Ref | Expression (see link for any distinct variable requirements)
|
wn 3 | wff Β¬ π |
wi 4 | wff (π β π) |
ax-mp 5 | β’ π
& β’ (π β π) β β’ π |
ax-1 6 | β’ (π β (π β π)) |
ax-2 7 | β’ ((π β (π β π)) β ((π β π) β (π β π))) |
ax-3 8 | β’ ((Β¬ π β Β¬ π) β (π β π)) |
wb 205 | wff (π β π) |
df-bi 206 | β’ Β¬ (((π β π) β Β¬ ((π β π) β Β¬ (π β π))) β Β¬ (Β¬ ((π β π) β Β¬ (π β π)) β (π β π))) |
wa 395 | wff (π β§ π) |
df-an 396 | β’ ((π β§ π) β Β¬ (π β Β¬ π)) |
wo 844 | wff (π β¨ π) |
df-or 845 | β’ ((π β¨ π) β (Β¬ π β π)) |
wif 1059 | wff if-(π, π, π) |
df-ifp 1060 | β’ (if-(π, π, π) β ((π β§ π) β¨ (Β¬ π β§ π))) |
w3o 1083 | wff (π β¨ π β¨ π) |
w3a 1084 | wff (π β§ π β§ π) |
df-3or 1085 | β’ ((π β¨ π β¨ π) β ((π β¨ π) β¨ π)) |
df-3an 1086 | β’ ((π β§ π β§ π) β ((π β§ π) β§ π)) |
wnan 1484 | wff (π βΌ π) |
df-nan 1485 | β’ ((π βΌ π) β Β¬ (π β§ π)) |
wxo 1504 | wff (π β» π) |
df-xor 1505 | β’ ((π β» π) β Β¬ (π β π)) |
wnor 1521 | wff (π β½ π) |
df-nor 1522 | β’ ((π β½ π) β Β¬ (π β¨ π)) |
wal 1531 | wff βπ₯π |
cv 1532 | class π₯ |
wceq 1533 | wff π΄ = π΅ |
wtru 1534 | wff β€ |
df-tru 1536 | β’ (β€ β (βπ₯ π₯ = π₯ β βπ₯ π₯ = π₯)) |
wfal 1545 | wff β₯ |
df-fal 1546 | β’ (β₯ β Β¬
β€) |
whad 1586 | wff hadd(π, π, π) |
df-had 1587 | β’ (hadd(π, π, π) β ((π β» π) β» π)) |
wcad 1599 | wff cadd(π, π, π) |
df-cad 1600 | β’ (cadd(π, π, π) β ((π β§ π) β¨ (π β§ (π β» π)))) |
wex 1773 | wff βπ₯π |
df-ex 1774 | β’ (βπ₯π β Β¬ βπ₯ Β¬ π) |
wnf 1777 | wff β²π₯π |
df-nf 1778 | β’ (β²π₯π β (βπ₯π β βπ₯π)) |
ax-gen 1789 | β’ π β β’ βπ₯π |
ax-4 1803 | β’ (βπ₯(π β π) β (βπ₯π β βπ₯π)) |
ax-5 1905 | β’ (π β βπ₯π) |
ax-6 1963 | β’ Β¬ βπ₯ Β¬ π₯ = π¦ |
ax-7 2003 | β’ (π₯ = π¦ β (π₯ = π§ β π¦ = π§)) |
wsb 2059 | wff [π¦ / π₯]π |
df-sb 2060 | β’ ([π‘ / π₯]π β βπ¦(π¦ = π‘ β βπ₯(π₯ = π¦ β π))) |
wcel 2098 | wff π΄ β π΅ |
ax-8 2100 | β’ (π₯ = π¦ β (π₯ β π§ β π¦ β π§)) |
ax-9 2108 | β’ (π₯ = π¦ β (π§ β π₯ β π§ β π¦)) |
ax-10 2129 | β’ (Β¬ βπ₯π β βπ₯ Β¬ βπ₯π) |
ax-11 2146 | β’ (βπ₯βπ¦π β βπ¦βπ₯π) |
ax-12 2163 | β’ (π₯ = π¦ β (βπ¦π β βπ₯(π₯ = π¦ β π))) |
ax-13 2363 | β’ (Β¬ π₯ = π¦ β (π¦ = π§ β βπ₯ π¦ = π§)) |
wmo 2524 | wff β*π₯π |
df-mo 2526 | β’ (β*π₯π β βπ¦βπ₯(π β π₯ = π¦)) |
weu 2554 | wff β!π₯π |
df-eu 2555 | β’ (β!π₯π β (βπ₯π β§ β*π₯π)) |
ax-ext 2695 | β’ (βπ§(π§ β π₯ β π§ β π¦) β π₯ = π¦) |
cab 2701 | class {π₯ β£ π} |
df-clab 2702 | β’ (π₯ β {π¦ β£ π} β [π₯ / π¦]π) |
df-cleq 2716 | β’ (π¦ = π§ β βπ’(π’ β π¦ β π’ β π§))
& β’ (π‘ = π‘ β βπ£(π£ β π‘ β π£ β π‘)) β β’ (π΄ = π΅ β βπ₯(π₯ β π΄ β π₯ β π΅)) |
df-clel 2802 | β’ (π¦ β π§ β βπ’(π’ = π¦ β§ π’ β π§))
& β’ (π‘ β π‘ β βπ£(π£ = π‘ β§ π£ β π‘)) β β’ (π΄ β π΅ β βπ₯(π₯ = π΄ β§ π₯ β π΅)) |
wnfc 2875 | wff β²π₯π΄ |
df-nfc 2877 | β’ (β²π₯π΄ β βπ¦β²π₯ π¦ β π΄) |
wne 2932 | wff π΄ β π΅ |
df-ne 2933 | β’ (π΄ β π΅ β Β¬ π΄ = π΅) |
wnel 3038 | wff π΄ β π΅ |
df-nel 3039 | β’ (π΄ β π΅ β Β¬ π΄ β π΅) |
wral 3053 | wff βπ₯ β π΄ π |
df-ral 3054 | β’ (βπ₯ β π΄ π β βπ₯(π₯ β π΄ β π)) |
wrex 3062 | wff βπ₯ β π΄ π |
df-rex 3063 | β’ (βπ₯ β π΄ π β βπ₯(π₯ β π΄ β§ π)) |
wreu 3366 | wff β!π₯ β π΄ π |
wrmo 3367 | wff β*π₯ β π΄ π |
df-rmo 3368 | β’ (β*π₯ β π΄ π β β*π₯(π₯ β π΄ β§ π)) |
df-reu 3369 | β’ (β!π₯ β π΄ π β β!π₯(π₯ β π΄ β§ π)) |
crab 3424 | class {π₯ β π΄ β£ π} |
df-rab 3425 | β’ {π₯ β π΄ β£ π} = {π₯ β£ (π₯ β π΄ β§ π)} |
cvv 3466 | class V |
df-v 3468 | β’ V = {π₯ β£ π₯ = π₯} |
wcdeq 3751 | wff CondEq(π₯ = π¦ β π) |
df-cdeq 3752 | β’ (CondEq(π₯ = π¦ β π) β (π₯ = π¦ β π)) |
wsbc 3769 | wff [π΄ / π₯]π |
df-sbc 3770 | β’ ([π΄ / π₯]π β π΄ β {π₯ β£ π}) |
csb 3885 | class β¦π΄ / π₯β¦π΅ |
df-csb 3886 | β’ β¦π΄ / π₯β¦π΅ = {π¦ β£ [π΄ / π₯]π¦ β π΅} |
cdif 3937 | class (π΄ β π΅) |
cun 3938 | class (π΄ βͺ π΅) |
cin 3939 | class (π΄ β© π΅) |
wss 3940 | wff π΄ β π΅ |
wpss 3941 | wff π΄ β π΅ |
df-dif 3943 | β’ (π΄ β π΅) = {π₯ β£ (π₯ β π΄ β§ Β¬ π₯ β π΅)} |
df-un 3945 | β’ (π΄ βͺ π΅) = {π₯ β£ (π₯ β π΄ β¨ π₯ β π΅)} |
df-in 3947 | β’ (π΄ β© π΅) = {π₯ β£ (π₯ β π΄ β§ π₯ β π΅)} |
df-ss 3957 | β’ (π΄ β π΅ β (π΄ β© π΅) = π΄) |
df-pss 3959 | β’ (π΄ β π΅ β (π΄ β π΅ β§ π΄ β π΅)) |
csymdif 4233 | class (π΄ β³ π΅) |
df-symdif 4234 | β’ (π΄ β³ π΅) = ((π΄ β π΅) βͺ (π΅ β π΄)) |
c0 4314 | class β
|
df-nul 4315 | β’ β
= (V β V) |
cif 4520 | class if(π, π΄, π΅) |
df-if 4521 | β’ if(π, π΄, π΅) = {π₯ β£ ((π₯ β π΄ β§ π) β¨ (π₯ β π΅ β§ Β¬ π))} |
cpw 4594 | class π« π΄ |
df-pw 4596 | β’ π« π΄ = {π₯ β£ π₯ β π΄} |
csn 4620 | class {π΄} |
df-sn 4621 | β’ {π΄} = {π₯ β£ π₯ = π΄} |
cpr 4622 | class {π΄, π΅} |
df-pr 4623 | β’ {π΄, π΅} = ({π΄} βͺ {π΅}) |
ctp 4624 | class {π΄, π΅, πΆ} |
df-tp 4625 | β’ {π΄, π΅, πΆ} = ({π΄, π΅} βͺ {πΆ}) |
cop 4626 | class β¨π΄, π΅β© |
df-op 4627 | β’ β¨π΄, π΅β© = {π₯ β£ (π΄ β V β§ π΅ β V β§ π₯ β {{π΄}, {π΄, π΅}})} |
cotp 4628 | class β¨π΄, π΅, πΆβ© |
df-ot 4629 | β’ β¨π΄, π΅, πΆβ© = β¨β¨π΄, π΅β©, πΆβ© |
cuni 4899 | class βͺ
π΄ |
df-uni 4900 | β’ βͺ π΄ = {π₯ β£ βπ¦(π₯ β π¦ β§ π¦ β π΄)} |
cint 4940 | class β©
π΄ |
df-int 4941 | β’ β© π΄ = {π₯ β£ βπ¦(π¦ β π΄ β π₯ β π¦)} |
ciun 4987 | class βͺ π₯ β π΄ π΅ |
ciin 4988 | class β© π₯ β π΄ π΅ |
df-iun 4989 | β’ βͺ π₯ β π΄ π΅ = {π¦ β£ βπ₯ β π΄ π¦ β π΅} |
df-iin 4990 | β’ β© π₯ β π΄ π΅ = {π¦ β£ βπ₯ β π΄ π¦ β π΅} |
wdisj 5103 | wff Disj π₯ β π΄ π΅ |
df-disj 5104 | β’ (Disj π₯ β π΄ π΅ β βπ¦β*π₯ β π΄ π¦ β π΅) |
wbr 5138 | wff π΄π
π΅ |
df-br 5139 | β’ (π΄π
π΅ β β¨π΄, π΅β© β π
) |
copab 5200 | class {β¨π₯, π¦β© β£ π} |
df-opab 5201 | β’ {β¨π₯, π¦β© β£ π} = {π§ β£ βπ₯βπ¦(π§ = β¨π₯, π¦β© β§ π)} |
cmpt 5221 | class (π₯ β π΄ β¦ π΅) |
df-mpt 5222 | β’ (π₯ β π΄ β¦ π΅) = {β¨π₯, π¦β© β£ (π₯ β π΄ β§ π¦ = π΅)} |
wtr 5255 | wff Tr π΄ |
df-tr 5256 | β’ (Tr π΄ β βͺ π΄ β π΄) |
ax-rep 5275 | β’ (βπ€βπ¦βπ§(βπ¦π β π§ = π¦) β βπ¦βπ§(π§ β π¦ β βπ€(π€ β π₯ β§ βπ¦π))) |
ax-sep 5289 | β’ βπ¦βπ₯(π₯ β π¦ β (π₯ β π§ β§ π)) |
ax-nul 5296 | β’ βπ₯βπ¦ Β¬ π¦ β π₯ |
ax-pow 5353 | β’ βπ¦βπ§(βπ€(π€ β π§ β π€ β π₯) β π§ β π¦) |
ax-pr 5417 | β’ βπ§βπ€((π€ = π₯ β¨ π€ = π¦) β π€ β π§) |
cid 5563 | class I |
df-id 5564 | β’ I = {β¨π₯, π¦β© β£ π₯ = π¦} |
cep 5569 | class E |
df-eprel 5570 | β’ E = {β¨π₯, π¦β© β£ π₯ β π¦} |
wpo 5576 | wff π
Po π΄ |
wor 5577 | wff π
Or π΄ |
df-po 5578 | β’ (π
Po π΄ β βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΄ (Β¬ π₯π
π₯ β§ ((π₯π
π¦ β§ π¦π
π§) β π₯π
π§))) |
df-so 5579 | β’ (π
Or π΄ β (π
Po π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯π
π¦ β¨ π₯ = π¦ β¨ π¦π
π₯))) |
wfr 5618 | wff π
Fr π΄ |
wse 5619 | wff π
Se π΄ |
wwe 5620 | wff π
We π΄ |
df-fr 5621 | β’ (π
Fr π΄ β βπ₯((π₯ β π΄ β§ π₯ β β
) β βπ¦ β π₯ βπ§ β π₯ Β¬ π§π
π¦)) |
df-se 5622 | β’ (π
Se π΄ β βπ₯ β π΄ {π¦ β π΄ β£ π¦π
π₯} β V) |
df-we 5623 | β’ (π
We π΄ β (π
Fr π΄ β§ π
Or π΄)) |
cxp 5664 | class (π΄ Γ π΅) |
ccnv 5665 | class β‘π΄ |
cdm 5666 | class dom π΄ |
crn 5667 | class ran π΄ |
cres 5668 | class (π΄ βΎ π΅) |
cima 5669 | class (π΄ β π΅) |
ccom 5670 | class (π΄ β π΅) |
wrel 5671 | wff Rel π΄ |
df-xp 5672 | β’ (π΄ Γ π΅) = {β¨π₯, π¦β© β£ (π₯ β π΄ β§ π¦ β π΅)} |
df-rel 5673 | β’ (Rel π΄ β π΄ β (V Γ V)) |
df-cnv 5674 | β’ β‘π΄ = {β¨π₯, π¦β© β£ π¦π΄π₯} |
df-co 5675 | β’ (π΄ β π΅) = {β¨π₯, π¦β© β£ βπ§(π₯π΅π§ β§ π§π΄π¦)} |
df-dm 5676 | β’ dom π΄ = {π₯ β£ βπ¦ π₯π΄π¦} |
df-rn 5677 | β’ ran π΄ = dom β‘π΄ |
df-res 5678 | β’ (π΄ βΎ π΅) = (π΄ β© (π΅ Γ V)) |
df-ima 5679 | β’ (π΄ β π΅) = ran (π΄ βΎ π΅) |
cpred 6289 | class Pred(π
, π΄, π) |
df-pred 6290 | β’ Pred(π
, π΄, π) = (π΄ β© (β‘π
β {π})) |
word 6353 | wff Ord π΄ |
con0 6354 | class On |
wlim 6355 | wff Lim π΄ |
csuc 6356 | class suc π΄ |
df-ord 6357 | β’ (Ord π΄ β (Tr π΄ β§ E We π΄)) |
df-on 6358 | β’ On = {π₯ β£ Ord π₯} |
df-lim 6359 | β’ (Lim π΄ β (Ord π΄ β§ π΄ β β
β§ π΄ = βͺ π΄)) |
df-suc 6360 | β’ suc π΄ = (π΄ βͺ {π΄}) |
cio 6483 | class (β©π₯π) |
df-iota 6485 | β’ (β©π₯π) = βͺ {π¦ β£ {π₯ β£ π} = {π¦}} |
wfun 6527 | wff Fun π΄ |
wfn 6528 | wff π΄ Fn π΅ |
wf 6529 | wff πΉ:π΄βΆπ΅ |
wf1 6530 | wff πΉ:π΄β1-1βπ΅ |
wfo 6531 | wff πΉ:π΄βontoβπ΅ |
wf1o 6532 | wff πΉ:π΄β1-1-ontoβπ΅ |
cfv 6533 | class (πΉβπ΄) |
wiso 6534 | wff π» Isom π
, π (π΄, π΅) |
df-fun 6535 | β’ (Fun π΄ β (Rel π΄ β§ (π΄ β β‘π΄) β I )) |
df-fn 6536 | β’ (π΄ Fn π΅ β (Fun π΄ β§ dom π΄ = π΅)) |
df-f 6537 | β’ (πΉ:π΄βΆπ΅ β (πΉ Fn π΄ β§ ran πΉ β π΅)) |
df-f1 6538 | β’ (πΉ:π΄β1-1βπ΅ β (πΉ:π΄βΆπ΅ β§ Fun β‘πΉ)) |
df-fo 6539 | β’ (πΉ:π΄βontoβπ΅ β (πΉ Fn π΄ β§ ran πΉ = π΅)) |
df-f1o 6540 | β’ (πΉ:π΄β1-1-ontoβπ΅ β (πΉ:π΄β1-1βπ΅ β§ πΉ:π΄βontoβπ΅)) |
df-fv 6541 | β’ (πΉβπ΄) = (β©π₯π΄πΉπ₯) |
df-isom 6542 | β’ (π» Isom π
, π (π΄, π΅) β (π»:π΄β1-1-ontoβπ΅ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯π
π¦ β (π»βπ₯)π(π»βπ¦)))) |
crio 7356 | class (β©π₯ β π΄ π) |
df-riota 7357 | β’ (β©π₯ β π΄ π) = (β©π₯(π₯ β π΄ β§ π)) |
co 7401 | class (π΄πΉπ΅) |
coprab 7402 | class {β¨β¨π₯, π¦β©, π§β© β£ π} |
cmpo 7403 | class (π₯ β π΄, π¦ β π΅ β¦ πΆ) |
df-ov 7404 | β’ (π΄πΉπ΅) = (πΉββ¨π΄, π΅β©) |
df-oprab 7405 | β’ {β¨β¨π₯, π¦β©, π§β© β£ π} = {π€ β£ βπ₯βπ¦βπ§(π€ = β¨β¨π₯, π¦β©, π§β© β§ π)} |
df-mpo 7406 | β’ (π₯ β π΄, π¦ β π΅ β¦ πΆ) = {β¨β¨π₯, π¦β©, π§β© β£ ((π₯ β π΄ β§ π¦ β π΅) β§ π§ = πΆ)} |
cof 7661 | class βf π
|
cofr 7662 | class βr π
|
df-of 7663 | β’ βf π
= (π β V, π β V β¦ (π₯ β (dom π β© dom π) β¦ ((πβπ₯)π
(πβπ₯)))) |
df-ofr 7664 | β’ βr π
= {β¨π, πβ© β£ βπ₯ β (dom π β© dom π)(πβπ₯)π
(πβπ₯)} |
crpss 7705 | class
[β] |
df-rpss 7706 | β’ [β] = {β¨π₯, π¦β© β£ π₯ β π¦} |
ax-un 7718 | β’ βπ¦βπ§(βπ€(π§ β π€ β§ π€ β π₯) β π§ β π¦) |
com 7848 | class Ο |
df-om 7849 | β’ Ο = {π₯ β On β£ βπ¦(Lim π¦ β π₯ β π¦)} |
c1st 7966 | class 1st |
c2nd 7967 | class 2nd |
df-1st 7968 | β’ 1st = (π₯ β V β¦ βͺ dom {π₯}) |
df-2nd 7969 | β’ 2nd = (π₯ β V β¦ βͺ ran {π₯}) |
csupp 8140 | class supp |
df-supp 8141 | β’ supp = (π₯ β V, π§ β V β¦ {π β dom π₯ β£ (π₯ β {π}) β {π§}}) |
ctpos 8205 | class tpos πΉ |
df-tpos 8206 | β’ tpos πΉ = (πΉ β (π₯ β (β‘dom πΉ βͺ {β
}) β¦ βͺ β‘{π₯})) |
ccur 8245 | class curry π΄ |
cunc 8246 | class uncurry π΄ |
df-cur 8247 | β’ curry πΉ = (π₯ β dom dom πΉ β¦ {β¨π¦, π§β© β£ β¨π₯, π¦β©πΉπ§}) |
df-unc 8248 | β’ uncurry πΉ = {β¨β¨π₯, π¦β©, π§β© β£ π¦(πΉβπ₯)π§} |
cund 8252 | class Undef |
df-undef 8253 | β’ Undef = (π β V β¦ π« βͺ π ) |
cfrecs 8260 | class frecs(π
, π΄, πΉ) |
df-frecs 8261 | β’ frecs(π
, π΄, πΉ) = βͺ {π β£ βπ₯(π Fn π₯ β§ (π₯ β π΄ β§ βπ¦ β π₯ Pred(π
, π΄, π¦) β π₯) β§ βπ¦ β π₯ (πβπ¦) = (π¦πΉ(π βΎ Pred(π
, π΄, π¦))))} |
cwrecs 8291 | class wrecs(π
, π΄, πΉ) |
df-wrecs 8292 | β’ wrecs(π
, π΄, πΉ) = frecs(π
, π΄, (πΉ β 2nd )) |
wsmo 8340 | wff Smo π΄ |
df-smo 8341 | β’ (Smo π΄ β (π΄:dom π΄βΆOn β§ Ord dom π΄ β§ βπ₯ β dom π΄βπ¦ β dom π΄(π₯ β π¦ β (π΄βπ₯) β (π΄βπ¦)))) |
crecs 8365 | class recs(πΉ) |
df-recs 8366 | β’ recs(πΉ) = wrecs( E , On, πΉ) |
crdg 8404 | class rec(πΉ, πΌ) |
df-rdg 8405 | β’ rec(πΉ, πΌ) = recs((π β V β¦ if(π = β
, πΌ, if(Lim dom π, βͺ ran π, (πΉβ(πββͺ dom π)))))) |
cseqom 8442 | class seqΟ(πΉ, πΌ) |
df-seqom 8443 | β’ seqΟ(πΉ, πΌ) = (rec((π β Ο, π£ β V β¦ β¨suc π, (ππΉπ£)β©), β¨β
, ( I βπΌ)β©) β
Ο) |
c1o 8454 | class 1o |
c2o 8455 | class 2o |
c3o 8456 | class 3o |
c4o 8457 | class 4o |
coa 8458 | class +o |
comu 8459 | class
Β·o |
coe 8460 | class
βo |
df-1o 8461 | β’ 1o = suc
β
|
df-2o 8462 | β’ 2o = suc
1o |
df-3o 8463 | β’ 3o = suc
2o |
df-4o 8464 | β’ 4o = suc
3o |
df-oadd 8465 | β’ +o = (π₯ β On, π¦ β On β¦ (rec((π§ β V β¦ suc π§), π₯)βπ¦)) |
df-omul 8466 | β’ Β·o = (π₯ β On, π¦ β On β¦ (rec((π§ β V β¦ (π§ +o π₯)), β
)βπ¦)) |
df-oexp 8467 | β’ βo = (π₯ β On, π¦ β On β¦ if(π₯ = β
, (1o β π¦), (rec((π§ β V β¦ (π§ Β·o π₯)), 1o)βπ¦))) |
cnadd 8660 | class +no |
df-nadd 8661 | β’ +no = frecs({β¨π₯, π¦β© β£ (π₯ β (On Γ On) β§ π¦ β (On Γ On) β§
(((1st βπ₯)
E (1st βπ¦)
β¨ (1st βπ₯) = (1st βπ¦)) β§ ((2nd βπ₯) E (2nd βπ¦) β¨ (2nd
βπ₯) = (2nd
βπ¦)) β§ π₯ β π¦))}, (On Γ On), (π§ β V, π β V β¦ β© {π€
β On β£ ((π
β ({(1st βπ§)} Γ (2nd βπ§))) β π€ β§ (π β ((1st βπ§) Γ {(2nd
βπ§)})) β π€)})) |
wer 8696 | wff π
Er π΄ |
cec 8697 | class [π΄]π
|
cqs 8698 | class (π΄ / π
) |
df-er 8699 | β’ (π
Er π΄ β (Rel π
β§ dom π
= π΄ β§ (β‘π
βͺ (π
β π
)) β π
)) |
df-ec 8701 | β’ [π΄]π
= (π
β {π΄}) |
df-qs 8705 | β’ (π΄ / π
) = {π¦ β£ βπ₯ β π΄ π¦ = [π₯]π
} |
cmap 8816 | class
βm |
cpm 8817 | class
βpm |
df-map 8818 | β’ βm = (π₯ β V, π¦ β V β¦ {π β£ π:π¦βΆπ₯}) |
df-pm 8819 | β’ βpm = (π₯ β V, π¦ β V β¦ {π β π« (π¦ Γ π₯) β£ Fun π}) |
cixp 8887 | class Xπ₯ β π΄ π΅ |
df-ixp 8888 | β’ Xπ₯ β π΄ π΅ = {π β£ (π Fn {π₯ β£ π₯ β π΄} β§ βπ₯ β π΄ (πβπ₯) β π΅)} |
cen 8932 | class β |
cdom 8933 | class βΌ |
csdm 8934 | class βΊ |
cfn 8935 | class Fin |
df-en 8936 | β’ β = {β¨π₯, π¦β© β£ βπ π:π₯β1-1-ontoβπ¦} |
df-dom 8937 | β’ βΌ = {β¨π₯, π¦β© β£ βπ π:π₯β1-1βπ¦} |
df-sdom 8938 | β’ βΊ = ( βΌ β β
) |
df-fin 8939 | β’ Fin = {π₯ β£ βπ¦ β Ο π₯ β π¦} |
cfsupp 9357 | class finSupp |
df-fsupp 9358 | β’ finSupp = {β¨π, π§β© β£ (Fun π β§ (π supp π§) β Fin)} |
cfi 9401 | class fi |
df-fi 9402 | β’ fi = (π₯ β V β¦ {π§ β£ βπ¦ β (π« π₯ β© Fin)π§ = β© π¦}) |
csup 9431 | class sup(π΄, π΅, π
) |
cinf 9432 | class inf(π΄, π΅, π
) |
df-sup 9433 | β’ sup(π΄, π΅, π
) = βͺ {π₯ β π΅ β£ (βπ¦ β π΄ Β¬ π₯π
π¦ β§ βπ¦ β π΅ (π¦π
π₯ β βπ§ β π΄ π¦π
π§))} |
df-inf 9434 | β’ inf(π΄, π΅, π
) = sup(π΄, π΅, β‘π
) |
coi 9500 | class OrdIso(π
, π΄) |
df-oi 9501 | β’ OrdIso(π
, π΄) = if((π
We π΄ β§ π
Se π΄), (recs((β β V β¦ (β©π£ β {π€ β π΄ β£ βπ β ran β ππ
π€}βπ’ β {π€ β π΄ β£ βπ β ran β ππ
π€} Β¬ π’π
π£))) βΎ {π₯ β On β£ βπ‘ β π΄ βπ§ β (recs((β β V β¦ (β©π£ β {π€ β π΄ β£ βπ β ran β ππ
π€}βπ’ β {π€ β π΄ β£ βπ β ran β ππ
π€} Β¬ π’π
π£))) β π₯)π§π
π‘}), β
) |
char 9547 | class har |
df-har 9548 | β’ har = (π₯ β V β¦ {π¦ β On β£ π¦ βΌ π₯}) |
cwdom 9555 | class
βΌ* |
df-wdom 9556 | β’ βΌ* = {β¨π₯, π¦β© β£ (π₯ = β
β¨ βπ§ π§:π¦βontoβπ₯)} |
ax-reg 9583 | β’ (βπ¦ π¦ β π₯ β βπ¦(π¦ β π₯ β§ βπ§(π§ β π¦ β Β¬ π§ β π₯))) |
ax-inf 9629 | β’ βπ¦(π₯ β π¦ β§ βπ§(π§ β π¦ β βπ€(π§ β π€ β§ π€ β π¦))) |
ax-inf2 9632 | β’ βπ₯(βπ¦(π¦ β π₯ β§ βπ§ Β¬ π§ β π¦) β§ βπ¦(π¦ β π₯ β βπ§(π§ β π₯ β§ βπ€(π€ β π§ β (π€ β π¦ β¨ π€ = π¦))))) |
ccnf 9652 | class CNF |
df-cnf 9653 | β’ CNF = (π₯ β On, π¦ β On β¦ (π β {π β (π₯ βm π¦) β£ π finSupp β
} β¦
β¦OrdIso( E , (π supp β
)) / ββ¦(seqΟ((π β V, π§ β V β¦ (((π₯ βo (ββπ)) Β·o (πβ(ββπ))) +o π§)), β
)βdom β))) |
cttrcl 9698 | class t++π
|
df-ttrcl 9699 | β’ t++π
= {β¨π₯, π¦β© β£ βπ β (Ο β
1o)βπ(π Fn suc π β§ ((πββ
) = π₯ β§ (πβπ) = π¦) β§ βπ β π (πβπ)π
(πβsuc π))} |
ctc 9727 | class TC |
df-tc 9728 | β’ TC = (π₯ β V β¦ β© {π¦
β£ (π₯ β π¦ β§ Tr π¦)}) |
cr1 9753 | class
π
1 |
crnk 9754 | class rank |
df-r1 9755 | β’ π
1 =
rec((π₯ β V β¦
π« π₯),
β
) |
df-rank 9756 | β’ rank = (π₯ β V β¦ β© {π¦
β On β£ π₯ β
(π
1βsuc π¦)}) |
cdju 9889 | class (π΄ β π΅) |
cinl 9890 | class inl |
cinr 9891 | class inr |
df-dju 9892 | β’ (π΄ β π΅) = (({β
} Γ π΄) βͺ ({1o} Γ π΅)) |
df-inl 9893 | β’ inl = (π₯ β V β¦ β¨β
, π₯β©) |
df-inr 9894 | β’ inr = (π₯ β V β¦ β¨1o, π₯β©) |
ccrd 9926 | class card |
cale 9927 | class β΅ |
ccf 9928 | class cf |
wacn 9929 | class AC π΄ |
df-card 9930 | β’ card = (π₯ β V β¦ β© {π¦
β On β£ π¦ β
π₯}) |
df-aleph 9931 | β’ β΅ = rec(har, Ο) |
df-cf 9932 | β’ cf = (π₯ β On β¦ β© {π¦
β£ βπ§(π¦ = (cardβπ§) β§ (π§ β π₯ β§ βπ£ β π₯ βπ’ β π§ π£ β π’))}) |
df-acn 9933 | β’ AC π΄ = {π₯ β£ (π΄ β V β§ βπ β ((π« π₯ β {β
}) βm π΄)βπβπ¦ β π΄ (πβπ¦) β (πβπ¦))} |
wac 10106 | wff
CHOICE |
df-ac 10107 | β’ (CHOICE β
βπ₯βπ(π β π₯ β§ π Fn dom π₯)) |
cfin1a 10269 | class
FinIa |
cfin2 10270 | class
FinII |
cfin4 10271 | class
FinIV |
cfin3 10272 | class
FinIII |
cfin5 10273 | class FinV |
cfin6 10274 | class
FinVI |
cfin7 10275 | class
FinVII |
df-fin1a 10276 | β’ FinIa = {π₯ β£ βπ¦ β π« π₯(π¦ β Fin β¨ (π₯ β π¦) β Fin)} |
df-fin2 10277 | β’ FinII = {π₯ β£ βπ¦ β π« π« π₯((π¦ β β
β§ [β] Or
π¦) β βͺ π¦
β π¦)} |
df-fin4 10278 | β’ FinIV = {π₯ β£ Β¬ βπ¦(π¦ β π₯ β§ π¦ β π₯)} |
df-fin3 10279 | β’ FinIII = {π₯ β£ π« π₯ β FinIV} |
df-fin5 10280 | β’ FinV = {π₯ β£ (π₯ = β
β¨ π₯ βΊ (π₯ β π₯))} |
df-fin6 10281 | β’ FinVI = {π₯ β£ (π₯ βΊ 2o β¨ π₯ βΊ (π₯ Γ π₯))} |
df-fin7 10282 | β’ FinVII = {π₯ β£ Β¬ βπ¦ β (On β Ο)π₯ β π¦} |
ax-cc 10426 | β’ (π₯ β Ο β βπβπ§ β π₯ (π§ β β
β (πβπ§) β π§)) |
ax-dc 10437 | β’ ((βπ¦βπ§ π¦π₯π§ β§ ran π₯ β dom π₯) β βπβπ β Ο (πβπ)π₯(πβsuc π)) |
ax-ac 10450 | β’ βπ¦βπ§βπ€((π§ β π€ β§ π€ β π₯) β βπ£βπ’(βπ‘((π’ β π€ β§ π€ β π‘) β§ (π’ β π‘ β§ π‘ β π¦)) β π’ = π£)) |
ax-ac2 10454 | β’ βπ¦βπ§βπ£βπ’((π¦ β π₯ β§ (π§ β π¦ β ((π£ β π₯ β§ Β¬ π¦ = π£) β§ π§ β π£))) β¨ (Β¬ π¦ β π₯ β§ (π§ β π₯ β ((π£ β π§ β§ π£ β π¦) β§ ((π’ β π§ β§ π’ β π¦) β π’ = π£))))) |
cgch 10611 | class GCH |
df-gch 10612 | β’ GCH = (Fin βͺ {π₯ β£ βπ¦ Β¬ (π₯ βΊ π¦ β§ π¦ βΊ π« π₯)}) |
cwina 10673 | class
Inaccw |
cina 10674 | class Inacc |
df-wina 10675 | β’ Inaccw = {π₯ β£ (π₯ β β
β§ (cfβπ₯) = π₯ β§ βπ¦ β π₯ βπ§ β π₯ π¦ βΊ π§)} |
df-ina 10676 | β’ Inacc = {π₯ β£ (π₯ β β
β§ (cfβπ₯) = π₯ β§ βπ¦ β π₯ π« π¦ βΊ π₯)} |
cwun 10691 | class WUni |
cwunm 10692 | class wUniCl |
df-wun 10693 | β’ WUni = {π’ β£ (Tr π’ β§ π’ β β
β§ βπ₯ β π’ (βͺ π₯ β π’ β§ π« π₯ β π’ β§ βπ¦ β π’ {π₯, π¦} β π’))} |
df-wunc 10694 | β’ wUniCl = (π₯ β V β¦ β© {π’
β WUni β£ π₯
β π’}) |
ctsk 10739 | class Tarski |
df-tsk 10740 | β’ Tarski = {π¦ β£ (βπ§ β π¦ (π« π§ β π¦ β§ βπ€ β π¦ π« π§ β π€) β§ βπ§ β π« π¦(π§ β π¦ β¨ π§ β π¦))} |
cgru 10781 | class Univ |
df-gru 10782 | β’ Univ = {π’ β£ (Tr π’ β§ βπ₯ β π’ (π« π₯ β π’ β§ βπ¦ β π’ {π₯, π¦} β π’ β§ βπ¦ β (π’ βm π₯)βͺ ran π¦ β π’))} |
ax-groth 10814 | β’ βπ¦(π₯ β π¦ β§ βπ§ β π¦ (βπ€(π€ β π§ β π€ β π¦) β§ βπ€ β π¦ βπ£(π£ β π§ β π£ β π€)) β§ βπ§(π§ β π¦ β (π§ β π¦ β¨ π§ β π¦))) |
ctskm 10828 | class tarskiMap |
df-tskm 10829 | β’ tarskiMap = (π₯ β V β¦ β© {π¦
β Tarski β£ π₯
β π¦}) |
cnpi 10835 | class N |
cpli 10836 | class
+N |
cmi 10837 | class
Β·N |
clti 10838 | class
<N |
cplpq 10839 | class
+pQ |
cmpq 10840 | class
Β·pQ |
cltpq 10841 | class
<pQ |
ceq 10842 | class
~Q |
cnq 10843 | class Q |
c1q 10844 | class
1Q |
cerq 10845 | class
[Q] |
cplq 10846 | class
+Q |
cmq 10847 | class
Β·Q |
crq 10848 | class
*Q |
cltq 10849 | class
<Q |
cnp 10850 | class P |
c1p 10851 | class
1P |
cpp 10852 | class
+P |
cmp 10853 | class
Β·P |
cltp 10854 | class
<P |
cer 10855 | class
~R |
cnr 10856 | class R |
c0r 10857 | class
0R |
c1r 10858 | class
1R |
cm1r 10859 | class
-1R |
cplr 10860 | class
+R |
cmr 10861 | class
Β·R |
cltr 10862 | class
<R |
df-ni 10863 | β’ N = (Ο
β {β
}) |
df-pli 10864 | β’ +N = (
+o βΎ (N Γ
N)) |
df-mi 10865 | β’
Β·N = ( Β·o βΎ
(N Γ N)) |
df-lti 10866 | β’ <N = ( E β©
(N Γ N)) |
df-plpq 10899 | β’ +pQ = (π₯ β (N Γ
N), π¦ β
(N Γ N) β¦ β¨(((1st
βπ₯)
Β·N (2nd βπ¦)) +N
((1st βπ¦)
Β·N (2nd βπ₯))), ((2nd βπ₯)
Β·N (2nd βπ¦))β©) |
df-mpq 10900 | β’ Β·pQ = (π₯ β (N Γ
N), π¦ β
(N Γ N) β¦ β¨((1st
βπ₯)
Β·N (1st βπ¦)), ((2nd βπ₯)
Β·N (2nd βπ¦))β©) |
df-ltpq 10901 | β’ <pQ =
{β¨π₯, π¦β© β£ ((π₯ β (N Γ
N) β§ π¦
β (N Γ N)) β§ ((1st
βπ₯)
Β·N (2nd βπ¦)) <N
((1st βπ¦)
Β·N (2nd βπ₯)))} |
df-enq 10902 | β’ ~Q = {β¨π₯, π¦β© β£ ((π₯ β (N Γ
N) β§ π¦
β (N Γ N)) β§ βπ§βπ€βπ£βπ’((π₯ = β¨π§, π€β© β§ π¦ = β¨π£, π’β©) β§ (π§ Β·N π’) = (π€ Β·N π£)))} |
df-nq 10903 | β’ Q = {π₯ β (N Γ
N) β£ βπ¦ β (N Γ
N)(π₯
~Q π¦ β Β¬ (2nd βπ¦) <N
(2nd βπ₯))} |
df-erq 10904 | β’ [Q] = (
~Q β© ((N Γ N)
Γ Q)) |
df-plq 10905 | β’ +Q =
(([Q] β +pQ ) βΎ
(Q Γ Q)) |
df-mq 10906 | β’
Β·Q = (([Q] β
Β·pQ ) βΎ (Q Γ
Q)) |
df-1nq 10907 | β’ 1Q =
β¨1o, 1oβ© |
df-rq 10908 | β’ *Q =
(β‘ Β·Q
β {1Q}) |
df-ltnq 10909 | β’ <Q = (
<pQ β© (Q Γ
Q)) |
df-np 10972 | β’ P = {π₯ β£ ((β
β
π₯ β§ π₯ β Q) β§
βπ¦ β π₯ (βπ§(π§ <Q π¦ β π§ β π₯) β§ βπ§ β π₯ π¦ <Q π§))} |
df-1p 10973 | β’ 1P =
{π₯ β£ π₯ <Q
1Q} |
df-plp 10974 | β’ +P = (π₯ β P, π¦ β P β¦
{π€ β£ βπ£ β π₯ βπ’ β π¦ π€ = (π£ +Q π’)}) |
df-mp 10975 | β’
Β·P = (π₯ β P, π¦ β P β¦ {π€ β£ βπ£ β π₯ βπ’ β π¦ π€ = (π£ Β·Q π’)}) |
df-ltp 10976 | β’ <P = {β¨π₯, π¦β© β£ ((π₯ β P β§ π¦ β P) β§
π₯ β π¦)} |
df-enr 11046 | β’ ~R = {β¨π₯, π¦β© β£ ((π₯ β (P Γ
P) β§ π¦
β (P Γ P)) β§ βπ§βπ€βπ£βπ’((π₯ = β¨π§, π€β© β§ π¦ = β¨π£, π’β©) β§ (π§ +P π’) = (π€ +P π£)))} |
df-nr 11047 | β’ R =
((P Γ P) / ~R
) |
df-plr 11048 | β’ +R =
{β¨β¨π₯, π¦β©, π§β© β£ ((π₯ β R β§ π¦ β R) β§
βπ€βπ£βπ’βπ((π₯ = [β¨π€, π£β©] ~R β§
π¦ = [β¨π’, πβ©] ~R ) β§
π§ = [β¨(π€ +P
π’), (π£ +P π)β©]
~R ))} |
df-mr 11049 | β’
Β·R = {β¨β¨π₯, π¦β©, π§β© β£ ((π₯ β R β§ π¦ β R) β§
βπ€βπ£βπ’βπ((π₯ = [β¨π€, π£β©] ~R β§
π¦ = [β¨π’, πβ©] ~R ) β§
π§ = [β¨((π€
Β·P π’) +P (π£
Β·P π)), ((π€ Β·P π) +P
(π£
Β·P π’))β©] ~R
))} |
df-ltr 11050 | β’ <R =
{β¨π₯, π¦β© β£ ((π₯ β R β§
π¦ β R)
β§ βπ§βπ€βπ£βπ’((π₯ = [β¨π§, π€β©] ~R β§
π¦ = [β¨π£, π’β©] ~R ) β§
(π§
+P π’)<P (π€ +P
π£)))} |
df-0r 11051 | β’ 0R =
[β¨1P, 1Pβ©]
~R |
df-1r 11052 | β’ 1R =
[β¨(1P +P
1P), 1Pβ©]
~R |
df-m1r 11053 | β’ -1R =
[β¨1P, (1P
+P 1P)β©]
~R |
cc 11104 | class β |
cr 11105 | class β |
cc0 11106 | class 0 |
c1 11107 | class 1 |
ci 11108 | class i |
caddc 11109 | class + |
cltrr 11110 | class
<β |
cmul 11111 | class Β· |
df-c 11112 | β’ β = (R
Γ R) |
df-0 11113 | β’ 0 =
β¨0R,
0Rβ© |
df-1 11114 | β’ 1 =
β¨1R,
0Rβ© |
df-i 11115 | β’ i =
β¨0R,
1Rβ© |
df-r 11116 | β’ β = (R
Γ {0R}) |
df-add 11117 | β’ + = {β¨β¨π₯, π¦β©, π§β© β£ ((π₯ β β β§ π¦ β β) β§ βπ€βπ£βπ’βπ((π₯ = β¨π€, π£β© β§ π¦ = β¨π’, πβ©) β§ π§ = β¨(π€ +R π’), (π£ +R π)β©))} |
df-mul 11118 | β’ Β· = {β¨β¨π₯, π¦β©, π§β© β£ ((π₯ β β β§ π¦ β β) β§ βπ€βπ£βπ’βπ((π₯ = β¨π€, π£β© β§ π¦ = β¨π’, πβ©) β§ π§ = β¨((π€ Β·R π’) +R
(-1R Β·R (π£
Β·R π))), ((π£ Β·R π’) +R
(π€
Β·R π))β©))} |
df-lt 11119 | β’ <β =
{β¨π₯, π¦β© β£ ((π₯ β β β§ π¦ β β) β§
βπ§βπ€((π₯ = β¨π§, 0Rβ© β§
π¦ = β¨π€,
0Rβ©) β§ π§ <R π€))} |
ax-cnex 11162 | β’ β β V |
ax-resscn 11163 | β’ β β β |
ax-1cn 11164 | β’ 1 β β |
ax-icn 11165 | β’ i β β |
ax-addcl 11166 | β’ ((π΄ β β β§ π΅ β β) β (π΄ + π΅) β β) |
ax-addrcl 11167 | β’ ((π΄ β β β§ π΅ β β) β (π΄ + π΅) β β) |
ax-mulcl 11168 | β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· π΅) β β) |
ax-mulrcl 11169 | β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· π΅) β β) |
ax-mulcom 11170 | β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· π΅) = (π΅ Β· π΄)) |
ax-addass 11171 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ + π΅) + πΆ) = (π΄ + (π΅ + πΆ))) |
ax-mulass 11172 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ Β· π΅) Β· πΆ) = (π΄ Β· (π΅ Β· πΆ))) |
ax-distr 11173 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β (π΄ Β· (π΅ + πΆ)) = ((π΄ Β· π΅) + (π΄ Β· πΆ))) |
ax-i2m1 11174 | β’ ((i Β· i) + 1) = 0 |
ax-1ne0 11175 | β’ 1 β 0 |
ax-1rid 11176 | β’ (π΄ β β β (π΄ Β· 1) = π΄) |
ax-rnegex 11177 | β’ (π΄ β β β βπ₯ β β (π΄ + π₯) = 0) |
ax-rrecex 11178 | β’ ((π΄ β β β§ π΄ β 0) β βπ₯ β β (π΄ Β· π₯) = 1) |
ax-cnre 11179 | β’ (π΄ β β β βπ₯ β β βπ¦ β β π΄ = (π₯ + (i Β· π¦))) |
ax-pre-lttri 11180 | β’ ((π΄ β β β§ π΅ β β) β (π΄ <β π΅ β Β¬ (π΄ = π΅ β¨ π΅ <β π΄))) |
ax-pre-lttrn 11181 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ <β π΅ β§ π΅ <β πΆ) β π΄ <β πΆ)) |
ax-pre-ltadd 11182 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β (π΄ <β π΅ β (πΆ + π΄) <β (πΆ + π΅))) |
ax-pre-mulgt0 11183 | β’ ((π΄ β β β§ π΅ β β) β ((0
<β π΄
β§ 0 <β π΅) β 0 <β (π΄ Β· π΅))) |
ax-pre-sup 11184 | β’ ((π΄ β β β§ π΄ β β
β§ βπ₯ β β βπ¦ β π΄ π¦ <β π₯) β βπ₯ β β (βπ¦ β π΄ Β¬ π₯ <β π¦ β§ βπ¦ β β (π¦ <β π₯ β βπ§ β π΄ π¦ <β π§))) |
ax-addf 11185 | β’ + :(β Γ
β)βΆβ |
ax-mulf 11186 | β’ Β· :(β Γ
β)βΆβ |
cpnf 11242 | class +β |
cmnf 11243 | class -β |
cxr 11244 | class
β* |
clt 11245 | class < |
cle 11246 | class β€ |
df-pnf 11247 | β’ +β = π« βͺ β |
df-mnf 11248 | β’ -β = π«
+β |
df-xr 11249 | β’ β* = (β
βͺ {+β, -β}) |
df-ltxr 11250 | β’ < = ({β¨π₯, π¦β© β£ (π₯ β β β§ π¦ β β β§ π₯ <β π¦)} βͺ (((β βͺ {-β}) Γ
{+β}) βͺ ({-β} Γ β))) |
df-le 11251 | β’ β€ = ((β*
Γ β*) β β‘
< ) |
cmin 11441 | class β |
cneg 11442 | class -π΄ |
df-sub 11443 | β’ β = (π₯ β β, π¦ β β β¦ (β©π§ β β (π¦ + π§) = π₯)) |
df-neg 11444 | β’ -π΄ = (0 β π΄) |
cdiv 11868 | class / |
df-div 11869 | β’ / = (π₯ β β, π¦ β (β β {0}) β¦
(β©π§ β
β (π¦ Β· π§) = π₯)) |
cn 12209 | class β |
df-nn 12210 | β’ β = (rec((π₯ β V β¦ (π₯ + 1)), 1) β
Ο) |
c2 12264 | class 2 |
c3 12265 | class 3 |
c4 12266 | class 4 |
c5 12267 | class 5 |
c6 12268 | class 6 |
c7 12269 | class 7 |
c8 12270 | class 8 |
c9 12271 | class 9 |
df-2 12272 | β’ 2 = (1 + 1) |
df-3 12273 | β’ 3 = (2 + 1) |
df-4 12274 | β’ 4 = (3 + 1) |
df-5 12275 | β’ 5 = (4 + 1) |
df-6 12276 | β’ 6 = (5 + 1) |
df-7 12277 | β’ 7 = (6 + 1) |
df-8 12278 | β’ 8 = (7 + 1) |
df-9 12279 | β’ 9 = (8 + 1) |
cn0 12469 | class
β0 |
df-n0 12470 | β’ β0 = (β
βͺ {0}) |
cxnn0 12541 | class
β0* |
df-xnn0 12542 | β’ β0* =
(β0 βͺ {+β}) |
cz 12555 | class β€ |
df-z 12556 | β’ β€ = {π β β β£ (π = 0 β¨ π β β β¨ -π β β)} |
cdc 12674 | class ;π΄π΅ |
df-dec 12675 | β’ ;π΄π΅ = (((9 + 1) Β· π΄) + π΅) |
cuz 12819 | class
β€β₯ |
df-uz 12820 | β’ β€β₯ = (π β β€ β¦ {π β β€ β£ π β€ π}) |
cq 12929 | class β |
df-q 12930 | β’ β = ( / β (β€
Γ β)) |
crp 12971 | class
β+ |
df-rp 12972 | β’ β+ = {π₯ β β β£ 0 <
π₯} |
cxne 13086 | class -ππ΄ |
cxad 13087 | class
+π |
cxmu 13088 | class
Β·e |
df-xneg 13089 | β’ -ππ΄ = if(π΄ = +β, -β, if(π΄ = -β, +β, -π΄)) |
df-xadd 13090 | β’ +π = (π₯ β β*, π¦ β β*
β¦ if(π₯ = +β,
if(π¦ = -β, 0,
+β), if(π₯ = -β,
if(π¦ = +β, 0,
-β), if(π¦ = +β,
+β, if(π¦ = -β,
-β, (π₯ + π¦)))))) |
df-xmul 13091 | β’ Β·e = (π₯ β β*, π¦ β β*
β¦ if((π₯ = 0 β¨
π¦ = 0), 0, if((((0 <
π¦ β§ π₯ = +β) β¨ (π¦ < 0 β§ π₯ = -β)) β¨ ((0 < π₯ β§ π¦ = +β) β¨ (π₯ < 0 β§ π¦ = -β))), +β, if((((0 < π¦ β§ π₯ = -β) β¨ (π¦ < 0 β§ π₯ = +β)) β¨ ((0 < π₯ β§ π¦ = -β) β¨ (π₯ < 0 β§ π¦ = +β))), -β, (π₯ Β· π¦))))) |
cioo 13321 | class (,) |
cioc 13322 | class (,] |
cico 13323 | class [,) |
cicc 13324 | class [,] |
df-ioo 13325 | β’ (,) = (π₯ β β*, π¦ β β*
β¦ {π§ β
β* β£ (π₯ < π§ β§ π§ < π¦)}) |
df-ioc 13326 | β’ (,] = (π₯ β β*, π¦ β β*
β¦ {π§ β
β* β£ (π₯ < π§ β§ π§ β€ π¦)}) |
df-ico 13327 | β’ [,) = (π₯ β β*, π¦ β β*
β¦ {π§ β
β* β£ (π₯ β€ π§ β§ π§ < π¦)}) |
df-icc 13328 | β’ [,] = (π₯ β β*, π¦ β β*
β¦ {π§ β
β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) |
cfz 13481 | class ... |
df-fz 13482 | β’ ... = (π β β€, π β β€ β¦ {π β β€ β£ (π β€ π β§ π β€ π)}) |
cfzo 13624 | class ..^ |
df-fzo 13625 | β’ ..^ = (π β β€, π β β€ β¦ (π...(π β 1))) |
cfl 13752 | class β |
cceil 13753 | class β |
df-fl 13754 | β’ β = (π₯ β β β¦ (β©π¦ β β€ (π¦ β€ π₯ β§ π₯ < (π¦ + 1)))) |
df-ceil 13755 | β’ β = (π₯ β β β¦
-(ββ-π₯)) |
cmo 13831 | class mod |
df-mod 13832 | β’ mod = (π₯ β β, π¦ β β+ β¦ (π₯ β (π¦ Β· (ββ(π₯ / π¦))))) |
cseq 13963 | class seqπ( + , πΉ) |
df-seq 13964 | β’ seqπ( + , πΉ) = (rec((π₯ β V, π¦ β V β¦ β¨(π₯ + 1), (π¦ + (πΉβ(π₯ + 1)))β©), β¨π, (πΉβπ)β©) β Ο) |
cexp 14024 | class β |
df-exp 14025 | β’ β = (π₯ β β, π¦ β β€ β¦ if(π¦ = 0, 1, if(0 < π¦, (seq1( Β· , (β Γ {π₯}))βπ¦), (1 / (seq1( Β· , (β Γ
{π₯}))β-π¦))))) |
cfa 14230 | class ! |
df-fac 14231 | β’ ! = ({β¨0, 1β©} βͺ seq1( Β·
, I )) |
cbc 14259 | class C |
df-bc 14260 | β’ C = (π β β0, π β β€ β¦ if(π β (0...π), ((!βπ) / ((!β(π β π)) Β· (!βπ))), 0)) |
chash 14287 | class β― |
df-hash 14288 | β’ β― = (((rec((π₯ β V β¦ (π₯ + 1)), 0) βΎ Ο) β card)
βͺ ((V β Fin) Γ {+β})) |
cword 14461 | class Word π |
df-word 14462 | β’ Word π = {π€ β£ βπ β β0 π€:(0..^π)βΆπ} |
clsw 14509 | class lastS |
df-lsw 14510 | β’ lastS = (π€ β V β¦ (π€β((β―βπ€) β 1))) |
cconcat 14517 | class ++ |
df-concat 14518 | β’ ++ = (π β V, π‘ β V β¦ (π₯ β (0..^((β―βπ ) + (β―βπ‘))) β¦ if(π₯ β
(0..^(β―βπ )),
(π βπ₯), (π‘β(π₯ β (β―βπ )))))) |
cs1 14542 | class β¨βπ΄ββ© |
df-s1 14543 | β’ β¨βπ΄ββ© = {β¨0, ( I βπ΄)β©} |
csubstr 14587 | class substr |
df-substr 14588 | β’ substr = (π β V, π β (β€ Γ β€) β¦
if(((1st βπ)..^(2nd βπ)) β dom π , (π₯ β (0..^((2nd βπ) β (1st
βπ))) β¦ (π β(π₯ + (1st βπ)))), β
)) |
cpfx 14617 | class prefix |
df-pfx 14618 | β’ prefix = (π β V, π β β0 β¦ (π substr β¨0, πβ©)) |
csplice 14696 | class splice |
df-splice 14697 | β’ splice = (π β V, π β V β¦ (((π prefix (1st
β(1st βπ))) ++ (2nd βπ)) ++ (π substr β¨(2nd
β(1st βπ)), (β―βπ )β©))) |
creverse 14705 | class reverse |
df-reverse 14706 | β’ reverse = (π β V β¦ (π₯ β (0..^(β―βπ )) β¦ (π β(((β―βπ ) β 1) β π₯)))) |
creps 14715 | class repeatS |
df-reps 14716 | β’ repeatS = (π β V, π β β0 β¦ (π₯ β (0..^π) β¦ π )) |
ccsh 14735 | class cyclShift |
df-csh 14736 | β’ cyclShift = (π€ β {π β£ βπ β β0 π Fn (0..^π)}, π β β€ β¦ if(π€ = β
, β
, ((π€ substr β¨(π mod (β―βπ€)), (β―βπ€)β©) ++ (π€ prefix (π mod (β―βπ€)))))) |
cs2 14789 | class β¨βπ΄π΅ββ© |
cs3 14790 | class β¨βπ΄π΅πΆββ© |
cs4 14791 | class β¨βπ΄π΅πΆπ·ββ© |
cs5 14792 | class β¨βπ΄π΅πΆπ·πΈββ© |
cs6 14793 | class β¨βπ΄π΅πΆπ·πΈπΉββ© |
cs7 14794 | class β¨βπ΄π΅πΆπ·πΈπΉπΊββ© |
cs8 14795 | class β¨βπ΄π΅πΆπ·πΈπΉπΊπ»ββ© |
df-s2 14796 | β’ β¨βπ΄π΅ββ© = (β¨βπ΄ββ© ++
β¨βπ΅ββ©) |
df-s3 14797 | β’ β¨βπ΄π΅πΆββ© = (β¨βπ΄π΅ββ© ++ β¨βπΆββ©) |
df-s4 14798 | β’ β¨βπ΄π΅πΆπ·ββ© = (β¨βπ΄π΅πΆββ© ++ β¨βπ·ββ©) |
df-s5 14799 | β’ β¨βπ΄π΅πΆπ·πΈββ© = (β¨βπ΄π΅πΆπ·ββ© ++ β¨βπΈββ©) |
df-s6 14800 | β’ β¨βπ΄π΅πΆπ·πΈπΉββ© = (β¨βπ΄π΅πΆπ·πΈββ© ++ β¨βπΉββ©) |
df-s7 14801 | β’ β¨βπ΄π΅πΆπ·πΈπΉπΊββ© = (β¨βπ΄π΅πΆπ·πΈπΉββ© ++ β¨βπΊββ©) |
df-s8 14802 | β’ β¨βπ΄π΅πΆπ·πΈπΉπΊπ»ββ© = (β¨βπ΄π΅πΆπ·πΈπΉπΊββ© ++ β¨βπ»ββ©) |
ctcl 14929 | class t+ |
crtcl 14930 | class t* |
df-trcl 14931 | β’ t+ = (π₯ β V β¦ β© {π§
β£ (π₯ β π§ β§ (π§ β π§) β π§)}) |
df-rtrcl 14932 | β’ t* = (π₯ β V β¦ β© {π§
β£ (( I βΎ (dom π₯
βͺ ran π₯)) β π§ β§ π₯ β π§ β§ (π§ β π§) β π§)}) |
crelexp 14963 | class
βπ |
df-relexp 14964 | β’ βπ = (π β V, π β β0 β¦ if(π = 0, ( I βΎ (dom π βͺ ran π)), (seq1((π₯ β V, π¦ β V β¦ (π₯ β π)), (π§ β V β¦ π))βπ))) |
crtrcl 14999 | class t*rec |
df-rtrclrec 15000 | β’ t*rec = (π β V β¦ βͺ π β β0 (πβππ)) |
cshi 15010 | class shift |
df-shft 15011 | β’ shift = (π β V, π₯ β β β¦ {β¨π¦, π§β© β£ (π¦ β β β§ (π¦ β π₯)ππ§)}) |
csgn 15030 | class sgn |
df-sgn 15031 | β’ sgn = (π₯ β β* β¦ if(π₯ = 0, 0, if(π₯ < 0, -1, 1))) |
ccj 15040 | class β |
cre 15041 | class β |
cim 15042 | class β |
df-cj 15043 | β’ β = (π₯ β β β¦ (β©π¦ β β ((π₯ + π¦) β β β§ (i Β· (π₯ β π¦)) β β))) |
df-re 15044 | β’ β = (π₯ β β β¦ ((π₯ + (ββπ₯)) / 2)) |
df-im 15045 | β’ β = (π₯ β β β¦ (ββ(π₯ / i))) |
csqrt 15177 | class β |
cabs 15178 | class abs |
df-sqrt 15179 | β’ β = (π₯ β β β¦ (β©π¦ β β ((π¦β2) = π₯ β§ 0 β€ (ββπ¦) β§ (i Β· π¦) β
β+))) |
df-abs 15180 | β’ abs = (π₯ β β β¦ (ββ(π₯ Β· (ββπ₯)))) |
clsp 15411 | class lim sup |
df-limsup 15412 | β’ lim sup = (π₯ β V β¦ inf(ran (π β β β¦ sup(((π₯ β (π[,)+β)) β© β*),
β*, < )), β*, < )) |
cli 15425 | class β |
crli 15426 | class
βπ |
co1 15427 | class π(1) |
clo1 15428 | class
β€π(1) |
df-clim 15429 | β’ β = {β¨π, π¦β© β£ (π¦ β β β§ βπ₯ β β+
βπ β β€
βπ β
(β€β₯βπ)((πβπ) β β β§ (absβ((πβπ) β π¦)) < π₯))} |
df-rlim 15430 | β’ βπ = {β¨π, π₯β© β£ ((π β (β βpm β)
β§ π₯ β β)
β§ βπ¦ β
β+ βπ§ β β βπ€ β dom π(π§ β€ π€ β (absβ((πβπ€) β π₯)) < π¦))} |
df-o1 15431 | β’ π(1) = {π β (β
βpm β) β£ βπ₯ β β βπ β β βπ¦ β (dom π β© (π₯[,)+β))(absβ(πβπ¦)) β€ π} |
df-lo1 15432 | β’ β€π(1) = {π β (β βpm β)
β£ βπ₯ β
β βπ β
β βπ¦ β
(dom π β© (π₯[,)+β))(πβπ¦) β€ π} |
csu 15629 | class Ξ£π β π΄ π΅ |
df-sum 15630 | β’ Ξ£π β π΄ π΅ = (β©π₯(βπ β β€ (π΄ β (β€β₯βπ) β§ seqπ( + , (π β β€ β¦ if(π β π΄, β¦π / πβ¦π΅, 0))) β π₯) β¨ βπ β β βπ(π:(1...π)β1-1-ontoβπ΄ β§ π₯ = (seq1( + , (π β β β¦ β¦(πβπ) / πβ¦π΅))βπ)))) |
cprod 15846 | class βπ β π΄ π΅ |
df-prod 15847 | β’ βπ β π΄ π΅ = (β©π₯(βπ β β€ (π΄ β (β€β₯βπ) β§ βπ β
(β€β₯βπ)βπ¦(π¦ β 0 β§ seqπ( Β· , (π β β€ β¦ if(π β π΄, π΅, 1))) β π¦) β§ seqπ( Β· , (π β β€ β¦ if(π β π΄, π΅, 1))) β π₯) β¨ βπ β β βπ(π:(1...π)β1-1-ontoβπ΄ β§ π₯ = (seq1( Β· , (π β β β¦ β¦(πβπ) / πβ¦π΅))βπ)))) |
cfallfac 15945 | class FallFac |
crisefac 15946 | class RiseFac |
df-risefac 15947 | β’ RiseFac = (π₯ β β, π β β0 β¦
βπ β (0...(π β 1))(π₯ + π)) |
df-fallfac 15948 | β’ FallFac = (π₯ β β, π β β0 β¦
βπ β (0...(π β 1))(π₯ β π)) |
cbp 15987 | class BernPoly |
df-bpoly 15988 | β’ BernPoly = (π β β0, π₯ β β β¦ (wrecs(
< , β0, (π β V β¦
β¦(β―βdom π) / πβ¦((π₯βπ) β Ξ£π β dom π((πCπ) Β· ((πβπ) / ((π β π) + 1))))))βπ)) |
ce 16002 | class exp |
ceu 16003 | class e |
csin 16004 | class sin |
ccos 16005 | class cos |
ctan 16006 | class tan |
cpi 16007 | class Ο |
df-ef 16008 | β’ exp = (π₯ β β β¦ Ξ£π β β0
((π₯βπ) / (!βπ))) |
df-e 16009 | β’ e =
(expβ1) |
df-sin 16010 | β’ sin = (π₯ β β β¦ (((expβ(i
Β· π₯)) β
(expβ(-i Β· π₯))) / (2 Β· i))) |
df-cos 16011 | β’ cos = (π₯ β β β¦ (((expβ(i
Β· π₯)) +
(expβ(-i Β· π₯))) / 2)) |
df-tan 16012 | β’ tan = (π₯ β (β‘cos β (β β {0})) β¦
((sinβπ₯) /
(cosβπ₯))) |
df-pi 16013 | β’ Ο = inf((β+
β© (β‘sin β {0})), β,
< ) |
ctau 16142 | class Ο |
df-tau 16143 | β’ Ο = inf((β+ β©
(β‘cos β {1})), β, <
) |
cdvds 16194 | class β₯ |
df-dvds 16195 | β’ β₯ = {β¨π₯, π¦β© β£ ((π₯ β β€ β§ π¦ β β€) β§ βπ β β€ (π Β· π₯) = π¦)} |
cbits 16357 | class bits |
csad 16358 | class sadd |
csmu 16359 | class smul |
df-bits 16360 | β’ bits = (π β β€ β¦ {π β β0 β£ Β¬ 2
β₯ (ββ(π /
(2βπ)))}) |
df-sad 16389 | β’ sadd = (π₯ β π« β0, π¦ β π«
β0 β¦ {π β β0 β£
hadd(π β π₯, π β π¦, β
β (seq0((π β 2o, π β β0 β¦
if(cadd(π β π₯, π β π¦, β
β π), 1o, β
)), (π β β0
β¦ if(π = 0, β
,
(π β
1))))βπ))}) |
df-smu 16414 | β’ smul = (π₯ β π« β0, π¦ β π«
β0 β¦ {π β β0 β£ π β (seq0((π β π«
β0, π
β β0 β¦ (π sadd {π β β0 β£ (π β π₯ β§ (π β π) β π¦)})), (π β β0 β¦ if(π = 0, β
, (π β 1))))β(π + 1))}) |
cgcd 16432 | class gcd |
df-gcd 16433 | β’ gcd = (π₯ β β€, π¦ β β€ β¦ if((π₯ = 0 β§ π¦ = 0), 0, sup({π β β€ β£ (π β₯ π₯ β§ π β₯ π¦)}, β, < ))) |
clcm 16522 | class lcm |
clcmf 16523 | class lcm |
df-lcm 16524 | β’ lcm = (π₯ β β€, π¦ β β€ β¦ if((π₯ = 0 β¨ π¦ = 0), 0, inf({π β β β£ (π₯ β₯ π β§ π¦ β₯ π)}, β, < ))) |
df-lcmf 16525 | β’ lcm = (π§ β π« β€ β¦ if(0 β
π§, 0, inf({π β β β£
βπ β π§ π β₯ π}, β, < ))) |
cprime 16605 | class β |
df-prm 16606 | β’ β = {π β β β£ {π β β β£ π β₯ π} β 2o} |
cnumer 16668 | class numer |
cdenom 16669 | class denom |
df-numer 16670 | β’ numer = (π¦ β β β¦ (1st
β(β©π₯
β (β€ Γ β)(((1st βπ₯) gcd (2nd βπ₯)) = 1 β§ π¦ = ((1st βπ₯) / (2nd βπ₯)))))) |
df-denom 16671 | β’ denom = (π¦ β β β¦ (2nd
β(β©π₯
β (β€ Γ β)(((1st βπ₯) gcd (2nd βπ₯)) = 1 β§ π¦ = ((1st βπ₯) / (2nd βπ₯)))))) |
codz 16695 | class
odβ€ |
cphi 16696 | class Ο |
df-odz 16697 | β’ odβ€ = (π β β β¦ (π₯ β {π₯ β β€ β£ (π₯ gcd π) = 1} β¦ inf({π β β β£ π β₯ ((π₯βπ) β 1)}, β, <
))) |
df-phi 16698 | β’ Ο = (π β β β¦ (β―β{π₯ β (1...π) β£ (π₯ gcd π) = 1})) |
cpc 16768 | class pCnt |
df-pc 16769 | β’ pCnt = (π β β, π β β β¦ if(π = 0, +β, (β©π§βπ₯ β β€ βπ¦ β β (π = (π₯ / π¦) β§ π§ = (sup({π β β0 β£ (πβπ) β₯ π₯}, β, < ) β sup({π β β0
β£ (πβπ) β₯ π¦}, β, < )))))) |
cgz 16861 | class β€[i] |
df-gz 16862 | β’ β€[i] = {π₯ β β β£ ((ββπ₯) β β€ β§
(ββπ₯) β
β€)} |
cvdwa 16897 | class AP |
cvdwm 16898 | class MonoAP |
cvdwp 16899 | class PolyAP |
df-vdwap 16900 | β’ AP = (π β β0 β¦ (π β β, π β β β¦ ran
(π β (0...(π β 1)) β¦ (π + (π Β· π))))) |
df-vdwmc 16901 | β’ MonoAP = {β¨π, πβ© β£ βπ(ran (APβπ) β© π« (β‘π β {π})) β β
} |
df-vdwpc 16902 | β’ PolyAP = {β¨β¨π, πβ©, πβ© β£ βπ β β βπ β (β βm
(1...π))(βπ β (1...π)((π + (πβπ))(APβπ)(πβπ)) β (β‘π β {(πβ(π + (πβπ)))}) β§ (β―βran (π β (1...π) β¦ (πβ(π + (πβπ))))) = π)} |
cram 16931 | class Ramsey |
df-ram 16933 | β’ Ramsey = (π β β0, π β V β¦ inf({π β β0
β£ βπ (π β€ (β―βπ ) β βπ β (dom π βm {π¦ β π« π β£ (β―βπ¦) = π})βπ β dom πβπ₯ β π« π ((πβπ) β€ (β―βπ₯) β§ βπ¦ β π« π₯((β―βπ¦) = π β (πβπ¦) = π)))}, β*, <
)) |
cprmo 16963 | class #p |
df-prmo 16964 | β’ #p = (π β β0 β¦
βπ β (1...π)if(π β β, π, 1)) |
cstr 17078 | class Struct |
df-struct 17079 | β’ Struct = {β¨π, π₯β© β£ (π₯ β ( β€ β© (β Γ
β)) β§ Fun (π
β {β
}) β§ dom π β (...βπ₯))} |
csts 17095 | class sSet |
df-sets 17096 | β’ sSet = (π β V, π β V β¦ ((π βΎ (V β dom {π})) βͺ {π})) |
cslot 17113 | class Slot π΄ |
df-slot 17114 | β’ Slot π΄ = (π₯ β V β¦ (π₯βπ΄)) |
cnx 17125 | class ndx |
df-ndx 17126 | β’ ndx = ( I βΎ β) |
cbs 17143 | class Base |
df-base 17144 | β’ Base = Slot 1 |
cress 17172 | class
βΎs |
df-ress 17173 | β’ βΎs = (π€ β V, π₯ β V β¦ if((Baseβπ€) β π₯, π€, (π€ sSet β¨(Baseβndx), (π₯ β© (Baseβπ€))β©))) |
cplusg 17196 | class +g |
cmulr 17197 | class .r |
cstv 17198 | class
*π |
csca 17199 | class Scalar |
cvsca 17200 | class
Β·π |
cip 17201 | class
Β·π |
cts 17202 | class TopSet |
cple 17203 | class le |
coc 17204 | class oc |
cds 17205 | class dist |
cunif 17206 | class UnifSet |
chom 17207 | class Hom |
cco 17208 | class comp |
df-plusg 17209 | β’ +g = Slot 2 |
df-mulr 17210 | β’ .r = Slot 3 |
df-starv 17211 | β’ *π = Slot
4 |
df-sca 17212 | β’ Scalar = Slot 5 |
df-vsca 17213 | β’ Β·π = Slot
6 |
df-ip 17214 | β’
Β·π = Slot 8 |
df-tset 17215 | β’ TopSet = Slot 9 |
df-ple 17216 | β’ le = Slot ;10 |
df-ocomp 17217 | β’ oc = Slot ;11 |
df-ds 17218 | β’ dist = Slot ;12 |
df-unif 17219 | β’ UnifSet = Slot ;13 |
df-hom 17220 | β’ Hom = Slot ;14 |
df-cco 17221 | β’ comp = Slot ;15 |
crest 17365 | class
βΎt |
ctopn 17366 | class TopOpen |
df-rest 17367 | β’ βΎt = (π β V, π₯ β V β¦ ran (π¦ β π β¦ (π¦ β© π₯))) |
df-topn 17368 | β’ TopOpen = (π€ β V β¦ ((TopSetβπ€) βΎt
(Baseβπ€))) |
ctg 17382 | class topGen |
cpt 17383 | class
βt |
c0g 17384 | class 0g |
cgsu 17385 | class
Ξ£g |
df-0g 17386 | β’ 0g = (π β V β¦ (β©π(π β (Baseβπ) β§ βπ₯ β (Baseβπ)((π(+gβπ)π₯) = π₯ β§ (π₯(+gβπ)π) = π₯)))) |
df-gsum 17387 | β’ Ξ£g = (π€ β V, π β V β¦ β¦{π₯ β (Baseβπ€) β£ βπ¦ β (Baseβπ€)((π₯(+gβπ€)π¦) = π¦ β§ (π¦(+gβπ€)π₯) = π¦)} / πβ¦if(ran π β π, (0gβπ€), if(dom π β ran ..., (β©π₯βπβπ β (β€β₯βπ)(dom π = (π...π) β§ π₯ = (seqπ((+gβπ€), π)βπ))), (β©π₯βπ[(β‘π β (V β π)) / π¦](π:(1...(β―βπ¦))β1-1-ontoβπ¦ β§ π₯ = (seq1((+gβπ€), (π β π))β(β―βπ¦))))))) |
df-topgen 17388 | β’ topGen = (π₯ β V β¦ {π¦ β£ π¦ β βͺ (π₯ β© π« π¦)}) |
df-pt 17389 | β’ βt = (π β V β¦
(topGenβ{π₯ β£
βπ((π Fn dom π β§ βπ¦ β dom π(πβπ¦) β (πβπ¦) β§ βπ§ β Fin βπ¦ β (dom π β π§)(πβπ¦) = βͺ (πβπ¦)) β§ π₯ = Xπ¦ β dom π(πβπ¦))})) |
cprds 17390 | class Xs |
cpws 17391 | class
βs |
df-prds 17392 | β’ Xs = (π β V, π β V β¦ β¦Xπ₯ β
dom π(Baseβ(πβπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β ((2nd βπ)βπ), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
df-pws 17394 | β’ βs = (π β V, π β V β¦ ((Scalarβπ)Xs(π Γ {π}))) |
cordt 17444 | class ordTop |
cxrs 17445 | class
β*π |
df-ordt 17446 | β’ ordTop = (π β V β¦
(topGenβ(fiβ({dom π} βͺ ran ((π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π¦ππ₯}) βͺ (π₯ β dom π β¦ {π¦ β dom π β£ Β¬ π₯ππ¦})))))) |
df-xrs 17447 | β’ β*π =
({β¨(Baseβndx), β*β©,
β¨(+gβndx), +π β©,
β¨(.rβndx), Β·e β©} βͺ
{β¨(TopSetβndx), (ordTopβ β€ )β©, β¨(leβndx),
β€ β©, β¨(distβndx), (π₯ β β*, π¦ β β*
β¦ if(π₯ β€ π¦, (π¦ +π
-ππ₯),
(π₯ +π
-ππ¦)))β©}) |
cqtop 17448 | class qTop |
cimas 17449 | class
βs |
cqus 17450 | class
/s |
cxps 17451 | class
Γs |
df-qtop 17452 | β’ qTop = (π β V, π β V β¦ {π β π« (π β βͺ π) β£ ((β‘π β π ) β© βͺ π) β π}) |
df-imas 17453 | β’ βs = (π β V, π β V β¦
β¦(Baseβπ) / π£β¦(({β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} βͺ
{β¨(Scalarβndx), (Scalarβπ)β©, β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©}) βͺ
{β¨(TopSetβndx), ((TopOpenβπ) qTop π)β©, β¨(leβndx), ((π β (leβπ)) β β‘π)β©, β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ
π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β π))), β*, <
))β©})) |
df-qus 17454 | β’ /s = (π β V, π β V β¦ ((π₯ β (Baseβπ) β¦ [π₯]π) βs π)) |
df-xps 17455 | β’ Γs = (π β V, π β V β¦ (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}))) |
cmre 17525 | class Moore |
cmrc 17526 | class mrCls |
cmri 17527 | class mrInd |
cacs 17528 | class ACS |
df-mre 17529 | β’ Moore = (π₯ β V β¦ {π β π« π« π₯ β£ (π₯ β π β§ βπ β π« π(π β β
β β© π
β π))}) |
df-mrc 17530 | β’ mrCls = (π β βͺ ran
Moore β¦ (π₯ β
π« βͺ π β¦ β© {π β π β£ π₯ β π })) |
df-mri 17531 | β’ mrInd = (π β βͺ ran
Moore β¦ {π β
π« βͺ π β£ βπ₯ β π Β¬ π₯ β ((mrClsβπ)β(π β {π₯}))}) |
df-acs 17532 | β’ ACS = (π₯ β V β¦ {π β (Mooreβπ₯) β£ βπ(π:π« π₯βΆπ« π₯ β§ βπ β π« π₯(π β π β βͺ (π β (π« π β© Fin)) β π ))}) |
ccat 17607 | class Cat |
ccid 17608 | class Id |
chomf 17609 | class
Homf |
ccomf 17610 | class
compf |
df-cat 17611 | β’ Cat = {π β£ [(Baseβπ) / π][(Hom βπ) / β][(compβπ) / π]βπ₯ β π (βπ β (π₯βπ₯)βπ¦ β π (βπ β (π¦βπ₯)(π(β¨π¦, π₯β©ππ₯)π) = π β§ βπ β (π₯βπ¦)(π(β¨π₯, π₯β©ππ¦)π) = π) β§ βπ¦ β π βπ§ β π βπ β (π₯βπ¦)βπ β (π¦βπ§)((π(β¨π₯, π¦β©ππ§)π) β (π₯βπ§) β§ βπ€ β π βπ β (π§βπ€)((π(β¨π¦, π§β©ππ€)π)(β¨π₯, π¦β©ππ€)π) = (π(β¨π₯, π§β©ππ€)(π(β¨π₯, π¦β©ππ§)π))))} |
df-cid 17612 | β’ Id = (π β Cat β¦
β¦(Baseβπ) / πβ¦β¦(Hom
βπ) / ββ¦β¦(compβπ) / πβ¦(π₯ β π β¦ (β©π β (π₯βπ₯)βπ¦ β π (βπ β (π¦βπ₯)(π(β¨π¦, π₯β©ππ₯)π) = π β§ βπ β (π₯βπ¦)(π(β¨π₯, π₯β©ππ¦)π) = π)))) |
df-homf 17613 | β’ Homf = (π β V β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ (π₯(Hom βπ)π¦))) |
df-comf 17614 | β’ compf = (π β V β¦ (π₯ β ((Baseβπ) Γ (Baseβπ)), π¦ β (Baseβπ) β¦ (π β ((2nd βπ₯)(Hom βπ)π¦), π β ((Hom βπ)βπ₯) β¦ (π(π₯(compβπ)π¦)π)))) |
coppc 17654 | class oppCat |
df-oppc 17655 | β’ oppCat = (π β V β¦ ((π sSet β¨(Hom βndx), tpos (Hom
βπ)β©) sSet
β¨(compβndx), (π’
β ((Baseβπ)
Γ (Baseβπ)),
π§ β (Baseβπ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπ)(1st βπ’)))β©)) |
cmon 17674 | class Mono |
cepi 17675 | class Epi |
df-mon 17676 | β’ Mono = (π β Cat β¦
β¦(Baseβπ) / πβ¦β¦(Hom
βπ) / ββ¦(π₯ β π, π¦ β π β¦ {π β (π₯βπ¦) β£ βπ§ β π Fun β‘(π β (π§βπ₯) β¦ (π(β¨π§, π₯β©(compβπ)π¦)π))})) |
df-epi 17677 | β’ Epi = (π β Cat β¦ tpos
(Monoβ(oppCatβπ))) |
csect 17690 | class Sect |
cinv 17691 | class Inv |
ciso 17692 | class Iso |
df-sect 17693 | β’ Sect = (π β Cat β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ {β¨π, πβ© β£ [(Hom βπ) / β]((π β (π₯βπ¦) β§ π β (π¦βπ₯)) β§ (π(β¨π₯, π¦β©(compβπ)π₯)π) = ((Idβπ)βπ₯))})) |
df-inv 17694 | β’ Inv = (π β Cat β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ ((π₯(Sectβπ)π¦) β© β‘(π¦(Sectβπ)π₯)))) |
df-iso 17695 | β’ Iso = (π β Cat β¦ ((π₯ β V β¦ dom π₯) β (Invβπ))) |
ccic 17741 | class
βπ |
df-cic 17742 | β’ βπ = (π β Cat β¦
((Isoβπ) supp
β
)) |
cssc 17753 | class
βcat |
cresc 17754 | class
βΎcat |
csubc 17755 | class Subcat |
df-ssc 17756 | β’ βcat = {β¨β, πβ© β£ βπ‘(π Fn (π‘ Γ π‘) β§ βπ β π« π‘β β Xπ₯ β (π Γ π )π« (πβπ₯))} |
df-resc 17757 | β’ βΎcat = (π β V, β β V β¦ ((π βΎs dom dom β) sSet β¨(Hom βndx),
ββ©)) |
df-subc 17758 | β’ Subcat = (π β Cat β¦ {β β£ (β βcat (Homf
βπ) β§ [dom
dom β / π ]βπ₯ β π (((Idβπ)βπ₯) β (π₯βπ₯) β§ βπ¦ β π βπ§ β π βπ β (π₯βπ¦)βπ β (π¦βπ§)(π(β¨π₯, π¦β©(compβπ)π§)π) β (π₯βπ§)))}) |
cfunc 17803 | class Func |
cidfu 17804 | class
idfunc |
ccofu 17805 | class
βfunc |
cresf 17806 | class
βΎf |
df-func 17807 | β’ Func = (π‘ β Cat, π’ β Cat β¦ {β¨π, πβ© β£ [(Baseβπ‘) / π](π:πβΆ(Baseβπ’) β§ π β Xπ§ β (π Γ π)(((πβ(1st βπ§))(Hom βπ’)(πβ(2nd βπ§))) βm ((Hom
βπ‘)βπ§)) β§ βπ₯ β π (((π₯ππ₯)β((Idβπ‘)βπ₯)) = ((Idβπ’)β(πβπ₯)) β§ βπ¦ β π βπ§ β π βπ β (π₯(Hom βπ‘)π¦)βπ β (π¦(Hom βπ‘)π§)((π₯ππ§)β(π(β¨π₯, π¦β©(compβπ‘)π§)π)) = (((π¦ππ§)βπ)(β¨(πβπ₯), (πβπ¦)β©(compβπ’)(πβπ§))((π₯ππ¦)βπ))))}) |
df-idfu 17808 | β’ idfunc = (π‘ β Cat β¦
β¦(Baseβπ‘) / πβ¦β¨( I βΎ π), (π§ β (π Γ π) β¦ ( I βΎ ((Hom βπ‘)βπ§)))β©) |
df-cofu 17809 | β’ βfunc = (π β V, π β V β¦ β¨((1st
βπ) β
(1st βπ)),
(π₯ β dom dom
(2nd βπ),
π¦ β dom dom
(2nd βπ)
β¦ ((((1st βπ)βπ₯)(2nd βπ)((1st βπ)βπ¦)) β (π₯(2nd βπ)π¦)))β©) |
df-resf 17810 | β’ βΎf = (π β V, β β V β¦ β¨((1st
βπ) βΎ dom dom
β), (π₯ β dom β β¦ (((2nd βπ)βπ₯) βΎ (ββπ₯)))β©) |
cful 17854 | class Full |
cfth 17855 | class Faith |
df-full 17856 | β’ Full = (π β Cat, π β Cat β¦ {β¨π, πβ© β£ (π(π Func π)π β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)ran (π₯ππ¦) = ((πβπ₯)(Hom βπ)(πβπ¦)))}) |
df-fth 17857 | β’ Faith = (π β Cat, π β Cat β¦ {β¨π, πβ© β£ (π(π Func π)π β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)Fun β‘(π₯ππ¦))}) |
cnat 17894 | class Nat |
cfuc 17895 | class FuncCat |
df-nat 17896 | β’ Nat = (π‘ β Cat, π’ β Cat β¦ (π β (π‘ Func π’), π β (π‘ Func π’) β¦ β¦(1st
βπ) / πβ¦β¦(1st
βπ) / π β¦{π β Xπ₯ β
(Baseβπ‘)((πβπ₯)(Hom βπ’)(π βπ₯)) β£ βπ₯ β (Baseβπ‘)βπ¦ β (Baseβπ‘)ββ β (π₯(Hom βπ‘)π¦)((πβπ¦)(β¨(πβπ₯), (πβπ¦)β©(compβπ’)(π βπ¦))((π₯(2nd βπ)π¦)ββ)) = (((π₯(2nd βπ)π¦)ββ)(β¨(πβπ₯), (π βπ₯)β©(compβπ’)(π βπ¦))(πβπ₯))})) |
df-fuc 17897 | β’ FuncCat = (π‘ β Cat, π’ β Cat β¦ {β¨(Baseβndx),
(π‘ Func π’)β©, β¨(Hom βndx), (π‘ Nat π’)β©, β¨(compβndx), (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))))β©}) |
cinito 17933 | class InitO |
ctermo 17934 | class TermO |
czeroo 17935 | class ZeroO |
df-inito 17936 | β’ InitO = (π β Cat β¦ {π β (Baseβπ) β£ βπ β (Baseβπ)β!β β β (π(Hom βπ)π)}) |
df-termo 17937 | β’ TermO = (π β Cat β¦ {π β (Baseβπ) β£ βπ β (Baseβπ)β!β β β (π(Hom βπ)π)}) |
df-zeroo 17938 | β’ ZeroO = (π β Cat β¦ ((InitOβπ) β© (TermOβπ))) |
cdoma 17972 | class
doma |
ccoda 17973 | class
coda |
carw 17974 | class Arrow |
choma 17975 | class
Homa |
df-doma 17976 | β’ doma = (1st
β 1st ) |
df-coda 17977 | β’ coda = (2nd
β 1st ) |
df-homa 17978 | β’ Homa = (π β Cat β¦ (π₯ β ((Baseβπ) Γ (Baseβπ)) β¦ ({π₯} Γ ((Hom βπ)βπ₯)))) |
df-arw 17979 | β’ Arrow = (π β Cat β¦ βͺ ran (Homaβπ)) |
cida 18005 | class
Ida |
ccoa 18006 | class
compa |
df-ida 18007 | β’ Ida = (π β Cat β¦ (π₯ β (Baseβπ) β¦ β¨π₯, π₯, ((Idβπ)βπ₯)β©)) |
df-coa 18008 | β’ compa = (π β Cat β¦ (π β (Arrowβπ), π β {β β (Arrowβπ) β£ (codaββ) =
(domaβπ)} β¦
β¨(domaβπ), (codaβπ), ((2nd βπ)(β¨(domaβπ),
(domaβπ)β©(compβπ)(codaβπ))(2nd βπ))β©)) |
csetc 18027 | class SetCat |
df-setc 18028 | β’ SetCat = (π’ β V β¦ {β¨(Baseβndx),
π’β©, β¨(Hom
βndx), (π₯ β
π’, π¦ β π’ β¦ (π¦ βm π₯))β©, β¨(compβndx), (π£ β (π’ Γ π’), π§ β π’ β¦ (π β (π§ βm (2nd
βπ£)), π β ((2nd
βπ£)
βm (1st βπ£)) β¦ (π β π)))β©}) |
ccatc 18050 | class CatCat |
df-catc 18051 | β’ CatCat = (π’ β V β¦ β¦(π’ β© Cat) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©}) |
cestrc 18075 | class ExtStrCat |
df-estrc 18076 | β’ ExtStrCat = (π’ β V β¦ {β¨(Baseβndx),
π’β©, β¨(Hom
βndx), (π₯ β
π’, π¦ β π’ β¦ ((Baseβπ¦) βm (Baseβπ₯)))β©,
β¨(compβndx), (π£
β (π’ Γ π’), π§ β π’ β¦ (π β ((Baseβπ§) βm
(Baseβ(2nd βπ£))), π β ((Baseβ(2nd
βπ£))
βm (Baseβ(1st βπ£))) β¦ (π β π)))β©}) |
cxpc 18122 | class
Γc |
c1stf 18123 | class
1stF |
c2ndf 18124 | class
2ndF |
cprf 18125 | class
β¨,β©F |
df-xpc 18126 | β’ Γc = (π β V, π β V β¦
β¦((Baseβπ) Γ (Baseβπ )) / πβ¦β¦(π’ β π, π£ β π β¦ (((1st βπ’)(Hom βπ)(1st βπ£)) Γ ((2nd βπ’)(Hom βπ )(2nd βπ£)))) / ββ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
ββ©,
β¨(compβndx), (π₯
β (π Γ π), π¦ β π β¦ (π β ((2nd βπ₯)βπ¦), π β (ββπ₯) β¦ β¨((1st βπ)(β¨(1st
β(1st βπ₯)), (1st β(2nd
βπ₯))β©(compβπ)(1st βπ¦))(1st βπ)), ((2nd βπ)(β¨(2nd
β(1st βπ₯)), (2nd β(2nd
βπ₯))β©(compβπ )(2nd βπ¦))(2nd βπ))β©))β©}) |
df-1stf 18127 | β’ 1stF = (π β Cat, π β Cat β¦
β¦((Baseβπ) Γ (Baseβπ )) / πβ¦β¨(1st βΎ
π), (π₯ β π, π¦ β π β¦ (1st βΎ (π₯(Hom β(π Γc π ))π¦)))β©) |
df-2ndf 18128 | β’ 2ndF = (π β Cat, π β Cat β¦
β¦((Baseβπ) Γ (Baseβπ )) / πβ¦β¨(2nd βΎ
π), (π₯ β π, π¦ β π β¦ (2nd βΎ (π₯(Hom β(π Γc π ))π¦)))β©) |
df-prf 18129 | β’ β¨,β©F = (π β V, π β V β¦ β¦dom
(1st βπ) /
πβ¦β¨(π₯ β π β¦ β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©), (π₯ β π, π¦ β π β¦ (β β dom (π₯(2nd βπ)π¦) β¦ β¨((π₯(2nd βπ)π¦)ββ), ((π₯(2nd βπ)π¦)ββ)β©))β©) |
cevlf 18164 | class
evalF |
ccurf 18165 | class
curryF |
cuncf 18166 | class
uncurryF |
cdiag 18167 | class
Ξfunc |
df-evlf 18168 | β’ evalF = (π β Cat, π β Cat β¦ β¨(π β (π Func π), π₯ β (Baseβπ) β¦ ((1st βπ)βπ₯)), (π₯ β ((π Func π) Γ (Baseβπ)), π¦ β ((π Func π) Γ (Baseβπ)) β¦ β¦(1st
βπ₯) / πβ¦β¦(1st
βπ¦) / πβ¦(π β (π(π Nat π)π), π β ((2nd βπ₯)(Hom βπ)(2nd βπ¦)) β¦ ((πβ(2nd βπ¦))(β¨((1st
βπ)β(2nd βπ₯)), ((1st
βπ)β(2nd βπ¦))β©(compβπ)((1st βπ)β(2nd
βπ¦)))(((2nd βπ₯)(2nd βπ)(2nd βπ¦))βπ))))β©) |
df-curf 18169 | β’ curryF = (π β V, π β V β¦
β¦(1st βπ) / πβ¦β¦(2nd
βπ) / πβ¦β¨(π₯ β (Baseβπ) β¦ β¨(π¦ β (Baseβπ) β¦ (π₯(1st βπ)π¦)), (π¦ β (Baseβπ), π§ β (Baseβπ) β¦ (π β (π¦(Hom βπ)π§) β¦ (((Idβπ)βπ₯)(β¨π₯, π¦β©(2nd βπ)β¨π₯, π§β©)π)))β©), (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ (π β (π₯(Hom βπ)π¦) β¦ (π§ β (Baseβπ) β¦ (π(β¨π₯, π§β©(2nd βπ)β¨π¦, π§β©)((Idβπ)βπ§)))))β©) |
df-uncf 18170 | β’ uncurryF = (π β V, π β V β¦ (((πβ1) evalF (πβ2))
βfunc ((π βfunc ((πβ0)
1stF (πβ1))) β¨,β©F
((πβ0)
2ndF (πβ1))))) |
df-diag 18171 | β’ Ξfunc = (π β Cat, π β Cat β¦ (β¨π, πβ© curryF (π
1stF π))) |
chof 18203 | class
HomF |
cyon 18204 | class Yon |
df-hof 18205 | β’ HomF = (π β Cat β¦
β¨(Homf βπ), β¦(Baseβπ) / πβ¦(π₯ β (π Γ π), π¦ β (π Γ π) β¦ (π β ((1st βπ¦)(Hom βπ)(1st βπ₯)), π β ((2nd βπ₯)(Hom βπ)(2nd βπ¦)) β¦ (β β ((Hom βπ)βπ₯) β¦ ((π(π₯(compβπ)(2nd βπ¦))β)(β¨(1st βπ¦), (1st βπ₯)β©(compβπ)(2nd βπ¦))π))))β©) |
df-yon 18206 | β’ Yon = (π β Cat β¦ (β¨π, (oppCatβπ)β© curryF
(HomFβ(oppCatβπ)))) |
codu 18241 | class ODual |
df-odu 18242 | β’ ODual = (π€ β V β¦ (π€ sSet β¨(leβndx), β‘(leβπ€)β©)) |
cproset 18248 | class Proset |
cdrs 18249 | class Dirset |
df-proset 18250 | β’ Proset = {π β£ [(Baseβπ) / π][(leβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§))} |
df-drs 18251 | β’ Dirset = {π β Proset β£
[(Baseβπ) /
π][(leβπ) / π](π β β
β§ βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ§ β§ π¦ππ§))} |
cpo 18262 | class Poset |
cplt 18263 | class lt |
club 18264 | class lub |
cglb 18265 | class glb |
cjn 18266 | class join |
cmee 18267 | class meet |
df-poset 18268 | β’ Poset = {π β£ βπβπ(π = (Baseβπ) β§ π = (leβπ) β§ βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ₯) β π₯ = π¦) β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))} |
df-plt 18285 | β’ lt = (π β V β¦ ((leβπ) β I )) |
df-lub 18301 | β’ lub = (π β V β¦ ((π β π« (Baseβπ) β¦ (β©π₯ β (Baseβπ)(βπ¦ β π π¦(leβπ)π₯ β§ βπ§ β (Baseβπ)(βπ¦ β π π¦(leβπ)π§ β π₯(leβπ)π§)))) βΎ {π β£ β!π₯ β (Baseβπ)(βπ¦ β π π¦(leβπ)π₯ β§ βπ§ β (Baseβπ)(βπ¦ β π π¦(leβπ)π§ β π₯(leβπ)π§))})) |
df-glb 18302 | β’ glb = (π β V β¦ ((π β π« (Baseβπ) β¦ (β©π₯ β (Baseβπ)(βπ¦ β π π₯(leβπ)π¦ β§ βπ§ β (Baseβπ)(βπ¦ β π π§(leβπ)π¦ β π§(leβπ)π₯)))) βΎ {π β£ β!π₯ β (Baseβπ)(βπ¦ β π π₯(leβπ)π¦ β§ βπ§ β (Baseβπ)(βπ¦ β π π§(leβπ)π¦ β π§(leβπ)π₯))})) |
df-join 18303 | β’ join = (π β V β¦ {β¨β¨π₯, π¦β©, π§β© β£ {π₯, π¦} (lubβπ)π§}) |
df-meet 18304 | β’ meet = (π β V β¦ {β¨β¨π₯, π¦β©, π§β© β£ {π₯, π¦} (glbβπ)π§}) |
ctos 18371 | class Toset |
df-toset 18372 | β’ Toset = {π β Poset β£
[(Baseβπ) /
π][(leβπ) / π]βπ₯ β π βπ¦ β π (π₯ππ¦ β¨ π¦ππ₯)} |
cp0 18378 | class 0. |
cp1 18379 | class 1. |
df-p0 18380 | β’ 0. = (π β V β¦ ((glbβπ)β(Baseβπ))) |
df-p1 18381 | β’ 1. = (π β V β¦ ((lubβπ)β(Baseβπ))) |
clat 18386 | class Lat |
df-lat 18387 | β’ Lat = {π β Poset β£ (dom (joinβπ) = ((Baseβπ) Γ (Baseβπ)) β§ dom (meetβπ) = ((Baseβπ) Γ (Baseβπ)))} |
ccla 18453 | class CLat |
df-clat 18454 | β’ CLat = {π β Poset β£ (dom (lubβπ) = π« (Baseβπ) β§ dom (glbβπ) = π« (Baseβπ))} |
cdlat 18475 | class DLat |
df-dlat 18476 | β’ DLat = {π β Lat β£ [(Baseβπ) / π][(joinβπ) / π][(meetβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯π(π¦ππ§)) = ((π₯ππ¦)π(π₯ππ§))} |
cipo 18482 | class toInc |
df-ipo 18483 | β’ toInc = (π β V β¦ β¦{β¨π₯, π¦β© β£ ({π₯, π¦} β π β§ π₯ β π¦)} / πβ¦({β¨(Baseβndx),
πβ©,
β¨(TopSetβndx), (ordTopβπ)β©} βͺ {β¨(leβndx), πβ©, β¨(ocβndx),
(π₯ β π β¦ βͺ {π¦
β π β£ (π¦ β© π₯) = β
})β©})) |
cps 18519 | class PosetRel |
ctsr 18520 | class TosetRel |
df-ps 18521 | β’ PosetRel = {π β£ (Rel π β§ (π β π) β π β§ (π β© β‘π) = ( I βΎ βͺ
βͺ π))} |
df-tsr 18522 | β’ TosetRel = {π β PosetRel β£ (dom π Γ dom π) β (π βͺ β‘π)} |
cdir 18549 | class DirRel |
ctail 18550 | class tail |
df-dir 18551 | β’ DirRel = {π β£ ((Rel π β§ ( I βΎ βͺ βͺ π) β π) β§ ((π β π) β π β§ (βͺ βͺ π
Γ βͺ βͺ π) β (β‘π β π)))} |
df-tail 18552 | β’ tail = (π β DirRel β¦ (π₯ β βͺ βͺ π
β¦ (π β {π₯}))) |
cplusf 18560 | class
+π |
cmgm 18561 | class Mgm |
df-plusf 18562 | β’ +π = (π β V β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ (π₯(+gβπ)π¦))) |
df-mgm 18563 | β’ Mgm = {π β£ [(Baseβπ) / π][(+gβπ) / π]βπ₯ β π βπ¦ β π (π₯ππ¦) β π} |
cmgmhm 18613 | class MgmHom |
csubmgm 18614 | class SubMgm |
df-mgmhm 18615 | β’ MgmHom = (π β Mgm, π‘ β Mgm β¦ {π β ((Baseβπ‘) βm (Baseβπ )) β£ βπ₯ β (Baseβπ )βπ¦ β (Baseβπ )(πβ(π₯(+gβπ )π¦)) = ((πβπ₯)(+gβπ‘)(πβπ¦))}) |
df-submgm 18616 | β’ SubMgm = (π β Mgm β¦ {π‘ β π« (Baseβπ ) β£ βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ )π¦) β π‘}) |
csgrp 18641 | class Smgrp |
df-sgrp 18642 | β’ Smgrp = {π β Mgm β£ [(Baseβπ) / π][(+gβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§))} |
cmnd 18657 | class Mnd |
df-mnd 18658 | β’ Mnd = {π β Smgrp β£
[(Baseβπ) /
π][(+gβπ) / π]βπ β π βπ₯ β π ((πππ₯) = π₯ β§ (π₯ππ) = π₯)} |
cmhm 18701 | class MndHom |
csubmnd 18702 | class SubMnd |
df-mhm 18703 | β’ MndHom = (π β Mnd, π‘ β Mnd β¦ {π β ((Baseβπ‘) βm (Baseβπ )) β£ (βπ₯ β (Baseβπ )βπ¦ β (Baseβπ )(πβ(π₯(+gβπ )π¦)) = ((πβπ₯)(+gβπ‘)(πβπ¦)) β§ (πβ(0gβπ )) = (0gβπ‘))}) |
df-submnd 18704 | β’ SubMnd = (π β Mnd β¦ {π‘ β π« (Baseβπ ) β£
((0gβπ )
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ )π¦) β π‘)}) |
cfrmd 18762 | class freeMnd |
cvrmd 18763 | class
varFMnd |
df-frmd 18764 | β’ freeMnd = (π β V β¦ {β¨(Baseβndx),
Word πβ©,
β¨(+gβndx), ( ++ βΎ (Word π Γ Word π))β©}) |
df-vrmd 18765 | β’ varFMnd = (π β V β¦ (π β π β¦ β¨βπββ©)) |
cefmnd 18783 | class EndoFMnd |
df-efmnd 18784 | β’ EndoFMnd = (π₯ β V β¦ β¦(π₯ βm π₯) / πβ¦{β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(TopSetβndx),
(βtβ(π₯ Γ {π« π₯}))β©}) |
cgrp 18853 | class Grp |
cminusg 18854 | class invg |
csg 18855 | class -g |
df-grp 18856 | β’ Grp = {π β Mnd β£ βπ β (Baseβπ)βπ β (Baseβπ)(π(+gβπ)π) = (0gβπ)} |
df-minusg 18857 | β’ invg = (π β V β¦ (π₯ β (Baseβπ) β¦ (β©π€ β (Baseβπ)(π€(+gβπ)π₯) = (0gβπ)))) |
df-sbg 18858 | β’ -g = (π β V β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ (π₯(+gβπ)((invgβπ)βπ¦)))) |
cmg 18985 | class .g |
df-mulg 18986 | β’ .g = (π β V β¦ (π β β€, π₯ β (Baseβπ) β¦ if(π = 0, (0gβπ),
β¦seq1((+gβπ), (β Γ {π₯})) / π β¦if(0 < π, (π βπ), ((invgβπ)β(π β-π)))))) |
csubg 19037 | class SubGrp |
cnsg 19038 | class NrmSGrp |
cqg 19039 | class
~QG |
df-subg 19040 | β’ SubGrp = (π€ β Grp β¦ {π β π« (Baseβπ€) β£ (π€ βΎs π ) β Grp}) |
df-nsg 19041 | β’ NrmSGrp = (π€ β Grp β¦ {π β (SubGrpβπ€) β£ [(Baseβπ€) / π][(+gβπ€) / π]βπ₯ β π βπ¦ β π ((π₯ππ¦) β π β (π¦ππ₯) β π )}) |
df-eqg 19042 | β’ ~QG = (π β V, π β V β¦ {β¨π₯, π¦β© β£ ({π₯, π¦} β (Baseβπ) β§ (((invgβπ)βπ₯)(+gβπ)π¦) β π)}) |
cghm 19128 | class GrpHom |
df-ghm 19129 | β’ GrpHom = (π β Grp, π‘ β Grp β¦ {π β£ [(Baseβπ ) / π€](π:π€βΆ(Baseβπ‘) β§ βπ₯ β π€ βπ¦ β π€ (πβ(π₯(+gβπ )π¦)) = ((πβπ₯)(+gβπ‘)(πβπ¦)))}) |
cgim 19172 | class GrpIso |
cgic 19173 | class
βπ |
df-gim 19174 | β’ GrpIso = (π β Grp, π‘ β Grp β¦ {π β (π GrpHom π‘) β£ π:(Baseβπ )β1-1-ontoβ(Baseβπ‘)}) |
df-gic 19175 | β’ βπ = (β‘ GrpIso β (V β
1o)) |
cga 19195 | class GrpAct |
df-ga 19196 | β’ GrpAct = (π β Grp, π β V β¦
β¦(Baseβπ) / πβ¦{π β (π βm (π Γ π )) β£ βπ₯ β π (((0gβπ)ππ₯) = π₯ β§ βπ¦ β π βπ§ β π ((π¦(+gβπ)π§)ππ₯) = (π¦π(π§ππ₯)))}) |
ccntz 19221 | class Cntz |
ccntr 19222 | class Cntr |
df-cntz 19223 | β’ Cntz = (π β V β¦ (π β π« (Baseβπ) β¦ {π₯ β (Baseβπ) β£ βπ¦ β π (π₯(+gβπ)π¦) = (π¦(+gβπ)π₯)})) |
df-cntr 19224 | β’ Cntr = (π β V β¦ ((Cntzβπ)β(Baseβπ))) |
coppg 19251 | class
oppg |
df-oppg 19252 | β’ oppg = (π€ β V β¦ (π€ sSet β¨(+gβndx), tpos
(+gβπ€)β©)) |
csymg 19276 | class SymGrp |
df-symg 19277 | β’ SymGrp = (π₯ β V β¦ ((EndoFMndβπ₯) βΎs {β β£ β:π₯β1-1-ontoβπ₯})) |
cpmtr 19351 | class pmTrsp |
df-pmtr 19352 | β’ pmTrsp = (π β V β¦ (π β {π¦ β π« π β£ π¦ β 2o} β¦ (π§ β π β¦ if(π§ β π, βͺ (π β {π§}), π§)))) |
cpsgn 19399 | class pmSgn |
cevpm 19400 | class pmEven |
df-psgn 19401 | β’ pmSgn = (π β V β¦ (π₯ β {π β (Baseβ(SymGrpβπ)) β£ dom (π β I ) β Fin} β¦
(β©π βπ€ β Word ran
(pmTrspβπ)(π₯ = ((SymGrpβπ) Ξ£g
π€) β§ π = (-1β(β―βπ€)))))) |
df-evpm 19402 | β’ pmEven = (π β V β¦ (β‘(pmSgnβπ) β {1})) |
cod 19434 | class od |
cgex 19435 | class gEx |
cpgp 19436 | class pGrp |
cslw 19437 | class pSyl |
df-od 19438 | β’ od = (π β V β¦ (π₯ β (Baseβπ) β¦ β¦{π β β β£ (π(.gβπ)π₯) = (0gβπ)} / πβ¦if(π = β
, 0, inf(π, β, < )))) |
df-gex 19439 | β’ gEx = (π β V β¦ β¦{π β β β£
βπ₯ β
(Baseβπ)(π(.gβπ)π₯) = (0gβπ)} / πβ¦if(π = β
, 0, inf(π, β, < ))) |
df-pgp 19440 | β’ pGrp = {β¨π, πβ© β£ ((π β β β§ π β Grp) β§ βπ₯ β (Baseβπ)βπ β β0 ((odβπ)βπ₯) = (πβπ))} |
df-slw 19441 | β’ pSyl = (π β β, π β Grp β¦ {β β (SubGrpβπ) β£ βπ β (SubGrpβπ)((β β π β§ π pGrp (π βΎs π)) β β = π)}) |
clsm 19544 | class LSSum |
cpj1 19545 | class
proj1 |
df-lsm 19546 | β’ LSSum = (π€ β V β¦ (π‘ β π« (Baseβπ€), π’ β π« (Baseβπ€) β¦ ran (π₯ β π‘, π¦ β π’ β¦ (π₯(+gβπ€)π¦)))) |
df-pj1 19547 | β’ proj1 = (π€ β V β¦ (π‘ β π« (Baseβπ€), π’ β π« (Baseβπ€) β¦ (π§ β (π‘(LSSumβπ€)π’) β¦ (β©π₯ β π‘ βπ¦ β π’ π§ = (π₯(+gβπ€)π¦))))) |
cefg 19616 | class
~FG |
cfrgp 19617 | class freeGrp |
cvrgp 19618 | class
varFGrp |
df-efg 19619 | β’ ~FG = (π β V β¦ β© {π
β£ (π Er Word (π Γ 2o) β§
βπ₯ β Word
(π Γ
2o)βπ
β (0...(β―βπ₯))βπ¦ β π βπ§ β 2o π₯π(π₯ splice β¨π, π, β¨ββ¨π¦, π§β©β¨π¦, (1o β π§)β©ββ©β©))}) |
df-frgp 19620 | β’ freeGrp = (π β V β¦ ((freeMndβ(π Γ 2o))
/s ( ~FG βπ))) |
df-vrgp 19621 | β’ varFGrp = (π β V β¦ (π β π β¦ [β¨ββ¨π, β
β©ββ©](
~FG βπ))) |
ccmn 19690 | class CMnd |
cabl 19691 | class Abel |
df-cmn 19692 | β’ CMnd = {π β Mnd β£ βπ β (Baseβπ)βπ β (Baseβπ)(π(+gβπ)π) = (π(+gβπ)π)} |
df-abl 19693 | β’ Abel = (Grp β© CMnd) |
ccyg 19787 | class CycGrp |
df-cyg 19788 | β’ CycGrp = {π β Grp β£ βπ₯ β (Baseβπ)ran (π β β€ β¦ (π(.gβπ)π₯)) = (Baseβπ)} |
cdprd 19905 | class DProd |
cdpj 19906 | class dProj |
df-dprd 19907 | β’ DProd = (π β Grp, π β {β β£ (β:dom ββΆ(SubGrpβπ) β§ βπ₯ β dom β(βπ¦ β (dom β β {π₯})(ββπ₯) β ((Cntzβπ)β(ββπ¦)) β§ ((ββπ₯) β© ((mrClsβ(SubGrpβπ))ββͺ (β
β (dom β β
{π₯})))) =
{(0gβπ)}))} β¦ ran (π β {β β Xπ₯ β dom π (π βπ₯) β£ β finSupp (0gβπ)} β¦ (π Ξ£g π))) |
df-dpj 19908 | β’ dProj = (π β Grp, π β (dom DProd β {π}) β¦ (π β dom π β¦ ((π βπ)(proj1βπ)(π DProd (π βΎ (dom π β {π})))))) |
csimpg 20002 | class SimpGrp |
df-simpg 20003 | β’ SimpGrp = {π β Grp β£ (NrmSGrpβπ) β
2o} |
cmgp 20029 | class mulGrp |
df-mgp 20030 | β’ mulGrp = (π€ β V β¦ (π€ sSet β¨(+gβndx),
(.rβπ€)β©)) |
crng 20047 | class Rng |
df-rng 20048 | β’ Rng = {π β Abel β£ ((mulGrpβπ) β Smgrp β§
[(Baseβπ) /
π][(+gβπ) / π][(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))))} |
cur 20076 | class 1r |
df-ur 20077 | β’ 1r = (0g
β mulGrp) |
csrg 20081 | class SRing |
df-srg 20082 | β’ SRing = {π β CMnd β£ ((mulGrpβπ) β Mnd β§
[(Baseβπ) /
π][(+gβπ) / π][(.rβπ) / π‘][(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))} |
crg 20128 | class Ring |
ccrg 20129 | class CRing |
df-ring 20130 | β’ Ring = {π β Grp β£ ((mulGrpβπ) β Mnd β§
[(Baseβπ) /
π][(+gβπ) / π][(.rβπ) / π‘]βπ₯ β π βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))))} |
df-cring 20131 | β’ CRing = {π β Ring β£ (mulGrpβπ) β CMnd} |
coppr 20225 | class
oppr |
df-oppr 20226 | β’ oppr = (π β V β¦ (π sSet β¨(.rβndx), tpos
(.rβπ)β©)) |
cdsr 20246 | class
β₯r |
cui 20247 | class Unit |
cir 20248 | class Irred |
df-dvdsr 20249 | β’ β₯r = (π€ β V β¦ {β¨π₯, π¦β© β£ (π₯ β (Baseβπ€) β§ βπ§ β (Baseβπ€)(π§(.rβπ€)π₯) = π¦)}) |
df-unit 20250 | β’ Unit = (π€ β V β¦ (β‘((β₯rβπ€) β©
(β₯rβ(opprβπ€))) β {(1rβπ€)})) |
df-irred 20251 | β’ Irred = (π€ β V β¦
β¦((Baseβπ€) β (Unitβπ€)) / πβ¦{π§ β π β£ βπ₯ β π βπ¦ β π (π₯(.rβπ€)π¦) β π§}) |
cinvr 20279 | class invr |
df-invr 20280 | β’ invr = (π β V β¦
(invgβ((mulGrpβπ) βΎs (Unitβπ)))) |
cdvr 20292 | class /r |
df-dvr 20293 | β’ /r = (π β V β¦ (π₯ β (Baseβπ), π¦ β (Unitβπ) β¦ (π₯(.rβπ)((invrβπ)βπ¦)))) |
crpm 20324 | class RPrime |
df-rprm 20325 | β’ RPrime = (π€ β V β¦
β¦(Baseβπ€) / πβ¦{π β (π β ((Unitβπ€) βͺ {(0gβπ€)})) β£ βπ₯ β π βπ¦ β π [(β₯rβπ€) / π](ππ(π₯(.rβπ€)π¦) β (πππ₯ β¨ πππ¦))}) |
crnghm 20326 | class RngHom |
crngim 20327 | class RngIso |
df-rnghm 20328 | β’ RngHom = (π β Rng, π β Rng β¦
β¦(Baseβπ) / π£β¦β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦)))}) |
df-rngim 20329 | β’ RngIso = (π β V, π β V β¦ {π β (π RngHom π ) β£ β‘π β (π RngHom π)}) |
crh 20361 | class RingHom |
crs 20362 | class RingIso |
cric 20363 | class
βπ |
df-rhm 20364 | β’ RingHom = (π β Ring, π β Ring β¦
β¦(Baseβπ) / π£β¦β¦(Baseβπ ) / π€β¦{π β (π€ βm π£) β£ ((πβ(1rβπ)) = (1rβπ ) β§ βπ₯ β π£ βπ¦ β π£ ((πβ(π₯(+gβπ)π¦)) = ((πβπ₯)(+gβπ )(πβπ¦)) β§ (πβ(π₯(.rβπ)π¦)) = ((πβπ₯)(.rβπ )(πβπ¦))))}) |
df-rim 20365 | β’ RingIso = (π β V, π β V β¦ {π β (π RingHom π ) β£ β‘π β (π RingHom π)}) |
df-ric 20367 | β’ βπ = (β‘ RingIso β (V β
1o)) |
cnzr 20404 | class NzRing |
df-nzr 20405 | β’ NzRing = {π β Ring β£
(1rβπ)
β (0gβπ)} |
clring 20428 | class LRing |
df-lring 20429 | β’ LRing = {π β NzRing β£ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((π₯(+gβπ)π¦) = (1rβπ) β (π₯ β (Unitβπ) β¨ π¦ β (Unitβπ)))} |
csubrng 20435 | class SubRng |
df-subrng 20436 | β’ SubRng = (π€ β Rng β¦ {π β π« (Baseβπ€) β£ (π€ βΎs π ) β Rng}) |
csubrg 20459 | class SubRing |
crgspn 20460 | class RingSpan |
df-subrg 20461 | β’ SubRing = (π€ β Ring β¦ {π β π« (Baseβπ€) β£ ((π€ βΎs π ) β Ring β§
(1rβπ€)
β π )}) |
df-rgspn 20462 | β’ RingSpan = (π€ β V β¦ (π β π« (Baseβπ€) β¦ β© {π‘
β (SubRingβπ€)
β£ π β π‘})) |
crngc 20502 | class RngCat |
df-rngc 20503 | β’ RngCat = (π’ β V β¦ ((ExtStrCatβπ’) βΎcat ( RngHom
βΎ ((π’ β© Rng)
Γ (π’ β©
Rng))))) |
cringc 20531 | class RingCat |
df-ringc 20532 | β’ RingCat = (π’ β V β¦ ((ExtStrCatβπ’) βΎcat (
RingHom βΎ ((π’ β©
Ring) Γ (π’ β©
Ring))))) |
cdr 20577 | class DivRing |
cfield 20578 | class Field |
df-drng 20579 | β’ DivRing = {π β Ring β£ (Unitβπ) = ((Baseβπ) β
{(0gβπ)})} |
df-field 20580 | β’ Field = (DivRing β©
CRing) |
csdrg 20627 | class SubDRing |
df-sdrg 20628 | β’ SubDRing = (π€ β DivRing β¦ {π β (SubRingβπ€) β£ (π€ βΎs π ) β DivRing}) |
cabv 20649 | class AbsVal |
df-abv 20650 | β’ AbsVal = (π β Ring β¦ {π β ((0[,)+β) βm
(Baseβπ)) β£
βπ₯ β
(Baseβπ)(((πβπ₯) = 0 β π₯ = (0gβπ)) β§ βπ¦ β (Baseβπ)((πβ(π₯(.rβπ)π¦)) = ((πβπ₯) Β· (πβπ¦)) β§ (πβ(π₯(+gβπ)π¦)) β€ ((πβπ₯) + (πβπ¦))))}) |
cstf 20676 | class
*rf |
csr 20677 | class *-Ring |
df-staf 20678 | β’ *rf = (π β V β¦ (π₯ β (Baseβπ) β¦ ((*πβπ)βπ₯))) |
df-srng 20679 | β’ *-Ring = {π β£
[(*rfβπ) / π](π β (π RingHom (opprβπ)) β§ π = β‘π)} |
clmod 20696 | class LMod |
cscaf 20697 | class
Β·sf |
df-lmod 20698 | β’ LMod = {π β Grp β£ [(Baseβπ) / π£][(+gβπ) / π][(Scalarβπ) / π][(
Β·π βπ) / π ][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β Ring β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€)))} |
df-scaf 20699 | β’ Β·sf = (π β V β¦ (π₯ β
(Baseβ(Scalarβπ)), π¦ β (Baseβπ) β¦ (π₯( Β·π
βπ)π¦))) |
clss 20768 | class LSubSp |
df-lss 20769 | β’ LSubSp = (π€ β V β¦ {π β (π« (Baseβπ€) β {β
}) β£
βπ₯ β
(Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π }) |
clspn 20808 | class LSpan |
df-lsp 20809 | β’ LSpan = (π€ β V β¦ (π β π« (Baseβπ€) β¦ β© {π‘
β (LSubSpβπ€)
β£ π β π‘})) |
clmhm 20857 | class LMHom |
clmim 20858 | class LMIso |
clmic 20859 | class
βπ |
df-lmhm 20860 | β’ LMHom = (π β LMod, π‘ β LMod β¦ {π β (π GrpHom π‘) β£ [(Scalarβπ ) / π€]((Scalarβπ‘) = π€ β§ βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ )(πβ(π₯( Β·π
βπ )π¦)) = (π₯( Β·π
βπ‘)(πβπ¦)))}) |
df-lmim 20861 | β’ LMIso = (π β LMod, π‘ β LMod β¦ {π β (π LMHom π‘) β£ π:(Baseβπ )β1-1-ontoβ(Baseβπ‘)}) |
df-lmic 20862 | β’ βπ = (β‘ LMIso β (V β
1o)) |
clbs 20912 | class LBasis |
df-lbs 20913 | β’ LBasis = (π€ β V β¦ {π β π« (Baseβπ€) β£
[(LSpanβπ€) /
π][(Scalarβπ€) / π ]((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯})))}) |
clvec 20940 | class LVec |
df-lvec 20941 | β’ LVec = {π β LMod β£ (Scalarβπ) β
DivRing} |
csra 21009 | class subringAlg |
crglmod 21010 | class ringLMod |
df-sra 21011 | β’ subringAlg = (π€ β V β¦ (π β π« (Baseβπ€) β¦ (((π€ sSet β¨(Scalarβndx), (π€ βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ€)β©) sSet
β¨(Β·πβndx),
(.rβπ€)β©))) |
df-rgmod 21012 | β’ ringLMod = (π€ β V β¦ ((subringAlg βπ€)β(Baseβπ€))) |
clidl 21055 | class LIdeal |
crsp 21056 | class RSpan |
df-lidl 21057 | β’ LIdeal = (LSubSp β
ringLMod) |
df-rsp 21058 | β’ RSpan = (LSpan β
ringLMod) |
c2idl 21096 | class 2Ideal |
df-2idl 21097 | β’ 2Ideal = (π β V β¦ ((LIdealβπ) β©
(LIdealβ(opprβπ)))) |
clpidl 21163 | class LPIdeal |
clpir 21164 | class LPIR |
df-lpidl 21165 | β’ LPIdeal = (π€ β Ring β¦ βͺ π β (Baseβπ€){((RSpanβπ€)β{π})}) |
df-lpir 21166 | β’ LPIR = {π€ β Ring β£ (LIdealβπ€) = (LPIdealβπ€)} |
crlreg 21179 | class RLReg |
cdomn 21180 | class Domn |
cidom 21181 | class IDomn |
cpid 21182 | class PID |
df-rlreg 21183 | β’ RLReg = (π β V β¦ {π₯ β (Baseβπ) β£ βπ¦ β (Baseβπ)((π₯(.rβπ)π¦) = (0gβπ) β π¦ = (0gβπ))}) |
df-domn 21184 | β’ Domn = {π β NzRing β£
[(Baseβπ) /
π][(0gβπ) / π§]βπ₯ β π βπ¦ β π ((π₯(.rβπ)π¦) = π§ β (π₯ = π§ β¨ π¦ = π§))} |
df-idom 21185 | β’ IDomn = (CRing β© Domn) |
df-pid 21186 | β’ PID = (IDomn β© LPIR) |
cpsmet 21212 | class PsMet |
cxmet 21213 | class βMet |
cmet 21214 | class Met |
cbl 21215 | class ball |
cfbas 21216 | class fBas |
cfg 21217 | class filGen |
cmopn 21218 | class MetOpen |
cmetu 21219 | class metUnif |
df-psmet 21220 | β’ PsMet = (π₯ β V β¦ {π β (β*
βm (π₯
Γ π₯)) β£
βπ¦ β π₯ ((π¦ππ¦) = 0 β§ βπ§ β π₯ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) +π (π€ππ§)))}) |
df-xmet 21221 | β’ βMet = (π₯ β V β¦ {π β (β*
βm (π₯
Γ π₯)) β£
βπ¦ β π₯ βπ§ β π₯ (((π¦ππ§) = 0 β π¦ = π§) β§ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) +π (π€ππ§)))}) |
df-met 21222 | β’ Met = (π₯ β V β¦ {π β (β βm (π₯ Γ π₯)) β£ βπ¦ β π₯ βπ§ β π₯ (((π¦ππ§) = 0 β π¦ = π§) β§ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) + (π€ππ§)))}) |
df-bl 21223 | β’ ball = (π β V β¦ (π₯ β dom dom π, π§ β β* β¦ {π¦ β dom dom π β£ (π₯ππ¦) < π§})) |
df-mopn 21224 | β’ MetOpen = (π β βͺ ran
βMet β¦ (topGenβran (ballβπ))) |
df-fbas 21225 | β’ fBas = (π€ β V β¦ {π₯ β π« π« π€ β£ (π₯ β β
β§ β
β π₯ β§ βπ¦ β π₯ βπ§ β π₯ (π₯ β© π« (π¦ β© π§)) β β
)}) |
df-fg 21226 | β’ filGen = (π€ β V, π₯ β (fBasβπ€) β¦ {π¦ β π« π€ β£ (π₯ β© π« π¦) β β
}) |
df-metu 21227 | β’ metUnif = (π β βͺ ran
PsMet β¦ ((dom dom π
Γ dom dom π)filGenran
(π β
β+ β¦ (β‘π β (0[,)π))))) |
ccnfld 21228 | class
βfld |
df-cnfld 21229 | β’ βfld =
(({β¨(Baseβndx), ββ©, β¨(+gβndx), +
β©, β¨(.rβndx), Β· β©} βͺ
{β¨(*πβndx), ββ©}) βͺ
({β¨(TopSetβndx), (MetOpenβ(abs β β ))β©,
β¨(leβndx), β€ β©, β¨(distβndx), (abs β β
)β©} βͺ {β¨(UnifSetβndx), (metUnifβ(abs β β
))β©})) |
czring 21301 | class
β€ring |
df-zring 21302 | β’ β€ring =
(βfld βΎs β€) |
czrh 21354 | class β€RHom |
czlm 21355 | class β€Mod |
cchr 21356 | class chr |
czn 21357 | class
β€/nβ€ |
df-zrh 21358 | β’ β€RHom = (π β V β¦ βͺ (β€ring RingHom π)) |
df-zlm 21359 | β’ β€Mod = (π β V β¦ ((π sSet β¨(Scalarβndx),
β€ringβ©) sSet β¨( Β·π
βndx), (.gβπ)β©)) |
df-chr 21360 | β’ chr = (π β V β¦ ((odβπ)β(1rβπ))) |
df-zn 21361 | β’ β€/nβ€ = (π β β0
β¦ β¦β€ring / π§β¦β¦(π§ /s (π§ ~QG
((RSpanβπ§)β{π}))) / π β¦(π sSet β¨(leβndx),
β¦((β€RHomβπ ) βΎ if(π = 0, β€, (0..^π))) / πβ¦((π β β€ ) β β‘π)β©)) |
crefld 21465 | class
βfld |
df-refld 21466 | β’ βfld =
(βfld βΎs β) |
cphl 21485 | class PreHil |
cipf 21486 | class
Β·if |
df-phl 21487 | β’ PreHil = {π β LVec β£
[(Baseβπ) /
π£][(Β·πβπ) / β][(Scalarβπ) / π](π
β *-Ring β§ βπ₯ β π£ ((π¦ β π£
β¦ (π¦βπ₯)) β
(π LMHom (ringLModβπ)) β§ ((π₯βπ₯) = (0gβπ) β π₯ =
(0gβπ)) β§ βπ¦ β π£ ((*πβπ)β(π₯βπ¦)) = (π¦βπ₯)))} |
df-ipf 21488 | β’ Β·if = (π β V β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ (π₯(Β·πβπ)π¦))) |
cocv 21521 | class ocv |
ccss 21522 | class ClSubSp |
cthl 21523 | class toHL |
df-ocv 21524 | β’ ocv = (β β V β¦ (π β π« (Baseββ) β¦ {π₯ β (Baseββ) β£ βπ¦ β π (π₯(Β·πββ)π¦) = (0gβ(Scalarββ))})) |
df-css 21525 | β’ ClSubSp = (β β V β¦ {π β£ π = ((ocvββ)β((ocvββ)βπ ))}) |
df-thl 21526 | β’ toHL = (β β V β¦
((toIncβ(ClSubSpββ)) sSet β¨(ocβndx), (ocvββ)β©)) |
cpj 21563 | class proj |
chil 21564 | class Hil |
cobs 21565 | class OBasis |
df-pj 21566 | β’ proj = (β β V β¦ ((π₯ β (LSubSpββ) β¦ (π₯(proj1ββ)((ocvββ)βπ₯))) β© (V Γ ((Baseββ) βm
(Baseββ))))) |
df-hil 21567 | β’ Hil = {β β PreHil β£ dom (projββ) = (ClSubSpββ)} |
df-obs 21568 | β’ OBasis = (β β PreHil β¦ {π β π« (Baseββ) β£ (βπ₯ β π βπ¦ β π (π₯(Β·πββ)π¦) = if(π₯ = π¦, (1rβ(Scalarββ)),
(0gβ(Scalarββ))) β§ ((ocvββ)βπ) = {(0gββ)})}) |
cdsmm 21594 | class
βm |
df-dsmm 21595 | β’ βm = (π β V, π β V β¦ ((π Xsπ) βΎs {π β Xπ₯ β dom π(Baseβ(πβπ₯)) β£ {π₯ β dom π β£ (πβπ₯) β (0gβ(πβπ₯))} β Fin})) |
cfrlm 21609 | class freeLMod |
df-frlm 21610 | β’ freeLMod = (π β V, π β V β¦ (π βm (π Γ {(ringLModβπ)}))) |
cuvc 21645 | class unitVec |
df-uvc 21646 | β’ unitVec = (π β V, π β V β¦ (π β π β¦ (π β π β¦ if(π = π, (1rβπ), (0gβπ))))) |
clindf 21667 | class LIndF |
clinds 21668 | class LIndS |
df-lindf 21669 | β’ LIndF = {β¨π, π€β© β£ (π:dom πβΆ(Baseβπ€) β§ [(Scalarβπ€) / π ]βπ₯ β dom πβπ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π( Β·π
βπ€)(πβπ₯)) β ((LSpanβπ€)β(π β (dom π β {π₯}))))} |
df-linds 21670 | β’ LIndS = (π€ β V β¦ {π β π« (Baseβπ€) β£ ( I βΎ π ) LIndF π€}) |
casa 21713 | class AssAlg |
casp 21714 | class AlgSpan |
cascl 21715 | class algSc |
df-assa 21716 | β’ AssAlg = {π€ β (LMod β© Ring) β£
[(Scalarβπ€) /
π]βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦)))} |
df-asp 21717 | β’ AlgSpan = (π€ β AssAlg β¦ (π β π« (Baseβπ€) β¦ β© {π‘
β ((SubRingβπ€)
β© (LSubSpβπ€))
β£ π β π‘})) |
df-ascl 21718 | β’ algSc = (π€ β V β¦ (π₯ β (Baseβ(Scalarβπ€)) β¦ (π₯( Β·π
βπ€)(1rβπ€)))) |
cmps 21766 | class mPwSer |
cmvr 21767 | class mVar |
cmpl 21768 | class mPoly |
cltb 21769 | class
<bag |
copws 21770 | class ordPwSer |
df-psr 21771 | β’ mPwSer = (π β V, π β V β¦ β¦{β β (β0
βm π)
β£ (β‘β β β) β Fin} / πβ¦β¦((Baseβπ) βm π) / πβ¦({β¨(Baseβndx), πβ©,
β¨(+gβndx), ( βf (+gβπ) βΎ (π Γ π))β©, β¨(.rβndx),
(π β π, π β π β¦ (π β π β¦ (π Ξ£g (π₯ β {π¦ β π β£ π¦ βr β€ π} β¦ ((πβπ₯)(.rβπ)(πβ(π βf β π₯)))))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π₯ β (Baseβπ), π β π β¦ ((π Γ {π₯}) βf
(.rβπ)π))β©, β¨(TopSetβndx),
(βtβ(π
Γ {(TopOpenβπ)}))β©})) |
df-mvr 21772 | β’ mVar = (π β V, π β V β¦ (π₯ β π β¦ (π β {β β (β0
βm π)
β£ (β‘β β β) β Fin} β¦ if(π = (π¦ β π β¦ if(π¦ = π₯, 1, 0)), (1rβπ), (0gβπ))))) |
df-mpl 21773 | β’ mPoly = (π β V, π β V β¦ β¦(π mPwSer π) / π€β¦(π€ βΎs {π β (Baseβπ€) β£ π finSupp (0gβπ)})) |
df-ltbag 21774 | β’ <bag = (π β V, π β V β¦ {β¨π₯, π¦β© β£ ({π₯, π¦} β {β β (β0
βm π)
β£ (β‘β β β) β Fin} β§
βπ§ β π ((π₯βπ§) < (π¦βπ§) β§ βπ€ β π (π§ππ€ β (π₯βπ€) = (π¦βπ€))))}) |
df-opsr 21775 | β’ ordPwSer = (π β V, π β V β¦ (π β π« (π Γ π) β¦ β¦(π mPwSer π ) / πβ¦(π sSet β¨(leβndx), {β¨π₯, π¦β© β£ ({π₯, π¦} β (Baseβπ) β§ ([{β β (β0
βm π)
β£ (β‘β β β) β Fin} / π]βπ§ β π ((π₯βπ§)(ltβπ )(π¦βπ§) β§ βπ€ β π (π€(π <bag π)π§ β (π₯βπ€) = (π¦βπ€))) β¨ π₯ = π¦))}β©))) |
ces 21943 | class evalSub |
cevl 21944 | class eval |
df-evls 21945 | β’ evalSub = (π β V, π β CRing β¦
β¦(Baseβπ ) / πβ¦(π β (SubRingβπ ) β¦ β¦(π mPoly (π βΎs π)) / π€β¦(β©π β (π€ RingHom (π βs (π βm π)))((π β (algScβπ€)) = (π₯ β π β¦ ((π βm π) Γ {π₯})) β§ (π β (π mVar (π βΎs π))) = (π₯ β π β¦ (π β (π βm π) β¦ (πβπ₯))))))) |
df-evl 21946 | β’ eval = (π β V, π β V β¦ ((π evalSub π)β(Baseβπ))) |
cslv 21981 | class selectVars |
cmhp 21982 | class mHomP |
cpsd 21983 | class mPSDer |
cai 21984 | class AlgInd |
df-selv 21985 | β’ selectVars = (π β V, π β V β¦ (π β π« π β¦ (π β (Baseβ(π mPoly π)) β¦ β¦((π β π) mPoly π) / π’β¦β¦(π mPoly π’) / π‘β¦β¦(algScβπ‘) / πβ¦β¦(π β (algScβπ’)) / πβ¦((((π evalSub π‘)βran π)β(π β π))β(π₯ β π β¦ if(π₯ β π, ((π mVar π’)βπ₯), (πβ(((π β π) mVar π)βπ₯)))))))) |
df-mhp 21989 | β’ mHomP = (π β V, π β V β¦ (π β β0 β¦ {π β (Baseβ(π mPoly π)) β£ (π supp (0gβπ)) β {π β {β β (β0
βm π)
β£ (β‘β β β) β Fin} β£
((βfld βΎs β0)
Ξ£g π) = π}})) |
df-psd 22007 | β’ mPSDer = (π β V, π β V β¦ (π₯ β π β¦ (π β (Baseβ(π mPwSer π)) β¦ (π β {β β (β0
βm π)
β£ (β‘β β β) β Fin} β¦ (((πβπ₯) + 1)(.gβπ)(πβ(π βf + (π¦ β π β¦ if(π¦ = π₯, 1, 0))))))))) |
df-algind 22016 | β’ AlgInd = (π€ β V, π β π« (Baseβπ€) β¦ {π£ β π« (Baseβπ€) β£ Fun β‘(π β (Baseβ(π£ mPoly (π€ βΎs π))) β¦ ((((π£ evalSub π€)βπ)βπ)β( I βΎ π£)))}) |
cps1 22017 | class
PwSer1 |
cv1 22018 | class var1 |
cpl1 22019 | class
Poly1 |
cco1 22020 | class coe1 |
ctp1 22021 | class
toPoly1 |
df-psr1 22022 | β’ PwSer1 = (π β V β¦ ((1o ordPwSer
π)ββ
)) |
df-vr1 22023 | β’ var1 = (π β V β¦ ((1o mVar π)ββ
)) |
df-ply1 22024 | β’ Poly1 = (π β V β¦
((PwSer1βπ) βΎs
(Baseβ(1o mPoly π)))) |
df-coe1 22025 | β’ coe1 = (π β V β¦ (π β β0 β¦ (πβ(1o Γ
{π})))) |
df-toply1 22026 | β’ toPoly1 = (π β V β¦ (π β (β0
βm 1o) β¦ (πβ(πββ
)))) |
ces1 22154 | class
evalSub1 |
ce1 22155 | class
eval1 |
df-evls1 22156 | β’ evalSub1 = (π β V, π β π« (Baseβπ ) β¦
β¦(Baseβπ ) / πβ¦((π₯ β (π βm (π βm 1o)) β¦
(π₯ β (π¦ β π β¦ (1o Γ {π¦})))) β ((1o
evalSub π )βπ))) |
df-evl1 22157 | β’ eval1 = (π β V β¦
β¦(Baseβπ) / πβ¦((π₯ β (π βm (π βm 1o)) β¦
(π₯ β (π¦ β π β¦ (1o Γ {π¦})))) β (1o
eval π))) |
cmmul 22207 | class maMul |
df-mamu 22208 | β’ maMul = (π β V, π β V β¦
β¦(1st β(1st βπ)) / πβ¦β¦(2nd
β(1st βπ)) / πβ¦β¦(2nd
βπ) / πβ¦(π₯ β ((Baseβπ) βm (π Γ π)), π¦ β ((Baseβπ) βm (π Γ π)) β¦ (π β π, π β π β¦ (π Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π))))))) |
cmat 22229 | class Mat |
df-mat 22230 | β’ Mat = (π β Fin, π β V β¦ ((π freeLMod (π Γ π)) sSet β¨(.rβndx),
(π maMul β¨π, π, πβ©)β©)) |
cdmat 22312 | class DMat |
cscmat 22313 | class ScMat |
df-dmat 22314 | β’ DMat = (π β Fin, π β V β¦ {π β (Baseβ(π Mat π)) β£ βπ β π βπ β π (π β π β (πππ) = (0gβπ))}) |
df-scmat 22315 | β’ ScMat = (π β Fin, π β V β¦ β¦(π Mat π) / πβ¦{π β (Baseβπ) β£ βπ β (Baseβπ)π = (π( Β·π
βπ)(1rβπ))}) |
cmvmul 22364 | class maVecMul |
df-mvmul 22365 | β’ maVecMul = (π β V, π β V β¦
β¦(1st βπ) / πβ¦β¦(2nd
βπ) / πβ¦(π₯ β ((Baseβπ) βm (π Γ π)), π¦ β ((Baseβπ) βm π) β¦ (π β π β¦ (π Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(π¦βπ))))))) |
cmarrep 22380 | class matRRep |
cmatrepV 22381 | class matRepV |
df-marrep 22382 | β’ matRRep = (π β V, π β V β¦ (π β (Baseβ(π Mat π)), π β (Baseβπ) β¦ (π β π, π β π β¦ (π β π, π β π β¦ if(π = π, if(π = π, π , (0gβπ)), (πππ)))))) |
df-marepv 22383 | β’ matRepV = (π β V, π β V β¦ (π β (Baseβ(π Mat π)), π£ β ((Baseβπ) βm π) β¦ (π β π β¦ (π β π, π β π β¦ if(π = π, (π£βπ), (πππ)))))) |
csubma 22400 | class subMat |
df-subma 22401 | β’ subMat = (π β V, π β V β¦ (π β (Baseβ(π Mat π)) β¦ (π β π, π β π β¦ (π β (π β {π}), π β (π β {π}) β¦ (πππ))))) |
cmdat 22408 | class maDet |
df-mdet 22409 | β’ maDet = (π β V, π β V β¦ (π β (Baseβ(π Mat π)) β¦ (π Ξ£g (π β
(Baseβ(SymGrpβπ)) β¦ ((((β€RHomβπ) β (pmSgnβπ))βπ)(.rβπ)((mulGrpβπ) Ξ£g (π₯ β π β¦ ((πβπ₯)ππ₯)))))))) |
cmadu 22456 | class maAdju |
cminmar1 22457 | class minMatR1 |
df-madu 22458 | β’ maAdju = (π β V, π β V β¦ (π β (Baseβ(π Mat π)) β¦ (π β π, π β π β¦ ((π maDet π)β(π β π, π β π β¦ if(π = π, if(π = π, (1rβπ), (0gβπ)), (πππ))))))) |
df-minmar1 22459 | β’ minMatR1 = (π β V, π β V β¦ (π β (Baseβ(π Mat π)) β¦ (π β π, π β π β¦ (π β π, π β π β¦ if(π = π, if(π = π, (1rβπ), (0gβπ)), (πππ)))))) |
ccpmat 22527 | class ConstPolyMat |
cmat2pmat 22528 | class matToPolyMat |
ccpmat2mat 22529 | class cPolyMatToMat |
df-cpmat 22530 | β’ ConstPolyMat = (π β Fin, π β V β¦ {π β (Baseβ(π Mat (Poly1βπ))) β£ βπ β π βπ β π βπ β β
((coe1β(πππ))βπ) = (0gβπ)}) |
df-mat2pmat 22531 | β’ matToPolyMat = (π β Fin, π β V β¦ (π β (Baseβ(π Mat π)) β¦ (π₯ β π, π¦ β π β¦
((algScβ(Poly1βπ))β(π₯ππ¦))))) |
df-cpmat2mat 22532 | β’ cPolyMatToMat = (π β Fin, π β V β¦ (π β (π ConstPolyMat π) β¦ (π₯ β π, π¦ β π β¦ ((coe1β(π₯ππ¦))β0)))) |
cdecpmat 22586 | class decompPMat |
df-decpmat 22587 | β’ decompPMat = (π β V, π β β0 β¦ (π β dom dom π, π β dom dom π β¦ ((coe1β(πππ))βπ))) |
cpm2mp 22616 | class pMatToMatPoly |
df-pm2mp 22617 | β’ pMatToMatPoly = (π β Fin, π β V β¦ (π β (Baseβ(π Mat (Poly1βπ))) β¦
β¦(π Mat π) / πβ¦β¦(Poly1βπ) / πβ¦(π Ξ£g (π β β0 β¦ ((π decompPMat π)( Β·π βπ)(π(.gβ(mulGrpβπ))(var1βπ))))))) |
cchpmat 22650 | class CharPlyMat |
df-chpmat 22651 | β’ CharPlyMat = (π β Fin, π β V β¦ (π β (Baseβ(π Mat π)) β¦ ((π maDet (Poly1βπ))β(((var1βπ)(
Β·π β(π Mat (Poly1βπ)))(1rβ(π Mat
(Poly1βπ))))(-gβ(π Mat (Poly1βπ)))((π matToPolyMat π)βπ))))) |
ctop 22717 | class Top |
df-top 22718 | β’ Top = {π₯ β£ (βπ¦ β π« π₯βͺ π¦ β π₯ β§ βπ¦ β π₯ βπ§ β π₯ (π¦ β© π§) β π₯)} |
ctopon 22734 | class TopOn |
df-topon 22735 | β’ TopOn = (π β V β¦ {π β Top β£ π = βͺ π}) |
ctps 22756 | class TopSp |
df-topsp 22757 | β’ TopSp = {π β£ (TopOpenβπ) β (TopOnβ(Baseβπ))} |
ctb 22770 | class TopBases |
df-bases 22771 | β’ TopBases = {π₯ β£ βπ¦ β π₯ βπ§ β π₯ (π¦ β© π§) β βͺ (π₯ β© π« (π¦ β© π§))} |
ccld 22842 | class Clsd |
cnt 22843 | class int |
ccl 22844 | class cls |
df-cld 22845 | β’ Clsd = (π β Top β¦ {π₯ β π« βͺ π
β£ (βͺ π β π₯) β π}) |
df-ntr 22846 | β’ int = (π β Top β¦ (π₯ β π« βͺ π
β¦ βͺ (π β© π« π₯))) |
df-cls 22847 | β’ cls = (π β Top β¦ (π₯ β π« βͺ π
β¦ β© {π¦ β (Clsdβπ) β£ π₯ β π¦})) |
cnei 22923 | class nei |
df-nei 22924 | β’ nei = (π β Top β¦ (π₯ β π« βͺ π
β¦ {π¦ β π«
βͺ π β£ βπ β π (π₯ β π β§ π β π¦)})) |
clp 22960 | class limPt |
cperf 22961 | class Perf |
df-lp 22962 | β’ limPt = (π β Top β¦ (π₯ β π« βͺ π
β¦ {π¦ β£ π¦ β ((clsβπ)β(π₯ β {π¦}))})) |
df-perf 22963 | β’ Perf = {π β Top β£ ((limPtβπ)ββͺ π) =
βͺ π} |
ccn 23050 | class Cn |
ccnp 23051 | class CnP |
clm 23052 | class
βπ‘ |
df-cn 23053 | β’ Cn = (π β Top, π β Top β¦ {π β (βͺ π βm βͺ π)
β£ βπ¦ β
π (β‘π β π¦) β π}) |
df-cnp 23054 | β’ CnP = (π β Top, π β Top β¦ (π₯ β βͺ π β¦ {π β (βͺ π βm βͺ π)
β£ βπ¦ β
π ((πβπ₯) β π¦ β βπ β π (π₯ β π β§ (π β π) β π¦))})) |
df-lm 23055 | β’ βπ‘ =
(π β Top β¦
{β¨π, π₯β© β£ (π β (βͺ π
βpm β) β§ π₯ β βͺ π β§ βπ’ β π (π₯ β π’ β βπ¦ β ran β€β₯(π βΎ π¦):π¦βΆπ’))}) |
ct0 23132 | class Kol2 |
ct1 23133 | class Fre |
cha 23134 | class Haus |
creg 23135 | class Reg |
cnrm 23136 | class Nrm |
ccnrm 23137 | class CNrm |
cpnrm 23138 | class PNrm |
df-t0 23139 | β’ Kol2 = {π β Top β£ βπ₯ β βͺ πβπ¦ β βͺ π(βπ β π (π₯ β π β π¦ β π) β π₯ = π¦)} |
df-t1 23140 | β’ Fre = {π₯ β Top β£ βπ β βͺ π₯{π} β (Clsdβπ₯)} |
df-haus 23141 | β’ Haus = {π β Top β£ βπ₯ β βͺ πβπ¦ β βͺ π(π₯ β π¦ β βπ β π βπ β π (π₯ β π β§ π¦ β π β§ (π β© π) = β
))} |
df-reg 23142 | β’ Reg = {π β Top β£ βπ₯ β π βπ¦ β π₯ βπ§ β π (π¦ β π§ β§ ((clsβπ)βπ§) β π₯)} |
df-nrm 23143 | β’ Nrm = {π β Top β£ βπ₯ β π βπ¦ β ((Clsdβπ) β© π« π₯)βπ§ β π (π¦ β π§ β§ ((clsβπ)βπ§) β π₯)} |
df-cnrm 23144 | β’ CNrm = {π β Top β£ βπ₯ β π« βͺ π(π βΎt π₯) β Nrm} |
df-pnrm 23145 | β’ PNrm = {π β Nrm β£ (Clsdβπ) β ran (π β (π βm β) β¦ β© ran π)} |
ccmp 23212 | class Comp |
df-cmp 23213 | β’ Comp = {π₯ β Top β£ βπ¦ β π« π₯(βͺ
π₯ = βͺ π¦
β βπ§ β
(π« π¦ β©
Fin)βͺ π₯ = βͺ π§)} |
cconn 23237 | class Conn |
df-conn 23238 | β’ Conn = {π β Top β£ (π β© (Clsdβπ)) = {β
, βͺ
π}} |
c1stc 23263 | class
1stΟ |
c2ndc 23264 | class
2ndΟ |
df-1stc 23265 | β’ 1stΟ = {π β Top β£ βπ₯ β βͺ πβπ¦ β π« π(π¦ βΌ Ο β§ βπ§ β π (π₯ β π§ β π₯ β βͺ (π¦ β© π« π§)))} |
df-2ndc 23266 | β’ 2ndΟ = {π β£ βπ₯ β TopBases (π₯ βΌ Ο β§ (topGenβπ₯) = π)} |
clly 23290 | class Locally π΄ |
cnlly 23291 | class π-Locally π΄ |
df-lly 23292 | β’ Locally π΄ = {π β Top β£ βπ₯ β π βπ¦ β π₯ βπ’ β (π β© π« π₯)(π¦ β π’ β§ (π βΎt π’) β π΄)} |
df-nlly 23293 | β’ π-Locally π΄ = {π β Top β£ βπ₯ β π βπ¦ β π₯ βπ’ β (((neiβπ)β{π¦}) β© π« π₯)(π βΎt π’) β π΄} |
cref 23328 | class Ref |
cptfin 23329 | class PtFin |
clocfin 23330 | class LocFin |
df-ref 23331 | β’ Ref = {β¨π₯, π¦β© β£ (βͺ
π¦ = βͺ π₯
β§ βπ§ β
π₯ βπ€ β π¦ π§ β π€)} |
df-ptfin 23332 | β’ PtFin = {π₯ β£ βπ¦ β βͺ π₯{π§ β π₯ β£ π¦ β π§} β Fin} |
df-locfin 23333 | β’ LocFin = (π₯ β Top β¦ {π¦ β£ (βͺ π₯ = βͺ
π¦ β§ βπ β βͺ π₯βπ β π₯ (π β π β§ {π β π¦ β£ (π β© π) β β
} β
Fin))}) |
ckgen 23359 | class πGen |
df-kgen 23360 | β’ πGen = (π β Top β¦ {π₯ β π« βͺ π
β£ βπ β
π« βͺ π((π βΎt π) β Comp β (π₯ β© π) β (π βΎt π))}) |
ctx 23386 | class
Γt |
cxko 23387 | class
βko |
df-tx 23388 | β’ Γt = (π β V, π β V β¦ (topGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) |
df-xko 23389 | β’ βko = (π β Top, π β Top β¦
(topGenβ(fiβran (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£})))) |
ckq 23519 | class KQ |
df-kq 23520 | β’ KQ = (π β Top β¦ (π qTop (π₯ β βͺ π β¦ {π¦ β π β£ π₯ β π¦}))) |
chmeo 23579 | class Homeo |
chmph 23580 | class β |
df-hmeo 23581 | β’ Homeo = (π β Top, π β Top β¦ {π β (π Cn π) β£ β‘π β (π Cn π)}) |
df-hmph 23582 | β’ β = (β‘Homeo β (V β
1o)) |
cfil 23671 | class Fil |
df-fil 23672 | β’ Fil = (π§ β V β¦ {π β (fBasβπ§) β£ βπ₯ β π« π§((π β© π« π₯) β β
β π₯ β π)}) |
cufil 23725 | class UFil |
cufl 23726 | class UFL |
df-ufil 23727 | β’ UFil = (π β V β¦ {π β (Filβπ) β£ βπ₯ β π« π(π₯ β π β¨ (π β π₯) β π)}) |
df-ufl 23728 | β’ UFL = {π₯ β£ βπ β (Filβπ₯)βπ β (UFilβπ₯)π β π} |
cfm 23759 | class FilMap |
cflim 23760 | class fLim |
cflf 23761 | class fLimf |
cfcls 23762 | class fClus |
cfcf 23763 | class fClusf |
df-fm 23764 | β’ FilMap = (π₯ β V, π β V β¦ (π¦ β (fBasβdom π) β¦ (π₯filGenran (π‘ β π¦ β¦ (π β π‘))))) |
df-flim 23765 | β’ fLim = (π β Top, π β βͺ ran Fil
β¦ {π₯ β βͺ π
β£ (((neiβπ)β{π₯}) β π β§ π β π« βͺ π)}) |
df-flf 23766 | β’ fLimf = (π₯ β Top, π¦ β βͺ ran Fil
β¦ (π β (βͺ π₯
βm βͺ π¦) β¦ (π₯ fLim ((βͺ π₯ FilMap π)βπ¦)))) |
df-fcls 23767 | β’ fClus = (π β Top, π β βͺ ran Fil
β¦ if(βͺ π = βͺ π, β© π₯ β π ((clsβπ)βπ₯), β
)) |
df-fcf 23768 | β’ fClusf = (π β Top, π β βͺ ran Fil
β¦ (π β (βͺ π
βm βͺ π) β¦ (π fClus ((βͺ π FilMap π)βπ)))) |
ccnext 23885 | class CnExt |
df-cnext 23886 | β’ CnExt = (π β Top, π β Top β¦ (π β (βͺ π βpm βͺ π)
β¦ βͺ π₯ β ((clsβπ)βdom π)({π₯} Γ ((π fLimf (((neiβπ)β{π₯}) βΎt dom π))βπ)))) |
ctmd 23896 | class TopMnd |
ctgp 23897 | class TopGrp |
df-tmd 23898 | β’ TopMnd = {π β (Mnd β© TopSp) β£
[(TopOpenβπ) /
π](+πβπ) β ((π Γt π) Cn π)} |
df-tgp 23899 | β’ TopGrp = {π β (Grp β© TopMnd) β£
[(TopOpenβπ) /
π](invgβπ) β (π Cn π)} |
ctsu 23952 | class tsums |
df-tsms 23953 | β’ tsums = (π€ β V, π β V β¦ β¦(π«
dom π β© Fin) / π β¦(((TopOpenβπ€) fLimf (π filGenran (π§ β π β¦ {π¦ β π β£ π§ β π¦})))β(π¦ β π β¦ (π€ Ξ£g (π βΎ π¦))))) |
ctrg 23982 | class TopRing |
ctdrg 23983 | class TopDRing |
ctlm 23984 | class TopMod |
ctvc 23985 | class TopVec |
df-trg 23986 | β’ TopRing = {π β (TopGrp β© Ring) β£
(mulGrpβπ) β
TopMnd} |
df-tdrg 23987 | β’ TopDRing = {π β (TopRing β© DivRing) β£
((mulGrpβπ)
βΎs (Unitβπ)) β TopGrp} |
df-tlm 23988 | β’ TopMod = {π€ β (TopMnd β© LMod) β£
((Scalarβπ€) β
TopRing β§ ( Β·sf βπ€) β (((TopOpenβ(Scalarβπ€)) Γt
(TopOpenβπ€)) Cn
(TopOpenβπ€)))} |
df-tvc 23989 | β’ TopVec = {π€ β TopMod β£ (Scalarβπ€) β
TopDRing} |
cust 24026 | class UnifOn |
df-ust 24027 | β’ UnifOn = (π₯ β V β¦ {π’ β£ (π’ β π« (π₯ Γ π₯) β§ (π₯ Γ π₯) β π’ β§ βπ£ β π’ (βπ€ β π« (π₯ Γ π₯)(π£ β π€ β π€ β π’) β§ βπ€ β π’ (π£ β© π€) β π’ β§ (( I βΎ π₯) β π£ β§ β‘π£ β π’ β§ βπ€ β π’ (π€ β π€) β π£)))}) |
cutop 24057 | class unifTop |
df-utop 24058 | β’ unifTop = (π’ β βͺ ran
UnifOn β¦ {π β
π« dom βͺ π’ β£ βπ₯ β π βπ£ β π’ (π£ β {π₯}) β π}) |
cuss 24080 | class UnifSt |
cusp 24081 | class UnifSp |
ctus 24082 | class toUnifSp |
df-uss 24083 | β’ UnifSt = (π β V β¦ ((UnifSetβπ) βΎt
((Baseβπ) Γ
(Baseβπ)))) |
df-usp 24084 | β’ UnifSp = {π β£ ((UnifStβπ) β (UnifOnβ(Baseβπ)) β§ (TopOpenβπ) =
(unifTopβ(UnifStβπ)))} |
df-tus 24085 | β’ toUnifSp = (π’ β βͺ ran
UnifOn β¦ ({β¨(Baseβndx), dom βͺ π’β©,
β¨(UnifSetβndx), π’β©} sSet β¨(TopSetβndx),
(unifTopβπ’)β©)) |
cucn 24102 | class Cnu |
df-ucn 24103 | β’ Cnu = (π’ β βͺ ran
UnifOn, π£ β βͺ ran UnifOn β¦ {π β (dom βͺ
π£ βm dom
βͺ π’) β£ βπ β π£ βπ β π’ βπ₯ β dom βͺ
π’βπ¦ β dom βͺ
π’(π₯ππ¦ β (πβπ₯)π (πβπ¦))}) |
ccfilu 24113 | class
CauFilu |
df-cfilu 24114 | β’ CauFilu = (π’ β βͺ ran
UnifOn β¦ {π β
(fBasβdom βͺ π’) β£ βπ£ β π’ βπ β π (π Γ π) β π£}) |
ccusp 24124 | class CUnifSp |
df-cusp 24125 | β’ CUnifSp = {π€ β UnifSp β£ βπ β
(Filβ(Baseβπ€))(π β
(CauFiluβ(UnifStβπ€)) β ((TopOpenβπ€) fLim π) β β
)} |
cxms 24145 | class βMetSp |
cms 24146 | class MetSp |
ctms 24147 | class toMetSp |
df-xms 24148 | β’ βMetSp = {π β TopSp β£ (TopOpenβπ) =
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))} |
df-ms 24149 | β’ MetSp = {π β βMetSp β£
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) β
(Metβ(Baseβπ))} |
df-tms 24150 | β’ toMetSp = (π β βͺ ran
βMet β¦ ({β¨(Baseβndx), dom dom πβ©, β¨(distβndx), πβ©} sSet
β¨(TopSetβndx), (MetOpenβπ)β©)) |
cnm 24407 | class norm |
cngp 24408 | class NrmGrp |
ctng 24409 | class toNrmGrp |
cnrg 24410 | class NrmRing |
cnlm 24411 | class NrmMod |
cnvc 24412 | class NrmVec |
df-nm 24413 | β’ norm = (π€ β V β¦ (π₯ β (Baseβπ€) β¦ (π₯(distβπ€)(0gβπ€)))) |
df-ngp 24414 | β’ NrmGrp = {π β (Grp β© MetSp) β£
((normβπ) β
(-gβπ))
β (distβπ)} |
df-tng 24415 | β’ toNrmGrp = (π β V, π β V β¦ ((π sSet β¨(distβndx), (π β
(-gβπ))β©) sSet β¨(TopSetβndx),
(MetOpenβ(π β
(-gβπ)))β©)) |
df-nrg 24416 | β’ NrmRing = {π€ β NrmGrp β£ (normβπ€) β (AbsValβπ€)} |
df-nlm 24417 | β’ NrmMod = {π€ β (NrmGrp β© LMod) β£
[(Scalarβπ€) /
π](π β NrmRing β§
βπ₯ β
(Baseβπ)βπ¦ β (Baseβπ€)((normβπ€)β(π₯( Β·π
βπ€)π¦)) = (((normβπ)βπ₯) Β· ((normβπ€)βπ¦)))} |
df-nvc 24418 | β’ NrmVec = (NrmMod β© LVec) |
cnmo 24544 | class normOp |
cnghm 24545 | class NGHom |
cnmhm 24546 | class NMHom |
df-nmo 24547 | β’ normOp = (π β NrmGrp, π‘ β NrmGrp β¦ (π β (π GrpHom π‘) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ )((normβπ‘)β(πβπ₯)) β€ (π Β· ((normβπ )βπ₯))}, β*, <
))) |
df-nghm 24548 | β’ NGHom = (π β NrmGrp, π‘ β NrmGrp β¦ (β‘(π normOp π‘) β β)) |
df-nmhm 24549 | β’ NMHom = (π β NrmMod, π‘ β NrmMod β¦ ((π LMHom π‘) β© (π NGHom π‘))) |
cii 24717 | class II |
ccncf 24718 | class βcnβ |
df-ii 24719 | β’ II = (MetOpenβ((abs
β β ) βΎ ((0[,]1) Γ (0[,]1)))) |
df-cncf 24720 | β’ βcnβ = (π β π« β, π β π« β β¦ {π β (π βm π) β£ βπ₯ β π βπ β β+ βπ β β+
βπ¦ β π ((absβ(π₯ β π¦)) < π β (absβ((πβπ₯) β (πβπ¦))) < π)}) |
chtpy 24815 | class Htpy |
cphtpy 24816 | class PHtpy |
cphtpc 24817 | class
βph |
df-htpy 24818 | β’ Htpy = (π₯ β Top, π¦ β Top β¦ (π β (π₯ Cn π¦), π β (π₯ Cn π¦) β¦ {β β ((π₯ Γt II) Cn π¦) β£ βπ β βͺ π₯((π β0) = (πβπ ) β§ (π β1) = (πβπ ))})) |
df-phtpy 24819 | β’ PHtpy = (π₯ β Top β¦ (π β (II Cn π₯), π β (II Cn π₯) β¦ {β β (π(II Htpy π₯)π) β£ βπ β (0[,]1)((0βπ ) = (πβ0) β§ (1βπ ) = (πβ1))})) |
df-phtpc 24840 | β’ βph = (π₯ β Top β¦ {β¨π, πβ© β£ ({π, π} β (II Cn π₯) β§ (π(PHtpyβπ₯)π) β β
)}) |
cpco 24849 | class
*π |
comi 24850 | class
Ξ©1 |
comn 24851 | class
Ξ©π |
cpi1 24852 | class
Ο1 |
cpin 24853 | class
Οn |
df-pco 24854 | β’ *π = (π β Top β¦ (π β (II Cn π), π β (II Cn π) β¦ (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πβ(2 Β· π₯)), (πβ((2 Β· π₯) β 1)))))) |
df-om1 24855 | β’ Ξ©1 = (π β Top, π¦ β βͺ π β¦
{β¨(Baseβndx), {π
β (II Cn π) β£
((πβ0) = π¦ β§ (πβ1) = π¦)}β©, β¨(+gβndx),
(*πβπ)β©, β¨(TopSetβndx), (π βko
II)β©}) |
df-omn 24856 | β’ Ξ©π = (π β Top, π¦ β βͺ π β¦ seq0(((π₯ β V, π β V β¦
β¨((TopOpenβ(1st βπ₯)) Ξ©1 (2nd
βπ₯)), ((0[,]1)
Γ {(2nd βπ₯)})β©) β 1st ),
β¨{β¨(Baseβndx), βͺ πβ©, β¨(TopSetβndx), πβ©}, π¦β©)) |
df-pi1 24857 | β’ Ο1 = (π β Top, π¦ β βͺ π β¦ ((π Ξ©1 π¦) /s (
βphβπ))) |
df-pin 24858 | β’ Οn = (π β Top, π β βͺ π β¦ (π β β0 β¦
((1st β((π
Ξ©π π)βπ)) /s if(π = 0, {β¨π₯, π¦β© β£ βπ β (II Cn π)((πβ0) = π₯ β§ (πβ1) = π¦)}, (
βphβ(TopOpenβ(1st β((π Ξ©π
π)β(π β
1))))))))) |
cclm 24911 | class βMod |
df-clm 24912 | β’ βMod = {π€ β LMod β£
[(Scalarβπ€) /
π][(Baseβπ) / π](π = (βfld βΎs
π) β§ π β
(SubRingββfld))} |
ccvs 24972 | class βVec |
df-cvs 24973 | β’ βVec = (βMod β©
LVec) |
ccph 25016 | class βPreHil |
ctcph 25017 | class toβPreHil |
df-cph 25018 | β’ βPreHil = {π€ β (PreHil β© NrmMod) β£
[(Scalarβπ€) /
π][(Baseβπ) / π](π = (βfld βΎs
π) β§ (β β
(π β© (0[,)+β)))
β π β§
(normβπ€) = (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))))} |
df-tcph 25019 | β’ toβPreHil = (π€ β V β¦ (π€ toNrmGrp (π₯ β (Baseβπ€) β¦ (ββ(π₯(Β·πβπ€)π₯))))) |
ccfil 25102 | class CauFil |
ccau 25103 | class Cau |
ccmet 25104 | class CMet |
df-cfil 25105 | β’ CauFil = (π β βͺ ran
βMet β¦ {π
β (Filβdom dom π) β£ βπ₯ β β+ βπ¦ β π (π β (π¦ Γ π¦)) β (0[,)π₯)}) |
df-cau 25106 | β’ Cau = (π β βͺ ran
βMet β¦ {π
β (dom dom π
βpm β) β£ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβπ)π₯)}) |
df-cmet 25107 | β’ CMet = (π₯ β V β¦ {π β (Metβπ₯) β£ βπ β (CauFilβπ)((MetOpenβπ) fLim π) β β
}) |
ccms 25182 | class CMetSp |
cbn 25183 | class Ban |
chl 25184 | class βHil |
df-cms 25185 | β’ CMetSp = {π€ β MetSp β£
[(Baseβπ€) /
π]((distβπ€) βΎ (π Γ π)) β (CMetβπ)} |
df-bn 25186 | β’ Ban = {π€ β (NrmVec β© CMetSp) β£
(Scalarβπ€) β
CMetSp} |
df-hl 25187 | β’ βHil = (Ban β©
βPreHil) |
crrx 25233 | class β^ |
cehl 25234 | class
πΌhil |
df-rrx 25235 | β’ β^ = (π β V β¦
(toβPreHilβ(βfld freeLMod π))) |
df-ehl 25236 | β’ πΌhil = (π β β0 β¦
(β^β(1...π))) |
covol 25313 | class vol* |
cvol 25314 | class vol |
df-ovol 25315 | β’ vol* = (π₯ β π« β β¦ inf({π¦ β β*
β£ βπ β ((
β€ β© (β Γ β)) βm β)(π₯ β βͺ ran ((,) β π) β§ π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))}, β*, < )) |
df-vol 25316 | β’ vol = (vol* βΎ {π₯ β£ βπ¦ β (β‘vol* β β)(vol*βπ¦) = ((vol*β(π¦ β© π₯)) + (vol*β(π¦ β π₯)))}) |
cmbf 25465 | class MblFn |
citg1 25466 | class
β«1 |
citg2 25467 | class
β«2 |
cibl 25468 | class
πΏ1 |
citg 25469 | class β«π΄π΅ dπ₯ |
df-mbf 25470 | β’ MblFn = {π β (β βpm β)
β£ βπ₯ β
ran (,)((β‘(β β π) β π₯) β dom vol β§ (β‘(β β π) β π₯) β dom vol)} |
df-itg1 25471 | β’ β«1 = (π β {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§
(volβ(β‘π β (β β {0}))) β
β)} β¦ Ξ£π₯
β (ran π β
{0})(π₯ Β·
(volβ(β‘π β {π₯})))) |
df-itg2 25472 | β’ β«2 = (π β ((0[,]+β) βm
β) β¦ sup({π₯
β£ βπ β dom
β«1(π
βr β€ π
β§ π₯ =
(β«1βπ))}, β*, <
)) |
df-ibl 25473 | β’ πΏ1 = {π β MblFn β£ βπ β
(0...3)(β«2β(π₯ β β β¦
β¦(ββ((πβπ₯) / (iβπ))) / π¦β¦if((π₯ β dom π β§ 0 β€ π¦), π¦, 0))) β β} |
df-itg 25474 | β’ β«π΄π΅ dπ₯ = Ξ£π β (0...3)((iβπ) Β· (β«2β(π₯ β β β¦
β¦(ββ(π΅ / (iβπ))) / π¦β¦if((π₯ β π΄ β§ 0 β€ π¦), π¦, 0)))) |
c0p 25520 | class
0π |
df-0p 25521 | β’ 0π = (β
Γ {0}) |
cdit 25697 | class β¨[π΄ β π΅]πΆ dπ₯ |
df-ditg 25698 | β’ β¨[π΄ β π΅]πΆ dπ₯ = if(π΄ β€ π΅, β«(π΄(,)π΅)πΆ dπ₯, -β«(π΅(,)π΄)πΆ dπ₯) |
climc 25713 | class
limβ |
cdv 25714 | class D |
cdvn 25715 | class
Dπ |
ccpn 25716 | class
πCπ |
df-limc 25717 | β’ limβ = (π β (β βpm
β), π₯ β β
β¦ {π¦ β£
[(TopOpenββfld) / π](π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯)}) |
df-dv 25718 | β’ D = (π β π« β, π β (β βpm π ) β¦ βͺ π₯ β
((intβ((TopOpenββfld) βΎt π ))βdom π)({π₯} Γ ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯))) |
df-dvn 25719 | β’ Dπ = (π β π« β, π β (β βpm π ) β¦ seq0(((π₯ β V β¦ (π D π₯)) β 1st ),
(β0 Γ {π}))) |
df-cpn 25720 | β’ πCπ = (π β π« β
β¦ (π₯ β
β0 β¦ {π β (β βpm π ) β£ ((π Dπ π)βπ₯) β (dom πβcnββ)})) |
cmdg 25908 | class mDeg |
cdg1 25909 | class
deg1 |
df-mdeg 25910 | β’ mDeg = (π β V, π β V β¦ (π β (Baseβ(π mPoly π)) β¦ sup(ran (β β (π supp (0gβπ)) β¦ (βfld
Ξ£g β)), β*, <
))) |
df-deg1 25911 | β’ deg1 = (π β V β¦ (1o mDeg π)) |
cmn1 25983 | class
Monic1p |
cuc1p 25984 | class
Unic1p |
cq1p 25985 | class
quot1p |
cr1p 25986 | class
rem1p |
cig1p 25987 | class
idlGen1p |
df-mon1 25988 | β’ Monic1p = (π β V β¦ {π β
(Baseβ(Poly1βπ)) β£ (π β
(0gβ(Poly1βπ)) β§ ((coe1βπ)β(( deg1
βπ)βπ)) = (1rβπ))}) |
df-uc1p 25989 | β’ Unic1p = (π β V β¦ {π β
(Baseβ(Poly1βπ)) β£ (π β
(0gβ(Poly1βπ)) β§ ((coe1βπ)β(( deg1
βπ)βπ)) β (Unitβπ))}) |
df-q1p 25990 | β’ quot1p = (π β V β¦
β¦(Poly1βπ) / πβ¦β¦(Baseβπ) / πβ¦(π β π, π β π β¦ (β©π β π (( deg1 βπ)β(π(-gβπ)(π(.rβπ)π))) < (( deg1 βπ)βπ)))) |
df-r1p 25991 | β’ rem1p = (π β V β¦
β¦(Baseβ(Poly1βπ)) / πβ¦(π β π, π β π β¦ (π(-gβ(Poly1βπ))((π(quot1pβπ)π)(.rβ(Poly1βπ))π)))) |
df-ig1p 25992 | β’ idlGen1p = (π β V β¦ (π β
(LIdealβ(Poly1βπ)) β¦ if(π =
{(0gβ(Poly1βπ))},
(0gβ(Poly1βπ)), (β©π β (π β© (Monic1pβπ))(( deg1
βπ)βπ) = inf((( deg1
βπ) β (π β
{(0gβ(Poly1βπ))})), β, < ))))) |
cply 26038 | class Poly |
cidp 26039 | class
Xp |
ccoe 26040 | class coeff |
cdgr 26041 | class deg |
df-ply 26042 | β’ Poly = (π₯ β π« β β¦ {π β£ βπ β β0
βπ β ((π₯ βͺ {0}) βm
β0)π =
(π§ β β β¦
Ξ£π β (0...π)((πβπ) Β· (π§βπ)))}) |
df-idp 26043 | β’ Xp = ( I βΎ
β) |
df-coe 26044 | β’ coeff = (π β (Polyββ) β¦
(β©π β
(β βm β0)βπ β β0 ((π β
(β€β₯β(π + 1))) = {0} β§ π = (π§ β β β¦ Ξ£π β (0...π)((πβπ) Β· (π§βπ)))))) |
df-dgr 26045 | β’ deg = (π β (Polyββ) β¦
sup((β‘(coeffβπ) β (β β {0})),
β0, < )) |
cquot 26144 | class quot |
df-quot 26145 | β’ quot = (π β (Polyββ), π β ((Polyββ)
β {0π}) β¦ (β©π β (Polyββ)[(π βf β
(π βf
Β· π)) / π](π = 0π β¨
(degβπ) <
(degβπ)))) |
caa 26168 | class πΈ |
df-aa 26169 | β’ πΈ = βͺ π β ((Polyββ€) β
{0π})(β‘π β {0}) |
ctayl 26206 | class Tayl |
cana 26207 | class Ana |
df-tayl 26208 | β’ Tayl = (π β {β, β}, π β (β
βpm π )
β¦ (π β
(β0 βͺ {+β}), π β β©
π β ((0[,]π) β© β€)dom ((π Dπ π)βπ) β¦ βͺ
π₯ β β ({π₯} Γ (βfld
tsums (π β ((0[,]π) β© β€) β¦
(((((π
Dπ π)βπ)βπ) / (!βπ)) Β· ((π₯ β π)βπ))))))) |
df-ana 26209 | β’ Ana = (π β {β, β} β¦ {π β (β
βpm π )
β£ βπ₯ β
dom π π₯ β
((intβ((TopOpenββfld) βΎt π ))βdom (π β© (+β(π Tayl π)π₯)))}) |
culm 26229 | class
βπ’ |
df-ulm 26230 | β’ βπ’ = (π β V β¦ {β¨π, π¦β© β£ βπ β β€ (π:(β€β₯βπ)βΆ(β
βm π ) β§
π¦:π βΆβ β§ βπ₯ β β+
βπ β
(β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πβπ)βπ§) β (π¦βπ§))) < π₯)}) |
clog 26405 | class log |
ccxp 26406 | class
βπ |
df-log 26407 | β’ log = β‘(exp βΎ (β‘β β
(-Ο(,]Ο))) |
df-cxp 26408 | β’ βπ = (π₯ β β, π¦ β β β¦ if(π₯ = 0, if(π¦ = 0, 1, 0), (expβ(π¦ Β· (logβπ₯))))) |
clogb 26612 | class
logb |
df-logb 26613 | β’ logb = (π₯ β (β β {0, 1}), π¦ β (β β {0})
β¦ ((logβπ¦) /
(logβπ₯))) |
casin 26710 | class arcsin |
cacos 26711 | class arccos |
catan 26712 | class arctan |
df-asin 26713 | β’ arcsin = (π₯ β β β¦ (-i Β·
(logβ((i Β· π₯)
+ (ββ(1 β (π₯β2))))))) |
df-acos 26714 | β’ arccos = (π₯ β β β¦ ((Ο / 2) β
(arcsinβπ₯))) |
df-atan 26715 | β’ arctan = (π₯ β (β β {-i, i}) β¦ ((i
/ 2) Β· ((logβ(1 β (i Β· π₯))) β (logβ(1 + (i Β· π₯)))))) |
carea 26803 | class area |
df-area 26804 | β’ area = (π β {π‘ β π« (β Γ β)
β£ (βπ₯ β
β (π‘ β {π₯}) β (β‘vol β β) β§ (π₯ β β β¦
(volβ(π‘ β
{π₯}))) β
πΏ1)} β¦ β«β(volβ(π β {π₯})) dπ₯) |
cem 26840 | class Ξ³ |
df-em 26841 | β’ Ξ³ = Ξ£π β β ((1 / π) β (logβ(1 + (1 /
π)))) |
czeta 26861 | class ΞΆ |
df-zeta 26862 | β’ ΞΆ = (β©π β ((β β {1})βcnββ)βπ β (β β {1})((1 β
(2βπ(1 β π ))) Β· (πβπ )) = Ξ£π β β0 (Ξ£π β (0...π)(((-1βπ) Β· (πCπ)) Β· ((π + 1)βππ )) / (2β(π + 1)))) |
clgam 26864 | class log Ξ |
cgam 26865 | class Ξ |
cigam 26866 | class 1/Ξ |
df-lgam 26867 | β’ log Ξ = (π§ β (β β (β€ β
β)) β¦ (Ξ£π
β β ((π§ Β·
(logβ((π + 1) / π))) β (logβ((π§ / π) + 1))) β (logβπ§))) |
df-gam 26868 | β’ Ξ = (exp β log
Ξ) |
df-igam 26869 | β’ 1/Ξ = (π₯ β β β¦ if(π₯ β (β€ β β), 0, (1 /
(Ξβπ₯)))) |
ccht 26939 | class ΞΈ |
cvma 26940 | class Ξ |
cchp 26941 | class Ο |
cppi 26942 | class Ο |
cmu 26943 | class ΞΌ |
csgm 26944 | class Ο |
df-cht 26945 | β’ ΞΈ = (π₯ β β β¦ Ξ£π β ((0[,]π₯) β© β)(logβπ)) |
df-vma 26946 | β’ Ξ = (π₯ β β β¦ β¦{π β β β£ π β₯ π₯} / π β¦if((β―βπ ) = 1, (logββͺ π ),
0)) |
df-chp 26947 | β’ Ο = (π₯ β β β¦ Ξ£π β
(1...(ββπ₯))(Ξβπ)) |
df-ppi 26948 | β’ Ο = (π₯ β β β¦
(β―β((0[,]π₯)
β© β))) |
df-mu 26949 | β’ ΞΌ = (π₯ β β β¦ if(βπ β β (πβ2) β₯ π₯, 0,
(-1β(β―β{π
β β β£ π
β₯ π₯})))) |
df-sgm 26950 | β’ Ο = (π₯ β β, π β β β¦ Ξ£π β {π β β β£ π β₯ π} (πβππ₯)) |
cdchr 27081 | class DChr |
df-dchr 27082 | β’ DChr = (π β β β¦
β¦(β€/nβ€βπ) / π§β¦β¦{π₯ β ((mulGrpβπ§) MndHom
(mulGrpββfld)) β£ (((Baseβπ§) β (Unitβπ§)) Γ {0}) β π₯} / πβ¦{β¨(Baseβndx), πβ©,
β¨(+gβndx), ( βf Β· βΎ (π Γ π))β©}) |
clgs 27143 | class
/L |
df-lgs 27144 | β’ /L = (π β β€, π β β€ β¦ if(π = 0, if((πβ2) = 1, 1, 0), (if((π < 0 β§ π < 0), -1, 1) Β· (seq1( Β· ,
(π β β β¦
if(π β β,
(if(π = 2, if(2 β₯
π, 0, if((π mod 8) β {1, 7}, 1, -1)),
((((πβ((π β 1) / 2)) + 1) mod π) β 1))β(π pCnt π)), 1)))β(absβπ))))) |
csur 27489 | class No
|
cslt 27490 | class <s |
cbday 27491 | class bday
|
df-no 27492 | β’ No
= {π β£
βπ β On π:πβΆ{1o,
2o}} |
df-slt 27493 | β’ <s = {β¨π, πβ© β£ ((π β No
β§ π β No ) β§ βπ₯ β On (βπ¦ β π₯ (πβπ¦) = (πβπ¦) β§ (πβπ₯){β¨1o, β
β©,
β¨1o, 2oβ©, β¨β
, 2oβ©}
(πβπ₯)))} |
df-bday 27494 | β’ bday = (π₯ β
No β¦ dom π₯) |
csle 27593 | class β€s |
df-sle 27594 | β’ β€s = (( No
Γ No ) β β‘ <s ) |
csslt 27629 | class <<s |
df-sslt 27630 | β’ <<s = {β¨π, πβ© β£ (π β No
β§ π β No β§ βπ₯ β π βπ¦ β π π₯ <s π¦)} |
cscut 27631 | class |s |
df-scut 27632 | β’ |s = (π β π« No
, π β (
<<s β {π})
β¦ (β©π₯
β {π¦ β No β£ (π <<s {π¦} β§ {π¦} <<s π)} ( bday
βπ₯) = β© ( bday β {π¦ β
No β£ (π
<<s {π¦} β§ {π¦} <<s π)}))) |
c0s 27671 | class 0s |
c1s 27672 | class 1s |
df-0s 27673 | β’ 0s = (β
|s
β
) |
df-1s 27674 | β’ 1s = ({
0s } |s β
) |
cmade 27685 | class M |
cold 27686 | class O |
cnew 27687 | class N |
cleft 27688 | class L |
cright 27689 | class R |
df-made 27690 | β’ M = recs((π β V β¦ ( |s β (π«
βͺ ran π Γ π« βͺ ran π)))) |
df-old 27691 | β’ O = (π₯ β On β¦ βͺ ( M β π₯)) |
df-new 27692 | β’ N = (π₯ β On β¦ (( M βπ₯) β ( O βπ₯))) |
df-left 27693 | β’ L = (π₯ β No
β¦ {π¦ β ( O
β( bday βπ₯)) β£ π¦ <s π₯}) |
df-right 27694 | β’ R = (π₯ β No
β¦ {π¦ β ( O
β( bday βπ₯)) β£ π₯ <s π¦}) |
cnorec 27770 | class norec (πΉ) |
df-norec 27771 | β’ norec (πΉ) = frecs({β¨π₯, π¦β© β£ π₯ β (( L βπ¦) βͺ ( R βπ¦))}, No , πΉ) |
cnorec2 27781 | class norec2 (πΉ) |
df-norec2 27782 | β’ norec2 (πΉ) = frecs({β¨π, πβ© β£ (π β ( No
Γ No ) β§ π β ( No
Γ No ) β§ (((1st βπ){β¨π, πβ© β£ π β (( L βπ) βͺ ( R βπ))} (1st βπ) β¨ (1st βπ) = (1st βπ)) β§ ((2nd
βπ){β¨π, πβ© β£ π β (( L βπ) βͺ ( R βπ))} (2nd βπ) β¨ (2nd βπ) = (2nd βπ)) β§ π β π))}, ( No
Γ No ), πΉ) |
cadds 27792 | class +s |
df-adds 27793 | β’ +s = norec2 ((π₯ β V, π β V β¦ (({π¦ β£ βπ β ( L β(1st
βπ₯))π¦ = (ππ(2nd βπ₯))} βͺ {π§ β£ βπ β ( L β(2nd
βπ₯))π§ = ((1st βπ₯)ππ)}) |s ({π¦ β£ βπ β ( R β(1st
βπ₯))π¦ = (ππ(2nd βπ₯))} βͺ {π§ β£ βπ β ( R β(2nd
βπ₯))π§ = ((1st βπ₯)ππ)})))) |
cnegs 27848 | class -us |
csubs 27849 | class -s |
df-negs 27850 | β’ -us = norec ((π₯ β V, π β V β¦ ((π β ( R βπ₯)) |s (π β ( L βπ₯))))) |
df-subs 27851 | β’ -s = (π₯ β No ,
π¦ β No β¦ (π₯ +s ( -us βπ¦))) |
cmuls 27922 | class
Β·s |
df-muls 27923 | β’ Β·s = norec2 ((π§ β V, π β V β¦
β¦(1st βπ§) / π₯β¦β¦(2nd
βπ§) / π¦β¦(({π β£ βπ β ( L βπ₯)βπ β ( L βπ¦)π = (((πππ¦) +s (π₯ππ)) -s (πππ))} βͺ {π β£ βπ β ( R βπ₯)βπ β ( R βπ¦)π = (((πππ¦) +s (π₯ππ )) -s (πππ ))}) |s ({π β£ βπ‘ β ( L βπ₯)βπ’ β ( R βπ¦)π = (((π‘ππ¦) +s (π₯ππ’)) -s (π‘ππ’))} βͺ {π β£ βπ£ β ( R βπ₯)βπ€ β ( L βπ¦)π = (((π£ππ¦) +s (π₯ππ€)) -s (π£ππ€))})))) |
cdivs 28003 | class
/su |
df-divs 28004 | β’ /su = (π₯ β No ,
π¦ β ( No β { 0s }) β¦
(β©π§ β
No (π¦ Β·s π§) = π₯)) |
cabss 28047 | class abss |
df-abss 28048 | β’ abss = (π₯ β No
β¦ if( 0s β€s π₯, π₯, ( -us βπ₯))) |
cons 28060 | class Ons |
df-ons 28061 | β’ Ons = {π₯ β No
β£ ( R βπ₯) =
β
} |
cseqs 28072 | class seqsπ( + , πΉ) |
df-seqs 28073 | β’ seqsπ( + , πΉ) = (rec((π₯ β V, π¦ β V β¦ β¨(π₯ +s 1s ), (π¦ + (πΉβ(π₯ +s 1s )))β©),
β¨π, (πΉβπ)β©) β Ο) |
cnn0s 28101 | class
β0s |
cnns 28102 | class
βs |
df-n0s 28103 | β’ β0s = (rec((π₯ β V β¦ (π₯ +s 1s )),
0s ) β Ο) |
df-nns 28104 | β’ βs = (β0s
β { 0s }) |
creno 28137 | class
βs |
df-reno 28138 | β’ βs = {π₯ β No
β£ (βπ β
βs (( -us βπ) <s π₯ β§ π₯ <s π) β§ π₯ = ({π¦ β£ βπ β βs π¦ = (π₯ -s ( 1s
/su π))} |s
{π¦ β£ βπ β βs
π¦ = (π₯ +s ( 1s
/su π))}))} |
cstrkg 28147 | class TarskiG |
cstrkgc 28148 | class
TarskiGC |
cstrkgb 28149 | class
TarskiGB |
cstrkgcb 28150 | class
TarskiGCB |
cstrkgld 28151 | class
DimTarskiGβ₯ |
cstrkge 28152 | class
TarskiGE |
citv 28153 | class Itv |
clng 28154 | class LineG |
df-itv 28155 | β’ Itv = Slot ;16 |
df-lng 28156 | β’ LineG = Slot ;17 |
df-trkgc 28168 | β’ TarskiGC = {π β£ [(Baseβπ) / π][(distβπ) / π](βπ₯ β π βπ¦ β π (π₯ππ¦) = (π¦ππ₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦))} |
df-trkgb 28169 | β’ TarskiGB = {π β£ [(Baseβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π (π¦ β (π₯ππ₯) β π₯ = π¦) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ§) β§ π£ β (π¦ππ§)) β βπ β π (π β (π’ππ¦) β§ π β (π£ππ₯))) β§ βπ β π« πβπ‘ β π« π(βπ β π βπ₯ β π βπ¦ β π‘ π₯ β (πππ¦) β βπ β π βπ₯ β π βπ¦ β π‘ π β (π₯ππ¦)))} |
df-trkgcb 28170 | β’ TarskiGCB = {π β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ β π βπ β π βπ β π βπ£ β π (((π₯ β π¦ β§ π¦ β (π₯ππ§) β§ π β (πππ)) β§ (((π₯ππ¦) = (πππ) β§ (π¦ππ§) = (πππ)) β§ ((π₯ππ’) = (πππ£) β§ (π¦ππ’) = (πππ£)))) β (π§ππ’) = (πππ£)) β§ βπ₯ β π βπ¦ β π βπ β π βπ β π βπ§ β π (π¦ β (π₯ππ§) β§ (π¦ππ§) = (πππ)))} |
df-trkge 28171 | β’ TarskiGE = {π β£ [(Baseβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((π’ β (π₯ππ£) β§ π’ β (π¦ππ§) β§ π₯ β π’) β βπ β π βπ β π (π¦ β (π₯ππ) β§ π§ β (π₯ππ) β§ π£ β (πππ)))} |
df-trkgld 28172 | β’ DimTarskiGβ₯ = {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ(π:(1..^π)β1-1βπ β§ βπ₯ β π βπ¦ β π βπ§ β π (βπ β (2..^π)(((πβ1)ππ₯) = ((πβπ)ππ₯) β§ ((πβ1)ππ¦) = ((πβπ)ππ¦) β§ ((πβ1)ππ§) = ((πβπ)ππ§)) β§ Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))} |
df-trkg 28173 | β’ TarskiG = ((TarskiGC β©
TarskiGB) β© (TarskiGCB β© {π β£ [(Baseβπ) / π][(Itvβπ) / π](LineGβπ) = (π₯ β π, π¦ β (π β {π₯}) β¦ {π§ β π β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})})) |
ccgrg 28230 | class cgrG |
df-cgrg 28231 | β’ cgrG = (π β V β¦ {β¨π, πβ© β£ ((π β ((Baseβπ) βpm β) β§ π β ((Baseβπ) βpm β))
β§ (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ))))}) |
cismt 28252 | class Ismt |
df-ismt 28253 | β’ Ismt = (π β V, β β V β¦ {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseββ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π))}) |
cleg 28302 | class β€G |
df-leg 28303 | β’ β€G = (π β V β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§)))}) |
chlg 28320 | class hlG |
df-hlg 28321 | β’ hlG = (π β V β¦ (π β (Baseβπ) β¦ {β¨π, πβ© β£ ((π β (Baseβπ) β§ π β (Baseβπ)) β§ (π β π β§ π β π β§ (π β (π(Itvβπ)π) β¨ π β (π(Itvβπ)π))))})) |
cmir 28372 | class pInvG |
df-mir 28373 | β’ pInvG = (π β V β¦ (π β (Baseβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π)))))) |
crag 28413 | class βG |
df-rag 28414 | β’ βG = (π β V β¦ {π€ β Word (Baseβπ) β£ ((β―βπ€) = 3 β§ ((π€β0)(distβπ)(π€β2)) = ((π€β0)(distβπ)(((pInvGβπ)β(π€β1))β(π€β2))))}) |
cperpg 28415 | class βG |
df-perpg 28416 | β’ βG = (π β V β¦ {β¨π, πβ© β£ ((π β ran (LineGβπ) β§ π β ran (LineGβπ)) β§ βπ₯ β (π β© π)βπ’ β π βπ£ β π β¨βπ’π₯π£ββ© β (βGβπ))}) |
chpg 28477 | class hpG |
df-hpg 28478 | β’ hpG = (π β V β¦ (π β ran (LineGβπ) β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(Itvβπ) / π]βπ β π (((π β (π β π) β§ π β (π β π)) β§ βπ‘ β π π‘ β (πππ)) β§ ((π β (π β π) β§ π β (π β π)) β§ βπ‘ β π π‘ β (πππ)))})) |
cmid 28492 | class midG |
clmi 28493 | class lInvG |
df-mid 28494 | β’ midG = (π β V β¦ (π β (Baseβπ), π β (Baseβπ) β¦ (β©π β (Baseβπ)π = (((pInvGβπ)βπ)βπ)))) |
df-lmi 28495 | β’ lInvG = (π β V β¦ (π β ran (LineGβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(midGβπ)π) β π β§ (π(βGβπ)(π(LineGβπ)π) β¨ π = π)))))) |
ccgra 28527 | class cgrA |
df-cgra 28528 | β’ cgrA = (π β V β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(hlGβπ) / π]((π β (π βm (0..^3)) β§ π β (π βm (0..^3))) β§
βπ₯ β π βπ¦ β π (π(cgrGβπ)β¨βπ₯(πβ1)π¦ββ© β§ π₯(πβ(πβ1))(πβ0) β§ π¦(πβ(πβ1))(πβ2)))}) |
cinag 28555 | class inA |
cleag 28556 | class
β€β |
df-inag 28557 | β’ inA = (π β V β¦ {β¨π, π‘β© β£ ((π β (Baseβπ) β§ π‘ β ((Baseβπ) βm (0..^3))) β§ (((π‘β0) β (π‘β1) β§ (π‘β2) β (π‘β1) β§ π β (π‘β1)) β§ βπ₯ β (Baseβπ)(π₯ β ((π‘β0)(Itvβπ)(π‘β2)) β§ (π₯ = (π‘β1) β¨ π₯((hlGβπ)β(π‘β1))π))))}) |
df-leag 28566 | β’ β€β = (π β V β¦ {β¨π, πβ© β£ ((π β ((Baseβπ) βm (0..^3)) β§ π β ((Baseβπ) βm (0..^3)))
β§ βπ₯ β
(Baseβπ)(π₯(inAβπ)β¨β(πβ0)(πβ1)(πβ2)ββ© β§
β¨β(πβ0)(πβ1)(πβ2)ββ©(cgrAβπ)β¨β(πβ0)(πβ1)π₯ββ©))}) |
ceqlg 28585 | class eqltrG |
df-eqlg 28586 | β’ eqltrG = (π β V β¦ {π₯ β ((Baseβπ) βm (0..^3)) β£ π₯(cgrGβπ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©}) |
cttg 28593 | class toTG |
df-ttg 28594 | β’ toTG = (π€ β V β¦ β¦(π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯))}) / πβ¦((π€ sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β (Baseβπ€),
π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) |
cee 28615 | class πΌ |
cbtwn 28616 | class Btwn |
ccgr 28617 | class Cgr |
df-ee 28618 | β’ πΌ = (π β β β¦ (β
βm (1...π))) |
df-btwn 28619 | β’ Btwn = β‘{β¨β¨π₯, π§β©, π¦β© β£ βπ β β ((π₯ β (πΌβπ) β§ π§ β (πΌβπ) β§ π¦ β (πΌβπ)) β§ βπ‘ β (0[,]1)βπ β (1...π)(π¦βπ) = (((1 β π‘) Β· (π₯βπ)) + (π‘ Β· (π§βπ))))} |
df-cgr 28620 | β’ Cgr = {β¨π₯, π¦β© β£ βπ β β ((π₯ β ((πΌβπ) Γ (πΌβπ)) β§ π¦ β ((πΌβπ) Γ (πΌβπ))) β§ Ξ£π β (1...π)((((1st βπ₯)βπ) β ((2nd βπ₯)βπ))β2) = Ξ£π β (1...π)((((1st βπ¦)βπ) β ((2nd βπ¦)βπ))β2))} |
ceeng 28704 | class EEG |
df-eeng 28705 | β’ EEG = (π β β β¦
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) |
cedgf 28715 | class .ef |
df-edgf 28716 | β’ .ef = Slot ;18 |
cvtx 28725 | class Vtx |
ciedg 28726 | class iEdg |
df-vtx 28727 | β’ Vtx = (π β V β¦ if(π β (V Γ V), (1st
βπ),
(Baseβπ))) |
df-iedg 28728 | β’ iEdg = (π β V β¦ if(π β (V Γ V), (2nd
βπ), (.efβπ))) |
cedg 28776 | class Edg |
df-edg 28777 | β’ Edg = (π β V β¦ ran (iEdgβπ)) |
cuhgr 28785 | class UHGraph |
cushgr 28786 | class USHGraph |
df-uhgr 28787 | β’ UHGraph = {π β£ [(Vtxβπ) / π£][(iEdgβπ) / π]π:dom πβΆ(π« π£ β {β
})} |
df-ushgr 28788 | β’ USHGraph = {π β£ [(Vtxβπ) / π£][(iEdgβπ) / π]π:dom πβ1-1β(π« π£ β {β
})} |
cupgr 28809 | class UPGraph |
cumgr 28810 | class UMGraph |
df-upgr 28811 | β’ UPGraph = {π β£ [(Vtxβπ) / π£][(iEdgβπ) / π]π:dom πβΆ{π₯ β (π« π£ β {β
}) β£
(β―βπ₯) β€
2}} |
df-umgr 28812 | β’ UMGraph = {π β£ [(Vtxβπ) / π£][(iEdgβπ) / π]π:dom πβΆ{π₯ β (π« π£ β {β
}) β£
(β―βπ₯) =
2}} |
cuspgr 28877 | class USPGraph |
cusgr 28878 | class USGraph |
df-uspgr 28879 | β’ USPGraph = {π β£ [(Vtxβπ) / π£][(iEdgβπ) / π]π:dom πβ1-1β{π₯ β (π« π£ β {β
}) β£
(β―βπ₯) β€
2}} |
df-usgr 28880 | β’ USGraph = {π β£ [(Vtxβπ) / π£][(iEdgβπ) / π]π:dom πβ1-1β{π₯ β (π« π£ β {β
}) β£
(β―βπ₯) =
2}} |
csubgr 28993 | class SubGraph |
df-subgr 28994 | β’ SubGraph = {β¨π , πβ© β£ ((Vtxβπ ) β (Vtxβπ) β§ (iEdgβπ ) = ((iEdgβπ) βΎ dom (iEdgβπ )) β§ (Edgβπ ) β π« (Vtxβπ ))} |
cfusgr 29042 | class FinUSGraph |
df-fusgr 29043 | β’ FinUSGraph = {π β USGraph β£ (Vtxβπ) β Fin} |
cnbgr 29058 | class NeighbVtx |
df-nbgr 29059 | β’ NeighbVtx = (π β V, π£ β (Vtxβπ) β¦ {π β ((Vtxβπ) β {π£}) β£ βπ β (Edgβπ){π£, π} β π}) |
cuvtx 29111 | class UnivVtx |
df-uvtx 29112 | β’ UnivVtx = (π β V β¦ {π£ β (Vtxβπ) β£ βπ β ((Vtxβπ) β {π£})π β (π NeighbVtx π£)}) |
ccplgr 29135 | class ComplGraph |
ccusgr 29136 | class ComplUSGraph |
df-cplgr 29137 | β’ ComplGraph = {π β£ (UnivVtxβπ) = (Vtxβπ)} |
df-cusgr 29138 | β’ ComplUSGraph = (USGraph β©
ComplGraph) |
cvtxdg 29191 | class VtxDeg |
df-vtxdg 29192 | β’ VtxDeg = (π β V β¦
β¦(Vtxβπ) / π£β¦β¦(iEdgβπ) / πβ¦(π’ β π£ β¦ ((β―β{π₯ β dom π β£ π’ β (πβπ₯)}) +π (β―β{π₯ β dom π β£ (πβπ₯) = {π’}})))) |
crgr 29281 | class RegGraph |
crusgr 29282 | class RegUSGraph |
df-rgr 29283 | β’ RegGraph = {β¨π, πβ© β£ (π β β0* β§
βπ£ β
(Vtxβπ)((VtxDegβπ)βπ£) = π)} |
df-rusgr 29284 | β’ RegUSGraph = {β¨π, πβ© β£ (π β USGraph β§ π RegGraph π)} |
cewlks 29321 | class EdgWalks |
cwlks 29322 | class Walks |
cwlkson 29323 | class WalksOn |
df-ewlks 29324 | β’ EdgWalks = (π β V, π β β0*
β¦ {π β£
[(iEdgβπ) /
π](π β Word dom π β§ βπ β
(1..^(β―βπ))π β€ (β―β((πβ(πβ(π β 1))) β© (πβ(πβπ)))))}) |
df-wlks 29325 | β’ Walks = (π β V β¦ {β¨π, πβ© β£ (π β Word dom (iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))}) |
df-wlkson 29326 | β’ WalksOn = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = π β§ (πβ(β―βπ)) = π)})) |
ctrls 29416 | class Trails |
ctrlson 29417 | class TrailsOn |
df-trls 29418 | β’ Trails = (π β V β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ Fun β‘π)}) |
df-trlson 29419 | β’ TrailsOn = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(WalksOnβπ)π)π β§ π(Trailsβπ)π)})) |
cpths 29438 | class Paths |
cspths 29439 | class SPaths |
cpthson 29440 | class PathsOn |
cspthson 29441 | class SPathsOn |
df-pths 29442 | β’ Paths = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
)}) |
df-spths 29443 | β’ SPaths = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ Fun β‘π)}) |
df-pthson 29444 | β’ PathsOn = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(Pathsβπ)π)})) |
df-spthson 29445 | β’ SPathsOn = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(SPathsβπ)π)})) |
cclwlks 29496 | class ClWalks |
df-clwlks 29497 | β’ ClWalks = (π β V β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = (πβ(β―βπ)))}) |
ccrcts 29510 | class Circuits |
ccycls 29511 | class Cycles |
df-crcts 29512 | β’ Circuits = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ (πβ0) = (πβ(β―βπ)))}) |
df-cycls 29513 | β’ Cycles = (π β V β¦ {β¨π, πβ© β£ (π(Pathsβπ)π β§ (πβ0) = (πβ(β―βπ)))}) |
cwwlks 29548 | class WWalks |
cwwlksn 29549 | class WWalksN |
cwwlksnon 29550 | class WWalksNOn |
cwwspthsn 29551 | class WSPathsN |
cwwspthsnon 29552 | class WSPathsNOn |
df-wwlks 29553 | β’ WWalks = (π β V β¦ {π€ β Word (Vtxβπ) β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ))}) |
df-wwlksn 29554 | β’ WWalksN = (π β β0, π β V β¦ {π€ β (WWalksβπ) β£ (β―βπ€) = (π + 1)}) |
df-wwlksnon 29555 | β’ WWalksNOn = (π β β0, π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {π€ β (π WWalksN π) β£ ((π€β0) = π β§ (π€βπ) = π)})) |
df-wspthsn 29556 | β’ WSPathsN = (π β β0, π β V β¦ {π€ β (π WWalksN π) β£ βπ π(SPathsβπ)π€}) |
df-wspthsnon 29557 | β’ WSPathsNOn = (π β β0, π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {π€ β (π(π WWalksNOn π)π) β£ βπ π(π(SPathsOnβπ)π)π€})) |
cclwwlk 29703 | class ClWWalks |
df-clwwlk 29704 | β’ ClWWalks = (π β V β¦ {π€ β Word (Vtxβπ) β£ (π€ β β
β§ βπ β
(0..^((β―βπ€)
β 1)){(π€βπ), (π€β(π + 1))} β (Edgβπ) β§ {(lastSβπ€), (π€β0)} β (Edgβπ))}) |
cclwwlkn 29746 | class ClWWalksN |
df-clwwlkn 29747 | β’ ClWWalksN = (π β β0, π β V β¦ {π€ β (ClWWalksβπ) β£ (β―βπ€) = π}) |
cclwwlknon 29809 | class ClWWalksNOn |
df-clwwlknon 29810 | β’ ClWWalksNOn = (π β V β¦ (π£ β (Vtxβπ), π β β0 β¦ {π€ β (π ClWWalksN π) β£ (π€β0) = π£})) |
cconngr 29908 | class ConnGraph |
df-conngr 29909 | β’ ConnGraph = {π β£ [(Vtxβπ) / π£]βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π} |
ceupth 29919 | class EulerPaths |
df-eupth 29920 | β’ EulerPaths = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ π:(0..^(β―βπ))βontoβdom (iEdgβπ))}) |
cfrgr 29980 | class FriendGraph |
df-frgr 29981 | β’ FriendGraph = {π β USGraph β£
[(Vtxβπ) /
π£][(Edgβπ) / π]βπ β π£ βπ β (π£ β {π})β!π₯ β π£ {{π₯, π}, {π₯, π}} β π} |
ax-flt 30194 | β’ ((π β (β€β₯β3)
β§ (π β β
β§ π β β
β§ π β β))
β ((πβπ) + (πβπ)) β (πβπ)) |
cplig 30196 | class Plig |
df-plig 30197 | β’ Plig = {π₯ β£ (βπ β βͺ π₯βπ β βͺ π₯(π β π β β!π β π₯ (π β π β§ π β π)) β§ βπ β π₯ βπ β βͺ π₯βπ β βͺ π₯(π β π β§ π β π β§ π β π) β§ βπ β βͺ π₯βπ β βͺ π₯βπ β βͺ π₯βπ β π₯ Β¬ (π β π β§ π β π β§ π β π))} |
cgr 30211 | class GrpOp |
cgi 30212 | class GId |
cgn 30213 | class inv |
cgs 30214 | class
/π |
df-grpo 30215 | β’ GrpOp = {π β£ βπ‘(π:(π‘ Γ π‘)βΆπ‘ β§ βπ₯ β π‘ βπ¦ β π‘ βπ§ β π‘ ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β§ βπ’ β π‘ βπ₯ β π‘ ((π’ππ₯) = π₯ β§ βπ¦ β π‘ (π¦ππ₯) = π’))} |
df-gid 30216 | β’ GId = (π β V β¦ (β©π’ β ran πβπ₯ β ran π((π’ππ₯) = π₯ β§ (π₯ππ’) = π₯))) |
df-ginv 30217 | β’ inv = (π β GrpOp β¦ (π₯ β ran π β¦ (β©π§ β ran π(π§ππ₯) = (GIdβπ)))) |
df-gdiv 30218 | β’ /π = (π β GrpOp β¦ (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦)))) |
cablo 30266 | class AbelOp |
df-ablo 30267 | β’ AbelOp = {π β GrpOp β£ βπ₯ β ran πβπ¦ β ran π(π₯ππ¦) = (π¦ππ₯)} |
cvc 30280 | class
CVecOLD |
df-vc 30281 | β’ CVecOLD =
{β¨π, π β© β£ (π β AbelOp β§ π :(β Γ ran π)βΆran π β§ βπ₯ β ran π((1π π₯) = π₯ β§ βπ¦ β β (βπ§ β ran π(π¦π (π₯ππ§)) = ((π¦π π₯)π(π¦π π§)) β§ βπ§ β β (((π¦ + π§)π π₯) = ((π¦π π₯)π(π§π π₯)) β§ ((π¦ Β· π§)π π₯) = (π¦π (π§π π₯))))))} |
cnv 30306 | class NrmCVec |
cpv 30307 | class
+π£ |
cba 30308 | class BaseSet |
cns 30309 | class
Β·π OLD |
cn0v 30310 | class 0vec |
cnsb 30311 | class
βπ£ |
cnmcv 30312 | class
normCV |
cims 30313 | class IndMet |
df-nv 30314 | β’ NrmCVec = {β¨β¨π, π β©, πβ© β£ (β¨π, π β© β CVecOLD β§ π:ran πβΆβ β§ βπ₯ β ran π(((πβπ₯) = 0 β π₯ = (GIdβπ)) β§ βπ¦ β β (πβ(π¦π π₯)) = ((absβπ¦) Β· (πβπ₯)) β§ βπ¦ β ran π(πβ(π₯ππ¦)) β€ ((πβπ₯) + (πβπ¦))))} |
df-va 30317 | β’ +π£ =
(1st β 1st ) |
df-ba 30318 | β’ BaseSet = (π₯ β V β¦ ran ( +π£
βπ₯)) |
df-sm 30319 | β’
Β·π OLD = (2nd β 1st
) |
df-0v 30320 | β’ 0vec = (GId β
+π£ ) |
df-vs 30321 | β’ βπ£ = (
/π β +π£ ) |
df-nmcv 30322 | β’ normCV =
2nd |
df-ims 30323 | β’ IndMet = (π’ β NrmCVec β¦
((normCVβπ’) β ( βπ£
βπ’))) |
cdip 30422 | class
Β·πOLD |
df-dip 30423 | β’ Β·πOLD =
(π’ β NrmCVec β¦
(π₯ β
(BaseSetβπ’), π¦ β (BaseSetβπ’) β¦ (Ξ£π β (1...4)((iβπ) Β·
(((normCVβπ’)β(π₯( +π£ βπ’)((iβπ)( Β·π OLD
βπ’)π¦)))β2)) / 4))) |
css 30443 | class SubSp |
df-ssp 30444 | β’ SubSp = (π’ β NrmCVec β¦ {π€ β NrmCVec β£ ((
+π£ βπ€) β ( +π£
βπ’) β§ (
Β·π OLD βπ€) β (
Β·π OLD βπ’) β§ (normCVβπ€) β
(normCVβπ’))}) |
clno 30462 | class LnOp |
cnmoo 30463 | class
normOpOLD |
cblo 30464 | class BLnOp |
c0o 30465 | class 0op |
df-lno 30466 | β’ LnOp = (π’ β NrmCVec, π€ β NrmCVec β¦ {π‘ β ((BaseSetβπ€) βm (BaseSetβπ’)) β£ βπ₯ β β βπ¦ β (BaseSetβπ’)βπ§ β (BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§))}) |
df-nmoo 30467 | β’ normOpOLD = (π’ β NrmCVec, π€ β NrmCVec β¦ (π‘ β ((BaseSetβπ€) βm (BaseSetβπ’)) β¦ sup({π₯ β£ βπ§ β (BaseSetβπ’)(((normCVβπ’)βπ§) β€ 1 β§ π₯ = ((normCVβπ€)β(π‘βπ§)))}, β*, <
))) |
df-blo 30468 | β’ BLnOp = (π’ β NrmCVec, π€ β NrmCVec β¦ {π‘ β (π’ LnOp π€) β£ ((π’ normOpOLD π€)βπ‘) < +β}) |
df-0o 30469 | β’ 0op = (π’ β NrmCVec, π€ β NrmCVec β¦
((BaseSetβπ’) Γ
{(0vecβπ€)})) |
caj 30470 | class adj |
chmo 30471 | class HmOp |
df-aj 30472 | β’ adj = (π’ β NrmCVec, π€ β NrmCVec β¦ {β¨π‘, π β© β£ (π‘:(BaseSetβπ’)βΆ(BaseSetβπ€) β§ π :(BaseSetβπ€)βΆ(BaseSetβπ’) β§ βπ₯ β (BaseSetβπ’)βπ¦ β (BaseSetβπ€)((π‘βπ₯)(Β·πOLDβπ€)π¦) = (π₯(Β·πOLDβπ’)(π βπ¦)))}) |
df-hmo 30473 | β’ HmOp = (π’ β NrmCVec β¦ {π‘ β dom (π’adjπ’) β£ ((π’adjπ’)βπ‘) = π‘}) |
ccphlo 30534 | class
CPreHilOLD |
df-ph 30535 | β’ CPreHilOLD = (NrmCVec
β© {β¨β¨π, π β©, πβ© β£ βπ₯ β ran πβπ¦ β ran π(((πβ(π₯ππ¦))β2) + ((πβ(π₯π(-1π π¦)))β2)) = (2 Β· (((πβπ₯)β2) + ((πβπ¦)β2)))}) |
ccbn 30584 | class CBan |
df-cbn 30585 | β’ CBan = {π’ β NrmCVec β£ (IndMetβπ’) β
(CMetβ(BaseSetβπ’))} |
chlo 30607 | class
CHilOLD |
df-hlo 30608 | β’ CHilOLD = (CBan β©
CPreHilOLD) |
The
list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here |
chba 30641 | class β |
cva 30642 | class
+β |
csm 30643 | class
Β·β |
csp 30644 | class
Β·ih |
cno 30645 | class
normβ |
c0v 30646 | class
0β |
cmv 30647 | class
ββ |
ccauold 30648 | class Cauchy |
chli 30649 | class
βπ£ |
csh 30650 | class
Sβ |
cch 30651 | class
Cβ |
cort 30652 | class β₯ |
cph 30653 | class
+β |
cspn 30654 | class span |
chj 30655 | class
β¨β |
chsup 30656 | class β¨β |
c0h 30657 | class
0β |
ccm 30658 | class
πΆβ |
cpjh 30659 | class
projβ |
chos 30660 | class +op |
chot 30661 | class
Β·op |
chod 30662 | class
βop |
chfs 30663 | class +fn |
chft 30664 | class
Β·fn |
ch0o 30665 | class
0hop |
chio 30666 | class Iop |
cnop 30667 | class
normop |
ccop 30668 | class ContOp |
clo 30669 | class LinOp |
cbo 30670 | class BndLinOp |
cuo 30671 | class UniOp |
cho 30672 | class HrmOp |
cnmf 30673 | class
normfn |
cnl 30674 | class null |
ccnfn 30675 | class ContFn |
clf 30676 | class LinFn |
cado 30677 | class
adjβ |
cbr 30678 | class bra |
ck 30679 | class ketbra |
cleo 30680 | class
β€op |
cei 30681 | class eigvec |
cel 30682 | class eigval |
cspc 30683 | class Lambda |
cst 30684 | class States |
chst 30685 | class CHStates |
ccv 30686 | class
ββ |
cat 30687 | class HAtoms |
cmd 30688 | class
πβ |
cdmd 30689 | class
πβ* |
df-hnorm 30690 | β’ normβ = (π₯ β dom dom
Β·ih β¦ (ββ(π₯ Β·ih π₯))) |
df-hba 30691 | β’ β = (BaseSetββ¨β¨
+β , Β·β β©,
normββ©) |
df-h0v 30692 | β’ 0β =
(0vecββ¨β¨ +β ,
Β·β β©,
normββ©) |
df-hvsub 30693 | β’ ββ = (π₯ β β, π¦ β β β¦ (π₯ +β (-1
Β·β π¦))) |
df-hlim 30694 | β’ βπ£ = {β¨π, π€β© β£ ((π:ββΆ β β§ π€ β β) β§
βπ₯ β
β+ βπ¦ β β βπ§ β (β€β₯βπ¦)(normββ((πβπ§) ββ π€)) < π₯)} |
df-hcau 30695 | β’ Cauchy = {π β ( β βm β)
β£ βπ₯ β
β+ βπ¦ β β βπ§ β (β€β₯βπ¦)(normββ((πβπ¦) ββ (πβπ§))) < π₯} |
ax-hilex 30721 | β’ β β V |
ax-hfvadd 30722 | β’ +β :( β Γ
β)βΆ β |
ax-hvcom 30723 | β’ ((π΄ β β β§ π΅ β β) β (π΄ +β π΅) = (π΅ +β π΄)) |
ax-hvass 30724 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ +β π΅) +β πΆ) = (π΄ +β (π΅ +β πΆ))) |
ax-hv0cl 30725 | β’ 0β β
β |
ax-hvaddid 30726 | β’ (π΄ β β β (π΄ +β 0β)
= π΄) |
ax-hfvmul 30727 | β’ Β·β :(β
Γ β)βΆ β |
ax-hvmulid 30728 | β’ (π΄ β β β (1
Β·β π΄) = π΄) |
ax-hvmulass 30729 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ Β· π΅) Β·β πΆ) = (π΄ Β·β (π΅
Β·β πΆ))) |
ax-hvdistr1 30730 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β (π΄ Β·β (π΅ +β πΆ)) = ((π΄ Β·β π΅) +β (π΄
Β·β πΆ))) |
ax-hvdistr2 30731 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ + π΅) Β·β πΆ) = ((π΄ Β·β πΆ) +β (π΅
Β·β πΆ))) |
ax-hvmul0 30732 | β’ (π΄ β β β (0
Β·β π΄) = 0β) |
ax-hfi 30801 | β’ Β·ih :(
β Γ β)βΆβ |
ax-his1 30804 | β’ ((π΄ β β β§ π΅ β β) β (π΄ Β·ih π΅) = (ββ(π΅
Β·ih π΄))) |
ax-his2 30805 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ +β π΅) Β·ih πΆ) = ((π΄ Β·ih πΆ) + (π΅ Β·ih πΆ))) |
ax-his3 30806 | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΄ Β·β π΅)
Β·ih πΆ) = (π΄ Β· (π΅ Β·ih πΆ))) |
ax-his4 30807 | β’ ((π΄ β β β§ π΄ β 0β) β 0 <
(π΄
Β·ih π΄)) |
ax-hcompl 30924 | β’ (πΉ β Cauchy β βπ₯ β β πΉ βπ£
π₯) |
df-sh 30929 | β’
Sβ = {β β π« β β£
(0β β β β§ ( +β β (β Γ β)) β β β§ ( Β·β
β (β Γ β))
β β)} |
df-ch 30943 | β’
Cβ = {β β Sβ
β£ ( βπ£ β (β βm β)) β β} |
df-oc 30974 | β’ β₯ = (π₯ β π« β β¦ {π¦ β β β£
βπ§ β π₯ (π¦ Β·ih π§) = 0}) |
df-ch0 30975 | β’ 0β =
{0β} |
df-shs 31030 | β’ +β = (π₯ β Sβ ,
π¦ β
Sβ β¦ ( +β β (π₯ Γ π¦))) |
df-span 31031 | β’ span = (π₯ β π« β β¦ β© {π¦
β Sβ β£ π₯ β π¦}) |
df-chj 31032 | β’ β¨β = (π₯ β π« β, π¦ β π« β β¦
(β₯β(β₯β(π₯ βͺ π¦)))) |
df-chsup 31033 | β’ β¨β = (π₯ β π« π« β β¦
(β₯β(β₯ββͺ π₯))) |
df-pjh 31117 | β’ projβ = (β β Cβ
β¦ (π₯ β β
β¦ (β©π§
β β βπ¦ β (β₯ββ)π₯ = (π§ +β π¦)))) |
df-cm 31305 | β’ πΆβ =
{β¨π₯, π¦β© β£ ((π₯ β
Cβ β§ π¦ β Cβ )
β§ π₯ = ((π₯ β© π¦) β¨β (π₯ β© (β₯βπ¦))))} |
df-hosum 31452 | β’ +op = (π β ( β βm
β), π β (
β βm β) β¦ (π₯ β β β¦ ((πβπ₯) +β (πβπ₯)))) |
df-homul 31453 | β’ Β·op = (π β β, π β ( β
βm β) β¦ (π₯ β β β¦ (π Β·β (πβπ₯)))) |
df-hodif 31454 | β’ βop = (π β ( β βm
β), π β (
β βm β) β¦ (π₯ β β β¦ ((πβπ₯) ββ (πβπ₯)))) |
df-hfsum 31455 | β’ +fn = (π β (β βm β),
π β (β
βm β) β¦ (π₯ β β β¦ ((πβπ₯) + (πβπ₯)))) |
df-hfmul 31456 | β’ Β·fn = (π β β, π β (β
βm β) β¦ (π₯ β β β¦ (π Β· (πβπ₯)))) |
df-h0op 31470 | β’ 0hop =
(projββ0β) |
df-iop 31471 | β’ Iop =
(projββ β) |
df-nmop 31561 | β’ normop = (π‘ β ( β βm β)
β¦ sup({π₯ β£
βπ§ β β
((normββπ§) β€ 1 β§ π₯ = (normββ(π‘βπ§)))}, β*, <
)) |
df-cnop 31562 | β’ ContOp = {π‘ β ( β βm β)
β£ βπ₯ β
β βπ¦ β
β+ βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β
(normββ((π‘βπ€) ββ (π‘βπ₯))) < π¦)} |
df-lnop 31563 | β’ LinOp = {π‘ β ( β βm β)
β£ βπ₯ β
β βπ¦ β
β βπ§ β
β (π‘β((π₯
Β·β π¦) +β π§)) = ((π₯ Β·β (π‘βπ¦)) +β (π‘βπ§))} |
df-bdop 31564 | β’ BndLinOp = {π‘ β LinOp β£
(normopβπ‘)
< +β} |
df-unop 31565 | β’ UniOp = {π‘ β£ (π‘: ββontoβ β β§ βπ₯ β β βπ¦ β β ((π‘βπ₯) Β·ih (π‘βπ¦)) = (π₯ Β·ih π¦))} |
df-hmop 31566 | β’ HrmOp = {π‘ β ( β βm β)
β£ βπ₯ β
β βπ¦ β
β (π₯
Β·ih (π‘βπ¦)) = ((π‘βπ₯) Β·ih π¦)} |
df-nmfn 31567 | β’ normfn = (π‘ β (β βm β)
β¦ sup({π₯ β£
βπ§ β β
((normββπ§) β€ 1 β§ π₯ = (absβ(π‘βπ§)))}, β*, <
)) |
df-nlfn 31568 | β’ null = (π‘ β (β βm β)
β¦ (β‘π‘ β {0})) |
df-cnfn 31569 | β’ ContFn = {π‘ β (β βm β)
β£ βπ₯ β
β βπ¦ β
β+ βπ§ β β+ βπ€ β β
((normββ(π€ ββ π₯)) < π§ β (absβ((π‘βπ€) β (π‘βπ₯))) < π¦)} |
df-lnfn 31570 | β’ LinFn = {π‘ β (β βm β)
β£ βπ₯ β
β βπ¦ β
β βπ§ β
β (π‘β((π₯
Β·β π¦) +β π§)) = ((π₯ Β· (π‘βπ¦)) + (π‘βπ§))} |
df-adjh 31571 | β’ adjβ = {β¨π‘, π’β© β£ (π‘: ββΆ β β§ π’: ββΆ β β§
βπ₯ β β
βπ¦ β β
((π‘βπ₯)
Β·ih π¦) = (π₯ Β·ih (π’βπ¦)))} |
df-bra 31572 | β’ bra = (π₯ β β β¦ (π¦ β β β¦ (π¦ Β·ih π₯))) |
df-kb 31573 | β’ ketbra = (π₯ β β, π¦ β β β¦ (π§ β β β¦ ((π§ Β·ih π¦)
Β·β π₯))) |
df-leop 31574 | β’ β€op = {β¨π‘, π’β© β£ ((π’ βop π‘) β HrmOp β§ βπ₯ β β 0 β€ (((π’ βop π‘)βπ₯) Β·ih π₯))} |
df-eigvec 31575 | β’ eigvec = (π‘ β ( β βm β)
β¦ {π₯ β ( β
β 0β) β£ βπ§ β β (π‘βπ₯) = (π§ Β·β π₯)}) |
df-eigval 31576 | β’ eigval = (π‘ β ( β βm β)
β¦ (π₯ β
(eigvecβπ‘) β¦
(((π‘βπ₯)
Β·ih π₯) / ((normββπ₯)β2)))) |
df-spec 31577 | β’ Lambda = (π‘ β ( β βm β)
β¦ {π₯ β β
β£ Β¬ (π‘
βop (π₯
Β·op ( I βΎ β))): ββ1-1β β}) |
df-st 31933 | β’ States = {π β ((0[,]1) βm
Cβ ) β£ ((πβ β) = 1 β§ βπ₯ β
Cβ βπ¦ β Cβ
(π₯ β
(β₯βπ¦) β
(πβ(π₯ β¨β π¦)) = ((πβπ₯) + (πβπ¦))))} |
df-hst 31934 | β’ CHStates = {π β ( β βm
Cβ ) β£
((normββ(πβ β)) = 1 β§ βπ₯ β
Cβ βπ¦ β Cβ
(π₯ β
(β₯βπ¦) β
(((πβπ₯)
Β·ih (πβπ¦)) = 0 β§ (πβ(π₯ β¨β π¦)) = ((πβπ₯) +β (πβπ¦)))))} |
df-cv 32001 | β’ ββ =
{β¨π₯, π¦β© β£ ((π₯ β
Cβ β§ π¦ β Cβ )
β§ (π₯ β π¦ β§ Β¬ βπ§ β
Cβ (π₯ β π§ β§ π§ β π¦)))} |
df-md 32002 | β’ πβ =
{β¨π₯, π¦β© β£ ((π₯ β
Cβ β§ π¦ β Cβ )
β§ βπ§ β
Cβ (π§ β π¦ β ((π§ β¨β π₯) β© π¦) = (π§ β¨β (π₯ β© π¦))))} |
df-dmd 32003 | β’ πβ* =
{β¨π₯, π¦β© β£ ((π₯ β
Cβ β§ π¦ β Cβ )
β§ βπ§ β
Cβ (π¦ β π§ β ((π§ β© π₯) β¨β π¦) = (π§ β© (π₯ β¨β π¦))))} |
df-at 32060 | β’ HAtoms = {π₯ β Cβ
β£ 0β ββ π₯} |
The
list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here |
w2reu 32187 | wff β!π₯ β π΄ , π¦ β π΅π |
df-2reu 32188 | β’ (β!π₯ β π΄ , π¦ β π΅π β (β!π₯ β π΄ βπ¦ β π΅ π β§ β!π¦ β π΅ βπ₯ β π΄ π)) |
cdp2 32504 | class _π΄π΅ |
df-dp2 32505 | β’ _π΄π΅ = (π΄ + (π΅ / ;10)) |
cdp 32521 | class . |
df-dp 32522 | β’ . = (π₯ β β0, π¦ β β β¦ _π₯π¦) |
cxdiv 32550 | class
/π |
df-xdiv 32551 | β’ /π = (π₯ β β*, π¦ β (β β {0})
β¦ (β©π§
β β* (π¦ Β·e π§) = π₯)) |
cmnt 32615 | class Monot |
cmgc 32616 | class MGalConn |
df-mnt 32617 | β’ Monot = (π£ β V, π€ β V β¦
β¦(Baseβπ£) / πβ¦{π β ((Baseβπ€) βm π) β£ βπ₯ β π βπ¦ β π (π₯(leβπ£)π¦ β (πβπ₯)(leβπ€)(πβπ¦))}) |
df-mgc 32618 | β’ MGalConn = (π£ β V, π€ β V β¦
β¦(Baseβπ£) / πβ¦β¦(Baseβπ€) / πβ¦{β¨π, πβ© β£ ((π β (π βm π) β§ π β (π βm π)) β§ βπ₯ β π βπ¦ β π ((πβπ₯)(leβπ€)π¦ β π₯(leβπ£)(πβπ¦)))}) |
ax-xrssca 32641 | β’ βfld =
(Scalarββ*π ) |
ax-xrsvsca 32642 | β’ Β·e = (
Β·π
ββ*π ) |
comnd 32683 | class oMnd |
cogrp 32684 | class oGrp |
df-omnd 32685 | β’ oMnd = {π β Mnd β£ [(Baseβπ) / π£][(+gβπ) / π][(leβπ) / π](π β Toset β§ βπ β π£ βπ β π£ βπ β π£ (πππ β (πππ)π(πππ)))} |
df-ogrp 32686 | β’ oGrp = (Grp β© oMnd) |
ctocyc 32733 | class toCyc |
df-tocyc 32734 | β’ toCyc = (π β V β¦ (π€ β {π’ β Word π β£ π’:dom π’β1-1βπ} β¦ (( I βΎ (π β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
csgns 32785 | class sgns |
df-sgns 32786 | β’ sgns = (π β V β¦ (π₯ β (Baseβπ) β¦ if(π₯ = (0gβπ), 0, if((0gβπ)(ltβπ)π₯, 1, -1)))) |
cinftm 32790 | class β |
carchi 32791 | class Archi |
df-inftm 32792 | β’ β = (π€ β V β¦ {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€)) β§ ((0gβπ€)(ltβπ€)π₯ β§ βπ β β (π(.gβπ€)π₯)(ltβπ€)π¦))}) |
df-archi 32793 | β’ Archi = {π€ β£ (ββπ€) = β
} |
cslmd 32813 | class SLMod |
df-slmd 32814 | β’ SLMod = {π β CMnd β£
[(Baseβπ) /
π£][(+gβπ) / π][(
Β·π βπ) / π ][(Scalarβπ) / π][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))} |
ceuf 32854 | class EuclF |
df-euf 32855 | β’ EuclF = Slot ;21 |
cedom 32858 | class EDomn |
df-edom 32859 | β’ EDomn = {π β IDomn β£
[(EuclFβπ) /
π][(Baseβπ) / π£](Fun π β§ (π β (π£ β {(0gβπ)})) β (0[,)+β)
β§ βπ β
π£ βπ β (π£ β {(0gβπ)})βπ β π£ βπ β π£ (π = ((π(.rβπ)π)(+gβπ)π) β§ (π = (0gβπ) β¨ (πβπ) < (πβπ))))} |
cfldgen 32866 | class fldGen |
df-fldgen 32867 | β’ fldGen = (π β V, π β V β¦ β© {π
β (SubDRingβπ)
β£ π β π}) |
corng 32879 | class oRing |
cofld 32880 | class oField |
df-orng 32881 | β’ oRing = {π β (Ring β© oGrp) β£
[(Baseβπ) /
π£][(0gβπ) / π§][(.rβπ) / π‘][(leβπ) / π]βπ β π£ βπ β π£ ((π§ππ β§ π§ππ) β π§π(ππ‘π))} |
df-ofld 32882 | β’ oField = (Field β© oRing) |
cresv 32904 | class
βΎv |
df-resv 32905 | β’ βΎv = (π€ β V, π₯ β V β¦
if((Baseβ(Scalarβπ€)) β π₯, π€, (π€ sSet β¨(Scalarβndx),
((Scalarβπ€)
βΎs π₯)β©))) |
cprmidl 33022 | class PrmIdeal |
df-prmidl 33023 | β’ PrmIdeal = (π β Ring β¦ {π β (LIdealβπ) β£ (π β (Baseβπ) β§ βπ β (LIdealβπ)βπ β (LIdealβπ)(βπ₯ β π βπ¦ β π (π₯(.rβπ)π¦) β π β (π β π β¨ π β π)))}) |
cmxidl 33044 | class MaxIdeal |
df-mxidl 33045 | β’ MaxIdeal = (π β Ring β¦ {π β (LIdealβπ) β£ (π β (Baseβπ) β§ βπ β (LIdealβπ)(π β π β (π = π β¨ π = (Baseβπ))))}) |
cidlsrg 33083 | class IDLsrg |
df-idlsrg 33084 | β’ IDLsrg = (π β V β¦
β¦(LIdealβπ) / πβ¦({β¨(Baseβndx),
πβ©,
β¨(+gβndx), (LSSumβπ)β©, β¨(.rβndx),
(π β π, π β π β¦ ((RSpanβπ)β(π(LSSumβ(mulGrpβπ))π)))β©} βͺ {β¨(TopSetβndx),
ran (π β π β¦ {π β π β£ Β¬ π β π})β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π β§ π β π)}β©})) |
cufd 33099 | class UFD |
df-ufd 33100 | β’ UFD = {π β CRing β£ ((AbsValβπ) β β
β§
βπ β
(PrmIdealβπ)(π β© (RPrimeβπ)) β
β
)} |
cldim 33162 | class dim |
df-dim 33163 | β’ dim = (π β V β¦ βͺ (β― β (LBasisβπ))) |
cfldext 33196 | class
/FldExt |
cfinext 33197 | class
/FinExt |
calgext 33198 | class
/AlgExt |
cextdg 33199 | class [:] |
df-fldext 33200 | β’ /FldExt = {β¨π, πβ© β£ ((π β Field β§ π β Field) β§ (π = (π βΎs (Baseβπ)) β§ (Baseβπ) β (SubRingβπ)))} |
df-extdg 33201 | β’ [:] = (π β V, π β (/FldExt β {π}) β¦
(dimβ((subringAlg βπ)β(Baseβπ)))) |
df-finext 33202 | β’ /FinExt = {β¨π, πβ© β£ (π/FldExtπ β§ (π[:]π) β
β0)} |
df-algext 33203 | β’ /AlgExt = {β¨π, πβ© β£ (π/FldExtπ β§ βπ₯ β (Baseβπ)βπ β (Poly1βπ)(((eval1βπ)βπ)βπ₯) = (0gβπ))} |
cirng 33227 | class IntgRing |
df-irng 33228 | β’ IntgRing = (π β V, π β V β¦ βͺ π β (Monic1pβ(π βΎs π ))(β‘((π evalSub1 π )βπ) β {(0gβπ)})) |
cminply 33236 | class minPoly |
df-minply 33237 | β’ minPoly = (π β V, π β V β¦ (π₯ β (Baseβπ) β¦ ((idlGen1pβ(π βΎs π))β{π β dom (π evalSub1 π) β£ (((π evalSub1 π)βπ)βπ₯) = (0gβπ)}))) |
csmat 33262 | class subMat1 |
df-smat 33263 | β’ subMat1 = (π β V β¦ (π β β, π β β β¦ (π β (π β β, π β β β¦ β¨if(π < π, π, (π + 1)), if(π < π, π, (π + 1))β©)))) |
clmat 33280 | class litMat |
df-lmat 33281 | β’ litMat = (π β V β¦ (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1)))) |
ccref 33311 | class CovHasRefπ΄ |
df-cref 33312 | β’ CovHasRefπ΄ = {π β Top β£ βπ¦ β π« π(βͺ
π = βͺ π¦
β βπ§ β
(π« π β© π΄)π§Refπ¦)} |
cldlf 33321 | class Ldlf |
df-ldlf 33322 | β’ Ldlf = CovHasRef{π₯ β£ π₯ βΌ Ο} |
cpcmp 33324 | class Paracomp |
df-pcmp 33325 | β’ Paracomp = {π β£ π β CovHasRef(LocFinβπ)} |
crspec 33331 | class Spec |
df-rspec 33332 | β’ Spec = (π β Ring β¦ ((IDLsrgβπ) βΎs
(PrmIdealβπ))) |
cmetid 33355 | class ~Met |
cpstm 33356 | class pstoMet |
df-metid 33357 | β’ ~Met = (π β βͺ ran
PsMet β¦ {β¨π₯,
π¦β© β£ ((π₯ β dom dom π β§ π¦ β dom dom π) β§ (π₯ππ¦) = 0)}) |
df-pstm 33358 | β’ pstoMet = (π β βͺ ran
PsMet β¦ (π β
(dom dom π /
(~Metβπ)),
π β (dom dom π /
(~Metβπ))
β¦ βͺ {π§ β£ βπ₯ β π βπ¦ β π π§ = (π₯ππ¦)})) |
chcmp 33425 | class HCmp |
df-hcmp 33426 | β’ HCmp = {β¨π’, π€β© β£ ((π’ β βͺ ran
UnifOn β§ π€ β
CUnifSp) β§ ((UnifStβπ€) βΎt dom βͺ π’) =
π’ β§
((clsβ(TopOpenβπ€))βdom βͺ
π’) = (Baseβπ€))} |
cqqh 33441 | class βHom |
df-qqh 33442 | β’ βHom = (π β V β¦ ran (π₯ β β€, π¦ β (β‘(β€RHomβπ) β (Unitβπ)) β¦ β¨(π₯ / π¦), (((β€RHomβπ)βπ₯)(/rβπ)((β€RHomβπ)βπ¦))β©)) |
crrh 33462 | class βHom |
crrext 33463 | class βExt |
df-rrh 33464 | β’ βHom = (π β V β¦ (((topGenβran
(,))CnExt(TopOpenβπ))β(βHomβπ))) |
df-rrext 33468 | β’ βExt = {π β (NrmRing β© DivRing) β£
(((β€Modβπ)
β NrmMod β§ (chrβπ) = 0) β§ (π β CUnifSp β§ (UnifStβπ) =
(metUnifβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))))} |
cxrh 33485 | class
β*Hom |
df-xrh 33486 | β’ β*Hom = (π β V β¦ (π₯ β β* β¦ if(π₯ β β,
((βHomβπ)βπ₯), if(π₯ = +β, ((lubβπ)β((βHomβπ) β β)), ((glbβπ)β((βHomβπ) β
β)))))) |
cmntop 33491 | class ManTop |
df-mntop 33492 | β’ ManTop = {β¨π, πβ© β£ (π β β0 β§ (π β 2ndΟ
β§ π β Haus β§
π β Locally
[(TopOpenβ(πΌhilβπ))] β ))} |
cind 33497 | class π |
df-ind 33498 | β’ π = (π β V β¦ (π β π« π β¦ (π₯ β π β¦ if(π₯ β π, 1, 0)))) |
cesum 33514 | class Ξ£*π β π΄π΅ |
df-esum 33515 | β’ Ξ£*π β π΄π΅ = βͺ
((β*π βΎs (0[,]+β))
tsums (π β π΄ β¦ π΅)) |
cofc 33582 | class βf/c π
|
df-ofc 33583 | β’ βf/c π
= (π β V, π β V β¦ (π₯ β dom π β¦ ((πβπ₯)π
π))) |
csiga 33595 | class sigAlgebra |
df-siga 33596 | β’ sigAlgebra = (π β V β¦ {π β£ (π β π« π β§ (π β π β§ βπ₯ β π (π β π₯) β π β§ βπ₯ β π« π (π₯ βΌ Ο β βͺ π₯
β π )))}) |
csigagen 33625 | class sigaGen |
df-sigagen 33626 | β’ sigaGen = (π₯ β V β¦ β© {π
β (sigAlgebraββͺ π₯) β£ π₯ β π }) |
cbrsiga 33668 | class
π
β |
df-brsiga 33669 | β’ π
β =
(sigaGenβ(topGenβran (,))) |
csx 33675 | class
Γs |
df-sx 33676 | β’ Γs = (π β V, π‘ β V β¦ (sigaGenβran (π₯ β π , π¦ β π‘ β¦ (π₯ Γ π¦)))) |
cmeas 33682 | class measures |
df-meas 33683 | β’ measures = (π β βͺ ran
sigAlgebra β¦ {π
β£ (π:π βΆ(0[,]+β) β§
(πββ
) = 0 β§
βπ₯ β π«
π ((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦)))}) |
cdde 33719 | class Ξ΄ |
df-dde 33720 | β’ Ξ΄ = (π β π« β β¦ if(0 β
π, 1, 0)) |
cae 33724 | class a.e. |
cfae 33725 | class ~ a.e. |
df-ae 33726 | β’ a.e. = {β¨π, πβ© β£ (πβ(βͺ dom
π β π)) = 0} |
df-fae 33732 | β’ ~ a.e. = (π β V, π β βͺ ran
measures β¦ {β¨π,
πβ© β£ ((π β (dom π βm βͺ dom π) β§ π β (dom π βm βͺ dom π)) β§ {π₯ β βͺ dom
π β£ (πβπ₯)π(πβπ₯)}a.e.π)}) |
cmbfm 33736 | class MblFnM |
df-mbfm 33737 | β’ MblFnM = (π β βͺ ran
sigAlgebra, π‘ β βͺ ran sigAlgebra β¦ {π β (βͺ π‘ βm βͺ π )
β£ βπ₯ β
π‘ (β‘π β π₯) β π }) |
coms 33779 | class toOMeas |
df-oms 33780 | β’ toOMeas = (π β V β¦ (π β π« βͺ dom π β¦ inf(ran (π₯ β {π§ β π« dom π β£ (π β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(πβπ¦)), (0[,]+β), < ))) |
ccarsg 33789 | class toCaraSiga |
df-carsg 33790 | β’ toCaraSiga = (π β V β¦ {π β π« βͺ dom π β£ βπ β π« βͺ dom π((πβ(π β© π)) +π (πβ(π β π))) = (πβπ)}) |
citgm 33815 | class itgm |
csitm 33816 | class sitm |
csitg 33817 | class sitg |
df-sitg 33818 | β’ sitg = (π€ β V, π β βͺ ran
measures β¦ (π β
{π β (dom πMblFnM(sigaGenβ(TopOpenβπ€))) β£ (ran π β Fin β§ βπ₯ β (ran π β {(0gβπ€)})(πβ(β‘π β {π₯})) β (0[,)+β))} β¦ (π€ Ξ£g
(π₯ β (ran π β
{(0gβπ€)})
β¦ (((βHomβ(Scalarβπ€))β(πβ(β‘π β {π₯})))( Β·π
βπ€)π₯))))) |
df-sitm 33819 | β’ sitm = (π€ β V, π β βͺ ran
measures β¦ (π β
dom (π€sitgπ), π β dom (π€sitgπ) β¦
(((β*π βΎs
(0[,]+β))sitgπ)β(π βf (distβπ€)π)))) |
df-itgm 33841 | β’ itgm = (π€ β V, π β βͺ ran
measures β¦ (((metUnifβ(π€sitmπ))CnExt(UnifStβπ€))β(π€sitgπ))) |
csseq 33871 | class
seqstr |
df-sseq 33872 | β’ seqstr = (π β V, π β V β¦ (π βͺ (lastS β seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πβπ)ββ©)}))))) |
cfib 33884 | class Fibci |
df-fib 33885 | β’ Fibci =
(β¨β01ββ©seqstr(π€ β (Word β0 β©
(β‘β― β
(β€β₯β2))) β¦ ((π€β((β―βπ€) β 2)) + (π€β((β―βπ€) β 1))))) |
cprb 33895 | class Prob |
df-prob 33896 | β’ Prob = {π β βͺ ran
measures β£ (πββͺ dom π) = 1} |
ccprob 33919 | class cprob |
df-cndprob 33920 | β’ cprob = (π β Prob β¦ (π β dom π, π β dom π β¦ ((πβ(π β© π)) / (πβπ)))) |
crrv 33928 | class rRndVar |
df-rrv 33929 | β’ rRndVar = (π β Prob β¦ (dom πMblFnMπ
β)) |
corvc 33943 | class
βRV/ππ
|
df-orvc 33944 | β’ βRV/ππ
= (π₯ β {π₯ β£ Fun π₯}, π β V β¦ (β‘π₯ β {π¦ β£ π¦π
π})) |
crepr 34109 | class repr |
df-repr 34110 | β’ repr = (π β β0 β¦ (π β π« β, π β β€ β¦ {π β (π βm (0..^π )) β£ Ξ£π β (0..^π )(πβπ) = π})) |
cvts 34136 | class vts |
df-vts 34137 | β’ vts = (π β (β βm β),
π β
β0 β¦ (π₯ β β β¦ Ξ£π β (1...π)((πβπ) Β· (expβ((i Β· (2
Β· Ο)) Β· (π
Β· π₯)))))) |
ax-hgt749 34145 | β’ βπ β {π§ β β€ β£ Β¬ 2 β₯ π§} ((;10β;27) β€ π β ββ β ((0[,)+β) βm
β)βπ β
((0[,)+β) βm β)(βπ β β (πβπ) β€ (1._0_7_9_9_55)
β§ βπ β
β (ββπ) β€ (1._4_14)
β§ ((0._0_0_0_4_2_2_48)
Β· (πβ2)) β€
β«(0(,)1)(((((Ξ βf Β· β)vtsπ)βπ₯) Β· ((((Ξ βf
Β· π)vtsπ)βπ₯)β2)) Β· (expβ((i Β·
(2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯)) |
ax-ros335 34146 | β’ βπ₯ β β+
(Οβπ₯) <
((1._0_3_8_83)
Β· π₯) |
ax-ros336 34147 | β’ βπ₯ β β+
((Οβπ₯) β
(ΞΈβπ₯)) <
((1._4_2_62)
Β· (ββπ₯)) |
cstrkg2d 34165 | class
TarskiG2D |
df-trkg2d 34166 | β’ TarskiG2D = {π β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))} |
cafs 34170 | class AFS |
df-afs 34171 | β’ AFS = (π β TarskiG β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / β][(Itvβπ) / π]βπ β π βπ β π βπ β π βπ β π βπ₯ β π βπ¦ β π βπ§ β π βπ€ β π (π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π β (πππ) β§ π¦ β (π₯ππ§)) β§ ((πβπ) = (π₯βπ¦) β§ (πβπ) = (π¦βπ§)) β§ ((πβπ) = (π₯βπ€) β§ (πβπ) = (π¦βπ€))))}) |
clpad 34175 | class leftpad |
df-lpad 34176 | β’ leftpad = (π β V, π€ β V β¦ (π β β0 β¦
(((0..^(π β
(β―βπ€))) Γ
{π}) ++ π€))) |
w-bnj17 34186 | wff (π β§ π β§ π β§ π) |
df-bnj17 34187 | β’ ((π β§ π β§ π β§ π) β ((π β§ π β§ π) β§ π)) |
c-bnj14 34188 | class pred(π, π΄, π
) |
df-bnj14 34189 | β’ pred(π, π΄, π
) = {π¦ β π΄ β£ π¦π
π} |
w-bnj13 34190 | wff π
Se π΄ |
df-bnj13 34191 | β’ (π
Se π΄ β βπ₯ β π΄ pred(π₯, π΄, π
) β V) |
w-bnj15 34192 | wff π
FrSe π΄ |
df-bnj15 34193 | β’ (π
FrSe π΄ β (π
Fr π΄ β§ π
Se π΄)) |
c-bnj18 34194 | class trCl(π, π΄, π
) |
df-bnj18 34195 | β’ trCl(π, π΄, π
) = βͺ
π β {π β£ βπ β (Ο β
{β
})(π Fn π β§ (πββ
) = pred(π, π΄, π
) β§ βπ β Ο (suc π β π β (πβsuc π) = βͺ π¦ β (πβπ) pred(π¦, π΄, π
)))}βͺ
π β dom π(πβπ) |
w-bnj19 34196 | wff TrFo(π΅, π΄, π
) |
df-bnj19 34197 | β’ ( TrFo(π΅, π΄, π
) β βπ₯ β π΅ pred(π₯, π΄, π
) β π΅) |
cacycgr 34622 | class AcyclicGraph |
df-acycgr 34623 | β’ AcyclicGraph = {π β£ Β¬ βπβπ(π(Cyclesβπ)π β§ π β β
)} |
ax-7d 34639 | β’ (βπ₯βπ¦π β βπ¦βπ₯π) |
ax-8d 34640 | β’ (π₯ = π¦ β (π₯ = π§ β π¦ = π§)) |
ax-9d1 34641 | β’ Β¬ βπ₯ Β¬ π₯ = π₯ |
ax-9d2 34642 | β’ Β¬ βπ₯ Β¬ π₯ = π¦ |
ax-10d 34643 | β’ (βπ₯ π₯ = π¦ β βπ¦ π¦ = π₯) |
ax-11d 34644 | β’ (π₯ = π¦ β (βπ¦π β βπ₯(π₯ = π¦ β π))) |
cretr 34697 | class Retr |
df-retr 34698 | β’ Retr = (π β Top, π β Top β¦ {π β (π Cn π) β£ βπ β (π Cn π)((π β π )(π Htpy π)( I βΎ βͺ
π)) β
β
}) |
cpconn 34699 | class PConn |
csconn 34700 | class SConn |
df-pconn 34701 | β’ PConn = {π β Top β£ βπ₯ β βͺ πβπ¦ β βͺ πβπ β (II Cn π)((πβ0) = π₯ β§ (πβ1) = π¦)} |
df-sconn 34702 | β’ SConn = {π β PConn β£ βπ β (II Cn π)((πβ0) = (πβ1) β π( βphβπ)((0[,]1) Γ {(πβ0)}))} |
ccvm 34735 | class CovMap |
df-cvm 34736 | β’ CovMap = (π β Top, π β Top β¦ {π β (π Cn π) β£ βπ₯ β βͺ πβπ β π (π₯ β π β§ βπ β (π« π β {β
})(βͺ π =
(β‘π β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β
β§ (π βΎ π’) β ((π βΎt π’)Homeo(π βΎt π)))))}) |
cgoe 34813 | class
βπ |
cgna 34814 | class
βΌπ |
cgol 34815 | class
βπππ |
csat 34816 | class Sat |
cfmla 34817 | class Fmla |
csate 34818 | class
Satβ |
cprv 34819 | class β§ |
df-goel 34820 | β’ βπ = (π₯ β (Ο Γ
Ο) β¦ β¨β
, π₯β©) |
df-gona 34821 | β’ βΌπ = (π₯ β (V Γ V) β¦
β¨1o, π₯β©) |
df-goal 34822 | β’ βπππ = β¨2o, β¨π, πβ©β© |
df-sat 34823 | β’ Sat = (π β V, π β V β¦ (rec((π β V β¦ (π βͺ {β¨π₯, π¦β© β£ βπ’ β π (βπ£ β π (π₯ = ((1st βπ’)βΌπ(1st
βπ£)) β§ π¦ = ((π βm Ο) β
((2nd βπ’)
β© (2nd βπ£)))) β¨ βπ β Ο (π₯ = βππ(1st βπ’) β§ π¦ = {π β (π βm Ο) β£
βπ§ β π ({β¨π, π§β©} βͺ (π βΎ (Ο β {π}))) β (2nd βπ’)}))})), {β¨π₯, π¦β© β£ βπ β Ο βπ β Ο (π₯ = (πβππ) β§ π¦ = {π β (π βm Ο) β£ (πβπ)π(πβπ)})}) βΎ suc Ο)) |
df-sate 34824 | β’ Satβ = (π β V, π’ β V β¦ (((π Sat ( E β© (π Γ π)))βΟ)βπ’)) |
df-fmla 34825 | β’ Fmla = (π β suc Ο β¦ dom ((β
Sat
β
)βπ)) |
df-prv 34826 | β’ β§ = {β¨π, π’β© β£ (π Satβ π’) = (π βm
Ο)} |
cgon 34912 | class Β¬ππ |
cgoa 34913 | class
β§π |
cgoi 34914 | class
βπ |
cgoo 34915 | class
β¨π |
cgob 34916 | class
βπ |
cgoq 34917 | class
=π |
cgox 34918 | class βπππ |
df-gonot 34919 | β’ Β¬ππ = (πβΌππ) |
df-goan 34920 | β’ β§π = (π’ β V, π£ β V β¦
Β¬π(π’βΌππ£)) |
df-goim 34921 | β’ βπ = (π’ β V, π£ β V β¦ (π’βΌπΒ¬ππ£)) |
df-goor 34922 | β’ β¨π = (π’ β V, π£ β V β¦
(Β¬ππ’
βπ π£)) |
df-gobi 34923 | β’ βπ = (π’ β V, π£ β V β¦ ((π’ βπ π£)β§π(π£ βπ
π’))) |
df-goeq 34924 | β’ =π = (π’ β Ο, π£ β Ο β¦ β¦suc
(π’ βͺ π£) / π€β¦βππ€((π€βππ’) βπ (π€βππ£))) |
df-goex 34925 | β’ βπππ =
Β¬πβππΒ¬ππ |
cgze 34926 | class AxExt |
cgzr 34927 | class AxRep |
cgzp 34928 | class AxPow |
cgzu 34929 | class AxUn |
cgzg 34930 | class AxReg |
cgzi 34931 | class AxInf |
cgzf 34932 | class ZF |
df-gzext 34933 | β’ AxExt =
(βπ2o((2oβπβ
)
βπ (2oβπ1o))
βπ (β
=π1o)) |
df-gzrep 34934 | β’ AxRep = (π’ β (FmlaβΟ) β¦
(βπ3oβπ1oβπ2o(βπ1oπ’ βπ (2o=π1o)) βπ
βπ1oβπ2o((2oβπ1o) βπ
βπ3o((3oβπβ
)β§πβπ1oπ’)))) |
df-gzpow 34935 | β’ AxPow =
βπ1oβπ2o(βπ1o((1oβπ2o)
βπ (1oβπβ
)) βπ (2oβπ1o)) |
df-gzun 34936 | β’ AxUn =
βπ1oβπ2o(βπ1o((2oβπ1o)β§π(1oβπβ
))
βπ (2oβπ1o)) |
df-gzreg 34937 | β’ AxReg =
(βπ1o(1oβπβ
)
βπ
βπ1o((1oβπβ
)β§πβπ2o((2oβπ1o)
βπ Β¬π(2oβπβ
)))) |
df-gzinf 34938 | β’ AxInf =
βπ1o((β
βπ1o)β§πβπ2o((2oβπ1o)
βπ βπβ
((2oβπβ
)β§π(β
βπ1o)))) |
df-gzf 34939 | β’ ZF =
{π β£ ((Tr π β§ πβ§AxExt β§ πβ§AxPow) β§ (πβ§AxUn β§ πβ§AxReg β§ πβ§AxInf) β§ βπ’ β
(FmlaβΟ)πβ§(AxRepβπ’))} |
cmcn 34940 | class mCN |
cmvar 34941 | class mVR |
cmty 34942 | class mType |
cmvt 34943 | class mVT |
cmtc 34944 | class mTC |
cmax 34945 | class mAx |
cmrex 34946 | class mREx |
cmex 34947 | class mEx |
cmdv 34948 | class mDV |
cmvrs 34949 | class mVars |
cmrsub 34950 | class mRSubst |
cmsub 34951 | class mSubst |
cmvh 34952 | class mVH |
cmpst 34953 | class mPreSt |
cmsr 34954 | class mStRed |
cmsta 34955 | class mStat |
cmfs 34956 | class mFS |
cmcls 34957 | class mCls |
cmpps 34958 | class mPPSt |
cmthm 34959 | class mThm |
df-mcn 34960 | β’ mCN = Slot 1 |
df-mvar 34961 | β’ mVR = Slot 2 |
df-mty 34962 | β’ mType = Slot 3 |
df-mtc 34963 | β’ mTC = Slot 4 |
df-mmax 34964 | β’ mAx = Slot 5 |
df-mvt 34965 | β’ mVT = (π‘ β V β¦ ran (mTypeβπ‘)) |
df-mrex 34966 | β’ mREx = (π‘ β V β¦ Word ((mCNβπ‘) βͺ (mVRβπ‘))) |
df-mex 34967 | β’ mEx = (π‘ β V β¦ ((mTCβπ‘) Γ (mRExβπ‘))) |
df-mdv 34968 | β’ mDV = (π‘ β V β¦ (((mVRβπ‘) Γ (mVRβπ‘)) β I )) |
df-mvrs 34969 | β’ mVars = (π‘ β V β¦ (π β (mExβπ‘) β¦ (ran (2nd βπ) β© (mVRβπ‘)))) |
df-mrsub 34970 | β’ mRSubst = (π‘ β V β¦ (π β ((mRExβπ‘) βpm (mVRβπ‘)) β¦ (π β (mRExβπ‘) β¦ ((freeMndβ((mCNβπ‘) βͺ (mVRβπ‘))) Ξ£g
((π£ β
((mCNβπ‘) βͺ
(mVRβπ‘)) β¦
if(π£ β dom π, (πβπ£), β¨βπ£ββ©)) β π))))) |
df-msub 34971 | β’ mSubst = (π‘ β V β¦ (π β ((mRExβπ‘) βpm (mVRβπ‘)) β¦ (π β (mExβπ‘) β¦ β¨(1st βπ), (((mRSubstβπ‘)βπ)β(2nd βπ))β©))) |
df-mvh 34972 | β’ mVH = (π‘ β V β¦ (π£ β (mVRβπ‘) β¦ β¨((mTypeβπ‘)βπ£), β¨βπ£ββ©β©)) |
df-mpst 34973 | β’ mPreSt = (π‘ β V β¦ (({π β π« (mDVβπ‘) β£ β‘π = π} Γ (π« (mExβπ‘) β© Fin)) Γ
(mExβπ‘))) |
df-msr 34974 | β’ mStRed = (π‘ β V β¦ (π β (mPreStβπ‘) β¦ β¦(2nd
β(1st βπ )) / ββ¦β¦(2nd
βπ ) / πβ¦β¨((1st
β(1st βπ )) β© β¦βͺ ((mVarsβπ‘) β (β βͺ {π})) / π§β¦(π§ Γ π§)), β, πβ©)) |
df-msta 34975 | β’ mStat = (π‘ β V β¦ ran (mStRedβπ‘)) |
df-mfs 34976 | β’ mFS = {π‘ β£ ((((mCNβπ‘) β© (mVRβπ‘)) = β
β§ (mTypeβπ‘):(mVRβπ‘)βΆ(mTCβπ‘)) β§ ((mAxβπ‘) β (mStatβπ‘) β§ βπ£ β (mVTβπ‘) Β¬ (β‘(mTypeβπ‘) β {π£}) β Fin))} |
df-mcls 34977 | β’ mCls = (π‘ β V β¦ (π β π« (mDVβπ‘), β β π« (mExβπ‘) β¦ β© {π
β£ ((β βͺ ran
(mVHβπ‘)) β
π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(((π β (π βͺ ran (mVHβπ‘))) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π)) β (π βπ) β π)))})) |
df-mpps 34978 | β’ mPPSt = (π‘ β V β¦ {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β (mPreStβπ‘) β§ π β (π(mClsβπ‘)β))}) |
df-mthm 34979 | β’ mThm = (π‘ β V β¦ (β‘(mStRedβπ‘) β ((mStRedβπ‘) β (mPPStβπ‘)))) |
cm0s 35065 | class m0St |
cmsa 35066 | class mSA |
cmwgfs 35067 | class mWGFS |
cmsy 35068 | class mSyn |
cmesy 35069 | class mESyn |
cmgfs 35070 | class mGFS |
cmtree 35071 | class mTree |
cmst 35072 | class mST |
cmsax 35073 | class mSAX |
cmufs 35074 | class mUFS |
df-m0s 35075 | β’ m0St = (π β V β¦ β¨β
, β
,
πβ©) |
df-msa 35076 | β’ mSA = (π‘ β V β¦ {π β (mExβπ‘) β£ ((m0Stβπ) β (mAxβπ‘) β§ (1st βπ) β (mVTβπ‘) β§ Fun (β‘(2nd βπ) βΎ (mVRβπ‘)))}) |
df-mwgfs 35077 | β’ mWGFS = {π‘ β mFS β£ βπβββπ((β¨π, β, πβ© β (mAxβπ‘) β§ (1st βπ) β (mVTβπ‘)) β βπ β ran (mSubstβπ‘)π β (π β (mSAβπ‘)))} |
df-msyn 35078 | β’ mSyn = Slot 6 |
df-mesyn 35079 | β’ mESyn = (π‘ β V β¦ (π β (mTCβπ‘), π β (mRExβπ‘) β¦ (((mSynβπ‘)βπ)m0Stπ))) |
df-mgfs 35080 | β’ mGFS = {π‘ β mWGFS β£ ((mSynβπ‘):(mTCβπ‘)βΆ(mVTβπ‘) β§ βπ β (mVTβπ‘)((mSynβπ‘)βπ) = π β§ βπβββπ(β¨π, β, πβ© β (mAxβπ‘) β βπ β (β βͺ {π})((mESynβπ‘)βπ) β (mPPStβπ‘)))} |
df-mtree 35081 | β’ mTree = (π‘ β V β¦ (π β π« (mDVβπ‘), β β π« (mExβπ‘) β¦ β© {π
β£ (βπ β
ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)))})) |
df-mst 35082 | β’ mST = (π‘ β V β¦ ((β
(mTreeβπ‘)β
) βΎ
((mExβπ‘) βΎ
(mVTβπ‘)))) |
df-msax 35083 | β’ mSAX = (π‘ β V β¦ (π β (mSAβπ‘) β¦ ((mVHβπ‘) β ((mVarsβπ‘)βπ)))) |
df-mufs 35084 | β’ mUFS = {π‘ β mGFS β£ Fun (mSTβπ‘)} |
cmuv 35085 | class mUV |
cmvl 35086 | class mVL |
cmvsb 35087 | class mVSubst |
cmfsh 35088 | class mFresh |
cmfr 35089 | class mFRel |
cmevl 35090 | class mEval |
cmdl 35091 | class mMdl |
cusyn 35092 | class mUSyn |
cgmdl 35093 | class mGMdl |
cmitp 35094 | class mItp |
cmfitp 35095 | class mFromItp |
df-muv 35096 | β’ mUV = Slot 7 |
df-mfsh 35097 | β’ mFresh = Slot ;19 |
df-mevl 35098 | β’ mEval = Slot ;20 |
df-mvl 35099 | β’ mVL = (π‘ β V β¦ Xπ£ β
(mVRβπ‘)((mUVβπ‘) β {((mTypeβπ‘)βπ£)})) |
df-mvsb 35100 | β’ mVSubst = (π‘ β V β¦ {β¨β¨π , πβ©, π₯β© β£ ((π β ran (mSubstβπ‘) β§ π β (mVLβπ‘)) β§ βπ£ β (mVRβπ‘)πdom (mEvalβπ‘)(π β((mVHβπ‘)βπ£)) β§ π₯ = (π£ β (mVRβπ‘) β¦ (π(mEvalβπ‘)(π β((mVHβπ‘)βπ£)))))}) |
df-mfrel 35101 | β’ mFRel = (π‘ β V β¦ {π β π« ((mUVβπ‘) Γ (mUVβπ‘)) β£ (β‘π = π β§ βπ β (mVTβπ‘)βπ€ β (π« (mUVβπ‘) β© Fin)βπ£ β ((mUVβπ‘) β {π})π€ β (π β {π£}))}) |
df-mdl 35102 | β’ mMdl = {π‘ β mFS β£ [(mUVβπ‘) / π’][(mExβπ‘) / π₯][(mVLβπ‘) / π£][(mEvalβπ‘) / π][(mFreshβπ‘) / π]((π’ β ((mTCβπ‘) Γ V) β§ π β (mFRelβπ‘) β§ π β (π’ βpm (π£ Γ (mExβπ‘)))) β§ βπ β π£ ((βπ β π₯ (π β {β¨π, πβ©}) β (π’ β {(1st βπ)}) β§ βπ¦ β (mVRβπ‘)β¨π, ((mVHβπ‘)βπ¦)β©π(πβπ¦) β§ βπβββπ(β¨π, β, πβ© β (mAxβπ‘) β ((βπ¦βπ§(π¦ππ§ β (πβπ¦)π(πβπ§)) β§ β β (dom π β {π})) β πdom π π))) β§ (βπ β ran (mSubstβπ‘)βπ β (mExβπ‘)βπ¦(β¨π , πβ©(mVSubstβπ‘)π¦ β (π β {β¨π, (π βπ)β©}) = (π β {β¨π¦, πβ©})) β§ βπ β π£ βπ β π₯ ((π βΎ ((mVarsβπ‘)βπ)) = (π βΎ ((mVarsβπ‘)βπ)) β (π β {β¨π, πβ©}) = (π β {β¨π, πβ©})) β§ βπ¦ β π’ βπ β π₯ ((π β ((mVarsβπ‘)βπ)) β (π β {π¦}) β (π β {β¨π, πβ©}) β (π β {π¦})))))} |
df-musyn 35103 | β’ mUSyn = (π‘ β V β¦ (π£ β (mUVβπ‘) β¦ β¨((mSynβπ‘)β(1st
βπ£)), (2nd
βπ£)β©)) |
df-gmdl 35104 | β’ mGMdl = {π‘ β (mGFS β© mMdl) β£
(βπ β
(mTCβπ‘)((mUVβπ‘) β {π}) β ((mUVβπ‘) β {((mSynβπ‘)βπ)}) β§ βπ£ β (mUVβπ)βπ€ β (mUVβπ)(π£(mFreshβπ‘)π€ β π£(mFreshβπ‘)((mUSynβπ‘)βπ€)) β§ βπ β (mVLβπ‘)βπ β (mExβπ‘)((mEvalβπ‘) β {β¨π, πβ©}) = (((mEvalβπ‘) β {β¨π, ((mESynβπ‘)βπ)β©}) β© ((mUVβπ‘) β {(1st
βπ)})))} |
df-mitp 35105 | β’ mItp = (π‘ β V β¦ (π β (mSAβπ‘) β¦ (π β Xπ β ((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)}) β¦ (β©π₯βπ β (mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π)))))) |
df-mfitp 35106 | β’ mFromItp = (π‘ β V β¦ (π β Xπ β (mSAβπ‘)(((mUVβπ‘) β {((1st βπ‘)βπ)}) βm Xπ β
((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)})) β¦ (β©π β ((mUVβπ‘) βpm
((mVLβπ‘) Γ
(mExβπ‘)))βπ β (mVLβπ‘)(βπ£ β (mVRβπ‘)β¨π, ((mVHβπ‘)βπ£)β©π(πβπ£) β§ βπβπβπ(π(mSTβπ‘)β¨π, πβ© β β¨π, πβ©π(πβ(π β ((mVarsβπ‘)βπ) β¦ (ππ(πβ((mVHβπ‘)βπ)))))) β§ βπ β (mExβπ‘)(π β {β¨π, πβ©}) = ((π β {β¨π, ((mESynβπ‘)βπ)β©}) β© ((mUVβπ‘) β {(1st
βπ)})))))) |
ccpms 35107 | class cplMetSp |
chlb 35108 | class HomLimB |
chlim 35109 | class HomLim |
cpfl 35110 | class polyFld |
csf1 35111 | class
splitFld1 |
csf 35112 | class splitFld |
cpsl 35113 | class polySplitLim |
df-cplmet 35114 | β’ cplMetSp = (π€ β V β¦ β¦((π€ βs
β) βΎs (Cauβ(distβπ€))) / πβ¦β¦(Baseβπ) / π£β¦β¦{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β β+ βπ β β€ (π βΎ
(β€β₯βπ)):(β€β₯βπ)βΆ((πβπ)(ballβ(distβπ€))π₯))} / πβ¦((π /s π) sSet {β¨(distβndx),
{β¨β¨π₯, π¦β©, π§β© β£ βπ β π£ βπ β π£ ((π₯ = [π]π β§ π¦ = [π]π) β§ (π βf (distβπ)π) β π§)}β©})) |
df-homlimb 35115 | β’ HomLimB = (π β V β¦ β¦βͺ π β β ({π} Γ dom (πβπ)) / π£β¦β¦β© {π
β£ (π Er π£ β§ (π₯ β π£ β¦ β¨((1st βπ₯) + 1), ((πβ(1st βπ₯))β(2nd
βπ₯))β©) β
π )} / πβ¦β¨(π£ / π), (π β β β¦ (π₯ β dom (πβπ) β¦ [β¨π, π₯β©]π))β©) |
df-homlim 35116 | β’ HomLim = (π β V, π β V β¦ β¦( HomLimB
βπ) / πβ¦β¦(1st
βπ) / π£β¦β¦(2nd
βπ) / πβ¦({β¨(Baseβndx),
π£β©,
β¨(+gβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(+gβ(πβπ))π¦))β©)β©,
β¨(.rβndx), βͺ π β β ran (π₯ β dom (πβπ), π¦ β dom (πβπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, ((πβπ)β(π₯(.rβ(πβπ))π¦))β©)β©} βͺ
{β¨(TopOpenβndx), {π β π« π£ β£ βπ β β (β‘(πβπ) β π ) β (TopOpenβ(πβπ))}β©, β¨(distβndx), βͺ π β β ran (π₯ β dom ((πβπ)βπ), π¦ β dom ((πβπ)βπ) β¦ β¨β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©, (π₯(distβ(πβπ))π¦)β©)β©, β¨(leβndx),
βͺ π β β (β‘(πβπ) β ((leβ(πβπ)) β (πβπ)))β©})) |
df-plfl 35117 | β’ polyFld = (π β V, π β V β¦
β¦(Poly1βπ) / π β¦β¦((RSpanβπ )β{π}) / πβ¦β¦(π§ β (Baseβπ) β¦ [(π§( Β·π
βπ )(1rβπ ))](π ~QG π)) / πβ¦β¨β¦(π /s (π ~QG π)) / π‘β¦((π‘ toNrmGrp (β©π β (AbsValβπ‘)(π β π) = (normβπ))) sSet β¨(leβndx),
β¦(π§ β
(Baseβπ‘) β¦
(β©π β π§ (π deg1 π) < (π deg1 π))) / πβ¦(β‘π β ((leβπ ) β π))β©), πβ©) |
df-sfl1 35118 | β’ splitFld1 = (π β V, π β V β¦ (π β (Poly1βπ) β¦ (rec((π β V, π β V β¦ β¦( mPoly
βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)), π)β(cardβ(1...(π deg1 π)))))) |
df-sfl 35119 | β’ splitFld = (π β V, π β V β¦ (β©π₯βπ(π Isom < , (ltβπ)((1...(β―βπ)), π) β§ π₯ = (seq0((π β V, π β V β¦ ((π splitFld1 π)βπ)), (π βͺ {β¨0, β¨π, ( I βΎ (Baseβπ))β©β©}))β(β―βπ))))) |
df-psl 35120 | β’ polySplitLim = (π β V, π β ((π« (Baseβπ) β© Fin) βm
β) β¦ β¦(1st β seq0((π β V, π β V β¦
β¦(1st βπ) / πβ¦β¦(1st
βπ) / π β¦β¦(π splitFld ran (π₯ β π β¦ (π₯ β (2nd βπ)))) / πβ¦β¨π, ((2nd βπ) β (2nd βπ))β©), (π βͺ {β¨0, β¨β¨π, β
β©, ( I βΎ
(Baseβπ))β©β©}))) / πβ¦((1st β
(π shift 1)) HomLim
(2nd β π))) |
czr 35121 | class ZRing |
cgf 35122 | class GF |
cgfo 35123 | class
GFβ |
ceqp 35124 | class ~Qp |
crqp 35125 | class /Qp |
cqp 35126 | class Qp |
czp 35127 | class Zp |
cqpa 35128 | class _Qp |
ccp 35129 | class Cp |
df-zrng 35130 | β’ ZRing = (π β V β¦ (π IntgRing ran (β€RHomβπ))) |
df-gf 35131 | β’ GF = (π β β, π β β β¦
β¦(β€/nβ€βπ) / πβ¦(1st β(π splitFld
{β¦(Poly1βπ) / π β¦β¦(var1βπ) / π₯β¦(((πβπ)(.gβ(mulGrpβπ ))π₯)(-gβπ )π₯)}))) |
df-gfoo 35132 | β’ GFβ = (π β β β¦
β¦(β€/nβ€βπ) / πβ¦(π polySplitLim (π β β β¦
{β¦(Poly1βπ) / π β¦β¦(var1βπ) / π₯β¦(((πβπ)(.gβ(mulGrpβπ ))π₯)(-gβπ )π₯)}))) |
df-eqp 35133 | β’ ~Qp = (π β β β¦ {β¨π, πβ© β£ ({π, π} β (β€ βm
β€) β§ βπ
β β€ Ξ£π
β (β€β₯β-π)(((πβ-π) β (πβ-π)) / (πβ(π + (π + 1)))) β β€)}) |
df-rqp 35134 | β’ /Qp = (π β β β¦ (~Qp β©
β¦{π β
(β€ βm β€) β£ βπ₯ β ran β€β₯(β‘π β (β€ β {0})) β π₯} / π¦β¦(π¦ Γ (π¦ β© (β€ βm
(0...(π β
1))))))) |
df-qp 35135 | β’ Qp = (π β β β¦ β¦{β β (β€
βm (0...(π
β 1))) β£ βπ₯ β ran β€β₯(β‘β β (β€ β {0})) β π₯} / πβ¦(({β¨(Baseβndx),
πβ©,
β¨(+gβndx), (π β π, π β π β¦ ((/Qpβπ)β(π βf + π)))β©, β¨(.rβndx),
(π β π, π β π β¦ ((/Qpβπ)β(π β β€ β¦ Ξ£π β β€ ((πβπ) Β· (πβ(π β π))))))β©} βͺ {β¨(leβndx),
{β¨π, πβ© β£ ({π, π} β π β§ Ξ£π β β€ ((πβ-π) Β· ((π + 1)β-π)) < Ξ£π β β€ ((πβ-π) Β· ((π + 1)β-π)))}β©}) toNrmGrp (π β π β¦ if(π = (β€ Γ {0}), 0, (πβ-inf((β‘π β (β€ β {0})), β,
< )))))) |
df-zp 35136 | β’ Zp = (ZRing β
Qp) |
df-qpa 35137 | β’ _Qp = (π β β β¦
β¦(Qpβπ)
/ πβ¦(π polySplitLim (π β β β¦ {π β
(Poly1βπ)
β£ ((π deg1
π) β€ π β§ βπ β ran (coe1βπ)(β‘π β (β€ β {0})) β
(0...π))}))) |
df-cp 35138 | β’ Cp = ( cplMetSp β
_Qp) |
ccloneop 35159 | class CloneOp |
df-cloneop 35160 | β’ CloneOp = (π β V β¦ {π₯ β£ βπ β (Ο β 1o)π₯ β (π βm (π βm π))}) |
cprj 35161 | class prj |
df-prj 35162 | β’ prj = (π β V β¦ (π β (Ο β 1o),
π β π β¦ (π₯ β (π βm π) β¦ (π₯βπ)))) |
csuppos 35163 | class suppos |
df-suppos 35164 | β’ suppos = (π β V β¦ (π β (Ο β 1o),
π β (Ο β
1o) β¦ (π
β (π
βm (π
βm π)),
π β ((π βm (π βm π)) βm π) β¦ (π₯ β (π βm π) β¦ (πβ(π β π β¦ ((πβπ)βπ₯))))))) |
cwsuc 35277 | class wsuc(π
, π΄, π) |
cwlim 35278 | class WLim(π
, π΄) |
df-wsuc 35279 | β’ wsuc(π
, π΄, π) = inf(Pred(β‘π
, π΄, π), π΄, π
) |
df-wlim 35280 | β’ WLim(π
, π΄) = {π₯ β π΄ β£ (π₯ β inf(π΄, π΄, π
) β§ π₯ = sup(Pred(π
, π΄, π₯), π΄, π
))} |
ctxp 35297 | class (π΄ β π΅) |
cpprod 35298 | class pprod(π
, π) |
csset 35299 | class SSet
|
ctrans 35300 | class Trans
|
cbigcup 35301 | class Bigcup
|
cfix 35302 | class Fix
π΄ |
climits 35303 | class Limits
|
cfuns 35304 | class Funs
|
csingle 35305 | class Singleton |
csingles 35306 | class
Singletons |
cimage 35307 | class Imageπ΄ |
ccart 35308 | class Cart |
cimg 35309 | class Img |
cdomain 35310 | class Domain |
crange 35311 | class Range |
capply 35312 | class Apply |
ccup 35313 | class Cup |
ccap 35314 | class Cap |
csuccf 35315 | class Succ |
cfunpart 35316 | class FunpartπΉ |
cfullfn 35317 | class FullFunπΉ |
crestrict 35318 | class Restrict |
cub 35319 | class UBπ
|
clb 35320 | class LBπ
|
df-txp 35321 | β’ (π΄ β π΅) = ((β‘(1st βΎ (V Γ V))
β π΄) β© (β‘(2nd βΎ (V Γ V))
β π΅)) |
df-pprod 35322 | β’ pprod(π΄, π΅) = ((π΄ β (1st βΎ (V Γ
V))) β (π΅ β
(2nd βΎ (V Γ V)))) |
df-sset 35323 | β’ SSet = ((V
Γ V) β ran ( E β (V β E ))) |
df-trans 35324 | β’ Trans = (V
β ran (( E β E ) β E )) |
df-bigcup 35325 | β’ Bigcup = ((V
Γ V) β ran ((V β E ) β³ (( E β E ) β
V))) |
df-fix 35326 | β’ Fix π΄ = dom (π΄ β© I ) |
df-limits 35327 | β’ Limits = ((On
β© Fix Bigcup )
β {β
}) |
df-funs 35328 | β’ Funs =
(π« (V Γ V) β Fix ( E β
((1st β ((V β I ) β 2nd )) β
β‘ E ))) |
df-singleton 35329 | β’ Singleton = ((V Γ V) β ran ((V
β E ) β³ ( I β V))) |
df-singles 35330 | β’ Singletons =
ran Singleton |
df-image 35331 | β’ Imageπ΄ = ((V Γ V) β ran ((V β E
) β³ (( E β β‘π΄) β V))) |
df-cart 35332 | β’ Cart = (((V Γ V) Γ V) β ran
((V β E ) β³ (pprod( E , E ) β V))) |
df-img 35333 | β’ Img = (Image((2nd β
1st ) βΎ (1st βΎ (V Γ V))) β
Cart) |
df-domain 35334 | β’ Domain = Image(1st βΎ (V
Γ V)) |
df-range 35335 | β’ Range = Image(2nd βΎ (V
Γ V)) |
df-cup 35336 | β’ Cup = (((V Γ V) Γ V) β ran
((V β E ) β³ (((β‘1st β E ) βͺ (β‘2nd β E )) β
V))) |
df-cap 35337 | β’ Cap = (((V Γ V) Γ V) β ran
((V β E ) β³ (((β‘1st β E ) β© (β‘2nd β E )) β
V))) |
df-restrict 35338 | β’ Restrict = (Cap β (1st
β (Cart β (2nd β (Range β 1st
))))) |
df-succf 35339 | β’ Succ = (Cup β ( I β
Singleton)) |
df-apply 35340 | β’ Apply = (( Bigcup
β Bigcup ) β (((V Γ V)
β ran ((V β E ) β³ (( E βΎ
Singletons ) β V))) β ((Singleton β Img) β
pprod( I , Singleton)))) |
df-funpart 35341 | β’ FunpartπΉ = (πΉ βΎ dom ((ImageπΉ β Singleton) β© (V Γ Singletons ))) |
df-fullfun 35342 | β’ FullFunπΉ = (FunpartπΉ βͺ ((V β dom FunpartπΉ) Γ
{β
})) |
df-ub 35343 | β’ UBπ
= ((V Γ V) β ((V β π
) β β‘ E )) |
df-lb 35344 | β’ LBπ
= UBβ‘π
|
caltop 35423 | class βͺπ΄, π΅β« |
caltxp 35424 | class (π΄ ΓΓ π΅) |
df-altop 35425 | β’ βͺπ΄, π΅β« = {{π΄}, {π΄, {π΅}}} |
df-altxp 35426 | β’ (π΄ ΓΓ π΅) = {π§ β£ βπ₯ β π΄ βπ¦ β π΅ π§ = βͺπ₯, π¦β«} |
cofs 35449 | class OuterFiveSeg |
df-ofs 35450 | β’ OuterFiveSeg = {β¨π, πβ© β£ βπ β β βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ₯ β (πΌβπ)βπ¦ β (πΌβπ)βπ§ β (πΌβπ)βπ€ β (πΌβπ)(π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π Btwn β¨π, πβ© β§ π¦ Btwn β¨π₯, π§β©) β§ (β¨π, πβ©Cgrβ¨π₯, π¦β© β§ β¨π, πβ©Cgrβ¨π¦, π§β©) β§ (β¨π, πβ©Cgrβ¨π₯, π€β© β§ β¨π, πβ©Cgrβ¨π¦, π€β©)))} |
ctransport 35496 | class TransportTo |
df-transport 35497 | β’ TransportTo = {β¨β¨π, πβ©, π₯β© β£ βπ β β ((π β ((πΌβπ) Γ (πΌβπ)) β§ π β ((πΌβπ) Γ (πΌβπ)) β§ (1st βπ) β (2nd
βπ)) β§ π₯ = (β©π β (πΌβπ)((2nd βπ) Btwn β¨(1st
βπ), πβ© β§
β¨(2nd βπ), πβ©Cgrπ)))} |
cifs 35502 | class InnerFiveSeg |
ccgr3 35503 | class Cgr3 |
ccolin 35504 | class Colinear |
cfs 35505 | class FiveSeg |
df-colinear 35506 | β’ Colinear = β‘{β¨β¨π, πβ©, πβ© β£ βπ β β ((π β (πΌβπ) β§ π β (πΌβπ) β§ π β (πΌβπ)) β§ (π Btwn β¨π, πβ© β¨ π Btwn β¨π, πβ© β¨ π Btwn β¨π, πβ©))} |
df-ifs 35507 | β’ InnerFiveSeg = {β¨π, πβ© β£ βπ β β βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ₯ β (πΌβπ)βπ¦ β (πΌβπ)βπ§ β (πΌβπ)βπ€ β (πΌβπ)(π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π Btwn β¨π, πβ© β§ π¦ Btwn β¨π₯, π§β©) β§ (β¨π, πβ©Cgrβ¨π₯, π§β© β§ β¨π, πβ©Cgrβ¨π¦, π§β©) β§ (β¨π, πβ©Cgrβ¨π₯, π€β© β§ β¨π, πβ©Cgrβ¨π§, π€β©)))} |
df-cgr3 35508 | β’ Cgr3 = {β¨π, πβ© β£ βπ β β βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)(π = β¨π, β¨π, πβ©β© β§ π = β¨π, β¨π, πβ©β© β§ (β¨π, πβ©Cgrβ¨π, πβ© β§ β¨π, πβ©Cgrβ¨π, πβ© β§ β¨π, πβ©Cgrβ¨π, πβ©))} |
df-fs 35509 | β’ FiveSeg = {β¨π, πβ© β£ βπ β β βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ₯ β (πΌβπ)βπ¦ β (πΌβπ)βπ§ β (πΌβπ)βπ€ β (πΌβπ)(π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ (π Colinear β¨π, πβ© β§ β¨π, β¨π, πβ©β©Cgr3β¨π₯, β¨π¦, π§β©β© β§ (β¨π, πβ©Cgrβ¨π₯, π€β© β§ β¨π, πβ©Cgrβ¨π¦, π€β©)))} |
csegle 35573 | class
Segβ€ |
df-segle 35574 | β’ Segβ€ = {β¨π, πβ© β£ βπ β β βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)βπ β (πΌβπ)(π = β¨π, πβ© β§ π = β¨π, πβ© β§ βπ¦ β (πΌβπ)(π¦ Btwn β¨π, πβ© β§ β¨π, πβ©Cgrβ¨π, π¦β©))} |
coutsideof 35586 | class OutsideOf |
df-outsideof 35587 | β’ OutsideOf = ( Colinear β Btwn
) |
cline2 35601 | class Line |
cray 35602 | class Ray |
clines2 35603 | class LinesEE |
df-line2 35604 | β’ Line = {β¨β¨π, πβ©, πβ© β£ βπ β β ((π β (πΌβπ) β§ π β (πΌβπ) β§ π β π) β§ π = [β¨π, πβ©]β‘ Colinear )} |
df-ray 35605 | β’ Ray = {β¨β¨π, πβ©, πβ© β£ βπ β β ((π β (πΌβπ) β§ π β (πΌβπ) β§ π β π) β§ π = {π₯ β (πΌβπ) β£ πOutsideOfβ¨π, π₯β©})} |
df-lines2 35606 | β’ LinesEE = ran Line |
cfwddif 35625 | class β³ |
df-fwddif 35626 | β’ β³ = (π β (β βpm β)
β¦ (π₯ β {π¦ β dom π β£ (π¦ + 1) β dom π} β¦ ((πβ(π₯ + 1)) β (πβπ₯)))) |
cfwddifn 35627 | class
β³n |
df-fwddifn 35628 | β’ β³n = (π β β0, π β (β
βpm β) β¦ (π₯ β {π¦ β β β£ βπ β (0...π)(π¦ + π) β dom π} β¦ Ξ£π β (0...π)((πCπ) Β· ((-1β(π β π)) Β· (πβ(π₯ + π)))))) |
chf 35639 | class Hf |
df-hf 35640 | β’ Hf = βͺ (π
1 β Ο) |
cfne 35711 | class Fne |
df-fne 35712 | β’ Fne = {β¨π₯, π¦β© β£ (βͺ
π₯ = βͺ π¦
β§ βπ§ β
π₯ π§ β βͺ (π¦ β© π« π§))} |
w3nand 35772 | wff (π βΌ π βΌ π) |
df-3nand 35773 | β’ ((π βΌ π βΌ π) β (π β (π β Β¬ π))) |
cgcdOLD 35834 | class gcdOLD (π΄, π΅) |
df-gcdOLD 35835 | β’ gcdOLD (π΄, π΅) = sup({π₯ β β β£ ((π΄ / π₯) β β β§ (π΅ / π₯) β β)}, β, <
) |
cprvb 35965 | wff Prv π |
ax-prv1 35966 | β’ π β β’ Prv π |
ax-prv2 35967 | β’ (Prv (π β π) β (Prv π β Prv π)) |
ax-prv3 35968 | β’ (Prv π β Prv Prv π) |
wmoo 36018 | wff β**π₯π |
df-bj-mo 36019 | β’ (β**π₯π β βπ§βπ¦βπ₯(π β π₯ = π¦)) |
wnnf 36091 | wff β²'π₯π |
df-bj-nnf 36092 | β’ (β²'π₯π β ((βπ₯π β π) β§ (π β βπ₯π))) |
bj-cgab 36303 | class {π΄ β£ π₯ β£ π} |
df-bj-gab 36304 | β’ {π΄ β£ π₯ β£ π} = {π¦ β£ βπ₯(π΄ = π¦ β§ π)} |
wrnf 36311 | wff β²π₯ β π΄π |
df-bj-rnf 36312 | β’ (β²π₯ β π΄π β (βπ₯ β π΄ π β βπ₯ β π΄ π)) |
bj-csngl 36336 | class sngl π΄ |
df-bj-sngl 36337 | β’ sngl π΄ = {π₯ β£ βπ¦ β π΄ π₯ = {π¦}} |
bj-ctag 36345 | class tag π΄ |
df-bj-tag 36346 | β’ tag π΄ = (sngl π΄ βͺ {β
}) |
bj-cproj 36361 | class (π΄ Proj π΅) |
df-bj-proj 36362 | β’ (π΄ Proj π΅) = {π₯ β£ {π₯} β (π΅ β {π΄})} |
bj-c1upl 36368 | class β¦
π΄β¦ |
df-bj-1upl 36369 | β’ β¦
π΄β¦ = ({β
} Γ tag π΄) |
bj-cpr1 36371 | class pr1 π΄ |
df-bj-pr1 36372 | β’ pr1 π΄ = (β
Proj π΄) |
bj-c2uple 36381 | class β¦
π΄, π΅β¦ |
df-bj-2upl 36382 | β’ β¦
π΄, π΅β¦ = (β¦
π΄β¦ βͺ ({1o} Γ tag
π΅)) |
bj-cpr2 36385 | class pr2 π΄ |
df-bj-pr2 36386 | β’ pr2 π΄ = (1o Proj π΄) |
ax-bj-sn 36404 | β’ βπ₯βπ¦βπ§(π§ β π¦ β π§ = π₯) |
ax-bj-bun 36408 | β’ βπ₯βπ¦βπ§βπ‘(π‘ β π§ β (π‘ β π₯ β¨ π‘ β π¦)) |
ax-bj-adj 36413 | β’ βπ₯βπ¦βπ§βπ‘(π‘ β π§ β (π‘ β π₯ β¨ π‘ = π¦)) |
celwise 36450 | class elwise |
df-elwise 36451 | β’ elwise = (π β V β¦ (π₯ β V, π¦ β V β¦ {π§ β£ βπ’ β π₯ βπ£ β π¦ π§ = (π’ππ£)})) |
cmoore 36474 | class Moore |
df-bj-moore 36475 | β’ Moore = {π₯ β£ βπ¦ β π« π₯(βͺ π₯ β© β© π¦)
β π₯} |
cmpt3 36491 | class (π₯ β π΄, π¦ β π΅, π§ β πΆ β¦ π·) |
df-bj-mpt3 36492 | β’ (π₯ β π΄, π¦ β π΅, π§ β πΆ β¦ π·) = {β¨π , π‘β© β£ βπ₯ β π΄ βπ¦ β π΅ βπ§ β πΆ (π = β¨π₯, π¦, π§β© β§ π‘ = π·)} |
csethom 36493 | class SetβΆ |
df-bj-sethom 36494 | β’ SetβΆ = (π₯ β V, π¦ β V β¦ {π β£ π:π₯βΆπ¦}) |
ctophom 36495 | class TopβΆ |
df-bj-tophom 36496 | β’ TopβΆ = (π₯ β TopSp, π¦ β TopSp β¦ {π β ((Baseβπ₯) SetβΆ (Baseβπ¦)) β£ βπ’ β (TopOpenβπ¦)(β‘π β π’) β (TopOpenβπ₯)}) |
cmgmhom 36497 | class MgmβΆ |
df-bj-mgmhom 36498 | β’ MgmβΆ = (π₯ β Mgm, π¦ β Mgm β¦ {π β ((Baseβπ₯) SetβΆ (Baseβπ¦)) β£ βπ’ β (Baseβπ₯)βπ£ β (Baseβπ₯)(πβ(π’(+gβπ₯)π£)) = ((πβπ’)(+gβπ¦)(πβπ£))}) |
ctopmgmhom 36499 | class TopMgmβΆ |
df-bj-topmgmhom 36500 | β’ TopMgmβΆ = (π₯ β TopMnd, π¦ β TopMnd β¦ ((π₯ TopβΆ π¦) β© (π₯ MgmβΆ π¦))) |
ccur- 36501 | class curry_ |
df-bj-cur 36502 | β’ curry_ = (π₯ β V, π¦ β V, π§ β V β¦ (π β ((π₯ Γ π¦) SetβΆ π§) β¦ (π β π₯ β¦ (π β π¦ β¦ (πββ¨π, πβ©))))) |
cunc- 36503 | class uncurry_ |
df-bj-unc 36504 | β’ uncurry_ = (π₯ β V, π¦ β V, π§ β V β¦ (π β (π₯ SetβΆ (π¦ SetβΆ π§)) β¦ (π β π₯, π β π¦ β¦ ((πβπ)βπ)))) |
cstrset 36505 | class [π΅ / π΄]structπ |
df-strset 36506 | β’ [π΅ / π΄]structπ = ((π βΎ (V β {(π΄βndx)})) βͺ {β¨(π΄βndx), π΅β©}) |
cdiag2 36543 | class Id |
df-bj-diag 36544 | β’ Id = (π₯ β V β¦ ( I βΎ π₯)) |
cimdir 36549 | class
π«* |
df-imdir 36550 | β’ π«* = (π β V, π β V β¦ (π β π« (π Γ π) β¦ {β¨π₯, π¦β© β£ ((π₯ β π β§ π¦ β π) β§ (π β π₯) = π¦)})) |
ciminv 36562 | class
π«* |
df-iminv 36563 | β’ π«* = (π β V, π β V β¦ (π β π« (π Γ π) β¦ {β¨π₯, π¦β© β£ ((π₯ β π β§ π¦ β π) β§ π₯ = (β‘π β π¦))})) |
cfractemp 36567 | class
{R |
df-bj-fractemp 36568 | β’ {R = (π₯ β R β¦
(β©π¦ β
R ((π¦ =
0R β¨ (0R
<R π¦ β§ π¦ <R
1R)) β§ βπ β Ο ([β¨{π§ β Q β£ π§ <Q
β¨suc π,
1oβ©}, 1Pβ©]
~R +R π¦) = π₯))) |
cinftyexpitau 36569 | class
+βeiΟ |
df-bj-inftyexpitau 36570 | β’ +βeiΟ = (π₯ β β β¦
β¨({Rβ(1st βπ₯)),
{R}β©) |
cccinftyN 36571 | class
ββN |
df-bj-ccinftyN 36572 | β’ ββN = ran
+βeiΟ |
chalf 36574 | class 1/2 |
df-bj-onehalf 36575 | β’ 1/2 = (β©π₯ β R (π₯ +R π₯) =
1R) |
cinftyexpi 36577 | class
+βei |
df-bj-inftyexpi 36578 | β’ +βei = (π₯ β (-Ο(,]Ο) β¦ β¨π₯,
ββ©) |
cccinfty 36582 | class
ββ |
df-bj-ccinfty 36583 | β’ ββ = ran
+βei |
cccbar 36586 | class βΜ
|
df-bj-ccbar 36587 | β’ βΜ
= (β βͺ
ββ) |
cpinfty 36590 | class +β |
df-bj-pinfty 36591 | β’ +β =
(+βeiβ0) |
cminfty 36594 | class -β |
df-bj-minfty 36595 | β’ -β =
(+βeiβΟ) |
crrbar 36599 | class βΜ
|
df-bj-rrbar 36600 | β’ βΜ
= (β βͺ {-β,
+β}) |
cinfty 36601 | class β |
df-bj-infty 36602 | β’ β = π« βͺ β |
ccchat 36603 | class βΜ |
df-bj-cchat 36604 | β’ βΜ = (β βͺ
{β}) |
crrhat 36605 | class βΜ |
df-bj-rrhat 36606 | β’ βΜ = (β βͺ
{β}) |
caddcc 36608 | class
+βΜ
|
df-bj-addc 36609 | β’ +βΜ
= (π₯ β (((β Γ
βΜ
) βͺ (βΜ
Γ β)) βͺ ((βΜ
Γ βΜ) βͺ ( I βΎ ββ))) β¦
if(((1st βπ₯) = β β¨ (2nd βπ₯) = β), β,
if((1st βπ₯) β β, if((2nd
βπ₯) β β,
β¨((1st β(1st βπ₯)) +R
(1st β(2nd βπ₯))), ((2nd β(1st
βπ₯))
+R (2nd β(2nd βπ₯)))β©, (2nd
βπ₯)), (1st
βπ₯)))) |
coppcc 36610 | class
-βΜ
|
df-bj-oppc 36611 | β’ -βΜ
= (π₯ β (βΜ
βͺ
βΜ) β¦ if(π₯ = β, β, if(π₯ β β, (β©π¦ β β (π₯ +βΜ
π¦) = 0),
(+βeiΟβ(π₯ +βΜ
β¨1/2,
0Rβ©))))) |
cltxr 36612 | class
<βΜ
|
df-bj-lt 36613 | β’ <βΜ
= ({π₯ β (βΜ
Γ
βΜ
) β£ βπ¦βπ§(((1st βπ₯) = β¨π¦, 0Rβ© β§
(2nd βπ₯) =
β¨π§,
0Rβ©) β§ π¦ <R π§)} βͺ ((({-β} Γ
β) βͺ (β Γ {+β})) βͺ ({-β} Γ
{+β}))) |
carg 36614 | class Arg |
df-bj-arg 36615 | β’ Arg = (π₯ β (βΜ
β {0}) β¦
if(π₯ β β,
(ββ(logβπ₯)), if(π₯<βΜ
0, Ο,
(((1st βπ₯)
/ (2 Β· Ο)) β Ο)))) |
cmulc 36616 | class
Β·βΜ
|
df-bj-mulc 36617 | β’ Β·βΜ
= (π₯ β ((βΜ
Γ
βΜ
) βͺ (βΜ Γ βΜ)) β¦
if(((1st βπ₯) = 0 β¨ (2nd βπ₯) = 0), 0, if(((1st
βπ₯) = β β¨
(2nd βπ₯) =
β), β, if(π₯
β (β Γ β), ((1st βπ₯) Β· (2nd βπ₯)),
(+βeiΟβ(((Argβ(1st βπ₯)) +βΜ
(Argβ(2nd βπ₯))) / Ο)))))) |
cinvc 36618 | class
-1βΜ
|
df-bj-invc 36619 | β’ -1βΜ
=
(π₯ β (βΜ
βͺ βΜ) β¦ if(π₯ = 0, β, if(π₯ β β, (β©π¦ β β (π₯ Β·βΜ
π¦) = 1),
0))) |
ciomnn 36620 | class
iΟβͺβ |
df-bj-iomnn 36621 | β’ iΟβͺβ =
((π β Ο β¦
β¨[β¨{π β
Q β£ π
<Q β¨suc π, 1oβ©},
1Pβ©] ~R ,
0Rβ©) βͺ {β¨Ο,
+ββ©}) |
cnnbar 36631 | class βΜ
|
df-bj-nnbar 36632 | β’ βΜ
= (β0 βͺ
{+β}) |
czzbar 36633 | class β€Μ
|
df-bj-zzbar 36634 | β’ β€Μ
= (β€ βͺ {-β,
+β}) |
czzhat 36635 | class β€Μ |
df-bj-zzhat 36636 | β’ β€Μ = (β€ βͺ
{β}) |
cdivc 36637 | class
β₯β |
df-bj-divc 36638 | β’ β₯β = {β¨π₯, π¦β© β£ (β¨π₯, π¦β© β ((βΜ
Γ
βΜ
) βͺ (βΜ Γ βΜ)) β§
βπ β
(β€Μ
βͺ β€Μ)(π Β·βΜ
π₯) = π¦)} |
cfinsum 36654 | class FinSum |
df-bj-finsum 36655 | β’ FinSum = (π₯ β {β¨π¦, π§β© β£ (π¦ β CMnd β§ βπ‘ β Fin π§:π‘βΆ(Baseβπ¦))} β¦ (β©π βπ β β0 βπ(π:(1...π)β1-1-ontoβdom
(2nd βπ₯)
β§ π =
(seq1((+gβ(1st βπ₯)), (π β β β¦ ((2nd
βπ₯)β(πβπ))))βπ)))) |
crrvec 36663 | class β-Vec |
df-bj-rvec 36664 | β’ β-Vec = (LMod β© (β‘Scalar β
{βfld})) |
cend 36684 | class End |
df-bj-end 36685 | β’ End = (π β Cat β¦ (π₯ β (Baseβπ) β¦ {β¨(Baseβndx), (π₯(Hom βπ)π₯)β©, β¨(+gβndx),
(β¨π₯, π₯β©(compβπ)π₯)β©})) |
cfinxp 36754 | class (πββπ) |
df-finxp 36755 | β’ (πββπ) = {π¦ β£ (π β Ο β§ β
= (rec((π β Ο, π₯ β V β¦ if((π = 1o β§ π₯ β π), β
, if(π₯ β (V Γ π), β¨βͺ π, (1st βπ₯)β©, β¨π, π₯β©))), β¨π, π¦β©)βπ))} |
ax-luk1 36790 | β’ ((π β π) β ((π β π) β (π β π))) |
ax-luk2 36791 | β’ ((Β¬ π β π) β π) |
ax-luk3 36792 | β’ (π β (Β¬ π β π)) |
ax-wl-13v 36864 | β’ (Β¬ βπ₯ π₯ = π¦ β (π¦ = π§ β βπ₯ π¦ = π§)) |
ax-wl-11v 36936 | β’ (βπ₯βπ¦π β βπ¦βπ₯π) |
ctotbnd 37124 | class TotBnd |
cbnd 37125 | class Bnd |
df-totbnd 37126 | β’ TotBnd = (π₯ β V β¦ {π β (Metβπ₯) β£ βπ β β+ βπ£ β Fin (βͺ π£ =
π₯ β§ βπ β π£ βπ¦ β π₯ π = (π¦(ballβπ)π))}) |
df-bnd 37137 | β’ Bnd = (π₯ β V β¦ {π β (Metβπ₯) β£ βπ¦ β π₯ βπ β β+ π₯ = (π¦(ballβπ)π)}) |
cismty 37156 | class Ismty |
df-ismty 37157 | β’ Ismty = (π β βͺ ran
βMet, π β βͺ ran βMet β¦ {π β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))}) |
crrn 37183 | class
βn |
df-rrn 37184 | β’ βn = (π β Fin β¦ (π₯ β (β
βm π),
π¦ β (β
βm π)
β¦ (ββΞ£π β π (((π₯βπ) β (π¦βπ))β2)))) |
cass 37200 | class Ass |
df-ass 37201 | β’ Ass = {π β£ βπ₯ β dom dom πβπ¦ β dom dom πβπ§ β dom dom π((π₯ππ¦)ππ§) = (π₯π(π¦ππ§))} |
cexid 37202 | class ExId |
df-exid 37203 | β’ ExId = {π β£ βπ₯ β dom dom πβπ¦ β dom dom π((π₯ππ¦) = π¦ β§ (π¦ππ₯) = π¦)} |
cmagm 37206 | class Magma |
df-mgmOLD 37207 | β’ Magma = {π β£ βπ‘ π:(π‘ Γ π‘)βΆπ‘} |
csem 37218 | class SemiGrp |
df-sgrOLD 37219 | β’ SemiGrp = (Magma β© Ass) |
cmndo 37224 | class MndOp |
df-mndo 37225 | β’ MndOp = (SemiGrp β© ExId
) |
cghomOLD 37241 | class GrpOpHom |
df-ghomOLD 37242 | β’ GrpOpHom = (π β GrpOp, β β GrpOp β¦ {π β£ (π:ran πβΆran β β§ βπ₯ β ran πβπ¦ β ran π((πβπ₯)β(πβπ¦)) = (πβ(π₯ππ¦)))}) |
crngo 37252 | class RingOps |
df-rngo 37253 | β’ RingOps = {β¨π, ββ© β£ ((π β AbelOp β§ β:(ran π Γ ran π)βΆran π) β§ (βπ₯ β ran πβπ¦ β ran πβπ§ β ran π(((π₯βπ¦)βπ§) = (π₯β(π¦βπ§)) β§ (π₯β(π¦ππ§)) = ((π₯βπ¦)π(π₯βπ§)) β§ ((π₯ππ¦)βπ§) = ((π₯βπ§)π(π¦βπ§))) β§ βπ₯ β ran πβπ¦ β ran π((π₯βπ¦) = π¦ β§ (π¦βπ₯) = π¦)))} |
cdrng 37306 | class DivRingOps |
df-drngo 37307 | β’ DivRingOps = {β¨π, ββ© β£ (β¨π, ββ© β RingOps β§ (β βΎ ((ran π β {(GIdβπ)}) Γ (ran π β {(GIdβπ)}))) β GrpOp)} |
crngohom 37318 | class RingOpsHom |
crngoiso 37319 | class RingOpsIso |
crisc 37320 | class
βπ |
df-rngohom 37321 | β’ RingOpsHom = (π β RingOps, π β RingOps β¦ {π β (ran (1st βπ ) βm ran
(1st βπ))
β£ ((πβ(GIdβ(2nd
βπ))) =
(GIdβ(2nd βπ )) β§ βπ₯ β ran (1st βπ)βπ¦ β ran (1st βπ)((πβ(π₯(1st βπ)π¦)) = ((πβπ₯)(1st βπ )(πβπ¦)) β§ (πβ(π₯(2nd βπ)π¦)) = ((πβπ₯)(2nd βπ )(πβπ¦))))}) |
df-rngoiso 37334 | β’ RingOpsIso = (π β RingOps, π β RingOps β¦ {π β (π RingOpsHom π ) β£ π:ran (1st βπ)β1-1-ontoβran
(1st βπ )}) |
df-risc 37341 | β’ βπ = {β¨π, π β© β£ ((π β RingOps β§ π β RingOps) β§ βπ π β (π RingOpsIso π ))} |
ccm2 37347 | class Com2 |
df-com2 37348 | β’ Com2 = {β¨π, ββ© β£ βπ β ran πβπ β ran π(πβπ) = (πβπ)} |
cfld 37349 | class Fld |
df-fld 37350 | β’ Fld = (DivRingOps β©
Com2) |
ccring 37351 | class CRingOps |
df-crngo 37352 | β’ CRingOps = (RingOps β©
Com2) |
cidl 37365 | class Idl |
cpridl 37366 | class PrIdl |
cmaxidl 37367 | class MaxIdl |
df-idl 37368 | β’ Idl = (π β RingOps β¦ {π β π« ran (1st
βπ) β£
((GIdβ(1st βπ)) β π β§ βπ₯ β π (βπ¦ β π (π₯(1st βπ)π¦) β π β§ βπ§ β ran (1st βπ)((π§(2nd βπ)π₯) β π β§ (π₯(2nd βπ)π§) β π)))}) |
df-pridl 37369 | β’ PrIdl = (π β RingOps β¦ {π β (Idlβπ) β£ (π β ran (1st βπ) β§ βπ β (Idlβπ)βπ β (Idlβπ)(βπ₯ β π βπ¦ β π (π₯(2nd βπ)π¦) β π β (π β π β¨ π β π)))}) |
df-maxidl 37370 | β’ MaxIdl = (π β RingOps β¦ {π β (Idlβπ) β£ (π β ran (1st βπ) β§ βπ β (Idlβπ)(π β π β (π = π β¨ π = ran (1st βπ))))}) |
cprrng 37404 | class PrRing |
cdmn 37405 | class Dmn |
df-prrngo 37406 | β’ PrRing = {π β RingOps β£
{(GIdβ(1st βπ))} β (PrIdlβπ)} |
df-dmn 37407 | β’ Dmn = (PrRing β© Com2) |
cigen 37417 | class IdlGen |
df-igen 37418 | β’ IdlGen = (π β RingOps, π β π« ran (1st
βπ) β¦ β© {π
β (Idlβπ)
β£ π β π}) |
cxrn 37532 | class (π΄ β π΅) |
ccoss 37533 | class β π
|
ccoels 37534 | class βΌ π΄ |
crels 37535 | class Rels |
cssr 37536 | class S |
crefs 37537 | class Refs |
crefrels 37538 | class RefRels |
wrefrel 37539 | wff RefRel π
|
ccnvrefs 37540 | class CnvRefs |
ccnvrefrels 37541 | class CnvRefRels |
wcnvrefrel 37542 | wff CnvRefRel π
|
csyms 37543 | class Syms |
csymrels 37544 | class SymRels |
wsymrel 37545 | wff SymRel π
|
ctrs 37546 | class Trs |
ctrrels 37547 | class TrRels |
wtrrel 37548 | wff TrRel π
|
ceqvrels 37549 | class EqvRels |
weqvrel 37550 | wff EqvRel π
|
ccoeleqvrels 37551 | class CoElEqvRels |
wcoeleqvrel 37552 | wff CoElEqvRel π΄ |
credunds 37553 | class Redunds |
wredund 37554 | wff π΄ Redund β¨π΅, πΆβ© |
wredundp 37555 | wff redund (π, π, π) |
cdmqss 37556 | class DomainQss |
wdmqs 37557 | wff π
DomainQs π΄ |
cers 37558 | class Ers |
werALTV 37559 | wff π
ErALTV π΄ |
ccomembers 37560 | class CoMembErs |
wcomember 37561 | wff CoMembEr π΄ |
cfunss 37562 | class Funss |
cfunsALTV 37563 | class FunsALTV |
wfunALTV 37564 | wff FunALTV πΉ |
cdisjss 37565 | class Disjss |
cdisjs 37566 | class Disjs |
wdisjALTV 37567 | wff Disj π
|
celdisjs 37568 | class ElDisjs |
weldisj 37569 | wff ElDisj π΄ |
wantisymrel 37570 | wff AntisymRel π
|
cparts 37571 | class Parts |
wpart 37572 | wff π
Part π΄ |
cmembparts 37573 | class MembParts |
wmembpart 37574 | wff MembPart π΄ |
df-xrn 37731 | β’ (π΄ β π΅) = ((β‘(1st βΎ (V Γ V))
β π΄) β© (β‘(2nd βΎ (V Γ V))
β π΅)) |
df-coss 37771 | β’ β π
= {β¨π₯, π¦β© β£ βπ’(π’π
π₯ β§ π’π
π¦)} |
df-coels 37772 | β’ βΌ π΄ = β (β‘ E βΎ π΄) |
df-rels 37845 | β’ Rels = π« (V Γ
V) |
df-ssr 37858 | β’ S = {β¨π₯, π¦β© β£ π₯ β π¦} |
df-refs 37870 | β’ Refs = {π₯ β£ ( I β© (dom π₯ Γ ran π₯)) S (π₯ β© (dom π₯ Γ ran π₯))} |
df-refrels 37871 | β’ RefRels = ( Refs β© Rels
) |
df-refrel 37872 | β’ ( RefRel π
β (( I β© (dom π
Γ ran π
)) β (π
β© (dom π
Γ ran π
)) β§ Rel π
)) |
df-cnvrefs 37885 | β’ CnvRefs = {π₯ β£ ( I β© (dom π₯ Γ ran π₯))β‘ S
(π₯ β© (dom π₯ Γ ran π₯))} |
df-cnvrefrels 37886 | β’ CnvRefRels = ( CnvRefs β© Rels
) |
df-cnvrefrel 37887 | β’ ( CnvRefRel π
β ((π
β© (dom π
Γ ran π
)) β ( I β© (dom π
Γ ran π
)) β§ Rel π
)) |
df-syms 37902 | β’ Syms = {π₯ β£ β‘(π₯ β© (dom π₯ Γ ran π₯)) S (π₯ β© (dom π₯ Γ ran π₯))} |
df-symrels 37903 | β’ SymRels = ( Syms β© Rels
) |
df-symrel 37904 | β’ ( SymRel π
β (β‘(π
β© (dom π
Γ ran π
)) β (π
β© (dom π
Γ ran π
)) β§ Rel π
)) |
df-trs 37932 | β’ Trs = {π₯ β£ ((π₯ β© (dom π₯ Γ ran π₯)) β (π₯ β© (dom π₯ Γ ran π₯))) S (π₯ β© (dom π₯ Γ ran π₯))} |
df-trrels 37933 | β’ TrRels = ( Trs β© Rels ) |
df-trrel 37934 | β’ ( TrRel π
β (((π
β© (dom π
Γ ran π
)) β (π
β© (dom π
Γ ran π
))) β (π
β© (dom π
Γ ran π
)) β§ Rel π
)) |
df-eqvrels 37944 | β’ EqvRels = (( RefRels β© SymRels ) β©
TrRels ) |
df-eqvrel 37945 | β’ ( EqvRel π
β ( RefRel π
β§ SymRel π
β§ TrRel π
)) |
df-coeleqvrels 37946 | β’ CoElEqvRels = {π β£ β (β‘ E βΎ π) β EqvRels } |
df-coeleqvrel 37947 | β’ ( CoElEqvRel π΄ β EqvRel β (β‘ E βΎ π΄)) |
df-redunds 37983 | β’ Redunds = β‘{β¨β¨π¦, π§β©, π₯β© β£ (π₯ β π¦ β§ (π₯ β© π§) = (π¦ β© π§))} |
df-redund 37984 | β’ (π΄ Redund β¨π΅, πΆβ© β (π΄ β π΅ β§ (π΄ β© πΆ) = (π΅ β© πΆ))) |
df-redundp 37985 | β’ ( redund (π, π, π) β ((π β π) β§ ((π β§ π) β (π β§ π)))) |
df-dmqss 37998 | β’ DomainQss = {β¨π₯, π¦β© β£ (dom π₯ / π₯) = π¦} |
df-dmqs 37999 | β’ (π
DomainQs π΄ β (dom π
/ π
) = π΄) |
df-ers 38023 | β’ Ers = ( DomainQss βΎ EqvRels
) |
df-erALTV 38024 | β’ (π
ErALTV π΄ β ( EqvRel π
β§ π
DomainQs π΄)) |
df-comembers 38025 | β’ CoMembErs = {π β£ β (β‘ E βΎ π) Ers π} |
df-comember 38026 | β’ ( CoMembEr π΄ β β (β‘ E βΎ π΄) ErALTV π΄) |
df-funss 38040 | β’ Funss = {π₯ β£ β π₯ β CnvRefRels } |
df-funsALTV 38041 | β’ FunsALTV = ( Funss β© Rels
) |
df-funALTV 38042 | β’ ( FunALTV πΉ β ( CnvRefRel β πΉ β§ Rel πΉ)) |
df-disjss 38063 | β’ Disjss = {π₯ β£ β β‘π₯ β CnvRefRels } |
df-disjs 38064 | β’ Disjs = ( Disjss β© Rels
) |
df-disjALTV 38065 | β’ ( Disj π
β ( CnvRefRel β β‘π
β§ Rel π
)) |
df-eldisjs 38066 | β’ ElDisjs = {π β£ (β‘ E βΎ π) β Disjs } |
df-eldisj 38067 | β’ ( ElDisj π΄ β Disj (β‘ E βΎ π΄)) |
df-antisymrel 38120 | β’ ( AntisymRel π
β ( CnvRefRel (π
β© β‘π
) β§ Rel π
)) |
df-parts 38125 | β’ Parts = ( DomainQss βΎ Disjs
) |
df-part 38126 | β’ (π
Part π΄ β ( Disj π
β§ π
DomainQs π΄)) |
df-membparts 38127 | β’ MembParts = {π β£ (β‘ E βΎ π) Parts π} |
df-membpart 38128 | β’ ( MembPart π΄ β (β‘ E βΎ π΄) Part π΄) |
wprt 38231 | wff Prt π΄ |
df-prt 38232 | β’ (Prt π΄ β βπ₯ β π΄ βπ¦ β π΄ (π₯ = π¦ β¨ (π₯ β© π¦) = β
)) |
ax-c5 38243 | β’ (βπ₯π β π) |
ax-c4 38244 | β’ (βπ₯(βπ₯π β π) β (βπ₯π β βπ₯π)) |
ax-c7 38245 | β’ (Β¬ βπ₯ Β¬ βπ₯π β π) |
ax-c10 38246 | β’ (βπ₯(π₯ = π¦ β βπ₯π) β π) |
ax-c11 38247 | β’ (βπ₯ π₯ = π¦ β (βπ₯π β βπ¦π)) |
ax-c11n 38248 | β’ (βπ₯ π₯ = π¦ β βπ¦ π¦ = π₯) |
ax-c15 38249 | β’ (Β¬ βπ₯ π₯ = π¦ β (π₯ = π¦ β (π β βπ₯(π₯ = π¦ β π)))) |
ax-c9 38250 | β’ (Β¬ βπ§ π§ = π₯ β (Β¬ βπ§ π§ = π¦ β (π₯ = π¦ β βπ§ π₯ = π¦))) |
ax-c14 38251 | β’ (Β¬ βπ§ π§ = π₯ β (Β¬ βπ§ π§ = π¦ β (π₯ β π¦ β βπ§ π₯ β π¦))) |
ax-c16 38252 | β’ (βπ₯ π₯ = π¦ β (π β βπ₯π)) |
ax-riotaBAD 38313 | β’ (β©π₯ β π΄ π) = if(β!π₯ β π΄ π, (β©π₯(π₯ β π΄ β§ π)), (Undefβ{π₯ β£ π₯ β π΄})) |
clsa 38334 | class LSAtoms |
clsh 38335 | class LSHyp |
df-lsatoms 38336 | β’ LSAtoms = (π€ β V β¦ ran (π£ β ((Baseβπ€) β {(0gβπ€)}) β¦ ((LSpanβπ€)β{π£}))) |
df-lshyp 38337 | β’ LSHyp = (π€ β V β¦ {π β (LSubSpβπ€) β£ (π β (Baseβπ€) β§ βπ£ β (Baseβπ€)((LSpanβπ€)β(π βͺ {π£})) = (Baseβπ€))}) |
clcv 38378 | class
βL |
df-lcv 38379 | β’ βL = (π€ β V β¦ {β¨π‘, π’β© β£ ((π‘ β (LSubSpβπ€) β§ π’ β (LSubSpβπ€)) β§ (π‘ β π’ β§ Β¬ βπ β (LSubSpβπ€)(π‘ β π β§ π β π’)))}) |
clfn 38417 | class LFnl |
df-lfl 38418 | β’ LFnl = (π€ β V β¦ {π β ((Baseβ(Scalarβπ€)) βm
(Baseβπ€)) β£
βπ β
(Baseβ(Scalarβπ€))βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)(πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦))}) |
clk 38445 | class LKer |
df-lkr 38446 | β’ LKer = (π€ β V β¦ (π β (LFnlβπ€) β¦ (β‘π β
{(0gβ(Scalarβπ€))}))) |
cld 38483 | class LDual |
df-ldual 38484 | β’ LDual = (π£ β V β¦ ({β¨(Baseβndx),
(LFnlβπ£)β©,
β¨(+gβndx), ( βf
(+gβ(Scalarβπ£)) βΎ ((LFnlβπ£) Γ (LFnlβπ£)))β©, β¨(Scalarβndx),
(opprβ(Scalarβπ£))β©} βͺ {β¨(
Β·π βndx), (π β (Baseβ(Scalarβπ£)), π β (LFnlβπ£) β¦ (π βf
(.rβ(Scalarβπ£))((Baseβπ£) Γ {π})))β©})) |
cops 38532 | class OP |
ccmtN 38533 | class cm |
col 38534 | class OL |
coml 38535 | class OML |
df-oposet 38536 | β’ OP = {π β Poset β£ (((Baseβπ) β dom (lubβπ) β§ (Baseβπ) β dom (glbβπ)) β§ βπ(π = (ocβπ) β§ βπ β (Baseβπ)βπ β (Baseβπ)(((πβπ) β (Baseβπ) β§ (πβ(πβπ)) = π β§ (π(leβπ)π β (πβπ)(leβπ)(πβπ))) β§ (π(joinβπ)(πβπ)) = (1.βπ) β§ (π(meetβπ)(πβπ)) = (0.βπ))))} |
df-cmtN 38537 | β’ cm = (π β V β¦ {β¨π₯, π¦β© β£ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π₯ = ((π₯(meetβπ)π¦)(joinβπ)(π₯(meetβπ)((ocβπ)βπ¦))))}) |
df-ol 38538 | β’ OL = (Lat β©
OP) |
df-oml 38539 | β’ OML = {π β OL β£ βπ β (Baseβπ)βπ β (Baseβπ)(π(leβπ)π β π = (π(joinβπ)(π(meetβπ)((ocβπ)βπ))))} |
ccvr 38622 | class β |
catm 38623 | class Atoms |
cal 38624 | class AtLat |
clc 38625 | class CvLat |
df-covers 38626 | β’ β = (π β V β¦ {β¨π, πβ© β£ ((π β (Baseβπ) β§ π β (Baseβπ)) β§ π(ltβπ)π β§ Β¬ βπ§ β (Baseβπ)(π(ltβπ)π§ β§ π§(ltβπ)π))}) |
df-ats 38627 | β’ Atoms = (π β V β¦ {π β (Baseβπ) β£ (0.βπ)( β βπ)π}) |
df-atl 38658 | β’ AtLat = {π β Lat β£ ((Baseβπ) β dom (glbβπ) β§ βπ₯ β (Baseβπ)(π₯ β (0.βπ) β βπ β (Atomsβπ)π(leβπ)π₯))} |
df-cvlat 38682 | β’ CvLat = {π β AtLat β£ βπ β (Atomsβπ)βπ β (Atomsβπ)βπ β (Baseβπ)((Β¬ π(leβπ)π β§ π(leβπ)(π(joinβπ)π)) β π(leβπ)(π(joinβπ)π))} |
chlt 38710 | class HL |
df-hlat 38711 | β’ HL = {π β ((OML β© CLat) β© CvLat)
β£ (βπ β
(Atomsβπ)βπ β (Atomsβπ)(π β π β βπ β (Atomsβπ)(π β π β§ π β π β§ π(leβπ)(π(joinβπ)π))) β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)(((0.βπ)(ltβπ)π β§ π(ltβπ)π) β§ (π(ltβπ)π β§ π(ltβπ)(1.βπ))))} |
clln 38852 | class LLines |
clpl 38853 | class LPlanes |
clvol 38854 | class LVols |
clines 38855 | class Lines |
cpointsN 38856 | class Points |
cpsubsp 38857 | class PSubSp |
cpmap 38858 | class pmap |
df-llines 38859 | β’ LLines = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (Atomsβπ)π( β βπ)π₯}) |
df-lplanes 38860 | β’ LPlanes = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LLinesβπ)π( β βπ)π₯}) |
df-lvols 38861 | β’ LVols = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LPlanesβπ)π( β βπ)π₯}) |
df-lines 38862 | β’ Lines = (π β V β¦ {π β£ βπ β (Atomsβπ)βπ β (Atomsβπ)(π β π β§ π = {π β (Atomsβπ) β£ π(leβπ)(π(joinβπ)π)})}) |
df-pointsN 38863 | β’ Points = (π β V β¦ {π β£ βπ β (Atomsβπ)π = {π}}) |
df-psubsp 38864 | β’ PSubSp = (π β V β¦ {π β£ (π β (Atomsβπ) β§ βπ β π βπ β π βπ β (Atomsβπ)(π(leβπ)(π(joinβπ)π) β π β π ))}) |
df-pmap 38865 | β’ pmap = (π β V β¦ (π β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π})) |
cpadd 39156 | class
+π |
df-padd 39157 | β’ +π = (π β V β¦ (π β π« (Atomsβπ), π β π« (Atomsβπ) β¦ ((π βͺ π) βͺ {π β (Atomsβπ) β£ βπ β π βπ β π π(leβπ)(π(joinβπ)π)}))) |
cpclN 39248 | class PCl |
df-pclN 39249 | β’ PCl = (π β V β¦ (π₯ β π« (Atomsβπ) β¦ β© {π¦
β (PSubSpβπ)
β£ π₯ β π¦})) |
cpolN 39263 | class
β₯π |
df-polarityN 39264 | β’ β₯π = (π β V β¦ (π β π«
(Atomsβπ) β¦
((Atomsβπ) β©
β© π β π ((pmapβπ)β((ocβπ)βπ))))) |
cpscN 39295 | class PSubCl |
df-psubclN 39296 | β’ PSubCl = (π β V β¦ {π β£ (π β (Atomsβπ) β§
((β₯πβπ)β((β₯πβπ)βπ )) = π )}) |
clh 39345 | class LHyp |
claut 39346 | class LAut |
cwpointsN 39347 | class WAtoms |
cpautN 39348 | class PAut |
df-lhyp 39349 | β’ LHyp = (π β V β¦ {π₯ β (Baseβπ) β£ π₯( β βπ)(1.βπ)}) |
df-laut 39350 | β’ LAut = (π β V β¦ {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(π₯(leβπ)π¦ β (πβπ₯)(leβπ)(πβπ¦)))}) |
df-watsN 39351 | β’ WAtoms = (π β V β¦ (π β (Atomsβπ) β¦ ((Atomsβπ) β
((β₯πβπ)β{π})))) |
df-pautN 39352 | β’ PAut = (π β V β¦ {π β£ (π:(PSubSpβπ)β1-1-ontoβ(PSubSpβπ) β§ βπ₯ β (PSubSpβπ)βπ¦ β (PSubSpβπ)(π₯ β π¦ β (πβπ₯) β (πβπ¦)))}) |
cldil 39461 | class LDil |
cltrn 39462 | class LTrn |
cdilN 39463 | class Dil |
ctrnN 39464 | class Trn |
df-ldil 39465 | β’ LDil = (π β V β¦ (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)})) |
df-ltrn 39466 | β’ LTrn = (π β V β¦ (π€ β (LHypβπ) β¦ {π β ((LDilβπ)βπ€) β£ βπ β (Atomsβπ)βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ Β¬ π(leβπ)π€) β ((π(joinβπ)(πβπ))(meetβπ)π€) = ((π(joinβπ)(πβπ))(meetβπ)π€))})) |
df-dilN 39467 | β’ Dil = (π β V β¦ (π β (Atomsβπ) β¦ {π β (PAutβπ) β£ βπ₯ β (PSubSpβπ)(π₯ β ((WAtomsβπ)βπ) β (πβπ₯) = π₯)})) |
df-trnN 39468 | β’ Trn = (π β V β¦ (π β (Atomsβπ) β¦ {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β©
((β₯πβπ)β{π}))})) |
ctrl 39519 | class trL |
df-trl 39520 | β’ trL = (π β V β¦ (π€ β (LHypβπ) β¦ (π β ((LTrnβπ)βπ€) β¦ (β©π₯ β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)))))) |
ctgrp 40103 | class TGrp |
df-tgrp 40104 | β’ TGrp = (π β V β¦ (π€ β (LHypβπ) β¦ {β¨(Baseβndx),
((LTrnβπ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπ)βπ€), π β ((LTrnβπ)βπ€) β¦ (π β π))β©})) |
ctendo 40113 | class TEndo |
cedring 40114 | class EDRing |
cedring-rN 40115 | class
EDRingR |
df-tendo 40116 | β’ TEndo = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ (π:((LTrnβπ)βπ€)βΆ((LTrnβπ)βπ€) β§ βπ₯ β ((LTrnβπ)βπ€)βπ¦ β ((LTrnβπ)βπ€)(πβ(π₯ β π¦)) = ((πβπ₯) β (πβπ¦)) β§ βπ₯ β ((LTrnβπ)βπ€)(((trLβπ)βπ€)β(πβπ₯))(leβπ)(((trLβπ)βπ€)βπ₯))})) |
df-edring-rN 40117 | β’ EDRingR = (π β V β¦ (π€ β (LHypβπ) β¦ {β¨(Baseβndx),
((TEndoβπ)βπ€)β©, β¨(+gβndx),
(π β
((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π β ((LTrnβπ)βπ€) β¦ ((π βπ) β (π‘βπ))))β©, β¨(.rβndx),
(π β
((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π‘ β π ))β©})) |
df-edring 40118 | β’ EDRing = (π β V β¦ (π€ β (LHypβπ) β¦ {β¨(Baseβndx),
((TEndoβπ)βπ€)β©, β¨(+gβndx),
(π β
((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π β ((LTrnβπ)βπ€) β¦ ((π βπ) β (π‘βπ))))β©, β¨(.rβndx),
(π β
((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π β π‘))β©})) |
cdveca 40363 | class DVecA |
df-dveca 40364 | β’ DVecA = (π β V β¦ (π€ β (LHypβπ) β¦ ({β¨(Baseβndx),
((LTrnβπ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπ)βπ€), π β ((LTrnβπ)βπ€) β¦ (π β π))β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β ((LTrnβπ)βπ€) β¦ (π βπ))β©}))) |
cdia 40389 | class DIsoA |
df-disoa 40390 | β’ DIsoA = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β {π¦ β (Baseβπ) β£ π¦(leβπ)π€} β¦ {π β ((LTrnβπ)βπ€) β£ (((trLβπ)βπ€)βπ)(leβπ)π₯}))) |
cdvh 40439 | class DVecH |
df-dvech 40440 | β’ DVecH = (π β V β¦ (π€ β (LHypβπ) β¦ ({β¨(Baseβndx),
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β©, β¨(+gβndx),
(π β
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β©}))) |
cocaN 40480 | class ocA |
df-docaN 40481 | β’ ocA = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« ((LTrnβπ)βπ€) β¦ (((DIsoAβπ)βπ€)β((((ocβπ)β(β‘((DIsoAβπ)βπ€)ββ© {π§ β ran ((DIsoAβπ)βπ€) β£ π₯ β π§}))(joinβπ)((ocβπ)βπ€))(meetβπ)π€))))) |
cdjaN 40492 | class vA |
df-djaN 40493 | β’ vA = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« ((LTrnβπ)βπ€), π¦ β π« ((LTrnβπ)βπ€) β¦ (((ocAβπ)βπ€)β((((ocAβπ)βπ€)βπ₯) β© (((ocAβπ)βπ€)βπ¦)))))) |
cdib 40499 | class DIsoB |
df-dib 40500 | β’ DIsoB = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β dom ((DIsoAβπ)βπ€) β¦ ((((DIsoAβπ)βπ€)βπ₯) Γ {(π β ((LTrnβπ)βπ€) β¦ ( I βΎ (Baseβπ)))})))) |
cdic 40533 | class DIsoC |
df-dic 40534 | β’ DIsoC = (π β V β¦ (π€ β (LHypβπ) β¦ (π β {π β (Atomsβπ) β£ Β¬ π(leβπ)π€} β¦ {β¨π, π β© β£ (π = (π β(β©π β ((LTrnβπ)βπ€)(πβ((ocβπ)βπ€)) = π)) β§ π β ((TEndoβπ)βπ€))}))) |
cdih 40589 | class DIsoH |
df-dih 40590 | β’ DIsoH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β (Baseβπ) β¦ if(π₯(leβπ)π€, (((DIsoBβπ)βπ€)βπ₯), (β©π’ β (LSubSpβ((DVecHβπ)βπ€))βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ (π(joinβπ)(π₯(meetβπ)π€)) = π₯) β π’ = ((((DIsoCβπ)βπ€)βπ)(LSSumβ((DVecHβπ)βπ€))(((DIsoBβπ)βπ€)β(π₯(meetβπ)π€))))))))) |
coch 40708 | class ocH |
df-doch 40709 | β’ ocH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π«
(Baseβ((DVecHβπ)βπ€)) β¦ (((DIsoHβπ)βπ€)β((ocβπ)β((glbβπ)β{π¦ β (Baseβπ) β£ π₯ β (((DIsoHβπ)βπ€)βπ¦)})))))) |
cdjh 40755 | class joinH |
df-djh 40756 | β’ joinH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π«
(Baseβ((DVecHβπ)βπ€)), π¦ β π«
(Baseβ((DVecHβπ)βπ€)) β¦ (((ocHβπ)βπ€)β((((ocHβπ)βπ€)βπ₯) β© (((ocHβπ)βπ€)βπ¦)))))) |
clpoN 40841 | class LPol |
df-lpolN 40842 | β’ LPol = (π€ β V β¦ {π β ((LSubSpβπ€) βm π«
(Baseβπ€)) β£
((πβ(Baseβπ€)) = {(0gβπ€)} β§ βπ₯βπ¦((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€) β§ π₯ β π¦) β (πβπ¦) β (πβπ₯)) β§ βπ₯ β (LSAtomsβπ€)((πβπ₯) β (LSHypβπ€) β§ (πβ(πβπ₯)) = π₯))}) |
clcd 40947 | class LCDual |
df-lcdual 40948 | β’ LCDual = (π β V β¦ (π€ β (LHypβπ) β¦ ((LDualβ((DVecHβπ)βπ€)) βΎs {π β (LFnlβ((DVecHβπ)βπ€)) β£ (((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ)}))) |
cmpd 40985 | class mapd |
df-mapd 40986 | β’ mapd = (π β V β¦ (π€ β (LHypβπ) β¦ (π β (LSubSpβ((DVecHβπ)βπ€)) β¦ {π β (LFnlβ((DVecHβπ)βπ€)) β£ ((((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ) β§ (((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ)) β π )}))) |
chvm 41117 | class HVMap |
df-hvmap 41118 | β’ HVMap = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β ((Baseβ((DVecHβπ)βπ€)) β
{(0gβ((DVecHβπ)βπ€))}) β¦ (π£ β (Baseβ((DVecHβπ)βπ€)) β¦ (β©π β
(Baseβ(Scalarβ((DVecHβπ)βπ€)))βπ‘ β (((ocHβπ)βπ€)β{π₯})π£ = (π‘(+gβ((DVecHβπ)βπ€))(π( Β·π
β((DVecHβπ)βπ€))π₯))))))) |
chdma1 41152 | class HDMap1 |
chdma 41153 | class HDMap |
df-hdmap1 41154 | β’ HDMap1 = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |
df-hdmap 41155 | β’ HDMap = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [β¨( I βΎ
(Baseβπ)), ( I
βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))))})) |
chg 41244 | class HGMap |
df-hgmap 41245 | β’ HGMap = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβ(Scalarβπ’)) / π][((HDMapβπ)βπ€) / π]π β (π₯ β π β¦ (β©π¦ β π βπ£ β (Baseβπ’)(πβ(π₯( Β·π
βπ’)π£)) = (π¦( Β·π
β((LCDualβπ)βπ€))(πβπ£))))})) |
chlh 41293 | class HLHil |
df-hlhil 41294 | β’ HLHil = (π β V β¦ (π€ β (LHypβπ) β¦ β¦((DVecHβπ)βπ€) / π’β¦β¦(Baseβπ’) / π£β¦({β¨(Baseβndx), π£β©,
β¨(+gβndx), (+gβπ’)β©, β¨(Scalarβndx),
(((EDRingβπ)βπ€) sSet β¨(*πβndx),
((HGMapβπ)βπ€)β©)β©} βͺ {β¨(
Β·π βndx), (
Β·π βπ’)β©,
β¨(Β·πβndx), (π₯ β π£, π¦ β π£ β¦ ((((HDMapβπ)βπ€)βπ¦)βπ₯))β©}))) |
ccsrg 41327 | class CSRing |
df-csring 41328 | β’ CSRing = {π β SRing β£ (mulGrpβπ) β CMnd} |
cresub 41727 | class
ββ |
df-resub 41728 | β’ ββ = (π₯ β β, π¦ β β β¦
(β©π§ β
β (π¦ + π§) = π₯)) |
cprjsp 41832 | class
βπ£π π |
df-prjsp 41833 | β’ βπ£π π = (π£ β LVec β¦
β¦((Baseβπ£) β {(0gβπ£)}) / πβ¦(π / {β¨π₯, π¦β© β£ ((π₯ β π β§ π¦ β π) β§ βπ β (Baseβ(Scalarβπ£))π₯ = (π( Β·π
βπ£)π¦))})) |
cprjspn 41845 | class
βπ£π πn |
df-prjspn 41846 | β’
βπ£π πn = (π β β0, π β DivRing β¦
(βπ£π πβ(π freeLMod (0...π)))) |
cprjcrv 41860 | class
βπ£π πCrv |
df-prjcrv 41861 | β’ βπ£π πCrv =
(π β
β0, π
β Field β¦ (π
β βͺ ran ((0...π) mHomP π) β¦ {π β (πβπ£π πnπ) β£ ((((0...π) eval π)βπ) β π) = {(0gβπ)}})) |
cnacs 41929 | class NoeACS |
df-nacs 41930 | β’ NoeACS = (π₯ β V β¦ {π β (ACSβπ₯) β£ βπ β π βπ β (π« π₯ β© Fin)π = ((mrClsβπ)βπ)}) |
cmzpcl 41948 | class mzPolyCld |
cmzp 41949 | class mzPoly |
df-mzpcl 41950 | β’ mzPolyCld = (π£ β V β¦ {π β π« (β€ βm
(β€ βm π£)) β£ ((βπ β β€ ((β€ βm
π£) Γ {π}) β π β§ βπ β π£ (π₯ β (β€ βm π£) β¦ (π₯βπ)) β π) β§ βπ β π βπ β π ((π βf + π) β π β§ (π βf Β· π) β π))}) |
df-mzp 41951 | β’ mzPoly = (π£ β V β¦ β© (mzPolyCldβπ£)) |
cdioph 41982 | class Dioph |
df-dioph 41983 | β’ Dioph = (π β β0 β¦ ran
(π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
csquarenn 42063 | class
β»NN |
cpell1qr 42064 | class Pell1QR |
cpell1234qr 42065 | class Pell1234QR |
cpell14qr 42066 | class Pell14QR |
cpellfund 42067 | class PellFund |
df-squarenn 42068 | β’ β»NN = {π₯ β β β£
(ββπ₯) β
β} |
df-pell1qr 42069 | β’ Pell1QR = (π₯ β (β β
β»NN) β¦ {π¦ β β β£ βπ§ β β0
βπ€ β
β0 (π¦ =
(π§ + ((ββπ₯) Β· π€)) β§ ((π§β2) β (π₯ Β· (π€β2))) = 1)}) |
df-pell14qr 42070 | β’ Pell14QR = (π₯ β (β β
β»NN) β¦ {π¦ β β β£ βπ§ β β0
βπ€ β β€
(π¦ = (π§ + ((ββπ₯) Β· π€)) β§ ((π§β2) β (π₯ Β· (π€β2))) = 1)}) |
df-pell1234qr 42071 | β’ Pell1234QR = (π₯ β (β β
β»NN) β¦ {π¦ β β β£ βπ§ β β€ βπ€ β β€ (π¦ = (π§ + ((ββπ₯) Β· π€)) β§ ((π§β2) β (π₯ Β· (π€β2))) = 1)}) |
df-pellfund 42072 | β’ PellFund = (π₯ β (β β
β»NN) β¦ inf({π§ β (Pell14QRβπ₯) β£ 1 < π§}, β, < )) |
crmx 42127 | class Xrm |
crmy 42128 | class Yrm |
df-rmx 42129 | β’ Xrm = (π β (β€β₯β2),
π β β€ β¦
(1st β(β‘(π β (β0
Γ β€) β¦ ((1st βπ) + ((ββ((πβ2) β 1)) Β· (2nd
βπ))))β((π + (ββ((πβ2) β 1)))βπ)))) |
df-rmy 42130 | β’ Yrm = (π β (β€β₯β2),
π β β€ β¦
(2nd β(β‘(π β (β0
Γ β€) β¦ ((1st βπ) + ((ββ((πβ2) β 1)) Β· (2nd
βπ))))β((π + (ββ((πβ2) β 1)))βπ)))) |
clfig 42298 | class LFinGen |
df-lfig 42299 | β’ LFinGen = {π€ β LMod β£ (Baseβπ€) β ((LSpanβπ€) β (π«
(Baseβπ€) β©
Fin))} |
clnm 42306 | class LNoeM |
df-lnm 42307 | β’ LNoeM = {π€ β LMod β£ βπ β (LSubSpβπ€)(π€ βΎs π) β LFinGen} |
clnr 42340 | class LNoeR |
df-lnr 42341 | β’ LNoeR = {π β Ring β£ (ringLModβπ) β LNoeM} |
cldgis 42352 | class ldgIdlSeq |
df-ldgis 42353 | β’ ldgIdlSeq = (π β V β¦ (π β
(LIdealβ(Poly1βπ)) β¦ (π₯ β β0 β¦ {π β£ βπ β π ((( deg1 βπ)βπ) β€ π₯ β§ π = ((coe1βπ)βπ₯))}))) |
cmnc 42362 | class Monic |
cplylt 42363 | class
Poly< |
df-mnc 42364 | β’ Monic = (π β π« β β¦ {π β (Polyβπ ) β£ ((coeffβπ)β(degβπ)) = 1}) |
df-plylt 42365 | β’ Poly< = (π β π« β, π₯ β β0 β¦ {π β (Polyβπ ) β£ (π = 0π β¨
(degβπ) < π₯)}) |
cdgraa 42371 | class
degAA |
cmpaa 42372 | class minPolyAA |
df-dgraa 42373 | β’ degAA = (π₯ β πΈ β¦ inf({π β β β£
βπ β
((Polyββ) β {0π})((degβπ) = π β§ (πβπ₯) = 0)}, β, < )) |
df-mpaa 42374 | β’ minPolyAA = (π₯ β πΈ β¦
(β©π β
(Polyββ)((degβπ) = (degAAβπ₯) β§ (πβπ₯) = 0 β§ ((coeffβπ)β(degAAβπ₯)) = 1))) |
citgo 42388 | class IntgOver |
cza 42389 | class β€ |
df-itgo 42390 | β’ IntgOver = (π β π« β β¦ {π₯ β β β£
βπ β
(Polyβπ )((πβπ₯) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) |
df-za 42391 | β’ β€ = (IntgOverββ€) |
cmend 42406 | class MEndo |
df-mend 42407 | β’ MEndo = (π β V β¦ β¦(π LMHom π) / πβ¦({β¨(Baseβndx),
πβ©,
β¨(+gβndx), (π₯ β π, π¦ β π β¦ (π₯ βf
(+gβπ)π¦))β©, β¨(.rβndx),
(π₯ β π, π¦ β π β¦ (π₯ β π¦))β©} βͺ {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), (π₯ β (Baseβ(Scalarβπ)), π¦ β π β¦ (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦))β©})) |
ccytp 42433 | class CytP |
df-cytp 42434 | β’ CytP = (π β β β¦
((mulGrpβ(Poly1ββfld))
Ξ£g (π β (β‘(odβ((mulGrpββfld)
βΎs (β β {0}))) β {π}) β¦
((var1ββfld)(-gβ(Poly1ββfld))((algScβ(Poly1ββfld))βπ))))) |
ctopsep 42444 | class TopSep |
ctoplnd 42445 | class TopLnd |
df-topsep 42446 | β’ TopSep = {π β Top β£ βπ₯ β π« βͺ π(π₯ βΌ Ο β§ ((clsβπ)βπ₯) = βͺ π)} |
df-toplnd 42447 | β’ TopLnd = {π₯ β Top β£ βπ¦ β π« π₯(βͺ
π₯ = βͺ π¦
β βπ§ β
π« π₯(π§ βΌ Ο β§ βͺ π₯ =
βͺ π§))} |
crcl 42912 | class r* |
df-rcl 42913 | β’ r* = (π₯ β V β¦ β© {π§
β£ (π₯ β π§ β§ ( I βΎ (dom π§ βͺ ran π§)) β π§)}) |
whe 43012 | wff π
hereditary π΄ |
df-he 43013 | β’ (π
hereditary π΄ β (π
β π΄) β π΄) |
ax-frege1 43030 | β’ (π β (π β π)) |
ax-frege2 43031 | β’ ((π β (π β π)) β ((π β π) β (π β π))) |
ax-frege8 43049 | β’ ((π β (π β π)) β (π β (π β π))) |
ax-frege28 43070 | β’ ((π β π) β (Β¬ π β Β¬ π)) |
ax-frege31 43074 | β’ (Β¬ Β¬ π β π) |
ax-frege41 43085 | β’ (π β Β¬ Β¬ π) |
ax-frege52a 43097 | β’ ((π β π) β (if-(π, π, π) β if-(π, π, π))) |
ax-frege54a 43102 | β’ (π β π) |
ax-frege58a 43115 | β’ ((π β§ π) β if-(π, π, π)) |
ax-frege52c 43128 | β’ (π΄ = π΅ β ([π΄ / π₯]π β [π΅ / π₯]π)) |
ax-frege54c 43132 | β’ π΄ = π΄ |
ax-frege58b 43141 | β’ (βπ₯π β [π¦ / π₯]π) |
cmnring 43454 | class MndRing |
df-mnring 43455 | β’ MndRing = (π β V, π β V β¦ β¦(π freeLMod (Baseβπ)) / π£β¦(π£ sSet β¨(.rβndx), (π₯ β (Baseβπ£), π¦ β (Baseβπ£) β¦ (π£ Ξ£g (π β (Baseβπ), π β (Baseβπ) β¦ (π β (Baseβπ) β¦ if(π = (π(+gβπ)π), ((π₯βπ)(.rβπ)(π¦βπ)), (0gβπ))))))β©)) |
cscott 43483 | class Scott π΄ |
df-scott 43484 | β’ Scott π΄ = {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} |
ccoll 43498 | class (πΉ Coll π΄) |
df-coll 43499 | β’ (πΉ Coll π΄) = βͺ
π₯ β π΄ Scott (πΉ β {π₯}) |
cbcc 43584 | class
Cπ |
df-bcc 43585 | β’ Cπ = (π β β, π β β0 β¦ ((π FallFac π) / (!βπ))) |
cplusr 43705 | class
+π |
cminusr 43706 | class
-π |
ctimesr 43707 | class
.π£ |
cptdfc 43708 | class PtDf(π΄, π΅) |
crr3c 43709 | class RR3 |
cline3 43710 | class line3 |
df-addr 43711 | β’ +π = (π₯ β V, π¦ β V β¦ (π£ β β β¦ ((π₯βπ£) + (π¦βπ£)))) |
df-subr 43712 | β’ -π = (π₯ β V, π¦ β V β¦ (π£ β β β¦ ((π₯βπ£) β (π¦βπ£)))) |
df-mulv 43713 | β’ .π£ = (π₯ β V, π¦ β V β¦ (π£ β β β¦ (π₯ Β· (π¦βπ£)))) |
df-ptdf 43724 | β’ PtDf(π΄, π΅) = (π₯ β β β¦ (((π₯.π£(π΅-ππ΄)) +π£ π΄) β {1, 2, 3})) |
df-rr3 43725 | β’ RR3 = (β βm {1, 2,
3}) |
df-line3 43726 | β’ line3 = {π₯ β π« RR3 β£ (2o
βΌ π₯ β§
βπ¦ β π₯ βπ§ β π₯ (π§ β π¦ β ran PtDf(π¦, π§) = π₯))} |
wvd1 43819 | wff ( π βΆ π ) |
df-vd1 43820 | β’ (( π βΆ π ) β (π β π)) |
wvd2 43827 | wff ( π , π βΆ π ) |
df-vd2 43828 | β’ (( π , π βΆ π ) β ((π β§ π) β π)) |
wvhc2 43830 | wff ( π , π ) |
df-vhc2 43831 | β’ (( π , π ) β (π β§ π)) |
wvd3 43837 | wff ( π , π , π βΆ π ) |
wvhc3 43838 | wff ( π , π , π ) |
df-vhc3 43839 | β’ (( π , π , π ) β (π β§ π β§ π)) |
df-vd3 43840 | β’ (( π , π , π βΆ π ) β ((π β§ π β§ π) β π)) |
clsi 44952 | class lim inf |
df-liminf 44953 | β’ lim inf = (π₯ β V β¦ sup(ran (π β β β¦ inf(((π₯ β (π[,)+β)) β© β*),
β*, < )), β*, < )) |
clsxlim 45019 | class ~~>* |
df-xlim 45020 | β’ ~~>* =
(βπ‘β(ordTopβ β€ )) |
csalg 45509 | class SAlg |
df-salg 45510 | β’ SAlg = {π₯ β£ (β
β π₯ β§ βπ¦ β π₯ (βͺ π₯ β π¦) β π₯ β§ βπ¦ β π« π₯(π¦ βΌ Ο β βͺ π¦
β π₯))} |
csalon 45511 | class SalOn |
df-salon 45512 | β’ SalOn = (π₯ β V β¦ {π β SAlg β£ βͺ π =
π₯}) |
csalgen 45513 | class SalGen |
df-salgen 45514 | β’ SalGen = (π₯ β V β¦ β© {π
β SAlg β£ (βͺ π = βͺ π₯ β§ π₯ β π )}) |
csumge0 45563 | class
Ξ£^ |
df-sumge0 45564 | β’ Ξ£^ = (π₯ β V β¦ if(+β
β ran π₯, +β,
sup(ran (π¦ β
(π« dom π₯ β© Fin)
β¦ Ξ£π€ β
π¦ (π₯βπ€)), β*, <
))) |
cmea 45650 | class Meas |
df-mea 45651 | β’ Meas = {π₯ β£ (((π₯:dom π₯βΆ(0[,]+β) β§ dom π₯ β SAlg) β§ (π₯ββ
) = 0) β§
βπ¦ β π«
dom π₯((π¦ βΌ Ο β§ Disj π€ β π¦ π€) β (π₯ββͺ π¦) =
(Ξ£^β(π₯ βΎ π¦))))} |
come 45690 | class OutMeas |
df-ome 45691 | β’ OutMeas = {π₯ β£ ((((π₯:dom π₯βΆ(0[,]+β) β§ dom π₯ = π« βͺ dom π₯) β§ (π₯ββ
) = 0) β§ βπ¦ β π« βͺ dom π₯βπ§ β π« π¦(π₯βπ§) β€ (π₯βπ¦)) β§ βπ¦ β π« dom π₯(π¦ βΌ Ο β (π₯ββͺ π¦) β€
(Ξ£^β(π₯ βΎ π¦))))} |
ccaragen 45692 | class CaraGen |
df-caragen 45693 | β’ CaraGen = (π β OutMeas β¦ {π β π« βͺ dom π β£ βπ β π« βͺ dom π((πβ(π β© π)) +π (πβ(π β π))) = (πβπ)}) |
covoln 45737 | class voln* |
df-ovoln 45738 | β’ voln* = (π₯ β Fin β¦ (π¦ β π« (β βm
π₯) β¦ if(π₯ = β
, 0, inf({π§ β β*
β£ βπ β
(((β Γ β) βm π₯) βm β)(π¦ β βͺ π β β Xπ β π₯ (([,) β (πβπ))βπ) β§ π§ =
(Ξ£^β(π β β β¦ βπ β π₯ (volβ(([,) β (πβπ))βπ)))))}, β*, <
)))) |
cvoln 45739 | class voln |
df-voln 45740 | β’ voln = (π₯ β Fin β¦ ((voln*βπ₯) βΎ
(CaraGenβ(voln*βπ₯)))) |
csmblfn 45896 | class SMblFn |
df-smblfn 45897 | β’ SMblFn = (π β SAlg β¦ {π β (β βpm βͺ π )
β£ βπ β
β (β‘π β (-β(,)π)) β (π βΎt dom π)}) |
cupword 46077 | class UpWord π |
df-upword 46078 | β’ UpWord π = {π€ β£ (π€ β Word π β§ βπ β (0..^((β―βπ€) β 1))(π€βπ) < (π€β(π + 1)))} |
caiota 46276 | class (β©'π₯π) |
df-aiota 46278 | β’ (β©'π₯π) = β© {π¦ β£ {π₯ β£ π} = {π¦}} |
wdfat 46309 | wff πΉ defAt π΄ |
cafv 46310 | class (πΉ'''π΄) |
caov 46311 | class ((π΄πΉπ΅)) |
df-dfat 46312 | β’ (πΉ defAt π΄ β (π΄ β dom πΉ β§ Fun (πΉ βΎ {π΄}))) |
df-afv 46313 | β’ (πΉ'''π΄) = (β©'π₯π΄πΉπ₯) |
df-aov 46314 | β’ ((π΄πΉπ΅)) = (πΉ'''β¨π΄, π΅β©) |
cafv2 46401 | class (πΉ''''π΄) |
df-afv2 46402 | β’ (πΉ''''π΄) = if(πΉ defAt π΄, (β©π₯π΄πΉπ₯), π« βͺ ran
πΉ) |
cnelbr 46464 | class _β |
df-nelbr 46465 | β’ _β = {β¨π₯, π¦β© β£ Β¬ π₯ β π¦} |
ciccp 46566 | class RePart |
df-iccp 46567 | β’ RePart = (π β β β¦ {π β (β*
βm (0...π))
β£ βπ β
(0..^π)(πβπ) < (πβ(π + 1))}) |
wich 46598 | wff [π₯βπ¦]π |
df-ich 46599 | β’ ([π₯βπ¦]π β βπ₯βπ¦([π₯ / π][π¦ / π₯][π / π¦]π β π)) |
cspr 46630 | class Pairs |
df-spr 46631 | β’ Pairs = (π£ β V β¦ {π β£ βπ β π£ βπ β π£ π = {π, π}}) |
cprpr 46665 | class
Pairsproper |
df-prpr 46666 | β’ Pairsproper = (π£ β V β¦ {π β£ βπ β π£ βπ β π£ (π β π β§ π = {π, π})}) |
cfmtno 46680 | class FermatNo |
df-fmtno 46681 | β’ FermatNo = (π β β0 β¦
((2β(2βπ)) +
1)) |
ceven 46777 | class Even |
codd 46778 | class Odd |
df-even 46779 | β’ Even = {π§ β β€ β£ (π§ / 2) β β€} |
df-odd 46780 | β’ Odd = {π§ β β€ β£ ((π§ + 1) / 2) β β€} |
cfppr 46877 | class FPPr |
df-fppr 46878 | β’ FPPr = (π β β β¦ {π₯ β (β€β₯β4)
β£ (π₯ β β
β§ π₯ β₯ ((πβ(π₯ β 1)) β 1))}) |
cgbe 46898 | class GoldbachEven |
cgbow 46899 | class GoldbachOddW |
cgbo 46900 | class GoldbachOdd |
df-gbe 46901 | β’ GoldbachEven = {π§ β Even β£ βπ β β βπ β β (π β Odd β§ π β Odd β§ π§ = (π + π))} |
df-gbow 46902 | β’ GoldbachOddW = {π§ β Odd β£ βπ β β βπ β β βπ β β π§ = ((π + π) + π)} |
df-gbo 46903 | β’ GoldbachOdd = {π§ β Odd β£ βπ β β βπ β β βπ β β ((π β Odd β§ π β Odd β§ π β Odd ) β§ π§ = ((π + π) + π))} |
ax-bgbltosilva 46963 | β’ ((π β Even β§ 4 < π β§ π β€ (4 Β· (;10β;18))) β π β GoldbachEven ) |
ax-tgoldbachgt 46964 | β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ πΊ = {π§ β π β£ βπ β β βπ β β βπ β β ((π β π β§ π β π β§ π β π) β§ π§ = ((π + π) + π))} β β’ βπ β β (π β€ (;10β;27) β§ βπ β π (π < π β π β πΊ)) |
ax-hgprmladder 46967 | β’ βπ β
(β€β₯β3)βπ β (RePartβπ)(((πβ0) = 7 β§ (πβ1) = ;13 β§ (πβπ) = (;89 Β· (;10β;29))) β§ βπ β (0..^π)((πβπ) β (β β {2}) β§ ((πβ(π + 1)) β (πβπ)) < ((4 Β· (;10β;18)) β 4) β§ 4 < ((πβ(π + 1)) β (πβπ)))) |
cgrisom 46971 | class GrIsom |
cisomgr 46972 | class IsomGr |
df-grisom 46973 | β’ GrIsom = (π₯ β V, π¦ β V β¦ {β¨π, πβ© β£ (π:(Vtxβπ₯)β1-1-ontoβ(Vtxβπ¦) β§ π:dom (iEdgβπ₯)β1-1-ontoβdom
(iEdgβπ¦) β§
βπ β dom
(iEdgβπ₯)(π β ((iEdgβπ₯)βπ)) = ((iEdgβπ¦)β(πβπ)))}) |
df-isomgr 46974 | β’ IsomGr = {β¨π₯, π¦β© β£ βπ(π:(Vtxβπ₯)β1-1-ontoβ(Vtxβπ¦) β§ βπ(π:dom (iEdgβπ₯)β1-1-ontoβdom
(iEdgβπ¦) β§
βπ β dom
(iEdgβπ₯)(π β ((iEdgβπ₯)βπ)) = ((iEdgβπ¦)β(πβπ))))} |
cupwlks 46996 | class UPWalks |
df-upwlks 46997 | β’ UPWalks = (π β V β¦ {β¨π, πβ© β£ (π β Word dom (iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β (0..^(β―βπ))((iEdgβπ)β(πβπ)) = {(πβπ), (πβ(π + 1))})}) |
ccllaw 47046 | class clLaw |
casslaw 47047 | class assLaw |
ccomlaw 47048 | class comLaw |
df-cllaw 47049 | β’ clLaw = {β¨π, πβ© β£ βπ₯ β π βπ¦ β π (π₯ππ¦) β π} |
df-comlaw 47050 | β’ comLaw = {β¨π, πβ© β£ βπ₯ β π βπ¦ β π (π₯ππ¦) = (π¦ππ₯)} |
df-asslaw 47051 | β’ assLaw = {β¨π, πβ© β£ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§))} |
cintop 47059 | class intOp |
cclintop 47060 | class clIntOp |
cassintop 47061 | class assIntOp |
df-intop 47062 | β’ intOp = (π β V, π β V β¦ (π βm (π Γ π))) |
df-clintop 47063 | β’ clIntOp = (π β V β¦ (π intOp π)) |
df-assintop 47064 | β’ assIntOp = (π β V β¦ {π β ( clIntOp βπ) β£ π assLaw π}) |
cmgm2 47078 | class MgmALT |
ccmgm2 47079 | class CMgmALT |
csgrp2 47080 | class SGrpALT |
ccsgrp2 47081 | class CSGrpALT |
df-mgm2 47082 | β’ MgmALT = {π β£ (+gβπ) clLaw (Baseβπ)} |
df-cmgm2 47083 | β’ CMgmALT = {π β MgmALT β£
(+gβπ)
comLaw (Baseβπ)} |
df-sgrp2 47084 | β’ SGrpALT = {π β MgmALT β£
(+gβπ)
assLaw (Baseβπ)} |
df-csgrp2 47085 | β’ CSGrpALT = {π β SGrpALT β£
(+gβπ)
comLaw (Baseβπ)} |
crngcALTV 47126 | class RngCatALTV |
df-rngcALTV 47127 | β’ RngCatALTV = (π’ β V β¦ β¦(π’ β© Rng) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ RngHom π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RngHom π§), π β ((1st βπ£) RngHom (2nd
βπ£)) β¦ (π β π)))β©}) |
cringcALTV 47150 | class RingCatALTV |
df-ringcALTV 47151 | β’ RingCatALTV = (π’ β V β¦ β¦(π’ β© Ring) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))β©}) |
cdmatalt 47265 | class DMatALT |
cscmatalt 47266 | class ScMatALT |
df-dmatalt 47267 | β’ DMatALT = (π β Fin, π β V β¦ β¦(π Mat π) / πβ¦(π βΎs {π β (Baseβπ) β£ βπ β π βπ β π (π β π β (πππ) = (0gβπ))})) |
df-scmatalt 47268 | β’ ScMatALT = (π β Fin, π β V β¦ β¦(π Mat π) / πβ¦(π βΎs {π β (Baseβπ) β£ βπ β (Baseβπ)βπ β π βπ β π (πππ) = if(π = π, π, (0gβπ))})) |
clinc 47273 | class linC |
clinco 47274 | class LinCo |
df-linc 47275 | β’ linC = (π β V β¦ (π β ((Baseβ(Scalarβπ)) βm π£), π£ β π« (Baseβπ) β¦ (π Ξ£g (π₯ β π£ β¦ ((π βπ₯)( Β·π
βπ)π₯))))) |
df-lco 47276 | β’ LinCo = (π β V, π£ β π« (Baseβπ) β¦ {π β (Baseβπ) β£ βπ β ((Baseβ(Scalarβπ)) βm π£)(π finSupp
(0gβ(Scalarβπ)) β§ π = (π ( linC βπ)π£))}) |
clininds 47309 | class linIndS |
clindeps 47310 | class linDepS |
df-lininds 47311 | β’ linIndS = {β¨π , πβ© β£ (π β π« (Baseβπ) β§ βπ β
((Baseβ(Scalarβπ)) βm π )((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ))))} |
df-lindeps 47313 | β’ linDepS = {β¨π , πβ© β£ Β¬ π linIndS π} |
cfdiv 47411 | class /f |
df-fdiv 47412 | β’ /f = (π β V, π β V β¦ ((π βf / π) βΎ (π supp 0))) |
cbigo 47421 | class Ξ |
df-bigo 47422 | β’ Ξ = (π β (β βpm β)
β¦ {π β (β
βpm β) β£ βπ₯ β β βπ β β βπ¦ β (dom π β© (π₯[,)+β))(πβπ¦) β€ (π Β· (πβπ¦))}) |
cblen 47443 | class #b |
df-blen 47444 | β’ #b = (π β V β¦ if(π = 0, 1, ((ββ(2 logb
(absβπ))) +
1))) |
cdig 47469 | class digit |
df-dig 47470 | β’ digit = (π β β β¦ (π β β€, π β (0[,)+β) β¦
((ββ((πβ-π) Β· π)) mod π))) |
cnaryf 47500 | class -aryF |
df-naryf 47501 | β’ -aryF = (π β β0, π₯ β V β¦ (π₯ βm (π₯ βm (0..^π)))) |
citco 47531 | class IterComp |
cack 47532 | class Ack |
df-itco 47533 | β’ IterComp = (π β V β¦ seq0((π β V, π β V β¦ (π β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom π), π)))) |
df-ack 47534 | β’ Ack = seq0((π β V, π β V β¦ (π β β0 β¦
(((IterCompβπ)β(π + 1))β1))), (π β β0 β¦ if(π = 0, (π β β0 β¦ (π + 1)), π))) |
cline 47601 | class
LineM |
csph 47602 | class Sphere |
df-line 47603 | β’ LineM = (π€ β V β¦ (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))})) |
df-sph 47604 | β’ Sphere = (π€ β V β¦ (π₯ β (Baseβπ€), π β (0[,]+β) β¦ {π β (Baseβπ€) β£ (π(distβπ€)π₯) = π})) |
cthinc 47827 | class ThinCat |
df-thinc 47828 | β’ ThinCat = {π β Cat β£ [(Baseβπ) / π][(Hom βπ) / β]βπ₯ β π βπ¦ β π β*π π β (π₯βπ¦)} |
cprstc 47870 | class ProsetToCat |
df-prstc 47871 | β’ ProsetToCat = (π β Proset β¦ ((π sSet β¨(Hom βndx),
((leβπ) Γ
{1o})β©) sSet β¨(compβndx),
β
β©)) |
cmndtc 47891 | class MndToCat |
df-mndtc 47892 | β’ MndToCat = (π β Mnd β¦ {β¨(Baseβndx),
{π}β©, β¨(Hom
βndx), {β¨π,
π, (Baseβπ)β©}β©,
β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©}) |
csetrecs 47916 | class setrecs(πΉ) |
df-setrecs 47917 | β’ setrecs(πΉ) = βͺ {π¦ β£ βπ§(βπ€(π€ β π¦ β (π€ β π§ β (πΉβπ€) β π§)) β π¦ β π§)} |
cpg 47942 | class Pg |
df-pg 47943 | β’ Pg = setrecs((π₯ β V β¦ (π« π₯ Γ π« π₯))) |
cge-real 47953 | class β₯ |
cgt 47954 | class > |
df-gte 47955 | β’ β₯ = β‘ β€ |
df-gt 47956 | β’ > = β‘ < |
csinh 47963 | class sinh |
ccosh 47964 | class cosh |
ctanh 47965 | class tanh |
df-sinh 47966 | β’ sinh = (π₯ β β β¦ ((sinβ(i
Β· π₯)) /
i)) |
df-cosh 47967 | β’ cosh = (π₯ β β β¦ (cosβ(i
Β· π₯))) |
df-tanh 47968 | β’ tanh = (π₯ β (β‘cosh β (β β {0})) β¦
((tanβ(i Β· π₯))
/ i)) |
csec 47974 | class sec |
ccsc 47975 | class csc |
ccot 47976 | class cot |
df-sec 47977 | β’ sec = (π₯ β {π¦ β β β£ (cosβπ¦) β 0} β¦ (1 /
(cosβπ₯))) |
df-csc 47978 | β’ csc = (π₯ β {π¦ β β β£ (sinβπ¦) β 0} β¦ (1 /
(sinβπ₯))) |
df-cot 47979 | β’ cot = (π₯ β {π¦ β β β£ (sinβπ¦) β 0} β¦
((cosβπ₯) /
(sinβπ₯))) |
clog- 47998 | class log_ |
df-logbALT 47999 | β’ log_ = (π β (β β {0, 1}) β¦
(π₯ β (β β
{0}) β¦ ((logβπ₯)
/ (logβπ)))) |
wreflexive 48000 | wff π
Reflexiveπ΄ |
df-reflexive 48001 | β’ (π
Reflexiveπ΄ β (π
β (π΄ Γ π΄) β§ βπ₯ β π΄ π₯π
π₯)) |
wirreflexive 48002 | wff π
Irreflexiveπ΄ |
df-irreflexive 48003 | β’ (π
Irreflexiveπ΄ β (π
β (π΄ Γ π΄) β§ βπ₯ β π΄ Β¬ π₯π
π₯)) |
walsi 48021 | wff β!π₯(π β π) |
walsc 48022 | wff β!π₯ β π΄π |
df-alsi 48023 | β’ (β!π₯(π β π) β (βπ₯(π β π) β§ βπ₯π)) |
df-alsc 48024 | β’ (β!π₯ β π΄π β (βπ₯ β π΄ π β§ βπ₯ π₯ β π΄)) |