¨π‘¦, 0R⟩ ∧ (2nd β€˜π‘₯) = βŸ¨π‘§, 0R⟩) ∧ 𝑦 <R 𝑧)} βˆͺ ((({-∞} Γ— ℝ) βˆͺ (ℝ Γ— {+∞})) βˆͺ ({-∞} Γ— {+∞})))
carg 36614class Arg
df-bj-arg 36615Arg = (π‘₯ ∈ (β„‚Μ… βˆ– {0}) ↦ if(π‘₯ ∈ β„‚, (β„‘β€˜(logβ€˜π‘₯)), if(π‘₯<ℝ̅0, Ο€, (((1st β€˜π‘₯) / (2 Β· Ο€)) βˆ’ Ο€))))
cmulc 36616class Β·β„‚Μ…
df-bj-mulc 36617 Β·β„‚Μ… = (π‘₯ ∈ ((β„‚Μ… Γ— β„‚Μ…) βˆͺ (β„‚Μ‚ Γ— β„‚Μ‚)) ↦ if(((1st β€˜π‘₯) = 0 ∨ (2nd β€˜π‘₯) = 0), 0, if(((1st β€˜π‘₯) = ∞ ∨ (2nd β€˜π‘₯) = ∞), ∞, if(π‘₯ ∈ (β„‚ Γ— β„‚), ((1st β€˜π‘₯) Β· (2nd β€˜π‘₯)), (+∞eiΟ„β€˜(((Argβ€˜(1st β€˜π‘₯)) +β„‚Μ… (Argβ€˜(2nd β€˜π‘₯))) / Ο„))))))
cinvc 36618class -1β„‚Μ…
df-bj-invc 36619-1β„‚Μ… = (π‘₯ ∈ (β„‚Μ… βˆͺ β„‚Μ‚) ↦ if(π‘₯ = 0, ∞, if(π‘₯ ∈ β„‚, (℩𝑦 ∈ β„‚ (π‘₯ Β·β„‚Μ… 𝑦) = 1), 0)))
ciomnn 36620class iΟ‰β†ͺβ„•
df-bj-iomnn 36621iΟ‰β†ͺβ„• = ((𝑛 ∈ Ο‰ ↦ ⟨[⟨{π‘Ÿ ∈ Q ∣ π‘Ÿ <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) βˆͺ {βŸ¨Ο‰, +∞⟩})
cnnbar 36631class β„•Μ…
df-bj-nnbar 36632β„•Μ… = (β„•0 βˆͺ {+∞})
czzbar 36633class β„€Μ…
df-bj-zzbar 36634β„€Μ… = (β„€ βˆͺ {-∞, +∞})
czzhat 36635class β„€Μ‚
df-bj-zzhat 36636β„€Μ‚ = (β„€ βˆͺ {∞})
cdivc 36637class βˆ₯β„‚
df-bj-divc 36638 βˆ₯β„‚ = {⟨π‘₯, π‘¦βŸ© ∣ (⟨π‘₯, π‘¦βŸ© ∈ ((β„‚Μ… Γ— β„‚Μ…) βˆͺ (β„‚Μ‚ Γ— β„‚Μ‚)) ∧ βˆƒπ‘› ∈ (β„€Μ… βˆͺ β„€Μ‚)(𝑛 Β·β„‚Μ… π‘₯) = 𝑦)}
cfinsum 36654class FinSum
df-bj-finsum 36655 FinSum = (π‘₯ ∈ {βŸ¨π‘¦, π‘§βŸ© ∣ (𝑦 ∈ CMnd ∧ βˆƒπ‘‘ ∈ Fin 𝑧:π‘‘βŸΆ(Baseβ€˜π‘¦))} ↦ (β„©π‘ βˆƒπ‘š ∈ β„•0 βˆƒπ‘“(𝑓:(1...π‘š)–1-1-ontoβ†’dom (2nd β€˜π‘₯) ∧ 𝑠 = (seq1((+gβ€˜(1st β€˜π‘₯)), (𝑛 ∈ β„• ↦ ((2nd β€˜π‘₯)β€˜(π‘“β€˜π‘›))))β€˜π‘š))))
crrvec 36663class ℝ-Vec
df-bj-rvec 36664ℝ-Vec = (LMod ∩ (β—‘Scalar β€œ {ℝfld}))
cend 36684class End
df-bj-end 36685End = (𝑐 ∈ Cat ↦ (π‘₯ ∈ (Baseβ€˜π‘) ↦ {⟨(Baseβ€˜ndx), (π‘₯(Hom β€˜π‘)π‘₯)⟩, ⟨(+gβ€˜ndx), (⟨π‘₯, π‘₯⟩(compβ€˜π‘)π‘₯)⟩}))
cfinxp 36754class (π‘ˆβ†‘β†‘π‘)
df-finxp 36755(π‘ˆβ†‘β†‘π‘) = {𝑦 ∣ (𝑁 ∈ Ο‰ ∧ βˆ… = (rec((𝑛 ∈ Ο‰, π‘₯ ∈ V ↦ if((𝑛 = 1o ∧ π‘₯ ∈ π‘ˆ), βˆ…, if(π‘₯ ∈ (V Γ— π‘ˆ), ⟨βˆͺ 𝑛, (1st β€˜π‘₯)⟩, βŸ¨π‘›, π‘₯⟩))), βŸ¨π‘, π‘¦βŸ©)β€˜π‘))}
ax-luk1 36790((πœ‘ β†’ πœ“) β†’ ((πœ“ β†’ πœ’) β†’ (πœ‘ β†’ πœ’)))
ax-luk2 36791((Β¬ πœ‘ β†’ πœ‘) β†’ πœ‘)
ax-luk3 36792(πœ‘ β†’ (Β¬ πœ‘ β†’ πœ“))
ax-wl-13v 36864(Β¬ βˆ€π‘₯ π‘₯ = 𝑦 β†’ (𝑦 = 𝑧 β†’ βˆ€π‘₯ 𝑦 = 𝑧))
ax-wl-11v 36936(βˆ€π‘₯βˆ€π‘¦πœ‘ β†’ βˆ€π‘¦βˆ€π‘₯πœ‘)
ctotbnd 37124class TotBnd
cbnd 37125class Bnd
df-totbnd 37126TotBnd = (π‘₯ ∈ V ↦ {π‘š ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ Fin (βˆͺ 𝑣 = π‘₯ ∧ βˆ€π‘ ∈ 𝑣 βˆƒπ‘¦ ∈ π‘₯ 𝑏 = (𝑦(ballβ€˜π‘š)𝑑))})
df-bnd 37137Bnd = (π‘₯ ∈ V ↦ {π‘š ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘Ÿ ∈ ℝ+ π‘₯ = (𝑦(ballβ€˜π‘š)π‘Ÿ)})
cismty 37156class Ismty
df-ismty 37157 Ismty = (π‘š ∈ βˆͺ ran ∞Met, 𝑛 ∈ βˆͺ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛 ∧ βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦)))})
crrn 37183class ℝn
df-rrn 37184ℝn = (𝑖 ∈ Fin ↦ (π‘₯ ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑖 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
cass 37200class Ass
df-ass 37201Ass = {𝑔 ∣ βˆ€π‘₯ ∈ dom dom π‘”βˆ€π‘¦ ∈ dom dom π‘”βˆ€π‘§ ∈ dom dom 𝑔((π‘₯𝑔𝑦)𝑔𝑧) = (π‘₯𝑔(𝑦𝑔𝑧))}
cexid 37202class ExId
df-exid 37203 ExId = {𝑔 ∣ βˆƒπ‘₯ ∈ dom dom π‘”βˆ€π‘¦ ∈ dom dom 𝑔((π‘₯𝑔𝑦) = 𝑦 ∧ (𝑦𝑔π‘₯) = 𝑦)}
cmagm 37206class Magma
df-mgmOLD 37207Magma = {𝑔 ∣ βˆƒπ‘‘ 𝑔:(𝑑 Γ— 𝑑)βŸΆπ‘‘}
csem 37218class SemiGrp
df-sgrOLD 37219SemiGrp = (Magma ∩ Ass)
cmndo 37224class MndOp
df-mndo 37225MndOp = (SemiGrp ∩ ExId )
cghomOLD 37241class GrpOpHom
df-ghomOLD 37242 GrpOpHom = (𝑔 ∈ GrpOp, β„Ž ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran π‘”βŸΆran β„Ž ∧ βˆ€π‘₯ ∈ ran π‘”βˆ€π‘¦ ∈ ran 𝑔((π‘“β€˜π‘₯)β„Ž(π‘“β€˜π‘¦)) = (π‘“β€˜(π‘₯𝑔𝑦)))})
crngo 37252class RingOps
df-rngo 37253RingOps = {βŸ¨π‘”, β„ŽβŸ© ∣ ((𝑔 ∈ AbelOp ∧ β„Ž:(ran 𝑔 Γ— ran 𝑔)⟢ran 𝑔) ∧ (βˆ€π‘₯ ∈ ran π‘”βˆ€π‘¦ ∈ ran π‘”βˆ€π‘§ ∈ ran 𝑔(((π‘₯β„Žπ‘¦)β„Žπ‘§) = (π‘₯β„Ž(π‘¦β„Žπ‘§)) ∧ (π‘₯β„Ž(𝑦𝑔𝑧)) = ((π‘₯β„Žπ‘¦)𝑔(π‘₯β„Žπ‘§)) ∧ ((π‘₯𝑔𝑦)β„Žπ‘§) = ((π‘₯β„Žπ‘§)𝑔(π‘¦β„Žπ‘§))) ∧ βˆƒπ‘₯ ∈ ran π‘”βˆ€π‘¦ ∈ ran 𝑔((π‘₯β„Žπ‘¦) = 𝑦 ∧ (π‘¦β„Žπ‘₯) = 𝑦)))}
cdrng 37306class DivRingOps
df-drngo 37307DivRingOps = {βŸ¨π‘”, β„ŽβŸ© ∣ (βŸ¨π‘”, β„ŽβŸ© ∈ RingOps ∧ (β„Ž β†Ύ ((ran 𝑔 βˆ– {(GIdβ€˜π‘”)}) Γ— (ran 𝑔 βˆ– {(GIdβ€˜π‘”)}))) ∈ GrpOp)}
crngohom 37318class RingOpsHom
crngoiso 37319class RingOpsIso
crisc 37320class β‰ƒπ‘Ÿ
df-rngohom 37321 RingOpsHom = (π‘Ÿ ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (ran (1st β€˜π‘ ) ↑m ran (1st β€˜π‘Ÿ)) ∣ ((π‘“β€˜(GIdβ€˜(2nd β€˜π‘Ÿ))) = (GIdβ€˜(2nd β€˜π‘ )) ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘Ÿ)βˆ€π‘¦ ∈ ran (1st β€˜π‘Ÿ)((π‘“β€˜(π‘₯(1st β€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(1st β€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(2nd β€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(2nd β€˜π‘ )(π‘“β€˜π‘¦))))})
df-rngoiso 37334 RingOpsIso = (π‘Ÿ ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (π‘Ÿ RingOpsHom 𝑠) ∣ 𝑓:ran (1st β€˜π‘Ÿ)–1-1-ontoβ†’ran (1st β€˜π‘ )})
df-risc 37341 β‰ƒπ‘Ÿ = {βŸ¨π‘Ÿ, π‘ βŸ© ∣ ((π‘Ÿ ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ βˆƒπ‘“ 𝑓 ∈ (π‘Ÿ RingOpsIso 𝑠))}
ccm2 37347class Com2
df-com2 37348Com2 = {βŸ¨π‘”, β„ŽβŸ© ∣ βˆ€π‘Ž ∈ ran π‘”βˆ€π‘ ∈ ran 𝑔(π‘Žβ„Žπ‘) = (π‘β„Žπ‘Ž)}
cfld 37349class Fld
df-fld 37350Fld = (DivRingOps ∩ Com2)
ccring 37351class CRingOps
df-crngo 37352CRingOps = (RingOps ∩ Com2)
cidl 37365class Idl
cpridl 37366class PrIdl
cmaxidl 37367class MaxIdl
df-idl 37368Idl = (π‘Ÿ ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st β€˜π‘Ÿ) ∣ ((GIdβ€˜(1st β€˜π‘Ÿ)) ∈ 𝑖 ∧ βˆ€π‘₯ ∈ 𝑖 (βˆ€π‘¦ ∈ 𝑖 (π‘₯(1st β€˜π‘Ÿ)𝑦) ∈ 𝑖 ∧ βˆ€π‘§ ∈ ran (1st β€˜π‘Ÿ)((𝑧(2nd β€˜π‘Ÿ)π‘₯) ∈ 𝑖 ∧ (π‘₯(2nd β€˜π‘Ÿ)𝑧) ∈ 𝑖)))})
df-pridl 37369PrIdl = (π‘Ÿ ∈ RingOps ↦ {𝑖 ∈ (Idlβ€˜π‘Ÿ) ∣ (𝑖 β‰  ran (1st β€˜π‘Ÿ) ∧ βˆ€π‘Ž ∈ (Idlβ€˜π‘Ÿ)βˆ€π‘ ∈ (Idlβ€˜π‘Ÿ)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯(2nd β€˜π‘Ÿ)𝑦) ∈ 𝑖 β†’ (π‘Ž βŠ† 𝑖 ∨ 𝑏 βŠ† 𝑖)))})
df-maxidl 37370MaxIdl = (π‘Ÿ ∈ RingOps ↦ {𝑖 ∈ (Idlβ€˜π‘Ÿ) ∣ (𝑖 β‰  ran (1st β€˜π‘Ÿ) ∧ βˆ€π‘— ∈ (Idlβ€˜π‘Ÿ)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = ran (1st β€˜π‘Ÿ))))})
cprrng 37404class PrRing
cdmn 37405class Dmn
df-prrngo 37406PrRing = {π‘Ÿ ∈ RingOps ∣ {(GIdβ€˜(1st β€˜π‘Ÿ))} ∈ (PrIdlβ€˜π‘Ÿ)}
df-dmn 37407Dmn = (PrRing ∩ Com2)
cigen 37417class IdlGen
df-igen 37418 IdlGen = (π‘Ÿ ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st β€˜π‘Ÿ) ↦ ∩ {𝑗 ∈ (Idlβ€˜π‘Ÿ) ∣ 𝑠 βŠ† 𝑗})
cxrn 37532class (𝐴 ⋉ 𝐡)
ccoss 37533class ≀ 𝑅
ccoels 37534class ∼ 𝐴
crels 37535class Rels
cssr 37536class S
crefs 37537class Refs
crefrels 37538class RefRels
wrefrel 37539wff RefRel 𝑅
ccnvrefs 37540class CnvRefs
ccnvrefrels 37541class CnvRefRels
wcnvrefrel 37542wff CnvRefRel 𝑅
csyms 37543class Syms
csymrels 37544class SymRels
wsymrel 37545wff SymRel 𝑅
ctrs 37546class Trs
ctrrels 37547class TrRels
wtrrel 37548wff TrRel 𝑅
ceqvrels 37549class EqvRels
weqvrel 37550wff EqvRel 𝑅
ccoeleqvrels 37551class CoElEqvRels
wcoeleqvrel 37552wff CoElEqvRel 𝐴
credunds 37553class Redunds
wredund 37554wff 𝐴 Redund ⟨𝐡, 𝐢⟩
wredundp 37555wff redund (πœ‘, πœ“, πœ’)
cdmqss 37556class DomainQss
wdmqs 37557wff 𝑅 DomainQs 𝐴
cers 37558class Ers
werALTV 37559wff 𝑅 ErALTV 𝐴
ccomembers 37560class CoMembErs
wcomember 37561wff CoMembEr 𝐴
cfunss 37562class Funss
cfunsALTV 37563class FunsALTV
wfunALTV 37564wff FunALTV 𝐹
cdisjss 37565class Disjss
cdisjs 37566class Disjs
wdisjALTV 37567wff Disj 𝑅
celdisjs 37568class ElDisjs
weldisj 37569wff ElDisj 𝐴
wantisymrel 37570wff AntisymRel 𝑅
cparts 37571class Parts
wpart 37572wff 𝑅 Part 𝐴
cmembparts 37573class MembParts
wmembpart 37574wff MembPart 𝐴
df-xrn 37731(𝐴 ⋉ 𝐡) = ((β—‘(1st β†Ύ (V Γ— V)) ∘ 𝐴) ∩ (β—‘(2nd β†Ύ (V Γ— V)) ∘ 𝐡))
df-coss 37771 ≀ 𝑅 = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘’(𝑒𝑅π‘₯ ∧ 𝑒𝑅𝑦)}
df-coels 37772 ∼ 𝐴 = ≀ (β—‘ E β†Ύ 𝐴)
df-rels 37845 Rels = 𝒫 (V Γ— V)
df-ssr 37858 S = {⟨π‘₯, π‘¦βŸ© ∣ π‘₯ βŠ† 𝑦}
df-refs 37870 Refs = {π‘₯ ∣ ( I ∩ (dom π‘₯ Γ— ran π‘₯)) S (π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯))}
df-refrels 37871 RefRels = ( Refs ∩ Rels )
df-refrel 37872( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 Γ— ran 𝑅)) βŠ† (𝑅 ∩ (dom 𝑅 Γ— ran 𝑅)) ∧ Rel 𝑅))
df-cnvrefs 37885 CnvRefs = {π‘₯ ∣ ( I ∩ (dom π‘₯ Γ— ran π‘₯))β—‘ S (π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯))}
df-cnvrefrels 37886 CnvRefRels = ( CnvRefs ∩ Rels )
df-cnvrefrel 37887( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 Γ— ran 𝑅)) βŠ† ( I ∩ (dom 𝑅 Γ— ran 𝑅)) ∧ Rel 𝑅))
df-syms 37902 Syms = {π‘₯ ∣ β—‘(π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯)) S (π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯))}
df-symrels 37903 SymRels = ( Syms ∩ Rels )
df-symrel 37904( SymRel 𝑅 ↔ (β—‘(𝑅 ∩ (dom 𝑅 Γ— ran 𝑅)) βŠ† (𝑅 ∩ (dom 𝑅 Γ— ran 𝑅)) ∧ Rel 𝑅))
df-trs 37932 Trs = {π‘₯ ∣ ((π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯)) ∘ (π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯))) S (π‘₯ ∩ (dom π‘₯ Γ— ran π‘₯))}
df-trrels 37933 TrRels = ( Trs ∩ Rels )
df-trrel 37934( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 Γ— ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 Γ— ran 𝑅))) βŠ† (𝑅 ∩ (dom 𝑅 Γ— ran 𝑅)) ∧ Rel 𝑅))
df-eqvrels 37944 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
df-eqvrel 37945( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
df-coeleqvrels 37946 CoElEqvRels = {π‘Ž ∣ ≀ (β—‘ E β†Ύ π‘Ž) ∈ EqvRels }
df-coeleqvrel 37947( CoElEqvRel 𝐴 ↔ EqvRel ≀ (β—‘ E β†Ύ 𝐴))
df-redunds 37983 Redunds = β—‘{βŸ¨βŸ¨π‘¦, π‘§βŸ©, π‘₯⟩ ∣ (π‘₯ βŠ† 𝑦 ∧ (π‘₯ ∩ 𝑧) = (𝑦 ∩ 𝑧))}
df-redund 37984(𝐴 Redund ⟨𝐡, 𝐢⟩ ↔ (𝐴 βŠ† 𝐡 ∧ (𝐴 ∩ 𝐢) = (𝐡 ∩ 𝐢)))
df-redundp 37985( redund (πœ‘, πœ“, πœ’) ↔ ((πœ‘ β†’ πœ“) ∧ ((πœ‘ ∧ πœ’) ↔ (πœ“ ∧ πœ’))))
df-dmqss 37998 DomainQss = {⟨π‘₯, π‘¦βŸ© ∣ (dom π‘₯ / π‘₯) = 𝑦}
df-dmqs 37999(𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
df-ers 38023 Ers = ( DomainQss β†Ύ EqvRels )
df-erALTV 38024(𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴))
df-comembers 38025 CoMembErs = {π‘Ž ∣ ≀ (β—‘ E β†Ύ π‘Ž) Ers π‘Ž}
df-comember 38026( CoMembEr 𝐴 ↔ ≀ (β—‘ E β†Ύ 𝐴) ErALTV 𝐴)
df-funss 38040 Funss = {π‘₯ ∣ ≀ π‘₯ ∈ CnvRefRels }
df-funsALTV 38041 FunsALTV = ( Funss ∩ Rels )
df-funALTV 38042( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
df-disjss 38063 Disjss = {π‘₯ ∣ ≀ β—‘π‘₯ ∈ CnvRefRels }
df-disjs 38064 Disjs = ( Disjss ∩ Rels )
df-disjALTV 38065( Disj 𝑅 ↔ ( CnvRefRel ≀ ◑𝑅 ∧ Rel 𝑅))
df-eldisjs 38066 ElDisjs = {π‘Ž ∣ (β—‘ E β†Ύ π‘Ž) ∈ Disjs }
df-eldisj 38067( ElDisj 𝐴 ↔ Disj (β—‘ E β†Ύ 𝐴))
df-antisymrel 38120( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◑𝑅) ∧ Rel 𝑅))
df-parts 38125 Parts = ( DomainQss β†Ύ Disjs )
df-part 38126(𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴))
df-membparts 38127 MembParts = {π‘Ž ∣ (β—‘ E β†Ύ π‘Ž) Parts π‘Ž}
df-membpart 38128( MembPart 𝐴 ↔ (β—‘ E β†Ύ 𝐴) Part 𝐴)
wprt 38231wff Prt 𝐴
df-prt 38232(Prt 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ = 𝑦 ∨ (π‘₯ ∩ 𝑦) = βˆ…))
ax-c5 38243(βˆ€π‘₯πœ‘ β†’ πœ‘)
ax-c4 38244(βˆ€π‘₯(βˆ€π‘₯πœ‘ β†’ πœ“) β†’ (βˆ€π‘₯πœ‘ β†’ βˆ€π‘₯πœ“))
ax-c7 38245(Β¬ βˆ€π‘₯ Β¬ βˆ€π‘₯πœ‘ β†’ πœ‘)
ax-c10 38246(βˆ€π‘₯(π‘₯ = 𝑦 β†’ βˆ€π‘₯πœ‘) β†’ πœ‘)
ax-c11 38247(βˆ€π‘₯ π‘₯ = 𝑦 β†’ (βˆ€π‘₯πœ‘ β†’ βˆ€π‘¦πœ‘))
ax-c11n 38248(βˆ€π‘₯ π‘₯ = 𝑦 β†’ βˆ€π‘¦ 𝑦 = π‘₯)
ax-c15 38249(Β¬ βˆ€π‘₯ π‘₯ = 𝑦 β†’ (π‘₯ = 𝑦 β†’ (πœ‘ β†’ βˆ€π‘₯(π‘₯ = 𝑦 β†’ πœ‘))))
ax-c9 38250(Β¬ βˆ€π‘§ 𝑧 = π‘₯ β†’ (Β¬ βˆ€π‘§ 𝑧 = 𝑦 β†’ (π‘₯ = 𝑦 β†’ βˆ€π‘§ π‘₯ = 𝑦)))
ax-c14 38251(Β¬ βˆ€π‘§ 𝑧 = π‘₯ β†’ (Β¬ βˆ€π‘§ 𝑧 = 𝑦 β†’ (π‘₯ ∈ 𝑦 β†’ βˆ€π‘§ π‘₯ ∈ 𝑦)))
ax-c16 38252(βˆ€π‘₯ π‘₯ = 𝑦 β†’ (πœ‘ β†’ βˆ€π‘₯πœ‘))
ax-riotaBAD 38313(β„©π‘₯ ∈ 𝐴 πœ‘) = if(βˆƒ!π‘₯ ∈ 𝐴 πœ‘, (β„©π‘₯(π‘₯ ∈ 𝐴 ∧ πœ‘)), (Undefβ€˜{π‘₯ ∣ π‘₯ ∈ 𝐴}))
clsa 38334class LSAtoms
clsh 38335class LSHyp
df-lsatoms 38336LSAtoms = (𝑀 ∈ V ↦ ran (𝑣 ∈ ((Baseβ€˜π‘€) βˆ– {(0gβ€˜π‘€)}) ↦ ((LSpanβ€˜π‘€)β€˜{𝑣})))
df-lshyp 38337LSHyp = (𝑀 ∈ V ↦ {𝑠 ∈ (LSubSpβ€˜π‘€) ∣ (𝑠 β‰  (Baseβ€˜π‘€) ∧ βˆƒπ‘£ ∈ (Baseβ€˜π‘€)((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (Baseβ€˜π‘€))})
clcv 38378class β‹–L
df-lcv 38379 β‹–L = (𝑀 ∈ V ↦ {βŸ¨π‘‘, π‘’βŸ© ∣ ((𝑑 ∈ (LSubSpβ€˜π‘€) ∧ 𝑒 ∈ (LSubSpβ€˜π‘€)) ∧ (𝑑 ⊊ 𝑒 ∧ Β¬ βˆƒπ‘  ∈ (LSubSpβ€˜π‘€)(𝑑 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑒)))})
clfn 38417class LFnl
df-lfl 38418LFnl = (𝑀 ∈ V ↦ {𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m (Baseβ€˜π‘€)) ∣ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦))})
clk 38445class LKer
df-lkr 38446LKer = (𝑀 ∈ V ↦ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})))
cld 38483class LDual
df-ldual 38484LDual = (𝑣 ∈ V ↦ ({⟨(Baseβ€˜ndx), (LFnlβ€˜π‘£)⟩, ⟨(+gβ€˜ndx), ( ∘f (+gβ€˜(Scalarβ€˜π‘£)) β†Ύ ((LFnlβ€˜π‘£) Γ— (LFnlβ€˜π‘£)))⟩, ⟨(Scalarβ€˜ndx), (opprβ€˜(Scalarβ€˜π‘£))⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (π‘˜ ∈ (Baseβ€˜(Scalarβ€˜π‘£)), 𝑓 ∈ (LFnlβ€˜π‘£) ↦ (𝑓 ∘f (.rβ€˜(Scalarβ€˜π‘£))((Baseβ€˜π‘£) Γ— {π‘˜})))⟩}))
cops 38532class OP
ccmtN 38533class cm
col 38534class OL
coml 38535class OML
df-oposet 38536OP = {𝑝 ∈ Poset ∣ (((Baseβ€˜π‘) ∈ dom (lubβ€˜π‘) ∧ (Baseβ€˜π‘) ∈ dom (glbβ€˜π‘)) ∧ βˆƒπ‘œ(π‘œ = (ocβ€˜π‘) ∧ βˆ€π‘Ž ∈ (Baseβ€˜π‘)βˆ€π‘ ∈ (Baseβ€˜π‘)(((π‘œβ€˜π‘Ž) ∈ (Baseβ€˜π‘) ∧ (π‘œβ€˜(π‘œβ€˜π‘Ž)) = π‘Ž ∧ (π‘Ž(leβ€˜π‘)𝑏 β†’ (π‘œβ€˜π‘)(leβ€˜π‘)(π‘œβ€˜π‘Ž))) ∧ (π‘Ž(joinβ€˜π‘)(π‘œβ€˜π‘Ž)) = (1.β€˜π‘) ∧ (π‘Ž(meetβ€˜π‘)(π‘œβ€˜π‘Ž)) = (0.β€˜π‘))))}
df-cmtN 38537cm = (𝑝 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))})
df-ol 38538OL = (Lat ∩ OP)
df-oml 38539OML = {𝑙 ∈ OL ∣ βˆ€π‘Ž ∈ (Baseβ€˜π‘™)βˆ€π‘ ∈ (Baseβ€˜π‘™)(π‘Ž(leβ€˜π‘™)𝑏 β†’ 𝑏 = (π‘Ž(joinβ€˜π‘™)(𝑏(meetβ€˜π‘™)((ocβ€˜π‘™)β€˜π‘Ž))))}
ccvr 38622class β‹–
catm 38623class Atoms
cal 38624class AtLat
clc 38625class CvLat
df-covers 38626 β‹– = (𝑝 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (Baseβ€˜π‘) ∧ 𝑏 ∈ (Baseβ€˜π‘)) ∧ π‘Ž(ltβ€˜π‘)𝑏 ∧ Β¬ βˆƒπ‘§ ∈ (Baseβ€˜π‘)(π‘Ž(ltβ€˜π‘)𝑧 ∧ 𝑧(ltβ€˜π‘)𝑏))})
df-ats 38627Atoms = (𝑝 ∈ V ↦ {π‘Ž ∈ (Baseβ€˜π‘) ∣ (0.β€˜π‘)( β‹– β€˜π‘)π‘Ž})
df-atl 38658AtLat = {π‘˜ ∈ Lat ∣ ((Baseβ€˜π‘˜) ∈ dom (glbβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯ β‰  (0.β€˜π‘˜) β†’ βˆƒπ‘ ∈ (Atomsβ€˜π‘˜)𝑝(leβ€˜π‘˜)π‘₯))}
df-cvlat 38682CvLat = {π‘˜ ∈ AtLat ∣ βˆ€π‘Ž ∈ (Atomsβ€˜π‘˜)βˆ€π‘ ∈ (Atomsβ€˜π‘˜)βˆ€π‘ ∈ (Baseβ€˜π‘˜)((Β¬ π‘Ž(leβ€˜π‘˜)𝑐 ∧ π‘Ž(leβ€˜π‘˜)(𝑐(joinβ€˜π‘˜)𝑏)) β†’ 𝑏(leβ€˜π‘˜)(𝑐(joinβ€˜π‘˜)π‘Ž))}
chlt 38710class HL
df-hlat 38711HL = {𝑙 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (βˆ€π‘Ž ∈ (Atomsβ€˜π‘™)βˆ€π‘ ∈ (Atomsβ€˜π‘™)(π‘Ž β‰  𝑏 β†’ βˆƒπ‘ ∈ (Atomsβ€˜π‘™)(𝑐 β‰  π‘Ž ∧ 𝑐 β‰  𝑏 ∧ 𝑐(leβ€˜π‘™)(π‘Ž(joinβ€˜π‘™)𝑏))) ∧ βˆƒπ‘Ž ∈ (Baseβ€˜π‘™)βˆƒπ‘ ∈ (Baseβ€˜π‘™)βˆƒπ‘ ∈ (Baseβ€˜π‘™)(((0.β€˜π‘™)(ltβ€˜π‘™)π‘Ž ∧ π‘Ž(ltβ€˜π‘™)𝑏) ∧ (𝑏(ltβ€˜π‘™)𝑐 ∧ 𝑐(ltβ€˜π‘™)(1.β€˜π‘™))))}
clln 38852class LLines
clpl 38853class LPlanes
clvol 38854class LVols
clines 38855class Lines
cpointsN 38856class Points
cpsubsp 38857class PSubSp
cpmap 38858class pmap
df-llines 38859LLines = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (Atomsβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
df-lplanes 38860LPlanes = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (LLinesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
df-lvols 38861LVols = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (LPlanesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
df-lines 38862Lines = (π‘˜ ∈ V ↦ {𝑠 ∣ βˆƒπ‘ž ∈ (Atomsβ€˜π‘˜)βˆƒπ‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘ž β‰  π‘Ÿ ∧ 𝑠 = {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)(π‘ž(joinβ€˜π‘˜)π‘Ÿ)})})
df-pointsN 38863Points = (π‘˜ ∈ V ↦ {π‘ž ∣ βˆƒπ‘ ∈ (Atomsβ€˜π‘˜)π‘ž = {𝑝}})
df-psubsp 38864PSubSp = (π‘˜ ∈ V ↦ {𝑠 ∣ (𝑠 βŠ† (Atomsβ€˜π‘˜) ∧ βˆ€π‘ ∈ 𝑠 βˆ€π‘ž ∈ 𝑠 βˆ€π‘Ÿ ∈ (Atomsβ€˜π‘˜)(π‘Ÿ(leβ€˜π‘˜)(𝑝(joinβ€˜π‘˜)π‘ž) β†’ π‘Ÿ ∈ 𝑠))})
df-pmap 38865pmap = (π‘˜ ∈ V ↦ (π‘Ž ∈ (Baseβ€˜π‘˜) ↦ {𝑝 ∈ (Atomsβ€˜π‘˜) ∣ 𝑝(leβ€˜π‘˜)π‘Ž}))
cpadd 39156class +𝑃
df-padd 39157+𝑃 = (𝑙 ∈ V ↦ (π‘š ∈ 𝒫 (Atomsβ€˜π‘™), 𝑛 ∈ 𝒫 (Atomsβ€˜π‘™) ↦ ((π‘š βˆͺ 𝑛) βˆͺ {𝑝 ∈ (Atomsβ€˜π‘™) ∣ βˆƒπ‘ž ∈ π‘š βˆƒπ‘Ÿ ∈ 𝑛 𝑝(leβ€˜π‘™)(π‘ž(joinβ€˜π‘™)π‘Ÿ)})))
cpclN 39248class PCl
df-pclN 39249PCl = (π‘˜ ∈ V ↦ (π‘₯ ∈ 𝒫 (Atomsβ€˜π‘˜) ↦ ∩ {𝑦 ∈ (PSubSpβ€˜π‘˜) ∣ π‘₯ βŠ† 𝑦}))
cpolN 39263class βŠ₯𝑃
df-polarityN 39264βŠ₯𝑃 = (𝑙 ∈ V ↦ (π‘š ∈ 𝒫 (Atomsβ€˜π‘™) ↦ ((Atomsβ€˜π‘™) ∩ ∩ 𝑝 ∈ π‘š ((pmapβ€˜π‘™)β€˜((ocβ€˜π‘™)β€˜π‘)))))
cpscN 39295class PSubCl
df-psubclN 39296PSubCl = (π‘˜ ∈ V ↦ {𝑠 ∣ (𝑠 βŠ† (Atomsβ€˜π‘˜) ∧ ((βŠ₯π‘ƒβ€˜π‘˜)β€˜((βŠ₯π‘ƒβ€˜π‘˜)β€˜π‘ )) = 𝑠)})
clh 39345class LHyp
claut 39346class LAut
cwpointsN 39347class WAtoms
cpautN 39348class PAut
df-lhyp 39349LHyp = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ π‘₯( β‹– β€˜π‘˜)(1.β€˜π‘˜)})
df-laut 39350LAut = (π‘˜ ∈ V ↦ {𝑓 ∣ (𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)))})
df-watsN 39351WAtoms = (π‘˜ ∈ V ↦ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ ((Atomsβ€˜π‘˜) βˆ– ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑}))))
df-pautN 39352PAut = (π‘˜ ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSpβ€˜π‘˜)–1-1-ontoβ†’(PSubSpβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)βˆ€π‘¦ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† 𝑦 ↔ (π‘“β€˜π‘₯) βŠ† (π‘“β€˜π‘¦)))})
cldil 39461class LDil
cltrn 39462class LTrn
cdilN 39463class Dil
ctrnN 39464class Trn
df-ldil 39465LDil = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
df-ltrn 39466LTrn = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ ((LDilβ€˜π‘˜)β€˜π‘€) ∣ βˆ€π‘ ∈ (Atomsβ€˜π‘˜)βˆ€π‘ž ∈ (Atomsβ€˜π‘˜)((Β¬ 𝑝(leβ€˜π‘˜)𝑀 ∧ Β¬ π‘ž(leβ€˜π‘˜)𝑀) β†’ ((𝑝(joinβ€˜π‘˜)(π‘“β€˜π‘))(meetβ€˜π‘˜)𝑀) = ((π‘ž(joinβ€˜π‘˜)(π‘“β€˜π‘ž))(meetβ€˜π‘˜)𝑀))}))
df-dilN 39467Dil = (π‘˜ ∈ V ↦ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ {𝑓 ∈ (PAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† ((WAtomsβ€˜π‘˜)β€˜π‘‘) β†’ (π‘“β€˜π‘₯) = π‘₯)}))
df-trnN 39468Trn = (π‘˜ ∈ V ↦ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ {𝑓 ∈ ((Dilβ€˜π‘˜)β€˜π‘‘) ∣ βˆ€π‘ž ∈ ((WAtomsβ€˜π‘˜)β€˜π‘‘)βˆ€π‘Ÿ ∈ ((WAtomsβ€˜π‘˜)β€˜π‘‘)((π‘ž(+π‘ƒβ€˜π‘˜)(π‘“β€˜π‘ž)) ∩ ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑})) = ((π‘Ÿ(+π‘ƒβ€˜π‘˜)(π‘“β€˜π‘Ÿ)) ∩ ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑}))}))
ctrl 39519class trL
df-trl 39520trL = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (β„©π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘ ∈ (Atomsβ€˜π‘˜)(Β¬ 𝑝(leβ€˜π‘˜)𝑀 β†’ π‘₯ = ((𝑝(joinβ€˜π‘˜)(π‘“β€˜π‘))(meetβ€˜π‘˜)𝑀))))))
ctgrp 40103class TGrp
df-tgrp 40104TGrp = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
ctendo 40113class TEndo
cedring 40114class EDRing
cedring-rN 40115class EDRingR
df-tendo 40116TEndo = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∣ (𝑓:((LTrnβ€˜π‘˜)β€˜π‘€)⟢((LTrnβ€˜π‘˜)β€˜π‘€) ∧ βˆ€π‘₯ ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)βˆ€π‘¦ ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘“β€˜(π‘₯ ∘ 𝑦)) = ((π‘“β€˜π‘₯) ∘ (π‘“β€˜π‘¦)) ∧ βˆ€π‘₯ ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(((trLβ€˜π‘˜)β€˜π‘€)β€˜(π‘“β€˜π‘₯))(leβ€˜π‘˜)(((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘₯))}))
df-edring-rN 40117EDRingR = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑑 ∘ 𝑠))⟩}))
df-edring 40118EDRing = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((TEndoβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))⟩, ⟨(.rβ€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑑 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€) ↦ (𝑠 ∘ 𝑑))⟩}))
cdveca 40363class DVecA
df-dveca 40364DVecA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (π‘ β€˜π‘“))⟩})))
cdia 40389class DIsoA
df-disoa 40390DIsoA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ {𝑦 ∈ (Baseβ€˜π‘˜) ∣ 𝑦(leβ€˜π‘˜)𝑀} ↦ {𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ∣ (((trLβ€˜π‘˜)β€˜π‘€)β€˜π‘“)(leβ€˜π‘˜)π‘₯})))
cdvh 40439class DVecH
df-dvech 40440DVecH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
cocaN 40480class ocA
df-docaN 40481ocA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜((((ocβ€˜π‘˜)β€˜(β—‘((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜βˆ© {𝑧 ∈ ran ((DIsoAβ€˜π‘˜)β€˜π‘€) ∣ π‘₯ βŠ† 𝑧}))(joinβ€˜π‘˜)((ocβ€˜π‘˜)β€˜π‘€))(meetβ€˜π‘˜)𝑀)))))
cdjaN 40492class vA
df-djaN 40493vA = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑦 ∈ 𝒫 ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((ocAβ€˜π‘˜)β€˜π‘€)β€˜((((ocAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) ∩ (((ocAβ€˜π‘˜)β€˜π‘€)β€˜π‘¦))))))
cdib 40499class DIsoB
df-dib 40500DIsoB = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ dom ((DIsoAβ€˜π‘˜)β€˜π‘€) ↦ ((((DIsoAβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) Γ— {(𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ ( I β†Ύ (Baseβ€˜π‘˜)))}))))
cdic 40533class DIsoC
df-dic 40534DIsoC = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘ž ∈ {π‘Ÿ ∈ (Atomsβ€˜π‘˜) ∣ Β¬ π‘Ÿ(leβ€˜π‘˜)𝑀} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€)(π‘”β€˜((ocβ€˜π‘˜)β€˜π‘€)) = π‘ž)) ∧ 𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€))})))
cdih 40589class DIsoH
df-dih 40590DIsoH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ (Baseβ€˜π‘˜) ↦ if(π‘₯(leβ€˜π‘˜)𝑀, (((DIsoBβ€˜π‘˜)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))βˆ€π‘ž ∈ (Atomsβ€˜π‘˜)((Β¬ π‘ž(leβ€˜π‘˜)𝑀 ∧ (π‘ž(joinβ€˜π‘˜)(π‘₯(meetβ€˜π‘˜)𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜π‘˜)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(((DIsoBβ€˜π‘˜)β€˜π‘€)β€˜(π‘₯(meetβ€˜π‘˜)𝑀)))))))))
coch 40708class ocH
df-doch 40709ocH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜((ocβ€˜π‘˜)β€˜((glbβ€˜π‘˜)β€˜{𝑦 ∈ (Baseβ€˜π‘˜) ∣ π‘₯ βŠ† (((DIsoHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)}))))))
cdjh 40755class joinH
df-djh 40756joinH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜((((ocHβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦))))))
clpoN 40841class LPol
df-lpolN 40842LPol = (𝑀 ∈ V ↦ {π‘œ ∈ ((LSubSpβ€˜π‘€) ↑m 𝒫 (Baseβ€˜π‘€)) ∣ ((π‘œβ€˜(Baseβ€˜π‘€)) = {(0gβ€˜π‘€)} ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† (Baseβ€˜π‘€) ∧ 𝑦 βŠ† (Baseβ€˜π‘€) ∧ π‘₯ βŠ† 𝑦) β†’ (π‘œβ€˜π‘¦) βŠ† (π‘œβ€˜π‘₯)) ∧ βˆ€π‘₯ ∈ (LSAtomsβ€˜π‘€)((π‘œβ€˜π‘₯) ∈ (LSHypβ€˜π‘€) ∧ (π‘œβ€˜(π‘œβ€˜π‘₯)) = π‘₯))})
clcd 40947class LCDual
df-lcdual 40948LCDual = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ((LDualβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ∣ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)})))
cmpd 40985class mapd
df-mapd 40986mapd = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (𝑠 ∈ (LSubSpβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ∣ ((((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“) ∧ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)) βŠ† 𝑠)})))
chvm 41117class HVMap
df-hvmap 41118HVMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ ((Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) βˆ– {(0gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))}) ↦ (𝑣 ∈ (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (℩𝑗 ∈ (Baseβ€˜(Scalarβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)))βˆƒπ‘‘ ∈ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜{π‘₯})𝑣 = (𝑑(+gβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))(𝑗( ·𝑠 β€˜((DVecHβ€˜π‘˜)β€˜π‘€))π‘₯)))))))
chdma1 41152class HDMap1
chdma 41153class HDMap
df-hdmap1 41154HDMap1 = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))}))
df-hdmap 41155HDMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [⟨( I β†Ύ (Baseβ€˜π‘˜)), ( I β†Ύ ((LTrnβ€˜π‘˜)β€˜π‘€))⟩ / 𝑒][((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][((HDMap1β€˜π‘˜)β€˜π‘€) / 𝑖]π‘Ž ∈ (𝑑 ∈ 𝑣 ↦ (℩𝑦 ∈ (Baseβ€˜((LCDualβ€˜π‘˜)β€˜π‘€))βˆ€π‘§ ∈ 𝑣 (Β¬ 𝑧 ∈ (((LSpanβ€˜π‘’)β€˜{𝑒}) βˆͺ ((LSpanβ€˜π‘’)β€˜{𝑑})) β†’ 𝑦 = (π‘–β€˜βŸ¨π‘§, (π‘–β€˜βŸ¨π‘’, (((HVMapβ€˜π‘˜)β€˜π‘€)β€˜π‘’), π‘§βŸ©), π‘‘βŸ©))))}))
chg 41244class HGMap
df-hgmap 41245HGMap = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜(Scalarβ€˜π‘’)) / 𝑏][((HDMapβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 βˆ€π‘£ ∈ (Baseβ€˜π‘’)(π‘šβ€˜(π‘₯( ·𝑠 β€˜π‘’)𝑣)) = (𝑦( ·𝑠 β€˜((LCDualβ€˜π‘˜)β€˜π‘€))(π‘šβ€˜π‘£))))}))
chlh 41293class HLHil
df-hlhil 41294HLHil = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ⦋((DVecHβ€˜π‘˜)β€˜π‘€) / π‘’β¦Œβ¦‹(Baseβ€˜π‘’) / π‘£β¦Œ({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), (+gβ€˜π‘’)⟩, ⟨(Scalarβ€˜ndx), (((EDRingβ€˜π‘˜)β€˜π‘€) sSet ⟨(*π‘Ÿβ€˜ndx), ((HGMapβ€˜π‘˜)β€˜π‘€)⟩)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘’)⟩, ⟨(Β·π‘–β€˜ndx), (π‘₯ ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMapβ€˜π‘˜)β€˜π‘€)β€˜π‘¦)β€˜π‘₯))⟩})))
ccsrg 41327class CSRing
df-csring 41328 CSRing = {𝑓 ∈ SRing ∣ (mulGrpβ€˜π‘“) ∈ CMnd}
cresub 41727class βˆ’β„
df-resub 41728 βˆ’β„ = (π‘₯ ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = π‘₯))
cprjsp 41832class ℙ𝕣𝕠𝕛
df-prjsp 41833ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ⦋((Baseβ€˜π‘£) βˆ– {(0gβ€˜π‘£)}) / π‘β¦Œ(𝑏 / {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ βˆƒπ‘™ ∈ (Baseβ€˜(Scalarβ€˜π‘£))π‘₯ = (𝑙( ·𝑠 β€˜π‘£)𝑦))}))
cprjspn 41845class ℙ𝕣𝕠𝕛n
df-prjspn 41846ℙ𝕣𝕠𝕛n = (𝑛 ∈ β„•0, π‘˜ ∈ DivRing ↦ (β„™π•£π• π•›β€˜(π‘˜ freeLMod (0...𝑛))))
cprjcrv 41860class ℙ𝕣𝕠𝕛Crv
df-prjcrv 41861ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ β„•0, π‘˜ ∈ Field ↦ (𝑓 ∈ βˆͺ ran ((0...𝑛) mHomP π‘˜) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛nπ‘˜) ∣ ((((0...𝑛) eval π‘˜)β€˜π‘“) β€œ 𝑝) = {(0gβ€˜π‘˜)}}))
cnacs 41929class NoeACS
df-nacs 41930NoeACS = (π‘₯ ∈ V ↦ {𝑐 ∈ (ACSβ€˜π‘₯) ∣ βˆ€π‘  ∈ 𝑐 βˆƒπ‘” ∈ (𝒫 π‘₯ ∩ Fin)𝑠 = ((mrClsβ€˜π‘)β€˜π‘”)})
cmzpcl 41948class mzPolyCld
cmzp 41949class mzPoly
df-mzpcl 41950mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (β„€ ↑m (β„€ ↑m 𝑣)) ∣ ((βˆ€π‘– ∈ β„€ ((β„€ ↑m 𝑣) Γ— {𝑖}) ∈ 𝑝 ∧ βˆ€π‘— ∈ 𝑣 (π‘₯ ∈ (β„€ ↑m 𝑣) ↦ (π‘₯β€˜π‘—)) ∈ 𝑝) ∧ βˆ€π‘“ ∈ 𝑝 βˆ€π‘” ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f Β· 𝑔) ∈ 𝑝))})
df-mzp 41951mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCldβ€˜π‘£))
cdioph 41982class Dioph
df-dioph 41983Dioph = (𝑛 ∈ β„•0 ↦ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}))
csquarenn 42063class β—»NN
cpell1qr 42064class Pell1QR
cpell1234qr 42065class Pell1234QR
cpell14qr 42066class Pell14QR
cpellfund 42067class PellFund
df-squarenn 42068β—»NN = {π‘₯ ∈ β„• ∣ (βˆšβ€˜π‘₯) ∈ β„š}
df-pell1qr 42069Pell1QR = (π‘₯ ∈ (β„• βˆ– β—»NN) ↦ {𝑦 ∈ ℝ ∣ βˆƒπ‘§ ∈ β„•0 βˆƒπ‘€ ∈ β„•0 (𝑦 = (𝑧 + ((βˆšβ€˜π‘₯) Β· 𝑀)) ∧ ((𝑧↑2) βˆ’ (π‘₯ Β· (𝑀↑2))) = 1)})
df-pell14qr 42070Pell14QR = (π‘₯ ∈ (β„• βˆ– β—»NN) ↦ {𝑦 ∈ ℝ ∣ βˆƒπ‘§ ∈ β„•0 βˆƒπ‘€ ∈ β„€ (𝑦 = (𝑧 + ((βˆšβ€˜π‘₯) Β· 𝑀)) ∧ ((𝑧↑2) βˆ’ (π‘₯ Β· (𝑀↑2))) = 1)})
df-pell1234qr 42071Pell1234QR = (π‘₯ ∈ (β„• βˆ– β—»NN) ↦ {𝑦 ∈ ℝ ∣ βˆƒπ‘§ ∈ β„€ βˆƒπ‘€ ∈ β„€ (𝑦 = (𝑧 + ((βˆšβ€˜π‘₯) Β· 𝑀)) ∧ ((𝑧↑2) βˆ’ (π‘₯ Β· (𝑀↑2))) = 1)})
df-pellfund 42072PellFund = (π‘₯ ∈ (β„• βˆ– β—»NN) ↦ inf({𝑧 ∈ (Pell14QRβ€˜π‘₯) ∣ 1 < 𝑧}, ℝ, < ))
crmx 42127class Xrm
crmy 42128class Yrm
df-rmx 42129 Xrm = (π‘Ž ∈ (β„€β‰₯β€˜2), 𝑛 ∈ β„€ ↦ (1st β€˜(β—‘(𝑏 ∈ (β„•0 Γ— β„€) ↦ ((1st β€˜π‘) + ((βˆšβ€˜((π‘Žβ†‘2) βˆ’ 1)) Β· (2nd β€˜π‘))))β€˜((π‘Ž + (βˆšβ€˜((π‘Žβ†‘2) βˆ’ 1)))↑𝑛))))
df-rmy 42130 Yrm = (π‘Ž ∈ (β„€β‰₯β€˜2), 𝑛 ∈ β„€ ↦ (2nd β€˜(β—‘(𝑏 ∈ (β„•0 Γ— β„€) ↦ ((1st β€˜π‘) + ((βˆšβ€˜((π‘Žβ†‘2) βˆ’ 1)) Β· (2nd β€˜π‘))))β€˜((π‘Ž + (βˆšβ€˜((π‘Žβ†‘2) βˆ’ 1)))↑𝑛))))
clfig 42298class LFinGen
df-lfig 42299LFinGen = {𝑀 ∈ LMod ∣ (Baseβ€˜π‘€) ∈ ((LSpanβ€˜π‘€) β€œ (𝒫 (Baseβ€˜π‘€) ∩ Fin))}
clnm 42306class LNoeM
df-lnm 42307LNoeM = {𝑀 ∈ LMod ∣ βˆ€π‘– ∈ (LSubSpβ€˜π‘€)(𝑀 β†Ύs 𝑖) ∈ LFinGen}
clnr 42340class LNoeR
df-lnr 42341LNoeR = {π‘Ž ∈ Ring ∣ (ringLModβ€˜π‘Ž) ∈ LNoeM}
cldgis 42352class ldgIdlSeq
df-ldgis 42353ldgIdlSeq = (π‘Ÿ ∈ V ↦ (𝑖 ∈ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) ↦ (π‘₯ ∈ β„•0 ↦ {𝑗 ∣ βˆƒπ‘˜ ∈ 𝑖 ((( deg1 β€˜π‘Ÿ)β€˜π‘˜) ≀ π‘₯ ∧ 𝑗 = ((coe1β€˜π‘˜)β€˜π‘₯))})))
cmnc 42362class Monic
cplylt 42363class Poly<
df-mnc 42364 Monic = (𝑠 ∈ 𝒫 β„‚ ↦ {𝑝 ∈ (Polyβ€˜π‘ ) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1})
df-plylt 42365 Poly< = (𝑠 ∈ 𝒫 β„‚, π‘₯ ∈ β„•0 ↦ {𝑝 ∈ (Polyβ€˜π‘ ) ∣ (𝑝 = 0𝑝 ∨ (degβ€˜π‘) < π‘₯)})
cdgraa 42371class degAA
cmpaa 42372class minPolyAA
df-dgraa 42373degAA = (π‘₯ ∈ 𝔸 ↦ inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π‘₯) = 0)}, ℝ, < ))
df-mpaa 42374minPolyAA = (π‘₯ ∈ 𝔸 ↦ (℩𝑝 ∈ (Polyβ€˜β„š)((degβ€˜π‘) = (degAAβ€˜π‘₯) ∧ (π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degAAβ€˜π‘₯)) = 1)))
citgo 42388class IntgOver
cza 42389class β„€
df-itgo 42390IntgOver = (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
df-za 42391β„€ = (IntgOverβ€˜β„€)
cmend 42406class MEndo
df-mend 42407MEndo = (π‘š ∈ V ↦ ⦋(π‘š LMHom π‘š) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}))
ccytp 42433class CytP
df-cytp 42434CytP = (𝑛 ∈ β„• ↦ ((mulGrpβ€˜(Poly1β€˜β„‚fld)) Ξ£g (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)))))
ctopsep 42444class TopSep
ctoplnd 42445class TopLnd
df-topsep 42446TopSep = {𝑗 ∈ Top ∣ βˆƒπ‘₯ ∈ 𝒫 βˆͺ 𝑗(π‘₯ β‰Ό Ο‰ ∧ ((clsβ€˜π‘—)β€˜π‘₯) = βˆͺ 𝑗)}
df-toplnd 42447TopLnd = {π‘₯ ∈ Top ∣ βˆ€π‘¦ ∈ 𝒫 π‘₯(βˆͺ π‘₯ = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ 𝒫 π‘₯(𝑧 β‰Ό Ο‰ ∧ βˆͺ π‘₯ = βˆͺ 𝑧))}
crcl 42912class r*
df-rcl 42913r* = (π‘₯ ∈ V ↦ ∩ {𝑧 ∣ (π‘₯ βŠ† 𝑧 ∧ ( I β†Ύ (dom 𝑧 βˆͺ ran 𝑧)) βŠ† 𝑧)})
whe 43012wff 𝑅 hereditary 𝐴
df-he 43013(𝑅 hereditary 𝐴 ↔ (𝑅 β€œ 𝐴) βŠ† 𝐴)
ax-frege1 43030(πœ‘ β†’ (πœ“ β†’ πœ‘))
ax-frege2 43031((πœ‘ β†’ (πœ“ β†’ πœ’)) β†’ ((πœ‘ β†’ πœ“) β†’ (πœ‘ β†’ πœ’)))
ax-frege8 43049((πœ‘ β†’ (πœ“ β†’ πœ’)) β†’ (πœ“ β†’ (πœ‘ β†’ πœ’)))
ax-frege28 43070((πœ‘ β†’ πœ“) β†’ (Β¬ πœ“ β†’ Β¬ πœ‘))
ax-frege31 43074(Β¬ Β¬ πœ‘ β†’ πœ‘)
ax-frege41 43085(πœ‘ β†’ Β¬ Β¬ πœ‘)
ax-frege52a 43097((πœ‘ ↔ πœ“) β†’ (if-(πœ‘, πœƒ, πœ’) β†’ if-(πœ“, πœƒ, πœ’)))
ax-frege54a 43102(πœ‘ ↔ πœ‘)
ax-frege58a 43115((πœ“ ∧ πœ’) β†’ if-(πœ‘, πœ“, πœ’))
ax-frege52c 43128(𝐴 = 𝐡 β†’ ([𝐴 / π‘₯]πœ‘ β†’ [𝐡 / π‘₯]πœ‘))
ax-frege54c 43132𝐴 = 𝐴
ax-frege58b 43141(βˆ€π‘₯πœ‘ β†’ [𝑦 / π‘₯]πœ‘)
cmnring 43454class MndRing
df-mnring 43455 MndRing = (π‘Ÿ ∈ V, π‘š ∈ V ↦ ⦋(π‘Ÿ freeLMod (Baseβ€˜π‘š)) / π‘£β¦Œ(𝑣 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘£), 𝑦 ∈ (Baseβ€˜π‘£) ↦ (𝑣 Ξ£g (π‘Ž ∈ (Baseβ€˜π‘š), 𝑏 ∈ (Baseβ€˜π‘š) ↦ (𝑖 ∈ (Baseβ€˜π‘š) ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘š)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘Ÿ)(π‘¦β€˜π‘)), (0gβ€˜π‘Ÿ))))))⟩))
cscott 43483class Scott 𝐴
df-scott 43484Scott 𝐴 = {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)}
ccoll 43498class (𝐹 Coll 𝐴)
df-coll 43499(𝐹 Coll 𝐴) = βˆͺ π‘₯ ∈ 𝐴 Scott (𝐹 β€œ {π‘₯})
cbcc 43584class C𝑐
df-bcc 43585C𝑐 = (𝑐 ∈ β„‚, π‘˜ ∈ β„•0 ↦ ((𝑐 FallFac π‘˜) / (!β€˜π‘˜)))
cplusr 43705class +π‘Ÿ
cminusr 43706class -π‘Ÿ
ctimesr 43707class .𝑣
cptdfc 43708class PtDf(𝐴, 𝐡)
crr3c 43709class RR3
cline3 43710class line3
df-addr 43711+π‘Ÿ = (π‘₯ ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((π‘₯β€˜π‘£) + (π‘¦β€˜π‘£))))
df-subr 43712-π‘Ÿ = (π‘₯ ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((π‘₯β€˜π‘£) βˆ’ (π‘¦β€˜π‘£))))
df-mulv 43713.𝑣 = (π‘₯ ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (π‘₯ Β· (π‘¦β€˜π‘£))))
df-ptdf 43724PtDf(𝐴, 𝐡) = (π‘₯ ∈ ℝ ↦ (((π‘₯.𝑣(𝐡-π‘Ÿπ΄)) +𝑣 𝐴) β€œ {1, 2, 3}))
df-rr3 43725RR3 = (ℝ ↑m {1, 2, 3})
df-line3 43726line3 = {π‘₯ ∈ 𝒫 RR3 ∣ (2o β‰Ό π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ βˆ€π‘§ ∈ π‘₯ (𝑧 β‰  𝑦 β†’ ran PtDf(𝑦, 𝑧) = π‘₯))}
wvd1 43819wff (   πœ‘   β–Ά   πœ“   )
df-vd1 43820((   πœ‘   β–Ά   πœ“   ) ↔ (πœ‘ β†’ πœ“))
wvd2 43827wff (   πœ‘   ,   πœ“   β–Ά   πœ’   )
df-vd2 43828((   πœ‘   ,   πœ“   β–Ά   πœ’   ) ↔ ((πœ‘ ∧ πœ“) β†’ πœ’))
wvhc2 43830wff (   πœ‘   ,   πœ“   )
df-vhc2 43831((   πœ‘   ,   πœ“   ) ↔ (πœ‘ ∧ πœ“))
wvd3 43837wff (   πœ‘   ,   πœ“   ,   πœ’   β–Ά   πœƒ   )
wvhc3 43838wff (   πœ‘   ,   πœ“   ,   πœ’   )
df-vhc3 43839((   πœ‘   ,   πœ“   ,   πœ’   ) ↔ (πœ‘ ∧ πœ“ ∧ πœ’))
df-vd3 43840((   πœ‘   ,   πœ“   ,   πœ’   β–Ά   πœƒ   ) ↔ ((πœ‘ ∧ πœ“ ∧ πœ’) β†’ πœƒ))
clsi 44952class lim inf
df-liminf 44953lim inf = (π‘₯ ∈ V ↦ sup(ran (π‘˜ ∈ ℝ ↦ inf(((π‘₯ β€œ (π‘˜[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
clsxlim 45019class ~~>*
df-xlim 45020~~>* = (β‡π‘‘β€˜(ordTopβ€˜ ≀ ))
csalg 45509class SAlg
df-salg 45510SAlg = {π‘₯ ∣ (βˆ… ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (βˆͺ π‘₯ βˆ– 𝑦) ∈ π‘₯ ∧ βˆ€π‘¦ ∈ 𝒫 π‘₯(𝑦 β‰Ό Ο‰ β†’ βˆͺ 𝑦 ∈ π‘₯))}
csalon 45511class SalOn
df-salon 45512SalOn = (π‘₯ ∈ V ↦ {𝑠 ∈ SAlg ∣ βˆͺ 𝑠 = π‘₯})
csalgen 45513class SalGen
df-salgen 45514SalGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (βˆͺ 𝑠 = βˆͺ π‘₯ ∧ π‘₯ βŠ† 𝑠)})
csumge0 45563class Ξ£^
df-sumge0 45564Ξ£^ = (π‘₯ ∈ V ↦ if(+∞ ∈ ran π‘₯, +∞, sup(ran (𝑦 ∈ (𝒫 dom π‘₯ ∩ Fin) ↦ Σ𝑀 ∈ 𝑦 (π‘₯β€˜π‘€)), ℝ*, < )))
cmea 45650class Meas
df-mea 45651Meas = {π‘₯ ∣ (((π‘₯:dom π‘₯⟢(0[,]+∞) ∧ dom π‘₯ ∈ SAlg) ∧ (π‘₯β€˜βˆ…) = 0) ∧ βˆ€π‘¦ ∈ 𝒫 dom π‘₯((𝑦 β‰Ό Ο‰ ∧ Disj 𝑀 ∈ 𝑦 𝑀) β†’ (π‘₯β€˜βˆͺ 𝑦) = (Ξ£^β€˜(π‘₯ β†Ύ 𝑦))))}
come 45690class OutMeas
df-ome 45691OutMeas = {π‘₯ ∣ ((((π‘₯:dom π‘₯⟢(0[,]+∞) ∧ dom π‘₯ = 𝒫 βˆͺ dom π‘₯) ∧ (π‘₯β€˜βˆ…) = 0) ∧ βˆ€π‘¦ ∈ 𝒫 βˆͺ dom π‘₯βˆ€π‘§ ∈ 𝒫 𝑦(π‘₯β€˜π‘§) ≀ (π‘₯β€˜π‘¦)) ∧ βˆ€π‘¦ ∈ 𝒫 dom π‘₯(𝑦 β‰Ό Ο‰ β†’ (π‘₯β€˜βˆͺ 𝑦) ≀ (Ξ£^β€˜(π‘₯ β†Ύ 𝑦))))}
ccaragen 45692class CaraGen
df-caragen 45693CaraGen = (π‘œ ∈ OutMeas ↦ {𝑒 ∈ 𝒫 βˆͺ dom π‘œ ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom π‘œ((π‘œβ€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘œβ€˜(π‘Ž βˆ– 𝑒))) = (π‘œβ€˜π‘Ž)})
covoln 45737class voln*
df-ovoln 45738voln* = (π‘₯ ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, inf({𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m π‘₯) ↑m β„•)(𝑦 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘₯ (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ π‘₯ (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}, ℝ*, < ))))
cvoln 45739class voln
df-voln 45740voln = (π‘₯ ∈ Fin ↦ ((voln*β€˜π‘₯) β†Ύ (CaraGenβ€˜(voln*β€˜π‘₯))))
csmblfn 45896class SMblFn
df-smblfn 45897SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm βˆͺ 𝑠) ∣ βˆ€π‘Ž ∈ ℝ (◑𝑓 β€œ (-∞(,)π‘Ž)) ∈ (𝑠 β†Ύt dom 𝑓)})
cupword 46077class UpWord 𝑆
df-upword 46078UpWord 𝑆 = {𝑀 ∣ (𝑀 ∈ Word 𝑆 ∧ βˆ€π‘˜ ∈ (0..^((β™―β€˜π‘€) βˆ’ 1))(π‘€β€˜π‘˜) < (π‘€β€˜(π‘˜ + 1)))}
caiota 46276class (β„©'π‘₯πœ‘)
df-aiota 46278(β„©'π‘₯πœ‘) = ∩ {𝑦 ∣ {π‘₯ ∣ πœ‘} = {𝑦}}
wdfat 46309wff 𝐹 defAt 𝐴
cafv 46310class (𝐹'''𝐴)
caov 46311class ((𝐴𝐹𝐡))
df-dfat 46312(𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 β†Ύ {𝐴})))
df-afv 46313(𝐹'''𝐴) = (β„©'π‘₯𝐴𝐹π‘₯)
df-aov 46314 ((𝐴𝐹𝐡)) = (𝐹'''⟨𝐴, 𝐡⟩)
cafv2 46401class (𝐹''''𝐴)
df-afv2 46402(𝐹''''𝐴) = if(𝐹 defAt 𝐴, (β„©π‘₯𝐴𝐹π‘₯), 𝒫 βˆͺ ran 𝐹)
cnelbr 46464class _βˆ‰
df-nelbr 46465 _βˆ‰ = {⟨π‘₯, π‘¦βŸ© ∣ Β¬ π‘₯ ∈ 𝑦}
ciccp 46566class RePart
df-iccp 46567RePart = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ* ↑m (0...π‘š)) ∣ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1))})
wich 46598wff [π‘₯⇄𝑦]πœ‘
df-ich 46599([π‘₯⇄𝑦]πœ‘ ↔ βˆ€π‘₯βˆ€π‘¦([π‘₯ / π‘Ž][𝑦 / π‘₯][π‘Ž / 𝑦]πœ‘ ↔ πœ‘))
cspr 46630class Pairs
df-spr 46631Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ βˆƒπ‘Ž ∈ 𝑣 βˆƒπ‘ ∈ 𝑣 𝑝 = {π‘Ž, 𝑏}})
cprpr 46665class Pairsproper
df-prpr 46666Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ βˆƒπ‘Ž ∈ 𝑣 βˆƒπ‘ ∈ 𝑣 (π‘Ž β‰  𝑏 ∧ 𝑝 = {π‘Ž, 𝑏})})
cfmtno 46680class FermatNo
df-fmtno 46681FermatNo = (𝑛 ∈ β„•0 ↦ ((2↑(2↑𝑛)) + 1))
ceven 46777class Even
codd 46778class Odd
df-even 46779 Even = {𝑧 ∈ β„€ ∣ (𝑧 / 2) ∈ β„€}
df-odd 46780 Odd = {𝑧 ∈ β„€ ∣ ((𝑧 + 1) / 2) ∈ β„€}
cfppr 46877class FPPr
df-fppr 46878 FPPr = (𝑛 ∈ β„• ↦ {π‘₯ ∈ (β„€β‰₯β€˜4) ∣ (π‘₯ βˆ‰ β„™ ∧ π‘₯ βˆ₯ ((𝑛↑(π‘₯ βˆ’ 1)) βˆ’ 1))})
cgbe 46898class GoldbachEven
cgbow 46899class GoldbachOddW
cgbo 46900class GoldbachOdd
df-gbe 46901 GoldbachEven = {𝑧 ∈ Even ∣ βˆƒπ‘ ∈ β„™ βˆƒπ‘ž ∈ β„™ (𝑝 ∈ Odd ∧ π‘ž ∈ Odd ∧ 𝑧 = (𝑝 + π‘ž))}
df-gbow 46902 GoldbachOddW = {𝑧 ∈ Odd ∣ βˆƒπ‘ ∈ β„™ βˆƒπ‘ž ∈ β„™ βˆƒπ‘Ÿ ∈ β„™ 𝑧 = ((𝑝 + π‘ž) + π‘Ÿ)}
df-gbo 46903 GoldbachOdd = {𝑧 ∈ Odd ∣ βˆƒπ‘ ∈ β„™ βˆƒπ‘ž ∈ β„™ βˆƒπ‘Ÿ ∈ β„™ ((𝑝 ∈ Odd ∧ π‘ž ∈ Odd ∧ π‘Ÿ ∈ Odd ) ∧ 𝑧 = ((𝑝 + π‘ž) + π‘Ÿ))}
ax-bgbltosilva 46963((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≀ (4 Β· (10↑18))) β†’ 𝑁 ∈ GoldbachEven )
ax-tgoldbachgt 46964𝑂 = {𝑧 ∈ β„€ ∣ Β¬ 2 βˆ₯ 𝑧}    &   πΊ = {𝑧 ∈ 𝑂 ∣ βˆƒπ‘ ∈ β„™ βˆƒπ‘ž ∈ β„™ βˆƒπ‘Ÿ ∈ β„™ ((𝑝 ∈ 𝑂 ∧ π‘ž ∈ 𝑂 ∧ π‘Ÿ ∈ 𝑂) ∧ 𝑧 = ((𝑝 + π‘ž) + π‘Ÿ))}    β‡’   βˆƒπ‘š ∈ β„• (π‘š ≀ (10↑27) ∧ βˆ€π‘› ∈ 𝑂 (π‘š < 𝑛 β†’ 𝑛 ∈ 𝐺))
ax-hgprmladder 46967βˆƒπ‘‘ ∈ (β„€β‰₯β€˜3)βˆƒπ‘“ ∈ (RePartβ€˜π‘‘)(((π‘“β€˜0) = 7 ∧ (π‘“β€˜1) = 13 ∧ (π‘“β€˜π‘‘) = (89 Β· (10↑29))) ∧ βˆ€π‘– ∈ (0..^𝑑)((π‘“β€˜π‘–) ∈ (β„™ βˆ– {2}) ∧ ((π‘“β€˜(𝑖 + 1)) βˆ’ (π‘“β€˜π‘–)) < ((4 Β· (10↑18)) βˆ’ 4) ∧ 4 < ((π‘“β€˜(𝑖 + 1)) βˆ’ (π‘“β€˜π‘–))))
cgrisom 46971class GrIsom
cisomgr 46972class IsomGr
df-grisom 46973 GrIsom = (π‘₯ ∈ V, 𝑦 ∈ V ↦ {βŸ¨π‘“, π‘”βŸ© ∣ (𝑓:(Vtxβ€˜π‘₯)–1-1-ontoβ†’(Vtxβ€˜π‘¦) ∧ 𝑔:dom (iEdgβ€˜π‘₯)–1-1-ontoβ†’dom (iEdgβ€˜π‘¦) ∧ βˆ€π‘– ∈ dom (iEdgβ€˜π‘₯)(𝑓 β€œ ((iEdgβ€˜π‘₯)β€˜π‘–)) = ((iEdgβ€˜π‘¦)β€˜(π‘”β€˜π‘–)))})
df-isomgr 46974 IsomGr = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘“(𝑓:(Vtxβ€˜π‘₯)–1-1-ontoβ†’(Vtxβ€˜π‘¦) ∧ βˆƒπ‘”(𝑔:dom (iEdgβ€˜π‘₯)–1-1-ontoβ†’dom (iEdgβ€˜π‘¦) ∧ βˆ€π‘– ∈ dom (iEdgβ€˜π‘₯)(𝑓 β€œ ((iEdgβ€˜π‘₯)β€˜π‘–)) = ((iEdgβ€˜π‘¦)β€˜(π‘”β€˜π‘–))))}
cupwlks 46996class UPWalks
df-upwlks 46997UPWalks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
ccllaw 47046class clLaw
casslaw 47047class assLaw
ccomlaw 47048class comLaw
df-cllaw 47049 clLaw = {βŸ¨π‘œ, π‘šβŸ© ∣ βˆ€π‘₯ ∈ π‘š βˆ€π‘¦ ∈ π‘š (π‘₯π‘œπ‘¦) ∈ π‘š}
df-comlaw 47050 comLaw = {βŸ¨π‘œ, π‘šβŸ© ∣ βˆ€π‘₯ ∈ π‘š βˆ€π‘¦ ∈ π‘š (π‘₯π‘œπ‘¦) = (π‘¦π‘œπ‘₯)}
df-asslaw 47051 assLaw = {βŸ¨π‘œ, π‘šβŸ© ∣ βˆ€π‘₯ ∈ π‘š βˆ€π‘¦ ∈ π‘š βˆ€π‘§ ∈ π‘š ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§))}
cintop 47059class intOp
cclintop 47060class clIntOp
cassintop 47061class assIntOp
df-intop 47062 intOp = (π‘š ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (π‘š Γ— π‘š)))
df-clintop 47063 clIntOp = (π‘š ∈ V ↦ (π‘š intOp π‘š))
df-assintop 47064 assIntOp = (π‘š ∈ V ↦ {π‘œ ∈ ( clIntOp β€˜π‘š) ∣ π‘œ assLaw π‘š})
cmgm2 47078class MgmALT
ccmgm2 47079class CMgmALT
csgrp2 47080class SGrpALT
ccsgrp2 47081class CSGrpALT
df-mgm2 47082MgmALT = {π‘š ∣ (+gβ€˜π‘š) clLaw (Baseβ€˜π‘š)}
df-cmgm2 47083CMgmALT = {π‘š ∈ MgmALT ∣ (+gβ€˜π‘š) comLaw (Baseβ€˜π‘š)}
df-sgrp2 47084SGrpALT = {𝑔 ∈ MgmALT ∣ (+gβ€˜π‘”) assLaw (Baseβ€˜π‘”)}
df-csgrp2 47085CSGrpALT = {𝑔 ∈ SGrpALT ∣ (+gβ€˜π‘”) comLaw (Baseβ€˜π‘”)}
crngcALTV 47126class RngCatALTV
df-rngcALTV 47127RngCatALTV = (𝑒 ∈ V ↦ ⦋(𝑒 ∩ Rng) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RngHom 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RngHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RngHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩})
cringcALTV 47150class RingCatALTV
df-ringcALTV 47151RingCatALTV = (𝑒 ∈ V ↦ ⦋(𝑒 ∩ Ring) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩})
cdmatalt 47265class DMatALT
cscmatalt 47266class ScMatALT
df-dmatalt 47267 DMatALT = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ⦋(𝑛 Mat π‘Ÿ) / π‘Žβ¦Œ(π‘Ž β†Ύs {π‘š ∈ (Baseβ€˜π‘Ž) ∣ βˆ€π‘– ∈ 𝑛 βˆ€π‘— ∈ 𝑛 (𝑖 β‰  𝑗 β†’ (π‘–π‘šπ‘—) = (0gβ€˜π‘Ÿ))}))
df-scmatalt 47268 ScMatALT = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ⦋(𝑛 Mat π‘Ÿ) / π‘Žβ¦Œ(π‘Ž β†Ύs {π‘š ∈ (Baseβ€˜π‘Ž) ∣ βˆƒπ‘ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘– ∈ 𝑛 βˆ€π‘— ∈ 𝑛 (π‘–π‘šπ‘—) = if(𝑖 = 𝑗, 𝑐, (0gβ€˜π‘Ÿ))}))
clinc 47273class linC
clinco 47274class LinCo
df-linc 47275 linC = (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘š)π‘₯)))))
df-lco 47276 LinCo = (π‘š ∈ V, 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ {𝑐 ∈ (Baseβ€˜π‘š) ∣ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))})
clininds 47309class linIndS
clindeps 47310class linDepS
df-lininds 47311 linIndS = {βŸ¨π‘ , π‘šβŸ© ∣ (𝑠 ∈ 𝒫 (Baseβ€˜π‘š) ∧ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))))}
df-lindeps 47313 linDepS = {βŸ¨π‘ , π‘šβŸ© ∣ Β¬ 𝑠 linIndS π‘š}
cfdiv 47411class /f
df-fdiv 47412 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) β†Ύ (𝑔 supp 0)))
cbigo 47421class Ο
df-bigo 47422Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘š ∈ ℝ βˆ€π‘¦ ∈ (dom 𝑓 ∩ (π‘₯[,)+∞))(π‘“β€˜π‘¦) ≀ (π‘š Β· (π‘”β€˜π‘¦))})
cblen 47443class #b
df-blen 47444#b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((βŒŠβ€˜(2 logb (absβ€˜π‘›))) + 1)))
cdig 47469class digit
df-dig 47470digit = (𝑏 ∈ β„• ↦ (π‘˜ ∈ β„€, π‘Ÿ ∈ (0[,)+∞) ↦ ((βŒŠβ€˜((𝑏↑-π‘˜) Β· π‘Ÿ)) mod 𝑏)))
cnaryf 47500class -aryF
df-naryf 47501-aryF = (𝑛 ∈ β„•0, π‘₯ ∈ V ↦ (π‘₯ ↑m (π‘₯ ↑m (0..^𝑛))))
citco 47531class IterComp
cack 47532class Ack
df-itco 47533IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, ( I β†Ύ dom 𝑓), 𝑓))))
df-ack 47534Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ β„•0 ↦ (((IterCompβ€˜π‘“)β€˜(𝑛 + 1))β€˜1))), (𝑖 ∈ β„•0 ↦ if(𝑖 = 0, (𝑛 ∈ β„•0 ↦ (𝑛 + 1)), 𝑖)))
cline 47601class LineM
csph 47602class Sphere
df-line 47603LineM = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}))
df-sph 47604Sphere = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}))
cthinc 47827class ThinCat
df-thinc 47828ThinCat = {𝑐 ∈ Cat ∣ [(Baseβ€˜π‘) / 𝑏][(Hom β€˜π‘) / β„Ž]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆƒ*𝑓 𝑓 ∈ (π‘₯β„Žπ‘¦)}
cprstc 47870class ProsetToCat
df-prstc 47871ProsetToCat = (π‘˜ ∈ Proset ↦ ((π‘˜ sSet ⟨(Hom β€˜ndx), ((leβ€˜π‘˜) Γ— {1o})⟩) sSet ⟨(compβ€˜ndx), βˆ…βŸ©))
cmndtc 47891class MndToCat
df-mndtc 47892MndToCat = (π‘š ∈ Mnd ↦ {⟨(Baseβ€˜ndx), {π‘š}⟩, ⟨(Hom β€˜ndx), {βŸ¨π‘š, π‘š, (Baseβ€˜π‘š)⟩}⟩, ⟨(compβ€˜ndx), {βŸ¨βŸ¨π‘š, π‘š, π‘šβŸ©, (+gβ€˜π‘š)⟩}⟩})
csetrecs 47916class setrecs(𝐹)
df-setrecs 47917setrecs(𝐹) = βˆͺ {𝑦 ∣ βˆ€π‘§(βˆ€π‘€(𝑀 βŠ† 𝑦 β†’ (𝑀 βŠ† 𝑧 β†’ (πΉβ€˜π‘€) βŠ† 𝑧)) β†’ 𝑦 βŠ† 𝑧)}
cpg 47942class Pg
df-pg 47943Pg = setrecs((π‘₯ ∈ V ↦ (𝒫 π‘₯ Γ— 𝒫 π‘₯)))
cge-real 47953class β‰₯
cgt 47954class >
df-gte 47955 β‰₯ = β—‘ ≀
df-gt 47956 > = β—‘ <
csinh 47963class sinh
ccosh 47964class cosh
ctanh 47965class tanh
df-sinh 47966sinh = (π‘₯ ∈ β„‚ ↦ ((sinβ€˜(i Β· π‘₯)) / i))
df-cosh 47967cosh = (π‘₯ ∈ β„‚ ↦ (cosβ€˜(i Β· π‘₯)))
df-tanh 47968tanh = (π‘₯ ∈ (β—‘cosh β€œ (β„‚ βˆ– {0})) ↦ ((tanβ€˜(i Β· π‘₯)) / i))
csec 47974class sec
ccsc 47975class csc
ccot 47976class cot
df-sec 47977sec = (π‘₯ ∈ {𝑦 ∈ β„‚ ∣ (cosβ€˜π‘¦) β‰  0} ↦ (1 / (cosβ€˜π‘₯)))
df-csc 47978csc = (π‘₯ ∈ {𝑦 ∈ β„‚ ∣ (sinβ€˜π‘¦) β‰  0} ↦ (1 / (sinβ€˜π‘₯)))
df-cot 47979cot = (π‘₯ ∈ {𝑦 ∈ β„‚ ∣ (sinβ€˜π‘¦) β‰  0} ↦ ((cosβ€˜π‘₯) / (sinβ€˜π‘₯)))
clog- 47998class log_
df-logbALT 47999log_ = (𝑏 ∈ (β„‚ βˆ– {0, 1}) ↦ (π‘₯ ∈ (β„‚ βˆ– {0}) ↦ ((logβ€˜π‘₯) / (logβ€˜π‘))))
wreflexive 48000wff 𝑅Reflexive𝐴
df-reflexive 48001(𝑅Reflexive𝐴 ↔ (𝑅 βŠ† (𝐴 Γ— 𝐴) ∧ βˆ€π‘₯ ∈ 𝐴 π‘₯𝑅π‘₯))
wirreflexive 48002wff 𝑅Irreflexive𝐴
df-irreflexive 48003(𝑅Irreflexive𝐴 ↔ (𝑅 βŠ† (𝐴 Γ— 𝐴) ∧ βˆ€π‘₯ ∈ 𝐴 Β¬ π‘₯𝑅π‘₯))
walsi 48021wff βˆ€!π‘₯(πœ‘ β†’ πœ“)
walsc 48022wff βˆ€!π‘₯ ∈ π΄πœ‘
df-alsi 48023(βˆ€!π‘₯(πœ‘ β†’ πœ“) ↔ (βˆ€π‘₯(πœ‘ β†’ πœ“) ∧ βˆƒπ‘₯πœ‘))
df-alsc 48024(βˆ€!π‘₯ ∈ π΄πœ‘ ↔ (βˆ€π‘₯ ∈ 𝐴 πœ‘ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴))
  Copyright terms: Public domain W3C validator