MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff ¬ 𝜑
wi 4wff (𝜑𝜓)
ax-mp 5𝜑    &   (𝜑𝜓)       𝜓
ax-1 6(𝜑 → (𝜓𝜑))
ax-2 7((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
ax-3 8((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
wb 205wff (𝜑𝜓)
df-bi 206 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
wa 395wff (𝜑𝜓)
df-an 396((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
wo 843wff (𝜑𝜓)
df-or 844((𝜑𝜓) ↔ (¬ 𝜑𝜓))
wif 1059wff if-(𝜑, 𝜓, 𝜒)
df-ifp 1060(if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
w3o 1084wff (𝜑𝜓𝜒)
w3a 1085wff (𝜑𝜓𝜒)
df-3or 1086((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
df-3an 1087((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
wnan 1483wff (𝜑𝜓)
df-nan 1484((𝜑𝜓) ↔ ¬ (𝜑𝜓))
wxo 1503wff (𝜑𝜓)
df-xor 1504((𝜑𝜓) ↔ ¬ (𝜑𝜓))
wnor 1522wff (𝜑 𝜓)
df-nor 1523((𝜑 𝜓) ↔ ¬ (𝜑𝜓))
wal 1537wff 𝑥𝜑
cv 1538class 𝑥
wceq 1539wff 𝐴 = 𝐵
wtru 1540wff
df-tru 1542(⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
wfal 1551wff
df-fal 1552(⊥ ↔ ¬ ⊤)
whad 1595wff hadd(𝜑, 𝜓, 𝜒)
df-had 1596(hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))
wcad 1609wff cadd(𝜑, 𝜓, 𝜒)
df-cad 1610(cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
wex 1783wff 𝑥𝜑
df-ex 1784(∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
wnf 1787wff 𝑥𝜑
df-nf 1788(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
ax-gen 1799𝜑       𝑥𝜑
ax-4 1813(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-5 1914(𝜑 → ∀𝑥𝜑)
ax-6 1972 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
ax-7 2012(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
wsb 2068wff [𝑦 / 𝑥]𝜑
df-sb 2069([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
wcel 2108wff 𝐴𝐵
ax-8 2110(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
ax-9 2118(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
ax-10 2139(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
ax-11 2156(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-12 2173(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
ax-13 2372𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
wmo 2538wff ∃*𝑥𝜑
df-mo 2540(∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
weu 2568wff ∃!𝑥𝜑
df-eu 2569(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
ax-ext 2709(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
cab 2715class {𝑥𝜑}
df-clab 2716(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
df-cleq 2730(𝑦 = 𝑧 ↔ ∀𝑢(𝑢𝑦𝑢𝑧))    &   (𝑡 = 𝑡 ↔ ∀𝑣(𝑣𝑡𝑣𝑡))       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
df-clel 2817(𝑦𝑧 ↔ ∃𝑢(𝑢 = 𝑦𝑢𝑧))    &   (𝑡𝑡 ↔ ∃𝑣(𝑣 = 𝑡𝑣𝑡))       (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
wnfc 2886wff 𝑥𝐴
df-nfc 2888(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
wne 2942wff 𝐴𝐵
df-ne 2943(𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
wnel 3048wff 𝐴𝐵
df-nel 3049(𝐴𝐵 ↔ ¬ 𝐴𝐵)
wral 3063wff 𝑥𝐴 𝜑
wrex 3064wff 𝑥𝐴 𝜑
wreu 3065wff ∃!𝑥𝐴 𝜑
wrmo 3066wff ∃*𝑥𝐴 𝜑
crab 3067class {𝑥𝐴𝜑}
df-ral 3068(∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
df-rex 3069(∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
df-reu 3070(∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
df-rmo 3071(∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
df-rab 3072{𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
cvv 3422class V
df-v 3424V = {𝑥𝑥 = 𝑥}
wcdeq 3693wff CondEq(𝑥 = 𝑦𝜑)
df-cdeq 3694(CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
wsbc 3711wff [𝐴 / 𝑥]𝜑
df-sbc 3712([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
csb 3828class 𝐴 / 𝑥𝐵
df-csb 3829𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
cdif 3880class (𝐴𝐵)
cun 3881class (𝐴𝐵)
cin 3882class (𝐴𝐵)
wss 3883wff 𝐴𝐵
wpss 3884wff 𝐴𝐵
df-dif 3886(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
df-un 3888(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-in 3890(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-ss 3900(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
df-pss 3902(𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
csymdif 4172class (𝐴𝐵)
df-symdif 4173(𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
c0 4253class
df-nul 4254∅ = (V ∖ V)
cif 4456class if(𝜑, 𝐴, 𝐵)
df-if 4457if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
cpw 4530class 𝒫 𝐴
df-pw 4532𝒫 𝐴 = {𝑥𝑥𝐴}
csn 4558class {𝐴}
df-sn 4559{𝐴} = {𝑥𝑥 = 𝐴}
cpr 4560class {𝐴, 𝐵}
df-pr 4561{𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
ctp 4562class {𝐴, 𝐵, 𝐶}
df-tp 4563{𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
cop 4564class 𝐴, 𝐵
df-op 4565𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
cotp 4566class 𝐴, 𝐵, 𝐶
df-ot 4567𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
cuni 4836class 𝐴
df-uni 4837 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
cint 4876class 𝐴
df-int 4877 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
ciun 4921class 𝑥𝐴 𝐵
ciin 4922class 𝑥𝐴 𝐵
df-iun 4923 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
df-iin 4924 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
wdisj 5035wff Disj 𝑥𝐴 𝐵
df-disj 5036(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
wbr 5070wff 𝐴𝑅𝐵
df-br 5071(𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
copab 5132class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
df-opab 5133{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
cmpt 5153class (𝑥𝐴𝐵)
df-mpt 5154(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
wtr 5187wff Tr 𝐴
df-tr 5188(Tr 𝐴 𝐴𝐴)
ax-rep 5205(∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
ax-sep 5218𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
ax-nul 5225𝑥𝑦 ¬ 𝑦𝑥
ax-pow 5283𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
ax-pr 5347𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
cid 5479class I
df-id 5480 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
cep 5485class E
df-eprel 5486 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
wpo 5492wff 𝑅 Po 𝐴
wor 5493wff 𝑅 Or 𝐴
df-po 5494(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
df-so 5495(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
wfr 5532wff 𝑅 Fr 𝐴
wse 5533wff 𝑅 Se 𝐴
wwe 5534wff 𝑅 We 𝐴
df-fr 5535(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
df-se 5536(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
df-we 5537(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
cxp 5578class (𝐴 × 𝐵)
ccnv 5579class 𝐴
cdm 5580class dom 𝐴
crn 5581class ran 𝐴
cres 5582class (𝐴𝐵)
cima 5583class (𝐴𝐵)
ccom 5584class (𝐴𝐵)
wrel 5585wff Rel 𝐴
df-xp 5586(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
df-rel 5587(Rel 𝐴𝐴 ⊆ (V × V))
df-cnv 5588𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
df-co 5589(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
df-dm 5590dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
df-rn 5591ran 𝐴 = dom 𝐴
df-res 5592(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
df-ima 5593(𝐴𝐵) = ran (𝐴𝐵)
cpred 6190class Pred(𝑅, 𝐴, 𝑋)
df-pred 6191Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
word 6250wff Ord 𝐴
con0 6251class On
wlim 6252wff Lim 𝐴
csuc 6253class suc 𝐴
df-ord 6254(Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
df-on 6255On = {𝑥 ∣ Ord 𝑥}
df-lim 6256(Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
df-suc 6257suc 𝐴 = (𝐴 ∪ {𝐴})
cio 6374class (℩𝑥𝜑)
df-iota 6376(℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wfun 6412wff Fun 𝐴
wfn 6413wff 𝐴 Fn 𝐵
wf 6414wff 𝐹:𝐴𝐵
wf1 6415wff 𝐹:𝐴1-1𝐵
wfo 6416wff 𝐹:𝐴onto𝐵
wf1o 6417wff 𝐹:𝐴1-1-onto𝐵
cfv 6418class (𝐹𝐴)
wiso 6419wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
df-fun 6420(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
df-fn 6421(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
df-f 6422(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
df-f1 6423(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
df-fo 6424(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
df-f1o 6425(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
df-fv 6426(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
df-isom 6427(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
crio 7211class (𝑥𝐴 𝜑)
df-riota 7212(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
co 7255class (𝐴𝐹𝐵)
coprab 7256class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
cmpo 7257class (𝑥𝐴, 𝑦𝐵𝐶)
df-ov 7258(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
df-oprab 7259{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
df-mpo 7260(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
cof 7509class f 𝑅
cofr 7510class r 𝑅
df-of 7511f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
df-ofr 7512r 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
crpss 7553class []
df-rpss 7554 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
ax-un 7566𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
com 7687class ω
df-om 7688ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
c1st 7802class 1st
c2nd 7803class 2nd
df-1st 78041st = (𝑥 ∈ V ↦ dom {𝑥})
df-2nd 78052nd = (𝑥 ∈ V ↦ ran {𝑥})
csupp 7948class supp
df-supp 7949 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
ctpos 8012class tpos 𝐹
df-tpos 8013tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
ccur 8052class curry 𝐴
cunc 8053class uncurry 𝐴
df-cur 8054curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
df-unc 8055uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
cund 8059class Undef
df-undef 8060Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
cfrecs 8067class frecs(𝑅, 𝐴, 𝐹)
df-frecs 8068frecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
cwrecs 8098class wrecs(𝑅, 𝐴, 𝐹)
df-wrecs 8099wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
wsmo 8147wff Smo 𝐴
df-smo 8148(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
crecs 8172class recs(𝐹)
df-recs 8173recs(𝐹) = wrecs( E , On, 𝐹)
crdg 8211class rec(𝐹, 𝐼)
df-rdg 8212rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
cseqom 8248class seqω(𝐹, 𝐼)
df-seqom 8249seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
c1o 8260class 1o
c2o 8261class 2o
c3o 8262class 3o
c4o 8263class 4o
coa 8264class +o
comu 8265class ·o
coe 8266class o
df-1o 82671o = suc ∅
df-2o 82682o = suc 1o
df-3o 82693o = suc 2o
df-4o 82704o = suc 3o
df-oadd 8271 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
df-omul 8272 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
df-oexp 8273o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)))
wer 8453wff 𝑅 Er 𝐴
cec 8454class [𝐴]𝑅
cqs 8455class (𝐴 / 𝑅)
df-er 8456(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
df-ec 8458[𝐴]𝑅 = (𝑅 “ {𝐴})
df-qs 8462(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
cmap 8573class m
cpm 8574class pm
df-map 8575m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
df-pm 8576pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
cixp 8643class X𝑥𝐴 𝐵
df-ixp 8644X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
cen 8688class
cdom 8689class
csdm 8690class
cfn 8691class Fin
df-en 8692 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
df-dom 8693 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
df-sdom 8694 ≺ = ( ≼ ∖ ≈ )
df-fin 8695Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
cfsupp 9058class finSupp
df-fsupp 9059 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
cfi 9099class fi
df-fi 9100fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
csup 9129class sup(𝐴, 𝐵, 𝑅)
cinf 9130class inf(𝐴, 𝐵, 𝑅)
df-sup 9131sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
df-inf 9132inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
coi 9198class OrdIso(𝑅, 𝐴)
df-oi 9199OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
char 9245class har
df-har 9246har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
cwdom 9253class *
df-wdom 9254* = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
ax-reg 9281(∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
ax-inf 9326𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
ax-inf2 9329𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
ccnf 9349class CNF
df-cnf 9350 CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
ctrpred 9395class TrPred(𝑅, 𝐴, 𝑋)
df-trpred 9396TrPred(𝑅, 𝐴, 𝑋) = ran (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
ctc 9425class TC
df-tc 9426TC = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)})
cr1 9451class 𝑅1
crnk 9452class rank
df-r1 9453𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
df-rank 9454rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
cdju 9587class (𝐴𝐵)
cinl 9588class inl
cinr 9589class inr
df-dju 9590(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
df-inl 9591inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
df-inr 9592inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
ccrd 9624class card
cale 9625class
ccf 9626class cf
wacn 9627class AC 𝐴
df-card 9628card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
df-aleph 9629ℵ = rec(har, ω)
df-cf 9630cf = (𝑥 ∈ On ↦ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑣𝑥𝑢𝑧 𝑣𝑢))})
df-acn 9631AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
wac 9802wff CHOICE
df-ac 9803(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
cfin1a 9965class FinIa
cfin2 9966class FinII
cfin4 9967class FinIV
cfin3 9968class FinIII
cfin5 9969class FinV
cfin6 9970class FinVI
cfin7 9971class FinVII
df-fin1a 9972FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin)}
df-fin2 9973FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)}
df-fin4 9974FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦𝑥𝑦𝑥)}
df-fin3 9975FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}
df-fin5 9976FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))}
df-fin6 9977FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
df-fin7 9978FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥𝑦}
ax-cc 10122(𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
ax-dc 10133((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
ax-ac 10146𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
ax-ac2 10150𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
cgch 10307class GCH
df-gch 10308GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
cwina 10369class Inaccw
cina 10370class Inacc
df-wina 10371Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧)}
df-ina 10372Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)}
cwun 10387class WUni
cwunm 10388class wUniCl
df-wun 10389WUni = {𝑢 ∣ (Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢))}
df-wunc 10390wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
ctsk 10435class Tarski
df-tsk 10436Tarski = {𝑦 ∣ (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))}
cgru 10477class Univ
df-gru 10478Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢))}
ax-groth 10510𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
ctskm 10524class tarskiMap
df-tskm 10525tarskiMap = (𝑥 ∈ V ↦ {𝑦 ∈ Tarski ∣ 𝑥𝑦})
cnpi 10531class N
cpli 10532class +N
cmi 10533class ·N
clti 10534class <N
cplpq 10535class +pQ
cmpq 10536class ·pQ
cltpq 10537class <pQ
ceq 10538class ~Q
cnq 10539class Q
c1q 10540class 1Q
cerq 10541class [Q]
cplq 10542class +Q
cmq 10543class ·Q
crq 10544class *Q
cltq 10545class <Q
cnp 10546class P
c1p 10547class 1P
cpp 10548class +P
cmp 10549class ·P
cltp 10550class <P
cer 10551class ~R
cnr 10552class R
c0r 10553class 0R
c1r 10554class 1R
cm1r 10555class -1R
cplr 10556class +R
cmr 10557class ·R
cltr 10558class <R
df-ni 10559N = (ω ∖ {∅})
df-pli 10560 +N = ( +o ↾ (N × N))
df-mi 10561 ·N = ( ·o ↾ (N × N))
df-lti 10562 <N = ( E ∩ (N × N))
df-plpq 10595 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-mpq 10596 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-ltpq 10597 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
df-enq 10598 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
df-nq 10599Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
df-erq 10600[Q] = ( ~Q ∩ ((N × N) × Q))
df-plq 10601 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
df-mq 10602 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
df-1nq 106031Q = ⟨1o, 1o
df-rq 10604*Q = ( ·Q “ {1Q})
df-ltnq 10605 <Q = ( <pQ ∩ (Q × Q))
df-np 10668P = {𝑥 ∣ ((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧))}
df-1p 106691P = {𝑥𝑥 <Q 1Q}
df-plp 10670 +P = (𝑥P, 𝑦P ↦ {𝑤 ∣ ∃𝑣𝑥𝑢𝑦 𝑤 = (𝑣 +Q 𝑢)})
df-mp 10671 ·P = (𝑥P, 𝑦P ↦ {𝑤 ∣ ∃𝑣𝑥𝑢𝑦 𝑤 = (𝑣 ·Q 𝑢)})
df-ltp 10672<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
df-enr 10742 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
df-nr 10743R = ((P × P) / ~R )
df-plr 10744 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 10745 ·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
df-ltr 10746 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
df-0r 107470R = [⟨1P, 1P⟩] ~R
df-1r 107481R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 10749-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 10800class
cr 10801class
cc0 10802class 0
c1 10803class 1
ci 10804class i
caddc 10805class +
cltrr 10806class <
cmul 10807class ·
df-c 10808ℂ = (R × R)
df-0 108090 = ⟨0R, 0R
df-1 108101 = ⟨1R, 0R
df-i 10811i = ⟨0R, 1R
df-r 10812ℝ = (R × {0R})
df-add 10813 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
df-mul 10814 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
df-lt 10815 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
ax-cnex 10858ℂ ∈ V
ax-resscn 10859ℝ ⊆ ℂ
ax-1cn 108601 ∈ ℂ
ax-icn 10861i ∈ ℂ
ax-addcl 10862((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
ax-addrcl 10863((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
ax-mulcl 10864((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
ax-mulrcl 10865((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
ax-mulcom 10866((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
ax-addass 10867((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-mulass 10868((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-distr 10869((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-i2m1 10870((i · i) + 1) = 0
ax-1ne0 108711 ≠ 0
ax-1rid 10872(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
ax-rnegex 10873(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
ax-rrecex 10874((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
ax-cnre 10875(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
ax-pre-lttri 10876((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
ax-pre-lttrn 10877((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
ax-pre-ltadd 10878((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
ax-pre-mulgt0 10879((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
ax-pre-sup 10880((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
ax-addf 10881 + :(ℂ × ℂ)⟶ℂ
ax-mulf 10882 · :(ℂ × ℂ)⟶ℂ
cpnf 10937class +∞
cmnf 10938class -∞
cxr 10939class *
clt 10940class <
cle 10941class
df-pnf 10942+∞ = 𝒫
df-mnf 10943-∞ = 𝒫 +∞
df-xr 10944* = (ℝ ∪ {+∞, -∞})
df-ltxr 10945 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
df-le 10946 ≤ = ((ℝ* × ℝ*) ∖ < )
cmin 11135class
cneg 11136class -𝐴
df-sub 11137 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
df-neg 11138-𝐴 = (0 − 𝐴)
cdiv 11562class /
df-div 11563 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
cn 11903class
df-nn 11904ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
c2 11958class 2
c3 11959class 3
c4 11960class 4
c5 11961class 5
c6 11962class 6
c7 11963class 7
c8 11964class 8
c9 11965class 9
df-2 119662 = (1 + 1)
df-3 119673 = (2 + 1)
df-4 119684 = (3 + 1)
df-5 119695 = (4 + 1)
df-6 119706 = (5 + 1)
df-7 119717 = (6 + 1)
df-8 119728 = (7 + 1)
df-9 119739 = (8 + 1)
cn0 12163class 0
df-n0 121640 = (ℕ ∪ {0})
cxnn0 12235class 0*
df-xnn0 122360* = (ℕ0 ∪ {+∞})
cz 12249class
df-z 12250ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
cdc 12366class 𝐴𝐵
df-dec 12367𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
cuz 12511class
df-uz 12512 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
cq 12617class
df-q 12618ℚ = ( / “ (ℤ × ℕ))
crp 12659class +
df-rp 12660+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
cxne 12774class -𝑒𝐴
cxad 12775class +𝑒
cxmu 12776class ·e
df-xneg 12777-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 12778 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
df-xmul 12779 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
cioo 13008class (,)
cioc 13009class (,]
cico 13010class [,)
cicc 13011class [,]
df-ioo 13012(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
df-ioc 13013(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
df-ico 13014[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
df-icc 13015[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
cfz 13168class ...
df-fz 13169... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
cfzo 13311class ..^
df-fzo 13312..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
cfl 13438class
cceil 13439class
df-fl 13440⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
df-ceil 13441⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
cmo 13517class mod
df-mod 13518 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
cseq 13649class seq𝑀( + , 𝐹)
df-seq 13650seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
cexp 13710class
df-exp 13711↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
cfa 13915class !
df-fac 13916! = ({⟨0, 1⟩} ∪ seq1( · , I ))
cbc 13944class C
df-bc 13945C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
chash 13972class
df-hash 13973♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
cword 14145class Word 𝑆
df-word 14146Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
clsw 14193class lastS
df-lsw 14194lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1)))
cconcat 14201class ++
df-concat 14202 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
cs1 14228class ⟨“𝐴”⟩
df-s1 14229⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
csubstr 14281class substr
df-substr 14282 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
cpfx 14311class prefix
df-pfx 14312 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
csplice 14390class splice
df-splice 14391 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
creverse 14399class reverse
df-reverse 14400reverse = (𝑠 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑠)) ↦ (𝑠‘(((♯‘𝑠) − 1) − 𝑥))))
creps 14409class repeatS
df-reps 14410 repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
ccsh 14429class cyclShift
df-csh 14430 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
cs2 14482class ⟨“𝐴𝐵”⟩
cs3 14483class ⟨“𝐴𝐵𝐶”⟩
cs4 14484class ⟨“𝐴𝐵𝐶𝐷”⟩
cs5 14485class ⟨“𝐴𝐵𝐶𝐷𝐸”⟩
cs6 14486class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩
cs7 14487class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩
cs8 14488class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩
df-s2 14489⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
df-s3 14490⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
df-s4 14491⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
df-s5 14492⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
df-s6 14493⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
df-s7 14494⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩)
df-s8 14495⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩)
ctcl 14624class t+
crtcl 14625class t*
df-trcl 14626t+ = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
df-rtrcl 14627t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
crelexp 14658class 𝑟
df-relexp 14659𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
crtrcl 14694class t*rec
df-rtrclrec 14695t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
cshi 14705class shift
df-shft 14706 shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
csgn 14725class sgn
df-sgn 14726sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)))
ccj 14735class
cre 14736class
cim 14737class
df-cj 14738∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
df-re 14739ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
df-im 14740ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
csqrt 14872class
cabs 14873class abs
df-sqrt 14874√ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
df-abs 14875abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
clsp 15107class lim sup
df-limsup 15108lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
cli 15121class
crli 15122class 𝑟
co1 15123class 𝑂(1)
clo1 15124class ≤𝑂(1)
df-clim 15125 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
df-rlim 15126𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
df-o1 15127𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
df-lo1 15128≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚}
csu 15325class Σ𝑘𝐴 𝐵
df-sum 15326Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
cprod 15543class 𝑘𝐴 𝐵
df-prod 15544𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
cfallfac 15642class FallFac
crisefac 15643class RiseFac
df-risefac 15644 RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘))
df-fallfac 15645 FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘))
cbp 15684class BernPoly
df-bpoly 15685 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
ce 15699class exp
ceu 15700class e
csin 15701class sin
ccos 15702class cos
ctan 15703class tan
cpi 15704class π
df-ef 15705exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
df-e 15706e = (exp‘1)
df-sin 15707sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
df-cos 15708cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
df-tan 15709tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
df-pi 15710π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
ctau 15839class τ
df-tau 15840τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
cdvds 15891class
df-dvds 15892 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
cbits 16054class bits
csad 16055class sadd
csmu 16056class smul
df-bits 16057bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
df-sad 16086 sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))})
df-smu 16111 smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))})
cgcd 16129class gcd
df-gcd 16130 gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
clcm 16221class lcm
clcmf 16222class lcm
df-lcm 16223 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
df-lcmf 16224lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
cprime 16304class
df-prm 16305ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
cnumer 16365class numer
cdenom 16366class denom
df-numer 16367numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
df-denom 16368denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
codz 16392class od
cphi 16393class ϕ
df-odz 16394od = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥𝑚) − 1)}, ℝ, < )))
df-phi 16395ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
cpc 16465class pCnt
df-pc 16466 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
cgz 16558class ℤ[i]
df-gz 16559ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
cvdwa 16594class AP
cvdwm 16595class MonoAP
cvdwp 16596class PolyAP
df-vdwap 16597AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
df-vdwmc 16598 MonoAP = {⟨𝑘, 𝑓⟩ ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅}
df-vdwpc 16599 PolyAP = {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)}
cram 16628class Ramsey
df-ram 16630 Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ))
cprmo 16660class #p
df-prmo 16661#p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
cstr 16775class Struct
df-struct 16776 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
csts 16792class sSet
df-sets 16793 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
cslot 16810class Slot 𝐴
df-slot 16811Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
cnx 16822class ndx
df-ndx 16823ndx = ( I ↾ ℕ)
cbs 16840class Base
df-base 16841Base = Slot 1
cress 16867class s
df-ress 16868s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
cplusg 16888class +g
cmulr 16889class .r
cstv 16890class *𝑟
csca 16891class Scalar
cvsca 16892class ·𝑠
cip 16893class ·𝑖
cts 16894class TopSet
cple 16895class le
coc 16896class oc
cds 16897class dist
cunif 16898class UnifSet
chom 16899class Hom
cco 16900class comp
df-plusg 16901+g = Slot 2
df-mulr 16902.r = Slot 3
df-starv 16903*𝑟 = Slot 4
df-sca 16904Scalar = Slot 5
df-vsca 16905 ·𝑠 = Slot 6
df-ip 16906·𝑖 = Slot 8
df-tset 16907TopSet = Slot 9
df-ple 16908le = Slot 10
df-ocomp 16909oc = Slot 11
df-ds 16910dist = Slot 12
df-unif 16911UnifSet = Slot 13
df-hom 16912Hom = Slot 14
df-cco 16913comp = Slot 15
crest 17048class t
ctopn 17049class TopOpen
df-rest 17050t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
df-topn 17051TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
ctg 17065class topGen
cpt 17066class t
c0g 17067class 0g
cgsu 17068class Σg
df-0g 170690g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
df-gsum 17070 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
df-topgen 17071topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
df-pt 17072t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
cprds 17073class Xs
cpws 17074class s
df-prds 17075Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
df-pws 17077s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
cordt 17127class ordTop
cxrs 17128class *𝑠
df-ordt 17129ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))))
df-xrs 17130*𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
cqtop 17131class qTop
cimas 17132class s
cqus 17133class /s
cxps 17134class ×s
df-qtop 17135 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗})
df-imas 17136s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣(({⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓𝑞)} ↦ (𝑓‘(𝑝( ·𝑠𝑟)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑝(·𝑖𝑟)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)⟩, ⟨(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ 𝑓)⟩, ⟨(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(𝑖))) = (𝑓‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑟) ∘ 𝑔))), ℝ*, < ))⟩}))
df-qus 17137 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
df-xps 17138 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
cmre 17208class Moore
cmrc 17209class mrCls
cmri 17210class mrInd
cacs 17211class ACS
df-mre 17212Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
df-mrc 17213mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
df-mri 17214mrInd = (𝑐 ran Moore ↦ {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))})
df-acs 17215ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
ccat 17290class Cat
ccid 17291class Id
chomf 17292class Homf
ccomf 17293class compf
df-cat 17294Cat = {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
df-cid 17295Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
df-homf 17296Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)))
df-comf 17297compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))))
coppc 17337class oppCat
df-oppc 17338oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑓)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑓)(1st𝑢)))⟩))
cmon 17357class Mono
cepi 17358class Epi
df-mon 17359Mono = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}))
df-epi 17360Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
csect 17373class Sect
cinv 17374class Inv
ciso 17375class Iso
df-sect 17376Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
df-inv 17377Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
df-iso 17378Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
ccic 17424class 𝑐
df-cic 17425𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
cssc 17436class cat
cresc 17437class cat
csubc 17438class Subcat
df-ssc 17439cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
df-resc 17440cat = (𝑐 ∈ V, ∈ V ↦ ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩))
df-subc 17441Subcat = (𝑐 ∈ Cat ↦ { ∣ (cat (Homf𝑐) ∧ [dom dom / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑧)))})
cfunc 17485class Func
cidfu 17486class idfunc
ccofu 17487class func
cresf 17488class f
df-func 17489 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
df-idfu 17490idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
df-cofu 17491func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
df-resf 17492f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
cful 17534class Full
cfth 17535class Faith
df-full 17536 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
df-fth 17537 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
cnat 17573class Nat
cfuc 17574class FuncCat
df-nat 17575 Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}))
df-fuc 17576 FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩})
cinito 17612class InitO
ctermo 17613class TermO
czeroo 17614class ZeroO
df-inito 17615InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
df-termo 17616TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
df-zeroo 17617ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
cdoma 17651class doma
ccoda 17652class coda
carw 17653class Arrow
choma 17654class Homa
df-doma 17655doma = (1st ∘ 1st )
df-coda 17656coda = (2nd ∘ 1st )
df-homa 17657Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
df-arw 17658Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
cida 17684class Ida
ccoa 17685class compa
df-ida 17686Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
df-coa 17687compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
csetc 17706class SetCat
df-setc 17707SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩})
ccatc 17729class CatCat
df-catc 17730CatCat = (𝑢 ∈ V ↦ (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
cestrc 17754class ExtStrCat
df-estrc 17755ExtStrCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
cxpc 17801class ×c
c1stf 17802class 1stF
c2ndf 17803class 2ndF
cprf 17804class ⟨,⟩F
df-xpc 17805 ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
df-1stf 17806 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))⟩)
df-2ndf 17807 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))⟩)
df-prf 17808 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
cevlf 17843class evalF
ccurf 17844class curryF
cuncf 17845class uncurryF
cdiag 17846class Δfunc
df-evlf 17847 evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ⟨(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (Base‘𝑐) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)), 𝑦 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝑑)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
df-curf 17848 curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩)
df-uncf 17849 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
df-diag 17850Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)))
chof 17882class HomF
cyon 17883class Yon
df-hof 17884HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
df-yon 17885Yon = (𝑐 ∈ Cat ↦ (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))))
codu 17920class ODual
df-odu 17921ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
cproset 17926class Proset
cdrs 17927class Dirset
df-proset 17928 Proset = {𝑓[(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
df-drs 17929Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
cpo 17940class Poset
cplt 17941class lt
club 17942class lub
cglb 17943class glb
cjn 17944class join
cmee 17945class meet
df-poset 17946Poset = {𝑓 ∣ ∃𝑏𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))}
df-plt 17963lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
df-lub 17979lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))}))
df-glb 17980glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))}))
df-join 17981join = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧})
df-meet 17982meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
ctos 18049class Toset
df-toset 18050Toset = {𝑓 ∈ Poset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥)}
cp0 18056class 0.
cp1 18057class 1.
df-p0 180580. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))
df-p1 180591. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝)))
clat 18064class Lat
df-lat 18065Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))}
ccla 18131class CLat
df-clat 18132CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))}
cdlat 18153class DLat
df-dlat 18154DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))}
cipo 18160class toInc
df-ipo 18161toInc = (𝑓 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} / 𝑜({⟨(Base‘ndx), 𝑓⟩, ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩} ∪ {⟨(le‘ndx), 𝑜⟩, ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩}))
cps 18197class PosetRel
ctsr 18198class TosetRel
df-ps 18199PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
df-tsr 18200 TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
cdir 18227class DirRel
ctail 18228class tail
df-dir 18229DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)))}
df-tail 18230tail = (𝑟 ∈ DirRel ↦ (𝑥 𝑟 ↦ (𝑟 “ {𝑥})))
cplusf 18238class +𝑓
cmgm 18239class Mgm
df-plusf 18240+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
df-mgm 18241Mgm = {𝑔[(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
csgrp 18289class Smgrp
df-sgrp 18290Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
cmnd 18300class Mnd
df-mnd 18301Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
cmhm 18343class MndHom
csubmnd 18344class SubMnd
df-mhm 18345 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
df-submnd 18346SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
cfrmd 18401class freeMnd
cvrmd 18402class varFMnd
df-frmd 18403freeMnd = (𝑖 ∈ V ↦ {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩})
df-vrmd 18404varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
cefmnd 18422class EndoFMnd
df-efmnd 18423EndoFMnd = (𝑥 ∈ V ↦ (𝑥m 𝑥) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))⟩})
cgrp 18492class Grp
cminusg 18493class invg
csg 18494class -g
df-grp 18495Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
df-minusg 18496invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑤 ∈ (Base‘𝑔)(𝑤(+g𝑔)𝑥) = (0g𝑔))))
df-sbg 18497-g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
cmg 18615class .g
df-mulg 18616.g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g𝑔), seq1((+g𝑔), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑔)‘(𝑠‘-𝑛))))))
csubg 18664class SubGrp
cnsg 18665class NrmSGrp
cqg 18666class ~QG
df-subg 18667SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
df-nsg 18668NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g𝑤) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
df-eqg 18669 ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
cghm 18746class GrpHom
df-ghm 18747 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥𝑤𝑦𝑤 (𝑔‘(𝑥(+g𝑠)𝑦)) = ((𝑔𝑥)(+g𝑡)(𝑔𝑦)))})
cgim 18788class GrpIso
cgic 18789class 𝑔
df-gim 18790 GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)})
df-gic 18791𝑔 = ( GrpIso “ (V ∖ 1o))
cga 18810class GrpAct
df-ga 18811 GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠m (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
ccntz 18836class Cntz
ccntr 18837class Cntr
df-cntz 18838Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}))
df-cntr 18839Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
coppg 18864class oppg
df-oppg 18865oppg = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩))
csymg 18889class SymGrp
df-symg 18890SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
cpmtr 18964class pmTrsp
df-pmtr 18965pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
cpsgn 19012class pmSgn
cevpm 19013class pmEven
df-psgn 19014pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
df-evpm 19015pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
cod 19047class od
cgex 19048class gEx
cpgp 19049class pGrp
cslw 19050class pSyl
df-od 19051od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
df-gex 19052gEx = (𝑔 ∈ V ↦ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
df-pgp 19053 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
df-slw 19054 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
clsm 19154class LSSum
cpj1 19155class proj1
df-lsm 19156LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))))
df-pj1 19157proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑤)𝑦)))))
cefg 19227class ~FG
cfrgp 19228class freeGrp
cvrgp 19229class varFGrp
df-efg 19230 ~FG = (𝑖 ∈ V ↦ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
df-frgp 19231freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG𝑖)))
df-vrgp 19232varFGrp = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)))
ccmn 19301class CMnd
cabl 19302class Abel
df-cmn 19303CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g𝑔)𝑏) = (𝑏(+g𝑔)𝑎)}
df-abl 19304Abel = (Grp ∩ CMnd)
ccyg 19392class CycGrp
df-cyg 19393CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔)}
cdprd 19511class DProd
cdpj 19512class dProj
df-dprd 19513 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
df-dpj 19514dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
csimpg 19608class SimpGrp
df-simpg 19609SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
cmgp 19635class mulGrp
df-mgp 19636mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
cur 19652class 1r
df-ur 196531r = (0g ∘ mulGrp)
csrg 19656class SRing
df-srg 19657SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡][(0g𝑓) / 𝑛]𝑥𝑟 (∀𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
crg 19698class Ring
ccrg 19699class CRing
df-ring 19700Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑟𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
df-cring 19701CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd}
coppr 19776class oppr
df-oppr 19777oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))
cdsr 19795class r
cui 19796class Unit
cir 19797class Irred
df-dvdsr 19798r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
df-unit 19799Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
df-irred 19800Irred = (𝑤 ∈ V ↦ ((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑤)𝑦) ≠ 𝑧})
cinvr 19828class invr
df-invr 19829invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
cdvr 19839class /r
df-dvr 19840/r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
crpm 19869class RPrime
df-rprm 19870RPrime = (𝑤 ∈ V ↦ (Base‘𝑤) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g𝑤)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑤) / 𝑑](𝑝𝑑(𝑥(.r𝑤)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))})
crh 19871class RingHom
crs 19872class RingIso
cric 19873class 𝑟
df-rnghom 19874 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
df-rngiso 19875 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
df-ric 19877𝑟 = ( RingIso “ (V ∖ 1o))
cdr 19906class DivRing
cfield 19907class Field
df-drng 19908DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
df-field 19909Field = (DivRing ∩ CRing)
csubrg 19935class SubRing
crgspn 19936class RingSpan
df-subrg 19937SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
df-rgspn 19938RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠𝑡}))
csdrg 19976class SubDRing
df-sdrg 19977SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing})
cabv 19991class AbsVal
df-abv 19992AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
cstf 20018class *rf
csr 20019class *-Ring
df-staf 20020*rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
df-srng 20021*-Ring = {𝑓[(*rf𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr𝑓)) ∧ 𝑖 = 𝑖)}
clmod 20038class LMod
cscaf 20039class ·sf
df-lmod 20040LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))}
df-scaf 20041 ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
clss 20108class LSubSp
df-lss 20109LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠})
clspn 20148class LSpan
df-lsp 20149LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
clmhm 20196class LMHom
clmim 20197class LMIso
clmic 20198class 𝑚
df-lmhm 20199 LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))})
df-lmim 20200 LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)})
df-lmic 20201𝑚 = ( LMIso “ (V ∖ 1o))
clbs 20251class LBasis
df-lbs 20252LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑠]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))})
clvec 20279class LVec
df-lvec 20280LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
csra 20345class subringAlg
crglmod 20346class ringLMod
clidl 20347class LIdeal
crsp 20348class RSpan
df-sra 20349subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
df-rgmod 20350ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤)))
df-lidl 20351LIdeal = (LSubSp ∘ ringLMod)
df-rsp 20352RSpan = (LSpan ∘ ringLMod)
c2idl 20415class 2Ideal
df-2idl 204162Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
clpidl 20425class LPIdeal
clpir 20426class LPIR
df-lpidl 20427LPIdeal = (𝑤 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})})
df-lpir 20428LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)}
cnzr 20441class NzRing
df-nzr 20442NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
crlreg 20463class RLReg
cdomn 20464class Domn
cidom 20465class IDomn
cpid 20466class PID
df-rlreg 20467RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
df-domn 20468Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
df-idom 20469IDomn = (CRing ∩ Domn)
df-pid 20470PID = (IDomn ∩ LPIR)
cpsmet 20494class PsMet
cxmet 20495class ∞Met
cmet 20496class Met
cbl 20497class ball
cfbas 20498class fBas
cfg 20499class filGen
cmopn 20500class MetOpen
cmetu 20501class metUnif
df-psmet 20502PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-xmet 20503∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-met 20504Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
df-bl 20505ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
df-mopn 20506MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
df-fbas 20507fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
df-fg 20508filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
df-metu 20509metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
ccnfld 20510class fld
df-cnfld 20511fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
zring 20582class ring
df-zring 20583ring = (ℂflds ℤ)
czrh 20613class ℤRHom
czlm 20614class ℤMod
cchr 20615class chr
czn 20616class ℤ/n
df-zrh 20617ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
df-zlm 20618ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
df-chr 20619chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r𝑔)))
df-zn 20620ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
crefld 20721class fld
df-refld 20722fld = (ℂflds ℝ)
cphl 20741class PreHil
cipf 20742class ·if
df-phl 20743PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
df-ipf 20744·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
cocv 20777class ocv
ccss 20778class ClSubSp
cthl 20779class toHL
df-ocv 20780ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
df-css 20781ClSubSp = ( ∈ V ↦ {𝑠𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))})
df-thl 20782toHL = ( ∈ V ↦ ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩))
cpj 20817class proj
chil 20818class Hil
cobs 20819class OBasis
df-pj 20820proj = ( ∈ V ↦ ((𝑥 ∈ (LSubSp‘) ↦ (𝑥(proj1)((ocv‘)‘𝑥))) ∩ (V × ((Base‘) ↑m (Base‘)))))
df-hil 20821Hil = { ∈ PreHil ∣ dom (proj‘) = (ClSubSp‘)}
df-obs 20822OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
cdsmm 20848class m
df-dsmm 20849m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
cfrlm 20863class freeLMod
df-frlm 20864 freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟m (𝑖 × {(ringLMod‘𝑟)})))
cuvc 20899class unitVec
df-uvc 20900 unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))))
clindf 20921class LIndF
clinds 20922class LIndS
df-lindf 20923 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
df-linds 20924LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤})
casa 20967class AssAlg
casp 20968class AlgSpan
cascl 20969class algSc
df-assa 20970AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))))}
df-asp 20971AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
df-ascl 20972algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
cmps 21017class mPwSer
cmvr 21018class mVar
cmpl 21019class mPoly
cltb 21020class <bag
copws 21021class ordPwSer
df-psr 21022 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
df-mvr 21023 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
df-mpl 21024 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ 𝑓 finSupp (0g𝑟)}))
df-ltbag 21025 <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
df-opsr 21026 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
ces 21190class evalSub
cevl 21191class eval
df-evls 21192 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))))
df-evl 21193 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
cslv 21228class selectVars
cmhp 21229class mHomP
cpsd 21230class mPSDer
cai 21231class AlgInd
df-selv 21232 selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))))
df-mhp 21233 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
df-psd 21234 mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
df-algind 21235 AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun (𝑓 ∈ (Base‘(𝑣 mPoly (𝑤s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))})
cps1 21256class PwSer1
cv1 21257class var1
cpl1 21258class Poly1
cco1 21259class coe1
ctp1 21260class toPoly1
df-psr1 21261PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅))
df-vr1 21262var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
df-ply1 21263Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
df-coe1 21264coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))))
df-toply1 21265toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0m 1o) ↦ (𝑓‘(𝑛‘∅))))
ces1 21389class evalSub1
ce1 21390class eval1
df-evls1 21391 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
df-evl1 21392eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
cmmul 21442class maMul
df-mamu 21443 maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st ‘(1st𝑜)) / 𝑚(2nd ‘(1st𝑜)) / 𝑛(2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))))
cmat 21464class Mat
df-mat 21465 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
cdmat 21545class DMat
cscmat 21546class ScMat
df-dmat 21547 DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
df-scmat 21548 ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))})
cmvmul 21597class maVecMul
df-mvmul 21598 maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))))
cmarrep 21613class matRRep
cmatrepV 21614class matRepV
df-marrep 21615 matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))))))
df-marepv 21616 matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
csubma 21633class subMat
df-subma 21634 subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
cmdat 21641class maDet
df-mdet 21642 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
cmadu 21689class maAdju
cminmar1 21690class minMatR1
df-madu 21691 maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
df-minmar1 21692 minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗))))))
ccpmat 21760class ConstPolyMat
cmat2pmat 21761class matToPolyMat
ccpmat2mat 21762class cPolyMatToMat
df-cpmat 21763 ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)})
df-mat2pmat 21764 matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
df-cpmat2mat 21765 cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
cdecpmat 21819class decompPMat
df-decpmat 21820 decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
cpm2mp 21849class pMatToMatPoly
df-pm2mp 21850 pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))))
cchpmat 21883class CharPlyMat
df-chpmat 21884 CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1𝑟))‘(((var1𝑟)( ·𝑠 ‘(𝑛 Mat (Poly1𝑟)))(1r‘(𝑛 Mat (Poly1𝑟))))(-g‘(𝑛 Mat (Poly1𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))))
ctop 21950class Top
df-top 21951Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
ctopon 21967class TopOn
df-topon 21968TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
ctps 21989class TopSp
df-topsp 21990TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
ctb 22003class TopBases
df-bases 22004TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
ccld 22075class Clsd
cnt 22076class int
ccl 22077class cls
df-cld 22078Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
df-ntr 22079int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
df-cls 22080cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
cnei 22156class nei
df-nei 22157nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
clp 22193class limPt
cperf 22194class Perf
df-lp 22195limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
df-perf 22196Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘ 𝑗) = 𝑗}
ccn 22283class Cn
ccnp 22284class CnP
clm 22285class 𝑡
df-cn 22286 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
df-cnp 22287 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
df-lm 22288𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
ct0 22365class Kol2
ct1 22366class Fre
cha 22367class Haus
creg 22368class Reg
cnrm 22369class Nrm
ccnrm 22370class CNrm
cpnrm 22371class PNrm
df-t0 22372Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)}
df-t1 22373Fre = {𝑥 ∈ Top ∣ ∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥)}
df-haus 22374Haus = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))}
df-reg 22375Reg = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
df-nrm 22376Nrm = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
df-cnrm 22377CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm}
df-pnrm 22378PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓)}
ccmp 22445class Comp
df-cmp 22446Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
cconn 22470class Conn
df-conn 22471Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, 𝑗}}
c1stc 22496class 1stω
c2ndc 22497class 2ndω
df-1stc 224981stω = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))}
df-2ndc 224992ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}
clly 22523class Locally 𝐴
cnlly 22524class 𝑛-Locally 𝐴
df-lly 22525Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)}
df-nlly 22526𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
cref 22561class Ref
cptfin 22562class PtFin
clocfin 22563class LocFin
df-ref 22564Ref = {⟨𝑥, 𝑦⟩ ∣ ( 𝑦 = 𝑥 ∧ ∀𝑧𝑥𝑤𝑦 𝑧𝑤)}
df-ptfin 22565PtFin = {𝑥 ∣ ∀𝑦 𝑥{𝑧𝑥𝑦𝑧} ∈ Fin}
df-locfin 22566LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ ( 𝑥 = 𝑦 ∧ ∀𝑝 𝑥𝑛𝑥 (𝑝𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
ckgen 22592class 𝑘Gen
df-kgen 22593𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
ctx 22619class ×t
cxko 22620class ko
df-tx 22621 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
df-xko 22622ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))))
ckq 22752class KQ
df-kq 22753KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
chmeo 22812class Homeo
chmph 22813class
df-hmeo 22814Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
df-hmph 22815 ≃ = (Homeo “ (V ∖ 1o))
cfil 22904class Fil
df-fil 22905Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
cufil 22958class UFil
cufl 22959class UFL
df-ufil 22960UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥𝑓 ∨ (𝑔𝑥) ∈ 𝑓)})
df-ufl 22961UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔}
cfm 22992class FilMap
cflim 22993class fLim
cflf 22994class fLimf
cfcls 22995class fClus
cfcf 22996class fClusf
df-fm 22997 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
df-flim 22998 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
df-flf 22999 fLimf = (𝑥 ∈ Top, 𝑦 ran Fil ↦ (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))))
df-fcls 23000 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
df-fcf 23001 fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))))
ccnext 23118class CnExt
df-cnext 23119CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
ctmd 23129class TopMnd
ctgp 23130class TopGrp
df-tmd 23131TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
df-tgp 23132TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
ctsu 23185class tsums
df-tsms 23186 tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))))
ctrg 23215class TopRing
ctdrg 23216class TopDRing
ctlm 23217class TopMod
ctvc 23218class TopVec
df-trg 23219TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
df-tdrg 23220TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
df-tlm 23221TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
df-tvc 23222TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing}
cust 23259class UnifOn
df-ust 23260UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
cutop 23290class unifTop
df-utop 23291unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
cuss 23313class UnifSt
cusp 23314class UnifSp
ctus 23315class toUnifSp
df-uss 23316UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓))))
df-usp 23317UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))}
df-tus 23318toUnifSp = (𝑢 ran UnifOn ↦ ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩))
cucn 23335class Cnu
df-ucn 23336 Cnu = (𝑢 ran UnifOn, 𝑣 ran UnifOn ↦ {𝑓 ∈ (dom 𝑣m dom 𝑢) ∣ ∀𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
ccfilu 23346class CauFilu
df-cfilu 23347CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
ccusp 23357class CUnifSp
df-cusp 23358CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)}
cxms 23378class ∞MetSp
cms 23379class MetSp
ctms 23380class toMetSp
df-xms 23381∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
df-ms 23382MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
df-tms 23383toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
cnm 23638class norm
cngp 23639class NrmGrp
ctng 23640class toNrmGrp
cnrg 23641class NrmRing
cnlm 23642class NrmMod
cnvc 23643class NrmVec
df-nm 23644norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))))
df-ngp 23645NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔)}
df-tng 23646 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
df-nrg 23647NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)}
df-nlm 23648NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))}
df-nvc 23649NrmVec = (NrmMod ∩ LVec)
cnmo 23775class normOp
cnghm 23776class NGHom
cnmhm 23777class NMHom
df-nmo 23778 normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
df-nghm 23779 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
df-nmhm 23780 NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)))
cii 23944class II
ccncf 23945class cn
df-ii 23946II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
df-cncf 23947cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
chtpy 24036class Htpy
cphtpy 24037class PHtpy
cphtpc 24038class ph
df-htpy 24039 Htpy = (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ { ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 𝑥((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
df-phtpy 24040PHtpy = (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ { ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
df-phtpc 24061ph = (𝑥 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)})
cpco 24069class *𝑝
comi 24070class Ω1
comn 24071class Ω𝑛
cpi1 24072class π1
cpin 24073class πn
df-pco 24074*𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))))
df-om1 24075 Ω1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗ko II)⟩})
df-omn 24076 Ω𝑛 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦ ⟨((TopOpen‘(1st𝑥)) Ω1 (2nd𝑥)), ((0[,]1) × {(2nd𝑥)})⟩) ∘ 1st ), ⟨{⟨(Base‘ndx), 𝑗⟩, ⟨(TopSet‘ndx), 𝑗⟩}, 𝑦⟩))
df-pi1 24077 π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)))
df-pin 24078 πn = (𝑗 ∈ Top, 𝑝 𝑗 ↦ (𝑛 ∈ ℕ0 ↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, ( ≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1)))))))))
cclm 24131class ℂMod
df-clm 24132ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
ccvs 24192class ℂVec
df-cvs 24193ℂVec = (ℂMod ∩ LVec)
ccph 24235class ℂPreHil
ctcph 24236class toℂPreHil
df-cph 24237ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))}
df-tcph 24238toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
ccfil 24321class CauFil
ccau 24322class Cau
ccmet 24323class CMet
df-cfil 24324CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
df-cau 24325Cau = (𝑑 ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝑑)𝑥)})
df-cmet 24326CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
ccms 24401class CMetSp
cbn 24402class Ban
chl 24403class ℂHil
df-cms 24404CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)}
df-bn 24405Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp}
df-hl 24406ℂHil = (Ban ∩ ℂPreHil)
crrx 24452class ℝ^
cehl 24453class 𝔼hil
df-rrx 24454ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
df-ehl 24455𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
covol 24531class vol*
cvol 24532class vol
df-ovol 24533vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
df-vol 24534vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
cmbf 24683class MblFn
citg1 24684class 1
citg2 24685class 2
cibl 24686class 𝐿1
citg 24687class 𝐴𝐵 d𝑥
df-mbf 24688MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)}
df-itg1 246891 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
df-itg2 246902 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ))
df-ibl 24691𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
df-itg 24692𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
c0p 24738class 0𝑝
df-0p 247390𝑝 = (ℂ × {0})
cdit 24915class ⨜[𝐴𝐵]𝐶 d𝑥
df-ditg 24916⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
climc 24931class lim
cdv 24932class D
cdvn 24933class D𝑛
ccpn 24934class 𝓑C𝑛
df-limc 24935 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)})
df-dv 24936 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
df-dvn 24937 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
df-cpn 24938𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ ↦ (𝑥 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑥) ∈ (dom 𝑓cn→ℂ)}))
cmdg 25120class mDeg
cdg1 25121class deg1
df-mdeg 25122 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
df-deg1 25123 deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
cmn1 25195class Monic1p
cuc1p 25196class Unic1p
cq1p 25197class quot1p
cr1p 25198class rem1p
cig1p 25199class idlGen1p
df-mon1 25200Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟))})
df-uc1p 25201Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
df-q1p 25202quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
df-r1p 25203rem1p = (𝑟 ∈ V ↦ (Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
df-ig1p 25204idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))(( deg1𝑟)‘𝑔) = inf((( deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )))))
cply 25250class Poly
cidp 25251class Xp
ccoe 25252class coeff
cdgr 25253class deg
df-ply 25254Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
df-idp 25255Xp = ( I ↾ ℂ)
df-coe 25256coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
df-dgr 25257deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
cquot 25355class quot
df-quot 25356 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
caa 25379class 𝔸
df-aa 25380𝔸 = 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓 “ {0})
ctayl 25417class Tayl
cana 25418class Ana
df-tayl 25419 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
df-ana 25420Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
culm 25440class 𝑢
df-ulm 25441𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
clog 25615class log
ccxp 25616class 𝑐
df-log 25617log = (exp ↾ (ℑ “ (-π(,]π)))
df-cxp 25618𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))))
clogb 25819class logb
df-logb 25820 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
casin 25917class arcsin
cacos 25918class arccos
catan 25919class arctan
df-asin 25920arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))))
df-acos 25921arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
df-atan 25922arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
carea 26010class area
df-area 26011area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
cem 26046class γ
df-em 26047γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
czeta 26067class ζ
df-zeta 26068ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
clgam 26070class log Γ
cgam 26071class Γ
cigam 26072class 1/Γ
df-lgam 26073log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
df-gam 26074Γ = (exp ∘ log Γ)
df-igam 260751/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))))
ccht 26145class θ
cvma 26146class Λ
cchp 26147class ψ
cppi 26148class π
cmu 26149class μ
csgm 26150class σ
df-cht 26151θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝))
df-vma 26152Λ = (𝑥 ∈ ℕ ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0))
df-chp 26153ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
df-ppi 26154π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))
df-mu 26155μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))))
df-sgm 26156 σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝑛} (𝑘𝑐𝑥))
cdchr 26285class DChr
df-dchr 26286DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
clgs 26347class /L
df-lgs 26348 /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
cstrkg 26693class TarskiG
cstrkgc 26694class TarskiGC
cstrkgb 26695class TarskiGB
cstrkgcb 26696class TarskiGCB
cstrkgld 26697class DimTarskiG
cstrkge 26698class TarskiGE
citv 26699class Itv
clng 26700class LineG
df-itv 26701Itv = Slot 16
df-lng 26702LineG = Slot 17
df-trkgc 26713TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
df-trkgb 26714TarskiGB = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))}
df-trkgcb 26715TarskiGCB = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 (((𝑥𝑦𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))}
df-trkge 26716TarskiGE = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))}
df-trkgld 26717DimTarskiG≥ = {⟨𝑔, 𝑛⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑓(𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))}
df-trkg 26718TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
ccgrg 26775class cgrG
df-cgrg 26776cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
cismt 26797class Ismt
df-ismt 26798Ismt = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏))})
cleg 26847class ≤G
df-leg 26848≤G = (𝑔 ∈ V ↦ {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))})
chlg 26865class hlG
df-hlg 26866hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}))
cmir 26917class pInvG
df-mir 26918pInvG = (𝑔 ∈ V ↦ (𝑚 ∈ (Base‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑚(dist‘𝑔)𝑏) = (𝑚(dist‘𝑔)𝑎) ∧ 𝑚 ∈ (𝑏(Itv‘𝑔)𝑎))))))
crag 26958class ∟G
df-rag 26959∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))})
cperpg 26960class ⟂G
df-perpg 26961⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))})
chpg 27022class hpG
df-hpg 27023hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}))
cmid 27037class midG
clmi 27038class lInvG
df-mid 27039midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
df-lmi 27040lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
ccgra 27072class cgrA
df-cgra 27073cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
cinag 27100class inA
cleag 27101class
df-inag 27102inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
df-leag 27111 = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
ceqlg 27130class eqltrG
df-eqlg 27131eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
cttg 27138class toTG
df-ttg 27139toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
cee 27159class 𝔼
cbtwn 27160class Btwn
ccgr 27161class Cgr
df-ee 27162𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
df-btwn 27163 Btwn = {⟨⟨𝑥, 𝑧⟩, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑧𝑖))))}
df-cgr 27164Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
ceeng 27248class EEG
df-eeng 27249EEG = (𝑛 ∈ ℕ ↦ ({⟨(Base‘ndx), (𝔼‘𝑛)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
cedgf 27259class .ef
df-edgf 27260.ef = Slot 18
cvtx 27269class Vtx
ciedg 27270class iEdg
df-vtx 27271Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
df-iedg 27272iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
cedg 27320class Edg
df-edg 27321Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
cuhgr 27329class UHGraph
cushgr 27330class USHGraph
df-uhgr 27331UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
df-ushgr 27332USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
cupgr 27353class UPGraph
cumgr 27354class UMGraph
df-upgr 27355UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
df-umgr 27356UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
cuspgr 27421class USPGraph
cusgr 27422class USGraph
df-uspgr 27423USPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
df-usgr 27424USGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
csubgr 27537class SubGraph
df-subgr 27538 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
cfusgr 27586class FinUSGraph
df-fusgr 27587FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin}
cnbgr 27602class NeighbVtx
df-nbgr 27603 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
cuvtx 27655class UnivVtx
df-uvtx 27656UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
ccplgr 27679class ComplGraph
ccusgr 27680class ComplUSGraph
df-cplgr 27681ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)}
df-cusgr 27682ComplUSGraph = (USGraph ∩ ComplGraph)
cvtxdg 27735class VtxDeg
df-vtxdg 27736VtxDeg = (𝑔 ∈ V ↦ (Vtx‘𝑔) / 𝑣(iEdg‘𝑔) / 𝑒(𝑢𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒𝑢 ∈ (𝑒𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) = {𝑢}}))))
crgr 27825class RegGraph
crusgr 27826class RegUSGraph
df-rgr 27827 RegGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}
df-rusgr 27828 RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)}
cewlks 27865class EdgWalks
cwlks 27866class Walks
cwlkson 27867class WalksOn
df-ewlks 27868 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
df-wlks 27869Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))})
df-wlkson 27870WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}))
ctrls 27960class Trails
ctrlson 27961class TrailsOn
df-trls 27962Trails = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun 𝑓)})
df-trlson 27963TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝𝑓(Trails‘𝑔)𝑝)}))
cpths 27981class Paths
cspths 27982class SPaths
cpthson 27983class PathsOn
cspthson 27984class SPathsOn
df-pths 27985Paths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)})
df-spths 27986SPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun 𝑝)})
df-pthson 27987PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(Paths‘𝑔)𝑝)}))
df-spthson 27988SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}))
cclwlks 28039class ClWalks
df-clwlks 28040ClWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
ccrcts 28053class Circuits
ccycls 28054class Cycles
df-crcts 28055Circuits = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
df-cycls 28056Cycles = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
cwwlks 28091class WWalks
cwwlksn 28092class WWalksN
cwwlksnon 28093class WWalksNOn
cwwspthsn 28094class WSPathsN
cwwspthsnon 28095class WSPathsNOn
df-wwlks 28096WWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))})
df-wwlksn 28097 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
df-wwlksnon 28098 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
df-wspthsn 28099 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
df-wspthsnon 28100 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
cclwwlk 28246class ClWWalks
df-clwwlk 28247ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
cclwwlkn 28289class ClWWalksN
df-clwwlkn 28290 ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛})
cclwwlknon 28352class ClWWalksNOn
df-clwwlknon 28353ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}))
cconngr 28451class ConnGraph
df-conngr 28452ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
ceupth 28462class EulerPaths
df-eupth 28463EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))})
cfrgr 28523class FriendGraph
df-frgr 28524 FriendGraph = {𝑔 ∈ USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒}
cplig 28737class Plig
df-plig 28738Plig = {𝑥 ∣ (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))}
cgr 28752class GrpOp
cgi 28753class GId
cgn 28754class inv
cgs 28755class /𝑔
df-grpo 28756GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢))}
df-gid 28757GId = (𝑔 ∈ V ↦ (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)))
df-ginv 28758inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔))))
df-gdiv 28759 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
cablo 28807class AbelOp
df-ablo 28808AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
cvc 28821class CVecOLD
df-vc 28822CVecOLD = {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))}
cnv 28847class NrmCVec
cpv 28848class +𝑣
cba 28849class BaseSet
cns 28850class ·𝑠OLD
cn0v 28851class 0vec
cnsb 28852class 𝑣
cnmcv 28853class normCV
cims 28854class IndMet
df-nv 28855NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
df-va 28858 +𝑣 = (1st ∘ 1st )
df-ba 28859BaseSet = (𝑥 ∈ V ↦ ran ( +𝑣𝑥))
df-sm 28860 ·𝑠OLD = (2nd ∘ 1st )
df-0v 288610vec = (GId ∘ +𝑣 )
df-vs 28862𝑣 = ( /𝑔 ∘ +𝑣 )
df-nmcv 28863normCV = 2nd
df-ims 28864IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
cdip 28963class ·𝑖OLD
df-dip 28964·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
css 28984class SubSp
df-ssp 28985SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢))})
clno 29003class LnOp
cnmoo 29004class normOpOLD
cblo 29005class BLnOp
c0o 29006class 0op
df-lno 29007 LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))})
df-nmoo 29008 normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
df-blo 29009 BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞})
df-0o 29010 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec𝑤)}))
caj 29011class adj
chmo 29012class HmOp
df-aj 29013adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
df-hmo 29014HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡})
ccphlo 29075class CPreHilOLD
df-ph 29076CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
ccbn 29125class CBan
df-cbn 29126CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
chlo 29148class CHilOLD
df-hlo 29149CHilOLD = (CBan ∩ CPreHilOLD)
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
chba 29182class
cva 29183class +
csm 29184class ·
csp 29185class ·ih
cno 29186class norm
c0v 29187class 0
cmv 29188class
ccauold 29189class Cauchy
chli 29190class 𝑣
csh 29191class S
cch 29192class C
cort 29193class
cph 29194class +
cspn 29195class span
chj 29196class
chsup 29197class
c0h 29198class 0
ccm 29199class 𝐶
cpjh 29200class proj
chos 29201class +op
chot 29202class ·op
chod 29203class op
chfs 29204class +fn
chft 29205class ·fn
ch0o 29206class 0hop
chio 29207class Iop
cnop 29208class normop
ccop 29209class ContOp
clo 29210class LinOp
cbo 29211class BndLinOp
cuo 29212class UniOp
cho 29213class HrmOp
cnmf 29214class normfn
cnl 29215class null
ccnfn 29216class ContFn
clf 29217class LinFn
cado 29218class adj
cbr 29219class bra
ck 29220class ketbra
cleo 29221class op
cei 29222class eigvec
cel 29223class eigval
cspc 29224class Lambda
cst 29225class States
chst 29226class CHStates
ccv 29227class
cat 29228class HAtoms
cmd 29229class 𝑀
cdmd 29230class 𝑀*
df-hnorm 29231norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
df-hba 29232 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
df-h0v 292330 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
df-hvsub 29234 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
df-hlim 29235𝑣 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥)}
df-hcau 29236Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
ax-hilex 29262 ℋ ∈ V
ax-hfvadd 29263 + :( ℋ × ℋ)⟶ ℋ
ax-hvcom 29264((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
ax-hvass 29265((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-hv0cl 292660 ∈ ℋ
ax-hvaddid 29267(𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
ax-hfvmul 29268 · :(ℂ × ℋ)⟶ ℋ
ax-hvmulid 29269(𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
ax-hvmulass 29270((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-hvdistr1 29271((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-hvdistr2 29272((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
ax-hvmul0 29273(𝐴 ∈ ℋ → (0 · 𝐴) = 0)
ax-hfi 29342 ·ih :( ℋ × ℋ)⟶ℂ
ax-his1 29345((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
ax-his2 29346((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))
ax-his3 29347((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
ax-his4 29348((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
ax-hcompl 29465(𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
df-sh 29470 S = { ∈ 𝒫 ℋ ∣ (0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ )}
df-ch 29484 C = {S ∣ ( ⇝𝑣 “ (m ℕ)) ⊆ }
df-oc 29515⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
df-ch0 295160 = {0}
df-shs 29571 + = (𝑥S , 𝑦S ↦ ( + “ (𝑥 × 𝑦)))
df-span 29572span = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦S𝑥𝑦})
df-chj 29573 = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
df-chsup 29574 = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
df-pjh 29658proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
df-cm 29846 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))))}
df-hosum 29993 +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
df-homul 29994 ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
df-hodif 29995op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) − (𝑔𝑥))))
df-hfsum 29996 +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
df-hfmul 29997 ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
df-h0op 30011 0hop = (proj‘0)
df-iop 30012 Iop = (proj‘ ℋ)
df-nmop 30102normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑧)))}, ℝ*, < ))
df-cnop 30103ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
df-lnop 30104LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
df-bdop 30105BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
df-unop 30106UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦))}
df-hmop 30107HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑡𝑥) ·ih 𝑦)}
df-nmfn 30108normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑧)))}, ℝ*, < ))
df-nlfn 30109null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (𝑡 “ {0}))
df-cnfn 30110ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
df-lnfn 30111LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
df-adjh 30112adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)))}
df-bra 30113bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥)))
df-kb 30114 ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
df-leop 30115op = {⟨𝑡, 𝑢⟩ ∣ ((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥))}
df-eigvec 30116eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑧 ∈ ℂ (𝑡𝑥) = (𝑧 · 𝑥)})
df-eigval 30117eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
df-spec 30118Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
df-st 30474States = {𝑓 ∈ ((0[,]1) ↑m C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
df-hst 30475CHStates = {𝑓 ∈ ( ℋ ↑m C ) ∣ ((norm‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))))}
df-cv 30542 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ (𝑥𝑦 ∧ ¬ ∃𝑧C (𝑥𝑧𝑧𝑦)))}
df-md 30543 𝑀 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ ∀𝑧C (𝑧𝑦 → ((𝑧 𝑥) ∩ 𝑦) = (𝑧 (𝑥𝑦))))}
df-dmd 30544 𝑀* = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ ∀𝑧C (𝑦𝑧 → ((𝑧𝑥) ∨ 𝑦) = (𝑧 ∩ (𝑥 𝑦))))}
df-at 30601HAtoms = {𝑥C ∣ 0 𝑥}
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
w2reu 30727wff ∃!𝑥𝐴 , 𝑦𝐵𝜑
df-2reu 30728(∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
cdp2 31047class 𝐴𝐵
df-dp2 31048𝐴𝐵 = (𝐴 + (𝐵 / 10))
cdp 31064class .
df-dp 31065. = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
cxdiv 31093class /𝑒
df-xdiv 31094 /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥))
cmnt 31158class Monot
cmgc 31159class MGalConn
df-mnt 31160Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥𝑎𝑦𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓𝑥)(le‘𝑤)(𝑓𝑦))})
df-mgc 31161MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎(Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))})
ax-xrssca 31184fld = (Scalar‘ℝ*𝑠)
ax-xrsvsca 31185 ·e = ( ·𝑠 ‘ℝ*𝑠)
comnd 31225class oMnd
cogrp 31226class oGrp
df-omnd 31227oMnd = {𝑔 ∈ Mnd ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎𝑣𝑏𝑣𝑐𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))}
df-ogrp 31228oGrp = (Grp ∩ oMnd)
ctocyc 31275class toCyc
df-tocyc 31276toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
csgns 31327class sgns
df-sgns 31328sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
cinftm 31332class
carchi 31333class Archi
df-inftm 31334⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
df-archi 31335Archi = {𝑤 ∣ (⋘‘𝑤) = ∅}
cslmd 31355class SLMod
df-slmd 31356SLMod = {𝑔 ∈ CMnd ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][( ·𝑠𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤 ∧ ((0g𝑓)𝑠𝑤) = (0g𝑔))))}
corng 31396class oRing
cofld 31397class oField
df-orng 31398oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))}
df-ofld 31399oField = (Field ∩ oRing)
cresv 31425class v
df-resv 31426v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
cprmidl 31512class PrmIdeal
df-prmidl 31513PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
cmxidl 31533class MaxIdeal
df-mxidl 31534MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))))})
cidlsrg 31547class IDLsrg
df-idlsrg 31548IDLsrg = (𝑟 ∈ V ↦ (LIdeal‘𝑟) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (LSSum‘𝑟)⟩, ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩}))
cufd 31563class UFD
df-ufd 31564UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)}
cldim 31586class dim
df-dim 31587dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
cfldext 31615class /FldExt
cfinext 31616class /FinExt
calgext 31617class /AlgExt
cextdg 31618class [:]
df-fldext 31619/FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
df-extdg 31620[:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
df-finext 31621/FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
df-algext 31622/AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))}
csmat 31645class subMat1
df-smat 31646subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
clmat 31663class litMat
df-lmat 31664litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))))
ccref 31694class CovHasRef𝐴
df-cref 31695CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦)}
cldlf 31704class Ldlf
df-ldlf 31705Ldlf = CovHasRef{𝑥𝑥 ≼ ω}
cpcmp 31707class Paracomp
df-pcmp 31708Paracomp = {𝑗𝑗 ∈ CovHasRef(LocFin‘𝑗)}
crspec 31714class Spec
df-rspec 31715Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)))
cmetid 31738class ~Met
cpstm 31739class pstoMet
df-metid 31740~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)})
df-pstm 31741pstoMet = (𝑑 ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
chcmp 31808class HCmp
df-hcmp 31809HCmp = {⟨𝑢, 𝑤⟩ ∣ ((𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom 𝑢) = 𝑢 ∧ ((cls‘(TopOpen‘𝑤))‘dom 𝑢) = (Base‘𝑤))}
cqqh 31822class ℚHom
df-qqh 31823ℚHom = (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r𝑟)((ℤRHom‘𝑟)‘𝑦))⟩))
crrh 31843class ℝHom
crrext 31844class ℝExt
df-rrh 31845ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)))
df-rrext 31849 ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
cxrh 31866class *Hom
df-xrh 31867*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))))
cmntop 31872class ManTop
df-mntop 31873ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
cind 31878class 𝟭
df-ind 31879𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0))))
cesum 31895class Σ*𝑘𝐴𝐵
df-esum 31896Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
cofc 31963class f/c 𝑅
df-ofc 31964f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
csiga 31976class sigAlgebra
df-siga 31977sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
csigagen 32006class sigaGen
df-sigagen 32007sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
cbrsiga 32049class 𝔅
df-brsiga 32050𝔅 = (sigaGen‘(topGen‘ran (,)))
csx 32056class ×s
df-sx 32057 ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦))))
cmeas 32063class measures
df-meas 32064measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
cdde 32100class δ
df-dde 32101δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
cae 32105class a.e.
cfae 32106class ~ a.e.
df-ae 32107a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
df-fae 32113~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
cmbfm 32117class MblFnM
df-mbfm 32118MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
coms 32158class toOMeas
df-oms 32159toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
ccarsg 32168class toCaraSiga
df-carsg 32169toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
citgm 32194class itgm
csitm 32195class sitm
csitg 32196class sitg
df-sitg 32197sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
df-sitm 32198sitm = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))))
df-itgm 32220itgm = (𝑤 ∈ V, 𝑚 ran measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚)))
csseq 32250class seqstr
df-sseq 32251seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))
cfib 32263class Fibci
df-fib 32264Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
cprb 32274class Prob
df-prob 32275Prob = {𝑝 ran measures ∣ (𝑝 dom 𝑝) = 1}
ccprob 32298class cprob
df-cndprob 32299cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))
crrv 32307class rRndVar
df-rrv 32308rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))
corvc 32322class RV/𝑐𝑅
df-orvc 32323RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎}))
crepr 32488class repr
df-repr 32489repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}))
cvts 32515class vts
df-vts 32516vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
ax-hgt749 32524𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥))
ax-ros335 32525𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1.03883) · 𝑥)
ax-ros336 32526𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥))
cstrkg2d 32544class TarskiG2D
df-trkg2d 32545TarskiG2D = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥𝑝𝑦𝑝𝑧𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))}
cafs 32549class AFS
df-afs 32550AFS = (𝑔 ∈ TarskiG ↦ {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ][(Itv‘𝑔) / 𝑖]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 (𝑒 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑓 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎𝑏) = (𝑥𝑦) ∧ (𝑏𝑐) = (𝑦𝑧)) ∧ ((𝑎𝑑) = (𝑥𝑤) ∧ (𝑏𝑑) = (𝑦𝑤))))})
clpad 32554class leftpad
df-lpad 32555 leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))
w-bnj17 32565wff (𝜑𝜓𝜒𝜃)
df-bnj17 32566((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
c-bnj14 32567class pred(𝑋, 𝐴, 𝑅)
df-bnj14 32568 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
w-bnj13 32569wff 𝑅 Se 𝐴
df-bnj13 32570(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
w-bnj15 32571wff 𝑅 FrSe 𝐴
df-bnj15 32572(𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
c-bnj18 32573class trCl(𝑋, 𝐴, 𝑅)
df-bnj18 32574 trCl(𝑋, 𝐴, 𝑅) = 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
w-bnj19 32575wff TrFo(𝐵, 𝐴, 𝑅)
df-bnj19 32576( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵)
cacycgr 33004class AcyclicGraph
df-acycgr 33005AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅)}
ax-7d 33021(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-8d 33022(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
ax-9d1 33023 ¬ ∀𝑥 ¬ 𝑥 = 𝑥
ax-9d2 33024 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
ax-10d 33025(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-11d 33026(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
cretr 33079class Retr
df-retr 33080 Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
cpconn 33081class PConn
csconn 33082class SConn
df-pconn 33083PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
df-sconn 33084SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}))}
ccvm 33117class CovMap
df-cvm 33118 CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 𝑗𝑘𝑗 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)))))})
cgoe 33195class 𝑔
cgna 33196class 𝑔
cgol 33197class 𝑔𝑁𝑈
csat 33198class Sat
cfmla 33199class Fmla
csate 33200class Sat
cprv 33201class
df-goel 33202𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)
df-gona 33203𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
df-goal 33204𝑔𝑁𝑈 = ⟨2o, ⟨𝑁, 𝑈⟩⟩
df-sat 33205 Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑚m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚m ω) ∣ ∀𝑧𝑚 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚m ω) ∣ (𝑎𝑖)𝑒(𝑎𝑗)})}) ↾ suc ω))
df-sate 33206 Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
df-fmla 33207Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
df-prv 33208⊧ = {⟨𝑚, 𝑢⟩ ∣ (𝑚 Sat 𝑢) = (𝑚m ω)}
cgon 33294class ¬𝑔𝑈
cgoa 33295class 𝑔
cgoi 33296class 𝑔
cgoo 33297class 𝑔
cgob 33298class 𝑔
cgoq 33299class =𝑔
cgox 33300class 𝑔𝑁𝑈
df-gonot 33301¬𝑔𝑈 = (𝑈𝑔𝑈)
df-goan 33302𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢𝑔𝑣))
df-goim 33303𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢𝑔¬𝑔𝑣))
df-goor 33304𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢𝑔 𝑣))
df-gobi 33305𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢𝑔 𝑣)∧𝑔(𝑣𝑔 𝑢)))
df-goeq 33306=𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ suc (𝑢𝑣) / 𝑤𝑔𝑤((𝑤𝑔𝑢) ↔𝑔 (𝑤𝑔𝑣)))
df-goex 33307𝑔𝑁𝑈 = ¬𝑔𝑔𝑁¬𝑔𝑈
cgze 33308class AxExt
cgzr 33309class AxRep
cgzp 33310class AxPow
cgzu 33311class AxUn
cgzg 33312class AxReg
cgzi 33313class AxInf
cgzf 33314class ZF
df-gzext 33315AxExt = (∀𝑔2o((2o𝑔∅) ↔𝑔 (2o𝑔1o)) →𝑔 (∅=𝑔1o))
df-gzrep 33316AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3o𝑔1o𝑔2o(∀𝑔1o𝑢𝑔 (2o=𝑔1o)) →𝑔𝑔1o𝑔2o((2o𝑔1o) ↔𝑔𝑔3o((3o𝑔∅)∧𝑔𝑔1o𝑢))))
df-gzpow 33317AxPow = ∃𝑔1o𝑔2o(∀𝑔1o((1o𝑔2o) ↔𝑔 (1o𝑔∅)) →𝑔 (2o𝑔1o))
df-gzun 33318AxUn = ∃𝑔1o𝑔2o(∃𝑔1o((2o𝑔1o)∧𝑔(1o𝑔∅)) →𝑔 (2o𝑔1o))
df-gzreg 33319AxReg = (∃𝑔1o(1o𝑔∅) →𝑔𝑔1o((1o𝑔∅)∧𝑔𝑔2o((2o𝑔1o) →𝑔 ¬𝑔(2o𝑔∅))))
df-gzinf 33320AxInf = ∃𝑔1o((∅∈𝑔1o)∧𝑔𝑔2o((2o𝑔1o) →𝑔𝑔∅((2o𝑔∅)∧𝑔(∅∈𝑔1o))))
df-gzf 33321ZF = {𝑚 ∣ ((Tr 𝑚𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))}
cmcn 33322class mCN
cmvar 33323class mVR
cmty 33324class mType
cmvt 33325class mVT
cmtc 33326class mTC
cmax 33327class mAx
cmrex 33328class mREx
cmex 33329class mEx
cmdv 33330class mDV
cmvrs 33331class mVars
cmrsub 33332class mRSubst
cmsub 33333class mSubst
cmvh 33334class mVH
cmpst 33335class mPreSt
cmsr 33336class mStRed
cmsta 33337class mStat
cmfs 33338class mFS
cmcls 33339class mCls
cmpps 33340class mPPSt
cmthm 33341class mThm
df-mcn 33342mCN = Slot 1
df-mvar 33343mVR = Slot 2
df-mty 33344mType = Slot 3
df-mtc 33345mTC = Slot 4
df-mmax 33346mAx = Slot 5
df-mvt 33347mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡))
df-mrex 33348mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡)))
df-mex 33349mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
df-mdv 33350mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
df-mvrs 33351mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
df-mrsub 33352mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
df-msub 33353mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)))
df-mvh 33354mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
df-mpst 33355mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡)))
df-msr 33356mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
df-msta 33357mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
df-mfs 33358mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin))}
df-mcls 33359mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
df-mpps 33360mPPSt = (𝑡 ∈ V ↦ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)))})
df-mthm 33361mThm = (𝑡 ∈ V ↦ ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))))
cm0s 33447class m0St
cmsa 33448class mSA
cmwgfs 33449class mWGFS
cmsy 33450class mSyn
cmesy 33451class mESyn
cmgfs 33452class mGFS
cmtree 33453class mTree
cmst 33454class mST
cmsax 33455class mSAX
cmufs 33456class mUFS
df-m0s 33457m0St = (𝑎 ∈ V ↦ ⟨∅, ∅, 𝑎⟩)
df-msa 33458mSA = (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡) ∧ Fun ((2nd𝑎) ↾ (mVR‘𝑡)))})
df-mwgfs 33459mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))}
df-msyn 33460mSyn = Slot 6
df-mesyn 33461mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)))
df-mgfs 33462mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))}
df-mtree 33463mTree = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑟 ∣ (∀𝑒 ∈ ran (mVH‘𝑡)𝑒𝑟⟨(m0St‘𝑒), ∅⟩ ∧ ∀𝑒 𝑒𝑟⟨((mStRed‘𝑡)‘⟨𝑑, , 𝑒⟩), ∅⟩ ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠𝑒)})) ⊆ 𝑟)))}))
df-mst 33464mST = (𝑡 ∈ V ↦ ((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡))))
df-msax 33465mSAX = (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝))))
df-mufs 33466mUFS = {𝑡 ∈ mGFS ∣ Fun (mST‘𝑡)}
cmuv 33467class mUV
cmvl 33468class mVL
cmvsb 33469class mVSubst
cmfsh 33470class mFresh
cmfr 33471class mFRel
cmevl 33472class mEval
cmdl 33473class mMdl
cusyn 33474class mUSyn
cgmdl 33475class mGMdl
cmitp 33476class mItp
cmfitp 33477class mFromItp
df-muv 33478mUV = Slot 7
df-mfsh 33479mFresh = Slot 19
df-mevl 33480mEval = Slot 20
df-mvl 33481mVL = (𝑡 ∈ V ↦ X𝑣 ∈ (mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)}))
df-mvsb 33482mVSubst = (𝑡 ∈ V ↦ {⟨⟨𝑠, 𝑚⟩, 𝑥⟩ ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))})
df-mfrel 33483mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))})
df-mdl 33484mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))}
df-musyn 33485mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩))
df-gmdl 33486mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣ (∀𝑐 ∈ (mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {⟨𝑚, 𝑒⟩}) = (((mEval‘𝑡) “ {⟨𝑚, ((mESyn‘𝑡)‘𝑒)⟩}) ∩ ((mUV‘𝑡) “ {(1st𝑒)})))}
df-mitp 33487mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎))))))
df-mfitp 33488mFromItp = (𝑡 ∈ V ↦ (𝑓X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st𝑡)‘𝑎)}) ↑m X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (𝑛 ∈ ((mUV‘𝑡) ↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑣)⟩𝑛(𝑚𝑣) ∧ ∀𝑒𝑎𝑔(𝑒(mST‘𝑡)⟨𝑎, 𝑔⟩ → ⟨𝑚, 𝑒𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {⟨𝑚, 𝑒⟩}) = ((𝑛 “ {⟨𝑚, ((mESyn‘𝑡)‘𝑒)⟩}) ∩ ((mUV‘𝑡) “ {(1st𝑒)}))))))
citr 33489class IntgRing
ccpms 33490class cplMetSp
chlb 33491class HomLimB
chlim 33492class HomLim
cpfl 33493class polyFld
csf1 33494class splitFld1
csf 33495class splitFld
cpsl 33496class polySplitLim
df-irng 33497 IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(𝑓 “ {(0g𝑟)}))
df-cplmet 33498 cplMetSp = (𝑤 ∈ V ↦ ((𝑤s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟(Base‘𝑟) / 𝑣{⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑔𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒((𝑟 /s 𝑒) sSet {⟨(dist‘ndx), {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝑣𝑞𝑣 ((𝑥 = [𝑝]𝑒𝑦 = [𝑞]𝑒) ∧ (𝑝f (dist‘𝑟)𝑞) ⇝ 𝑧)}⟩}))
df-homlimb 33499 HomLimB = (𝑓 ∈ V ↦ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓𝑛)) / 𝑣 {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥𝑣 ↦ ⟨((1st𝑥) + 1), ((𝑓‘(1st𝑥))‘(2nd𝑥))⟩) ⊆ 𝑠)} / 𝑒⟨(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓𝑛) ↦ [⟨𝑛, 𝑥⟩]𝑒))⟩)
df-homlim 33500 HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ( HomLimB ‘𝑓) / 𝑒(1st𝑒) / 𝑣(2nd𝑒) / 𝑔({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔𝑛), 𝑦 ∈ dom (𝑔𝑛) ↦ ⟨⟨((𝑔𝑛)‘𝑥), ((𝑔𝑛)‘𝑦)⟩, ((𝑔𝑛)‘(𝑥(+g‘(𝑟𝑛))𝑦))⟩)⟩, ⟨(.r‘ndx), 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔𝑛), 𝑦 ∈ dom (𝑔𝑛) ↦ ⟨⟨((𝑔𝑛)‘𝑥), ((𝑔𝑛)‘𝑦)⟩, ((𝑔𝑛)‘(𝑥(.r‘(𝑟𝑛))𝑦))⟩)⟩} ∪ {⟨(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ ((𝑔𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟𝑛))}⟩, ⟨(dist‘ndx), 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔𝑛)‘𝑛) ↦ ⟨⟨((𝑔𝑛)‘𝑥), ((𝑔𝑛)‘𝑦)⟩, (𝑥(dist‘(𝑟𝑛))𝑦)⟩)⟩, ⟨(le‘ndx), 𝑛 ∈ ℕ ((𝑔𝑛) ∘ ((le‘(𝑟𝑛)) ∘ (𝑔𝑛)))⟩}))
df-plfl 33501 polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑧 ∈ (Base‘𝑟) ↦ [(𝑧( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑟 deg1 𝑞) < (𝑟 deg1 𝑝))) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓⟩)
df-sfl1 33502 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝))))))
df-sfl 33503 splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {⟨0, ⟨𝑟, ( I ↾ (Base‘𝑟))⟩⟩}))‘(♯‘𝑝)))))
df-psl 33504 polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ (1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ (1st𝑔) / 𝑒(1st𝑒) / 𝑠(𝑠 splitFld ran (𝑥𝑞 ↦ (𝑥 ∘ (2nd𝑔)))) / 𝑓𝑓, ((2nd𝑔) ∘ (2nd𝑓))⟩), (𝑝 ∪ {⟨0, ⟨⟨𝑟, ∅⟩, ( I ↾ (Base‘𝑟))⟩⟩}))) / 𝑓((1st ∘ (𝑓 shift 1)) HomLim (2nd𝑓)))
czr 33505class ZRing
cgf 33506class GF
cgfo 33507class GF
ceqp 33508class ~Qp
crqp 33509class /Qp
cqp 33510class Qp
czp 33511class Zp
cqpa 33512class _Qp
ccp 33513class Cp
df-zrng 33514ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟)))
df-gf 33515 GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑝) / 𝑟(1st ‘(𝑟 splitFld {(Poly1𝑟) / 𝑠(var1𝑟) / 𝑥(((𝑝𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g𝑠)𝑥)})))
df-gfoo 33516GF = (𝑝 ∈ ℙ ↦ (ℤ/nℤ‘𝑝) / 𝑟(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {(Poly1𝑟) / 𝑠(var1𝑟) / 𝑥(((𝑝𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g𝑠)𝑥)})))
df-eqp 33517~Qp = (𝑝 ∈ ℙ ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)})
df-rqp 33518/Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ {𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ(𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1)))))))
df-qp 33519Qp = (𝑝 ∈ ℙ ↦ { ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ( “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏(({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ ((/Qp‘𝑝)‘(𝑓f + 𝑔)))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓𝑘) · (𝑔‘(𝑛𝑘))))))⟩} ∪ {⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}⟩}) toNrmGrp (𝑓𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((𝑓 “ (ℤ ∖ {0})), ℝ, < ))))))
df-zp 33520Zp = (ZRing ∘ Qp)
df-qpa 33521_Qp = (𝑝 ∈ ℙ ↦ (Qp‘𝑝) / 𝑟(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1𝑟) ∣ ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1𝑓)(𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))})))
df-cp 33522Cp = ( cplMetSp ∘ _Qp)
cttrcl 33693class t++𝑅
df-ttrcl 33694t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
cwsuc 33731class wsuc(𝑅, 𝐴, 𝑋)
cwlim 33732class WLim(𝑅, 𝐴)
df-wsuc 33733wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
df-wlim 33734WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
cnadd 33751class +no
df-nadd 33752 +no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st𝑧)} × (2nd𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st𝑧) × {(2nd𝑧)})) ⊆ 𝑤)}))
csur 33770class No
cslt 33771class <s
cbday 33772class bday
df-no 33773 No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}}
df-slt 33774 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
df-bday 33775 bday = (𝑥 No ↦ dom 𝑥)
csle 33874class ≤s
df-sle 33875 ≤s = (( No × No ) ∖ <s )
csslt 33902class <<s
df-sslt 33903 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
cscut 33904class |s
df-scut 33905 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
c0s 33943class 0s
c1s 33944class 1s
df-0s 33945 0s = (∅ |s ∅)
df-1s 33946 1s = ({ 0s } |s ∅)
cmade 33953class M
cold 33954class O
cnew 33955class N
cleft 33956class L
cright 33957class R
df-made 33958 M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ran 𝑓 × 𝒫 ran 𝑓))))
df-old 33959 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
df-new 33960 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
df-left 33961 L = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥})
df-right 33962 R = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦})
cnorec 34021class norec (𝐹)
df-norec 34022 norec (𝐹) = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹)
cnorec2 34032class norec2 (𝐹)
df-norec2 34033 norec2 (𝐹) = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐹)
cadds 34043class +s
cnegs 34044class -us
csubs 34045class -s
df-adds 34046 +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}))))
df-negs 34047 -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
df-subs 34048 -s = (𝑥 No , 𝑦 No ↦ (𝑥 +s ( -us ‘𝑦)))
ctxp 34059class (𝐴𝐵)
cpprod 34060class pprod(𝑅, 𝑆)
csset 34061class SSet
ctrans 34062class Trans
cbigcup 34063class Bigcup
cfix 34064class Fix 𝐴
climits 34065class Limits
cfuns 34066class Funs
csingle 34067class Singleton
csingles 34068class Singletons
cimage 34069class Image𝐴
ccart 34070class Cart
cimg 34071class Img
cdomain 34072class Domain
crange 34073class Range
capply 34074class Apply
ccup 34075class Cup
ccap 34076class Cap
csuccf 34077class Succ
cfunpart 34078class Funpart𝐹
cfullfn 34079class FullFun𝐹
crestrict 34080class Restrict
cub 34081class UB𝑅
clb 34082class LB𝑅
df-txp 34083(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
df-pprod 34084pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
df-sset 34085 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
df-trans 34086 Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
df-bigcup 34087 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
df-fix 34088 Fix 𝐴 = dom (𝐴 ∩ I )
df-limits 34089 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
df-funs 34090 Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
df-singleton 34091Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
df-singles 34092 Singletons = ran Singleton
df-image 34093Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
df-cart 34094Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
df-img 34095Img = (Image((2nd ∘ 1st ) ↾ (1st ↾ (V × V))) ∘ Cart)
df-domain 34096Domain = Image(1st ↾ (V × V))
df-range 34097Range = Image(2nd ↾ (V × V))
df-cup 34098Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
df-cap 34099Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∩ (2nd ∘ E )) ⊗ V)))
df-restrict 34100Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))
df-succf 34101Succ = (Cup ∘ ( I ⊗ Singleton))
df-apply 34102Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
df-funpart 34103Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
df-fullfun 34104FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
df-ub 34105UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
df-lb 34106LB𝑅 = UB𝑅
caltop 34185class 𝐴, 𝐵
caltxp 34186class (𝐴 ×× 𝐵)
df-altop 34187𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
df-altxp 34188(𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫}
cofs 34211class OuterFiveSeg
df-ofs 34212 OuterFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
ctransport 34258class TransportTo
df-transport 34259TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
cifs 34264class InnerFiveSeg
ccgr3 34265class Cgr3
ccolin 34266class Colinear
cfs 34267class FiveSeg
df-colinear 34268 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
df-ifs 34269 InnerFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑥, 𝑧⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑧, 𝑤⟩)))}
df-cgr3 34270Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
df-fs 34271 FiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
csegle 34335class Seg
df-segle 34336 Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
coutsideof 34348class OutsideOf
df-outsideof 34349OutsideOf = ( Colinear ∖ Btwn )
cline2 34363class Line
cray 34364class Ray
clines2 34365class LinesEE
df-line2 34366Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
df-ray 34367Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
df-lines2 34368LinesEE = ran Line
cfwddif 34387class
df-fwddif 34388 △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
cfwddifn 34389class n
df-fwddifn 34390n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
chf 34401class Hf
df-hf 34402 Hf = (𝑅1 “ ω)
cfne 34452class Fne
df-fne 34453Fne = {⟨𝑥, 𝑦⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀𝑧𝑥 𝑧 (𝑦 ∩ 𝒫 𝑧))}
w3nand 34513wff (𝜑𝜓𝜒)
df-3nand 34514((𝜑𝜓𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒)))
cgcdOLD 34575class gcdOLD (𝐴, 𝐵)
df-gcdOLD 34576 gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
cprvb 34706wff Prv 𝜑
ax-prv1 34707𝜑       Prv 𝜑
ax-prv2 34708(Prv (𝜑𝜓) → (Prv 𝜑 → Prv 𝜓))
ax-prv3 34709(Prv 𝜑 → Prv Prv 𝜑)
wmoo 34759wff ∃**𝑥𝜑
df-bj-mo 34760(∃**𝑥𝜑 ↔ ∀𝑧𝑦𝑥(𝜑𝑥 = 𝑦))
wnnf 34832wff Ⅎ'𝑥𝜑
df-bj-nnf 34833(Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
bj-cgab 35048class {𝐴𝑥𝜑}
df-bj-gab 35049{𝐴𝑥𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦𝜑)}
wrnf 35056wff 𝑥𝐴𝜑
df-bj-rnf 35057(Ⅎ𝑥𝐴𝜑 ↔ (∃𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜑))
bj-csngl 35082class sngl 𝐴
df-bj-sngl 35083sngl 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}}
bj-ctag 35091class tag 𝐴
df-bj-tag 35092tag 𝐴 = (sngl 𝐴 ∪ {∅})
bj-cproj 35107class (𝐴 Proj 𝐵)
df-bj-proj 35108(𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
bj-c1upl 35114class 𝐴
df-bj-1upl 35115𝐴⦆ = ({∅} × tag 𝐴)
bj-cpr1 35117class pr1 𝐴
df-bj-pr1 35118pr1 𝐴 = (∅ Proj 𝐴)
bj-c2uple 35127class 𝐴, 𝐵
df-bj-2upl 35128𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
bj-cpr2 35131class pr2 𝐴
df-bj-pr2 35132pr2 𝐴 = (1o Proj 𝐴)
celwise 35177class elwise
df-elwise 35178elwise = (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢𝑥𝑣𝑦 𝑧 = (𝑢𝑜𝑣)}))
cmoore 35201class Moore
df-bj-moore 35202Moore = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 𝑦) ∈ 𝑥}
cmpt3 35218class (𝑥𝐴, 𝑦𝐵, 𝑧𝐶𝐷)
df-bj-mpt3 35219(𝑥𝐴, 𝑦𝐵, 𝑧𝐶𝐷) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝑠 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ 𝑡 = 𝐷)}
csethom 35220class Set
df-bj-sethom 35221 Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑥𝑦})
ctophom 35222class Top
df-bj-tophom 35223 Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)})
cmgmhom 35224class Mgm
df-bj-mgmhom 35225 Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
ctopmgmhom 35226class TopMgm
df-bj-topmgmhom 35227 TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top𝑦) ∩ (𝑥 Mgm𝑦)))
ccur- 35228class curry_
df-bj-cur 35229curry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((𝑥 × 𝑦) Set𝑧) ↦ (𝑎𝑥 ↦ (𝑏𝑦 ↦ (𝑓‘⟨𝑎, 𝑏⟩)))))
cunc- 35230class uncurry_
df-bj-unc 35231uncurry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set𝑧)) ↦ (𝑎𝑥, 𝑏𝑦 ↦ ((𝑓𝑎)‘𝑏))))
cstrset 35232class [𝐵 / 𝐴]struct𝑆
df-strset 35233[𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩})
cdiag2 35270class Id
df-bj-diag 35271Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥))
cimdir 35276class 𝒫*
df-imdir 35277𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ (𝑟𝑥) = 𝑦)}))
ciminv 35289class 𝒫*
df-iminv 35290𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
cfractemp 35294class {R
df-bj-fractemp 35295{R = (𝑥R ↦ (𝑦R ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥)))
cinftyexpitau 35296class +∞e
df-bj-inftyexpitau 35297+∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
cccinftyN 35298class ∞N
df-bj-ccinftyN 35299∞N = ran +∞e
chalf 35301class 1/2
df-bj-onehalf 353021/2 = (𝑥R (𝑥 +R 𝑥) = 1R)
cinftyexpi 35304class +∞ei
df-bj-inftyexpi 35305+∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
cccinfty 35309class
df-bj-ccinfty 35310 = ran +∞ei
cccbar 35313class ℂ̅
df-bj-ccbar 35314ℂ̅ = (ℂ ∪ ℂ)
cpinfty 35317class +∞
df-bj-pinfty 35318+∞ = (+∞ei‘0)
cminfty 35321class -∞
df-bj-minfty 35322-∞ = (+∞ei‘π)
crrbar 35326class ℝ̅
df-bj-rrbar 35327ℝ̅ = (ℝ ∪ {-∞, +∞})
cinfty 35328class
df-bj-infty 35329∞ = 𝒫
ccchat 35330class ℂ̂
df-bj-cchat 35331ℂ̂ = (ℂ ∪ {∞})
crrhat 35332class ℝ̂
df-bj-rrhat 35333ℝ̂ = (ℝ ∪ {∞})
caddcc 35335class +ℂ̅
df-bj-addc 35336 +ℂ̅ = (𝑥 ∈ (((ℂ × ℂ̅) ∪ (ℂ̅ × ℂ)) ∪ ((ℂ̂ × ℂ̂) ∪ ( I ↾ ℂ))) ↦ if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if((1st𝑥) ∈ ℂ, if((2nd𝑥) ∈ ℂ, ⟨((1st ‘(1st𝑥)) +R (1st ‘(2nd𝑥))), ((2nd ‘(1st𝑥)) +R (2nd ‘(2nd𝑥)))⟩, (2nd𝑥)), (1st𝑥))))
coppcc 35337class -ℂ̅
df-bj-oppc 35338-ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩)))))
cltxr 35339class <ℝ̅
df-bj-lt 35340<ℝ̅ = ({𝑥 ∈ (ℝ̅ × ℝ̅) ∣ ∃𝑦𝑧(((1st𝑥) = ⟨𝑦, 0R⟩ ∧ (2nd𝑥) = ⟨𝑧, 0R⟩) ∧ 𝑦 <R 𝑧)} ∪ ((({-∞} × ℝ) ∪ (ℝ × {+∞})) ∪ ({-∞} × {+∞})))
carg 35341class Arg
df-bj-arg 35342Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦ if(𝑥 ∈ ℂ, (ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π, (((1st𝑥) / (2 · π)) − π))))
cmulc 35343class ·ℂ̅
df-bj-mulc 35344 ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st𝑥) = 0 ∨ (2nd𝑥) = 0), 0, if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))))))
cinvc 35345class -1ℂ̅
df-bj-invc 35346-1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0)))
ciomnn 35347class iω↪ℕ
df-bj-iomnn 35348iω↪ℕ = ((𝑛 ∈ ω ↦ ⟨[⟨{𝑟Q𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) ∪ {⟨ω, +∞⟩})
cnnbar 35358class ℕ̅
df-bj-nnbar 35359ℕ̅ = (ℕ0 ∪ {+∞})
czzbar 35360class ℤ̅
df-bj-zzbar 35361ℤ̅ = (ℤ ∪ {-∞, +∞})
czzhat 35362class ℤ̂
df-bj-zzhat 35363ℤ̂ = (ℤ ∪ {∞})
cdivc 35364class
df-bj-divc 35365 = {⟨𝑥, 𝑦⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧ ∃𝑛 ∈ (ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)}
cfinsum 35381class FinSum
df-bj-finsum 35382 FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
crrvec 35390class ℝ-Vec
df-bj-rvec 35391ℝ-Vec = (LMod ∩ (Scalar “ {ℝfld}))
cend 35411class End
df-bj-end 35412End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
cfinxp 35481class (𝑈↑↑𝑁)
df-finxp 35482(𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
ax-luk1 35517((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
ax-luk2 35518((¬ 𝜑𝜑) → 𝜑)
ax-luk3 35519(𝜑 → (¬ 𝜑𝜓))
ax-wl-13v 35591(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
ax-wl-11v 35662(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ctotbnd 35851class TotBnd
cbnd 35852class Bnd
df-totbnd 35853TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀𝑏𝑣𝑦𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))})
df-bnd 35864Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)})
cismty 35883class Ismty
df-ismty 35884 Ismty = (𝑚 ran ∞Met, 𝑛 ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)))})
crrn 35910class n
df-rrn 35911n = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))))
cass 35927class Ass
df-ass 35928Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))}
cexid 35929class ExId
df-exid 35930 ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)}
cmagm 35933class Magma
df-mgmOLD 35934Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡}
csem 35945class SemiGrp
df-sgrOLD 35946SemiGrp = (Magma ∩ Ass)
cmndo 35951class MndOp
df-mndo 35952MndOp = (SemiGrp ∩ ExId )
cghomOLD 35968class GrpOpHom
df-ghomOLD 35969 GrpOpHom = (𝑔 ∈ GrpOp, ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))})
crngo 35979class RingOps
df-rngo 35980RingOps = {⟨𝑔, ⟩ ∣ ((𝑔 ∈ AbelOp ∧ :(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔𝑧 ∈ ran 𝑔(((𝑥𝑦)𝑧) = (𝑥(𝑦𝑧)) ∧ (𝑥(𝑦𝑔𝑧)) = ((𝑥𝑦)𝑔(𝑥𝑧)) ∧ ((𝑥𝑔𝑦)𝑧) = ((𝑥𝑧)𝑔(𝑦𝑧))) ∧ ∃𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑥𝑦) = 𝑦 ∧ (𝑦𝑥) = 𝑦)))}
cdrng 36033class DivRingOps
df-drngo 36034DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
crnghom 36045class RngHom
crngiso 36046class RngIso
crisc 36047class 𝑟
df-rngohom 36048 RngHom = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (ran (1st𝑠) ↑m ran (1st𝑟)) ∣ ((𝑓‘(GId‘(2nd𝑟))) = (GId‘(2nd𝑠)) ∧ ∀𝑥 ∈ ran (1st𝑟)∀𝑦 ∈ ran (1st𝑟)((𝑓‘(𝑥(1st𝑟)𝑦)) = ((𝑓𝑥)(1st𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(2nd𝑟)𝑦)) = ((𝑓𝑥)(2nd𝑠)(𝑓𝑦))))})
df-rngoiso 36061 RngIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠)})
df-risc 36068𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))}
ccm2 36074class Com2
df-com2 36075Com2 = {⟨𝑔, ⟩ ∣ ∀𝑎 ∈ ran 𝑔𝑏 ∈ ran 𝑔(𝑎𝑏) = (𝑏𝑎)}
cfld 36076class Fld
df-fld 36077Fld = (DivRingOps ∩ Com2)
ccring 36078class CRingOps
df-crngo 36079CRingOps = (RingOps ∩ Com2)
cidl 36092class Idl
cpridl 36093class PrIdl
cmaxidl 36094class MaxIdl
df-idl 36095Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))})
df-pridl 36096PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
df-maxidl 36097MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))})
cprrng 36131class PrRing
cdmn 36132class Dmn
df-prrngo 36133PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
df-dmn 36134Dmn = (PrRing ∩ Com2)
cigen 36144class IdlGen
df-igen 36145 IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
cxrn 36259class (𝐴𝐵)
ccoss 36260class 𝑅
ccoels 36261class 𝐴
crels 36262class Rels
cssr 36263class S
crefs 36264class Refs
crefrels 36265class RefRels
wrefrel 36266wff RefRel 𝑅
ccnvrefs 36267class CnvRefs
ccnvrefrels 36268class CnvRefRels
wcnvrefrel 36269wff CnvRefRel 𝑅
csyms 36270class Syms
csymrels 36271class SymRels
wsymrel 36272wff SymRel 𝑅
ctrs 36273class Trs
ctrrels 36274class TrRels
wtrrel 36275wff TrRel 𝑅
ceqvrels 36276class EqvRels
weqvrel 36277wff EqvRel 𝑅
ccoeleqvrels 36278class CoElEqvRels
wcoeleqvrel 36279wff CoElEqvRel 𝐴
credunds 36280class Redunds
wredund 36281wff 𝐴 Redund ⟨𝐵, 𝐶
wredundp 36282wff redund (𝜑, 𝜓, 𝜒)
cdmqss 36283class DomainQss
wdmqs 36284wff 𝑅 DomainQs 𝐴
cers 36285class Ers
werALTV 36286wff 𝑅 ErALTV 𝐴
cmembers 36287class MembErs
wmember 36288wff MembEr 𝐴
cfunss 36289class Funss
cfunsALTV 36290class FunsALTV
wfunALTV 36291wff FunALTV 𝐹
cdisjss 36292class Disjss
cdisjs 36293class Disjs
wdisjALTV 36294wff Disj 𝑅
celdisjs 36295class ElDisjs
weldisj 36296wff ElDisj 𝐴
df-xrn 36428(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
df-coss 36464𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
df-coels 36465𝐴 = ≀ ( E ↾ 𝐴)
df-rels 36530 Rels = 𝒫 (V × V)
df-ssr 36543 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
df-refs 36555 Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-refrels 36556 RefRels = ( Refs ∩ Rels )
df-refrel 36557( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-cnvrefs 36568 CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-cnvrefrels 36569 CnvRefRels = ( CnvRefs ∩ Rels )
df-cnvrefrel 36570( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-syms 36583 Syms = {𝑥(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-symrels 36584 SymRels = ( Syms ∩ Rels )
df-symrel 36585( SymRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-trs 36613 Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-trrels 36614 TrRels = ( Trs ∩ Rels )
df-trrel 36615( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-eqvrels 36624 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
df-eqvrel 36625( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
df-coeleqvrels 36626 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
df-coeleqvrel 36627( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
df-redunds 36663 Redunds = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧))}
df-redund 36664(𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
df-redundp 36665( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ↔ (𝜓𝜒))))
df-dmqss 36678 DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦}
df-dmqs 36679(𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
df-ers 36702 Ers = ( DomainQss ↾ EqvRels )
df-erALTV 36703(𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
df-members 36704 MembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
df-member 36705( MembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
df-funss 36718 Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
df-funsALTV 36719 FunsALTV = ( Funss ∩ Rels )
df-funALTV 36720( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
df-disjss 36741 Disjss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
df-disjs 36742 Disjs = ( Disjss ∩ Rels )
df-disjALTV 36743( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
df-eldisjs 36744 ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
df-eldisj 36745( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
wprt 36812wff Prt 𝐴
df-prt 36813(Prt 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
ax-c5 36824(∀𝑥𝜑𝜑)
ax-c4 36825(∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-c7 36826(¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
ax-c10 36827(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
ax-c11 36828(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
ax-c11n 36829(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-c15 36830(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
ax-c9 36831(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-c14 36832(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
ax-c16 36833(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
ax-riotaBAD 36894(𝑥𝐴 𝜑) = if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴}))
clsa 36915class LSAtoms
clsh 36916class LSHyp
df-lsatoms 36917LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
df-lshyp 36918LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
clcv 36959class L
df-lcv 36960L = (𝑤 ∈ V ↦ {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))})
clfn 36998class LFnl
df-lfl 36999LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠𝑤)𝑥)(+g𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓𝑥))(+g‘(Scalar‘𝑤))(𝑓𝑦))})
clk 37026class LKer
df-lkr 37027LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})))
cld 37064class LDual
df-ldual 37065LDual = (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
cops 37113class OP
ccmtN 37114class cm
col 37115class OL
coml 37116class OML
df-oposet 37117OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜𝑏)(le‘𝑝)(𝑜𝑎))) ∧ (𝑎(join‘𝑝)(𝑜𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜𝑎)) = (0.‘𝑝))))}
df-cmtN 37118cm = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))})
df-ol 37119OL = (Lat ∩ OP)
df-oml 37120OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))}
ccvr 37203class
catm 37204class Atoms
cal 37205class AtLat
clc 37206class CvLat
df-covers 37207 ⋖ = (𝑝 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑏))})
df-ats 37208Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎})
df-atl 37239AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))}
df-cvlat 37263CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
chlt 37291class HL
df-hlat 37292HL = {𝑙 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑎 ∈ (Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐𝑎𝑐𝑏𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐𝑐(lt‘𝑙)(1.‘𝑙))))}
clln 37432class LLines
clpl 37433class LPlanes
clvol 37434class LVols
clines 37435class Lines
cpointsN 37436class Points
cpsubsp 37437class PSubSp
cpmap 37438class pmap
df-llines 37439LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
df-lplanes 37440LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
df-lvols 37441LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
df-lines 37442Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})})
df-pointsN 37443Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}})
df-psubsp 37444PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))})
df-pmap 37445pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎}))
cpadd 37736class +𝑃
df-padd 37737+𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
cpclN 37828class PCl
df-pclN 37829PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}))
cpolN 37843class 𝑃
df-polarityN 37844𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ 𝑝𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝)))))
cpscN 37875class PSubCl
df-psubclN 37876PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
clh 37925class LHyp
claut 37926class LAut
cwpointsN 37927class WAtoms
cpautN 37928class PAut
df-lhyp 37929LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)})
df-laut 37930LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))})
df-watsN 37931WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))))
df-pautN 37932PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
cldil 38041class LDil
cltrn 38042class LTrn
cdilN 38043class Dil
ctrnN 38044class Trn
df-ldil 38045LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}))
df-ltrn 38046LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}))
df-dilN 38047Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}))
df-trnN 38048Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))}))
ctrl 38099class trL
df-trl 38100trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))))))
ctgrp 38683class TGrp
df-tgrp 38684TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}))
ctendo 38693class TEndo
cedring 38694class EDRing
cedring-rN 38695class EDRingR
df-tendo 38696TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥𝑦)) = ((𝑓𝑥) ∘ (𝑓𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))}))
df-edring-rN 38697EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩}))
df-edring 38698EDRing = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑠𝑡))⟩}))
cdveca 38943class DVecA
df-dveca 38944DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩})))
cdia 38969class DIsoA
df-disoa 38970DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
cdvh 39019class DVecH
df-dvech 39020DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
cocaN 39060class ocA
df-docaN 39061ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
cdjaN 39072class vA
df-djaN 39073vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))))))
cdib 39079class DIsoB
df-dib 39080DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))))
cdic 39113class DIsoC
df-dic 39114DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})))
cdih 39169class DIsoH
df-dih 39170DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))))
coch 39288class ocH
df-doch 39289ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
cdjh 39335class joinH
df-djh 39336joinH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))))))
clpoN 39421class LPol
df-lpolN 39422LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
clcd 39527class LCDual
df-lcdual 39528LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)})))
cmpd 39565class mapd
df-mapd 39566mapd = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
chvm 39697class HVMap
df-hvmap 39698HVMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))))))
chdma1 39732class HDMap1
chdma 39733class HDMap
df-hdmap1 39734HDMap1 = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd𝑥) = (0g𝑢), (0g𝑐), (𝑑 ((𝑚‘(𝑛‘{(2nd𝑥)})) = (𝑗‘{}) ∧ (𝑚‘(𝑛‘{((1st ‘(1st𝑥))(-g𝑢)(2nd𝑥))})) = (𝑗‘{((2nd ‘(1st𝑥))(-g𝑐))})))))}))
df-hdmap 39735HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
chg 39824class HGMap
df-hgmap 39825HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣))))}))
chlh 39873class HLHil
df-hlhil 39874HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
cresub 40269class
df-resub 40270 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥))
cprjsp 40361class ℙ𝕣𝕠𝕛
df-prjsp 40362ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
cprjspn 40374class ℙ𝕣𝕠𝕛n
df-prjspn 40375ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
cnacs 40440class NoeACS
df-nacs 40441NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
cmzpcl 40459class mzPolyCld
cmzp 40460class mzPoly
df-mzpcl 40461mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
df-mzp 40462mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
cdioph 40493class Dioph
df-dioph 40494Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
csquarenn 40574class NN
cpell1qr 40575class Pell1QR
cpell1234qr 40576class Pell1234QR
cpell14qr 40577class Pell14QR
cpellfund 40578class PellFund
df-squarenn 40579NN = {𝑥 ∈ ℕ ∣ (√‘𝑥) ∈ ℚ}
df-pell1qr 40580Pell1QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
df-pell14qr 40581Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
df-pell1234qr 40582Pell1234QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
df-pellfund 40583PellFund = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < ))
crmx 40638class Xrm
crmy 40639class Yrm
df-rmx 40640 Xrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
df-rmy 40641 Yrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
clfig 40808class LFinGen
df-lfig 40809LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫 (Base‘𝑤) ∩ Fin))}
clnm 40816class LNoeM
df-lnm 40817LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen}
clnr 40850class LNoeR
df-lnr 40851LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
cldgis 40862class ldgIdlSeq
df-ldgis 40863ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
cmnc 40872class Monic
cplylt 40873class Poly<
df-mnc 40874 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
df-plylt 40875 Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨ (deg‘𝑝) < 𝑥)})
cdgraa 40881class degAA
cmpaa 40882class minPolyAA
df-dgraa 40883degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝑥) = 0)}, ℝ, < ))
df-mpaa 40884minPolyAA = (𝑥 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑥) ∧ (𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑥)) = 1)))
citgo 40898class IntgOver
cza 40899class
df-itgo 40900IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
df-za 40901 = (IntgOver‘ℤ)
cmend 40916class MEndo
df-mend 40917MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
ccytp 40943class CytP
df-cytp 40944CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
ctopsep 40954class TopSep
ctoplnd 40955class TopLnd
df-topsep 40956TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = 𝑗)}
df-toplnd 40957TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ 𝑥 = 𝑧))}
crcl 41169class r*
df-rcl 41170r* = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
whe 41269wff 𝑅 hereditary 𝐴
df-he 41270(𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
ax-frege1 41287(𝜑 → (𝜓𝜑))
ax-frege2 41288((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
ax-frege8 41306((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
ax-frege28 41327((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
ax-frege31 41331(¬ ¬ 𝜑𝜑)
ax-frege41 41342(𝜑 → ¬ ¬ 𝜑)
ax-frege52a 41354((𝜑𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒)))
ax-frege54a 41359(𝜑𝜑)
ax-frege58a 41372((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒))
ax-frege52c 41385(𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
ax-frege54c 41389𝐴 = 𝐴
ax-frege58b 41398(∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
cmnring 41713class MndRing
df-mnring 41714 MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ (𝑟 freeLMod (Base‘𝑚)) / 𝑣(𝑣 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g𝑚)𝑏), ((𝑥𝑎)(.r𝑟)(𝑦𝑏)), (0g𝑟))))))⟩))
cscott 41742class Scott 𝐴
df-scott 41743Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
ccoll 41757class (𝐹 Coll 𝐴)
df-coll 41758(𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
cbcc 41843class C𝑐
df-bcc 41844C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))
cplusr 41964class +𝑟
cminusr 41965class -𝑟
ctimesr 41966class .𝑣
cptdfc 41967class PtDf(𝐴, 𝐵)
crr3c 41968class RR3
cline3 41969class line3
df-addr 41970+𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))))
df-subr 41971-𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) − (𝑦𝑣))))
df-mulv 41972.𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦𝑣))))
df-ptdf 41983PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3}))
df-rr3 41984RR3 = (ℝ ↑m {1, 2, 3})
df-line3 41985line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑧𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))}
wvd1 42078wff (   𝜑   ▶   𝜓   )
df-vd1 42079((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))
wvd2 42086wff (   𝜑   ,   𝜓   ▶   𝜒   )
df-vd2 42087((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))
wvhc2 42089wff (   𝜑   ,   𝜓   )
df-vhc2 42090((   𝜑   ,   𝜓   ) ↔ (𝜑𝜓))
wvd3 42096wff (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
wvhc3 42097wff (   𝜑   ,   𝜓   ,   𝜒   )
df-vhc3 42098((   𝜑   ,   𝜓   ,   𝜒   ) ↔ (𝜑𝜓𝜒))
df-vd3 42099((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))
clsi 43182class lim inf
df-liminf 43183lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
clsxlim 43249class ~~>*
df-xlim 43250~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
csalg 43739class SAlg
df-salg 43740SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥))}
csalon 43741class SalOn
df-salon 43742SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ 𝑠 = 𝑥})
csalgen 43743class SalGen
df-salgen 43744SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
csumge0 43790class Σ^
df-sumge0 43791Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
cmea 43877class Meas
df-mea 43878Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑥 𝑦) = (Σ^‘(𝑥𝑦))))}
come 43917class OutMeas
df-ome 43918OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
ccaragen 43919class CaraGen
df-caragen 43920CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)})
covoln 43964class voln*
df-ovoln 43965voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
cvoln 43966class voln
df-voln 43967voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))))
csmblfn 44123class SMblFn
df-smblfn 44124SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
caiota 44462class (℩'𝑥𝜑)
df-aiota 44464(℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wdfat 44495wff 𝐹 defAt 𝐴
cafv 44496class (𝐹'''𝐴)
caov 44497class ((𝐴𝐹𝐵))
df-dfat 44498(𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
df-afv 44499(𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥)
df-aov 44500 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
cafv2 44587class (𝐹''''𝐴)
df-afv2 44588(𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
cnelbr 44650class _∉
df-nelbr 44651 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
ciccp 44753class RePart
df-iccp 44754RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
wich 44785wff [𝑥𝑦]𝜑
df-ich 44786([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
cspr 44817class Pairs
df-spr 44818Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}})
cprpr 44852class Pairsproper
df-prpr 44853Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
cfmtno 44867class FermatNo
df-fmtno 44868FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
ceven 44964class Even
codd 44965class Odd
df-even 44966 Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ}
df-odd 44967 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
cfppr 45064class FPPr
df-fppr 45065 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
cgbe 45085class GoldbachEven
cgbow 45086class GoldbachOddW
cgbo 45087class GoldbachOdd
df-gbe 45088 GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
df-gbow 45089 GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
df-gbo 45090 GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
ax-bgbltosilva 45150((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 ≤ (4 · (10↑18))) → 𝑁 ∈ GoldbachEven )
ax-tgoldbachgt 45151𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}    &   𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}       𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
ax-hgprmladder 45154𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
cgrisom 45158class GrIsom
cisomgr 45159class IsomGr
df-grisom 45160 GrIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))})
df-isomgr 45161 IsomGr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))))}
cupwlks 45183class UPWalks
df-upwlks 45184UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
cmgmhm 45219class MgmHom
csubmgm 45220class SubMgm
df-mgmhm 45221 MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))})
df-submgm 45222SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡})
ccllaw 45265class clLaw
casslaw 45266class assLaw
ccomlaw 45267class comLaw
df-cllaw 45268 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
df-comlaw 45269 comLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)}
df-asslaw 45270 assLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
cintop 45278class intOp
cclintop 45279class clIntOp
cassintop 45280class assIntOp
df-intop 45281 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
df-clintop 45282 clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚))
df-assintop 45283 assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚})
cmgm2 45297class MgmALT
ccmgm2 45298class CMgmALT
csgrp2 45299class SGrpALT
ccsgrp2 45300class CSGrpALT
df-mgm2 45301MgmALT = {𝑚 ∣ (+g𝑚) clLaw (Base‘𝑚)}
df-cmgm2 45302CMgmALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) comLaw (Base‘𝑚)}
df-sgrp2 45303SGrpALT = {𝑔 ∈ MgmALT ∣ (+g𝑔) assLaw (Base‘𝑔)}
df-csgrp2 45304CSGrpALT = {𝑔 ∈ SGrpALT ∣ (+g𝑔) comLaw (Base‘𝑔)}
crng 45320class Rng
df-rng0 45321Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
crngh 45331class RngHomo
crngs 45332class RngIsom
df-rnghomo 45333 RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
df-rngisom 45334 RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ 𝑓 ∈ (𝑠 RngHomo 𝑟)})
crngc 45403class RngCat
crngcALTV 45404class RngCatALTV
df-rngc 45405RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
df-rngcALTV 45406RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
cringc 45449class RingCat
cringcALTV 45450class RingCatALTV
df-ringc 45451RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
df-ringcALTV 45452RingCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Ring) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RingHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
cdmatalt 45625class DMatALT
cscmatalt 45626class ScMatALT
df-dmatalt 45627 DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
df-scmatalt 45628 ScMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖𝑛𝑗𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑟))}))
clinc 45633class linC
clinco 45634class LinCo
df-linc 45635 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))))
df-lco 45636 LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))})
clininds 45669class linIndS
clindeps 45670class linDepS
df-lininds 45671 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
df-lindeps 45673 linDepS = {⟨𝑠, 𝑚⟩ ∣ ¬ 𝑠 linIndS 𝑚}
cfdiv 45771class /f
df-fdiv 45772 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0)))
cbigo 45781class Ο
df-bigo 45782Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
cblen 45803class #b
df-blen 45804#b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))
cdig 45829class digit
df-dig 45830digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)))
cnaryf 45860class -aryF
df-naryf 45861-aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
citco 45891class IterComp
cack 45892class Ack
df-itco 45893IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))))
df-ack 45894Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
cline 45961class LineM
csph 45962class Sphere
df-line 45963LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}))
df-sph 45964Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}))
cthinc 46188class ThinCat
df-thinc 46189ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
cprstc 46231class ProsetToCat
df-prstc 46232ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
cmndtc 46250class MndToCat
df-mndtc 46251MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
csetrecs 46275class setrecs(𝐹)
df-setrecs 46276setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
cpg 46300class Pg
df-pg 46301Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
cge-real 46308class
cgt 46309class >
df-gte 46310 ≥ =
df-gt 46311 > = <
csinh 46318class sinh
ccosh 46319class cosh
ctanh 46320class tanh
df-sinh 46321sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
df-cosh 46322cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥)))
df-tanh 46323tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
csec 46329class sec
ccsc 46330class csc
ccot 46331class cot
df-sec 46332sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥)))
df-csc 46333csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
df-cot 46334cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥)))
clog- 46353class log_
df-logbALT 46354log_ = (𝑏 ∈ (ℂ ∖ {0, 1}) ↦ (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝑏))))
wreflexive 46355wff 𝑅Reflexive𝐴
df-reflexive 46356(𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 𝑥𝑅𝑥))
wirreflexive 46357wff 𝑅Irreflexive𝐴
df-irreflexive 46358(𝑅Irreflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥))
walsi 46376wff ∀!𝑥(𝜑𝜓)
walsc 46377wff ∀!𝑥𝐴𝜑
df-alsi 46378(∀!𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∃𝑥𝜑))
df-alsc 46379(∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
  Copyright terms: Public domain W3C validator