List of Syntax, Axioms (ax-) and
Definitions (df-)|
Ref | Expression (see link for any distinct variable requirements)
|
| wn 3 | wff ¬ 𝜑 |
| wi 4 | wff (𝜑 → 𝜓) |
| ax-mp 5 | ⊢ 𝜑
& ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 |
| ax-1 6 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
| ax-2 7 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| ax-3 8 | ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) |
| wb 206 | wff (𝜑 ↔ 𝜓) |
| df-bi 207 | ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) |
| wa 395 | wff (𝜑 ∧ 𝜓) |
| df-an 396 | ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) |
| wo 847 | wff (𝜑 ∨ 𝜓) |
| df-or 848 | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| wif 1062 | wff if-(𝜑, 𝜓, 𝜒) |
| df-ifp 1063 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
| w3o 1085 | wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
| w3a 1086 | wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| df-3or 1087 | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| df-3an 1088 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| wnan 1491 | wff (𝜑 ⊼ 𝜓) |
| df-nan 1492 | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| wxo 1511 | wff (𝜑 ⊻ 𝜓) |
| df-xor 1512 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| wnor 1528 | wff (𝜑 ⊽ 𝜓) |
| df-nor 1529 | ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
| wal 1538 | wff ∀𝑥𝜑 |
| cv 1539 | class 𝑥 |
| wceq 1540 | wff 𝐴 = 𝐵 |
| wtru 1541 | wff ⊤ |
| df-tru 1543 | ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) |
| wfal 1552 | wff ⊥ |
| df-fal 1553 | ⊢ (⊥ ↔ ¬
⊤) |
| whad 1593 | wff hadd(𝜑, 𝜓, 𝜒) |
| df-had 1594 | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) |
| wcad 1606 | wff cadd(𝜑, 𝜓, 𝜒) |
| df-cad 1607 | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
| wex 1779 | wff ∃𝑥𝜑 |
| df-ex 1780 | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| wnf 1783 | wff Ⅎ𝑥𝜑 |
| df-nf 1784 | ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| ax-gen 1795 | ⊢ 𝜑 ⇒ ⊢ ∀𝑥𝜑 |
| ax-4 1809 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| ax-5 1910 | ⊢ (𝜑 → ∀𝑥𝜑) |
| ax-6 1967 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| ax-7 2008 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
| wsb 2065 | wff [𝑦 / 𝑥]𝜑 |
| df-sb 2066 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| wcel 2109 | wff 𝐴 ∈ 𝐵 |
| ax-8 2111 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
| ax-9 2119 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
| ax-10 2142 | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| ax-11 2158 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| ax-12 2178 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| ax-13 2370 | ⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| wmo 2531 | wff ∃*𝑥𝜑 |
| df-mo 2533 | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| weu 2561 | wff ∃!𝑥𝜑 |
| df-eu 2562 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| ax-ext 2701 | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
| cab 2707 | class {𝑥 ∣ 𝜑} |
| df-clab 2708 | ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) |
| df-cleq 2721 | ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧))
& ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| df-clel 2803 | ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧))
& ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| wnfc 2876 | wff Ⅎ𝑥𝐴 |
| df-nfc 2878 | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| wne 2925 | wff 𝐴 ≠ 𝐵 |
| df-ne 2926 | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
| wnel 3029 | wff 𝐴 ∉ 𝐵 |
| df-nel 3030 | ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) |
| wral 3044 | wff ∀𝑥 ∈ 𝐴 𝜑 |
| df-ral 3045 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| wrex 3053 | wff ∃𝑥 ∈ 𝐴 𝜑 |
| df-rex 3054 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| wreu 3343 | wff ∃!𝑥 ∈ 𝐴 𝜑 |
| wrmo 3344 | wff ∃*𝑥 ∈ 𝐴 𝜑 |
| df-rmo 3345 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| df-reu 3346 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| crab 3396 | class {𝑥 ∈ 𝐴 ∣ 𝜑} |
| df-rab 3397 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| cvv 3438 | class V |
| df-v 3440 | ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} |
| wcdeq 3725 | wff CondEq(𝑥 = 𝑦 → 𝜑) |
| df-cdeq 3726 | ⊢ (CondEq(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) |
| wsbc 3744 | wff [𝐴 / 𝑥]𝜑 |
| df-sbc 3745 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| csb 3853 | class ⦋𝐴 / 𝑥⦌𝐵 |
| df-csb 3854 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| cdif 3902 | class (𝐴 ∖ 𝐵) |
| cun 3903 | class (𝐴 ∪ 𝐵) |
| cin 3904 | class (𝐴 ∩ 𝐵) |
| wss 3905 | wff 𝐴 ⊆ 𝐵 |
| wpss 3906 | wff 𝐴 ⊊ 𝐵 |
| df-dif 3908 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} |
| df-un 3910 | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| df-in 3912 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| df-ss 3922 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| df-pss 3925 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| csymdif 4205 | class (𝐴 △ 𝐵) |
| df-symdif 4206 | ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
| c0 4286 | class ∅ |
| df-nul 4287 | ⊢ ∅ = (V ∖ V) |
| cif 4478 | class if(𝜑, 𝐴, 𝐵) |
| df-if 4479 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| cpw 4553 | class 𝒫 𝐴 |
| df-pw 4555 | ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| csn 4579 | class {𝐴} |
| df-sn 4580 | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| cpr 4581 | class {𝐴, 𝐵} |
| df-pr 4582 | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| ctp 4583 | class {𝐴, 𝐵, 𝐶} |
| df-tp 4584 | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| cop 4585 | class 〈𝐴, 𝐵〉 |
| df-op 4586 | ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} |
| cotp 4587 | class 〈𝐴, 𝐵, 𝐶〉 |
| df-ot 4588 | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
| cuni 4861 | class ∪
𝐴 |
| df-uni 4862 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
| cint 4899 | class ∩
𝐴 |
| df-int 4900 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| ciun 4944 | class ∪ 𝑥 ∈ 𝐴 𝐵 |
| ciin 4945 | class ∩ 𝑥 ∈ 𝐴 𝐵 |
| df-iun 4946 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| df-iin 4947 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| wdisj 5062 | wff Disj 𝑥 ∈ 𝐴 𝐵 |
| df-disj 5063 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| wbr 5095 | wff 𝐴𝑅𝐵 |
| df-br 5096 | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| copab 5157 | class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| df-opab 5158 | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| cmpt 5176 | class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| df-mpt 5177 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| wtr 5202 | wff Tr 𝐴 |
| df-tr 5203 | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
| ax-rep 5221 | ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| ax-sep 5238 | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| ax-nul 5248 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| ax-pow 5307 | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| ax-pr 5374 | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
| cid 5517 | class I |
| df-id 5518 | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| cep 5522 | class E |
| df-eprel 5523 | ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} |
| wpo 5529 | wff 𝑅 Po 𝐴 |
| wor 5530 | wff 𝑅 Or 𝐴 |
| df-po 5531 | ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| df-so 5532 | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
| wfr 5573 | wff 𝑅 Fr 𝐴 |
| wse 5574 | wff 𝑅 Se 𝐴 |
| wwe 5575 | wff 𝑅 We 𝐴 |
| df-fr 5576 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| df-se 5577 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| df-we 5578 | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
| cxp 5621 | class (𝐴 × 𝐵) |
| ccnv 5622 | class ◡𝐴 |
| cdm 5623 | class dom 𝐴 |
| crn 5624 | class ran 𝐴 |
| cres 5625 | class (𝐴 ↾ 𝐵) |
| cima 5626 | class (𝐴 “ 𝐵) |
| ccom 5627 | class (𝐴 ∘ 𝐵) |
| wrel 5628 | wff Rel 𝐴 |
| df-xp 5629 | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| df-rel 5630 | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| df-cnv 5631 | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
| df-co 5632 | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| df-dm 5633 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| df-rn 5634 | ⊢ ran 𝐴 = dom ◡𝐴 |
| df-res 5635 | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| df-ima 5636 | ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) |
| cpred 6252 | class Pred(𝑅, 𝐴, 𝑋) |
| df-pred 6253 | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| word 6310 | wff Ord 𝐴 |
| con0 6311 | class On |
| wlim 6312 | wff Lim 𝐴 |
| csuc 6313 | class suc 𝐴 |
| df-ord 6314 | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
| df-on 6315 | ⊢ On = {𝑥 ∣ Ord 𝑥} |
| df-lim 6316 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| df-suc 6317 | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| cio 6440 | class (℩𝑥𝜑) |
| df-iota 6442 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} |
| wfun 6480 | wff Fun 𝐴 |
| wfn 6481 | wff 𝐴 Fn 𝐵 |
| wf 6482 | wff 𝐹:𝐴⟶𝐵 |
| wf1 6483 | wff 𝐹:𝐴–1-1→𝐵 |
| wfo 6484 | wff 𝐹:𝐴–onto→𝐵 |
| wf1o 6485 | wff 𝐹:𝐴–1-1-onto→𝐵 |
| cfv 6486 | class (𝐹‘𝐴) |
| wiso 6487 | wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
| df-fun 6488 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
| df-fn 6489 | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
| df-f 6490 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| df-f1 6491 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
| df-fo 6492 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| df-f1o 6493 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
| df-fv 6494 | ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) |
| df-isom 6495 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| crio 7309 | class (℩𝑥 ∈ 𝐴 𝜑) |
| df-riota 7310 | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| co 7353 | class (𝐴𝐹𝐵) |
| coprab 7354 | class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| cmpo 7355 | class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| df-ov 7356 | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
| df-oprab 7357 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| df-mpo 7358 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| cof 7615 | class ∘f 𝑅 |
| cofr 7616 | class ∘r 𝑅 |
| df-of 7617 | ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| df-ofr 7618 | ⊢ ∘r 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| crpss 7662 | class
[⊊] |
| df-rpss 7663 | ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
| ax-un 7675 | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| com 7806 | class ω |
| df-om 7807 | ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
| c1st 7929 | class 1st |
| c2nd 7930 | class 2nd |
| df-1st 7931 | ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) |
| df-2nd 7932 | ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) |
| csupp 8100 | class supp |
| df-supp 8101 | ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) |
| ctpos 8165 | class tpos 𝐹 |
| df-tpos 8166 | ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| ccur 8205 | class curry 𝐴 |
| cunc 8206 | class uncurry 𝐴 |
| df-cur 8207 | ⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) |
| df-unc 8208 | ⊢ uncurry 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐹‘𝑥)𝑧} |
| cund 8212 | class Undef |
| df-undef 8213 | ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) |
| cfrecs 8220 | class frecs(𝑅, 𝐴, 𝐹) |
| df-frecs 8221 | ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| cwrecs 8251 | class wrecs(𝑅, 𝐴, 𝐹) |
| df-wrecs 8252 | ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
| wsmo 8275 | wff Smo 𝐴 |
| df-smo 8276 | ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
| crecs 8300 | class recs(𝐹) |
| df-recs 8301 | ⊢ recs(𝐹) = wrecs( E , On, 𝐹) |
| crdg 8338 | class rec(𝐹, 𝐼) |
| df-rdg 8339 | ⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
| cseqom 8376 | class seqω(𝐹, 𝐼) |
| df-seqom 8377 | ⊢ seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “
ω) |
| c1o 8388 | class 1o |
| c2o 8389 | class 2o |
| c3o 8390 | class 3o |
| c4o 8391 | class 4o |
| coa 8392 | class +o |
| comu 8393 | class
·o |
| coe 8394 | class
↑o |
| df-1o 8395 | ⊢ 1o = suc
∅ |
| df-2o 8396 | ⊢ 2o = suc
1o |
| df-3o 8397 | ⊢ 3o = suc
2o |
| df-4o 8398 | ⊢ 4o = suc
3o |
| df-oadd 8399 | ⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) |
| df-omul 8400 | ⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) |
| df-oexp 8401 | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) |
| cnadd 8590 | class +no |
| df-nadd 8591 | ⊢ +no = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧
(((1st ‘𝑥)
E (1st ‘𝑦)
∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd
‘𝑥) = (2nd
‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤
∈ On ∣ ((𝑎
“ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd
‘𝑧)})) ⊆ 𝑤)})) |
| wer 8629 | wff 𝑅 Er 𝐴 |
| cec 8630 | class [𝐴]𝑅 |
| cqs 8631 | class (𝐴 / 𝑅) |
| df-er 8632 | ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
| df-ec 8634 | ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) |
| df-qs 8638 | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| cmap 8760 | class
↑m |
| cpm 8761 | class
↑pm |
| df-map 8762 | ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
| df-pm 8763 | ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
| cixp 8831 | class X𝑥 ∈ 𝐴 𝐵 |
| df-ixp 8832 | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| cen 8876 | class ≈ |
| cdom 8877 | class ≼ |
| csdm 8878 | class ≺ |
| cfn 8879 | class Fin |
| df-en 8880 | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
| df-dom 8881 | ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
| df-sdom 8882 | ⊢ ≺ = ( ≼ ∖ ≈
) |
| df-fin 8883 | ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
| cfsupp 9270 | class finSupp |
| df-fsupp 9271 | ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} |
| cfi 9319 | class fi |
| df-fi 9320 | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
| csup 9349 | class sup(𝐴, 𝐵, 𝑅) |
| cinf 9350 | class inf(𝐴, 𝐵, 𝑅) |
| df-sup 9351 | ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} |
| df-inf 9352 | ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) |
| coi 9420 | class OrdIso(𝑅, 𝐴) |
| df-oi 9421 | ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) |
| char 9467 | class har |
| df-har 9468 | ⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) |
| cwdom 9475 | class
≼* |
| df-wdom 9476 | ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} |
| ax-reg 9503 | ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| ax-inf 9553 | ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) |
| ax-inf2 9556 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| ccnf 9576 | class CNF |
| df-cnf 9577 | ⊢ CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| cttrcl 9622 | class t++𝑅 |
| df-ttrcl 9623 | ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} |
| ctc 9651 | class TC |
| df-tc 9652 | ⊢ TC = (𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ Tr 𝑦)}) |
| cr1 9677 | class
𝑅1 |
| crnk 9678 | class rank |
| df-r1 9679 | ⊢ 𝑅1 =
rec((𝑥 ∈ V ↦
𝒫 𝑥),
∅) |
| df-rank 9680 | ⊢ rank = (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
| cdju 9813 | class (𝐴 ⊔ 𝐵) |
| cinl 9814 | class inl |
| cinr 9815 | class inr |
| df-dju 9816 | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| df-inl 9817 | ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) |
| df-inr 9818 | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
| ccrd 9850 | class card |
| cale 9851 | class ℵ |
| ccf 9852 | class cf |
| wacn 9853 | class AC 𝐴 |
| df-card 9854 | ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
| df-aleph 9855 | ⊢ ℵ = rec(har, ω) |
| df-cf 9856 | ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦
∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))}) |
| df-acn 9857 | ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
| wac 10028 | wff
CHOICE |
| df-ac 10029 | ⊢ (CHOICE ↔
∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
| cfin1a 10191 | class
FinIa |
| cfin2 10192 | class
FinII |
| cfin4 10193 | class
FinIV |
| cfin3 10194 | class
FinIII |
| cfin5 10195 | class FinV |
| cfin6 10196 | class
FinVI |
| cfin7 10197 | class
FinVII |
| df-fin1a 10198 | ⊢ FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin)} |
| df-fin2 10199 | ⊢ FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦)} |
| df-fin4 10200 | ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} |
| df-fin3 10201 | ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} |
| df-fin5 10202 | ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
| df-fin6 10203 | ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} |
| df-fin7 10204 | ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} |
| ax-cc 10348 | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| ax-dc 10359 | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
| ax-ac 10372 | ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
| ax-ac2 10376 | ⊢ ∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) |
| cgch 10533 | class GCH |
| df-gch 10534 | ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) |
| cwina 10595 | class
Inaccw |
| cina 10596 | class Inacc |
| df-wina 10597 | ⊢ Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} |
| df-ina 10598 | ⊢ Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} |
| cwun 10613 | class WUni |
| cwunm 10614 | class wUniCl |
| df-wun 10615 | ⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} |
| df-wunc 10616 | ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢
∈ WUni ∣ 𝑥
⊆ 𝑢}) |
| ctsk 10661 | class Tarski |
| df-tsk 10662 | ⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} |
| cgru 10703 | class Univ |
| df-gru 10704 | ⊢ Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))} |
| ax-groth 10736 | ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
| ctskm 10750 | class tarskiMap |
| df-tskm 10751 | ⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦
∈ Tarski ∣ 𝑥
∈ 𝑦}) |
| cnpi 10757 | class N |
| cpli 10758 | class
+N |
| cmi 10759 | class
·N |
| clti 10760 | class
<N |
| cplpq 10761 | class
+pQ |
| cmpq 10762 | class
·pQ |
| cltpq 10763 | class
<pQ |
| ceq 10764 | class
~Q |
| cnq 10765 | class Q |
| c1q 10766 | class
1Q |
| cerq 10767 | class
[Q] |
| cplq 10768 | class
+Q |
| cmq 10769 | class
·Q |
| crq 10770 | class
*Q |
| cltq 10771 | class
<Q |
| cnp 10772 | class P |
| c1p 10773 | class
1P |
| cpp 10774 | class
+P |
| cmp 10775 | class
·P |
| cltp 10776 | class
<P |
| cer 10777 | class
~R |
| cnr 10778 | class R |
| c0r 10779 | class
0R |
| c1r 10780 | class
1R |
| cm1r 10781 | class
-1R |
| cplr 10782 | class
+R |
| cmr 10783 | class
·R |
| cltr 10784 | class
<R |
| df-ni 10785 | ⊢ N = (ω
∖ {∅}) |
| df-pli 10786 | ⊢ +N = (
+o ↾ (N ×
N)) |
| df-mi 10787 | ⊢
·N = ( ·o ↾
(N × N)) |
| df-lti 10788 | ⊢ <N = ( E ∩
(N × N)) |
| df-plpq 10821 | ⊢ +pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈(((1st
‘𝑥)
·N (2nd ‘𝑦)) +N
((1st ‘𝑦)
·N (2nd ‘𝑥))), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
| df-mpq 10822 | ⊢ ·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
| df-ltpq 10823 | ⊢ <pQ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} |
| df-enq 10824 | ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} |
| df-nq 10825 | ⊢ Q = {𝑥 ∈ (N ×
N) ∣ ∀𝑦 ∈ (N ×
N)(𝑥
~Q 𝑦 → ¬ (2nd ‘𝑦) <N
(2nd ‘𝑥))} |
| df-erq 10826 | ⊢ [Q] = (
~Q ∩ ((N × N)
× Q)) |
| df-plq 10827 | ⊢ +Q =
(([Q] ∘ +pQ ) ↾
(Q × Q)) |
| df-mq 10828 | ⊢
·Q = (([Q] ∘
·pQ ) ↾ (Q ×
Q)) |
| df-1nq 10829 | ⊢ 1Q =
〈1o, 1o〉 |
| df-rq 10830 | ⊢ *Q =
(◡ ·Q
“ {1Q}) |
| df-ltnq 10831 | ⊢ <Q = (
<pQ ∩ (Q ×
Q)) |
| df-np 10894 | ⊢ P = {𝑥 ∣ ((∅ ⊊
𝑥 ∧ 𝑥 ⊊ Q) ∧
∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} |
| df-1p 10895 | ⊢ 1P =
{𝑥 ∣ 𝑥 <Q
1Q} |
| df-plp 10896 | ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦
{𝑤 ∣ ∃𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑦 𝑤 = (𝑣 +Q 𝑢)}) |
| df-mp 10897 | ⊢
·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑤 ∣ ∃𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑦 𝑤 = (𝑣 ·Q 𝑢)}) |
| df-ltp 10898 | ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧
𝑥 ⊊ 𝑦)} |
| df-enr 10968 | ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} |
| df-nr 10969 | ⊢ R =
((P × P) / ~R
) |
| df-plr 10970 | ⊢ +R =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ))} |
| df-mr 10971 | ⊢
·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |
| df-ltr 10972 | ⊢ <R =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |
| df-0r 10973 | ⊢ 0R =
[〈1P, 1P〉]
~R |
| df-1r 10974 | ⊢ 1R =
[〈(1P +P
1P), 1P〉]
~R |
| df-m1r 10975 | ⊢ -1R =
[〈1P, (1P
+P 1P)〉]
~R |
| cc 11026 | class ℂ |
| cr 11027 | class ℝ |
| cc0 11028 | class 0 |
| c1 11029 | class 1 |
| ci 11030 | class i |
| caddc 11031 | class + |
| cltrr 11032 | class
<ℝ |
| cmul 11033 | class · |
| df-c 11034 | ⊢ ℂ = (R
× R) |
| df-0 11035 | ⊢ 0 =
〈0R,
0R〉 |
| df-1 11036 | ⊢ 1 =
〈1R,
0R〉 |
| df-i 11037 | ⊢ i =
〈0R,
1R〉 |
| df-r 11038 | ⊢ ℝ = (R
× {0R}) |
| df-add 11039 | ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
| df-mul 11040 | ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R
(-1R ·R (𝑣
·R 𝑓))), ((𝑣 ·R 𝑢) +R
(𝑤
·R 𝑓))〉))} |
| df-lt 11041 | ⊢ <ℝ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧
∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧
𝑦 = 〈𝑤,
0R〉) ∧ 𝑧 <R 𝑤))} |
| ax-cnex 11084 | ⊢ ℂ ∈ V |
| ax-resscn 11085 | ⊢ ℝ ⊆ ℂ |
| ax-1cn 11086 | ⊢ 1 ∈ ℂ |
| ax-icn 11087 | ⊢ i ∈ ℂ |
| ax-addcl 11088 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| ax-addrcl 11089 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| ax-mulcl 11090 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| ax-mulrcl 11091 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
| ax-mulcom 11092 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| ax-addass 11093 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| ax-mulass 11094 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| ax-distr 11095 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| ax-i2m1 11096 | ⊢ ((i · i) + 1) = 0 |
| ax-1ne0 11097 | ⊢ 1 ≠ 0 |
| ax-1rid 11098 | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| ax-rnegex 11099 | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
| ax-rrecex 11100 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
| ax-cnre 11101 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| ax-pre-lttri 11102 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| ax-pre-lttrn 11103 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| ax-pre-ltadd 11104 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
| ax-pre-mulgt0 11105 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0
<ℝ 𝐴
∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| ax-pre-sup 11106 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
| ax-addf 11107 | ⊢ + :(ℂ ×
ℂ)⟶ℂ |
| ax-mulf 11108 | ⊢ · :(ℂ ×
ℂ)⟶ℂ |
| cpnf 11165 | class +∞ |
| cmnf 11166 | class -∞ |
| cxr 11167 | class
ℝ* |
| clt 11168 | class < |
| cle 11169 | class ≤ |
| df-pnf 11170 | ⊢ +∞ = 𝒫 ∪ ℂ |
| df-mnf 11171 | ⊢ -∞ = 𝒫
+∞ |
| df-xr 11172 | ⊢ ℝ* = (ℝ
∪ {+∞, -∞}) |
| df-ltxr 11173 | ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) ×
{+∞}) ∪ ({-∞} × ℝ))) |
| df-le 11174 | ⊢ ≤ = ((ℝ*
× ℝ*) ∖ ◡
< ) |
| cmin 11365 | class − |
| cneg 11366 | class -𝐴 |
| df-sub 11367 | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| df-neg 11368 | ⊢ -𝐴 = (0 − 𝐴) |
| cdiv 11795 | class / |
| df-div 11796 | ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦
(℩𝑧 ∈
ℂ (𝑦 · 𝑧) = 𝑥)) |
| cn 12146 | class ℕ |
| df-nn 12147 | ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “
ω) |
| c2 12201 | class 2 |
| c3 12202 | class 3 |
| c4 12203 | class 4 |
| c5 12204 | class 5 |
| c6 12205 | class 6 |
| c7 12206 | class 7 |
| c8 12207 | class 8 |
| c9 12208 | class 9 |
| df-2 12209 | ⊢ 2 = (1 + 1) |
| df-3 12210 | ⊢ 3 = (2 + 1) |
| df-4 12211 | ⊢ 4 = (3 + 1) |
| df-5 12212 | ⊢ 5 = (4 + 1) |
| df-6 12213 | ⊢ 6 = (5 + 1) |
| df-7 12214 | ⊢ 7 = (6 + 1) |
| df-8 12215 | ⊢ 8 = (7 + 1) |
| df-9 12216 | ⊢ 9 = (8 + 1) |
| cn0 12402 | class
ℕ0 |
| df-n0 12403 | ⊢ ℕ0 = (ℕ
∪ {0}) |
| cxnn0 12475 | class
ℕ0* |
| df-xnn0 12476 | ⊢ ℕ0* =
(ℕ0 ∪ {+∞}) |
| cz 12489 | class ℤ |
| df-z 12490 | ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
| cdc 12609 | class ;𝐴𝐵 |
| df-dec 12610 | ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
| cuz 12753 | class
ℤ≥ |
| df-uz 12754 | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| cq 12867 | class ℚ |
| df-q 12868 | ⊢ ℚ = ( / “ (ℤ
× ℕ)) |
| crp 12911 | class
ℝ+ |
| df-rp 12912 | ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 <
𝑥} |
| cxne 13029 | class -𝑒𝐴 |
| cxad 13030 | class
+𝑒 |
| cxmu 13031 | class
·e |
| df-xneg 13032 | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| df-xadd 13033 | ⊢ +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 = +∞,
if(𝑦 = -∞, 0,
+∞), if(𝑥 = -∞,
if(𝑦 = +∞, 0,
-∞), if(𝑦 = +∞,
+∞, if(𝑦 = -∞,
-∞, (𝑥 + 𝑦)))))) |
| df-xmul 13034 | ⊢ ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if((𝑥 = 0 ∨
𝑦 = 0), 0, if((((0 <
𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) |
| cioo 13266 | class (,) |
| cioc 13267 | class (,] |
| cico 13268 | class [,) |
| cicc 13269 | class [,] |
| df-ioo 13270 | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| df-ioc 13271 | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| df-ico 13272 | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| df-icc 13273 | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| cfz 13428 | class ... |
| df-fz 13429 | ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
| cfzo 13575 | class ..^ |
| df-fzo 13576 | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
| cfl 13712 | class ⌊ |
| cceil 13713 | class ⌈ |
| df-fl 13714 | ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) |
| df-ceil 13715 | ⊢ ⌈ = (𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) |
| cmo 13791 | class mod |
| df-mod 13792 | ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
| cseq 13926 | class seq𝑀( + , 𝐹) |
| df-seq 13927 | ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| cexp 13986 | class ↑ |
| df-exp 13987 | ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ ×
{𝑥}))‘-𝑦))))) |
| cfa 14198 | class ! |
| df-fac 14199 | ⊢ ! = ({〈0, 1〉} ∪ seq1( ·
, I )) |
| cbc 14227 | class C |
| df-bc 14228 | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
| chash 14255 | class ♯ |
| df-hash 14256 | ⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
∪ ((V ∖ Fin) × {+∞})) |
| cword 14438 | class Word 𝑆 |
| df-word 14439 | ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
| clsw 14487 | class lastS |
| df-lsw 14488 | ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) |
| cconcat 14495 | class ++ |
| df-concat 14496 | ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
| cs1 14520 | class 〈“𝐴”〉 |
| df-s1 14521 | ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} |
| csubstr 14565 | class substr |
| df-substr 14566 | ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
| cpfx 14595 | class prefix |
| df-pfx 14596 | ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) |
| csplice 14673 | class splice |
| df-splice 14674 | ⊢ splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st
‘(1st ‘𝑏))) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉))) |
| creverse 14682 | class reverse |
| df-reverse 14683 | ⊢ reverse = (𝑠 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑠)) ↦ (𝑠‘(((♯‘𝑠) − 1) − 𝑥)))) |
| creps 14692 | class repeatS |
| df-reps 14693 | ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) |
| ccsh 14712 | class cyclShift |
| df-csh 14713 | ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) |
| cs2 14766 | class 〈“𝐴𝐵”〉 |
| cs3 14767 | class 〈“𝐴𝐵𝐶”〉 |
| cs4 14768 | class 〈“𝐴𝐵𝐶𝐷”〉 |
| cs5 14769 | class 〈“𝐴𝐵𝐶𝐷𝐸”〉 |
| cs6 14770 | class 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 |
| cs7 14771 | class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 |
| cs8 14772 | class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 |
| df-s2 14773 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++
〈“𝐵”〉) |
| df-s3 14774 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
| df-s4 14775 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| df-s5 14776 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) |
| df-s6 14777 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) |
| df-s7 14778 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
| df-s8 14779 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) |
| ctcl 14910 | class t+ |
| crtcl 14911 | class t* |
| df-trcl 14912 | ⊢ t+ = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| df-rtrcl 14913 | ⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| crelexp 14944 | class
↑𝑟 |
| df-relexp 14945 | ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
| crtrcl 14980 | class t*rec |
| df-rtrclrec 14981 | ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
| cshi 14991 | class shift |
| df-shft 14992 | ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
| csgn 15011 | class sgn |
| df-sgn 15012 | ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) |
| ccj 15021 | class ∗ |
| cre 15022 | class ℜ |
| cim 15023 | class ℑ |
| df-cj 15024 | ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
| df-re 15025 | ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
| df-im 15026 | ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
| csqrt 15158 | class √ |
| cabs 15159 | class abs |
| df-sqrt 15160 | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉
ℝ+))) |
| df-abs 15161 | ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) |
| clsp 15395 | class lim sup |
| df-limsup 15396 | ⊢ lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| cli 15409 | class ⇝ |
| crli 15410 | class
⇝𝑟 |
| co1 15411 | class 𝑂(1) |
| clo1 15412 | class
≤𝑂(1) |
| df-clim 15413 | ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
| df-rlim 15414 | ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ)
∧ 𝑥 ∈ ℂ)
∧ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} |
| df-o1 15415 | ⊢ 𝑂(1) = {𝑓 ∈ (ℂ
↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚} |
| df-lo1 15416 | ⊢ ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ 𝑚} |
| csu 15611 | class Σ𝑘 ∈ 𝐴 𝐵 |
| df-sum 15612 | ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
| cprod 15828 | class ∏𝑘 ∈ 𝐴 𝐵 |
| df-prod 15829 | ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
| cfallfac 15929 | class FallFac |
| crisefac 15930 | class RiseFac |
| df-risefac 15931 | ⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦
∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) |
| df-fallfac 15932 | ⊢ FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦
∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘)) |
| cbp 15971 | class BernPoly |
| df-bpoly 15972 | ⊢ BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs(
< , ℕ0, (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚)) |
| ce 15986 | class exp |
| ceu 15987 | class e |
| csin 15988 | class sin |
| ccos 15989 | class cos |
| ctan 15990 | class tan |
| cpi 15991 | class π |
| df-ef 15992 | ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
| df-e 15993 | ⊢ e =
(exp‘1) |
| df-sin 15994 | ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
| df-cos 15995 | ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
| df-tan 15996 | ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
| df-pi 15997 | ⊢ π = inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) |
| ctau 16129 | class τ |
| df-tau 16130 | ⊢ τ = inf((ℝ+ ∩
(◡cos “ {1})), ℝ, <
) |
| cdvds 16181 | class ∥ |
| df-dvds 16182 | ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} |
| cbits 16348 | class bits |
| csad 16349 | class sadd |
| csmu 16350 | class smul |
| df-bits 16351 | ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2
∥ (⌊‘(𝑛 /
(2↑𝑚)))}) |
| df-sad 16380 | ⊢ sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫
ℕ0 ↦ {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))}) |
| df-smu 16405 | ⊢ smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫
ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) |
| cgcd 16423 | class gcd |
| df-gcd 16424 | ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |
| clcm 16517 | class lcm |
| clcmf 16518 | class lcm |
| df-lcm 16519 | ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
| df-lcmf 16520 | ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈
𝑧, 0, inf({𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) |
| cprime 16600 | class ℙ |
| df-prm 16601 | ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} |
| cnumer 16662 | class numer |
| cdenom 16663 | class denom |
| df-numer 16664 | ⊢ numer = (𝑦 ∈ ℚ ↦ (1st
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| df-denom 16665 | ⊢ denom = (𝑦 ∈ ℚ ↦ (2nd
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
| codz 16692 | class
odℤ |
| cphi 16693 | class ϕ |
| df-odz 16694 | ⊢ odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
))) |
| df-phi 16695 | ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) |
| cpc 16766 | class pCnt |
| df-pc 16767 | ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
| cgz 16859 | class ℤ[i] |
| df-gz 16860 | ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧
(ℑ‘𝑥) ∈
ℤ)} |
| cvdwa 16895 | class AP |
| cvdwm 16896 | class MonoAP |
| cvdwp 16897 | class PolyAP |
| df-vdwap 16898 | ⊢ AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) |
| df-vdwmc 16899 | ⊢ MonoAP = {〈𝑘, 𝑓〉 ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅} |
| df-vdwpc 16900 | ⊢ PolyAP = {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} |
| cram 16929 | class Ramsey |
| df-ram 16931 | ⊢ Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0
∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |
| cprmo 16961 | class #p |
| df-prmo 16962 | ⊢ #p = (𝑛 ∈ ℕ0 ↦
∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
| cstr 17075 | class Struct |
| df-struct 17076 | ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ ×
ℕ)) ∧ Fun (𝑓
∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} |
| csts 17092 | class sSet |
| df-sets 17093 | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| cslot 17110 | class Slot 𝐴 |
| df-slot 17111 | ⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) |
| cnx 17122 | class ndx |
| df-ndx 17123 | ⊢ ndx = ( I ↾ ℕ) |
| cbs 17138 | class Base |
| df-base 17139 | ⊢ Base = Slot 1 |
| cress 17159 | class
↾s |
| df-ress 17160 | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| cplusg 17179 | class +g |
| cmulr 17180 | class .r |
| cstv 17181 | class
*𝑟 |
| csca 17182 | class Scalar |
| cvsca 17183 | class
·𝑠 |
| cip 17184 | class
·𝑖 |
| cts 17185 | class TopSet |
| cple 17186 | class le |
| coc 17187 | class oc |
| cds 17188 | class dist |
| cunif 17189 | class UnifSet |
| chom 17190 | class Hom |
| cco 17191 | class comp |
| df-plusg 17192 | ⊢ +g = Slot 2 |
| df-mulr 17193 | ⊢ .r = Slot 3 |
| df-starv 17194 | ⊢ *𝑟 = Slot
4 |
| df-sca 17195 | ⊢ Scalar = Slot 5 |
| df-vsca 17196 | ⊢ ·𝑠 = Slot
6 |
| df-ip 17197 | ⊢
·𝑖 = Slot 8 |
| df-tset 17198 | ⊢ TopSet = Slot 9 |
| df-ple 17199 | ⊢ le = Slot ;10 |
| df-ocomp 17200 | ⊢ oc = Slot ;11 |
| df-ds 17201 | ⊢ dist = Slot ;12 |
| df-unif 17202 | ⊢ UnifSet = Slot ;13 |
| df-hom 17203 | ⊢ Hom = Slot ;14 |
| df-cco 17204 | ⊢ comp = Slot ;15 |
| crest 17342 | class
↾t |
| ctopn 17343 | class TopOpen |
| df-rest 17344 | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
| df-topn 17345 | ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t
(Base‘𝑤))) |
| ctg 17359 | class topGen |
| cpt 17360 | class
∏t |
| c0g 17361 | class 0g |
| cgsu 17362 | class
Σg |
| df-0g 17363 | ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
| df-gsum 17364 | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
| df-topgen 17365 | ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
| df-pt 17366 | ⊢ ∏t = (𝑓 ∈ V ↦
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |
| cprds 17367 | class Xs |
| cpws 17368 | class
↑s |
| df-prds 17369 | ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
| df-pws 17371 | ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) |
| cordt 17421 | class ordTop |
| cxrs 17422 | class
ℝ*𝑠 |
| df-ordt 17423 | ⊢ ordTop = (𝑟 ∈ V ↦
(topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))))) |
| df-xrs 17424 | ⊢ ℝ*𝑠 =
({〈(Base‘ndx), ℝ*〉,
〈(+g‘ndx), +𝑒 〉,
〈(.r‘ndx), ·e 〉} ∪
{〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx),
≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)))〉}) |
| cqtop 17425 | class qTop |
| cimas 17426 | class
“s |
| cqus 17427 | class
/s |
| cxps 17428 | class
×s |
| df-qtop 17429 | ⊢ qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗) ∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) |
| df-imas 17430 | ⊢ “s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |
| df-qus 17431 | ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
| df-xps 17432 | ⊢ ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) |
| cmre 17502 | class Moore |
| cmrc 17503 | class mrCls |
| cmri 17504 | class mrInd |
| cacs 17505 | class ACS |
| df-mre 17506 | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))}) |
| df-mrc 17507 | ⊢ mrCls = (𝑐 ∈ ∪ ran
Moore ↦ (𝑥 ∈
𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) |
| df-mri 17508 | ⊢ mrInd = (𝑐 ∈ ∪ ran
Moore ↦ {𝑠 ∈
𝒫 ∪ 𝑐 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))}) |
| df-acs 17509 | ⊢ ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) |
| ccat 17588 | class Cat |
| ccid 17589 | class Id |
| chomf 17590 | class
Homf |
| ccomf 17591 | class
compf |
| df-cat 17592 | ⊢ Cat = {𝑐 ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))))} |
| df-cid 17593 | ⊢ Id = (𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓)))) |
| df-homf 17594 | ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) |
| df-comf 17595 | ⊢ compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) |
| coppc 17635 | class oppCat |
| df-oppc 17636 | ⊢ oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑓)〉) sSet
〈(comp‘ndx), (𝑢
∈ ((Base‘𝑓)
× (Base‘𝑓)),
𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) |
| cmon 17653 | class Mono |
| cepi 17654 | class Epi |
| df-mon 17655 | ⊢ Mono = (𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) |
| df-epi 17656 | ⊢ Epi = (𝑐 ∈ Cat ↦ tpos
(Mono‘(oppCat‘𝑐))) |
| csect 17669 | class Sect |
| cinv 17670 | class Inv |
| ciso 17671 | class Iso |
| df-sect 17672 | ⊢ Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) |
| df-inv 17673 | ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
| df-iso 17674 | ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) |
| ccic 17720 | class
≃𝑐 |
| df-cic 17721 | ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦
((Iso‘𝑐) supp
∅)) |
| cssc 17732 | class
⊆cat |
| cresc 17733 | class
↾cat |
| csubc 17734 | class Subcat |
| df-ssc 17735 | ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |
| df-resc 17736 | ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx),
ℎ〉)) |
| df-subc 17737 | ⊢ Subcat = (𝑐 ∈ Cat ↦ {ℎ ∣ (ℎ ⊆cat (Homf
‘𝑐) ∧ [dom
dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) |
| cfunc 17779 | class Func |
| cidfu 17780 | class
idfunc |
| ccofu 17781 | class
∘func |
| cresf 17782 | class
↾f |
| df-func 17783 | ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
| df-idfu 17784 | ⊢ idfunc = (𝑡 ∈ Cat ↦
⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉) |
| df-cofu 17785 | ⊢ ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ 〈((1st
‘𝑔) ∘
(1st ‘𝑓)),
(𝑥 ∈ dom dom
(2nd ‘𝑓),
𝑦 ∈ dom dom
(2nd ‘𝑓)
↦ ((((1st ‘𝑓)‘𝑥)(2nd ‘𝑔)((1st ‘𝑓)‘𝑦)) ∘ (𝑥(2nd ‘𝑓)𝑦)))〉) |
| df-resf 17786 | ⊢ ↾f = (𝑓 ∈ V, ℎ ∈ V ↦ 〈((1st
‘𝑓) ↾ dom dom
ℎ), (𝑥 ∈ dom ℎ ↦ (((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥)))〉) |
| cful 17829 | class Full |
| cfth 17830 | class Faith |
| df-full 17831 | ⊢ Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))}) |
| df-fth 17832 | ⊢ Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦))}) |
| cnat 17869 | class Nat |
| cfuc 17870 | class FuncCat |
| df-nat 17871 | ⊢ Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))})) |
| df-fuc 17872 | ⊢ FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈(Base‘ndx),
(𝑡 Func 𝑢)〉, 〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| cinito 17906 | class InitO |
| ctermo 17907 | class TermO |
| czeroo 17908 | class ZeroO |
| df-inito 17909 | ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) |
| df-termo 17910 | ⊢ TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) |
| df-zeroo 17911 | ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) |
| cdoma 17945 | class
doma |
| ccoda 17946 | class
coda |
| carw 17947 | class Arrow |
| choma 17948 | class
Homa |
| df-doma 17949 | ⊢ doma = (1st
∘ 1st ) |
| df-coda 17950 | ⊢ coda = (2nd
∘ 1st ) |
| df-homa 17951 | ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) |
| df-arw 17952 | ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) |
| cida 17978 | class
Ida |
| ccoa 17979 | class
compa |
| df-ida 17980 | ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) |
| df-coa 17981 | ⊢ compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |
| csetc 18000 | class SetCat |
| df-setc 18001 | ⊢ SetCat = (𝑢 ∈ V ↦ {〈(Base‘ndx),
𝑢〉, 〈(Hom
‘ndx), (𝑥 ∈
𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
| ccatc 18023 | class CatCat |
| df-catc 18024 | ⊢ CatCat = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Cat) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |
| cestrc 18046 | class ExtStrCat |
| df-estrc 18047 | ⊢ ExtStrCat = (𝑢 ∈ V ↦ {〈(Base‘ndx),
𝑢〉, 〈(Hom
‘ndx), (𝑥 ∈
𝑢, 𝑦 ∈ 𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉,
〈(comp‘ndx), (𝑣
∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m
(Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd
‘𝑣))
↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉}) |
| cxpc 18092 | class
×c |
| c1stf 18093 | class
1stF |
| c2ndf 18094 | class
2ndF |
| cprf 18095 | class
〈,〉F |
| df-xpc 18096 | ⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
ℎ〉,
〈(comp‘ndx), (𝑥
∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| df-1stf 18097 | ⊢ 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(1st ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) |
| df-2ndf 18098 | ⊢ 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) |
| df-prf 18099 | ⊢ 〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |
| cevlf 18133 | class
evalF |
| ccurf 18134 | class
curryF |
| cuncf 18135 | class
uncurryF |
| cdiag 18136 | class
Δfunc |
| df-evlf 18137 | ⊢ evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 〈(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (Base‘𝑐) ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)), 𝑦 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)) ↦ ⦋(1st
‘𝑥) / 𝑚⦌⦋(1st
‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st
‘𝑚)‘(2nd ‘𝑥)), ((1st
‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝑑)((1st ‘𝑛)‘(2nd
‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) |
| df-curf 18138 | ⊢ curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉) |
| df-uncf 18139 | ⊢ uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2))
∘func ((𝑓 ∘func ((𝑐‘0)
1stF (𝑐‘1))) 〈,〉F
((𝑐‘0)
2ndF (𝑐‘1))))) |
| df-diag 18140 | ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐
1stF 𝑑))) |
| chof 18172 | class
HomF |
| cyon 18173 | class Yon |
| df-hof 18174 | ⊢ HomF = (𝑐 ∈ Cat ↦
〈(Homf ‘𝑐), ⦋(Base‘𝑐) / 𝑏⦌(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝑐)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝑐)(2nd ‘𝑦))𝑓))))〉) |
| df-yon 18175 | ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF
(HomF‘(oppCat‘𝑐)))) |
| codu 18210 | class ODual |
| df-odu 18211 | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| cproset 18216 | class Proset |
| cdrs 18217 | class Dirset |
| df-proset 18218 | ⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
| df-drs 18219 | ⊢ Dirset = {𝑓 ∈ Proset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} |
| cpo 18231 | class Poset |
| cplt 18232 | class lt |
| club 18233 | class lub |
| cglb 18234 | class glb |
| cjn 18235 | class join |
| cmee 18236 | class meet |
| df-poset 18237 | ⊢ Poset = {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |
| df-plt 18252 | ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
| df-lub 18268 | ⊢ lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧))})) |
| df-glb 18269 | ⊢ glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) |
| df-join 18270 | ⊢ join = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧}) |
| df-meet 18271 | ⊢ meet = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) |
| ctos 18338 | class Toset |
| df-toset 18339 | ⊢ Toset = {𝑓 ∈ Poset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} |
| cp0 18345 | class 0. |
| cp1 18346 | class 1. |
| df-p0 18347 | ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
| df-p1 18348 | ⊢ 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝))) |
| clat 18355 | class Lat |
| df-lat 18356 | ⊢ Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))} |
| ccla 18422 | class CLat |
| df-clat 18423 | ⊢ CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))} |
| cdlat 18444 | class DLat |
| df-dlat 18445 | ⊢ DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} |
| cipo 18451 | class toInc |
| df-ipo 18452 | ⊢ toInc = (𝑓 ∈ V ↦ ⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
| cps 18488 | class PosetRel |
| ctsr 18489 | class TosetRel |
| df-ps 18490 | ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪
∪ 𝑟))} |
| df-tsr 18491 | ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} |
| cdir 18518 | class DirRel |
| ctail 18519 | class tail |
| df-dir 18520 | ⊢ DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |
| df-tail 18521 | ⊢ tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟
↦ (𝑟 “ {𝑥}))) |
| cplusf 18529 | class
+𝑓 |
| cmgm 18530 | class Mgm |
| df-plusf 18531 | ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
| df-mgm 18532 | ⊢ Mgm = {𝑔 ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} |
| cmgmhm 18582 | class MgmHom |
| csubmgm 18583 | class SubMgm |
| df-mgmhm 18584 | ⊢ MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) |
| df-submgm 18585 | ⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) |
| csgrp 18610 | class Smgrp |
| df-sgrp 18611 | ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} |
| cmnd 18626 | class Mnd |
| df-mnd 18627 | ⊢ Mnd = {𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |
| cmhm 18673 | class MndHom |
| csubmnd 18674 | class SubMnd |
| df-mhm 18675 | ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
| df-submnd 18676 | ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣
((0g‘𝑠)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) |
| cfrmd 18739 | class freeMnd |
| cvrmd 18740 | class
varFMnd |
| df-frmd 18741 | ⊢ freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx),
Word 𝑖〉,
〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉}) |
| df-vrmd 18742 | ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) |
| cefmnd 18760 | class EndoFMnd |
| df-efmnd 18761 | ⊢ EndoFMnd = (𝑥 ∈ V ↦ ⦋(𝑥 ↑m 𝑥) / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |
| cgrp 18830 | class Grp |
| cminusg 18831 | class invg |
| csg 18832 | class -g |
| df-grp 18833 | ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} |
| df-minusg 18834 | ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |
| df-sbg 18835 | ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) |
| cmg 18964 | class .g |
| df-mulg 18965 | ⊢ .g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g‘𝑔),
⦋seq1((+g‘𝑔), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑔)‘(𝑠‘-𝑛)))))) |
| csubg 19017 | class SubGrp |
| cnsg 19018 | class NrmSGrp |
| cqg 19019 | class
~QG |
| df-subg 19020 | ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) |
| df-nsg 19021 | ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
| df-eqg 19022 | ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) |
| cghm 19109 | class GrpHom |
| df-ghm 19110 | ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) |
| cgim 19154 | class GrpIso |
| cgic 19155 | class
≃𝑔 |
| df-gim 19156 | ⊢ GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
| df-gic 19157 | ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖
1o)) |
| cga 19186 | class GrpAct |
| df-ga 19187 | ⊢ GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
| ccntz 19212 | class Cntz |
| ccntr 19213 | class Cntr |
| df-cntz 19214 | ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) |
| df-cntr 19215 | ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) |
| coppg 19242 | class
oppg |
| df-oppg 19243 | ⊢ oppg = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), tpos
(+g‘𝑤)〉)) |
| csymg 19266 | class SymGrp |
| df-symg 19267 | ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) |
| cpmtr 19338 | class pmTrsp |
| df-pmtr 19339 | ⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| cpsgn 19386 | class pmSgn |
| cevpm 19387 | class pmEven |
| df-psgn 19388 | ⊢ pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
| df-evpm 19389 | ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
| cod 19421 | class od |
| cgex 19422 | class gEx |
| cpgp 19423 | class pGrp |
| cslw 19424 | class pSyl |
| df-od 19425 | ⊢ od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ ⦋{𝑛 ∈ ℕ ∣ (𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
| df-gex 19426 | ⊢ gEx = (𝑔 ∈ V ↦ ⦋{𝑛 ∈ ℕ ∣
∀𝑥 ∈
(Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
| df-pgp 19427 | ⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} |
| df-slw 19428 | ⊢ pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |
| clsm 19531 | class LSSum |
| cpj1 19532 | class
proj1 |
| df-lsm 19533 | ⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) |
| df-pj1 19534 | ⊢ proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) |
| cefg 19603 | class
~FG |
| cfrgp 19604 | class freeGrp |
| cvrgp 19605 | class
varFGrp |
| df-efg 19606 | ⊢ ~FG = (𝑖 ∈ V ↦ ∩ {𝑟
∣ (𝑟 Er Word (𝑖 × 2o) ∧
∀𝑥 ∈ Word
(𝑖 ×
2o)∀𝑛
∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) |
| df-frgp 19607 | ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o))
/s ( ~FG ‘𝑖))) |
| df-vrgp 19608 | ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉](
~FG ‘𝑖))) |
| ccmn 19677 | class CMnd |
| cabl 19678 | class Abel |
| df-cmn 19679 | ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
| df-abl 19680 | ⊢ Abel = (Grp ∩ CMnd) |
| ccyg 19774 | class CycGrp |
| df-cyg 19775 | ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} |
| cdprd 19892 | class DProd |
| cdpj 19893 | class dProj |
| df-dprd 19894 | ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
| df-dpj 19895 | ⊢ dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠‘𝑖)(proj1‘𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))) |
| csimpg 19989 | class SimpGrp |
| df-simpg 19990 | ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈
2o} |
| comnd 20016 | class oMnd |
| cogrp 20017 | class oGrp |
| df-omnd 20018 | ⊢ oMnd = {𝑔 ∈ Mnd ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} |
| df-ogrp 20019 | ⊢ oGrp = (Grp ∩ oMnd) |
| cmgp 20043 | class mulGrp |
| df-mgp 20044 | ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx),
(.r‘𝑤)〉)) |
| crng 20055 | class Rng |
| df-rng 20056 | ⊢ Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧
[(Base‘𝑓) /
𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
| cur 20084 | class 1r |
| df-ur 20085 | ⊢ 1r = (0g
∘ mulGrp) |
| csrg 20089 | class SRing |
| df-srg 20090 | ⊢ SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡][(0g‘𝑓) / 𝑛]∀𝑥 ∈ 𝑟 (∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} |
| crg 20136 | class Ring |
| ccrg 20137 | class CRing |
| df-ring 20138 | ⊢ Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
| df-cring 20139 | ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
| coppr 20239 | class
oppr |
| df-oppr 20240 | ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos
(.r‘𝑓)〉)) |
| cdsr 20257 | class
∥r |
| cui 20258 | class Unit |
| cir 20259 | class Irred |
| df-dvdsr 20260 | ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
| df-unit 20261 | ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
| df-irred 20262 | ⊢ Irred = (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
| cinvr 20290 | class invr |
| df-invr 20291 | ⊢ invr = (𝑟 ∈ V ↦
(invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) |
| cdvr 20303 | class /r |
| df-dvr 20304 | ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) |
| crpm 20335 | class RPrime |
| df-rprm 20336 | ⊢ RPrime = (𝑤 ∈ V ↦
⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) |
| crnghm 20337 | class RngHom |
| crngim 20338 | class RngIso |
| df-rnghm 20339 | ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
| df-rngim 20340 | ⊢ RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) |
| crh 20372 | class RingHom |
| crs 20373 | class RingIso |
| cric 20374 | class
≃𝑟 |
| df-rhm 20375 | ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
| df-rim 20376 | ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) |
| df-ric 20378 | ⊢ ≃𝑟 = (◡ RingIso “ (V ∖
1o)) |
| cnzr 20415 | class NzRing |
| df-nzr 20416 | ⊢ NzRing = {𝑟 ∈ Ring ∣
(1r‘𝑟)
≠ (0g‘𝑟)} |
| clring 20441 | class LRing |
| df-lring 20442 | ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |
| csubrng 20448 | class SubRng |
| df-subrng 20449 | ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) |
| csubrg 20472 | class SubRing |
| df-subrg 20473 | ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧
(1r‘𝑤)
∈ 𝑠)}) |
| crgspn 20513 | class RingSpan |
| df-rgspn 20514 | ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (SubRing‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
| crngc 20519 | class RngCat |
| df-rngc 20520 | ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom
↾ ((𝑢 ∩ Rng)
× (𝑢 ∩
Rng))))) |
| cringc 20548 | class RingCat |
| df-ringc 20549 | ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat (
RingHom ↾ ((𝑢 ∩
Ring) × (𝑢 ∩
Ring))))) |
| crlreg 20594 | class RLReg |
| cdomn 20595 | class Domn |
| cidom 20596 | class IDomn |
| df-rlreg 20597 | ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) |
| df-domn 20598 | ⊢ Domn = {𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |
| df-idom 20599 | ⊢ IDomn = (CRing ∩ Domn) |
| cdr 20632 | class DivRing |
| cfield 20633 | class Field |
| df-drng 20634 | ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖
{(0g‘𝑟)})} |
| df-field 20635 | ⊢ Field = (DivRing ∩
CRing) |
| csdrg 20689 | class SubDRing |
| df-sdrg 20690 | ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) |
| cabv 20711 | class AbsVal |
| df-abv 20712 | ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |
| cstf 20740 | class
*rf |
| csr 20741 | class *-Ring |
| df-staf 20742 | ⊢ *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟‘𝑓)‘𝑥))) |
| df-srng 20743 | ⊢ *-Ring = {𝑓 ∣
[(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |
| corng 20760 | class oRing |
| cofld 20761 | class oField |
| df-orng 20762 | ⊢ oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣
[(Base‘𝑟) /
𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} |
| df-ofld 20763 | ⊢ oField = (Field ∩ oRing) |
| clmod 20781 | class LMod |
| cscaf 20782 | class
·sf |
| df-lmod 20783 | ⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
| df-scaf 20784 | ⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
| clss 20852 | class LSubSp |
| df-lss 20853 | ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣
∀𝑥 ∈
(Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) |
| clspn 20892 | class LSpan |
| df-lsp 20893 | ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (LSubSp‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
| clmhm 20941 | class LMHom |
| clmim 20942 | class LMIso |
| clmic 20943 | class
≃𝑚 |
| df-lmhm 20944 | ⊢ LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |
| df-lmim 20945 | ⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
| df-lmic 20946 | ⊢ ≃𝑚 = (◡ LMIso “ (V ∖
1o)) |
| clbs 20996 | class LBasis |
| df-lbs 20997 | ⊢ LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣
[(LSpan‘𝑤) /
𝑛][(Scalar‘𝑤) / 𝑠]((𝑛‘𝑏) = (Base‘𝑤) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑦( ·𝑠
‘𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))}) |
| clvec 21024 | class LVec |
| df-lvec 21025 | ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈
DivRing} |
| csra 21093 | class subringAlg |
| crglmod 21094 | class ringLMod |
| df-sra 21095 | ⊢ subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |
| df-rgmod 21096 | ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
| clidl 21131 | class LIdeal |
| crsp 21132 | class RSpan |
| df-lidl 21133 | ⊢ LIdeal = (LSubSp ∘
ringLMod) |
| df-rsp 21134 | ⊢ RSpan = (LSpan ∘
ringLMod) |
| c2idl 21174 | class 2Ideal |
| df-2idl 21175 | ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩
(LIdeal‘(oppr‘𝑟)))) |
| clpidl 21245 | class LPIdeal |
| clpir 21246 | class LPIR |
| df-lpidl 21247 | ⊢ LPIdeal = (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |
| df-lpir 21248 | ⊢ LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)} |
| cpid 21261 | class PID |
| df-pid 21262 | ⊢ PID = (IDomn ∩ LPIR) |
| cpsmet 21263 | class PsMet |
| cxmet 21264 | class ∞Met |
| cmet 21265 | class Met |
| cbl 21266 | class ball |
| cfbas 21267 | class fBas |
| cfg 21268 | class filGen |
| cmopn 21269 | class MetOpen |
| cmetu 21270 | class metUnif |
| df-psmet 21271 | ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
| df-xmet 21272 | ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
| df-met 21273 | ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |
| df-bl 21274 | ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) |
| df-mopn 21275 | ⊢ MetOpen = (𝑑 ∈ ∪ ran
∞Met ↦ (topGen‘ran (ball‘𝑑))) |
| df-fbas 21276 | ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) |
| df-fg 21277 | ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) |
| df-metu 21278 | ⊢ metUnif = (𝑑 ∈ ∪ ran
PsMet ↦ ((dom dom 𝑑
× dom dom 𝑑)filGenran
(𝑎 ∈
ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) |
| ccnfld 21279 | class
ℂfld |
| df-cnfld 21280 | ⊢ ℂfld =
(({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
| czring 21371 | class
ℤring |
| df-zring 21372 | ⊢ ℤring =
(ℂfld ↾s ℤ) |
| czrh 21424 | class ℤRHom |
| czlm 21425 | class ℤMod |
| cchr 21426 | class chr |
| czn 21427 | class
ℤ/nℤ |
| df-zrh 21428 | ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
| df-zlm 21429 | ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx),
ℤring〉) sSet 〈( ·𝑠
‘ndx), (.g‘𝑔)〉)) |
| df-chr 21430 | ⊢ chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r‘𝑔))) |
| df-zn 21431 | ⊢ ℤ/nℤ = (𝑛 ∈ ℕ0
↦ ⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
| crefld 21529 | class
ℝfld |
| df-refld 21530 | ⊢ ℝfld =
(ℂfld ↾s ℝ) |
| cphl 21549 | class PreHil |
| cipf 21550 | class
·if |
| df-phl 21551 | ⊢ PreHil = {𝑔 ∈ LVec ∣
[(Base‘𝑔) /
𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} |
| df-ipf 21552 | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
| cocv 21585 | class ocv |
| ccss 21586 | class ClSubSp |
| cthl 21587 | class toHL |
| df-ocv 21588 | ⊢ ocv = (ℎ ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |
| df-css 21589 | ⊢ ClSubSp = (ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) |
| df-thl 21590 | ⊢ toHL = (ℎ ∈ V ↦
((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) |
| cpj 21625 | class proj |
| chil 21626 | class Hil |
| cobs 21627 | class OBasis |
| df-pj 21628 | ⊢ proj = (ℎ ∈ V ↦ ((𝑥 ∈ (LSubSp‘ℎ) ↦ (𝑥(proj1‘ℎ)((ocv‘ℎ)‘𝑥))) ∩ (V × ((Base‘ℎ) ↑m
(Base‘ℎ))))) |
| df-hil 21629 | ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} |
| df-obs 21630 | ⊢ OBasis = (ℎ ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘ℎ) ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})}) |
| cdsmm 21656 | class
⊕m |
| df-dsmm 21657 | ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) |
| cfrlm 21671 | class freeLMod |
| df-frlm 21672 | ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) |
| cuvc 21707 | class unitVec |
| df-uvc 21708 | ⊢ unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))))) |
| clindf 21729 | class LIndF |
| clinds 21730 | class LIndS |
| df-lindf 21731 | ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} |
| df-linds 21732 | ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) |
| casa 21775 | class AssAlg |
| casp 21776 | class AlgSpan |
| cascl 21777 | class algSc |
| df-assa 21778 | ⊢ AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣
[(Scalar‘𝑤) /
𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} |
| df-asp 21779 | ⊢ AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ ((SubRing‘𝑤)
∩ (LSubSp‘𝑤))
∣ 𝑠 ⊆ 𝑡})) |
| df-ascl 21780 | ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠
‘𝑤)(1r‘𝑤)))) |
| cmps 21829 | class mPwSer |
| cmvr 21830 | class mVar |
| cmpl 21831 | class mPoly |
| cltb 21832 | class
<bag |
| copws 21833 | class ordPwSer |
| df-psr 21834 | ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
| df-mvr 21835 | ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) |
| df-mpl 21836 | ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ 𝑓 finSupp (0g‘𝑟)})) |
| df-ltbag 21837 | ⊢ <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| df-opsr 21838 | ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
| ces 21995 | class evalSub |
| cevl 21996 | class eval |
| df-evls 21997 | ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
| df-evl 21998 | ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) |
| cslv 22031 | class selectVars |
| cmhp 22032 | class mHomP |
| cpsd 22033 | class mPSDer |
| cai 22034 | class AlgInd |
| df-selv 22035 | ⊢ selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |
| df-mhp 22039 | ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |
| df-psd 22059 | ⊢ mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
| df-algind 22074 | ⊢ AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) |
| cps1 22075 | class
PwSer1 |
| cv1 22076 | class var1 |
| cpl1 22077 | class
Poly1 |
| cco1 22078 | class coe1 |
| ctp1 22079 | class
toPoly1 |
| df-psr1 22080 | ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer
𝑟)‘∅)) |
| df-vr1 22081 | ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) |
| df-ply1 22082 | ⊢ Poly1 = (𝑟 ∈ V ↦
((PwSer1‘𝑟) ↾s
(Base‘(1o mPoly 𝑟)))) |
| df-coe1 22083 | ⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o ×
{𝑛})))) |
| df-toply1 22084 | ⊢ toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0
↑m 1o) ↦ (𝑓‘(𝑛‘∅)))) |
| ces1 22216 | class
evalSub1 |
| ce1 22217 | class
eval1 |
| df-evls1 22218 | ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦
⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑠)‘𝑟))) |
| df-evl1 22219 | ⊢ eval1 = (𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ (1o
eval 𝑟))) |
| cmmul 22293 | class maMul |
| df-mamu 22294 | ⊢ maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) |
| cmat 22310 | class Mat |
| df-mat 22311 | ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |
| cdmat 22391 | class DMat |
| cscmat 22392 | class ScMat |
| df-dmat 22393 | ⊢ DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
| df-scmat 22394 | ⊢ ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎))}) |
| cmvmul 22443 | class maVecMul |
| df-mvmul 22444 | ⊢ maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘𝑜) / 𝑚⦌⦋(2nd
‘𝑜) / 𝑛⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖 ∈ 𝑚 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑦‘𝑗))))))) |
| cmarrep 22459 | class matRRep |
| cmatrepV 22460 | class matRepV |
| df-marrep 22461 | ⊢ matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)))))) |
| df-marepv 22462 | ⊢ matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| csubma 22479 | class subMat |
| df-subma 22480 | ⊢ subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) |
| cmdat 22487 | class maDet |
| df-mdet 22488 | ⊢ maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
| cmadu 22535 | class maAdju |
| cminmar1 22536 | class minMatR1 |
| df-madu 22537 | ⊢ maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))))) |
| df-minmar1 22538 | ⊢ minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))))) |
| ccpmat 22606 | class ConstPolyMat |
| cmat2pmat 22607 | class matToPolyMat |
| ccpmat2mat 22608 | class cPolyMatToMat |
| df-cpmat 22609 | ⊢ ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)}) |
| df-mat2pmat 22610 | ⊢ matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦
((algSc‘(Poly1‘𝑟))‘(𝑥𝑚𝑦))))) |
| df-cpmat2mat 22611 | ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
| cdecpmat 22665 | class decompPMat |
| df-decpmat 22666 | ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
| cpm2mp 22695 | class pMatToMatPoly |
| df-pm2mp 22696 | ⊢ pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) |
| cchpmat 22729 | class CharPlyMat |
| df-chpmat 22730 | ⊢ CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) |
| ctop 22796 | class Top |
| df-top 22797 | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
| ctopon 22813 | class TopOn |
| df-topon 22814 | ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
| ctps 22835 | class TopSp |
| df-topsp 22836 | ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} |
| ctb 22848 | class TopBases |
| df-bases 22849 | ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |
| ccld 22919 | class Clsd |
| cnt 22920 | class int |
| ccl 22921 | class cls |
| df-cld 22922 | ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
| df-ntr 22923 | ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
| df-cls 22924 | ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) |
| cnei 23000 | class nei |
| df-nei 23001 | ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
| clp 23037 | class limPt |
| cperf 23038 | class Perf |
| df-lp 23039 | ⊢ limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})) |
| df-perf 23040 | ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) =
∪ 𝑗} |
| ccn 23127 | class Cn |
| ccnp 23128 | class CnP |
| clm 23129 | class
⇝𝑡 |
| df-cn 23130 | ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
| df-cnp 23131 | ⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| df-lm 23132 | ⊢ ⇝𝑡 =
(𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| ct0 23209 | class Kol2 |
| ct1 23210 | class Fre |
| cha 23211 | class Haus |
| creg 23212 | class Reg |
| cnrm 23213 | class Nrm |
| ccnrm 23214 | class CNrm |
| cpnrm 23215 | class PNrm |
| df-t0 23216 | ⊢ Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(∀𝑜 ∈ 𝑗 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)} |
| df-t1 23217 | ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} |
| df-haus 23218 | ⊢ Haus = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} |
| df-reg 23219 | ⊢ Reg = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
| df-nrm 23220 | ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
| df-cnrm 23221 | ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} |
| df-pnrm 23222 | ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} |
| ccmp 23289 | class Comp |
| df-cmp 23290 | ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪
𝑥 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝑥 = ∪ 𝑧)} |
| cconn 23314 | class Conn |
| df-conn 23315 | ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪
𝑗}} |
| c1stc 23340 | class
1stω |
| c2ndc 23341 | class
2ndω |
| df-1stc 23342 | ⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} |
| df-2ndc 23343 | ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} |
| clly 23367 | class Locally 𝐴 |
| cnlly 23368 | class 𝑛-Locally 𝐴 |
| df-lly 23369 | ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} |
| df-nlly 23370 | ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
| cref 23405 | class Ref |
| cptfin 23406 | class PtFin |
| clocfin 23407 | class LocFin |
| df-ref 23408 | ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪
𝑦 = ∪ 𝑥
∧ ∀𝑧 ∈
𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} |
| df-ptfin 23409 | ⊢ PtFin = {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} |
| df-locfin 23410 | ⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪
𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))}) |
| ckgen 23436 | class 𝑘Gen |
| df-kgen 23437 | ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ ∀𝑘 ∈
𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) |
| ctx 23463 | class
×t |
| cxko 23464 | class
↑ko |
| df-tx 23465 | ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
| df-xko 23466 | ⊢ ↑ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦
(topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
| ckq 23596 | class KQ |
| df-kq 23597 | ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| chmeo 23656 | class Homeo |
| chmph 23657 | class ≃ |
| df-hmeo 23658 | ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) |
| df-hmph 23659 | ⊢ ≃ = (◡Homeo “ (V ∖
1o)) |
| cfil 23748 | class Fil |
| df-fil 23749 | ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
| cufil 23802 | class UFil |
| cufl 23803 | class UFL |
| df-ufil 23804 | ⊢ UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)}) |
| df-ufl 23805 | ⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} |
| cfm 23836 | class FilMap |
| cflim 23837 | class fLim |
| cflf 23838 | class fLimf |
| cfcls 23839 | class fClus |
| cfcf 23840 | class fClusf |
| df-fm 23841 | ⊢ FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡 ∈ 𝑦 ↦ (𝑓 “ 𝑡))))) |
| df-flim 23842 | ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ {𝑥 ∈ ∪ 𝑗
∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) |
| df-flf 23843 | ⊢ fLimf = (𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil
↦ (𝑓 ∈ (∪ 𝑥
↑m ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦)))) |
| df-fcls 23844 | ⊢ fClus = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ if(∪ 𝑗 = ∪ 𝑓, ∩ 𝑥 ∈ 𝑓 ((cls‘𝑗)‘𝑥), ∅)) |
| df-fcf 23845 | ⊢ fClusf = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ (𝑔 ∈ (∪ 𝑗
↑m ∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓)))) |
| ccnext 23962 | class CnExt |
| df-cnext 23963 | ⊢ CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝑗)
↦ ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
| ctmd 23973 | class TopMnd |
| ctgp 23974 | class TopGrp |
| df-tmd 23975 | ⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣
[(TopOpen‘𝑓) /
𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} |
| df-tgp 23976 | ⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣
[(TopOpen‘𝑓) /
𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} |
| ctsu 24029 | class tsums |
| df-tsms 24030 | ⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫
dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |
| ctrg 24059 | class TopRing |
| ctdrg 24060 | class TopDRing |
| ctlm 24061 | class TopMod |
| ctvc 24062 | class TopVec |
| df-trg 24063 | ⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣
(mulGrp‘𝑟) ∈
TopMnd} |
| df-tdrg 24064 | ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣
((mulGrp‘𝑟)
↾s (Unit‘𝑟)) ∈ TopGrp} |
| df-tlm 24065 | ⊢ TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣
((Scalar‘𝑤) ∈
TopRing ∧ ( ·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)))} |
| df-tvc 24066 | ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈
TopDRing} |
| cust 24103 | class UnifOn |
| df-ust 24104 | ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
| cutop 24134 | class unifTop |
| df-utop 24135 | ⊢ unifTop = (𝑢 ∈ ∪ ran
UnifOn ↦ {𝑎 ∈
𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| cuss 24157 | class UnifSt |
| cusp 24158 | class UnifSp |
| ctus 24159 | class toUnifSp |
| df-uss 24160 | ⊢ UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t
((Base‘𝑓) ×
(Base‘𝑓)))) |
| df-usp 24161 | ⊢ UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) =
(unifTop‘(UnifSt‘𝑓)))} |
| df-tus 24162 | ⊢ toUnifSp = (𝑢 ∈ ∪ ran
UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉,
〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑢)〉)) |
| cucn 24178 | class Cnu |
| df-ucn 24179 | ⊢ Cnu = (𝑢 ∈ ∪ ran
UnifOn, 𝑣 ∈ ∪ ran UnifOn ↦ {𝑓 ∈ (dom ∪
𝑣 ↑m dom
∪ 𝑢) ∣ ∀𝑠 ∈ 𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
| ccfilu 24189 | class
CauFilu |
| df-cfilu 24190 | ⊢ CauFilu = (𝑢 ∈ ∪ ran
UnifOn ↦ {𝑓 ∈
(fBas‘dom ∪ 𝑢) ∣ ∀𝑣 ∈ 𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣}) |
| ccusp 24200 | class CUnifSp |
| df-cusp 24201 | ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈
(Fil‘(Base‘𝑤))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} |
| cxms 24221 | class ∞MetSp |
| cms 24222 | class MetSp |
| ctms 24223 | class toMetSp |
| df-xms 24224 | ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |
| df-ms 24225 | ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
| df-tms 24226 | ⊢ toMetSp = (𝑑 ∈ ∪ ran
∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) |
| cnm 24480 | class norm |
| cngp 24481 | class NrmGrp |
| ctng 24482 | class toNrmGrp |
| cnrg 24483 | class NrmRing |
| cnlm 24484 | class NrmMod |
| cnvc 24485 | class NrmVec |
| df-nm 24486 | ⊢ norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
| df-ngp 24487 | ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣
((norm‘𝑔) ∘
(-g‘𝑔))
⊆ (dist‘𝑔)} |
| df-tng 24488 | ⊢ toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘
(-g‘𝑔))〉) sSet 〈(TopSet‘ndx),
(MetOpen‘(𝑓 ∘
(-g‘𝑔)))〉)) |
| df-nrg 24489 | ⊢ NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
| df-nlm 24490 | ⊢ NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣
[(Scalar‘𝑤) /
𝑓](𝑓 ∈ NrmRing ∧
∀𝑥 ∈
(Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))} |
| df-nvc 24491 | ⊢ NrmVec = (NrmMod ∩ LVec) |
| cnmo 24609 | class normOp |
| cnghm 24610 | class NGHom |
| cnmhm 24611 | class NMHom |
| df-nmo 24612 | ⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
))) |
| df-nghm 24613 | ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) |
| df-nmhm 24614 | ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
| cii 24784 | class II |
| ccncf 24785 | class –cn→ |
| df-ii 24786 | ⊢ II = (MetOpen‘((abs
∘ − ) ↾ ((0[,]1) × (0[,]1)))) |
| df-cncf 24787 | ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
| chtpy 24882 | class Htpy |
| cphtpy 24883 | class PHtpy |
| cphtpc 24884 | class
≃ph |
| df-htpy 24885 | ⊢ Htpy = (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
| df-phtpy 24886 | ⊢ PHtpy = (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
| df-phtpc 24907 | ⊢ ≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) |
| cpco 24916 | class
*𝑝 |
| comi 24917 | class
Ω1 |
| comn 24918 | class
Ω𝑛 |
| cpi1 24919 | class
π1 |
| cpin 24920 | class
πn |
| df-pco 24921 | ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| df-om1 24922 | ⊢ Ω1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦
{〈(Base‘ndx), {𝑓
∈ (II Cn 𝑗) ∣
((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx),
(*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ↑ko
II)〉}) |
| df-omn 24923 | ⊢ Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) |
| df-pi1 24924 | ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s (
≃ph‘𝑗))) |
| df-pin 24925 | ⊢ πn = (𝑗 ∈ Top, 𝑝 ∈ ∪ 𝑗 ↦ (𝑛 ∈ ℕ0 ↦
((1st ‘((𝑗
Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1))))))))) |
| cclm 24978 | class ℂMod |
| df-clm 24979 | ⊢ ℂMod = {𝑤 ∈ LMod ∣
[(Scalar‘𝑤) /
𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld))} |
| ccvs 25039 | class ℂVec |
| df-cvs 25040 | ⊢ ℂVec = (ℂMod ∩
LVec) |
| ccph 25082 | class ℂPreHil |
| ctcph 25083 | class toℂPreHil |
| df-cph 25084 | ⊢ ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣
[(Scalar‘𝑤) /
𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |
| df-tcph 25085 | ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) |
| ccfil 25168 | class CauFil |
| ccau 25169 | class Cau |
| ccmet 25170 | class CMet |
| df-cfil 25171 | ⊢ CauFil = (𝑑 ∈ ∪ ran
∞Met ↦ {𝑓
∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
| df-cau 25172 | ⊢ Cau = (𝑑 ∈ ∪ ran
∞Met ↦ {𝑓
∈ (dom dom 𝑑
↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)}) |
| df-cmet 25173 | ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
| ccms 25248 | class CMetSp |
| cbn 25249 | class Ban |
| chl 25250 | class ℂHil |
| df-cms 25251 | ⊢ CMetSp = {𝑤 ∈ MetSp ∣
[(Base‘𝑤) /
𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} |
| df-bn 25252 | ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣
(Scalar‘𝑤) ∈
CMetSp} |
| df-hl 25253 | ⊢ ℂHil = (Ban ∩
ℂPreHil) |
| crrx 25299 | class ℝ^ |
| cehl 25300 | class
𝔼hil |
| df-rrx 25301 | ⊢ ℝ^ = (𝑖 ∈ V ↦
(toℂPreHil‘(ℝfld freeLMod 𝑖))) |
| df-ehl 25302 | ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦
(ℝ^‘(1...𝑛))) |
| covol 25379 | class vol* |
| cvol 25380 | class vol |
| df-ovol 25381 | ⊢ vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
| df-vol 25382 | ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
| cmbf 25531 | class MblFn |
| citg1 25532 | class
∫1 |
| citg2 25533 | class
∫2 |
| cibl 25534 | class
𝐿1 |
| citg 25535 | class ∫𝐴𝐵 d𝑥 |
| df-mbf 25536 | ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ)
∣ ∀𝑥 ∈
ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} |
| df-itg1 25537 | ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧
(vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈
ℝ)} ↦ Σ𝑥
∈ (ran 𝑓 ∖
{0})(𝑥 ·
(vol‘(◡𝑓 “ {𝑥})))) |
| df-itg2 25538 | ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m
ℝ) ↦ sup({𝑥
∣ ∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ 𝑓
∧ 𝑥 =
(∫1‘𝑔))}, ℝ*, <
)) |
| df-ibl 25539 | ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |
| df-itg 25540 | ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
| c0p 25586 | class
0𝑝 |
| df-0p 25587 | ⊢ 0𝑝 = (ℂ
× {0}) |
| cdit 25763 | class ⨜[𝐴 → 𝐵]𝐶 d𝑥 |
| df-ditg 25764 | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
| climc 25779 | class
limℂ |
| cdv 25780 | class D |
| cdvn 25781 | class
D𝑛 |
| ccpn 25782 | class
𝓑C𝑛 |
| df-limc 25783 | ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm
ℂ), 𝑥 ∈ ℂ
↦ {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) |
| df-dv 25784 | ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
| df-dvn 25785 | ⊢ D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ),
(ℕ0 × {𝑓}))) |
| df-cpn 25786 | ⊢ 𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ
↦ (𝑥 ∈
ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑥) ∈ (dom 𝑓–cn→ℂ)})) |
| cmdg 25974 | class mDeg |
| cdg1 25975 | class deg1 |
| df-mdeg 25976 | ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld
Σg ℎ)), ℝ*, <
))) |
| df-deg1 25977 | ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
| cmn1 26047 | class
Monic1p |
| cuc1p 26048 | class
Unic1p |
| cq1p 26049 | class
quot1p |
| cr1p 26050 | class
rem1p |
| cig1p 26051 | class
idlGen1p |
| df-mon1 26052 | ⊢ Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))}) |
| df-uc1p 26053 | ⊢ Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) ∈ (Unit‘𝑟))}) |
| df-q1p 26054 | ⊢ quot1p = (𝑟 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 ((deg1‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < ((deg1‘𝑟)‘𝑔)))) |
| df-r1p 26055 | ⊢ rem1p = (𝑟 ∈ V ↦
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) |
| df-ig1p 26056 | ⊢ idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |
| cply 26105 | class Poly |
| cidp 26106 | class
Xp |
| ccoe 26107 | class coeff |
| cdgr 26108 | class deg |
| df-ply 26109 | ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| df-idp 26110 | ⊢ Xp = ( I ↾
ℂ) |
| df-coe 26111 | ⊢ coeff = (𝑓 ∈ (Poly‘ℂ) ↦
(℩𝑎 ∈
(ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| df-dgr 26112 | ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦
sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})),
ℕ0, < )) |
| cquot 26214 | class quot |
| df-quot 26215 | ⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f −
(𝑔 ∘f
· 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)))) |
| caa 26238 | class 𝔸 |
| df-aa 26239 | ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖
{0𝑝})(◡𝑓 “ {0}) |
| ctayl 26276 | class Tayl |
| cana 26277 | class Ana |
| df-tayl 26278 | ⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ (𝑛 ∈
(ℕ0 ∪ {+∞}), 𝑎 ∈ ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |
| df-ana 26279 | ⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ
↑pm 𝑠)
∣ ∀𝑥 ∈
dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) |
| culm 26301 | class
⇝𝑢 |
| df-ulm 26302 | ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |
| clog 26479 | class log |
| ccxp 26480 | class
↑𝑐 |
| df-log 26481 | ⊢ log = ◡(exp ↾ (◡ℑ “
(-π(,]π))) |
| df-cxp 26482 | ⊢ ↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) |
| clogb 26690 | class
logb |
| df-logb 26691 | ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0})
↦ ((log‘𝑦) /
(log‘𝑥))) |
| casin 26788 | class arcsin |
| cacos 26789 | class arccos |
| catan 26790 | class arctan |
| df-asin 26791 | ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i ·
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2))))))) |
| df-acos 26792 | ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) −
(arcsin‘𝑥))) |
| df-atan 26793 | ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i
/ 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) |
| carea 26881 | class area |
| df-area 26882 | ⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ)
∣ (∀𝑥 ∈
ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
| cem 26918 | class γ |
| df-em 26919 | ⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 /
𝑘)))) |
| czeta 26939 | class ζ |
| df-zeta 26940 | ⊢ ζ = (℩𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) |
| clgam 26942 | class log Γ |
| cgam 26943 | class Γ |
| cigam 26944 | class 1/Γ |
| df-lgam 26945 | ⊢ log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖
ℕ)) ↦ (Σ𝑚
∈ ℕ ((𝑧 ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) |
| df-gam 26946 | ⊢ Γ = (exp ∘ log
Γ) |
| df-igam 26947 | ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 /
(Γ‘𝑥)))) |
| ccht 27017 | class θ |
| cvma 27018 | class Λ |
| cchp 27019 | class ψ |
| cppi 27020 | class π |
| cmu 27021 | class μ |
| csgm 27022 | class σ |
| df-cht 27023 | ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) |
| df-vma 27024 | ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠),
0)) |
| df-chp 27025 | ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(Λ‘𝑛)) |
| df-ppi 27026 | ⊢ π = (𝑥 ∈ ℝ ↦
(♯‘((0[,]𝑥)
∩ ℙ))) |
| df-mu 27027 | ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥})))) |
| df-sgm 27028 | ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) |
| cdchr 27159 | class DChr |
| df-dchr 27160 | ⊢ DChr = (𝑛 ∈ ℕ ↦
⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom
(mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) |
| clgs 27221 | class
/L |
| df-lgs 27222 | ⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ,
(if(𝑚 = 2, if(2 ∥
𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) |
| csur 27567 | class No
|
| cslt 27568 | class <s |
| cbday 27569 | class bday
|
| df-no 27570 | ⊢ No
= {𝑓 ∣
∃𝑎 ∈ On 𝑓:𝑎⟶{1o,
2o}} |
| df-slt 27571 | ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No
∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑔‘𝑥)))} |
| df-bday 27572 | ⊢ bday = (𝑥 ∈
No ↦ dom 𝑥) |
| csle 27672 | class ≤s |
| df-sle 27673 | ⊢ ≤s = (( No
× No ) ∖ ◡ <s ) |
| csslt 27709 | class <<s |
| df-sslt 27710 | ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No
∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} |
| cscut 27711 | class |s |
| df-scut 27712 | ⊢ |s = (𝑎 ∈ 𝒫 No
, 𝑏 ∈ (
<<s “ {𝑎})
↦ (℩𝑥
∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) |
| c0s 27754 | class 0s |
| c1s 27755 | class 1s |
| df-0s 27756 | ⊢ 0s = (∅ |s
∅) |
| df-1s 27757 | ⊢ 1s = ({
0s } |s ∅) |
| cmade 27770 | class M |
| cold 27771 | class O |
| cnew 27772 | class N |
| cleft 27773 | class L |
| cright 27774 | class R |
| df-made 27775 | ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫
∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) |
| df-old 27776 | ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) |
| df-new 27777 | ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) |
| df-left 27778 | ⊢ L = (𝑥 ∈ No
↦ {𝑦 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) |
| df-right 27779 | ⊢ R = (𝑥 ∈ No
↦ {𝑦 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) |
| cnorec 27867 | class norec (𝐹) |
| df-norec 27868 | ⊢ norec (𝐹) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹) |
| cnorec2 27878 | class norec2 (𝐹) |
| df-norec2 27879 | ⊢ norec2 (𝐹) = frecs({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))}, ( No
× No ), 𝐹) |
| cadds 27889 | class +s |
| df-adds 27890 | ⊢ +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))) |
| cnegs 27948 | class -us |
| csubs 27949 | class -s |
| df-negs 27950 | ⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) |
| df-subs 27951 | ⊢ -s = (𝑥 ∈ No ,
𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) |
| cmuls 28032 | class
·s |
| df-muls 28033 | ⊢ ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |
| cdivs 28113 | class
/su |
| df-divs 28114 | ⊢ /su = (𝑥 ∈ No ,
𝑦 ∈ ( No ∖ { 0s }) ↦
(℩𝑧 ∈
No (𝑦 ·s 𝑧) = 𝑥)) |
| cabss 28162 | class abss |
| df-abss 28163 | ⊢ abss = (𝑥 ∈ No
↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) |
| cons 28175 | class Ons |
| df-ons 28176 | ⊢ Ons = {𝑥 ∈ No
∣ ( R ‘𝑥) =
∅} |
| cseqs 28200 | class seqs𝑀( + , 𝐹) |
| df-seqs 28201 | ⊢ seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| cnn0s 28229 | class
ℕ0s |
| cnns 28230 | class
ℕs |
| df-n0s 28231 | ⊢ ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) “ ω) |
| df-nns 28232 | ⊢ ℕs = (ℕ0s
∖ { 0s }) |
| czs 28289 | class
ℤs |
| df-zs 28290 | ⊢ ℤs = (
-s “ (ℕs ×
ℕs)) |
| c2s 28320 | class 2s |
| df-2s 28321 | ⊢ 2s = ({ 1s
} |s ∅) |
| cexps 28322 | class
↑s |
| df-exps 28323 | ⊢ ↑s = (𝑥 ∈ No ,
𝑦 ∈
ℤs ↦ if(𝑦 = 0s , 1s , if(
0s <s 𝑦,
(seqs 1s ( ·s , (ℕs
× {𝑥}))‘𝑦), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝑥}))‘( -us ‘𝑦)))))) |
| czs12 28324 | class
ℤs[1/2] |
| df-zs12 28325 | ⊢ ℤs[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs
∃𝑧 ∈
ℕ0s 𝑥 =
(𝑦 /su
(2s↑s𝑧))} |
| creno 28380 | class
ℝs |
| df-reno 28381 | ⊢ ℝs = {𝑥 ∈ No
∣ (∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}))} |
| cstrkg 28390 | class TarskiG |
| cstrkgc 28391 | class
TarskiGC |
| cstrkgb 28392 | class
TarskiGB |
| cstrkgcb 28393 | class
TarskiGCB |
| cstrkgld 28394 | class
DimTarskiG≥ |
| cstrkge 28395 | class
TarskiGE |
| citv 28396 | class Itv |
| clng 28397 | class LineG |
| df-itv 28398 | ⊢ Itv = Slot ;16 |
| df-lng 28399 | ⊢ LineG = Slot ;17 |
| df-trkgc 28411 | ⊢ TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |
| df-trkgb 28412 | ⊢ TarskiGB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎 ∈ 𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝∀𝑡 ∈ 𝒫 𝑝(∃𝑎 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝑖𝑦)))} |
| df-trkgcb 28413 | ⊢ TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |
| df-trkge 28414 | ⊢ TarskiGE = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))} |
| df-trkgld 28415 | ⊢ DimTarskiG≥ = {〈𝑔, 𝑛〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
| df-trkg 28416 | ⊢ TarskiG = ((TarskiGC ∩
TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) |
| ccgrg 28473 | class cgrG |
| df-cgrg 28474 | ⊢ cgrG = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ))
∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))))}) |
| cismt 28495 | class Ismt |
| df-ismt 28496 | ⊢ Ismt = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |
| cleg 28545 | class ≤G |
| df-leg 28546 | ⊢ ≤G = (𝑔 ∈ V ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))}) |
| chlg 28563 | class hlG |
| df-hlg 28564 | ⊢ hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))})) |
| cmir 28615 | class pInvG |
| df-mir 28616 | ⊢ pInvG = (𝑔 ∈ V ↦ (𝑚 ∈ (Base‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑚(dist‘𝑔)𝑏) = (𝑚(dist‘𝑔)𝑎) ∧ 𝑚 ∈ (𝑏(Itv‘𝑔)𝑎)))))) |
| crag 28656 | class ∟G |
| df-rag 28657 | ⊢ ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |
| cperpg 28658 | class ⟂G |
| df-perpg 28659 | ⊢ ⟂G = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
| chpg 28720 | class hpG |
| df-hpg 28721 | ⊢ hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) |
| cmid 28735 | class midG |
| clmi 28736 | class lInvG |
| df-mid 28737 | ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) |
| df-lmi 28738 | ⊢ lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))) |
| ccgra 28770 | class cgrA |
| df-cgra 28771 | ⊢ cgrA = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑝 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑎(cgrG‘𝑔)〈“𝑥(𝑏‘1)𝑦”〉 ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))}) |
| cinag 28798 | class inA |
| cleag 28799 | class
≤∠ |
| df-inag 28800 | ⊢ inA = (𝑔 ∈ V ↦ {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |
| df-leag 28809 | ⊢ ≤∠ = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)))
∧ ∃𝑥 ∈
(Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) |
| ceqlg 28828 | class eqltrG |
| df-eqlg 28829 | ⊢ eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉}) |
| cttg 28836 | class toTG |
| df-ttg 28837 | ⊢ toTG = (𝑤 ∈ V ↦ ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| cee 28851 | class 𝔼 |
| cbtwn 28852 | class Btwn |
| ccgr 28853 | class Cgr |
| df-ee 28854 | ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ
↑m (1...𝑛))) |
| df-btwn 28855 | ⊢ Btwn = ◡{〈〈𝑥, 𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} |
| df-cgr 28856 | ⊢ Cgr = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |
| ceeng 28940 | class EEG |
| df-eeng 28941 | ⊢ EEG = (𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| cedgf 28951 | class .ef |
| df-edgf 28952 | ⊢ .ef = Slot ;18 |
| cvtx 28959 | class Vtx |
| ciedg 28960 | class iEdg |
| df-vtx 28961 | ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st
‘𝑔),
(Base‘𝑔))) |
| df-iedg 28962 | ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd
‘𝑔), (.ef‘𝑔))) |
| cedg 29010 | class Edg |
| df-edg 29011 | ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) |
| cuhgr 29019 | class UHGraph |
| cushgr 29020 | class USHGraph |
| df-uhgr 29021 | ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} |
| df-ushgr 29022 | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
| cupgr 29043 | class UPGraph |
| cumgr 29044 | class UMGraph |
| df-upgr 29045 | ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
| df-umgr 29046 | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) =
2}} |
| cuspgr 29111 | class USPGraph |
| cusgr 29112 | class USGraph |
| df-uspgr 29113 | ⊢ USPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
| df-usgr 29114 | ⊢ USGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) =
2}} |
| csubgr 29230 | class SubGraph |
| df-subgr 29231 | ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} |
| cfusgr 29279 | class FinUSGraph |
| df-fusgr 29280 | ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} |
| cnbgr 29295 | class NeighbVtx |
| df-nbgr 29296 | ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) |
| cuvtx 29348 | class UnivVtx |
| df-uvtx 29349 | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| ccplgr 29372 | class ComplGraph |
| ccusgr 29373 | class ComplUSGraph |
| df-cplgr 29374 | ⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} |
| df-cusgr 29375 | ⊢ ComplUSGraph = (USGraph ∩
ComplGraph) |
| cvtxdg 29429 | class VtxDeg |
| df-vtxdg 29430 | ⊢ VtxDeg = (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) |
| crgr 29519 | class RegGraph |
| crusgr 29520 | class RegUSGraph |
| df-rgr 29521 | ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧
∀𝑣 ∈
(Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} |
| df-rusgr 29522 | ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| cewlks 29559 | class EdgWalks |
| cwlks 29560 | class Walks |
| cwlkson 29561 | class WalksOn |
| df-ewlks 29562 | ⊢ EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0*
↦ {𝑓 ∣
[(iEdg‘𝑔) /
𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |
| df-wlks 29563 | ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |
| df-wlkson 29564 | ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) |
| ctrls 29652 | class Trails |
| ctrlson 29653 | class TrailsOn |
| df-trls 29654 | ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) |
| df-trlson 29655 | ⊢ TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Trails‘𝑔)𝑝)})) |
| cpths 29673 | class Paths |
| cspths 29674 | class SPaths |
| cpthson 29675 | class PathsOn |
| cspthson 29676 | class SPathsOn |
| df-pths 29677 | ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) =
∅)}) |
| df-spths 29678 | ⊢ SPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡𝑝)}) |
| df-pthson 29679 | ⊢ PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) |
| df-spthson 29680 | ⊢ SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) |
| cclwlks 29733 | class ClWalks |
| df-clwlks 29734 | ⊢ ClWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) |
| ccrcts 29747 | class Circuits |
| ccycls 29748 | class Cycles |
| df-crcts 29749 | ⊢ Circuits = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) |
| df-cycls 29750 | ⊢ Cycles = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) |
| cwwlks 29788 | class WWalks |
| cwwlksn 29789 | class WWalksN |
| cwwlksnon 29790 | class WWalksNOn |
| cwwspthsn 29791 | class WSPathsN |
| cwwspthsnon 29792 | class WSPathsNOn |
| df-wwlks 29793 | ⊢ WWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))}) |
| df-wwlksn 29794 | ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) |
| df-wwlksnon 29795 | ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |
| df-wspthsn 29796 | ⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) |
| df-wspthsnon 29797 | ⊢ WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})) |
| cclwwlk 29943 | class ClWWalks |
| df-clwwlk 29944 | ⊢ ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}) |
| cclwwlkn 29986 | class ClWWalksN |
| df-clwwlkn 29987 | ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
| cclwwlknon 30049 | class ClWWalksNOn |
| df-clwwlknon 30050 | ⊢ ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣})) |
| cconngr 30148 | class ConnGraph |
| df-conngr 30149 | ⊢ ConnGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
| ceupth 30159 | class EulerPaths |
| df-eupth 30160 | ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) |
| cfrgr 30220 | class FriendGraph |
| df-frgr 30221 | ⊢ FriendGraph = {𝑔 ∈ USGraph ∣
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |
| ax-flt 30434 | ⊢ ((𝑁 ∈ (ℤ≥‘3)
∧ (𝑋 ∈ ℕ
∧ 𝑌 ∈ ℕ
∧ 𝑍 ∈ ℕ))
→ ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) |
| cplig 30436 | class Plig |
| df-plig 30437 | ⊢ Plig = {𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} |
| cgr 30451 | class GrpOp |
| cgi 30452 | class GId |
| cgn 30453 | class inv |
| cgs 30454 | class
/𝑔 |
| df-grpo 30455 | ⊢ GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} |
| df-gid 30456 | ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) |
| df-ginv 30457 | ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) |
| df-gdiv 30458 | ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) |
| cablo 30506 | class AbelOp |
| df-ablo 30507 | ⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} |
| cvc 30520 | class
CVecOLD |
| df-vc 30521 | ⊢ CVecOLD =
{〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} |
| cnv 30546 | class NrmCVec |
| cpv 30547 | class
+𝑣 |
| cba 30548 | class BaseSet |
| cns 30549 | class
·𝑠OLD |
| cn0v 30550 | class 0vec |
| cnsb 30551 | class
−𝑣 |
| cnmcv 30552 | class
normCV |
| cims 30553 | class IndMet |
| df-nv 30554 | ⊢ NrmCVec = {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} |
| df-va 30557 | ⊢ +𝑣 =
(1st ∘ 1st ) |
| df-ba 30558 | ⊢ BaseSet = (𝑥 ∈ V ↦ ran ( +𝑣
‘𝑥)) |
| df-sm 30559 | ⊢
·𝑠OLD = (2nd ∘ 1st
) |
| df-0v 30560 | ⊢ 0vec = (GId ∘
+𝑣 ) |
| df-vs 30561 | ⊢ −𝑣 = (
/𝑔 ∘ +𝑣 ) |
| df-nmcv 30562 | ⊢ normCV =
2nd |
| df-ims 30563 | ⊢ IndMet = (𝑢 ∈ NrmCVec ↦
((normCV‘𝑢) ∘ ( −𝑣
‘𝑢))) |
| cdip 30662 | class
·𝑖OLD |
| df-dip 30663 | ⊢ ·𝑖OLD =
(𝑢 ∈ NrmCVec ↦
(𝑥 ∈
(BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) ·
(((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) / 4))) |
| css 30683 | class SubSp |
| df-ssp 30684 | ⊢ SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ ((
+𝑣 ‘𝑤) ⊆ ( +𝑣
‘𝑢) ∧ (
·𝑠OLD ‘𝑤) ⊆ (
·𝑠OLD ‘𝑢) ∧ (normCV‘𝑤) ⊆
(normCV‘𝑢))}) |
| clno 30702 | class LnOp |
| cnmoo 30703 | class
normOpOLD |
| cblo 30704 | class BLnOp |
| c0o 30705 | class 0op |
| df-lno 30706 | ⊢ LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) |
| df-nmoo 30707 | ⊢ normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, <
))) |
| df-blo 30708 | ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) |
| df-0o 30709 | ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦
((BaseSet‘𝑢) ×
{(0vec‘𝑤)})) |
| caj 30710 | class adj |
| chmo 30711 | class HmOp |
| df-aj 30712 | ⊢ adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡‘𝑥)(·𝑖OLD‘𝑤)𝑦) = (𝑥(·𝑖OLD‘𝑢)(𝑠‘𝑦)))}) |
| df-hmo 30713 | ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) |
| ccphlo 30774 | class
CPreHilOLD |
| df-ph 30775 | ⊢ CPreHilOLD = (NrmCVec
∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) |
| ccbn 30824 | class CBan |
| df-cbn 30825 | ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈
(CMet‘(BaseSet‘𝑢))} |
| chlo 30847 | class
CHilOLD |
| df-hlo 30848 | ⊢ CHilOLD = (CBan ∩
CPreHilOLD) |
| The
list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here |
| chba 30881 | class ℋ |
| cva 30882 | class
+ℎ |
| csm 30883 | class
·ℎ |
| csp 30884 | class
·ih |
| cno 30885 | class
normℎ |
| c0v 30886 | class
0ℎ |
| cmv 30887 | class
−ℎ |
| ccauold 30888 | class Cauchy |
| chli 30889 | class
⇝𝑣 |
| csh 30890 | class
Sℋ |
| cch 30891 | class
Cℋ |
| cort 30892 | class ⊥ |
| cph 30893 | class
+ℋ |
| cspn 30894 | class span |
| chj 30895 | class
∨ℋ |
| chsup 30896 | class ∨ℋ |
| c0h 30897 | class
0ℋ |
| ccm 30898 | class
𝐶ℋ |
| cpjh 30899 | class
projℎ |
| chos 30900 | class +op |
| chot 30901 | class
·op |
| chod 30902 | class
−op |
| chfs 30903 | class +fn |
| chft 30904 | class
·fn |
| ch0o 30905 | class
0hop |
| chio 30906 | class Iop |
| cnop 30907 | class
normop |
| ccop 30908 | class ContOp |
| clo 30909 | class LinOp |
| cbo 30910 | class BndLinOp |
| cuo 30911 | class UniOp |
| cho 30912 | class HrmOp |
| cnmf 30913 | class
normfn |
| cnl 30914 | class null |
| ccnfn 30915 | class ContFn |
| clf 30916 | class LinFn |
| cado 30917 | class
adjℎ |
| cbr 30918 | class bra |
| ck 30919 | class ketbra |
| cleo 30920 | class
≤op |
| cei 30921 | class eigvec |
| cel 30922 | class eigval |
| cspc 30923 | class Lambda |
| cst 30924 | class States |
| chst 30925 | class CHStates |
| ccv 30926 | class
⋖ℋ |
| cat 30927 | class HAtoms |
| cmd 30928 | class
𝑀ℋ |
| cdmd 30929 | class
𝑀ℋ* |
| df-hnorm 30930 | ⊢ normℎ = (𝑥 ∈ dom dom
·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
| df-hba 30931 | ⊢ ℋ = (BaseSet‘〈〈
+ℎ , ·ℎ 〉,
normℎ〉) |
| df-h0v 30932 | ⊢ 0ℎ =
(0vec‘〈〈 +ℎ ,
·ℎ 〉,
normℎ〉) |
| df-hvsub 30933 | ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1
·ℎ 𝑦))) |
| df-hlim 30934 | ⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} |
| df-hcau 30935 | ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ)
∣ ∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} |
| ax-hilex 30961 | ⊢ ℋ ∈ V |
| ax-hfvadd 30962 | ⊢ +ℎ :( ℋ ×
ℋ)⟶ ℋ |
| ax-hvcom 30963 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| ax-hvass 30964 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) |
| ax-hv0cl 30965 | ⊢ 0ℎ ∈
ℋ |
| ax-hvaddid 30966 | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ)
= 𝐴) |
| ax-hfvmul 30967 | ⊢ ·ℎ :(ℂ
× ℋ)⟶ ℋ |
| ax-hvmulid 30968 | ⊢ (𝐴 ∈ ℋ → (1
·ℎ 𝐴) = 𝐴) |
| ax-hvmulass 30969 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵
·ℎ 𝐶))) |
| ax-hvdistr1 30970 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴
·ℎ 𝐶))) |
| ax-hvdistr2 30971 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵
·ℎ 𝐶))) |
| ax-hvmul0 30972 | ⊢ (𝐴 ∈ ℋ → (0
·ℎ 𝐴) = 0ℎ) |
| ax-hfi 31041 | ⊢ ·ih :(
ℋ × ℋ)⟶ℂ |
| ax-his1 31044 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵
·ih 𝐴))) |
| ax-his2 31045 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) |
| ax-his3 31046 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵)
·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| ax-his4 31047 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 <
(𝐴
·ih 𝐴)) |
| ax-hcompl 31164 | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣
𝑥) |
| df-sh 31169 | ⊢
Sℋ = {ℎ ∈ 𝒫 ℋ ∣
(0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ)} |
| df-ch 31183 | ⊢
Cℋ = {ℎ ∈ Sℋ
∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} |
| df-oc 31214 | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣
∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
| df-ch0 31215 | ⊢ 0ℋ =
{0ℎ} |
| df-shs 31270 | ⊢ +ℋ = (𝑥 ∈ Sℋ ,
𝑦 ∈
Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) |
| df-span 31271 | ⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦
∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
| df-chj 31272 | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦
(⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
| df-chsup 31273 | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦
(⊥‘(⊥‘∪ 𝑥))) |
| df-pjh 31357 | ⊢ projℎ = (ℎ ∈ Cℋ
↦ (𝑥 ∈ ℋ
↦ (℩𝑧
∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |
| df-cm 31545 | ⊢ 𝐶ℋ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |
| df-hosum 31692 | ⊢ +op = (𝑓 ∈ ( ℋ ↑m
ℋ), 𝑔 ∈ (
ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) |
| df-homul 31693 | ⊢ ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥)))) |
| df-hodif 31694 | ⊢ −op = (𝑓 ∈ ( ℋ ↑m
ℋ), 𝑔 ∈ (
ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) |
| df-hfsum 31695 | ⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ),
𝑔 ∈ (ℂ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
| df-hfmul 31696 | ⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) |
| df-h0op 31710 | ⊢ 0hop =
(projℎ‘0ℋ) |
| df-iop 31711 | ⊢ Iop =
(projℎ‘ ℋ) |
| df-nmop 31801 | ⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑧)))}, ℝ*, <
)) |
| df-cnop 31802 | ⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ)
∣ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} |
| df-lnop 31803 | ⊢ LinOp = {𝑡 ∈ ( ℋ ↑m ℋ)
∣ ∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} |
| df-bdop 31804 | ⊢ BndLinOp = {𝑡 ∈ LinOp ∣
(normop‘𝑡)
< +∞} |
| df-unop 31805 | ⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} |
| df-hmop 31806 | ⊢ HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ)
∣ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ (𝑥
·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} |
| df-nmfn 31807 | ⊢ normfn = (𝑡 ∈ (ℂ ↑m ℋ)
↦ sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
)) |
| df-nlfn 31808 | ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ)
↦ (◡𝑡 “ {0})) |
| df-cnfn 31809 | ⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ)
∣ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} |
| df-lnfn 31810 | ⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ)
∣ ∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} |
| df-adjh 31811 | ⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} |
| df-bra 31812 | ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) |
| df-kb 31813 | ⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦)
·ℎ 𝑥))) |
| df-leop 31814 | ⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} |
| df-eigvec 31815 | ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ {𝑥 ∈ ( ℋ
∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) |
| df-eigval 31816 | ⊢ eigval = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈
(eigvec‘𝑡) ↦
(((𝑡‘𝑥)
·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
| df-spec 31817 | ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ {𝑥 ∈ ℂ
∣ ¬ (𝑡
−op (𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| df-st 32173 | ⊢ States = {𝑓 ∈ ((0[,]1) ↑m
Cℋ ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))))} |
| df-hst 32174 | ⊢ CHStates = {𝑓 ∈ ( ℋ ↑m
Cℋ ) ∣
((normℎ‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(((𝑓‘𝑥)
·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))))} |
| df-cv 32241 | ⊢ ⋖ℋ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈
Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} |
| df-md 32242 | ⊢ 𝑀ℋ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ ∀𝑧 ∈
Cℋ (𝑧 ⊆ 𝑦 → ((𝑧 ∨ℋ 𝑥) ∩ 𝑦) = (𝑧 ∨ℋ (𝑥 ∩ 𝑦))))} |
| df-dmd 32243 | ⊢ 𝑀ℋ* =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ ∀𝑧 ∈
Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} |
| df-at 32300 | ⊢ HAtoms = {𝑥 ∈ Cℋ
∣ 0ℋ ⋖ℋ 𝑥} |
| The
list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here |
| w2reu 32440 | wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 |
| df-2reu 32441 | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
| cind 32806 | class 𝟭 |
| df-ind 32807 | ⊢ 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| cdp2 32824 | class _𝐴𝐵 |
| df-dp2 32825 | ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) |
| cdp 32841 | class . |
| df-dp 32842 | ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) |
| cxdiv 32870 | class
/𝑒 |
| df-xdiv 32871 | ⊢ /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0})
↦ (℩𝑧
∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) |
| cmnt 32933 | class Monot |
| cmgc 32934 | class MGalConn |
| df-mnt 32935 | ⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) |
| df-mgc 32936 | ⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) |
| cchn 32959 | class ( < Chain𝐴) |
| df-chn 32960 | ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
| ax-xrssca 32971 | ⊢ ℝfld =
(Scalar‘ℝ*𝑠) |
| ax-xrsvsca 32972 | ⊢ ·e = (
·𝑠
‘ℝ*𝑠) |
| ctocyc 33061 | class toCyc |
| df-tocyc 33062 | ⊢ toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| csgns 33113 | class sgns |
| df-sgns 33114 | ⊢ sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)))) |
| cfxp 33118 | class FixPts |
| df-fxp 33119 | ⊢ FixPts = (𝑏 ∈ V, 𝑎 ∈ V ↦ {𝑥 ∈ 𝑏 ∣ ∀𝑝 ∈ dom dom 𝑎(𝑝𝑎𝑥) = 𝑥}) |
| cinftm 33128 | class ⋘ |
| carchi 33129 | class Archi |
| df-inftm 33130 | ⊢ ⋘ = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))}) |
| df-archi 33131 | ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} |
| cslmd 33152 | class SLMod |
| df-slmd 33153 | ⊢ SLMod = {𝑔 ∈ CMnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} |
| cerl 33203 | class
~RL |
| crloc 33204 | class RLocal |
| df-erl 33205 | ⊢ ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) |
| df-rloc 33206 | ⊢ RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |
| ceuf 33237 | class EuclF |
| df-euf 33238 | ⊢ EuclF = Slot ;21 |
| cedom 33241 | class EDomn |
| df-edom 33242 | ⊢ EDomn = {𝑑 ∈ IDomn ∣
[(EuclF‘𝑑) /
𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))))} |
| cfrac 33251 | class Frac |
| df-frac 33252 | ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) |
| cfldgen 33259 | class fldGen |
| df-fldgen 33260 | ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎
∈ (SubDRing‘𝑓)
∣ 𝑠 ⊆ 𝑎}) |
| cresv 33274 | class
↾v |
| df-resv 33275 | ⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦
if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) |
| cprmidl 33382 | class PrmIdeal |
| df-prmidl 33383 | ⊢ PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
| cmxidl 33406 | class MaxIdeal |
| df-mxidl 33407 | ⊢ MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) |
| cidlsrg 33447 | class IDLsrg |
| df-idlsrg 33448 | ⊢ IDLsrg = (𝑟 ∈ V ↦
⦋(LIdeal‘𝑟) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (LSSum‘𝑟)〉, 〈(.r‘ndx),
(𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))〉} ∪ {〈(TopSet‘ndx),
ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗)}〉})) |
| cufd 33485 | class UFD |
| df-ufd 33486 | ⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖
{{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} |
| cldim 33570 | class dim |
| df-dim 33571 | ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) |
| cfldext 33610 | class
/FldExt |
| cfinext 33611 | class
/FinExt |
| cextdg 33612 | class [:] |
| df-fldext 33613 | ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} |
| df-extdg 33614 | ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦
(dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) |
| df-finext 33615 | ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈
ℕ0)} |
| cirng 33654 | class IntgRing |
| df-irng 33655 | ⊢ IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) |
| calgext 33663 | class
/AlgExt |
| df-algext 33664 | ⊢ /AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))} |
| cminply 33665 | class minPoly |
| df-minply 33666 | ⊢ minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒 ↾s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)}))) |
| cconstr 33695 | class Constr |
| df-constr 33696 | ⊢ Constr = ∪
(rec((𝑠 ∈ V ↦
{𝑥 ∈ ℂ ∣
(∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) “
ω) |
| csmat 33759 | class subMat1 |
| df-smat 33760 | ⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
| clmat 33777 | class litMat |
| df-lmat 33778 | ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) |
| ccref 33808 | class CovHasRef𝐴 |
| df-cref 33809 | ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪
𝑗 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} |
| cldlf 33818 | class Ldlf |
| df-ldlf 33819 | ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
| cpcmp 33821 | class Paracomp |
| df-pcmp 33822 | ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} |
| crspec 33828 | class Spec |
| df-rspec 33829 | ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s
(PrmIdeal‘𝑟))) |
| cmetid 33852 | class ~Met |
| cpstm 33853 | class pstoMet |
| df-metid 33854 | ⊢ ~Met = (𝑑 ∈ ∪ ran
PsMet ↦ {〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)}) |
| df-pstm 33855 | ⊢ pstoMet = (𝑑 ∈ ∪ ran
PsMet ↦ (𝑎 ∈
(dom dom 𝑑 /
(~Met‘𝑑)),
𝑏 ∈ (dom dom 𝑑 /
(~Met‘𝑑))
↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
| chcmp 33922 | class HCmp |
| df-hcmp 33923 | ⊢ HCmp = {〈𝑢, 𝑤〉 ∣ ((𝑢 ∈ ∪ ran
UnifOn ∧ 𝑤 ∈
CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) =
𝑢 ∧
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) = (Base‘𝑤))} |
| cqqh 33936 | class ℚHom |
| df-qqh 33937 | ⊢ ℚHom = (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉)) |
| crrh 33959 | class ℝHom |
| crrext 33960 | class ℝExt |
| df-rrh 33961 | ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran
(,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) |
| df-rrext 33965 | ⊢ ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣
(((ℤMod‘𝑟)
∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} |
| cxrh 33982 | class
ℝ*Hom |
| df-xrh 33983 | ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ,
((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “
ℝ)))))) |
| cmntop 33988 | class ManTop |
| df-mntop 33989 | ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω
∧ 𝑗 ∈ Haus ∧
𝑗 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} |
| cesum 33993 | class Σ*𝑘 ∈ 𝐴𝐵 |
| df-esum 33994 | ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪
((ℝ*𝑠 ↾s (0[,]+∞))
tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| cofc 34061 | class ∘f/c 𝑅 |
| df-ofc 34062 | ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) |
| csiga 34074 | class sigAlgebra |
| df-siga 34075 | ⊢ sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠)))}) |
| csigagen 34104 | class sigaGen |
| df-sigagen 34105 | ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠
∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) |
| cbrsiga 34147 | class
𝔅ℝ |
| df-brsiga 34148 | ⊢ 𝔅ℝ =
(sigaGen‘(topGen‘ran (,))) |
| csx 34154 | class
×s |
| df-sx 34155 | ⊢ ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) |
| cmeas 34161 | class measures |
| df-meas 34162 | ⊢ measures = (𝑠 ∈ ∪ ran
sigAlgebra ↦ {𝑚
∣ (𝑚:𝑠⟶(0[,]+∞) ∧
(𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
| cdde 34198 | class δ |
| df-dde 34199 | ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈
𝑎, 1, 0)) |
| cae 34203 | class a.e. |
| cfae 34204 | class ~ a.e. |
| df-ae 34205 | ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom
𝑚 ∖ 𝑎)) = 0} |
| df-fae 34211 | ⊢ ~ a.e. = (𝑟 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ {〈𝑓,
𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) |
| cmbfm 34215 | class MblFnM |
| df-mbfm 34216 | ⊢ MblFnM = (𝑠 ∈ ∪ ran
sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠)
∣ ∀𝑥 ∈
𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
| coms 34258 | class toOMeas |
| df-oms 34259 | ⊢ toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) |
| ccarsg 34268 | class toCaraSiga |
| df-carsg 34269 | ⊢ toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) |
| citgm 34294 | class itgm |
| csitm 34295 | class sitm |
| csitg 34296 | class sitg |
| df-sitg 34297 | ⊢ sitg = (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
{𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) |
| df-sitm 34298 | ⊢ sitm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)))) |
| df-itgm 34320 | ⊢ itgm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚))) |
| csseq 34350 | class
seqstr |
| df-sseq 34351 | ⊢ seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |
| cfib 34363 | class Fibci |
| df-fib 34364 | ⊢ Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |
| cprb 34374 | class Prob |
| df-prob 34375 | ⊢ Prob = {𝑝 ∈ ∪ ran
measures ∣ (𝑝‘∪ dom 𝑝) = 1} |
| ccprob 34398 | class cprob |
| df-cndprob 34399 | ⊢ cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) |
| crrv 34407 | class rRndVar |
| df-rrv 34408 | ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
| corvc 34423 | class
∘RV/𝑐𝑅 |
| df-orvc 34424 | ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) |
| crepr 34575 | class repr |
| df-repr 34576 | ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) |
| cvts 34602 | class vts |
| df-vts 34603 | ⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ),
𝑛 ∈
ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2
· π)) · (𝑎
· 𝑥)))))) |
| ax-hgt749 34611 | ⊢ ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m
ℕ)∃𝑘 ∈
((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) |
| ax-ros335 34612 | ⊢ ∀𝑥 ∈ ℝ+
(ψ‘𝑥) <
((1._0_3_8_83)
· 𝑥) |
| ax-ros336 34613 | ⊢ ∀𝑥 ∈ ℝ+
((ψ‘𝑥) −
(θ‘𝑥)) <
((1._4_2_62)
· (√‘𝑥)) |
| cstrkg2d 34631 | class
TarskiG2D |
| df-trkg2d 34632 | ⊢ TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
| cafs 34636 | class AFS |
| df-afs 34637 | ⊢ AFS = (𝑔 ∈ TarskiG ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ℎ][(Itv‘𝑔) / 𝑖]∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 ∃𝑐 ∈ 𝑝 ∃𝑑 ∈ 𝑝 ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ∃𝑤 ∈ 𝑝 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎ℎ𝑏) = (𝑥ℎ𝑦) ∧ (𝑏ℎ𝑐) = (𝑦ℎ𝑧)) ∧ ((𝑎ℎ𝑑) = (𝑥ℎ𝑤) ∧ (𝑏ℎ𝑑) = (𝑦ℎ𝑤))))}) |
| clpad 34641 | class leftpad |
| df-lpad 34642 | ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦
(((0..^(𝑙 −
(♯‘𝑤))) ×
{𝑐}) ++ 𝑤))) |
| w-bnj17 34652 | wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
| df-bnj17 34653 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
| c-bnj14 34654 | class pred(𝑋, 𝐴, 𝑅) |
| df-bnj14 34655 | ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
| w-bnj13 34656 | wff 𝑅 Se 𝐴 |
| df-bnj13 34657 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
| w-bnj15 34658 | wff 𝑅 FrSe 𝐴 |
| df-bnj15 34659 | ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) |
| c-bnj18 34660 | class trCl(𝑋, 𝐴, 𝑅) |
| df-bnj18 34661 | ⊢ trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
| w-bnj19 34662 | wff TrFo(𝐵, 𝐴, 𝑅) |
| df-bnj19 34663 | ⊢ ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) |
| ax-regs 35060 | ⊢ (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
| cacycgr 35114 | class AcyclicGraph |
| df-acycgr 35115 | ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} |
| ax-7d 35131 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| ax-8d 35132 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
| ax-9d1 35133 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 |
| ax-9d2 35134 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
| ax-10d 35135 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| ax-11d 35136 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| cretr 35189 | class Retr |
| df-retr 35190 | ⊢ Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅}) |
| cpconn 35191 | class PConn |
| csconn 35192 | class SConn |
| df-pconn 35193 | ⊢ PConn = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |
| df-sconn 35194 | ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} |
| ccvm 35227 | class CovMap |
| df-cvm 35228 | ⊢ CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) |
| cgoe 35305 | class
∈𝑔 |
| cgna 35306 | class
⊼𝑔 |
| cgol 35307 | class
∀𝑔𝑁𝑈 |
| csat 35308 | class Sat |
| cfmla 35309 | class Fmla |
| csate 35310 | class
Sat∈ |
| cprv 35311 | class ⊧ |
| df-goel 35312 | ⊢ ∈𝑔 = (𝑥 ∈ (ω ×
ω) ↦ 〈∅, 𝑥〉) |
| df-gona 35313 | ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦
〈1o, 𝑥〉) |
| df-goal 35314 | ⊢ ∀𝑔𝑁𝑈 = 〈2o, 〈𝑁, 𝑈〉〉 |
| df-sat 35315 | ⊢ Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ (𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) |
| df-sate 35316 | ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) |
| df-fmla 35317 | ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat
∅)‘𝑛)) |
| df-prv 35318 | ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m
ω)} |
| cgon 35404 | class ¬𝑔𝑈 |
| cgoa 35405 | class
∧𝑔 |
| cgoi 35406 | class
→𝑔 |
| cgoo 35407 | class
∨𝑔 |
| cgob 35408 | class
↔𝑔 |
| cgoq 35409 | class
=𝑔 |
| cgox 35410 | class ∃𝑔𝑁𝑈 |
| df-gonot 35411 | ⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) |
| df-goan 35412 | ⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦
¬𝑔(𝑢⊼𝑔𝑣)) |
| df-goim 35413 | ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) |
| df-goor 35414 | ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦
(¬𝑔𝑢
→𝑔 𝑣)) |
| df-gobi 35415 | ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔
𝑢))) |
| df-goeq 35416 | ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc
(𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) |
| df-goex 35417 | ⊢ ∃𝑔𝑁𝑈 =
¬𝑔∀𝑔𝑁¬𝑔𝑈 |
| cgze 35418 | class AxExt |
| cgzr 35419 | class AxRep |
| cgzp 35420 | class AxPow |
| cgzu 35421 | class AxUn |
| cgzg 35422 | class AxReg |
| cgzi 35423 | class AxInf |
| cgzf 35424 | class ZF |
| df-gzext 35425 | ⊢ AxExt =
(∀𝑔2o((2o∈𝑔∅)
↔𝑔 (2o∈𝑔1o))
→𝑔 (∅=𝑔1o)) |
| df-gzrep 35426 | ⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) |
| df-gzpow 35427 | ⊢ AxPow =
∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) |
| df-gzun 35428 | ⊢ AxUn =
∃𝑔1o∀𝑔2o(∃𝑔1o((2o∈𝑔1o)∧𝑔(1o∈𝑔∅))
→𝑔 (2o∈𝑔1o)) |
| df-gzreg 35429 | ⊢ AxReg =
(∃𝑔1o(1o∈𝑔∅)
→𝑔
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅)))) |
| df-gzinf 35430 | ⊢ AxInf =
∃𝑔1o((∅∈𝑔1o)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ∃𝑔∅((2o∈𝑔∅)∧𝑔(∅∈𝑔1o)))) |
| df-gzf 35431 | ⊢ ZF =
{𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈
(Fmla‘ω)𝑚⊧(AxRep‘𝑢))} |
| cmcn 35432 | class mCN |
| cmvar 35433 | class mVR |
| cmty 35434 | class mType |
| cmvt 35435 | class mVT |
| cmtc 35436 | class mTC |
| cmax 35437 | class mAx |
| cmrex 35438 | class mREx |
| cmex 35439 | class mEx |
| cmdv 35440 | class mDV |
| cmvrs 35441 | class mVars |
| cmrsub 35442 | class mRSubst |
| cmsub 35443 | class mSubst |
| cmvh 35444 | class mVH |
| cmpst 35445 | class mPreSt |
| cmsr 35446 | class mStRed |
| cmsta 35447 | class mStat |
| cmfs 35448 | class mFS |
| cmcls 35449 | class mCls |
| cmpps 35450 | class mPPSt |
| cmthm 35451 | class mThm |
| df-mcn 35452 | ⊢ mCN = Slot 1 |
| df-mvar 35453 | ⊢ mVR = Slot 2 |
| df-mty 35454 | ⊢ mType = Slot 3 |
| df-mtc 35455 | ⊢ mTC = Slot 4 |
| df-mmax 35456 | ⊢ mAx = Slot 5 |
| df-mvt 35457 | ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) |
| df-mrex 35458 | ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) |
| df-mex 35459 | ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) |
| df-mdv 35460 | ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) |
| df-mvrs 35461 | ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) |
| df-mrsub 35462 | ⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg
((𝑣 ∈
((mCN‘𝑡) ∪
(mVR‘𝑡)) ↦
if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
| df-msub 35463 | ⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) |
| df-mvh 35464 | ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) |
| df-mpst 35465 | ⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) ×
(mEx‘𝑡))) |
| df-msr 35466 | ⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd
‘(1st ‘𝑠)) / ℎ⦌⦋(2nd
‘𝑠) / 𝑎⦌〈((1st
‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) |
| df-msta 35467 | ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) |
| df-mfs 35468 | ⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} |
| df-mcls 35469 | ⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
| df-mpps 35470 | ⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) |
| df-mthm 35471 | ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) |
| cm0s 35557 | class m0St |
| cmsa 35558 | class mSA |
| cmwgfs 35559 | class mWGFS |
| cmsy 35560 | class mSyn |
| cmesy 35561 | class mESyn |
| cmgfs 35562 | class mGFS |
| cmtree 35563 | class mTree |
| cmst 35564 | class mST |
| cmsax 35565 | class mSAX |
| cmufs 35566 | class mUFS |
| df-m0s 35567 | ⊢ m0St = (𝑎 ∈ V ↦ 〈∅, ∅,
𝑎〉) |
| df-msa 35568 | ⊢ mSA = (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡) ∧ Fun (◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))}) |
| df-mwgfs 35569 | ⊢ mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} |
| df-msyn 35570 | ⊢ mSyn = Slot 6 |
| df-mesyn 35571 | ⊢ mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) |
| df-mgfs 35572 | ⊢ mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} |
| df-mtree 35573 | ⊢ mTree = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) |
| df-mst 35574 | ⊢ mST = (𝑡 ∈ V ↦ ((∅(mTree‘𝑡)∅) ↾
((mEx‘𝑡) ↾
(mVT‘𝑡)))) |
| df-msax 35575 | ⊢ mSAX = (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝)))) |
| df-mufs 35576 | ⊢ mUFS = {𝑡 ∈ mGFS ∣ Fun (mST‘𝑡)} |
| cmuv 35577 | class mUV |
| cmvl 35578 | class mVL |
| cmvsb 35579 | class mVSubst |
| cmfsh 35580 | class mFresh |
| cmfr 35581 | class mFRel |
| cmevl 35582 | class mEval |
| cmdl 35583 | class mMdl |
| cusyn 35584 | class mUSyn |
| cgmdl 35585 | class mGMdl |
| cmitp 35586 | class mItp |
| cmfitp 35587 | class mFromItp |
| df-muv 35588 | ⊢ mUV = Slot 7 |
| df-mfsh 35589 | ⊢ mFresh = Slot ;19 |
| df-mevl 35590 | ⊢ mEval = Slot ;20 |
| df-mvl 35591 | ⊢ mVL = (𝑡 ∈ V ↦ X𝑣 ∈
(mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)})) |
| df-mvsb 35592 | ⊢ mVSubst = (𝑡 ∈ V ↦ {〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) |
| df-mfrel 35593 | ⊢ mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) |
| df-mdl 35594 | ⊢ mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} |
| df-musyn 35595 | ⊢ mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ 〈((mSyn‘𝑡)‘(1st
‘𝑣)), (2nd
‘𝑣)〉)) |
| df-gmdl 35596 | ⊢ mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣
(∀𝑐 ∈
(mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))} |
| df-mitp 35597 | ⊢ mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) |
| df-mfitp 35598 | ⊢ mFromItp = (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))))) |
| ccpms 35599 | class cplMetSp |
| chlb 35600 | class HomLimB |
| chlim 35601 | class HomLim |
| cpfl 35602 | class polyFld |
| csf1 35603 | class
splitFld1 |
| csf 35604 | class splitFld |
| cpsl 35605 | class polySplitLim |
| df-cplmet 35606 | ⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s
ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx),
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) |
| df-homlimb 35607 | ⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) |
| df-homlim 35608 | ⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB
‘𝑓) / 𝑒⦌⦋(1st
‘𝑒) / 𝑣⦌⦋(2nd
‘𝑒) / 𝑔⦌({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉,
〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪
{〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx),
∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) |
| df-plfl 35609 | ⊢ polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑠⦌⦋((RSpan‘𝑠)‘{𝑝}) / 𝑖⦌⦋(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠
‘𝑠)(1r‘𝑠))](𝑠 ~QG 𝑖)) / 𝑓⦌〈⦋(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡⦌((𝑡 toNrmGrp (℩𝑛 ∈ (AbsVal‘𝑡)(𝑛 ∘ 𝑓) = (norm‘𝑟))) sSet 〈(le‘ndx),
⦋(𝑧 ∈
(Base‘𝑡) ↦
(℩𝑞 ∈ 𝑧 (𝑞(rem1p‘𝑟)𝑝) = 𝑞)) / 𝑔⦌(◡𝑔 ∘ ((le‘𝑠) ∘ 𝑔))〉), 𝑓〉) |
| df-sfl1 35616 | ⊢ splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) |
| df-sfl 35617 | ⊢ splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥∃𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {〈0, 〈𝑟, ( I ↾ (Base‘𝑟))〉〉}))‘(♯‘𝑝))))) |
| df-psl 35618 | ⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m
ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘
(𝑓 shift 1)) HomLim
(2nd ∘ 𝑓))) |
| czr 35619 | class ZRing |
| cgf 35620 | class GF |
| cgfo 35621 | class
GF∞ |
| ceqp 35622 | class ~Qp |
| crqp 35623 | class /Qp |
| cqp 35624 | class Qp |
| czp 35625 | class Zp |
| cqpa 35626 | class _Qp |
| ccp 35627 | class Cp |
| df-zrng 35628 | ⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) |
| df-gf 35629 | ⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |
| df-gfoo 35630 | ⊢ GF∞ = (𝑝 ∈ ℙ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |
| df-eqp 35631 | ⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) |
| df-rqp 35632 | ⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩
⦋{𝑓 ∈
(ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m
(0...(𝑝 −
1))))))) |
| df-qp 35633 | ⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ
↑m (0...(𝑝
− 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx),
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ,
< )))))) |
| df-zp 35634 | ⊢ Zp = (ZRing ∘
Qp) |
| df-qpa 35635 | ⊢ _Qp = (𝑝 ∈ ℙ ↦
⦋(Qp‘𝑝)
/ 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}))) |
| df-cp 35636 | ⊢ Cp = ( cplMetSp ∘
_Qp) |
| ccloneop 35667 | class CloneOp |
| df-cloneop 35668 | ⊢ CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛))}) |
| cprj 35669 | class prj |
| df-prj 35670 | ⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o),
𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) |
| csuppos 35671 | class suppos |
| df-suppos 35672 | ⊢ suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o),
𝑚 ∈ (ω ∖
1o) ↦ (𝑓
∈ (𝑎
↑m (𝑎
↑m 𝑛)),
𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) |
| cwsuc 35783 | class wsuc(𝑅, 𝐴, 𝑋) |
| cwlim 35784 | class WLim(𝑅, 𝐴) |
| df-wsuc 35785 | ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
| df-wlim 35786 | ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} |
| ctxp 35803 | class (𝐴 ⊗ 𝐵) |
| cpprod 35804 | class pprod(𝑅, 𝑆) |
| csset 35805 | class SSet
|
| ctrans 35806 | class Trans
|
| cbigcup 35807 | class Bigcup
|
| cfix 35808 | class Fix
𝐴 |
| climits 35809 | class Limits
|
| cfuns 35810 | class Funs
|
| csingle 35811 | class Singleton |
| csingles 35812 | class
Singletons |
| cimage 35813 | class Image𝐴 |
| ccart 35814 | class Cart |
| cimg 35815 | class Img |
| cdomain 35816 | class Domain |
| crange 35817 | class Range |
| capply 35818 | class Apply |
| ccup 35819 | class Cup |
| ccap 35820 | class Cap |
| csuccf 35821 | class Succ |
| cfunpart 35822 | class Funpart𝐹 |
| cfullfn 35823 | class FullFun𝐹 |
| crestrict 35824 | class Restrict |
| cub 35825 | class UB𝑅 |
| clb 35826 | class LB𝑅 |
| df-txp 35827 | ⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
| df-pprod 35828 | ⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) |
| df-sset 35829 | ⊢ SSet = ((V
× V) ∖ ran ( E ⊗ (V ∖ E ))) |
| df-trans 35830 | ⊢ Trans = (V
∖ ran (( E ∘ E ) ∖ E )) |
| df-bigcup 35831 | ⊢ Bigcup = ((V
× V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗
V))) |
| df-fix 35832 | ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) |
| df-limits 35833 | ⊢ Limits = ((On
∩ Fix Bigcup )
∖ {∅}) |
| df-funs 35834 | ⊢ Funs =
(𝒫 (V × V) ∖ Fix ( E ∘
((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘
◡ E ))) |
| df-singleton 35835 | ⊢ Singleton = ((V × V) ∖ ran ((V
⊗ E ) △ ( I ⊗ V))) |
| df-singles 35836 | ⊢ Singletons =
ran Singleton |
| df-image 35837 | ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E
) △ (( E ∘ ◡𝐴) ⊗ V))) |
| df-cart 35838 | ⊢ Cart = (((V × V) × V) ∖ ran
((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) |
| df-img 35839 | ⊢ Img = (Image((2nd ∘
1st ) ↾ (1st ↾ (V × V))) ∘
Cart) |
| df-domain 35840 | ⊢ Domain = Image(1st ↾ (V
× V)) |
| df-range 35841 | ⊢ Range = Image(2nd ↾ (V
× V)) |
| df-cup 35842 | ⊢ Cup = (((V × V) × V) ∖ ran
((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |
| df-cap 35843 | ⊢ Cap = (((V × V) × V) ∖ ran
((V ⊗ E ) △ (((◡1st ∘ E ) ∩ (◡2nd ∘ E )) ⊗
V))) |
| df-restrict 35844 | ⊢ Restrict = (Cap ∘ (1st
⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st
))))) |
| df-succf 35845 | ⊢ Succ = (Cup ∘ ( I ⊗
Singleton)) |
| df-apply 35846 | ⊢ Apply = (( Bigcup
∘ Bigcup ) ∘ (((V × V)
∖ ran ((V ⊗ E ) △ (( E ↾
Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘
pprod( I , Singleton)))) |
| df-funpart 35847 | ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) |
| df-fullfun 35848 | ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) ×
{∅})) |
| df-ub 35849 | ⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) |
| df-lb 35850 | ⊢ LB𝑅 = UB◡𝑅 |
| caltop 35929 | class ⟪𝐴, 𝐵⟫ |
| caltxp 35930 | class (𝐴 ×× 𝐵) |
| df-altop 35931 | ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} |
| df-altxp 35932 | ⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} |
| cofs 35955 | class OuterFiveSeg |
| df-ofs 35956 | ⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} |
| ctransport 36002 | class TransportTo |
| df-transport 36003 | ⊢ TransportTo = {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |
| cifs 36008 | class InnerFiveSeg |
| ccgr3 36009 | class Cgr3 |
| ccolin 36010 | class Colinear |
| cfs 36011 | class FiveSeg |
| df-colinear 36012 | ⊢ Colinear = ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |
| df-ifs 36013 | ⊢ InnerFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑐〉Cgr〈𝑥, 𝑧〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑐, 𝑑〉Cgr〈𝑧, 𝑤〉)))} |
| df-cgr3 36014 | ⊢ Cgr3 = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ (〈𝑎, 𝑏〉Cgr〈𝑑, 𝑒〉 ∧ 〈𝑎, 𝑐〉Cgr〈𝑑, 𝑓〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑒, 𝑓〉))} |
| df-fs 36015 | ⊢ FiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} |
| csegle 36079 | class
Seg≤ |
| df-segle 36080 | ⊢ Seg≤ = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn 〈𝑐, 𝑑〉 ∧ 〈𝑎, 𝑏〉Cgr〈𝑐, 𝑦〉))} |
| coutsideof 36092 | class OutsideOf |
| df-outsideof 36093 | ⊢ OutsideOf = ( Colinear ∖ Btwn
) |
| cline2 36107 | class Line |
| cray 36108 | class Ray |
| clines2 36109 | class LinesEE |
| df-line2 36110 | ⊢ Line = {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |
| df-ray 36111 | ⊢ Ray = {〈〈𝑝, 𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} |
| df-lines2 36112 | ⊢ LinesEE = ran Line |
| cfwddif 36131 | class △ |
| df-fwddif 36132 | ⊢ △ = (𝑓 ∈ (ℂ ↑pm ℂ)
↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)))) |
| cfwddifn 36133 | class
△n |
| df-fwddifn 36134 | ⊢ △n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |
| chf 36145 | class Hf |
| df-hf 36146 | ⊢ Hf = ∪ (𝑅1 “ ω) |
| cfne 36309 | class Fne |
| df-fne 36310 | ⊢ Fne = {〈𝑥, 𝑦〉 ∣ (∪
𝑥 = ∪ 𝑦
∧ ∀𝑧 ∈
𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} |
| w3nand 36370 | wff (𝜑 ⊼ 𝜓 ⊼ 𝜒) |
| df-3nand 36371 | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) |
| cgcdOLD 36432 | class gcdOLD (𝐴, 𝐵) |
| df-gcdOLD 36433 | ⊢ gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, <
) |
| cprvb 36570 | wff Prv 𝜑 |
| ax-prv1 36571 | ⊢ 𝜑 ⇒ ⊢ Prv 𝜑 |
| ax-prv2 36572 | ⊢ (Prv (𝜑 → 𝜓) → (Prv 𝜑 → Prv 𝜓)) |
| ax-prv3 36573 | ⊢ (Prv 𝜑 → Prv Prv 𝜑) |
| wmoo 36624 | wff ∃**𝑥𝜑 |
| df-bj-mo 36625 | ⊢ (∃**𝑥𝜑 ↔ ∀𝑧∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| wnnf 36696 | wff Ⅎ'𝑥𝜑 |
| df-bj-nnf 36697 | ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) |
| bj-cgab 36906 | class {𝐴 ∣ 𝑥 ∣ 𝜑} |
| df-bj-gab 36907 | ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} |
| wrnf 36914 | wff Ⅎ𝑥 ∈ 𝐴𝜑 |
| df-bj-rnf 36915 | ⊢ (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| bj-csngl 36938 | class sngl 𝐴 |
| df-bj-sngl 36939 | ⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} |
| bj-ctag 36947 | class tag 𝐴 |
| df-bj-tag 36948 | ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
| bj-cproj 36963 | class (𝐴 Proj 𝐵) |
| df-bj-proj 36964 | ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} |
| bj-c1upl 36970 | class ⦅𝐴⦆ |
| df-bj-1upl 36971 | ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) |
| bj-cpr1 36973 | class pr1 𝐴 |
| df-bj-pr1 36974 | ⊢ pr1 𝐴 = (∅ Proj 𝐴) |
| bj-c2uple 36983 | class ⦅𝐴, 𝐵⦆ |
| df-bj-2upl 36984 | ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag
𝐵)) |
| bj-cpr2 36987 | class pr2 𝐴 |
| df-bj-pr2 36988 | ⊢ pr2 𝐴 = (1o Proj 𝐴) |
| ax-bj-sn 37006 | ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) |
| ax-bj-bun 37010 | ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) |
| ax-bj-adj 37015 | ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦)) |
| celwise 37052 | class elwise |
| df-elwise 37053 | ⊢ elwise = (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) |
| cmoore 37076 | class Moore |
| df-bj-moore 37077 | ⊢ Moore = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 ∩ ∩ 𝑦)
∈ 𝑥} |
| cmpt3 37093 | class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) |
| df-bj-mpt3 37094 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷)} |
| csethom 37095 | class Set⟶ |
| df-bj-sethom 37096 | ⊢ Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) |
| ctophom 37097 | class Top⟶ |
| df-bj-tophom 37098 | ⊢ Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)}) |
| cmgmhom 37099 | class Mgm⟶ |
| df-bj-mgmhom 37100 | ⊢ Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) |
| ctopmgmhom 37101 | class TopMgm⟶ |
| df-bj-topmgmhom 37102 | ⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
| ccur- 37103 | class curry_ |
| df-bj-cur 37104 | ⊢ curry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((𝑥 × 𝑦) Set⟶ 𝑧) ↦ (𝑎 ∈ 𝑥 ↦ (𝑏 ∈ 𝑦 ↦ (𝑓‘〈𝑎, 𝑏〉))))) |
| cunc- 37105 | class uncurry_ |
| df-bj-unc 37106 | ⊢ uncurry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) |
| cstrset 37107 | class [𝐵 / 𝐴]struct𝑆 |
| df-strset 37108 | ⊢ [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {〈(𝐴‘ndx), 𝐵〉}) |
| cdiag2 37145 | class Id |
| df-bj-diag 37146 | ⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) |
| cimdir 37151 | class
𝒫* |
| df-imdir 37152 | ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
| ciminv 37164 | class
𝒫* |
| df-iminv 37165 | ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) |
| cfractemp 37169 | class
{R |
| df-bj-fractemp 37170 | ⊢ {R = (𝑥 ∈ R ↦
(℩𝑦 ∈
R ((𝑦 =
0R ∨ (0R
<R 𝑦 ∧ 𝑦 <R
1R)) ∧ ∃𝑛 ∈ ω ([〈{𝑧 ∈ Q ∣ 𝑧 <Q
〈suc 𝑛,
1o〉}, 1P〉]
~R +R 𝑦) = 𝑥))) |
| cinftyexpitau 37171 | class
+∞eiτ |
| df-bj-inftyexpitau 37172 | ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦
〈({R‘(1st ‘𝑥)),
{R}〉) |
| cccinftyN 37173 | class
ℂ∞N |
| df-bj-ccinftyN 37174 | ⊢ ℂ∞N = ran
+∞eiτ |
| chalf 37176 | class 1/2 |
| df-bj-onehalf 37177 | ⊢ 1/2 = (℩𝑥 ∈ R (𝑥 +R 𝑥) =
1R) |
| cinftyexpi 37179 | class
+∞ei |
| df-bj-inftyexpi 37180 | ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥,
ℂ〉) |
| cccinfty 37184 | class
ℂ∞ |
| df-bj-ccinfty 37185 | ⊢ ℂ∞ = ran
+∞ei |
| cccbar 37188 | class ℂ̅ |
| df-bj-ccbar 37189 | ⊢ ℂ̅ = (ℂ ∪
ℂ∞) |
| cpinfty 37192 | class +∞ |
| df-bj-pinfty 37193 | ⊢ +∞ =
(+∞ei‘0) |
| cminfty 37196 | class -∞ |
| df-bj-minfty 37197 | ⊢ -∞ =
(+∞ei‘π) |
| crrbar 37201 | class ℝ̅ |
| df-bj-rrbar 37202 | ⊢ ℝ̅ = (ℝ ∪ {-∞,
+∞}) |
| cinfty 37203 | class ∞ |
| df-bj-infty 37204 | ⊢ ∞ = 𝒫 ∪ ℂ |
| ccchat 37205 | class ℂ̂ |
| df-bj-cchat 37206 | ⊢ ℂ̂ = (ℂ ∪
{∞}) |
| crrhat 37207 | class ℝ̂ |
| df-bj-rrhat 37208 | ⊢ ℝ̂ = (ℝ ∪
{∞}) |
| caddcc 37210 | class
+ℂ̅ |
| df-bj-addc 37211 | ⊢ +ℂ̅ = (𝑥 ∈ (((ℂ ×
ℂ̅) ∪ (ℂ̅ × ℂ)) ∪ ((ℂ̂
× ℂ̂) ∪ ( I ↾ ℂ∞))) ↦
if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞,
if((1st ‘𝑥) ∈ ℂ, if((2nd
‘𝑥) ∈ ℂ,
〈((1st ‘(1st ‘𝑥)) +R
(1st ‘(2nd ‘𝑥))), ((2nd ‘(1st
‘𝑥))
+R (2nd ‘(2nd ‘𝑥)))〉, (2nd
‘𝑥)), (1st
‘𝑥)))) |
| coppcc 37212 | class
-ℂ̅ |
| df-bj-oppc 37213 | ⊢ -ℂ̅ = (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 +ℂ̅
𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))))) |
| cltxr 37214 | class
<ℝ̅ |
| df-bj-lt 37215 | ⊢ <ℝ̅ = ({𝑥 ∈ (ℝ̅ ×
ℝ̅) ∣ ∃𝑦∃𝑧(((1st ‘𝑥) = 〈𝑦, 0R〉 ∧
(2nd ‘𝑥) =
〈𝑧,
0R〉) ∧ 𝑦 <R 𝑧)} ∪ ((({-∞} ×
ℝ) ∪ (ℝ × {+∞})) ∪ ({-∞} ×
{+∞}))) |
| carg 37216 | class Arg |
| df-bj-arg 37217 | ⊢ Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦
if(𝑥 ∈ ℂ,
(ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π,
(((1st ‘𝑥)
/ (2 · π)) − π)))) |
| cmulc 37218 | class
·ℂ̅ |
| df-bj-mulc 37219 | ⊢ ·ℂ̅ = (𝑥 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))))) |
| cinvc 37220 | class
-1ℂ̅ |
| df-bj-invc 37221 | ⊢ -1ℂ̅ =
(𝑥 ∈ (ℂ̅
∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅
𝑦) = 1),
0))) |
| ciomnn 37222 | class
iω↪ℕ |
| df-bj-iomnn 37223 | ⊢ iω↪ℕ =
((𝑛 ∈ ω ↦
〈[〈{𝑟 ∈
Q ∣ 𝑟
<Q 〈suc 𝑛, 1o〉},
1P〉] ~R ,
0R〉) ∪ {〈ω,
+∞〉}) |
| cnnbar 37233 | class ℕ̅ |
| df-bj-nnbar 37234 | ⊢ ℕ̅ = (ℕ0 ∪
{+∞}) |
| czzbar 37235 | class ℤ̅ |
| df-bj-zzbar 37236 | ⊢ ℤ̅ = (ℤ ∪ {-∞,
+∞}) |
| czzhat 37237 | class ℤ̂ |
| df-bj-zzhat 37238 | ⊢ ℤ̂ = (ℤ ∪
{∞}) |
| cdivc 37239 | class
∥ℂ |
| df-bj-divc 37240 | ⊢ ∥ℂ = {〈𝑥, 𝑦〉 ∣ (〈𝑥, 𝑦〉 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧
∃𝑛 ∈
(ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)} |
| cfinsum 37256 | class FinSum |
| df-bj-finsum 37257 | ⊢ FinSum = (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
| crrvec 37265 | class ℝ-Vec |
| df-bj-rvec 37266 | ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “
{ℝfld})) |
| cend 37286 | class End |
| df-bj-end 37287 | ⊢ End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {〈(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)〉, 〈(+g‘ndx),
(〈𝑥, 𝑥〉(comp‘𝑐)𝑥)〉})) |
| cfinxp 37356 | class (𝑈↑↑𝑁) |
| df-finxp 37357 | ⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))} |
| ax-luk1 37392 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
| ax-luk2 37393 | ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) |
| ax-luk3 37394 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| ax-wl-13v 37466 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| ax-wl-cleq 37475 | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| ax-wl-clel 37476 | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| ax-wl-11v 37557 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| ctotbnd 37745 | class TotBnd |
| cbnd 37746 | class Bnd |
| df-totbnd 37747 | ⊢ TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) |
| df-bnd 37758 | ⊢ Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) |
| cismty 37777 | class Ismty |
| df-ismty 37778 | ⊢ Ismty = (𝑚 ∈ ∪ ran
∞Met, 𝑛 ∈ ∪ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚–1-1-onto→dom
dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚∀𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓‘𝑥)𝑛(𝑓‘𝑦)))}) |
| crrn 37804 | class
ℝn |
| df-rrn 37805 | ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ
↑m 𝑖),
𝑦 ∈ (ℝ
↑m 𝑖)
↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| cass 37821 | class Ass |
| df-ass 37822 | ⊢ Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} |
| cexid 37823 | class ExId |
| df-exid 37824 | ⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} |
| cmagm 37827 | class Magma |
| df-mgmOLD 37828 | ⊢ Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡} |
| csem 37839 | class SemiGrp |
| df-sgrOLD 37840 | ⊢ SemiGrp = (Magma ∩ Ass) |
| cmndo 37845 | class MndOp |
| df-mndo 37846 | ⊢ MndOp = (SemiGrp ∩ ExId
) |
| cghomOLD 37862 | class GrpOpHom |
| df-ghomOLD 37863 | ⊢ GrpOpHom = (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) |
| crngo 37873 | class RingOps |
| df-rngo 37874 | ⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} |
| cdrng 37927 | class DivRingOps |
| df-drngo 37928 | ⊢ DivRingOps = {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |
| crngohom 37939 | class RingOpsHom |
| crngoiso 37940 | class RingOpsIso |
| crisc 37941 | class
≃𝑟 |
| df-rngohom 37942 | ⊢ RingOpsHom = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (ran (1st ‘𝑠) ↑m ran
(1st ‘𝑟))
∣ ((𝑓‘(GId‘(2nd
‘𝑟))) =
(GId‘(2nd ‘𝑠)) ∧ ∀𝑥 ∈ ran (1st ‘𝑟)∀𝑦 ∈ ran (1st ‘𝑟)((𝑓‘(𝑥(1st ‘𝑟)𝑦)) = ((𝑓‘𝑥)(1st ‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(2nd ‘𝑟)𝑦)) = ((𝑓‘𝑥)(2nd ‘𝑠)(𝑓‘𝑦))))}) |
| df-rngoiso 37955 | ⊢ RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran
(1st ‘𝑠)}) |
| df-risc 37962 | ⊢ ≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} |
| ccm2 37968 | class Com2 |
| df-com2 37969 | ⊢ Com2 = {〈𝑔, ℎ〉 ∣ ∀𝑎 ∈ ran 𝑔∀𝑏 ∈ ran 𝑔(𝑎ℎ𝑏) = (𝑏ℎ𝑎)} |
| cfld 37970 | class Fld |
| df-fld 37971 | ⊢ Fld = (DivRingOps ∩
Com2) |
| ccring 37972 | class CRingOps |
| df-crngo 37973 | ⊢ CRingOps = (RingOps ∩
Com2) |
| cidl 37986 | class Idl |
| cpridl 37987 | class PrIdl |
| cmaxidl 37988 | class MaxIdl |
| df-idl 37989 | ⊢ Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st
‘𝑟) ∣
((GId‘(1st ‘𝑟)) ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥(1st ‘𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st ‘𝑟)((𝑧(2nd ‘𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd ‘𝑟)𝑧) ∈ 𝑖)))}) |
| df-pridl 37990 | ⊢ PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
| df-maxidl 37991 | ⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) |
| cprrng 38025 | class PrRing |
| cdmn 38026 | class Dmn |
| df-prrngo 38027 | ⊢ PrRing = {𝑟 ∈ RingOps ∣
{(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} |
| df-dmn 38028 | ⊢ Dmn = (PrRing ∩ Com2) |
| cigen 38038 | class IdlGen |
| df-igen 38039 | ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st
‘𝑟) ↦ ∩ {𝑗
∈ (Idl‘𝑟)
∣ 𝑠 ⊆ 𝑗}) |
| cxrn 38153 | class (𝐴 ⋉ 𝐵) |
| ccoss 38154 | class ≀ 𝑅 |
| ccoels 38155 | class ∼ 𝐴 |
| crels 38156 | class Rels |
| cssr 38157 | class S |
| crefs 38158 | class Refs |
| crefrels 38159 | class RefRels |
| wrefrel 38160 | wff RefRel 𝑅 |
| ccnvrefs 38161 | class CnvRefs |
| ccnvrefrels 38162 | class CnvRefRels |
| wcnvrefrel 38163 | wff CnvRefRel 𝑅 |
| csyms 38164 | class Syms |
| csymrels 38165 | class SymRels |
| wsymrel 38166 | wff SymRel 𝑅 |
| ctrs 38167 | class Trs |
| ctrrels 38168 | class TrRels |
| wtrrel 38169 | wff TrRel 𝑅 |
| ceqvrels 38170 | class EqvRels |
| weqvrel 38171 | wff EqvRel 𝑅 |
| ccoeleqvrels 38172 | class CoElEqvRels |
| wcoeleqvrel 38173 | wff CoElEqvRel 𝐴 |
| credunds 38174 | class Redunds |
| wredund 38175 | wff 𝐴 Redund 〈𝐵, 𝐶〉 |
| wredundp 38176 | wff redund (𝜑, 𝜓, 𝜒) |
| cdmqss 38177 | class DomainQss |
| wdmqs 38178 | wff 𝑅 DomainQs 𝐴 |
| cers 38179 | class Ers |
| werALTV 38180 | wff 𝑅 ErALTV 𝐴 |
| ccomembers 38181 | class CoMembErs |
| wcomember 38182 | wff CoMembEr 𝐴 |
| cfunss 38183 | class Funss |
| cfunsALTV 38184 | class FunsALTV |
| wfunALTV 38185 | wff FunALTV 𝐹 |
| cdisjss 38186 | class Disjss |
| cdisjs 38187 | class Disjs |
| wdisjALTV 38188 | wff Disj 𝑅 |
| celdisjs 38189 | class ElDisjs |
| weldisj 38190 | wff ElDisj 𝐴 |
| wantisymrel 38191 | wff AntisymRel 𝑅 |
| cparts 38192 | class Parts |
| wpart 38193 | wff 𝑅 Part 𝐴 |
| cmembparts 38194 | class MembParts |
| wmembpart 38195 | wff MembPart 𝐴 |
| df-xrn 38338 | ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
| df-coss 38387 | ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| df-coels 38388 | ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) |
| df-rels 38461 | ⊢ Rels = 𝒫 (V ×
V) |
| df-ssr 38474 | ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} |
| df-refs 38486 | ⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
| df-refrels 38487 | ⊢ RefRels = ( Refs ∩ Rels
) |
| df-refrel 38488 | ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| df-cnvrefs 38501 | ⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S
(𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
| df-cnvrefrels 38502 | ⊢ CnvRefRels = ( CnvRefs ∩ Rels
) |
| df-cnvrefrel 38503 | ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| df-syms 38518 | ⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
| df-symrels 38519 | ⊢ SymRels = ( Syms ∩ Rels
) |
| df-symrel 38520 | ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| df-trs 38548 | ⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
| df-trrels 38549 | ⊢ TrRels = ( Trs ∩ Rels ) |
| df-trrel 38550 | ⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| df-eqvrels 38560 | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩
TrRels ) |
| df-eqvrel 38561 | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) |
| df-coeleqvrels 38562 | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
| df-coeleqvrel 38563 | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| df-redunds 38599 | ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} |
| df-redund 38600 | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| df-redundp 38601 | ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) |
| df-dmqss 38614 | ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} |
| df-dmqs 38615 | ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) |
| df-ers 38640 | ⊢ Ers = ( DomainQss ↾ EqvRels
) |
| df-erALTV 38641 | ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
| df-comembers 38642 | ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
| df-comember 38643 | ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
| df-funss 38657 | ⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } |
| df-funsALTV 38658 | ⊢ FunsALTV = ( Funss ∩ Rels
) |
| df-funALTV 38659 | ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) |
| df-disjss 38680 | ⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } |
| df-disjs 38681 | ⊢ Disjs = ( Disjss ∩ Rels
) |
| df-disjALTV 38682 | ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
| df-eldisjs 38683 | ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
| df-eldisj 38684 | ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
| df-antisymrel 38737 | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) |
| df-parts 38742 | ⊢ Parts = ( DomainQss ↾ Disjs
) |
| df-part 38743 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
| df-membparts 38744 | ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} |
| df-membpart 38745 | ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) |
| wprt 38849 | wff Prt 𝐴 |
| df-prt 38850 | ⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| ax-c5 38861 | ⊢ (∀𝑥𝜑 → 𝜑) |
| ax-c4 38862 | ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| ax-c7 38863 | ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
| ax-c10 38864 | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
| ax-c11 38865 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
| ax-c11n 38866 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| ax-c15 38867 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| ax-c9 38868 | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| ax-c14 38869 | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) |
| ax-c16 38870 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
| ax-riotaBAD 38931 | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) |
| clsa 38952 | class LSAtoms |
| clsh 38953 | class LSHyp |
| df-lsatoms 38954 | ⊢ LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g‘𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣}))) |
| df-lshyp 38955 | ⊢ LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |
| clcv 38996 | class
⋖L |
| df-lcv 38997 | ⊢ ⋖L = (𝑤 ∈ V ↦ {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) |
| clfn 39035 | class LFnl |
| df-lfl 39036 | ⊢ LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) ∣
∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) |
| clk 39063 | class LKer |
| df-lkr 39064 | ⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “
{(0g‘(Scalar‘𝑤))}))) |
| cld 39101 | class LDual |
| df-ldual 39102 | ⊢ LDual = (𝑣 ∈ V ↦ ({〈(Base‘ndx),
(LFnl‘𝑣)〉,
〈(+g‘ndx), ( ∘f
(+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) |
| cops 39150 | class OP |
| ccmtN 39151 | class cm |
| col 39152 | class OL |
| coml 39153 | class OML |
| df-oposet 39154 | ⊢ OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} |
| df-cmtN 39155 | ⊢ cm = (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) |
| df-ol 39156 | ⊢ OL = (Lat ∩
OP) |
| df-oml 39157 | ⊢ OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏 → 𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))} |
| ccvr 39240 | class ⋖ |
| catm 39241 | class Atoms |
| cal 39242 | class AtLat |
| clc 39243 | class CvLat |
| df-covers 39244 | ⊢ ⋖ = (𝑝 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) |
| df-ats 39245 | ⊢ Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) |
| df-atl 39276 | ⊢ AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} |
| df-cvlat 39300 | ⊢ CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐 ∧ 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))} |
| chlt 39328 | class HL |
| df-hlat 39329 | ⊢ HL = {𝑙 ∈ ((OML ∩ CLat) ∩ CvLat)
∣ (∀𝑎 ∈
(Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))))} |
| clln 39470 | class LLines |
| clpl 39471 | class LPlanes |
| clvol 39472 | class LVols |
| clines 39473 | class Lines |
| cpointsN 39474 | class Points |
| cpsubsp 39475 | class PSubSp |
| cpmap 39476 | class pmap |
| df-llines 39477 | ⊢ LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) |
| df-lplanes 39478 | ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) |
| df-lvols 39479 | ⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) |
| df-lines 39480 | ⊢ Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) |
| df-pointsN 39481 | ⊢ Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) |
| df-psubsp 39482 | ⊢ PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |
| df-pmap 39483 | ⊢ pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) |
| cpadd 39774 | class
+𝑃 |
| df-padd 39775 | ⊢ +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))) |
| cpclN 39866 | class PCl |
| df-pclN 39867 | ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦
∈ (PSubSp‘𝑘)
∣ 𝑥 ⊆ 𝑦})) |
| cpolN 39881 | class
⊥𝑃 |
| df-polarityN 39882 | ⊢ ⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫
(Atoms‘𝑙) ↦
((Atoms‘𝑙) ∩
∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) |
| cpscN 39913 | class PSubCl |
| df-psubclN 39914 | ⊢ PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |
| clh 39963 | class LHyp |
| claut 39964 | class LAut |
| cwpointsN 39965 | class WAtoms |
| cpautN 39966 | class PAut |
| df-lhyp 39967 | ⊢ LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)}) |
| df-laut 39968 | ⊢ LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)))}) |
| df-watsN 39969 | ⊢ WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖
((⊥𝑃‘𝑘)‘{𝑑})))) |
| df-pautN 39970 | ⊢ PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
| cldil 40079 | class LDil |
| cltrn 40080 | class LTrn |
| cdilN 40081 | class Dil |
| ctrnN 40082 | class Trn |
| df-ldil 40083 | ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) |
| df-ltrn 40084 | ⊢ LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))})) |
| df-dilN 40085 | ⊢ Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
| df-trnN 40086 | ⊢ Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑}))})) |
| ctrl 40137 | class trL |
| df-trl 40138 | ⊢ trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)))))) |
| ctgrp 40721 | class TGrp |
| df-tgrp 40722 | ⊢ TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((LTrn‘𝑘)‘𝑤)〉,
〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| ctendo 40731 | class TEndo |
| cedring 40732 | class EDRing |
| cedring-rN 40733 | class
EDRingR |
| df-tendo 40734 | ⊢ TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) |
| df-edring-rN 40735 | ⊢ EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉})) |
| df-edring 40736 | ⊢ EDRing = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑠 ∘ 𝑡))〉})) |
| cdveca 40981 | class DVecA |
| df-dveca 40982 | ⊢ DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx),
((LTrn‘𝑘)‘𝑤)〉,
〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠‘𝑓))〉}))) |
| cdia 41007 | class DIsoA |
| df-disoa 41008 | ⊢ DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}))) |
| cdvh 41057 | class DVecH |
| df-dvech 41058 | ⊢ DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx),
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
| cocaN 41098 | class ocA |
| df-docaN 41099 | ⊢ ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) |
| cdjaN 41110 | class vA |
| df-djaN 41111 | ⊢ vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) |
| cdib 41117 | class DIsoB |
| df-dib 41118 | ⊢ DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |
| cdic 41151 | class DIsoC |
| df-dic 41152 | ⊢ DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) |
| cdih 41207 | class DIsoH |
| df-dih 41208 | ⊢ DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))))) |
| coch 41326 | class ocH |
| df-doch 41327 | ⊢ ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))) |
| cdjh 41373 | class joinH |
| df-djh 41374 | ⊢ joinH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)))))) |
| clpoN 41459 | class LPol |
| df-lpolN 41460 | ⊢ LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫
(Base‘𝑤)) ∣
((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) |
| clcd 41565 | class LCDual |
| df-lcdual 41566 | ⊢ LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) |
| cmpd 41603 | class mapd |
| df-mapd 41604 | ⊢ mapd = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}))) |
| chvm 41735 | class HVMap |
| df-hvmap 41736 | ⊢ HVMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖
{(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (℩𝑗 ∈
(Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠
‘((DVecH‘𝑘)‘𝑤))𝑥))))))) |
| chdma1 41770 | class HDMap1 |
| chdma 41771 | class HDMap |
| df-hdmap1 41772 | ⊢ HDMap1 = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) |
| df-hdmap 41773 | ⊢ HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |
| chg 41862 | class HGMap |
| df-hgmap 41863 | ⊢ HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) |
| chlh 41911 | class HLHil |
| df-hlhil 41912 | ⊢ HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
| ccsrg 41941 | class CSRing |
| df-csring 41942 | ⊢ CSRing = {𝑓 ∈ SRing ∣ (mulGrp‘𝑓) ∈ CMnd} |
| cprimroots 42064 | class PrimRoots |
| df-primroots 42065 | ⊢ PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0 ↦
⦋(Base‘𝑟) / 𝑏⦌{𝑎 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙))}) |
| ax-exfinfld 42175 | ⊢ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |
| cresub 42338 | class
−ℝ |
| df-resub 42339 | ⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦
(℩𝑧 ∈
ℝ (𝑦 + 𝑧) = 𝑥)) |
| crediv 42413 | class
/ℝ |
| df-rediv 42414 | ⊢ /ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦
(℩𝑧 ∈
ℝ (𝑦 · 𝑧) = 𝑥)) |
| cprjsp 42574 | class
ℙ𝕣𝕠𝕛 |
| df-prjsp 42575 | ⊢ ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |
| cprjspn 42587 | class
ℙ𝕣𝕠𝕛n |
| df-prjspn 42588 | ⊢
ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦
(ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
| cprjcrv 42602 | class
ℙ𝕣𝕠𝕛Crv |
| df-prjcrv 42603 | ⊢ ℙ𝕣𝕠𝕛Crv =
(𝑛 ∈
ℕ0, 𝑘
∈ Field ↦ (𝑓
∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) |
| cnacs 42675 | class NoeACS |
| df-nacs 42676 | ⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) |
| cmzpcl 42694 | class mzPolyCld |
| cmzp 42695 | class mzPoly |
| df-mzpcl 42696 | ⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m
(ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) |
| df-mzp 42697 | ⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) |
| cdioph 42728 | class Dioph |
| df-dioph 42729 | ⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran
(𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) |
| csquarenn 42809 | class
◻NN |
| cpell1qr 42810 | class Pell1QR |
| cpell1234qr 42811 | class Pell1234QR |
| cpell14qr 42812 | class Pell14QR |
| cpellfund 42813 | class PellFund |
| df-squarenn 42814 | ⊢ ◻NN = {𝑥 ∈ ℕ ∣
(√‘𝑥) ∈
ℚ} |
| df-pell1qr 42815 | ⊢ Pell1QR = (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0
∃𝑤 ∈
ℕ0 (𝑦 =
(𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
| df-pell14qr 42816 | ⊢ Pell14QR = (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0
∃𝑤 ∈ ℤ
(𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
| df-pell1234qr 42817 | ⊢ Pell1234QR = (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
| df-pellfund 42818 | ⊢ PellFund = (𝑥 ∈ (ℕ ∖
◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) |
| crmx 42873 | class Xrm |
| crmy 42874 | class Yrm |
| df-rmx 42875 | ⊢ Xrm = (𝑎 ∈ (ℤ≥‘2),
𝑛 ∈ ℤ ↦
(1st ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
| df-rmy 42876 | ⊢ Yrm = (𝑎 ∈ (ℤ≥‘2),
𝑛 ∈ ℤ ↦
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
| clfig 43040 | class LFinGen |
| df-lfig 43041 | ⊢ LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫
(Base‘𝑤) ∩
Fin))} |
| clnm 43048 | class LNoeM |
| df-lnm 43049 | ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} |
| clnr 43082 | class LNoeR |
| df-lnr 43083 | ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
| cldgis 43094 | class ldgIdlSeq |
| df-ldgis 43095 | ⊢ ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
| cmnc 43104 | class Monic |
| cplylt 43105 | class
Poly< |
| df-mnc 43106 | ⊢ Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
| df-plylt 43107 | ⊢ Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨
(deg‘𝑝) < 𝑥)}) |
| cdgraa 43113 | class
degAA |
| cmpaa 43114 | class minPolyAA |
| df-dgraa 43115 | ⊢ degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |
| df-mpaa 43116 | ⊢ minPolyAA = (𝑥 ∈ 𝔸 ↦
(℩𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) |
| citgo 43130 | class IntgOver |
| cza 43131 | class ℤ |
| df-itgo 43132 | ⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣
∃𝑝 ∈
(Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
| df-za 43133 | ⊢ ℤ = (IntgOver‘ℤ) |
| cmend 43144 | class MEndo |
| df-mend 43145 | ⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉})) |
| ccytp 43170 | class CytP |
| df-cytp 43171 | ⊢ CytP = (𝑛 ∈ ℕ ↦
((mulGrp‘(Poly1‘ℂfld))
Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) ↦
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) |
| ctopsep 43179 | class TopSep |
| ctoplnd 43180 | class TopLnd |
| df-topsep 43181 | ⊢ TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 ∪ 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = ∪ 𝑗)} |
| df-toplnd 43182 | ⊢ TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪
𝑥 = ∪ 𝑦
→ ∃𝑧 ∈
𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧))} |
| crcl 43645 | class r* |
| df-rcl 43646 | ⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
| whe 43745 | wff 𝑅 hereditary 𝐴 |
| df-he 43746 | ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) |
| ax-frege1 43763 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
| ax-frege2 43764 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| ax-frege8 43782 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
| ax-frege28 43803 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| ax-frege31 43807 | ⊢ (¬ ¬ 𝜑 → 𝜑) |
| ax-frege41 43818 | ⊢ (𝜑 → ¬ ¬ 𝜑) |
| ax-frege52a 43830 | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) |
| ax-frege54a 43835 | ⊢ (𝜑 ↔ 𝜑) |
| ax-frege58a 43848 | ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) |
| ax-frege52c 43861 | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) |
| ax-frege54c 43865 | ⊢ 𝐴 = 𝐴 |
| ax-frege58b 43874 | ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
| cmnring 44184 | class MndRing |
| df-mnring 44185 | ⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) |
| cscott 44208 | class Scott 𝐴 |
| df-scott 44209 | ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} |
| ccoll 44223 | class (𝐹 Coll 𝐴) |
| df-coll 44224 | ⊢ (𝐹 Coll 𝐴) = ∪
𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
| cbcc 44309 | class
C𝑐 |
| df-bcc 44310 | ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) |
| cplusr 44430 | class
+𝑟 |
| cminusr 44431 | class
-𝑟 |
| ctimesr 44432 | class
.𝑣 |
| cptdfc 44433 | class PtDf(𝐴, 𝐵) |
| crr3c 44434 | class RR3 |
| cline3 44435 | class line3 |
| df-addr 44436 | ⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) |
| df-subr 44437 | ⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) |
| df-mulv 44438 | ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) |
| df-ptdf 44449 | ⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) |
| df-rr3 44450 | ⊢ RR3 = (ℝ ↑m {1, 2,
3}) |
| df-line3 44451 | ⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o
≼ 𝑥 ∧
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} |
| wvd1 44543 | wff ( 𝜑 ▶ 𝜓 ) |
| df-vd1 44544 | ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) |
| wvd2 44551 | wff ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| df-vd2 44552 | ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
| wvhc2 44554 | wff ( 𝜑 , 𝜓 ) |
| df-vhc2 44555 | ⊢ (( 𝜑 , 𝜓 ) ↔ (𝜑 ∧ 𝜓)) |
| wvd3 44561 | wff ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| wvhc3 44562 | wff ( 𝜑 , 𝜓 , 𝜒 ) |
| df-vhc3 44563 | ⊢ (( 𝜑 , 𝜓 , 𝜒 ) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| df-vd3 44564 | ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) |
| wrelp 44916 | wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| df-relp 44917 | ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| clsi 45733 | class lim inf |
| df-liminf 45734 | ⊢ lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
| clsxlim 45800 | class ~~>* |
| df-xlim 45801 | ⊢ ~~>* =
(⇝𝑡‘(ordTop‘ ≤ )) |
| csalg 46290 | class SAlg |
| df-salg 46291 | ⊢ SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦
∈ 𝑥))} |
| csalon 46292 | class SalOn |
| df-salon 46293 | ⊢ SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ∪ 𝑠 =
𝑥}) |
| csalgen 46294 | class SalGen |
| df-salgen 46295 | ⊢ SalGen = (𝑥 ∈ V ↦ ∩ {𝑠
∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
| csumge0 46344 | class
Σ^ |
| df-sumge0 46345 | ⊢ Σ^ = (𝑥 ∈ V ↦ if(+∞
∈ ran 𝑥, +∞,
sup(ran (𝑦 ∈
(𝒫 dom 𝑥 ∩ Fin)
↦ Σ𝑤 ∈
𝑦 (𝑥‘𝑤)), ℝ*, <
))) |
| cmea 46431 | class Meas |
| df-mea 46432 | ⊢ Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦))))} |
| come 46471 | class OutMeas |
| df-ome 46472 | ⊢ OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤
(Σ^‘(𝑥 ↾ 𝑦))))} |
| ccaragen 46473 | class CaraGen |
| df-caragen 46474 | ⊢ CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 ∪ dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑜((𝑜‘(𝑎 ∩ 𝑒)) +𝑒 (𝑜‘(𝑎 ∖ 𝑒))) = (𝑜‘𝑎)}) |
| covoln 46518 | class voln* |
| df-ovoln 46519 | ⊢ voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m
𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) |
| cvoln 46520 | class voln |
| df-voln 46521 | ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾
(CaraGen‘(voln*‘𝑥)))) |
| csmblfn 46677 | class SMblFn |
| df-smblfn 46678 | ⊢ SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm ∪ 𝑠)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) |
| cupword 46860 | class UpWord 𝑆 |
| df-upword 46861 | ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
| caiota 47068 | class (℩'𝑥𝜑) |
| df-aiota 47070 | ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} |
| wdfat 47101 | wff 𝐹 defAt 𝐴 |
| cafv 47102 | class (𝐹'''𝐴) |
| caov 47103 | class ((𝐴𝐹𝐵)) |
| df-dfat 47104 | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| df-afv 47105 | ⊢ (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥) |
| df-aov 47106 | ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) |
| cafv2 47193 | class (𝐹''''𝐴) |
| df-afv2 47194 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran
𝐹) |
| cnelbr 47256 | class _∉ |
| df-nelbr 47257 | ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} |
| ciccp 47398 | class RePart |
| df-iccp 47399 | ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*
↑m (0...𝑚))
∣ ∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| wich 47430 | wff [𝑥⇄𝑦]𝜑 |
| df-ich 47431 | ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) |
| cspr 47462 | class Pairs |
| df-spr 47463 | ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) |
| cprpr 47497 | class
Pairsproper |
| df-prpr 47498 | ⊢ Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
| cfmtno 47512 | class FermatNo |
| df-fmtno 47513 | ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦
((2↑(2↑𝑛)) +
1)) |
| ceven 47609 | class Even |
| codd 47610 | class Odd |
| df-even 47611 | ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} |
| df-odd 47612 | ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} |
| cfppr 47709 | class FPPr |
| df-fppr 47710 | ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4)
∣ (𝑥 ∉ ℙ
∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) |
| cgbe 47730 | class GoldbachEven |
| cgbow 47731 | class GoldbachOddW |
| cgbo 47732 | class GoldbachOdd |
| df-gbe 47733 | ⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} |
| df-gbow 47734 | ⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} |
| df-gbo 47735 | ⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} |
| ax-bgbltosilva 47795 | ⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (;10↑;18))) → 𝑁 ∈ GoldbachEven ) |
| ax-tgoldbachgt 47796 | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) |
| ax-hgprmladder 47799 | ⊢ ∃𝑑 ∈
(ℤ≥‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = ;13 ∧ (𝑓‘𝑑) = (;89 · (;10↑;29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)) < ((4 · (;10↑;18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)))) |
| cclnbgr 47803 | class ClNeighbVtx |
| df-clnbgr 47804 | ⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) |
| cisubgr 47845 | class ISubGr |
| df-isubgr 47846 | ⊢ ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ 〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) |
| cgrisom 47859 | class GraphIsom |
| cgrim 47860 | class GraphIso |
| cgric 47861 | class
≃𝑔𝑟 |
| df-grisom 47862 | ⊢ GraphIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |
| df-grim 47863 | ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |
| df-gric 47866 | ⊢ ≃𝑔𝑟 =
(◡ GraphIso “ (V ∖
1o)) |
| cgrtri 47922 | class GrTriangles |
| df-grtri 47923 | ⊢ GrTriangles = (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
| cstgr 47936 | class StarGr |
| df-stgr 47937 | ⊢ StarGr = (𝑛 ∈ ℕ0 ↦
{〈(Base‘ndx), (0...𝑛)〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫
(0...𝑛) ∣
∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})〉}) |
| cgrlim 47961 | class GraphLocIso |
| cgrlic 47962 | class
≃𝑙𝑔𝑟 |
| df-grlim 47963 | ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) |
| df-grlic 47966 | ⊢
≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖
1o)) |
| cgpg 48025 | class gPetersenGr |
| df-gpg 48026 | ⊢ gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦
{〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) |
| cupwlks 48118 | class UPWalks |
| df-upwlks 48119 | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| ccllaw 48168 | class clLaw |
| casslaw 48169 | class assLaw |
| ccomlaw 48170 | class comLaw |
| df-cllaw 48171 | ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} |
| df-comlaw 48172 | ⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} |
| df-asslaw 48173 | ⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} |
| cintop 48181 | class intOp |
| cclintop 48182 | class clIntOp |
| cassintop 48183 | class assIntOp |
| df-intop 48184 | ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) |
| df-clintop 48185 | ⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) |
| df-assintop 48186 | ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) |
| cmgm2 48200 | class MgmALT |
| ccmgm2 48201 | class CMgmALT |
| csgrp2 48202 | class SGrpALT |
| ccsgrp2 48203 | class CSGrpALT |
| df-mgm2 48204 | ⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} |
| df-cmgm2 48205 | ⊢ CMgmALT = {𝑚 ∈ MgmALT ∣
(+g‘𝑚)
comLaw (Base‘𝑚)} |
| df-sgrp2 48206 | ⊢ SGrpALT = {𝑔 ∈ MgmALT ∣
(+g‘𝑔)
assLaw (Base‘𝑔)} |
| df-csgrp2 48207 | ⊢ CSGrpALT = {𝑔 ∈ SGrpALT ∣
(+g‘𝑔)
comLaw (Base‘𝑔)} |
| crngcALTV 48248 | class RngCatALTV |
| df-rngcALTV 48249 | ⊢ RngCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Rng) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RngHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd
‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
| cringcALTV 48272 | class RingCatALTV |
| df-ringcALTV 48273 | ⊢ RingCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Ring) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd
‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
| cdmatalt 48382 | class DMatALT |
| cscmatalt 48383 | class ScMatALT |
| df-dmatalt 48384 | ⊢ DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
| df-scmatalt 48385 | ⊢ ScMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))})) |
| clinc 48390 | class linC |
| clinco 48391 | class LinCo |
| df-linc 48392 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))))) |
| df-lco 48393 | ⊢ LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) |
| clininds 48426 | class linIndS |
| clindeps 48427 | class linDepS |
| df-lininds 48428 | ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp
(0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} |
| df-lindeps 48430 | ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} |
| cfdiv 48523 | class /f |
| df-fdiv 48524 | ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) |
| cbigo 48533 | class Ο |
| df-bigo 48534 | ⊢ Ο = (𝑔 ∈ (ℝ ↑pm ℝ)
↦ {𝑓 ∈ (ℝ
↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) |
| cblen 48555 | class #b |
| df-blen 48556 | ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb
(abs‘𝑛))) +
1))) |
| cdig 48581 | class digit |
| df-dig 48582 | ⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦
((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) |
| cnaryf 48612 | class -aryF |
| df-naryf 48613 | ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) |
| citco 48643 | class IterComp |
| cack 48644 | class Ack |
| df-itco 48645 | ⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) |
| df-ack 48646 | ⊢ Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦
(((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) |
| cline 48713 | class
LineM |
| csph 48714 | class Sphere |
| df-line 48715 | ⊢ LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))})) |
| df-sph 48716 | ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) |
| coppf 49108 | class oppFunc |
| df-oppf 49109 | ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) |
| cup 49159 | class UP |
| df-up 49160 | ⊢ UP = (𝑑 ∈ V, 𝑒 ∈ V ↦
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) |
| cswapf 49245 | class
swapF |
| df-swapf 49246 | ⊢ swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| cfuco 49302 | class
∘F |
| df-fuco 49303 | ⊢ ∘F = (𝑝 ∈ V, 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌⦋((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⦌〈(
∘func ↾ 𝑤), (𝑢 ∈ 𝑤, 𝑣 ∈ 𝑤 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝑑 Nat 𝑒)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝑐 Nat 𝑑)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝑒)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
| cprcof 49359 | class
−∘F |
| df-prcof 49360 | ⊢ −∘F = (𝑝 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑝) / 𝑑⦌⦋(2nd
‘𝑝) / 𝑒⦌⦋(𝑑 Func 𝑒) / 𝑏⦌〈(𝑘 ∈ 𝑏 ↦ (𝑘 ∘func 𝑓)), (𝑘 ∈ 𝑏, 𝑙 ∈ 𝑏 ↦ (𝑎 ∈ (𝑘(𝑑 Nat 𝑒)𝑙) ↦ (𝑎 ∘ (1st ‘𝑓))))〉) |
| cthinc 49403 | class ThinCat |
| df-thinc 49404 | ⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} |
| ctermc 49458 | class TermCat |
| df-termc 49459 | ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} |
| cprstc 49535 | class ProsetToCat |
| df-prstc 49536 | ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx),
((le‘𝑘) ×
{1o})〉) sSet 〈(comp‘ndx),
∅〉)) |
| cmndtc 49563 | class MndToCat |
| df-mndtc 49564 | ⊢ MndToCat = (𝑚 ∈ Mnd ↦ {〈(Base‘ndx),
{𝑚}〉, 〈(Hom
‘ndx), {〈𝑚,
𝑚, (Base‘𝑚)〉}〉,
〈(comp‘ndx), {〈〈𝑚, 𝑚, 𝑚〉, (+g‘𝑚)〉}〉}) |
| clan 49591 | class Lan |
| cran 49592 | class Ran |
| df-lan 49593 | ⊢ Lan = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((〈𝑑, 𝑒〉 −∘F
𝑓)((𝑑 FuncCat 𝑒) UP (𝑐 FuncCat 𝑒))𝑥))) |
| df-ran 49594 | ⊢ Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦
⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd
‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F
𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| clmd 49629 | class Limit |
| ccmd 49630 | class Colimit |
| df-lmd 49631 | ⊢ Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) |
| df-cmd 49632 | ⊢ Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓))) |
| csetrecs 49669 | class setrecs(𝐹) |
| df-setrecs 49670 | ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| cpg 49695 | class Pg |
| df-pg 49696 | ⊢ Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥))) |
| cge-real 49706 | class ≥ |
| cgt 49707 | class > |
| df-gte 49708 | ⊢ ≥ = ◡ ≤ |
| df-gt 49709 | ⊢ > = ◡ < |
| csinh 49716 | class sinh |
| ccosh 49717 | class cosh |
| ctanh 49718 | class tanh |
| df-sinh 49719 | ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i
· 𝑥)) /
i)) |
| df-cosh 49720 | ⊢ cosh = (𝑥 ∈ ℂ ↦ (cos‘(i
· 𝑥))) |
| df-tanh 49721 | ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦
((tan‘(i · 𝑥))
/ i)) |
| csec 49727 | class sec |
| ccsc 49728 | class csc |
| ccot 49729 | class cot |
| df-sec 49730 | ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 /
(cos‘𝑥))) |
| df-csc 49731 | ⊢ csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 /
(sin‘𝑥))) |
| df-cot 49732 | ⊢ cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦
((cos‘𝑥) /
(sin‘𝑥))) |
| clog- 49751 | class log_ |
| df-logbALT 49752 | ⊢ log_ = (𝑏 ∈ (ℂ ∖ {0, 1}) ↦
(𝑥 ∈ (ℂ ∖
{0}) ↦ ((log‘𝑥)
/ (log‘𝑏)))) |
| wreflexive 49753 | wff 𝑅Reflexive𝐴 |
| df-reflexive 49754 | ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥)) |
| wirreflexive 49755 | wff 𝑅Irreflexive𝐴 |
| df-irreflexive 49756 | ⊢ (𝑅Irreflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥)) |
| walsi 49772 | wff ∀!𝑥(𝜑 → 𝜓) |
| walsc 49773 | wff ∀!𝑥 ∈ 𝐴𝜑 |
| df-alsi 49774 | ⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) |
| df-alsc 49775 | ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |