Metamath Proof Explorer Most Recent Proofs |
||
Mirrors > Home > MPE Home > Th. List > Recent | ILE Most Recent Other > MM 100 |
The original proofs of theorems with recently shortened proofs can often be found by appending "OLD" to the theorem name, for example 19.43OLD for 19.43. The "OLD" versions are usually deleted after a year.
Other links Email: Norm Megill. Mailing list: Metamath Google Group Updated 7-Dec-2021 . Contributing: How can I contribute to Metamath? Syndication: RSS feed (courtesy of Dan Getz) Related wikis: Ghilbert site; Ghilbert Google Group.
Recent news items (7-Aug-2021) Version 0.198 of the metamath program fixes a bug in "write source ... /rewrap" that prevented end-of-sentence punctuation from appearing in column 79, causing some rewrapped lines to be shorter than necessary. Because this affects about 2000 lines in set.mm, you should use version 0.198 or later for rewrapping before submitting to GitHub.
(7-May-2021) Mario Carneiro has written a Metamath verifier in Lean.
(5-May-2021) Marnix Klooster has written a Metamath verifier in Zig.
(24-Mar-2021) Metamath was mentioned in a couple of articles about OpenAI: Researchers find that large language models struggle with math and What Is GPT-F?.
(26-Dec-2020) Version 0.194 of the metamath program adds the keyword "htmlexturl" to the $t comment to specify external versions of theorem pages. This keyward has been added to set.mm, and you must update your local copy of set.mm for "verify markup" to pass with the new program version.
(19-Dec-2020) Aleksandr A. Adamov has translated the Wikipedia Metamath page into Russian.
(19-Nov-2020) Eric Schmidt's checkmm.cpp was used as a test case for C'est, "a non-standard version of the C++20 standard library, with enhanced support for compile-time evaluation." See C++20 Compile-time Metamath Proof Verification using C'est.
(10-Nov-2020) Filip Cernatescu has updated the XPuzzle (Android app) to version 1.2. XPuzzle is a puzzle with math formulas derived from the Metamath system. At the bottom of the web page is a link to the Google Play Store, where the app can be found.
(7-Nov-2020) Richard Penner created a cross-reference guide between Frege's logic notation and the notation used by set.mm.
(4-Sep-2020) Version 0.192 of the metamath program adds the qualifier '/extract' to 'write source'. See 'help write source' and also this Google Group post.
(23-Aug-2020) Version 0.188 of the metamath program adds keywords Conclusion, Fact, Introduction, Paragraph, Scolia, Scolion, Subsection, and Table to bibliographic references. See 'help write bibliography' for the complete current list.
Color key: | Metamath Proof Explorer | Hilbert Space Explorer | User Mathboxes |
Date | Label | Description |
---|---|---|
Theorem | ||
15-Dec-2024 | smfpimgtxr 44315 | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | ||
15-Dec-2024 | smfpimltxr 44283 | Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = dom 𝐹 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) | ||
15-Dec-2024 | pimltpnf2 44250 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
15-Dec-2024 | pimltpnf2f 44249 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) | ||
15-Dec-2024 | pimgtpnf2 44243 | Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) | ||
15-Dec-2024 | pimltmnf2 44236 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
15-Dec-2024 | pimltmnf2f 44235 | Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) | ||
14-Dec-2024 | fzuntgd 41065 | Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) & ⊢ (𝜑 → 𝑀 ≤ (𝐿 + 1)) & ⊢ (𝜑 → 𝐿 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
14-Dec-2024 | fzunt1d 41064 | Union of two overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) & ⊢ (𝜑 → 𝑀 ≤ 𝐿) & ⊢ (𝜑 → 𝐿 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
14-Dec-2024 | fzuntd 41063 | Union of two adjacent finite sets of sequential integers that share a common endpoint. (Contributed by RP, 14-Dec-2024.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
14-Dec-2024 | fzunt 41062 | Union of two adjacent finite sets of sequential integers that share a common endpoint. (Suggested by NM, 21-Jul-2005.) (Contributed by RP, 14-Dec-2024.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁)) | ||
13-Dec-2024 | nlim4 41052 | 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
⊢ ¬ Lim 4o | ||
13-Dec-2024 | nlim3 41051 | 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
⊢ ¬ Lim 3o | ||
13-Dec-2024 | nlim2NEW 41050 | 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
⊢ ¬ Lim 2o | ||
13-Dec-2024 | nlim1NEW 41049 | 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
⊢ ¬ Lim 1o | ||
13-Dec-2024 | nlimsuc 41048 | A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) | ||
13-Dec-2024 | wksonproplem 28072 | Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 28076. (Contributed by AV, 16-Jan-2021.) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) & ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) ⇒ ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | ||
13-Dec-2024 | mptmpoopabovd 7922 | The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
13-Dec-2024 | mptmpoopabbrd 7921 | The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) & ⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
13-Dec-2024 | fvmptopab 7329 | The function value of a mapping 𝑀 to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function 𝐹 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) (Revised by AV, 29-Oct-2021.) Add disjoint variable condition on 𝐹, 𝑥, 𝑦 to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024.) |
⊢ (𝑧 = 𝑍 → (𝜑 ↔ 𝜓)) & ⊢ 𝑀 = (𝑧 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑧)𝑦 ∧ 𝜑)}) ⇒ ⊢ (𝑀‘𝑍) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝐹‘𝑍)𝑦 ∧ 𝜓)} | ||
13-Dec-2024 | opabresex2 7327 | Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable conditions betweem 𝑊, 𝐺 and 𝑥, 𝑦 to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
⊢ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑊‘𝐺)𝑦 ∧ 𝜃)} ∈ V | ||
13-Dec-2024 | nfralw 3151 | Bound-variable hypothesis builder for restricted quantification. Version of nfral 3153 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 13-Dec-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
11-Dec-2024 | wksv 27986 | The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | ||
11-Dec-2024 | abrexexg 7803 | Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5217, axrep6 5216, ax-rep 5209. See also abrexex2g 7807. There are partial converses under additional conditions, see for instance abnexg 7606. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2137, ax-11 2154, ax-12 2171, ax-pr 5352, ax-un 7588 and shorten proof. (Revised by SN, 11-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
11-Dec-2024 | ssrel 5693 | A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Remove dependency on ax-sep 5223, ax-nul 5230, ax-pr 5352. (Revised by KP, 25-Oct-2021.) Remove dependency on ax-12 2171. (Revised by SN, 11-Dec-2024.) |
⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | ||
11-Dec-2024 | elopaelxp 5676 | Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018.) Avoid ax-sep 5223, ax-nul 5230, ax-pr 5352. (Revised by SN, 11-Dec-2024.) |
⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} → 𝐴 ∈ (V × V)) | ||
11-Dec-2024 | elopabr 5474 | Membership in an ordered-pair class abstraction defined by a binary relation. (Contributed by AV, 16-Feb-2021.) (Proof shortened by SN, 11-Dec-2024.) |
⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) | ||
11-Dec-2024 | elopabw 5439 | Membership in a class abstraction of ordered pairs. Weaker version of elopab 5440 with a sethood antecedent, avoiding ax-sep 5223, ax-nul 5230, and ax-pr 5352. Originally a subproof of elopab 5440. (Contributed by SN, 11-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | ||
11-Dec-2024 | axrep6g 5217 | axrep6 5216 in class notation. It is equivalent to both ax-rep 5209 and abrexexg 7803, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) | ||
11-Dec-2024 | dfiun2g 4960 | Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) Avoid ax-10 2137, ax-12 2171. (Revised by SN, 11-Dec-2024.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
11-Dec-2024 | r19.21v 3113 | Restricted quantifier version of 19.21v 1942. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
10-Dec-2024 | sltn0 34085 | If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | ||
10-Dec-2024 | cbvreuw 3376 | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 3381 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-10 2137. (Revised by Wolf Lammen, 10-Dec-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
8-Dec-2024 | rexcom 3234 | Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2024.) |
⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
5-Dec-2024 | sb8f 2351 | Substitution of variable in universal quantifier. Version of sb8 2521 with a disjoint variable condition, not requiring ax-10 2137 or ax-13 2372. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) Avoid ax-10 2137. (Revised by SN, 5-Dec-2024.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
5-Dec-2024 | sb8v 2350 | Substitution of variable in universal quantifier. Version of sb8f 2351 with a disjoint variable condition replacing the nonfree hypothesis Ⅎ𝑦𝜑, not requiring ax-12 2171. (Contributed by SN, 5-Dec-2024.) |
⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
4-Dec-2024 | sucdom 9018 | Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5288. (Revised by BTernaryTau, 4-Dec-2024.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
4-Dec-2024 | sucdom2 8989 | Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 4-Dec-2024.) |
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
4-Dec-2024 | undom 8846 | Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 4-Dec-2024.) |
⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼ (𝐵 ∪ 𝐷)) | ||
3-Dec-2024 | fvprc 6766 | A function's value at a proper class is the empty set. See fvprcALT 6767 for a proof that uses ax-pow 5288 instead of ax-pr 5352. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5288. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | ||
3-Dec-2024 | f1un 6736 | The union of two one-to-one functions with disjoint domains and codomains. (Contributed by BTernaryTau, 3-Dec-2024.) |
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1→(𝐵 ∪ 𝐷)) | ||
3-Dec-2024 | dtru 5359 |
At least two sets exist (or in terms of first-order logic, the universe
of discourse has two or more objects). Note that we may not substitute
the same variable for both 𝑥 and 𝑦 (as indicated by the
distinct
variable requirement), for otherwise we would contradict stdpc6 2031.
This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext 2709, ax-sep 5223, or ax-pow 5288. See dtruALT 5311 for a shorter proof using these axioms, and see dtruALT2 5293 for a proof that uses ax-pow 5288 instead of ax-pr 5352. The proof makes use of dummy variables 𝑧 and 𝑤 which do not appear in the final theorem. They must be distinct from each other and from 𝑥 and 𝑦. In other words, if we were to substitute 𝑥 for 𝑧 throughout the proof, the proof would fail. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2372. (Revised by Gino Giotto, 5-Sep-2023.) Avoid ax-12 2171. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5352 instead of ax-pow 5288. (Revised by BTernaryTau, 3-Dec-2024.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
2-Dec-2024 | onomeneq 9011 | An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5288. (Revised by BTernaryTau, 2-Dec-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
2-Dec-2024 | el 5357 | Every set is an element of some other set. See elALT 5358 for a shorter proof using more axioms, and see elALT2 5292 for a proof that uses ax-9 2116 and ax-pow 5288 instead of ax-pr 5352. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Avoid ax-9 2116, ax-pow 5288. (Revised by BTernaryTau, 2-Dec-2024.) |
⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
1-Dec-2024 | frrlem16 9516 | Lemma for general well-founded recursion. Establish a subset relationship. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) | ||
1-Dec-2024 | snnen2o 9026 | A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ {𝐴} ≈ 2o | ||
1-Dec-2024 | 2onn 8472 | The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7588, see 2onnALT 8473. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7588. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ 2o ∈ ω | ||
1-Dec-2024 | 1onn 8470 | The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7588, see 1onnALT 8471. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7588. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ 1o ∈ ω | ||
1-Dec-2024 | 2ellim 8329 | A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Lim 𝐴 → 2o ∈ 𝐴) | ||
1-Dec-2024 | 1ellim 8328 | A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Lim 𝐴 → 1o ∈ 𝐴) | ||
1-Dec-2024 | ord2eln012 8327 | An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Ord 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) | ||
1-Dec-2024 | ord1eln01 8326 | An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) | ||
1-Dec-2024 | nlim2 8320 | 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ Lim 2o | ||
1-Dec-2024 | nlim1 8319 | 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ Lim 1o | ||
1-Dec-2024 | f1cdmsn 7154 | If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) | ||
30-Nov-2024 | 2on 8311 | Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7588. (Revised by BTernaryTau, 30-Nov-2024.) |
⊢ 2o ∈ On | ||
30-Nov-2024 | 1on 8309 | Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7588. (Revised by BTernaryTau, 30-Nov-2024.) |
⊢ 1o ∈ On | ||
30-Nov-2024 | suceloni 7659 | The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) (Proof shortened by BTernaryTau, 30-Nov-2024.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | ||
30-Nov-2024 | sucexeloni 7658 | If the successor of an ordinal number exists, it is an ordinal number. This variation of suceloni 7659 does not require ax-un 7588. (Contributed by BTernaryTau, 30-Nov-2024.) |
⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉) → suc 𝐴 ∈ On) | ||
30-Nov-2024 | epweon 7625 | The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.) Avoid ax-un 7588. (Revised by BTernaryTau, 30-Nov-2024.) |
⊢ E We On | ||
30-Nov-2024 | elex2 2818 | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) Avoid ax-9 2116, ax-ext 2709, df-clab 2716. (Revised by Wolf Lammen, 30-Nov-2024.) |
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
29-Nov-2024 | nndomog 8999 | Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9016 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9016. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5288. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
29-Nov-2024 | sdom0 8895 | The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ¬ 𝐴 ≺ ∅ | ||
29-Nov-2024 | 0sdomg 8891 | A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
29-Nov-2024 | dom0 8889 | A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | ||
29-Nov-2024 | 0domg 8887 | Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | ||
29-Nov-2024 | en0r 8806 | The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) | ||
29-Nov-2024 | brdomi 8748 | Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) | ||
29-Nov-2024 | brdomg 8746 | Dominance relation. (Contributed by NM, 15-Jun-1998.) (Proof shortened by BTernaryTau, 29-Nov-2024.) |
⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
29-Nov-2024 | brdom2g 8745 | Dominance relation. This variation of brdomg 8746 does not require the Axiom of Union. (Contributed by BTernaryTau, 29-Nov-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | ||
29-Nov-2024 | peano1 7735 | Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7735 through peano5 7740 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ∅ ∈ ω | ||
28-Nov-2024 | phpeqd 8998 | Corollary of the Pigeonhole Principle using equality. Strengthening of php 8993 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
27-Nov-2024 | frmin 9507 | Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6250 and tz7.5 6287. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 27-Nov-2024.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | ||
26-Nov-2024 | php3 8995 | Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5288. (Revised by BTernaryTau, 26-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
25-Nov-2024 | domsdomtrfi 8988 | Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 8899). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
25-Nov-2024 | sdomdomtrfi 8987 | Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 8897). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
25-Nov-2024 | predres 6242 | Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024.) |
⊢ Pred(𝑅, 𝐴, 𝑋) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑋) | ||
25-Nov-2024 | predprc 6241 | The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) | ||
25-Nov-2024 | predrelss 6240 | Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.) |
⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) | ||
24-Nov-2024 | ssdomfi2 8983 | A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8786). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | ||
24-Nov-2024 | domtrfir 8980 | Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 8793). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
24-Nov-2024 | domtrfi 8979 | Transitivity of dominance relation when 𝐵 is finite, proved without using the Axiom of Power Sets (unlike domtr 8793). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
24-Nov-2024 | domtrfil 8978 | Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 8793). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
24-Nov-2024 | f1domfi2 8968 | If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8757). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
24-Nov-2024 | rabid2 3314 | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
24-Nov-2024 | clelsb2 2867 | Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2123). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
23-Nov-2024 | natglobalincr 46512 | Local monotonicity on half-open integer range implies global monotonicity. (Contributed by Ender Ting, 23-Nov-2024.) |
⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) & ⊢ 𝑇 ∈ ℤ ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵‘𝑘) < (𝐵‘𝑡) | ||
23-Nov-2024 | prjcrv0 40470 | The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) | ||
23-Nov-2024 | prjcrvval 40469 | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) | ||
23-Nov-2024 | prjcrvfval 40468 | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) | ||
23-Nov-2024 | df-prjcrv 40467 | Define the projective curve function. This takes a homogeneous polynomial and outputs the homogeneous coordinates where the polynomial evaluates to zero (the "zero set"). (In other words, scalar multiples are collapsed into the same projective point. See mhphf4 40288 and prjspvs 40449). (Contributed by SN, 23-Nov-2024.) |
⊢ ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) | ||
23-Nov-2024 | mhphf4 40288 | A homogeneous polynomial defines a homogeneous function; this is mhphf3 40287 with evalSub collapsed to eval. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝑄 = (𝐼 eval 𝑆) & ⊢ 𝐻 = (𝐼 mHomP 𝑆) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐹 = (𝑆 freeLMod 𝐼) & ⊢ 𝑀 = (Base‘𝐹) & ⊢ ∙ = ( ·𝑠 ‘𝐹) & ⊢ · = (.r‘𝑆) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐿 ∈ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) & ⊢ (𝜑 → 𝐴 ∈ 𝑀) ⇒ ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) | ||
23-Nov-2024 | mhphf3 40287 | A homogeneous polynomial defines a homogeneous function; this is mhphf2 40286 with the finite support restriction (frlmpws 20957, frlmbas 20962) on the assignments 𝐴 from variables to values. See comment of mhphf2 40286. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝐻 = (𝐼 mHomP 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐹 = (𝑆 freeLMod 𝐼) & ⊢ 𝑀 = (Base‘𝐹) & ⊢ ∙ = ( ·𝑠 ‘𝐹) & ⊢ · = (.r‘𝑆) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) & ⊢ (𝜑 → 𝐴 ∈ 𝑀) ⇒ ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) | ||
23-Nov-2024 | evl0 40271 | The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝑄 = (𝐼 eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑅) & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → (𝑄‘ 0 ) = ((𝐵 ↑m 𝐼) × {𝑂})) | ||
23-Nov-2024 | mplascl0 40270 | The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024.) |
⊢ 𝑊 = (𝐼 mPoly 𝑅) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → (𝐴‘𝑂) = 0 ) | ||
23-Nov-2024 | fldcrngd 40255 | A field is a commutative ring. EDITORIAL: Shortens recrng 20826. Also recrng 20826 should be named resrng. Also fldcrng 36162 is misnamed. (Contributed by SN, 23-Nov-2024.) |
⊢ (𝜑 → 𝑅 ∈ Field) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
23-Nov-2024 | sn-iotaval 40195 | iotaval 6407 without ax-10 2137, ax-11 2154, ax-12 2171. (Contributed by SN, 23-Nov-2024.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | ||
23-Nov-2024 | abbi1sn 40191 | Originally part of uniabio 6406. Convert a theorem about df-iota 6391 to one about dfiota2 6392, without ax-10 2137, ax-11 2154, ax-12 2171. Although, eu6 2574 uses ax-10 2137 and ax-12 2171. (Contributed by SN, 23-Nov-2024.) |
⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) | ||
23-Nov-2024 | recvs 24309 | The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) (Proof shortened by SN, 23-Nov-2024.) |
⊢ 𝑅 = (ringLMod‘ℝfld) ⇒ ⊢ 𝑅 ∈ ℂVec | ||
23-Nov-2024 | moel 3358 | "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018.) Avoid ax-11 2154. (Revised by Wolf Lammen, 23-Nov-2024.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) | ||
23-Nov-2024 | rmobidva 3327 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) Avoid ax-6 1971, ax-7 2011, ax-12 2171. (Revised by Wolf Lammen, 23-Nov-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
23-Nov-2024 | nfrabw 3318 | A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3320 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
22-Nov-2024 | tworepnotupword 46521 | Word of two matching characters is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ¬ (〈“𝐴”〉 ++ 〈“𝐴”〉) ∈ UpWord𝑆 | ||
22-Nov-2024 | singoutnupword 46518 | Singleton with character out of range 𝑆 is not an increasing sequence for that range. (Contributed by Ender Ting, 22-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ 𝐴 ∈ 𝑆 → ¬ 〈“𝐴”〉 ∈ UpWord𝑆) | ||
22-Nov-2024 | natlocalincr 46511 | Global monotonicity on half-open range implies local monotonicity. (Contributed by Ender Ting, 22-Nov-2024.) |
⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) | ||
22-Nov-2024 | et-ltneverrefl 46510 | Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11084. (New usage is discouraged.) |
⊢ ¬ 𝐴 < 𝐴 | ||
22-Nov-2024 | domnsymfi 8986 | If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 8886). (Contributed by BTernaryTau, 22-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | ||
21-Nov-2024 | upwordsseti 46520 | Strictly increasing sequences with a set given for range form a set. (Contributed by Ender Ting, 21-Nov-2024.) |
⊢ 𝑆 ∈ V ⇒ ⊢ UpWord𝑆 ∈ V | ||
21-Nov-2024 | upwordsing 46519 | Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.) |
⊢ 𝐴 ∈ 𝑆 ⇒ ⊢ 〈“𝐴”〉 ∈ UpWord𝑆 | ||
21-Nov-2024 | singoutnword 46517 | Singleton with character out of range 𝑉 is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ 𝐴 ∈ 𝑉 → ¬ 〈“𝐴”〉 ∈ Word 𝑉) | ||
21-Nov-2024 | nfreuw 3305 | Bound-variable hypothesis builder for restricted unique existence. Version of nfreu 3308 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2116, ax-ext 2709. (Revised by Wolf Lammen, 21-Nov-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
21-Nov-2024 | nfrmow 3304 | Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3309 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2116, ax-ext 2709. (Revised by Wolf Lammen, 21-Nov-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
21-Nov-2024 | eeor 2330 | Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994.) Avoid ax-10 2137. (Revised by Gino Giotto, 21-Nov-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) | ||
21-Nov-2024 | aaan 2328 | Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993.) Avoid ax-10 2137. (Revised by Gino Giotto, 21-Nov-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | ||
20-Nov-2024 | php2 8994 | Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5288. (Revised by BTernaryTau, 20-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
20-Nov-2024 | 2ralor 3296 | Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Wolf Lammen, 20-Nov-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) | ||
20-Nov-2024 | sbrim 2301 | Substitution in an implication with a variable not free in the antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) Avoid ax-10 2137. (Revised by Gino Giotto, 20-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | ||
19-Nov-2024 | upwordisword 46516 | Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
⊢ (𝐴 ∈ UpWord𝑆 → 𝐴 ∈ Word 𝑆) | ||
19-Nov-2024 | upwordnul 46515 | Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
⊢ ∅ ∈ UpWord𝑆 | ||
19-Nov-2024 | df-upword 46514 | Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024.) |
⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | ||
19-Nov-2024 | fri 5549 | A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.) |
⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
18-Nov-2024 | php 8993 | Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 8990, phplem2 8991, nneneq 8992, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5288. (Revised by BTernaryTau, 18-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
18-Nov-2024 | wfr3 8168 | The principle of Well-Ordered Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 8166 and wfr2 8167 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
18-Nov-2024 | wfr1 8166 | The Principle of Well-Ordered Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a set-like well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-ordered recursion". The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
18-Nov-2024 | wfr2a 8165 | A weak version of wfr2 8167 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
18-Nov-2024 | wfrresex 8164 | Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
18-Nov-2024 | csbwrecsg 8137 | Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||
18-Nov-2024 | fprresex 8126 | The restriction of a function defined by well-founded recursion to the predecessor of an element of its domain is a set. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
18-Nov-2024 | fprfung 8125 | A "function" defined by well-founded recursion is indeed a function when the relationship is a partial order. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | ||
18-Nov-2024 | frrdmss 8123 | Show without using the axiom of replacement that the domain of the well-founded recursion generator is a subclass of 𝐴. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
18-Nov-2024 | frrrel 8122 | Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
18-Nov-2024 | fpr2 8120 | Law of well-founded recursion over a partial order, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
18-Nov-2024 | fpr2a 8118 | Weak version of fpr2 8120 which is useful for proofs that avoid the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
18-Nov-2024 | csbfrecsg 8100 | Move class substitution in and out of the well-founded recursive function generator. (Contributed by Scott Fenton, 18-Nov-2024.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, 𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||
18-Nov-2024 | drnf1v 2370 | Formula-building lemma for use with the Distinctor Reduction Theorem. Version of drnf1 2443 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 4-Oct-2016.) (Revised by BJ, 17-Jun-2019.) Avoid ax-10 2137. (Revised by Gino Giotto, 18-Nov-2024.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
18-Nov-2024 | dral1v 2367 | Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 2439 with a disjoint variable condition, which does not require ax-13 2372. Remark: the corresponding versions for dral2 2438 and drex2 2442 are instances of albidv 1923 and exbidv 1924 respectively. (Contributed by NM, 24-Nov-1994.) (Revised by BJ, 17-Jun-2019.) Base the proof on ax12v 2172. (Revised by Wolf Lammen, 30-Mar-2024.) Avoid ax-10 2137. (Revised by Gino Giotto, 18-Nov-2024.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
18-Nov-2024 | equsexv 2260 | An equivalence related to implicit substitution. Version of equsex 2418 with a disjoint variable condition, which does not require ax-13 2372. See equsexvw 2008 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv 2259. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) Avoid ax-10 2137. (Revised by Gino Giotto, 18-Nov-2024.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
17-Nov-2024 | bj-rdg0gALT 35242 | Alternate proof of rdg0g 8258. More direct since it bypasses tz7.44-1 8237 and rdg0 8252 (and vtoclg 3505, vtoclga 3513). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | ||
17-Nov-2024 | wfrfun 8163 | The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | ||
17-Nov-2024 | wfrdmcl 8162 | The predecessor class of an element of the well-ordered recursion generator's domain is a subset of its domain. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
17-Nov-2024 | wfrdmss 8161 | The domain of the well-ordered recursion generator is a subclass of 𝐴. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
17-Nov-2024 | wfrrel 8160 | The well-ordered recursion generator generates a relation. Avoids the axiom of replacement. (Contributed by Scott Fenton, 8-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
17-Nov-2024 | nfwrecs 8132 | Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) | ||
17-Nov-2024 | wrecseq123 8130 | General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) | ||
17-Nov-2024 | frrdmcl 8124 | Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
17-Nov-2024 | wfis2fg 6259 | Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
17-Nov-2024 | wfisg 6256 | Well-Ordered Induction Schema. If a property passes from all elements less than 𝑦 of a well-ordered class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
17-Nov-2024 | wfi 6253 | The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | ||
17-Nov-2024 | tz6.26 6250 | All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | ||
17-Nov-2024 | cbvmptv 5187 | Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid auxiliary axioms . See cbvmptvg 5189 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Nov-2024.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
17-Nov-2024 | cbvopab1v 5153 | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
16-Nov-2024 | frd 5548 | A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (deduction form). (Contributed by BJ, 16-Nov-2024.) |
⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
16-Nov-2024 | dffr6 5547 | Alternate definition of df-fr 5544. See dffr5 33721 for a definition without dummy variables (but note that their equivalence uses ax-sep 5223). (Contributed by BJ, 16-Nov-2024.) |
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) | ||
15-Nov-2024 | 1strbas 16929 | The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 15-Nov-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
15-Nov-2024 | 1strstr1 16928 | A constructed one-slot structure. (Contributed by AV, 15-Nov-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (Base‘ndx)〉 | ||
14-Nov-2024 | aks4d1 40097 | Lemma 4.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf, existence of a polynomially bounded number by the digit size of 𝑁 that asserts the polynomial subspace that we need to search to guarantee that 𝑁 is prime. Eventually we want to show that the polynomial searching space is bounded by degree 𝐵. (Contributed by metakunt, 14-Nov-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵)((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((odℤ‘𝑟)‘𝑁))) | ||
14-Nov-2024 | aks4d1p9 40096 | Show that the order is bound by the squared binary logarithm. (Contributed by metakunt, 14-Nov-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ⇒ ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | ||
14-Nov-2024 | aks4d1lem1 40070 | Technical lemma to reduce proof size. (Contributed by metakunt, 14-Nov-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℕ ∧ 9 < 𝐵)) | ||
13-Nov-2024 | aks4d1p8d3 40094 | The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) | ||
13-Nov-2024 | aks4d1p8d2 40093 | Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑄 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑅) & ⊢ (𝜑 → 𝑄 ∥ 𝑅) & ⊢ (𝜑 → ¬ 𝑃 ∥ 𝑁) & ⊢ (𝜑 → 𝑄 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅) | ||
12-Nov-2024 | prstcocval 46352 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ⊥ = (oc‘𝐶)) | ||
12-Nov-2024 | prstcleval 46349 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → ≤ = (le‘𝐶)) | ||
12-Nov-2024 | zlmtset 31914 | Topology in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
12-Nov-2024 | setsmsbas 23628 | The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) | ||
12-Nov-2024 | matvsca 21564 | The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → ( ·𝑠 ‘𝐺) = ( ·𝑠 ‘𝐴)) | ||
12-Nov-2024 | matsca 21562 | The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘𝐺) = (Scalar‘𝐴)) | ||
12-Nov-2024 | sravsca 20449 | The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) | ||
12-Nov-2024 | srasca 20447 | The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | ||
12-Nov-2024 | odubas 18009 | Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
12-Nov-2024 | slotsdifocndx 17128 | The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval 46352. (Contributed by AV, 12-Nov-2024.) |
⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) | ||
12-Nov-2024 | slotsdifplendx2 17127 | The index of the slot for the "less than or equal to" ordering is not the index of other slots. Formerly part of proof for prstcleval 46349. (Contributed by AV, 12-Nov-2024.) |
⊢ ((le‘ndx) ≠ (comp‘ndx) ∧ (le‘ndx) ≠ (Hom ‘ndx)) | ||
12-Nov-2024 | slotsdifipndx 17045 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 20447 and sravsca 20449. (Contributed by AV, 12-Nov-2024.) |
⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
12-Nov-2024 | ssdomfi 8982 | A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8786). (Contributed by BTernaryTau, 12-Nov-2024.) |
⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
11-Nov-2024 | mpteq1df 42779 | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
11-Nov-2024 | mhphf2 40286 |
A homogeneous polynomial defines a homogeneous function; this is mhphf 40285
with simpler notation in the conclusion in exchange for a complex
definition of ∙, which is
based on frlmvscafval 20973 but without the
finite support restriction (frlmpws 20957, frlmbas 20962) on the assignments
𝐴 from variables to values.
TODO?: Polynomials (df-mpl 21114) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝐻 = (𝐼 mHomP 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ ∙ = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼)) & ⊢ · = (.r‘𝑆) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐿 ∈ 𝑅) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) ⇒ ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) | ||
11-Nov-2024 | zlmds 31912 | Distance in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
11-Nov-2024 | setsmsds 23630 | The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) | ||
11-Nov-2024 | thlle 20903 | Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ 𝐾 = (toHL‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ 𝐼 = (toInc‘𝐶) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ≤ = (le‘𝐾) | ||
11-Nov-2024 | thlbas 20901 | Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ 𝐾 = (toHL‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ 𝐶 = (Base‘𝐾) | ||
11-Nov-2024 | cnfldfunALT 20610 | The field of complex numbers is a function. Alternate proof of cnfldfun 20609 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
11-Nov-2024 | fldidom 20576 | A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ (𝑅 ∈ Field → 𝑅 ∈ IDomn) | ||
11-Nov-2024 | slotsdifdsndx 17104 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 20610. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
11-Nov-2024 | plendxnocndx 17094 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle 20903. (Contributed by AV, 11-Nov-2024.) |
⊢ (le‘ndx) ≠ (oc‘ndx) | ||
11-Nov-2024 | basendxnocndx 17093 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. Formerly part of proof for thlbas 20901. (Contributed by AV, 11-Nov-2024.) |
⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
11-Nov-2024 | slotsdifplendx 17085 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 20610. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
11-Nov-2024 | tsetndxnstarvndx 17069 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 20610. (Contributed by AV, 11-Nov-2024.) |
⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
11-Nov-2024 | nneneq 8992 | Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.) Avoid ax-pow 5288. (Revised by BTernaryTau, 11-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
11-Nov-2024 | ofeqd 7535 | Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ∘f 𝑅 = ∘f 𝑆) | ||
11-Nov-2024 | dffun2 6443 | Alternate definition of a function. (Contributed by NM, 29-Dec-1996.) Avoid ax-10 2137, ax-12 2171. (Revised by SN, 11-Nov-2024.) |
⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → 𝑦 = 𝑧))) | ||
11-Nov-2024 | iunopab 5472 | Move indexed union inside an ordered-pair class abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.) Avoid ax-sep 5223, ax-nul 5230, ax-pr 5352. (Revised by SN, 11-Nov-2024.) |
⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} | ||
11-Nov-2024 | mpteq2ia 5177 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | ||
11-Nov-2024 | mpteq2dva 5174 | Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) Remove dependency on ax-10 2137. (Revised by SN, 11-Nov-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
11-Nov-2024 | mpteq2da 5172 | Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
11-Nov-2024 | mpteq1i 5170 | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
11-Nov-2024 | mpteq1 5167 | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
11-Nov-2024 | mpteq12dva 5163 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2137, ax-12 2171. (Revised by SN, 11-Nov-2024.) |
⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
11-Nov-2024 | mpteq12df 5160 | An equality inference for the maps-to notation. Compare mpteq12dv 5165. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
11-Nov-2024 | mpteq12da 5159 | An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2137. (Revised by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
10-Nov-2024 | aks4d1p8 40095 | Show that 𝑁 and 𝑅 are coprime for AKS existence theorem, with eliminated hypothesis. (Contributed by metakunt, 10-Nov-2024.) (Proof sketch by Thierry Arnoux.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | ||
10-Nov-2024 | aks4d1p8d1 40092 | If a prime divides one number 𝑀, but not another number 𝑁, then it divides the quotient of 𝑀 and the gcd of 𝑀 and 𝑁. (Contributed by Thierry Arnoux, 10-Nov-2024.) |
⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑀) & ⊢ (𝜑 → ¬ 𝑃 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝑃 ∥ (𝑀 / (𝑀 gcd 𝑁))) | ||
10-Nov-2024 | slotsdifunifndx 17111 | The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT 20610. (Contributed by AV, 10-Nov-2024.) |
⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) | ||
9-Nov-2024 | bj-flddrng 35460 | Fields are division rings (elemental version). (Contributed by BJ, 9-Nov-2024.) |
⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) | ||
9-Nov-2024 | bj-dfid2ALT 35236 | Alternate version of dfid2 5491. (Contributed by BJ, 9-Nov-2024.) (Proof modification is discouraged.) Use df-id 5489 instead to make the semantics of the construction df-opab 5137 clearer. (New usage is discouraged.) |
⊢ I = {〈𝑥, 𝑥〉 ∣ ⊤} | ||
9-Nov-2024 | ttgval 27236 | Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof shortened by AV, 9-Nov-2024.) |
⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ − = (-g‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) | ||
9-Nov-2024 | lngndxnitvndx 26804 | The slot for the line is not the slot for the Interval (segment) in an extensible structure. Formerly part of proof for ttgval 27236. (Contributed by AV, 9-Nov-2024.) |
⊢ (LineG‘ndx) ≠ (Itv‘ndx) | ||
9-Nov-2024 | rescabs 17547 | Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 9-Nov-2024.) |
⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → ((𝐶 ↾cat 𝐻) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) | ||
7-Nov-2024 | ressbas 16947 | Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
7-Nov-2024 | setsnid 16910 | Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ 𝐷 ⇒ ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) | ||
6-Nov-2024 | sn-iotaex 40197 | iotaex 6413 without ax-10 2137, ax-11 2154, ax-12 2171. (Contributed by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ∈ V | ||
6-Nov-2024 | sn-iotassuni 40196 | iotassuni 6412 without ax-10 2137, ax-11 2154, ax-12 2171. (Contributed by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
6-Nov-2024 | sn-iotanul 40194 | Version of iotanul 6411 using df-iota 6391 instead of dfiota2 6392. (Contributed by SN, 6-Nov-2024.) |
⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | ||
6-Nov-2024 | sn-iotauni 40193 | Version of iotauni 6408 using df-iota 6391 instead of dfiota2 6392. (Contributed by SN, 6-Nov-2024.) |
⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
6-Nov-2024 | iotavallem 40192 | Version of iotaval 6407 using df-iota 6391 instead of dfiota2 6392. (Contributed by SN, 6-Nov-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | ||
6-Nov-2024 | sn-iotalemcor 40190 | Corollary of sn-iotalem 40189. Compare sb8iota 6403. (Contributed by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
6-Nov-2024 | sn-iotalem 40189 | An unused lemma showing that many equivalences involving df-iota 6391 are potentially provable without ax-10 2137, ax-11 2154, ax-12 2171. (Contributed by SN, 6-Nov-2024.) |
⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | ||
6-Nov-2024 | eqimssd 40183 | Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
6-Nov-2024 | hlhilsmul 39958 | Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ · = (.r‘𝐸) ⇒ ⊢ (𝜑 → · = (.r‘𝑅)) | ||
6-Nov-2024 | hlhilsplus 39956 | Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
6-Nov-2024 | hlhilsbase 39954 | The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
6-Nov-2024 | hlhilslem 39952 | Lemma for hlhilsbase 39954 etc. (Contributed by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = Slot (𝐹‘ndx) & ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) & ⊢ 𝐶 = (𝐹‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) | ||
6-Nov-2024 | oppradd 19871 | Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ + = (+g‘𝑂) | ||
6-Nov-2024 | opprbas 19869 | Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
6-Nov-2024 | opprlem 19867 | Lemma for opprbas 19869 and oppradd 19871. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
6-Nov-2024 | symgvalstruct 19004 | The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} & ⊢ 𝑀 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
6-Nov-2024 | frmdplusg 18493 | The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) (Proof shortened by AV, 6-Nov-2024.) |
⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) | ||
5-Nov-2024 | dfid2 5491 |
Alternate definition of the identity relation. Instance of dfid3 5492 not
requiring auxiliary axioms. (Contributed by NM, 15-Mar-2007.) Reduce
axiom usage. (Revised by Gino Giotto, 4-Nov-2024.) (Proof shortened by
BJ, 5-Nov-2024.)
Use df-id 5489 instead to make the semantics of the constructor df-opab 5137 clearer. (New usage is discouraged.) |
⊢ I = {〈𝑥, 𝑥〉 ∣ 𝑥 = 𝑥} | ||
5-Nov-2024 | r19.30 3268 | Restricted quantifier version of 19.30 1884. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 5-Nov-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
4-Nov-2024 | phplem2 8991 | Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
4-Nov-2024 | sbthfi 8985 | Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 8880). (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
4-Nov-2024 | sbthfilem 8984 | Lemma for sbthfi 8985. (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
4-Nov-2024 | r19.29vva 3266 | A commonly used pattern based on r19.29 3184, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
4-Nov-2024 | r19.29d2r 3264 | Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | ||
4-Nov-2024 | r19.12 3257 | Restricted quantifier version of 19.12 2321. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Avoid ax-13 2372, ax-ext 2709. (Revised by Wolf Lammen, 17-Jun-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | ||
4-Nov-2024 | ralrexbid 3255 | Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ (𝜑 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) | ||
4-Nov-2024 | reximdvai 3200 | Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) | ||
4-Nov-2024 | exexw 2054 | Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 34882, requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑥𝜑) | ||
3-Nov-2024 | znmul 20748 | The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (.r‘𝑈) = (.r‘𝑌)) | ||
3-Nov-2024 | znadd 20746 | The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (+g‘𝑈) = (+g‘𝑌)) | ||
3-Nov-2024 | znbas2 20744 | The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌)) | ||
3-Nov-2024 | znbaslem 20742 | Lemma for znbas 20751. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (le‘ndx) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) | ||
3-Nov-2024 | zlmmulr 20724 | Ring operation of a ℤ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ · = (.r‘𝐺) ⇒ ⊢ · = (.r‘𝑊) | ||
3-Nov-2024 | zlmplusg 20722 | Group operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (+g‘𝑊) | ||
3-Nov-2024 | zlmbas 20720 | Base set of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = (Base‘𝑊) | ||
3-Nov-2024 | zlmlem 20718 | Lemma for zlmbas 20720 and zlmplusg 20722. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) & ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ⇒ ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) | ||
3-Nov-2024 | nelb 3195 | A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
3-Nov-2024 | rexbi 3173 | Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | ||
2-Nov-2024 | psrvscafval 21159 | The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ⇒ ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) | ||
2-Nov-2024 | zlmsca 20726 | Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) | ||
2-Nov-2024 | rexab 3631 | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.) |
⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) | ||
2-Nov-2024 | ralab 3628 | Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.) |
⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) | ||
1-Nov-2024 | mnringvscad 41842 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
1-Nov-2024 | mnringscad 41840 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
1-Nov-2024 | mnringaddgd 41835 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
1-Nov-2024 | mnringbased 41829 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
1-Nov-2024 | mnringnmulrd 41827 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
1-Nov-2024 | opsrsca 21260 | The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑂)) | ||
1-Nov-2024 | opsrvsca 21258 | The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑂)) | ||
1-Nov-2024 | opsrmulr 21256 | The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑂)) | ||
1-Nov-2024 | opsrplusg 21254 | The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) | ||
1-Nov-2024 | opsrbas 21252 | The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) | ||
1-Nov-2024 | opsrbaslem 21250 | Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (le‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) | ||
1-Nov-2024 | plendxnvscandx 17084 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21258. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
1-Nov-2024 | plendxnscandx 17083 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21260. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
1-Nov-2024 | plendxnmulrndx 17082 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21256. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (.r‘ndx) | ||
31-Oct-2024 | mendvscafval 41015 | Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) ⇒ ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) | ||
31-Oct-2024 | mendsca 41014 | The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ 𝑆 = (Scalar‘𝐴) | ||
31-Oct-2024 | mendmulrfval 41012 | Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (.r‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) | ||
31-Oct-2024 | mendplusgfval 41010 | Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (+g‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f + 𝑦)) | ||
31-Oct-2024 | aks4d1p7 40091 | Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) | ||
31-Oct-2024 | aks4d1p7d1 40090 | Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) ⇒ ⊢ (𝜑 → 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) | ||
31-Oct-2024 | resvmulr 31538 | .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝐻)) | ||
31-Oct-2024 | resvvsca 31536 | ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
31-Oct-2024 | resvplusg 31534 | +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
31-Oct-2024 | resvbas 31532 | Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) | ||
31-Oct-2024 | resvlem 31530 | Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
31-Oct-2024 | nrgtrg 23854 | A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) | ||
31-Oct-2024 | tngip 23809 | The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → , = (·𝑖‘𝑇)) | ||
31-Oct-2024 | tngvsca 23807 | The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → · = ( ·𝑠 ‘𝑇)) | ||
31-Oct-2024 | tngsca 23805 | The scalar ring of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐹 = (Scalar‘𝑇)) | ||
31-Oct-2024 | tngmulr 23803 | The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → · = (.r‘𝑇)) | ||
31-Oct-2024 | tng0 23802 | The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 0 = (0g‘𝑇)) | ||
31-Oct-2024 | tngplusg 23800 | The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → + = (+g‘𝑇)) | ||
31-Oct-2024 | tngbas 23798 | The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐵 = (Base‘𝑇)) | ||
31-Oct-2024 | tnglem 23796 | Lemma for tngbas 23798 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) & ⊢ (𝐸‘ndx) ≠ (dist‘ndx) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) | ||
31-Oct-2024 | indistpsALT 22163 | The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 22161 from the direct component assignment version indistps2 22162. (Contributed by NM, 24-Oct-2012.) (Revised by AV, 31-Oct-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
31-Oct-2024 | eltpsg 22092 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
31-Oct-2024 | dsndxnmulrndx 17101 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
31-Oct-2024 | tsetndxnmulrndx 17068 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
31-Oct-2024 | tsetndxnbasendx 17066 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
31-Oct-2024 | basendxlttsetndx 17065 | The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (Base‘ndx) < (TopSet‘ndx) | ||
31-Oct-2024 | tsetndxnn 17064 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ∈ ℕ | ||
31-Oct-2024 | oveqprc 16893 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 31530. (Contributed by AV, 31-Oct-2024.) |
⊢ (𝐸‘∅) = ∅ & ⊢ 𝑍 = (𝑋𝑂𝑌) & ⊢ Rel dom 𝑂 ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) | ||
31-Oct-2024 | fveqprc 16892 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 20718. (Contributed by AV, 31-Oct-2024.) |
⊢ (𝐸‘∅) = ∅ & ⊢ 𝑌 = (𝐹‘𝑋) ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) | ||
31-Oct-2024 | ttrclse 9485 |
If 𝑅 is set-like over 𝐴, then
the transitive closure of the
restriction of 𝑅 to 𝐴 is set-like over 𝐴.
This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.) |
⊢ (𝑅 Se 𝐴 → t++(𝑅 ↾ 𝐴) Se 𝐴) | ||
31-Oct-2024 | ttrclselem2 9484 | Lemma for ttrclse 9485. Show that a suc 𝑁 element long chain gives membership in the 𝑁-th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024.) |
⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))) | ||
31-Oct-2024 | ttrclselem1 9483 | Lemma for ttrclse 9485. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.) |
⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) ⇒ ⊢ (𝑁 ∈ ω → (𝐹‘𝑁) ⊆ 𝐴) | ||
31-Oct-2024 | rdg0n 8265 | If 𝐴 is a proper class, then the recursive function generator at ∅ is the empty set. (Contributed by Scott Fenton, 31-Oct-2024.) |
⊢ (¬ 𝐴 ∈ V → (rec(𝐹, 𝐴)‘∅) = ∅) | ||
31-Oct-2024 | reximia 3176 | Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
31-Oct-2024 | ralcom4 3164 | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
31-Oct-2024 | ralbida 3159 | Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
31-Oct-2024 | nfra2w 3154 | Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42480. Version of nfra2 3157 with a disjoint variable condition not requiring ax-13 2372. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
30-Oct-2024 | aks4d1p6 40089 | The maximal prime power exponent is smaller than the binary logarithm floor of 𝐵. (Contributed by metakunt, 30-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝑅) & ⊢ 𝐾 = (𝑃 pCnt 𝑅) ⇒ ⊢ (𝜑 → 𝐾 ≤ (⌊‘(2 logb 𝐵))) | ||
30-Oct-2024 | aks4d1p5 40088 | Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) & ⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) ⇒ ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | ||
30-Oct-2024 | basendxltedgfndx 27363 | The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ (Base‘ndx) < (.ef‘ndx) | ||
30-Oct-2024 | isposix 18043 | Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
30-Oct-2024 | plendxnbasendx 17080 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ≠ (Base‘ndx) | ||
30-Oct-2024 | basendxltplendx 17079 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
⊢ (Base‘ndx) < (le‘ndx) | ||
30-Oct-2024 | plendxnn 17078 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ∈ ℕ | ||
30-Oct-2024 | pm13.181 3026 | Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | ||
29-Oct-2024 | cchhllem 27254 | Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) | ||
29-Oct-2024 | ttgds 27247 | The metric of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐷 = (dist‘𝐻) ⇒ ⊢ 𝐷 = (dist‘𝐺) | ||
29-Oct-2024 | ttgvsca 27245 | The scalar product of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ 𝐺 = (toTG‘𝐻) & ⊢ · = ( ·𝑠 ‘𝐻) ⇒ ⊢ · = ( ·𝑠 ‘𝐺) | ||
29-Oct-2024 | ttgplusg 27242 | The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ 𝐺 = (toTG‘𝐻) & ⊢ + = (+g‘𝐻) ⇒ ⊢ + = (+g‘𝐺) | ||
29-Oct-2024 | ttgbas 27240 | The base set of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
29-Oct-2024 | ttglem 27238 | Lemma for ttgbas 27240, ttgvsca 27245 etc. (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ 𝐺 = (toTG‘𝐻) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (LineG‘ndx) & ⊢ (𝐸‘ndx) ≠ (Itv‘ndx) ⇒ ⊢ (𝐸‘𝐻) = (𝐸‘𝐺) | ||
29-Oct-2024 | slotslnbpsd 26803 | The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 27238 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) | ||
29-Oct-2024 | slotsinbpsd 26802 | The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 27238 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) | ||
29-Oct-2024 | tngds 23811 | The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) | ||
29-Oct-2024 | srads 20455 | Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) | ||
29-Oct-2024 | sratset 20452 | Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) | ||
29-Oct-2024 | sramulr 20445 | Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (.r‘𝐴)) | ||
29-Oct-2024 | sraaddg 20443 | Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (+g‘𝑊) = (+g‘𝐴)) | ||
29-Oct-2024 | srabase 20441 | Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝐴)) | ||
29-Oct-2024 | sralem 20439 | Lemma for srabase 20441 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) | ||
29-Oct-2024 | dsndxntsetndx 17103 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 23811. (Contributed by AV, 29-Oct-2024.) |
⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
29-Oct-2024 | slotsdnscsi 17102 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 20439 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
29-Oct-2024 | slotstnscsi 17070 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 20439 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
29-Oct-2024 | ipndxnmulrndx 17044 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 19728. (Contributed by AV, 29-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
29-Oct-2024 | ipndxnplusgndx 17043 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
29-Oct-2024 | vscandxnmulrndx 17033 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20191. (Contributed by AV, 29-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
29-Oct-2024 | scandxnmulrndx 17028 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 19728. (Contributed by AV, 29-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
29-Oct-2024 | pm13.18 3025 | Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) (Proof shortened by Wolf Lammen, 29-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) | ||
28-Oct-2024 | aks4d1p4 40087 | There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 28-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) & ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) | ||
28-Oct-2024 | edgfndxid 27361 | The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝐺 ∈ 𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | ||
28-Oct-2024 | tuslem 23418 | Lemma for tusbas 23420, tusunif 23421, and tustopn 23423. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾))) | ||
28-Oct-2024 | estrreslem1 17853 | Lemma 1 for estrres 17856. (Contributed by AV, 14-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
28-Oct-2024 | slotsbhcdif 17125 | The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
28-Oct-2024 | unifndxntsetndx 17110 | The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem 23418. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
28-Oct-2024 | basendxltunifndx 17108 | The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem 23418. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
28-Oct-2024 | unifndxnn 17107 | The index of the slot for the uniform set in an extensible structure is a positive integer. Formerly part of proof for tuslem 23418. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ∈ ℕ | ||
28-Oct-2024 | dsndxnbasendx 17099 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
28-Oct-2024 | basendxltdsndx 17098 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 23637. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (dist‘ndx) | ||
28-Oct-2024 | dsndxnn 17097 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 23637. (Contributed by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ∈ ℕ | ||
28-Oct-2024 | basendxnmulrndx 17005 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
28-Oct-2024 | wunress 16960 | Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
28-Oct-2024 | predpo 6226 | Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.) |
⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) | ||
28-Oct-2024 | predtrss 6225 | If 𝑅 is transitive over 𝐴 and 𝑌𝑅𝑋, then Pred(𝑅, 𝐴, 𝑌) is a subclass of Pred(𝑅, 𝐴, 𝑋). (Contributed by Scott Fenton, 28-Oct-2024.) |
⊢ ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | ||
28-Oct-2024 | necon3ai 2968 | Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝐴 ≠ 𝐵 → ¬ 𝜑) | ||
28-Oct-2024 | sbabel 2941 | Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 28-Oct-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ([𝑦 / 𝑥]{𝑧 ∣ 𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴) | ||
27-Oct-2024 | aks4d1p3 40086 | There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 27-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) | ||
27-Oct-2024 | aks4d1p2 40085 | Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) & ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) ⇒ ⊢ (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵))) | ||
27-Oct-2024 | grpplusg 16998 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
27-Oct-2024 | grpbase 16996 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
27-Oct-2024 | grpstrndx 16995 | A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (+g‘ndx)〉 | ||
27-Oct-2024 | df-wrecs 8128 | Define the well-ordered recursive function generator. This function takes the usual expressions from recursion theorems and forms a unified definition. Specifically, given a function 𝐹, a relation 𝑅, and a base set 𝐴, this definition generates a function 𝐺 = wrecs(𝑅, 𝐴, 𝐹) that has property that, at any point 𝑥 ∈ 𝐴, (𝐺‘𝑥) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑥))). See wfr1 8166, wfr2 8167, and wfr3 8168. (Contributed by Scott Fenton, 7-Jun-2018.) (Revised by BJ, 27-Oct-2024.) |
⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | ||
27-Oct-2024 | opco2 7965 | Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴(𝐹 ∘ 2nd )𝐵) = (𝐹‘𝐵)) | ||
27-Oct-2024 | opco1 7964 | Value of an operation precomposed with the projection on the first component. (Contributed by Mario Carneiro, 28-May-2014.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴(𝐹 ∘ 1st )𝐵) = (𝐹‘𝐴)) | ||
27-Oct-2024 | predexg 6220 | The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V) | ||
26-Oct-2024 | sticksstones22 40124 | Non-exhaustive sticks and stones. (Contributed by metakunt, 26-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) | ||
26-Oct-2024 | dfttrcl2 9482 | When 𝑅 is a set and a relationship, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) | ||
26-Oct-2024 | ttrclexg 9481 | If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | ||
26-Oct-2024 | rnttrcl 9480 | The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ ran t++𝑅 = ran 𝑅 | ||
26-Oct-2024 | dmttrcl 9479 | The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ dom t++𝑅 = dom 𝑅 | ||
26-Oct-2024 | nfttrcld 9468 | Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ (𝜑 → Ⅎ𝑥𝑅) ⇒ ⊢ (𝜑 → Ⅎ𝑥t++𝑅) | ||
26-Oct-2024 | nfopab 5143 | Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
26-Oct-2024 | nfopabd 5142 | Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑧𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
26-Oct-2024 | sbceqal 3782 | Class version of one implication of equvelv 2034. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
26-Oct-2024 | sbcim1 3772 | Distribution of class substitution over implication. One direction of sbcimg 3767 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) Avoid ax-10 2137, ax-12 2171. (Revised by SN, 26-Oct-2024.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
26-Oct-2024 | sbievg 2361 | Substitution applied to expressions linked by implicit substitution. The proof was part of a former cbvabw 2812 version. (Contributed by GG and WL, 26-Oct-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) | ||
25-Oct-2024 | hbab1 2724 | Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | ||
25-Oct-2024 | nfsbv 2324 | If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is disjoint from both 𝑥 and 𝑦. Version of nfsb 2527 with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Oct-2024.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | ||
24-Oct-2024 | sticksstones21 40123 | Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) | ||
24-Oct-2024 | sticksstones20 40122 | Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → (♯‘𝑆) = 𝐾) ⇒ ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) | ||
24-Oct-2024 | eldifsucnn 8494 | Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.) |
⊢ (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥)) | ||
24-Oct-2024 | eqtr3 2764 | A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | ||
24-Oct-2024 | eqtr2 2762 | A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | ||
23-Oct-2024 | sticksstones19 40121 | Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑥 ∈ 𝑆 ↦ (𝑎‘(◡𝑍‘𝑥)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
23-Oct-2024 | sticksstones18 40120 | Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑥 ∈ 𝑆 ↦ (𝑎‘(◡𝑍‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
23-Oct-2024 | sticksstones17 40119 | Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
23-Oct-2024 | eqeq12 2755 | Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
23-Oct-2024 | eqeq12d 2754 | A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
23-Oct-2024 | eqeqan12d 2752 | A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2760. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
21-Oct-2024 | unifndxnbasendx 17109 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
21-Oct-2024 | ipndxnbasendx 17042 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
21-Oct-2024 | scandxnbasendx 17026 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
20-Oct-2024 | sticksstones16 40118 | Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) | ||
20-Oct-2024 | ttrclss 9478 | If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.) |
⊢ ((𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆) → t++𝑅 ⊆ 𝑆) | ||
20-Oct-2024 | cottrcl 9477 | Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024.) |
⊢ (𝑅 ∘ t++𝑅) ⊆ t++𝑅 | ||
20-Oct-2024 | ttrclco 9476 | Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024.) |
⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 | ||
20-Oct-2024 | ttrclresv 9475 | The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
⊢ t++(𝑅 ↾ V) = t++𝑅 | ||
19-Oct-2024 | resseqnbas 16951 | The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Base‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
18-Oct-2024 | rmodislmod 20191 | The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20125 of a left module, see also islmod 20127. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) | ||
18-Oct-2024 | mgpress 19735 | Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) | ||
18-Oct-2024 | setsplusg 18954 | The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (+g‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
18-Oct-2024 | rescbas 17541 | Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝐷 = (𝐶 ↾cat 𝐻) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) | ||
18-Oct-2024 | oppcbas 17428 | Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
18-Oct-2024 | dsndxnplusgndx 17100 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 19733. (Contributed by AV, 18-Oct-2024.) |
⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | plendxnplusgndx 17081 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 31238. (Contributed by AV, 18-Oct-2024.) |
⊢ (le‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | tsetndxnplusgndx 17067 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 18958. (Contributed by AV, 18-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | vscandxnscandx 17034 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20191. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
18-Oct-2024 | vscandxnplusgndx 17032 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20191. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | vscandxnbasendx 17031 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20191. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
18-Oct-2024 | scandxnplusgndx 17027 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 19728. (Contributed by AV, 18-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | starvndxnmulrndx 17016 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17018. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
18-Oct-2024 | starvndxnplusgndx 17015 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17018. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
18-Oct-2024 | starvndxnbasendx 17014 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17018. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
17-Oct-2024 | nnuni 33692 | The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
17-Oct-2024 | basendxnplusgndx 16992 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
17-Oct-2024 | basendxltplusgndx 16991 | The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) < (+g‘ndx) | ||
17-Oct-2024 | plusgndxnn 16990 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.) |
⊢ (+g‘ndx) ∈ ℕ | ||
17-Oct-2024 | ressval3d 16956 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
17-Oct-2024 | 2strstr1 16937 | A constructed two-slot structure. Version of 2strstr 16934 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑁〉 | ||
17-Oct-2024 | 1strwun 16932 | A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
17-Oct-2024 | basndxelwund 16924 | The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 16932. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | ||
17-Oct-2024 | setsidvald 16900 |
Value of the structure replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) | ||
17-Oct-2024 | ttrcltr 9474 | The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | ||
17-Oct-2024 | ssttrcl 9473 | If 𝑅 is a relation, then it is a subclass of its transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | ||
17-Oct-2024 | relttrcl 9470 | The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ Rel t++𝑅 | ||
17-Oct-2024 | nfttrcl 9469 | Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥t++𝑅 | ||
17-Oct-2024 | ttrcleq 9467 | Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (𝑅 = 𝑆 → t++𝑅 = t++𝑆) | ||
17-Oct-2024 | df-ttrcl 9466 | Define the transitive closure of a class. This is the smallest relationship containing 𝑅 (or more precisely, the relation (𝑅 ↾ V) induced by 𝑅) and having the transitive property. Definition from [Levy] p. 59, who denotes it as 𝑅∗ and calls it the "ancestral" of 𝑅. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | ||
17-Oct-2024 | nnasmo 8493 | There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) | ||
16-Oct-2024 | thincciso 46330 | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) | ||
16-Oct-2024 | bj-elabd2ALT 35113 | Alternate proof of elabd2 3601 bypassing elab6g 3600 (and using sbiedvw 2096 instead of the ∀𝑥(𝑥 = 𝑦 → 𝜓) idiom). (Contributed by BJ, 16-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = {𝑥 ∣ 𝜓}) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝜒)) | ||
16-Oct-2024 | omsinds 7733 | Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ ω → 𝜒) | ||
16-Oct-2024 | predon 7635 | The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) | ||
16-Oct-2024 | elpred 6219 | Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ 𝑌 ∈ V ⇒ ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | ||
16-Oct-2024 | elpredim 6218 | Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ 𝑋 ∈ V ⇒ ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋) | ||
16-Oct-2024 | elpredimg 6217 | Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) | ||
16-Oct-2024 | elpredg 6216 | Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) | ||
16-Oct-2024 | elpredgg 6215 | Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | ||
16-Oct-2024 | epin 6003 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
16-Oct-2024 | elinisegg 6001 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
16-Oct-2024 | elimasn 5997 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 5995, remove, and relabel elimasn1 5995 to "elimasn". |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | ||
16-Oct-2024 | elimasn1 5995 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5075 and shorten. (Revised by BJ, 16-Oct-2024.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) | ||
16-Oct-2024 | elimasng1 5994 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5075 and to prove elimasn1 5995 from it. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | ||
16-Oct-2024 | elabd2 3601 | Membership in a class abstraction, using implicit substitution. Deduction version of elab 3609. (Contributed by Gino Giotto, 12-Oct-2024.) (Revised by BJ, 16-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = {𝑥 ∣ 𝜓}) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝜒)) | ||
15-Oct-2024 | eloprabga 7382 | The law of concretion for operation class abstraction. Compare elopab 5440. (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) Avoid ax-10 2137, ax-11 2154. (Revised by Wolf Lammen, 15-Oct-2024.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) | ||
15-Oct-2024 | cbvopabv 5147 | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
15-Oct-2024 | notabw 4237 | A class abstraction defined by a negation. Version of notab 4238 using implicit substitution, which does not require ax-10 2137, ax-12 2171. (Contributed by Gino Giotto, 15-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) | ||
15-Oct-2024 | unabw 4231 | Union of two class abstractions. Version of unab 4232 using implicit substitution, which does not require ax-8 2108, ax-10 2137, ax-12 2171. (Contributed by Gino Giotto, 15-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) ⇒ ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} | ||
15-Oct-2024 | csbied 3870 | Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
15-Oct-2024 | csbie 3868 | Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | ||
15-Oct-2024 | csbconstg 3851 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3850 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2171. (Revised by Gino Giotto, 15-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
14-Oct-2024 | catcxpccl 17924 | The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑇 = (𝑋 ×c 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
14-Oct-2024 | catcfuccl 17834 | The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑄 = (𝑋 FuncCat 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐵) | ||
14-Oct-2024 | catcccocl 17831 | The composition operation of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 17832. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (comp‘𝑋) ∈ 𝑈) | ||
14-Oct-2024 | catchomcl 17830 | The Hom-set of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 17832. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (Hom ‘𝑋) ∈ 𝑈) | ||
14-Oct-2024 | catcbaselcl 17829 | The base set of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 17832. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (Base‘𝑋) ∈ 𝑈) | ||
14-Oct-2024 | catcslotelcl 17828 | A slot entry of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 17832. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐸 = Slot (𝐸‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑋) ∈ 𝑈) | ||
14-Oct-2024 | catcbascl 17827 | An element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 17832. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑈) | ||
14-Oct-2024 | fuchom 17678 | The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) ⇒ ⊢ 𝑁 = (Hom ‘𝑄) | ||
14-Oct-2024 | oppchomfval 17423 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ tpos 𝐻 = (Hom ‘𝑂) | ||
13-Oct-2024 | edgfndxnn 27360 | The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ (.ef‘ndx) ∈ ℕ | ||
13-Oct-2024 | edgfndx 27359 | Index value of the df-edgf 27357 slot. (Contributed by AV, 13-Oct-2024.) (New usage is discouraged.) |
⊢ (.ef‘ndx) = ;18 | ||
13-Oct-2024 | 0pos 18039 | Technical lemma to simplify the statement of ipopos 18254. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 16890) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ ∅ ∈ Poset | ||
13-Oct-2024 | catcoppccl 17832 | The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑂 = (oppCat‘𝑋) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑂 ∈ 𝐵) | ||
13-Oct-2024 | wunnat 17672 | A weak universe is closed under the natural transformation operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐶 Nat 𝐷) ∈ 𝑈) | ||
13-Oct-2024 | wunfunc 17614 | A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐷 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈) | ||
13-Oct-2024 | rescco 17545 | Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ 𝐷 = (𝐶 ↾cat 𝐻) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘𝐷)) | ||
13-Oct-2024 | prdsvallem 17165 | Lemma for prdsval 17166. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17166, dependency on df-hom 16986 removed. (Revised by AV, 13-Oct-2024.) |
⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V | ||
13-Oct-2024 | basendxnn 16922 | The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ (Base‘ndx) ∈ ℕ | ||
13-Oct-2024 | pcxnn0cl 16561 | Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈ ℕ0*) | ||
12-Oct-2024 | trpred 6234 | The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.) |
⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) | ||
12-Oct-2024 | sbc2ie 3799 | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Gino Giotto, 12-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
12-Oct-2024 | sbcg 3795 | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3793. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
12-Oct-2024 | sbcimdv 3790 | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1813). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
12-Oct-2024 | sbcied 3761 | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
12-Oct-2024 | sbcieg 3756 | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
12-Oct-2024 | elabgt 3603 | Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3607.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
12-Oct-2024 | elabd3 3602 | Membership in a class abstraction, using implicit substitution. Deduction version of elab 3609. (Contributed by Gino Giotto, 12-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) | ||
12-Oct-2024 | ceqsexv 3479 | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | ||
12-Oct-2024 | rabrabi 3427 | Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid ax-10 2137, ax-11 2154 and ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ {𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜒 ∧ 𝜓)} | ||
12-Oct-2024 | sbco4lem 2273 | Lemma for sbco4 2275. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof shortened by Wolf Lammen, 12-Oct-2024.) |
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
11-Oct-2024 | sticksstones12a 40113 | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → ∀𝑑 ∈ 𝐵 (𝐹‘(𝐺‘𝑑)) = 𝑑) | ||
10-Oct-2024 | dfuniv2 41920 | Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ Univ = {𝑦 ∣ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))} | ||
10-Oct-2024 | ismnushort 41919 | Express the predicate on 𝑈 and 𝑧 in ismnu 41879 in a shorter form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ (∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
9-Oct-2024 | no3inds 34115 | Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → 𝜆) | ||
9-Oct-2024 | lrold 34077 | The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday ‘𝐴)) | ||
9-Oct-2024 | rightirr 34074 | No surreal is a member of its right set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ¬ 𝑋 ∈ ( R ‘𝑋) | ||
9-Oct-2024 | leftirr 34073 | No surreal is a member of its left set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ¬ 𝑋 ∈ ( L ‘𝑋) | ||
9-Oct-2024 | madeun 34066 | The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( M ‘𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴)) | ||
9-Oct-2024 | rightssno 34064 | The right set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( R ‘𝐴) ⊆ No | ||
9-Oct-2024 | leftssno 34063 | The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( L ‘𝐴) ⊆ No | ||
9-Oct-2024 | rightssold 34062 | The right options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( R ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
9-Oct-2024 | leftssold 34061 | The left options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( L ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
9-Oct-2024 | oldssmade 34060 | The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | ||
9-Oct-2024 | madess 34059 | If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵)) | ||
9-Oct-2024 | rightval 34048 | The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} | ||
9-Oct-2024 | leftval 34047 | The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | ||
9-Oct-2024 | newssno 34046 | New sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( N ‘𝐴) ⊆ No | ||
9-Oct-2024 | oldssno 34045 | Old sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( O ‘𝐴) ⊆ No | ||
9-Oct-2024 | madessno 34044 | Made sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( M ‘𝐴) ⊆ No | ||
9-Oct-2024 | newval 34039 | The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | ||
9-Oct-2024 | dtruALT2 5293 | Alternate proof of dtru 5359 using ax-pow 5288 instead of ax-pr 5352. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2372. (Revised by Gino Giotto, 5-Sep-2023.) Avoid ax-12 2171. (Revised by Rohan Ridenour, 9-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
8-Oct-2024 | rr-grothshort 41922 | A shorter equivalent of ax-groth 10579 than rr-groth 41917 using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) | ||
8-Oct-2024 | rr-grothshortbi 41921 | Express "every set is contained in a Grothendieck universe" in a short form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) | ||
7-Oct-2024 | f1ocof1ob2 44574 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 44573 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
7-Oct-2024 | f1ocof1ob 44573 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
7-Oct-2024 | fcoresf1ob 44567 | A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) | ||
7-Oct-2024 | fcoresfob 44566 | A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) | ||
7-Oct-2024 | fcoresf1b 44564 | A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) | ||
7-Oct-2024 | fcoresf1 44563 | If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) | ||
7-Oct-2024 | sticksstones15 40117 | Sticks and stones with almost collapsed definitions for positive integers. (Contributed by metakunt, 7-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) | ||
7-Oct-2024 | sticksstones14 40116 | Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) | ||
7-Oct-2024 | bj-sbievwd 34964 | Variant of sbievw 2095. (Contributed by BJ, 7-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
7-Oct-2024 | bj-equsexvwd 34963 | Variant of equsexvw 2008. (Contributed by BJ, 7-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | ||
7-Oct-2024 | bj-equsalvwd 34962 | Variant of equsalvw 2007. (Contributed by BJ, 7-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
7-Oct-2024 | bj-equsvt 34961 | A variant of equsv 2006. (Contributed by BJ, 7-Oct-2024.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
7-Oct-2024 | bj-pm11.53a 34960 | A variant of pm11.53v 1947. One can similarly prove a variant with DV (𝑦, 𝜑) and ∀𝑦Ⅎ'𝑥𝜓 instead of DV (𝑥, 𝜓) and ∀𝑥Ⅎ'𝑦𝜑. (Contributed by BJ, 7-Oct-2024.) |
⊢ (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
7-Oct-2024 | bj-pm11.53v 34959 | Version of pm11.53v 1947 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.) |
⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
7-Oct-2024 | bj-pm11.53vw 34958 | Version of pm11.53v 1947 with nonfreeness antecedents. One can also prove the theorem with antecedent (Ⅎ'𝑦∀𝑥𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓). (Contributed by BJ, 7-Oct-2024.) |
⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
6-Oct-2024 | sticksstones13 40115 | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
6-Oct-2024 | sticksstones12 40114 | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
6-Oct-2024 | sticksstones11 40112 | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 = 0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
6-Oct-2024 | sticksstones10 40111 | Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
6-Oct-2024 | sticksstones9 40110 | Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 = 0) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
6-Oct-2024 | nfnbi 1857 | A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 6-Oct-2024.) |
⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) | ||
5-Oct-2024 | bj-ntrufal 34750 | The negation of a theorem is equivalent to false. This can shorten dfnul2 4259. (Contributed by BJ, 5-Oct-2024.) |
⊢ 𝜑 ⇒ ⊢ (¬ 𝜑 ↔ ⊥) | ||
5-Oct-2024 | bj-mt2bi 34749 | Version of mt2 199 where the major premise is a biconditional. Another proof is also possible via con2bii 358 and mpbi 229. The current mt2bi 364 should be relabeled, maybe to imfal. (Contributed by BJ, 5-Oct-2024.) |
⊢ 𝜑 & ⊢ (𝜓 ↔ ¬ 𝜑) ⇒ ⊢ ¬ 𝜓 | ||
5-Oct-2024 | sbc6g 3746 | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by SN, 5-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
5-Oct-2024 | elab 3609 | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 5-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
5-Oct-2024 | elabg 3607 | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by SN, 23-Nov-2022.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 5-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
5-Oct-2024 | elab6g 3600 | Membership in a class abstraction. Class version of sb6 2088. (Contributed by SN, 5-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
4-Oct-2024 | bj-gabima 35128 |
Generalized class abstraction as a direct image.
TODO: improve the support lemmas elimag 5973 and fvelima 6835 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝐹) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ dom 𝐹) ⇒ ⊢ (𝜑 → {(𝐹‘𝑥) ∣ 𝑥 ∣ 𝜓} = (𝐹 “ {𝑥 ∣ 𝜓})) | ||
4-Oct-2024 | bj-elgab 35127 | Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑥(𝐴 = 𝐵 ∧ 𝜓) ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝜒)) | ||
4-Oct-2024 | bj-gabeqis 35126 | Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝐵 ∣ 𝑦 ∣ 𝜓} | ||
4-Oct-2024 | bj-gabeqd 35125 | Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} = {𝐵 ∣ 𝑥 ∣ 𝜒}) | ||
4-Oct-2024 | bj-gabssd 35124 | Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) | ||
4-Oct-2024 | bj-gabss 35123 | Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024.) |
⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) | ||
4-Oct-2024 | df-bj-gab 35122 | Definition of generalized class abstractions: typically, 𝑥 is a bound variable in 𝐴 and 𝜑 and {𝐴 ∣ 𝑥 ∣ 𝜑} denotes "the class of 𝐴(𝑥)'s such that 𝜑(𝑥)". (Contributed by BJ, 4-Oct-2024.) |
⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | ||
3-Oct-2024 | itg1addlem4 24863 | Lemma for itg1add 24866. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof shortened by SN, 3-Oct-2024.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) | ||
3-Oct-2024 | peano5 7740 | The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 7749. (Contributed by NM, 18-Feb-2004.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
3-Oct-2024 | dffr2 5553 | Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) Avoid ax-10 2137, ax-11 2154, ax-12 2171, but use ax-8 2108. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | ||
3-Oct-2024 | pocl 5510 | Characteristic properties of a partial order in class notation. (Contributed by NM, 27-Mar-1997.) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) | ||
3-Oct-2024 | 0nelopab 5480 | The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
3-Oct-2024 | ab0w 4307 | The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 4308 using implicit substitution, which requires fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓) | ||
3-Oct-2024 | vtocl3ga 3517 | Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) Reduce axiom usage. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
3-Oct-2024 | vtocl3g 3511 | Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3509 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ 𝜑 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | ||
3-Oct-2024 | rspw 3130 | Restricted specialization. Weak version of rsp 3131, requiring ax-8 2108, but not ax-12 2171. (Contributed by Gino Giotto, 3-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | ||
1-Oct-2024 | thincfth 46329 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | ||
1-Oct-2024 | fullthinc2 46328 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) | ||
1-Oct-2024 | fullthinc 46327 | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) | ||
1-Oct-2024 | functhinc 46326 | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 46293). (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐺 = 𝐾)) | ||
1-Oct-2024 | functhinclem4 46325 | Lemma for functhinc 46326. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ · = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) | ||
1-Oct-2024 | functhinclem3 46324 | Lemma for functhinc 46326. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) & ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) & ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | ||
1-Oct-2024 | functhinclem2 46323 | Lemma for functhinc 46326. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | ||
1-Oct-2024 | functhinclem1 46322 | Lemma for functhinc 46326. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) | ||
1-Oct-2024 | funcf2lem 46299 | A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | ||
1-Oct-2024 | map0cor 46182 | A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) | ||
1-Oct-2024 | f002 46181 | A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) | ||
1-Oct-2024 | f1mo 46180 | A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | ||
1-Oct-2024 | f102g 46179 | A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | ||
1-Oct-2024 | f1sn2g 46178 | A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1→𝐵) | ||
1-Oct-2024 | fdomne0 46177 | A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅)) | ||
1-Oct-2024 | mofeu 46175 | The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024.) |
⊢ 𝐺 = (𝐴 × 𝐵) & ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) & ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) | ||
1-Oct-2024 | sticksstones8 40109 | Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
1-Oct-2024 | sticksstones7 40108 | Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:(1...(𝐾 + 1))⟶ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (1...𝐾)) & ⊢ 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖))) & ⊢ (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺‘𝑖) = 𝑁) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ (1...(𝑁 + 𝐾))) | ||
1-Oct-2024 | sticksstones6 40107 | Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:(1...(𝐾 + 1))⟶ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (1...𝐾)) & ⊢ (𝜑 → 𝑌 ∈ (1...𝐾)) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖))) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) < (𝐹‘𝑌)) | ||
30-Sep-2024 | subthinc 46321 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐷 ∈ ThinCat) | ||
30-Sep-2024 | topdlat 46290 | A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ DLat) | ||
30-Sep-2024 | toplatmeet 46289 | Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ ∧ = (meet‘𝐼) ⇒ ⊢ (𝜑 → (𝐴 ∧ 𝐵) = (𝐴 ∩ 𝐵)) | ||
30-Sep-2024 | toplatjoin 46288 | Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ ∨ = (join‘𝐼) ⇒ ⊢ (𝜑 → (𝐴 ∨ 𝐵) = (𝐴 ∪ 𝐵)) | ||
30-Sep-2024 | toplatglb 46287 | Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ 𝐽) & ⊢ 𝐺 = (glb‘𝐼) & ⊢ (𝜑 → 𝑆 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) | ||
30-Sep-2024 | toplatlub 46286 | Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ 𝐽) & ⊢ 𝑈 = (lub‘𝐼) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = ∪ 𝑆) | ||
30-Sep-2024 | toplatglb0 46285 | The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐽) | ||
30-Sep-2024 | topclat 46284 | A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ CLat) | ||
30-Sep-2024 | mreclat 46283 | A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
30-Sep-2024 | ipoglb0 46280 | The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → ∪ 𝐹 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐹) | ||
30-Sep-2024 | ipolub00 46279 | The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → ∅ ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘∅) = ∅) | ||
30-Sep-2024 | ipolub0 46278 | The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → ∩ 𝐹 ∈ 𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑈‘∅) = ∩ 𝐹) | ||
30-Sep-2024 | cbvriotavw 7242 | Change bound variable in a restricted description binder. Version of cbvriotav 7247 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
30-Sep-2024 | cbviotavw 6399 | Change bound variables in a description binder. Version of cbviotav 6402 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) | ||
30-Sep-2024 | rexprg 4632 | Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) | ||
30-Sep-2024 | ralprg 4630 | Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
30-Sep-2024 | rexsng 4610 | Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
30-Sep-2024 | ralsng 4609 | Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
30-Sep-2024 | ralidmw 4438 | Idempotent law for restricted quantifier. Weak version of ralidm 4442, which does not require ax-10 2137, ax-12 2171, but requires ax-8 2108. (Contributed by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
30-Sep-2024 | rabeq0w 4317 | Condition for a restricted class abstraction to be empty. Version of rabeq0 4318 using implicit substitution, which does not require ax-10 2137, ax-11 2154, ax-12 2171, but requires ax-8 2108. (Contributed by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | ||
30-Sep-2024 | cbvreuvw 3386 | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv 3390 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
30-Sep-2024 | cbvrmovw 3385 | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov 3391 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
30-Sep-2024 | cbveuvw 2606 | Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu 2609 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) | ||
30-Sep-2024 | cbvmovw 2602 | Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvmo 2605 and cbvmow 2603 for versions with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Mar-1995.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
29-Sep-2024 | oppcthin 46320 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) | ||
29-Sep-2024 | mrelatglbALT 46282 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
29-Sep-2024 | mrelatlubALT 46281 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
29-Sep-2024 | ipoglb 46277 | The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18133 is in quantified form. mrelatglb 18278 could potentially be shortened using this. See mrelatglbALT 46282. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) | ||
29-Sep-2024 | ipoglbdm 46276 | The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) | ||
29-Sep-2024 | ipoglblem 46275 | Lemma for ipoglbdm 46276 and ipoglb 46277. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) | ||
29-Sep-2024 | unilbeu 46271 | Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ (𝐶 ∈ 𝐵 → ((𝐶 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐵 (𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶)) ↔ 𝐶 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴})) | ||
29-Sep-2024 | isclatd 46269 | The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → 𝑠 ∈ dom 𝑈) & ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐵) → 𝑠 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 𝐾 ∈ CLat) | ||
29-Sep-2024 | glbeldm2d 46253 | Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
29-Sep-2024 | mreuniss 46193 | The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝑆 ⊆ 𝑋) | ||
29-Sep-2024 | unilbss 46163 | Superclass of the greatest lower bound. A dual statement of ssintub 4897. (Contributed by Zhi Wang, 29-Sep-2024.) |
⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 | ||
29-Sep-2024 | focofob 44572 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 44571 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | ||
29-Sep-2024 | fnfocofob 44571 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | ||
29-Sep-2024 | funfocofob 44570 | If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | ||
29-Sep-2024 | fresfo 44542 | Conditions for a restriction to be an onto function. Part of fresf1o 30966. (Contributed by AV, 29-Sep-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) | ||
29-Sep-2024 | f1imaenfi 8981 | If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 8800). (Contributed by BTernaryTau, 29-Sep-2024.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
29-Sep-2024 | rescnvimafod 6951 | The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) & ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) | ||
29-Sep-2024 | foco 6702 | Composition of onto functions. (Contributed by NM, 22-Mar-2006.) (Proof shortened by AV, 29-Sep-2024.) |
⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) | ||
29-Sep-2024 | focofo 6701 | Composition of onto functions. Generalisation of foco 6702. (Contributed by AV, 29-Sep-2024.) |
⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun 𝐺 ∧ 𝐴 ⊆ ran 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)–onto→𝐵) | ||
29-Sep-2024 | focnvimacdmdm 6700 | The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024.) |
⊢ (𝐺:𝐴–onto→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | ||
28-Sep-2024 | ipolub 46274 | The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18132 is in quantified form. mrelatlub 18280 could potentially be shortened using this. See mrelatlubALT 46281. (Contributed by Zhi Wang, 28-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) & ⊢ (𝜑 → 𝑇 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
28-Sep-2024 | ipolubdm 46273 | The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) & ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) | ||
28-Sep-2024 | ipolublem 46272 | Lemma for ipolubdm 46273 and ipolub 46274. (Contributed by Zhi Wang, 28-Sep-2024.) |
⊢ 𝐼 = (toInc‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐹) & ⊢ ≤ = (le‘𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧)))) | ||
28-Sep-2024 | intubeu 46270 | Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024.) |
⊢ (𝐶 ∈ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ ∀𝑦 ∈ 𝐵 (𝐴 ⊆ 𝑦 → 𝐶 ⊆ 𝑦)) ↔ 𝐶 = ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥})) | ||
28-Sep-2024 | lubeldm2d 46252 | Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
28-Sep-2024 | rspceb2dv 46148 | Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝜒) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) | ||
28-Sep-2024 | sticksstones5 40106 | Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → (♯‘𝐴) = (𝑁C𝐾)) | ||
28-Sep-2024 | sticksstones4 40105 | Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
28-Sep-2024 | sticksstones3 40104 | The range function on strictly monotone functions with finite domain and codomain is an surjective mapping onto 𝐾-elemental sets. (Contributed by metakunt, 28-Sep-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} & ⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ ran 𝑧) ⇒ ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) | ||
27-Sep-2024 | posmidm 46267 | Poset meet is idempotent. latmidm 18192 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) | ||
27-Sep-2024 | posjidm 46266 | Poset join is idempotent. latjidm 18180 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | ||
27-Sep-2024 | inpw 46164 | Two ways of expressing a collection of subsets as seen in df-ntr 22171, unimax 4877, and others (Contributed by Zhi Wang, 27-Sep-2024.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) | ||
27-Sep-2024 | mpbiran4d 46143 | Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | ||
27-Sep-2024 | sticksstones2 40103 | The range function on strictly monotone functions with finite domain and codomain is an injective mapping onto 𝐾-elemental sets. (Contributed by metakunt, 27-Sep-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} & ⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ ran 𝑧) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) | ||
27-Sep-2024 | sticksstones1 40102 | Different strictly monotone functions have different ranges. (Contributed by metakunt, 27-Sep-2024.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋‘𝑧) ≠ (𝑌‘𝑧)}, ℝ, < ) ⇒ ⊢ (𝜑 → ran 𝑋 ≠ ran 𝑌) | ||
27-Sep-2024 | cofcutrtime 34093 | If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋)) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) | ||
27-Sep-2024 | imaeqsalv 33691 | Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) | ||
27-Sep-2024 | imaeqsexv 33690 | Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) | ||
27-Sep-2024 | rlimcn3 15299 | Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 15300. (Contributed by SN, 27-Sep-2024.) |
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐵𝐹𝐶) ∈ ℂ) & ⊢ (𝜑 → (𝑅𝐹𝑆) ∈ ℂ) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ⇒ ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) | ||
26-Sep-2024 | postcpos 46361 | The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) | ||
26-Sep-2024 | toslat 46268 | A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Lat) | ||
26-Sep-2024 | glbpr 46261 | The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑋) | ||
26-Sep-2024 | glbprdm 46260 | The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) | ||
26-Sep-2024 | glbprlem 46259 | Lemma for glbprdm 46260 and glbpr 46261. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) | ||
26-Sep-2024 | lubpr 46258 | The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) | ||
26-Sep-2024 | lubprdm 46257 | The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | ||
26-Sep-2024 | lubprlem 46256 | Lemma for lubprdm 46257 and lubpr 46258. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) | ||
26-Sep-2024 | glbsscl 46255 | If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) & ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺‘𝑇) = (𝐺‘𝑆))) | ||
26-Sep-2024 | lubsscl 46254 | If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈‘𝑇) = (𝑈‘𝑆))) | ||
26-Sep-2024 | glbeldm2 46251 | Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
26-Sep-2024 | lubeldm2 46250 | Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ Poset) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝜓))) | ||
26-Sep-2024 | sn-wcdeq 40169 | Alternative to wcdeq 3698 and df-cdeq 3699. This flattens the syntax representation ( wi ( weq vx vy ) wph ) to ( sn-wcdeq vx vy wph ), illustrating the comment of df-cdeq 3699. (Contributed by SN, 26-Sep-2024.) (New usage is discouraged.) |
wff (𝑥 = 𝑦 → 𝜑) | ||
26-Sep-2024 | fvpr2 7067 | The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | ||
26-Sep-2024 | fvpr1 7065 | The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by BJ, 26-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) | ||
26-Sep-2024 | fvpr2g 7063 | The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by BJ, 26-Sep-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | ||
26-Sep-2024 | 19.8aw 2053 | If a formula is true, then it is true for at least one instance. This is to 19.8a 2174 what spw 2037 is to sp 2176. (Contributed by SN, 26-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜑) | ||
25-Sep-2024 | postc 46363 | The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ≃𝑐 ‘𝐶)𝑦 → 𝑥 = 𝑦))) | ||
25-Sep-2024 | postcposALT 46362 | Alternate proof for postcpos 46361. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) | ||
25-Sep-2024 | thinccic 46342 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) | ||
25-Sep-2024 | thinciso 46341 | In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) | ||
25-Sep-2024 | endmndlem 46296 | A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 46365 for converting a monoid to a category. Lemma for bj-endmnd 35489. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) & ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mnd) | ||
25-Sep-2024 | meetdm3 46265 | The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) ∧ ∀𝑤 ∈ 𝐵 ((𝑤 ≤ 𝑥 ∧ 𝑤 ≤ 𝑦) → 𝑤 ≤ 𝑧)))) | ||
25-Sep-2024 | meetdm2 46264 | The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝜑 → (dom ∧ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝐺)) | ||
25-Sep-2024 | joindm3 46263 | The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) | ||
25-Sep-2024 | joindm2 46262 | The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) | ||
25-Sep-2024 | cofcutr 34092 | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋) and 𝐵 is coinitial with ( R ‘𝑋). Theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧)) | ||
25-Sep-2024 | cofcut2 34091 | If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
25-Sep-2024 | cofcut1 34090 | If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷. Then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
25-Sep-2024 | ssltsepcd 33988 | Two elements of separated sets obey less than. Deduction form of ssltsepc 33987. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 <s 𝑌) | ||
25-Sep-2024 | f1domfi 8967 | If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8760). (Contributed by BTernaryTau, 25-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
25-Sep-2024 | en2sn 8831 | Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5288. (Revised by BTernaryTau, 31-Jul-2024.) Avoid ax-un 7588. (Revised by BTernaryTau, 25-Sep-2024.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) | ||
25-Sep-2024 | f1dom2g 8757 | The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 8760 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) (Proof shortened by BTernaryTau, 25-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
25-Sep-2024 | rexeqbidvv 3339 | Version of rexeqbidv 3337 with additional disjoint variable conditions, not requiring ax-8 2108 nor df-clel 2816. (Contributed by Wolf Lammen, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
25-Sep-2024 | nfnaew 2145 | All variables are effectively bound in a distinct variable specifier. Version of nfnae 2434 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 25-Sep-2024.) |
⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
24-Sep-2024 | mndtcbas2 46370 | Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
24-Sep-2024 | thincinv 46340 | In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺 (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) | ||
24-Sep-2024 | thincsect2 46339 | In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
24-Sep-2024 | thincsect 46338 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) | ||
24-Sep-2024 | thincepi 46316 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 46378. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
24-Sep-2024 | thincmon 46315 | In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon 46377. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
24-Sep-2024 | thincid 46314 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
24-Sep-2024 | thinccd 46306 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
24-Sep-2024 | mofsssn 46173 | There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
24-Sep-2024 | mpbiran3d 46142 | Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
24-Sep-2024 | coinitsslt 34089 | If 𝐵 is coinitial with 𝐶 and 𝐴 precedes 𝐶, then 𝐴 precedes 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ ((𝐵 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑦 ≤s 𝑥 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s 𝐵) | ||
24-Sep-2024 | cofsslt 34088 | If every element of 𝐴 is bounded by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ ((𝐴 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶) → 𝐴 <<s 𝐶) | ||
24-Sep-2024 | ssltd 33986 | Deduce surreal set less than. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ No ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) ⇒ ⊢ (𝜑 → 𝐴 <<s 𝐵) | ||
24-Sep-2024 | setc2ohom 17810 | (SetCat‘2o) is a category (provable from setccat 17800 and 2oex 8308) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas 17809. Notably, the empty set ∅ is simultaneously an object (setc2obas 17809) , an identity morphism from ∅ to ∅ (setcid 17801 or thincid 46314) , and a non-identity morphism from ∅ to 1o. See cat1lem 17811 and cat1 17812 for a more general statement. This category is also thin (setc2othin 46337), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc 46335 for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ 𝐶 = (SetCat‘2o) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ ∅ ∈ ((∅𝐻∅) ∩ (∅𝐻1o)) | ||
24-Sep-2024 | setc2obas 17809 | ∅ and 1o are distinct objects in (SetCat‘2o). This combined with setc2ohom 17810 demonstrates that the category does not have pairwise disjoint hom-sets. See also df-cat 17377 and cat1 17812. (Contributed by Zhi Wang, 24-Sep-2024.) |
⊢ 𝐶 = (SetCat‘2o) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (∅ ∈ 𝐵 ∧ 1o ∈ 𝐵 ∧ 1o ≠ ∅) | ||
24-Sep-2024 | en1uniel 8818 | A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) Avoid ax-un 7588. (Revised by BTernaryTau, 24-Sep-2024.) |
⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) | ||
24-Sep-2024 | en1b 8813 | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) Avoid ax-un 7588. (Revised by BTernaryTau, 24-Sep-2024.) |
⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) | ||
24-Sep-2024 | eqsnuniex 5283 | If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | ||
24-Sep-2024 | nfra2wOLD 3155 | Obsolete version of nfra2w 3154 as of 31-Oct-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
24-Sep-2024 | nfraldw 3148 | Deduction version of nfralw 3151. Version of nfrald 3150 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 24-Sep-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
23-Sep-2024 | grptcepi 46378 | All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐸 = (Epi‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
23-Sep-2024 | grptcmon 46377 | All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑀 = (Mono‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
23-Sep-2024 | catprsc2 46295 | An alternate construction of the preorder induced by a category. See catprs2 46293 for details. See also catprsc 46294 for a different construction. The two constructions are different because df-cat 17377 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) | ||
23-Sep-2024 | mosssn2 46162 | Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) | ||
23-Sep-2024 | mosssn 46160 | "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | ||
23-Sep-2024 | reutruALT 46152 | Alternate proof for reutru 46151. (Contributed by Zhi Wang, 23-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 ⊤) | ||
23-Sep-2024 | reutru 46151 | Two ways of expressing "exactly one" element. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 ⊤) | ||
23-Sep-2024 | rmotru 46150 | Two ways of expressing "at most one" element. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by BJ, 23-Sep-2024.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 ∈ 𝐴 ⊤) | ||
23-Sep-2024 | rextru 46149 | Two ways of expressing "at least one" element. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | ||
23-Sep-2024 | dtrucor3 46144 | An example of how ax-5 1913 without a distinct variable condition causes paradox in models of at least two objects. The hypothesis "dtrucor3.1" is provable from dtru 5359 in the ZF set theory. axc16nf 2255 and euae 2661 demonstrate that the violation of dtru 5359 leads to a model with only one object assuming its existence (ax-6 1971). The conclusion is also provable in the empty model ( see emptyal 1911). See also nf5 2279 and nf5i 2142 for the relation between unconditional ax-5 1913 and being not free. (Contributed by Zhi Wang, 23-Sep-2024.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 & ⊢ (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) ⇒ ⊢ ∀𝑥 𝑥 = 𝑦 | ||
23-Sep-2024 | phplem1 8990 | Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
23-Sep-2024 | entrfir 8977 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8792). (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
23-Sep-2024 | entrfi 8976 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8792). (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
23-Sep-2024 | enfi 8973 | Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5288, see enfiALT 8974. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
23-Sep-2024 | enfii 8972 | A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
23-Sep-2024 | ssnnfi 8952 | A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
23-Sep-2024 | nnfi 8950 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
23-Sep-2024 | en1 8811 | A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7588. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | ||
23-Sep-2024 | ensn1 8807 | A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7588. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ≈ 1o | ||
23-Sep-2024 | en0 8803 | The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | ||
23-Sep-2024 | bren 8743 | Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
23-Sep-2024 | breng 8742 | Equinumerosity relation. This variation of bren 8743 does not require the Axiom of Union. (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
23-Sep-2024 | noel 4264 | The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
⊢ ¬ 𝐴 ∈ ∅ | ||
23-Sep-2024 | dfnul3 4260 | Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.) |
⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | ||
23-Sep-2024 | dfnul2 4259 | Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) Remove dependency on ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | ||
23-Sep-2024 | dfnul4 4258 | Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2108, df-clel 2816. (Revised by Gino Giotto, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4259. (Revised by BJ, 23-Sep-2024.) |
⊢ ∅ = {𝑥 ∣ ⊥} | ||
23-Sep-2024 | nfabdw 2930 | Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2932 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Sep-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) | ||
22-Sep-2024 | mndtcid 46376 | The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 1 = (Id‘𝐶)) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (0g‘𝑀)) | ||
22-Sep-2024 | mndtccat 46375 | The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
22-Sep-2024 | mndtccatid 46374 | Lemma for mndtccat 46375 and mndtcid 46376. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) | ||
22-Sep-2024 | mndtcco2 46373 | The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → ⚬ = (〈𝑋, 𝑌〉 · 𝑍)) ⇒ ⊢ (𝜑 → (𝐺 ⚬ 𝐹) = (𝐺(+g‘𝑀)𝐹)) | ||
22-Sep-2024 | mndtcco 46372 | The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → · = (comp‘𝐶)) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (+g‘𝑀)) | ||
22-Sep-2024 | mndtchom 46371 | The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀)) | ||
22-Sep-2024 | mndtcob 46369 | Lemma for mndtchom 46371 and mndtcco 46372. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑀) | ||
22-Sep-2024 | mndtcbas 46368 | The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) ⇒ ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ 𝐵) | ||
22-Sep-2024 | mndtcbasval 46367 | The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = {𝑀}) | ||
22-Sep-2024 | mndtcval 46366 | Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), {𝑀}〉, 〈(Hom ‘ndx), {〈𝑀, 𝑀, (Base‘𝑀)〉}〉, 〈(comp‘ndx), {〈〈𝑀, 𝑀, 𝑀〉, (+g‘𝑀)〉}〉}) | ||
22-Sep-2024 | df-mndtc 46365 |
Definition of the function converting a monoid to a category. Example
3.3(4.e) of [Adamek] p. 24.
The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 46367) , instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24. The resulting category is defined entirely, up to isomorphism, by mndtcbas 46368, mndtchom 46371, mndtcco 46372. Use those instead. See example 3.26(3) of [Adamek] p. 33 for more on isomorphism. "MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
⊢ MndToCat = (𝑚 ∈ Mnd ↦ {〈(Base‘ndx), {𝑚}〉, 〈(Hom ‘ndx), {〈𝑚, 𝑚, (Base‘𝑚)〉}〉, 〈(comp‘ndx), {〈〈𝑚, 𝑚, 𝑚〉, (+g‘𝑚)〉}〉}) | ||
22-Sep-2024 | eleq2w2ALT 35220 | Alternate proof of eleq2w2 2734 and special instance of eleq2 2827. (Contributed by BJ, 22-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
22-Sep-2024 | bj-nnfeai 34918 | Nonfreeness implies the equivalent of ax5ea 1916, inference form. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) | ||
22-Sep-2024 | bj-nnfei 34915 | Nonfreeness implies the equivalent of ax5e 1915, inference form. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → 𝜑) | ||
22-Sep-2024 | bj-nnfai 34912 | Nonfreeness implies the equivalent of ax-5 1913, inference form. See nf5ri 2188. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
22-Sep-2024 | cphpyth 24380 | The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) | ||
22-Sep-2024 | raleqbidvv 3338 | Version of raleqbidv 3336 with additional disjoint variable conditions, not requiring ax-8 2108 nor df-clel 2816. (Contributed by BJ, 22-Sep-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
22-Sep-2024 | drnfc2 2928 | Formula-building lemma for use with the Distinctor Reduction Theorem. Proof revision is marked as discouraged because the minimizer replaces albidv 1923 with dral2 2438, leading to a one byte longer proof. However feel free to manually edit it according to conventions. (TODO: dral2 2438 depends on ax-13 2372, hence its usage during minimizing is discouraged. Check in the long run whether this is a permanent restriction). Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-8 2108. (Revised by Wolf Lammen, 22-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) | ||
22-Sep-2024 | drnfc1 2926 | Formula-building lemma for use with the Distinctor Reduction Theorem. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-8 2108, ax-11 2154. (Revised by Wolf Lammen, 22-Sep-2024.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) | ||
22-Sep-2024 | 19.36imv 1948 | One direction of 19.36v 1991 that can be proven without ax-6 1971. (Contributed by Rohan Ridenour, 16-Apr-2022.) (Proof shortened by Wolf Lammen, 22-Sep-2024.) |
⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
21-Sep-2024 | prstchom2 46359 |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT 46360). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
21-Sep-2024 | thincn0eu 46313 | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
21-Sep-2024 | thincmod 46312 | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
21-Sep-2024 | thincmoALT 46311 | Alternate proof for thincmo 46310. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
21-Sep-2024 | thincmo 46310 | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
21-Sep-2024 | idepi 46298 | An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) | ||
21-Sep-2024 | idmon 46297 | An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) | ||
21-Sep-2024 | fineqvacALT 33067 | Shorter proof of fineqvac 33066 using ax-rep 5209 and ax-pow 5288. (Contributed by BTernaryTau, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Fin = V → CHOICE) | ||
21-Sep-2024 | fineqvac 33066 | If the Axiom of Infinity is negated, then the Axiom of Choice becomes redundant. For a shorter proof using ax-rep 5209 and ax-pow 5288, see fineqvacALT 33067. (Contributed by BTernaryTau, 21-Sep-2024.) |
⊢ (Fin = V → CHOICE) | ||
21-Sep-2024 | ffrnb 6615 | Characterization of a function with domain and codomain (essentially using that the range is always included in the codomain). Generalization of ffrn 6614. (Contributed by BJ, 21-Sep-2024.) |
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | ||
21-Sep-2024 | sbalex 2235 |
Equivalence of two ways to express proper substitution of a setvar for
another setvar disjoint from it in a formula. This proof of their
equivalence does not use df-sb 2068.
That both sides of the biconditional express proper substitution is proved by sb5 2268 and sb6 2088. The implication "to the left" is equs4v 2003 and does not require ax-10 2137 nor ax-12 2171. It also holds without disjoint variable condition if we allow more axioms (see equs4 2416). Theorem 6.2 of [Quine] p. 40. Theorem equs5 2460 replaces the disjoint variable condition with a distinctor antecedent. Theorem equs45f 2459 replaces the disjoint variable condition on 𝑥, 𝑡 with the nonfreeness hypothesis of 𝑡 in 𝜑. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2260 in place of equsex 2418 in order to remove dependency on ax-13 2372. (Revised by BJ, 20-Dec-2020.) Revise to remove dependency on df-sb 2068. (Revised by BJ, 21-Sep-2024.) |
⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
21-Sep-2024 | cad0 1620 | If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2024.) |
⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) | ||
20-Sep-2024 | prstchom2ALT 46360 | Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 46344. See prstchom2 46359 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
20-Sep-2024 | prstchom 46358 |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat. However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
20-Sep-2024 | prstcthin 46357 | The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
20-Sep-2024 | prstcprs 46356 | The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 ∈ Proset ) | ||
20-Sep-2024 | prstchomval 46355 | Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) | ||
20-Sep-2024 | prstcoc 46354 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑋) = ((oc‘𝐶)‘𝑋)) | ||
20-Sep-2024 | prstcocvalOLD 46353 | Obsolete proof of prstcocval 46352 as of 12-Nov-2024. Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ⊥ = (oc‘𝐾)) ⇒ ⊢ (𝜑 → ⊥ = (oc‘𝐶)) | ||
20-Sep-2024 | prstcle 46351 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ 𝑋(le‘𝐶)𝑌)) | ||
20-Sep-2024 | prstclevalOLD 46350 | Obsolete proof of prstcleval 46349 as of 12-Nov-2024. Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → ≤ = (le‘𝐾)) ⇒ ⊢ (𝜑 → ≤ = (le‘𝐶)) | ||
20-Sep-2024 | prstcbas 46348 | The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
20-Sep-2024 | prstcnid 46347 | Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) & ⊢ (𝐸‘ndx) ≠ (Hom ‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐾) = (𝐸‘𝐶)) | ||
20-Sep-2024 | prstcnidlem 46346 | Lemma for prstcnid 46347 and prstchomval 46355. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (comp‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝐶) = (𝐸‘(𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉))) | ||
20-Sep-2024 | prstcval 46345 | Lemma for prstcnidlem 46346 and prstcthin 46357. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Proset ) ⇒ ⊢ (𝜑 → 𝐶 = ((𝐾 sSet 〈(Hom ‘ndx), ((le‘𝐾) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
20-Sep-2024 | df-prstc 46344 |
Definition of the function converting a preordered set to a category.
Justified by prsthinc 46335.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 46347, prstchom 46358, and prstcthin 46357. Other important properties include prstcbas 46348, prstcleval 46349, prstcle 46351, prstcocval 46352, prstcoc 46354, prstchom2 46359, and prstcprs 46356. Use those instead. Note that the defining property prstchom 46358 is equivalent to prstchom2 46359 given prstcthin 46357. See thincn0eu 46313 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx), ((le‘𝑘) × {1o})〉) sSet 〈(comp‘ndx), ∅〉)) | ||
20-Sep-2024 | setc2othin 46337 | The category (SetCat‘2o) is thin. A special case of setcthin 46336. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (SetCat‘2o) ∈ ThinCat | ||
20-Sep-2024 | setcthin 46336 | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐶 = (SetCat‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∃*𝑝 𝑝 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
20-Sep-2024 | fvconstrn0 46184 | Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅)) | ||
20-Sep-2024 | mof02 46166 | A variant of mof0 46165. (Contributed by Zhi Wang, 20-Sep-2024.) |
⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
20-Sep-2024 | f1co 6682 | Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.) |
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | ||
20-Sep-2024 | funcofd 6633 | Composition of two functions as a function with domain and codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Proof shortened by AV, 20-Sep-2024.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → Fun 𝐺) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):(◡𝐺 “ dom 𝐹)⟶ran 𝐹) | ||
20-Sep-2024 | fco 6624 | Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | ||
20-Sep-2024 | fimacnv 6622 | The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) | ||
20-Sep-2024 | ffrnbd 6616 | A function maps to its range iff the the range is a subset of its codomain. Generalization of ffrn 6614. (Contributed by AV, 20-Sep-2024.) |
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶ran 𝐹)) | ||
20-Sep-2024 | fnco 6549 | Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) | ||
20-Sep-2024 | ineqcomi 4137 | Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4136. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.) |
⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝐵 ∩ 𝐴) = 𝐶 | ||
20-Sep-2024 | ecase3ad 1033 | Deduction for elimination by cases. (Contributed by NM, 24-May-2013.) (Proof shortened by Wolf Lammen, 20-Sep-2024.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ (𝜑 → ((¬ 𝜓 ∧ ¬ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
19-Sep-2024 | indthinc 46333 | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are ∅. This is a special case of prsthinc 46335, where ≤ = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
19-Sep-2024 | f1omo 46188 | There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 46187 assuming ax-un 7588 (see f1omoALT 46189). (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
19-Sep-2024 | mofmo 46174 | There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐵 → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
19-Sep-2024 | mofsn2 46172 | There is at most one function into a singleton. An unconditional variant of mofsn 46171, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
19-Sep-2024 | mofsn 46171 | There is at most one function into a singleton, with fewer axioms than eufsn 46169 and eufsn2 46170. See also mofsn2 46172. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) | ||
19-Sep-2024 | eufsn2 46170 | There is exactly one function into a singleton, assuming ax-pow 5288 and ax-un 7588. Variant of eufsn 46169. If existence is not needed, use mofsn 46171 or mofsn2 46172 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | ||
19-Sep-2024 | eufsn 46169 | There is exactly one function into a singleton, assuming ax-rep 5209. See eufsn2 46170 for different axiom requirements. If existence is not needed, use mofsn 46171 or mofsn2 46172 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | ||
19-Sep-2024 | eufsnlem 46168 | There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 46169 assuming ax-rep 5209, or eufsn2 46170 assuming ax-pow 5288 and ax-un 7588. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | ||
19-Sep-2024 | mof0ALT 46167 | Alternate proof for mof0 46165 with stronger requirements on distinct variables. Uses mo4 2566. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃*𝑓 𝑓:𝐴⟶∅ | ||
19-Sep-2024 | mof0 46165 | There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ ∃*𝑓 𝑓:𝐴⟶∅ | ||
19-Sep-2024 | mo0sn 46161 | Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | ||
19-Sep-2024 | mo0 46159 | "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) | ||
19-Sep-2024 | mosn 46158 | "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | ||
19-Sep-2024 | vsn 46157 | The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
⊢ {V} = ∅ | ||
19-Sep-2024 | f1cof1b 44569 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷))) | ||
19-Sep-2024 | 2oex 8308 | 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171, ax-un 7588. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
⊢ 2o ∈ V | ||
19-Sep-2024 | 1oex 8307 | Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171, ax-un 7588. (Revised by Zhi Wang, 19-Sep-2024.) |
⊢ 1o ∈ V | ||
19-Sep-2024 | ecase2d 1027 | Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Sep-2024.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) & ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) & ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → 𝜏) | ||
18-Sep-2024 | prsthinc 46335 | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 46292 and catprs2 46293 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
18-Sep-2024 | catprsc 46294 | A construction of the preorder induced by a category. See catprs2 46293 for details. See also catprsc2 46295 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) | ||
18-Sep-2024 | catprs2 46293 | A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 46294 and catprsc2 46295 for constructions satisfying the hypothesis "catprs.1". See catprs 46292 for a more primitive version. See prsthinc 46335 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → ≤ = (le‘𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Proset ) | ||
18-Sep-2024 | catprs 46292 | A preorder can be extracted from a category. See catprs2 46293 for more details. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
18-Sep-2024 | catprslem 46291 | Lemma for catprs 46292. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) | ||
18-Sep-2024 | isprsd 46249 | Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐾 ∈ Proset ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
18-Sep-2024 | f1omoALT 46189 | There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 46188 without assuming ax-un 7588. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
18-Sep-2024 | fvconstdomi 46187 | A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 | ||
18-Sep-2024 | fvconst0ci 46186 | A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ 𝐵 ∈ V & ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) ⇒ ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) | ||
18-Sep-2024 | fvconstr2 46185 | Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) & ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐵) | ||
18-Sep-2024 | fvconstr 46183 | Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌)) | ||
18-Sep-2024 | f1cof1blem 44568 | Lemma for f1cof1b 44569 and focofob 44572. (Contributed by AV, 18-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → ran 𝐹 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑃 = 𝐴 ∧ 𝐸 = 𝐶) ∧ (𝑋 = 𝐹 ∧ 𝑌 = 𝐺))) | ||
18-Sep-2024 | fcoresf1lem 44562 | Lemma for fcoresf1 44563. (Contributed by AV, 18-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) | ||
18-Sep-2024 | sbn1ALT 35042 | Alternate proof of sbn1 2105, not using the false constant. (Contributed by BJ, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) | ||
18-Sep-2024 | ssltdisj 34015 | If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) | ||
18-Sep-2024 | catcone0 17396 | Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑌) ≠ ∅) & ⊢ (𝜑 → (𝑌𝐻𝑍) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑍) ≠ ∅) | ||
18-Sep-2024 | f1cof1 6681 | Composition of two one-to-one functions. Generalization of f1co 6682. (Contributed by AV, 18-Sep-2024.) |
⊢ ((𝐹:𝐶–1-1→𝐷 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐶)–1-1→𝐷) | ||
18-Sep-2024 | fcof 6623 | Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco 6624. (Contributed by AV, 18-Sep-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) | ||
18-Sep-2024 | cnvimassrndm 6055 | The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 5990 for subsets. (Contributed by AV, 18-Sep-2024.) |
⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) | ||
18-Sep-2024 | abeq2w 2815 | Version of abeq2 2872 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) | ||
17-Sep-2024 | indthincALT 46334 | An alternate proof for indthinc 46333 assuming more axioms including ax-pow 5288 and ax-un 7588. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
17-Sep-2024 | 0thinc 46332 | The empty category (see 0cat 17398) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ∅ ∈ ThinCat | ||
17-Sep-2024 | 0thincg 46331 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat) | ||
17-Sep-2024 | isthincd2 46319 | The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
17-Sep-2024 | isthincd 46318 | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
17-Sep-2024 | isthincd2lem2 46317 | Lemma for isthincd2 46319. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
17-Sep-2024 | thincmo2 46309 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
17-Sep-2024 | isthincd2lem1 46308 | Lemma for isthincd2 46319 and thincmo2 46309. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
17-Sep-2024 | thincssc 46307 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ThinCat ⊆ Cat | ||
17-Sep-2024 | thincc 46305 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | ||
17-Sep-2024 | isthinc3 46304 | A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔)) | ||
17-Sep-2024 | isthinc2 46303 | A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ≼ 1o)) | ||
17-Sep-2024 | isthinc 46302 | The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) | ||
17-Sep-2024 | df-thinc 46301 | Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.) |
⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} | ||
17-Sep-2024 | fcoresfo 44565 | If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ⇒ ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) | ||
17-Sep-2024 | fcores 44561 | Every composite function (𝐺 ∘ 𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) | ||
17-Sep-2024 | fcoreslem4 44560 | Lemma 4 for fcores 44561. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) | ||
17-Sep-2024 | fcoreslem2 44558 | Lemma 2 for fcores 44561. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → ran 𝑋 = 𝐸) | ||
17-Sep-2024 | fcoreslem1 44557 | Lemma 1 for fcores 44561. (Contributed by AV, 17-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) ⇒ ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) | ||
17-Sep-2024 | sltlpss 34087 | If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌))) | ||
17-Sep-2024 | lruneq 34086 | If two surreals share a birthday, then the union of their left and right sets are equal. (Contributed by Scott Fenton, 17-Sep-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) | ||
17-Sep-2024 | cnvimainrn 6944 | The preimage of the intersection of the range of a class and a class 𝐴 is the preimage of the class 𝐴. (Contributed by AV, 17-Sep-2024.) |
⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐴)) = (◡𝐹 “ 𝐴)) | ||
17-Sep-2024 | fncofn 6548 | Composition of a function with domain and a function as a function with domain. Generalization of fnco 6549. (Contributed by AV, 17-Sep-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | ||
16-Sep-2024 | neircl 46198 | Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) | ||
16-Sep-2024 | elfvne0 46176 | If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.) |
⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐹 ≠ ∅) | ||
16-Sep-2024 | isdomn5 40171 | The right conjunct in the right hand side of the equivalence of isdomn 20565 is logically equivalent to a less symmetric version where one of the variables is restricted to be nonzero. (Contributed by SN, 16-Sep-2024.) |
⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) | ||
15-Sep-2024 | dvdsexpb 40342 | dvdssq 16272 generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
15-Sep-2024 | dvdsexpnn0 40341 | dvdsexpnn 40340 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
15-Sep-2024 | absdvdsabsb 40327 | Divisibility is invariant under taking the absolute value on both sides. (Contributed by SN, 15-Sep-2024.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁))) | ||
15-Sep-2024 | 0dvds0 40326 | 0 divides 0. (Contributed by SN, 15-Sep-2024.) |
⊢ 0 ∥ 0 | ||
15-Sep-2024 | syl3an12 40175 | A double syllogism inference. (Contributed by SN, 15-Sep-2024.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | ||
15-Sep-2024 | isdomn4 40172 | A ring is a domain iff it is nonzero and the cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))) | ||
15-Sep-2024 | cat1 17812 | The definition of category df-cat 17377 does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. See setc2obas 17809 and setc2ohom 17810 for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa 17741 and its subsection. (Contributed by Zhi Wang, 15-Sep-2024.) |
⊢ ∃𝑐 ∈ Cat [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ] ¬ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑤 ∈ 𝑏 (((𝑥ℎ𝑦) ∩ (𝑧ℎ𝑤)) ≠ ∅ → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) | ||
15-Sep-2024 | cat1lem 17811 | The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in [Lang] p. 53. Lemma for cat1 17812. (Contributed by Zhi Wang, 15-Sep-2024.) |
⊢ 𝐶 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → ∅ ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → ∅ ≠ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐵 (((𝑥𝐻𝑦) ∩ (𝑧𝐻𝑤)) ≠ ∅ ∧ ¬ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | ||
15-Sep-2024 | gcdabs 16238 | The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by SN, 15-Sep-2024.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)) | ||
15-Sep-2024 | zexpcld 13808 | Closure of exponentiation of integers, deductive form. (Contributed by SN, 15-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℤ) | ||
15-Sep-2024 | fsetexb 8652 | The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.) |
⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V)) | ||
15-Sep-2024 | fsetcdmex 8651 | The class of all functions from a nonempty set 𝐴 into a class 𝐵 is a set iff 𝐵 is a set . (Contributed by AV, 15-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V)) | ||
15-Sep-2024 | fsetprcnex 8650 | The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓 ∣ 𝑓:𝐴⟶𝐵} is a set, see fsetdmprc0 8643 for 𝐴 ∉ V, fset0 8642 for 𝐴 = ∅, and fsetex 8644 for 𝐵 ∈ V, see also fsetexb 8652. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
15-Sep-2024 | fsetfocdm 8649 | The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} & ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → 𝑆:𝐹–onto→𝐵) | ||
15-Sep-2024 | fsetfcdm 8648 | The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} & ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) ⇒ ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) | ||
14-Sep-2024 | fsetprcnexALT 44556 | First version of proof for fsetprcnex 8650, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
14-Sep-2024 | cfsetsnfsetf1o 44555 | The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1-onto→𝐹) | ||
14-Sep-2024 | cfsetsnfsetfo 44554 | The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–onto→𝐹) | ||
14-Sep-2024 | cfsetsnfsetf1 44553 | The mapping of the class of singleton functions into the class of constant functions is an injection. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) | ||
14-Sep-2024 | cfsetsnfsetf 44552 | The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) | ||
13-Sep-2024 | fcoreslem3 44559 | Lemma 3 for fcores 44561. (Contributed by AV, 13-Sep-2024.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) | ||
13-Sep-2024 | cfsetsnfsetfv 44551 | The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) | ||
13-Sep-2024 | cfsetssfset 44550 | The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⇒ ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | ||
13-Sep-2024 | fsetsnprcnex 44549 | The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) | ||
13-Sep-2024 | fsetsnf1o 44548 | The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) | ||
13-Sep-2024 | fsetsnfo 44547 | The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) | ||
13-Sep-2024 | fsetsnf1 44546 | The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) | ||
13-Sep-2024 | fsetsnf 44545 | The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) | ||
13-Sep-2024 | fsetabsnop 44544 | The class of all functions from a (proper) singleton into 𝐵 is the class of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | ||
13-Sep-2024 | fsetsniunop 44543 | The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = ∪ 𝑏 ∈ 𝐵 {{〈𝑆, 𝑏〉}}) | ||
13-Sep-2024 | fset0 8642 | The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024.) |
⊢ {𝑓 ∣ 𝑓:∅⟶𝐵} = {∅} | ||
13-Sep-2024 | fsetsspwxp 8641 | The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) | ||
12-Sep-2024 | fineqvpow 33065 | If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||
12-Sep-2024 | fineqvrep 33064 | If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
⊢ (Fin = V → (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) | ||
10-Sep-2024 | iscnrm3v 46247 | A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024.) |
⊢ (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
10-Sep-2024 | onunel 33689 | The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) | ||
10-Sep-2024 | entrfil 8971 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8792). (Contributed by BTernaryTau, 10-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
9-Sep-2024 | seppcld 46223 | If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) | ||
9-Sep-2024 | seppsepf 46222 | If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) | ||
9-Sep-2024 | sepfsepc 46221 | If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
9-Sep-2024 | io1ii 46214 | (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (0 ≤ 𝐴 → (𝐴(,]1) ∈ II) | ||
9-Sep-2024 | i0oii 46213 | (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (𝐴 ≤ 1 → (0[,)𝐴) ∈ II) | ||
9-Sep-2024 | iooii 46211 | Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) | ||
9-Sep-2024 | cnneiima 46210 | Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑁 ∈ ((nei‘𝐾)‘𝑇)) & ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝑇)) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆)) | ||
9-Sep-2024 | iccdisj 46192 | If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) | ||
9-Sep-2024 | iccdisj2 46191 | If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) | ||
9-Sep-2024 | iccin 46190 | Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)[,]if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
9-Sep-2024 | predisj 46156 | Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) & ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | ||
9-Sep-2024 | naddss2 33842 | Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +no 𝐴) ⊆ (𝐶 +no 𝐵))) | ||
9-Sep-2024 | naddss1 33841 | Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) | ||
9-Sep-2024 | naddel2 33840 | Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐶 +no 𝐴) ∈ (𝐶 +no 𝐵))) | ||
9-Sep-2024 | naddel1 33839 | Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | ||
9-Sep-2024 | naddelim 33838 | Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | ||
9-Sep-2024 | ensymfib 8970 | Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8788). (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | ||
9-Sep-2024 | f1oenfirn 8966 | If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
9-Sep-2024 | cnvfi 8963 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5288. (Revised by BTernaryTau, 9-Sep-2024.) |
⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
9-Sep-2024 | f1dom3g 8755 | The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8760 does not require the Axiom of Replacement nor the Axiom of Power Sets. (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
8-Sep-2024 | sepcsepo 46220 | If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 46217 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 46198, adantr 481, and rexlimiva 3210. (Contributed by Zhi Wang, 8-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
8-Sep-2024 | icccldii 46212 | Closed intervals are closed sets of II. Note that iccss 13147, iccordt 22365, and ordtresticc 22374 are proved from ixxss12 13099, ordtcld3 22350, and ordtrest2 22355, respectively. An alternate proof uses restcldi 22324, dfii2 24045, and icccld 23930. (Contributed by Zhi Wang, 8-Sep-2024.) |
⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II)) | ||
8-Sep-2024 | enreffi 8969 | Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 8772). (Contributed by BTernaryTau, 8-Sep-2024.) |
⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | ||
8-Sep-2024 | f1oenfi 8965 | If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 8759). (Contributed by BTernaryTau, 8-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
8-Sep-2024 | relopabv 5731 | A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2154 and ax-12 2171, see relopab 5734. (Contributed by SN, 8-Sep-2024.) |
⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
8-Sep-2024 | ab0 4308 | The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4314 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2944). (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by SN, 8-Sep-2024.) |
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | ||
8-Sep-2024 | ceqsralv 3469 | Restricted quantifier version of ceqsalv 3467. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2116, ax-12 2171, ax-ext 2709. (Revised by SN, 8-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
8-Sep-2024 | ceqsalv 3467 | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2171. (Revised by SN, 8-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
7-Sep-2024 | seposep 46219 | If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 46217. The relationship between separatedness and closure is also seen in isnrm 22486, isnrm2 22509, isnrm3 22510. (Contributed by Zhi Wang, 7-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))) | ||
7-Sep-2024 | sepdisj 46218 | Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) ⇒ ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | ||
7-Sep-2024 | ssdisjdr 46154 | Subset preserves disjointness. Deduction form of ssdisj 4393. Alternatively this could be proved with ineqcom 4136 in tandem with ssdisjd 46153. (Contributed by Zhi Wang, 7-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) | ||
7-Sep-2024 | ssdisjd 46153 | Subset preserves disjointness. Deduction form of ssdisj 4393. (Contributed by Zhi Wang, 7-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝐵 ∩ 𝐶) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) | ||
7-Sep-2024 | naddssim 33837 | Ordinal less-than-or-equal is preserved by natural addition. (Contributed by Scott Fenton, 7-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) | ||
7-Sep-2024 | pwfi 8961 | The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5288. (Revised by BTernaryTau, 7-Sep-2024.) |
⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | ||
7-Sep-2024 | pwfilem 8960 | Lemma for pwfi 8961. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5288. (Revised by BTernaryTau, 7-Sep-2024.) |
⊢ 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥})) ⇒ ⊢ (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin) | ||
7-Sep-2024 | pwfir 8959 | If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.) |
⊢ (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin) | ||
7-Sep-2024 | imafi 8958 | Images of finite sets are finite. For a shorter proof using ax-pow 5288, see imafiALT 9112. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 7-Sep-2024.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
6-Sep-2024 | clddisj 46197 | Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 46196 with elssuni 4871 replaced by the combination of cldss 22180 and eqid 2738. (Contributed by Zhi Wang, 6-Sep-2024.) |
⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | ||
6-Sep-2024 | opndisj 46196 | Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.) |
⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) | ||
6-Sep-2024 | clduni 46194 | The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.) |
⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | ||
6-Sep-2024 | r19.41dv 46147 | A complex deduction form of r19.41v 3276. (Contributed by Zhi Wang, 6-Sep-2024.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
6-Sep-2024 | ralbidb 46145 | Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc 46146 for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) | ||
6-Sep-2024 | pm5.32dra 46140 | Reverse distribution of implication over biconditional (deduction form). (Contributed by Zhi Wang, 6-Sep-2024.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | ||
6-Sep-2024 | eq0rdv 4338 | Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2108, df-clel 2816. (Revised by Gino Giotto, 6-Sep-2024.) |
⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = ∅) | ||
6-Sep-2024 | eq0 4277 | A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2154, ax-12 2171. (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024.) Avoid ax-8 2108, df-clel 2816. (Revised by Gino Giotto, 6-Sep-2024.) |
⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | ||
6-Sep-2024 | vn0 4272 | The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.) Avoid ax-8 2108, df-clel 2816. (Revised by Gino Giotto, 6-Sep-2024.) |
⊢ V ≠ ∅ | ||
5-Sep-2024 | iscnrm4 46248 | A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛 ∩ 𝑚) = ∅))) | ||
5-Sep-2024 | iscnrm3 46246 | A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | ||
5-Sep-2024 | iscnrm3l 46245 | Lemma for iscnrm3 46246. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → ((𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) → ((𝐶 ∩ 𝐷) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))))) | ||
5-Sep-2024 | iscnrm3llem2 46244 | Lemma for iscnrm3l 46245. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 42603.) (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝐶 ⊆ 𝑛 ∧ 𝐷 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) → ∃𝑙 ∈ (𝐽 ↾t 𝑍)∃𝑘 ∈ (𝐽 ↾t 𝑍)(𝐶 ⊆ 𝑙 ∧ 𝐷 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) | ||
5-Sep-2024 | iscnrm3r 46242 | Lemma for iscnrm3 46246. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 ∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ((𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))))) | ||
5-Sep-2024 | iscnrm3rlem8 46241 | Lemma for iscnrm3r 46242. Disjoint open neighborhoods in the subspace topology are disjoint open neighborhoods in the original topology given that the subspace is an open set in the original topology. Therefore, given any two sets separated in the original topology and separated by open neighborhoods in the subspace topology, they must be separated by open neighborhoods in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | ||
5-Sep-2024 | iscnrm3rlem7 46240 | Lemma for iscnrm3rlem8 46241. Open neighborhoods in the subspace topology are open neighborhoods in the original topology given that the subspace is an open set in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ⇒ ⊢ (𝜑 → 𝑂 ∈ 𝐽) | ||
5-Sep-2024 | iscnrm3rlem6 46239 | Lemma for iscnrm3rlem7 46240. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑂 ⊆ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ⇒ ⊢ (𝜑 → (𝑂 ∈ (𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂 ∈ 𝐽)) | ||
5-Sep-2024 | iscnrm3rlem5 46238 | Lemma for iscnrm3rlem6 46239. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) | ||
5-Sep-2024 | iscnrm3rlem4 46237 | Lemma for iscnrm3rlem8 46241. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑁) | ||
5-Sep-2024 | iscnrm3rlem3 46236 | Lemma for iscnrm3r 46242. The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽 ∧ 𝑇 ∈ 𝒫 ∪ 𝐽)) → ((∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))) | ||
5-Sep-2024 | iscnrm3rlem2 46235 | Lemma for iscnrm3rlem3 46236. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) | ||
5-Sep-2024 | iscnrm3rlem1 46234 | Lemma for iscnrm3rlem2 46235. The hypothesis could be generalized to (𝜑 → (𝑆 ∖ 𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝜑 → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) | ||
5-Sep-2024 | iscnrm3lem7 46233 | Lemma for iscnrm3rlem8 46241 and iscnrm3llem2 46244 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ (𝑧 = 𝑍 → (𝜒 ↔ 𝜃)) & ⊢ (𝑤 = 𝑊 → (𝜃 ↔ 𝜏)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → (𝑍 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝜏)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒)) | ||
5-Sep-2024 | iscnrm3lem6 46232 | Lemma for iscnrm3lem7 46233. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑊 𝜓 → 𝜒)) | ||
5-Sep-2024 | disjdifb 46155 | Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.) |
⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
4-Sep-2024 | iscnrm3llem1 46243 | Lemma for iscnrm3l 46245. Closed sets in the subspace are subsets of the underlying set of the original topology. (Contributed by Zhi Wang, 4-Sep-2024.) |
⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∈ 𝒫 ∪ 𝐽 ∧ 𝐷 ∈ 𝒫 ∪ 𝐽)) | ||
4-Sep-2024 | iscnrm3lem4 46230 | Lemma for iscnrm3lem5 46231 and iscnrm3r 46242. (Contributed by Zhi Wang, 4-Sep-2024.) |
⊢ (𝜂 → (𝜓 → 𝜁)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜁 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
4-Sep-2024 | iscnrm3lem3 46229 | Lemma for iscnrm3lem4 46230. (Contributed by Zhi Wang, 4-Sep-2024.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) | ||
4-Sep-2024 | on3ind 33829 | Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024.) |
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑 ∈ 𝑎 ∀𝑒 ∈ 𝑏 ∀𝑓 ∈ 𝑐 𝜃 ∧ ∀𝑑 ∈ 𝑎 ∀𝑒 ∈ 𝑏 𝜒 ∧ ∀𝑑 ∈ 𝑎 ∀𝑓 ∈ 𝑐 𝜁) ∧ (∀𝑑 ∈ 𝑎 𝜓 ∧ ∀𝑒 ∈ 𝑏 ∀𝑓 ∈ 𝑐 𝜏 ∧ ∀𝑒 ∈ 𝑏 𝜎) ∧ ∀𝑓 ∈ 𝑐 𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆) | ||
4-Sep-2024 | xpord3ind 33800 | Induction over the triple cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024.) |
⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st ‘𝑥))𝑅(1st ‘(1st ‘𝑦)) ∨ (1st ‘(1st ‘𝑥)) = (1st ‘(1st ‘𝑦))) ∧ ((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st ‘𝑦)) ∨ (2nd ‘(1st ‘𝑥)) = (2nd ‘(1st ‘𝑦))) ∧ ((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} & ⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Po 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ 𝑆 Fr 𝐵 & ⊢ 𝑆 Po 𝐵 & ⊢ 𝑆 Se 𝐵 & ⊢ 𝑇 Fr 𝐶 & ⊢ 𝑇 Po 𝐶 & ⊢ 𝑇 Se 𝐶 & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (((∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred (𝑆, 𝐵, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred (𝑇, 𝐶, 𝑐)𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶) → 𝜆) | ||
4-Sep-2024 | vex 3436 | All setvar variables are sets (see isset 3445). Theorem 6.8 of [Quine] p. 43. A shorter proof is possible from eleq2i 2830 but it uses more axioms. (Contributed by NM, 26-May-1993.) Remove use of ax-12 2171. (Revised by SN, 28-Aug-2023.) (Proof shortened by BJ, 4-Sep-2024.) |
⊢ 𝑥 ∈ V | ||
3-Sep-2024 | iscnrm3lem5 46231 | Lemma for iscnrm3l 46245. (Contributed by Zhi Wang, 3-Sep-2024.) |
⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → (𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊)) & ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝜓 → 𝜃) → 𝜎)) ⇒ ⊢ (𝜏 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝜑 → 𝜒) → (𝜂 → (𝜁 → 𝜎)))) | ||
3-Sep-2024 | iscnrm3lem2 46228 | Lemma for iscnrm3 46246 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024.) |
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 → ((𝑤 ∈ 𝐷 ∧ 𝑣 ∈ 𝐸) → 𝜒))) & ⊢ (𝜑 → (∀𝑤 ∈ 𝐷 ∀𝑣 ∈ 𝐸 𝜒 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜓))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓 ↔ ∀𝑤 ∈ 𝐷 ∀𝑣 ∈ 𝐸 𝜒)) | ||
3-Sep-2024 | iscnrm3lem1 46227 | Lemma for iscnrm3 46246. Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024.) |
⊢ (𝐽 ∈ Top → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ((𝐽 ↾t 𝑥) ∈ Top ∧ 𝜑))) | ||
3-Sep-2024 | exp12bd 46141 | The import-export theorem (impexp 451) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024.) |
⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜏 ∧ 𝜂) → 𝜁))) ⇒ ⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) ↔ (𝜏 → (𝜂 → 𝜁)))) | ||
3-Sep-2024 | on2recsov 33827 | Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.) |
⊢ 𝐹 = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), 𝐺) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (〈𝐴, 𝐵〉𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {〈𝐴, 𝐵〉})))) | ||
3-Sep-2024 | on2recsfn 33826 | Show that double recursion over ordinals yields a function over pairs of ordinals. (Contributed by Scott Fenton, 3-Sep-2024.) |
⊢ 𝐹 = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), 𝐺) ⇒ ⊢ 𝐹 Fn (On × On) | ||
2-Sep-2024 | dfnrm3 46226 | A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm 22468. (Contributed by Zhi Wang, 2-Sep-2024.) |
⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝑗)‘𝑐)∃𝑦 ∈ ((nei‘𝑗)‘𝑑)(𝑥 ∩ 𝑦) = ∅)} | ||
2-Sep-2024 | restclssep 46209 | Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) | ||
2-Sep-2024 | restclsseplem 46208 | Lemma for restclssep 46209. (Contributed by Zhi Wang, 2-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ⊆ 𝑌) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | ||
2-Sep-2024 | restcls2 46207 | A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
2-Sep-2024 | restcls2lem 46206 | A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑌) | ||
2-Sep-2024 | elrab2w 40167 | Membership in a restricted class abstraction. This is to elrab2 3627 what elab2gw 40166 is to elab2g 3611. (Contributed by SN, 2-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) | ||
2-Sep-2024 | ralf0 4444 | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
2-Sep-2024 | ral0 4443 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
2-Sep-2024 | ralidm 4442 | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
2-Sep-2024 | rexn0 4441 | Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
2-Sep-2024 | rzal 4439 | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
2-Sep-2024 | sbc5 3744 | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by SN, 2-Sep-2024.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
2-Sep-2024 | vtocld 3494 | Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 2-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
2-Sep-2024 | clelab 2883 | Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) Avoid ax-11 2154, see sbc5ALT 3745 for more details. (Revised by SN, 2-Sep-2024.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
1-Sep-2024 | isnrm4 46224 | A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝐽)‘𝑐)∃𝑦 ∈ ((nei‘𝐽)‘𝑑)(𝑥 ∩ 𝑦) = ∅))) | ||
1-Sep-2024 | sepnsepo 46217 | Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
1-Sep-2024 | sepnsepolem2 46216 | Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 46217. Proof could be shortened by 1 step using ssdisjdr 46154. (Contributed by Zhi Wang, 1-Sep-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
1-Sep-2024 | sepnsepolem1 46215 | Lemma for sepnsepo 46217. (Contributed by Zhi Wang, 1-Sep-2024.) |
⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) | ||
1-Sep-2024 | ruvALT 40168 | Alternate proof of ruv 9361 with one fewer syntax step thanks to using elirrv 9355 instead of elirr 9356. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 28764. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | ||
1-Sep-2024 | bj-clel3gALT 35221 | Alternate proof of clel3g 3591. (Contributed by BJ, 1-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | ||
1-Sep-2024 | vopelopabsb 5442 | The law of concretion in terms of substitutions. Version of opelopabsb 5443 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.) |
⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | ||
1-Sep-2024 | copsex2g 5407 | Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) Use a similar proof to copsex4g 5409 to reduce axiom usage. (Revised by SN, 1-Sep-2024.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
1-Sep-2024 | intpr 4913 | The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) Prove from intprg 4912. (Revised by BJ, 1-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) | ||
1-Sep-2024 | intprg 4912 | The intersection of a pair is the intersection of its members. Closed form of intpr 4913. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) (Proof shortened by BJ, 1-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | ||
1-Sep-2024 | unipr 4857 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) | ||
1-Sep-2024 | uniprg 4856 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) Avoid using unipr 4857 to prove it from uniprg 4856. (Revised by BJ, 1-Sep-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | ||
1-Sep-2024 | clel4g 3593 | Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 2171. (Revised by BJ, 1-Sep-2024.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥))) | ||
1-Sep-2024 | clel2g 3588 | Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent. (Revised by BJ, 12-Feb-2022.) Avoid ax-12 2171. (Revised by BJ, 1-Sep-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) | ||
31-Aug-2024 | opnneieqvv 46205 | The equivalence between neighborhood and open neighborhood. A variant of opnneieqv 46204 with two dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
31-Aug-2024 | opnneieqv 46204 | The equivalence between neighborhood and open neighborhood. See opnneieqvv 46205 for different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓))) | ||
31-Aug-2024 | opnneil 46203 | A variant of opnneilv 46202. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓))) | ||
31-Aug-2024 | opnneilv 46202 | The converse of opnneir 46200 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 46198), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
31-Aug-2024 | opnneirv 46201 | A variant of opnneir 46200 with different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒)) | ||
31-Aug-2024 | opnneir 46200 | If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) | ||
31-Aug-2024 | opnneilem 46199 | Lemma factoring out common proof steps of opnneil 46203 and opnneirv 46201. (Contributed by Zhi Wang, 31-Aug-2024.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
31-Aug-2024 | dfaiota3 44584 | Alternate definition of ℩': this is to df-aiota 44577 what dfiota4 6425 is to df-iota 6391. operation using the if operator. It is simpler than df-aiota 44577 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) | ||
31-Aug-2024 | aiotaint 44583 | This is to df-aiota 44577 what iotauni 6408 is to df-iota 6391 (it uses intersection like df-aiota 44577, similar to iotauni 6408 using union like df-iota 6391; we could also prove an analogous result using union here too, in the same way that we have iotaint 6409). (Contributed by BJ, 31-Aug-2024.) |
⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
31-Aug-2024 | acos1half 40170 | The arccosine of 1 / 2 is π / 3. (Contributed by SN, 31-Aug-2024.) |
⊢ (arccos‘(1 / 2)) = (π / 3) | ||
31-Aug-2024 | f1ofvswap 7178 | Swapping two values in a bijection between two classes yields another bijection between those classes. (Contributed by BTernaryTau, 31-Aug-2024.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉}):𝐴–1-1-onto→𝐵) | ||
30-Aug-2024 | dfnrm2 46225 | A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 22468. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} | ||
30-Aug-2024 | opncldeqv 46195 | Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) | ||
30-Aug-2024 | ralbidc 46146 | Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb 46145. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) | ||
30-Aug-2024 | pm5.32dav 46139 | Distribution of implication over biconditional (deduction form). Variant of pm5.32da 579. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) | ||
30-Aug-2024 | logic2 46138 | Variant of logic1 46136. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
30-Aug-2024 | logic1a 46137 | Variant of logic1 46136. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝜓) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
30-Aug-2024 | logic1 46136 | Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 ↔ 𝜏))) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
30-Aug-2024 | pm4.71da 46135 | Deduction converting a biconditional to a biconditional with conjunction. Variant of pm4.71d 562. (Contributed by Zhi Wang, 30-Aug-2024.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) | ||
30-Aug-2024 | abn0 4314 | Nonempty class abstraction. See also ab0 4308. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | ||
30-Aug-2024 | ab0orv 4312 | The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) Reduce axiom usage. (Revised by Gino Giotto, 30-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) | ||
30-Aug-2024 | ab0OLD 4309 | Obsolete version of ab0 4308 as of 8-Sep-2024. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | ||
30-Aug-2024 | rru 3714 |
Relative version of Russell's paradox ru 3715 (which corresponds to the
case 𝐴 = V).
Originally a subproof in pwnss 5272. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid df-nel 3050. (Revised by Steven Nguyen, 23-Nov-2022.) Reduce axiom usage. (Revised by Gino Giotto, 30-Aug-2024.) |
⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 | ||
30-Aug-2024 | abv 3443 | The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 35091) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | ||
29-Aug-2024 | dftermo3 17721 | An alternate definition of df-termo 17700 depending on df-inito 17699, without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ TermO = (InitO ∘ (oppCat ↾ Cat)) | ||
29-Aug-2024 | dfinito3 17720 | An alternate definition of df-inito 17699 depending on df-termo 17700, without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ InitO = (TermO ∘ (oppCat ↾ Cat)) | ||
29-Aug-2024 | dftermo2 17719 | A terminal object is an initial object in the opposite category. An alternate definition of df-termo 17700 depending on df-inito 17699. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐))) | ||
29-Aug-2024 | dfinito2 17718 | An initial object is a terminal object in the opposite category. An alternate definition of df-inito 17699 depending on df-termo 17700. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ InitO = (𝑐 ∈ Cat ↦ (TermO‘(oppCat‘𝑐))) | ||
29-Aug-2024 | zeroofn 17704 | ZeroO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ ZeroO Fn Cat | ||
29-Aug-2024 | termofn 17703 | TermO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ TermO Fn Cat | ||
29-Aug-2024 | initofn 17702 | InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ InitO Fn Cat | ||
29-Aug-2024 | oppccatf 17439 | oppCat restricted to Cat is a function from Cat to Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
⊢ (oppCat ↾ Cat):Cat⟶Cat | ||
27-Aug-2024 | nmfval0 23746 | The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 23747 proved from this theorem and grpidcl 18607) or more generally monoids (see mndidcl 18400), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 23747. (Revised by BJ, 27-Aug-2024.) |
⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) ⇒ ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) | ||
26-Aug-2024 | naddid1 33836 | Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴) | ||
26-Aug-2024 | naddcom 33835 | Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴)) |
(29-Jul-2020) Mario Carneiro presented MM0 at the CICM conference. See this Google Group post which includes a YouTube link.
(20-Jul-2020) Rohan Ridenour found 5 shorter D-proofs in our Shortest known proofs... file. In particular, he reduced *4.39 from 901 to 609 steps. A note on the Metamath Solitaire page mentions a tool that he worked with.
(19-Jul-2020) David A. Wheeler posted a video (https://youtu.be/3R27Qx69jHc) on how to (re)prove Schwabh�user 4.6 for the Metamath Proof Explorer. See also his older videos.
(19-Jul-2020) In version 0.184 of the metamath program, "verify markup" now checks that mathboxes are independent i.e. do not cross-reference each other. To turn off this check, use "/mathbox_skip"
(30-Jun-2020) In version 0.183 of the metamath program, (1) "verify markup" now has checking for (i) underscores in labels, (ii) that *ALT and *OLD theorems have both discouragement tags, and (iii) that lines don't have trailing spaces. (2) "save proof.../rewrap" no longer left-aligns $p/$a comments that contain the string "<HTML>"; see this note.
(5-Apr-2020) Glauco Siliprandi added a new proof to the 100 theorem list, e is Transcendental etransc, bringing the Metamath total to 74.
(12-Feb-2020) A bug in the 'minimize' command of metamath.exe versions 0.179 (29-Nov-2019) and 0.180 (10-Dec-2019) may incorrectly bring in the use of new axioms. Version 0.181 fixes it.
(20-Jan-2020) David A. Wheeler created a video called Walkthrough of the tutorial in mmj2. See the Google Group announcement for more details. (All of his videos are listed on the Other Metamath-Related Topics page.)
(18-Jan-2020) The FOMM 2020 talks are on youtube now. Mario Carneiro's talk is Metamath Zero, or: How to Verify a Verifier. Since they are washed out in the video, the PDF slides are available separately.
(14-Dec-2019) Glauco Siliprandi added a new proof to the 100 theorem list, Fourier series convergence fourier, bringing the Metamath total to 73.
(25-Nov-2019) Alexander van der Vekens added a new proof to the 100 theorem list, The Cayley-Hamilton Theorem cayleyhamilton, bringing the Metamath total to 72.
(25-Oct-2019) Mario Carneiro's paper "Metamath Zero: The Cartesian Theorem Prover" (submitted to CPP 2020) is now available on arXiv: https://arxiv.org/abs/1910.10703. There is a related discussion on Hacker News.
(30-Sep-2019) Mario Carneiro's talk about MM0 at ITP 2019 is available on YouTube: x86 verification from scratch (24 minutes). Google Group discussion: Metamath Zero.
(29-Sep-2019) David Wheeler created a fascinating Gource video that animates the construction of set.mm, available on YouTube: Metamath set.mm contributions viewed with Gource through 2019-09-26 (4 minutes). Google Group discussion: Gource video of set.mm contributions.
(24-Sep-2019) nLab added a page for Metamath. It mentions Stefan O'Rear's Busy Beaver work using the set.mm axiomatization (and fails to mention Mario's definitional soundness checker)
(1-Sep-2019) Xuanji Li published a Visual Studio Code extension to support metamath syntax highlighting.
(10-Aug-2019) (revised 21-Sep-2019) Version 0.178 of the metamath program has the following changes: (1) "minimize_with" will now prevent dependence on new $a statements unless the new qualifier "/allow_new_axioms" is specified. For routine usage, it is suggested that you use "minimize_with * /allow_new_axioms * /no_new_axioms_from ax-*" instead of just "minimize_with *". See "help minimize_with" and this Google Group post. Also note that the qualifier "/allow_growth" has been renamed to "/may_grow". (2) "/no_versioning" was added to "write theorem_list".
(8-Jul-2019) Jon Pennant announced the creation of a Metamath search engine. Try it and feel free to comment on it at https://groups.google.com/d/msg/metamath/cTeU5AzUksI/5GesBfDaCwAJ.
(16-May-2019) Set.mm now has a major new section on elementary geometry. This begins with definitions that implement Tarski's axioms of geometry (including concepts such as congruence and betweenness). This uses set.mm's extensible structures, making them easier to use for many circumstances. The section then connects Tarski geometry with geometry in Euclidean places. Most of the work in this section is due to Thierry Arnoux, with earlier work by Mario Carneiro and Scott Fenton. [Reported by DAW.]
(9-May-2019) We are sad to report that long-time contributor Alan Sare passed away on Mar. 23. There is some more information at the top of his mathbox (click on "Mathbox for Alan Sare") and his obituary. We extend our condolences to his family.
(10-Mar-2019) Jon Pennant and Mario Carneiro added a new proof to the 100 theorem list, Heron's formula heron, bringing the Metamath total to 71.
(22-Feb-2019) Alexander van der Vekens added a new proof to the 100 theorem list, Cramer's rule cramer, bringing the Metamath total to 70.
(6-Feb-2019) David A. Wheeler has made significant improvements and updates to the Metamath book. Any comments, errors found, or suggestions are welcome and should be turned into an issue or pull request at https://github.com/metamath/metamath-book (or sent to me if you prefer).
(26-Dec-2018) I added Appendix 8 to the MPE Home Page that cross-references new and old axiom numbers.
(20-Dec-2018) The axioms have been renumbered according to this Google Groups post.
(24-Nov-2018) Thierry Arnoux created a new page on topological structures. The page along with its SVG files are maintained on GitHub.
(11-Oct-2018) Alexander van der Vekens added a new proof to the 100 theorem list, the Friendship Theorem friendship, bringing the Metamath total to 69.
(1-Oct-2018) Naip Moro has written gramm, a Metamath proof verifier written in Antlr4/Java.
(16-Sep-2018) The definition df-riota has been simplified so that it evaluates to the empty set instead of an Undef value. This change affects a significant part of set.mm.
(2-Sep-2018) Thierry Arnoux added a new proof to the 100 theorem list, Euler's partition theorem eulerpart, bringing the Metamath total to 68.
(1-Sep-2018) The Kate editor now has Metamath syntax highlighting built in. (Communicated by Wolf Lammen.)
(15-Aug-2018) The Intuitionistic Logic Explorer now has a Most Recent Proofs page.
(4-Aug-2018) Version 0.163 of the metamath program now indicates (with an asterisk) which Table of Contents headers have associated comments.
(10-May-2018) George Szpiro, journalist and author of several books on popular mathematics such as Poincare's Prize and Numbers Rule, used a genetic algorithm to find shorter D-proofs of "*3.37" and "meredith" in our Shortest known proofs... file.
(19-Apr-2018) The EMetamath Eclipse plugin has undergone many improvements since its initial release as the change log indicates. Thierry uses it as his main proof assistant and writes, "I added support for mmj2's auto-transformations, which allows it to infer several steps when building proofs. This added a lot of comfort for writing proofs.... I can now switch back and forth between the proof assistant and editing the Metamath file.... I think no other proof assistant has this feature."
(11-Apr-2018) Benoît Jubin solved an open problem about the "Axiom of Twoness," showing that it is necessary for completeness. See item 14 on the "Open problems and miscellany" page.
(25-Mar-2018) Giovanni Mascellani has announced mmpp, a new proof editing environment for the Metamath language.
(27-Feb-2018) Bill Hale has released an app for the Apple iPad and desktop computer that allows you to browse Metamath theorems and their proofs.
(17-Jan-2018) Dylan Houlihan has kindly provided a new mirror site. He has also provided an rsync server; type "rsync uk.metamath.org::" in a bash shell to check its status (it should return "metamath metamath").
(15-Jan-2018) The metamath program, version 0.157, has been updated to implement the file inclusion conventions described in the 21-Dec-2017 entry of mmnotes.txt.
(11-Dec-2017) I added a paragraph, suggested by Gérard Lang, to the distinct variable description here.
(10-Dec-2017) Per FL's request, his mathbox will be removed from set.mm. If you wish to export any of his theorems, today's version (master commit 1024a3a) is the last one that will contain it.
(11-Nov-2017) Alan Sare updated his completeusersproof program.
(3-Oct-2017) Sean B. Palmer created a web page that runs the metamath program under emulated Linux in JavaScript. He also wrote some programs to work with our shortest known proofs of the PM propositional calculus theorems.
(28-Sep-2017) Ivan Kuckir wrote a tutorial blog entry, Introduction to Metamath, that summarizes the language syntax. (It may have been written some time ago, but I was not aware of it before.)
(26-Sep-2017) The default directory for the Metamath Proof Explorer (MPE) has been changed from the GIF version (mpegif) to the Unicode version (mpeuni) throughout the site. Please let me know if you find broken links or other issues.
(24-Sep-2017) Saveliy Skresanov added a new proof to the 100 theorem list, Ceva's Theorem cevath, bringing the Metamath total to 67.
(3-Sep-2017) Brendan Leahy added a new proof to the 100 theorem list, Area of a Circle areacirc, bringing the Metamath total to 66.
(7-Aug-2017) Mario Carneiro added a new proof to the 100 theorem list, Principle of Inclusion/Exclusion incexc, bringing the Metamath total to 65.
(1-Jul-2017) Glauco Siliprandi added a new proof to the 100 theorem list, Stirling's Formula stirling, bringing the Metamath total to 64. Related theorems include 2 versions of Wallis' formula for π (wallispi and wallispi2).
(7-May-2017) Thierry Arnoux added a new proof to the 100 theorem list, Betrand's Ballot Problem ballotth, bringing the Metamath total to 63.
(20-Apr-2017) Glauco Siliprandi added a new proof in the supplementary list on the 100 theorem list, Stone-Weierstrass Theorem stowei.
(28-Feb-2017) David Moews added a new proof to the 100 theorem list, Product of Segments of Chords chordthm, bringing the Metamath total to 62.
(1-Jan-2017) Saveliy Skresanov added a new proof to the 100 theorem list, Isosceles triangle theorem isosctr, bringing the Metamath total to 61.
(1-Jan-2017) Mario Carneiro added 2 new proofs to the 100 theorem list, L'Hôpital's Rule lhop and Taylor's Theorem taylth, bringing the Metamath total to 60.
(28-Dec-2016) David A. Wheeler is putting together a page on Metamath (specifically set.mm) conventions. Comments are welcome on the Google Group thread.
(24-Dec-2016) Mario Carneiro introduced the abbreviation "F/ x ph" (symbols: turned F, x, phi) in df-nf to represent the "effectively not free" idiom "A. x ( ph -> A. x ph )". Theorem nf2 shows a version without nested quantifiers.
(22-Dec-2016) Naip Moro has developed a Metamath database for G. Spencer-Brown's Laws of Form. You can follow the Google Group discussion here.
(20-Dec-2016) In metamath program version 0.137, 'verify markup *' now checks that ax-XXX $a matches axXXX $p when the latter exists, per the discussion at https://groups.google.com/d/msg/metamath/Vtz3CKGmXnI/Fxq3j1I_EQAJ.
(24-Nov-2016) Mingl Yuan has kindly provided a mirror site in Beijing, China. He has also provided an rsync server; type "rsync cn.metamath.org::" in a bash shell to check its status (it should return "metamath metamath").
(14-Aug-2016) All HTML pages on this site should now be mobile-friendly and pass the Mobile-Friendly Test. If you find one that does not, let me know.
(14-Aug-2016) Daniel Whalen wrote a paper describing the use of using deep learning to prove 14% of test theorems taken from set.mm: Holophrasm: a neural Automated Theorem Prover for higher-order logic. The associated program is called Holophrasm.
(14-Aug-2016) David A. Wheeler created a video called Metamath Proof Explorer: A Modern Principia Mathematica
(12-Aug-2016) A Gitter chat room has been created for Metamath.
(9-Aug-2016) Mario Carneiro wrote a Metamath proof verifier in the Scala language as part of the ongoing Metamath -> MMT import project
(9-Aug-2016) David A. Wheeler created a GitHub project called metamath-test (last execution run) to check that different verifiers both pass good databases and detect errors in defective ones.
(4-Aug-2016) Mario gave two presentations at CICM 2016.
(17-Jul-2016) Thierry Arnoux has written EMetamath, a Metamath plugin for the Eclipse IDE.
(16-Jul-2016) Mario recovered Chris Capel's collapsible proof demo.
(13-Jul-2016) FL sent me an updated version of PDF (LaTeX source) developed with Lamport's pf2 package. See the 23-Apr-2012 entry below.
(12-Jul-2016) David A. Wheeler produced a new video for mmj2 called "Creating functions in Metamath". It shows a more efficient approach than his previous recent video "Creating functions in Metamath" (old) but it can be of interest to see both approaches.
(10-Jul-2016) Metamath program version 0.132 changes the command 'show restricted' to 'show discouraged' and adds a new command, 'set discouragement'. See the mmnotes.txt entry of 11-May-2016 (updated 10-Jul-2016).
(12-Jun-2016) Dan Getz has written Metamath.jl, a Metamath proof verifier written in the Julia language.
(10-Jun-2016) If you are using metamath program versions 0.128, 0.129, or 0.130, please update to version 0.131. (In the bad versions, 'minimize_with' ignores distinct variable violations.)
(1-Jun-2016) Mario Carneiro added new proofs to the 100 theorem list, the Prime Number Theorem pnt and the Perfect Number Theorem perfect, bringing the Metamath total to 58.
(12-May-2016) Mario Carneiro added a new proof to the 100 theorem list, Dirichlet's theorem dirith, bringing the Metamath total to 56. (Added 17-May-2016) An informal exposition of the proof can be found at http://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html
(10-Mar-2016) Metamath program version 0.125 adds a new qualifier, /fast, to 'save proof'. See the mmnotes.txt entry of 10-Mar-2016.
(6-Mar-2016) The most recent set.mm has a large update converting variables from letters to symbols. See this Google Groups post.
(16-Feb-2016) Mario Carneiro's new paper "Models for Metamath" can be found here and on arxiv.org.
(6-Feb-2016) There are now 22 math symbols that can be used as variable names. See mmascii.html near the 50th table row, starting with "./\".
(29-Jan-2016) Metamath program version 0.123 adds /packed and /explicit qualifiers to 'save proof' and 'show proof'. See this Google Groups post.
(13-Jan-2016) The Unicode math symbols now provide for external CSS and use the XITS web font. Thanks to David A. Wheeler, Mario Carneiro, Cris Perdue, Jason Orendorff, and Frédéric Liné for discussions on this topic. Two commands, htmlcss and htmlfont, were added to the $t comment in set.mm and are recognized by Metamath program version 0.122.
(21-Dec-2015) Axiom ax-12, now renamed ax-12o, was replaced by a new shorter equivalent, ax-12. The equivalence is provided by theorems ax12o and ax12.
(13-Dec-2015) A new section on the theory of classes was added to the MPE Home Page. Thanks to Gérard Lang for suggesting this section and improvements to it.
(17-Nov-2015) Metamath program version 0.121: 'verify markup' was added to check comment markup consistency; see 'help verify markup'. You are encouraged to make sure 'verify markup */f' has no warnings prior to mathbox submissions. The date consistency rules are given in this Google Groups post.
(23-Sep-2015) Drahflow wrote, "I am currently working on yet another proof assistant, main reason being: I understand stuff best if I code it. If anyone is interested: https://github.com/Drahflow/Igor (but in my own programming language, so expect a complicated build process :P)"
(23-Aug-2015) Ivan Kuckir created MM Tool, a Metamath proof verifier and editor written in JavaScript that runs in a browser.
(25-Jul-2015) Axiom ax-10 is shown to be redundant by theorem ax10 , so it was removed from the predicate calculus axiom list.
(19-Jul-2015) Mario Carneiro gave two talks related to Metamath at CICM 2015, which are linked to at Other Metamath-Related Topics.
(18-Jul-2015) The metamath program has been updated to version 0.118. 'show trace_back' now has a '/to' qualifier to show the path back to a specific axiom such as ax-ac. See 'help show trace_back'.
(12-Jul-2015) I added the HOL Explorer for Mario Carneiro's hol.mm database. Although the home page needs to be filled out, the proofs can be accessed.
(11-Jul-2015) I started a new page, Other Metamath-Related Topics, that will hold miscellaneous material that doesn't fit well elsewhere (or is hard to find on this site). Suggestions welcome.
(23-Jun-2015) Metamath's mascot, Penny the cat (2007 photo), passed away today. She was 18 years old.
(21-Jun-2015) Mario Carneiro added 3 new proofs to the 100 theorem list: All Primes (1 mod 4) Equal the Sum of Two Squares 2sq, The Law of Quadratic Reciprocity lgsquad and the AM-GM theorem amgm, bringing the Metamath total to 55.
(13-Jun-2015) Stefan O'Rear's smm, written in JavaScript, can now be used as a standalone proof verifier. This brings the total number of independent Metamath verifiers to 8, written in just as many languages (C, Java. JavaScript, Python, Haskell, Lua, C#, C++).
(12-Jun-2015) David A. Wheeler added 2 new proofs to the 100 theorem list: The Law of Cosines lawcos and Ptolemy's Theorem ptolemy, bringing the Metamath total to 52.
(30-May-2015) The metamath program has been updated to version 0.117. (1) David A. Wheeler provided an enhancement to speed up the 'improve' command by 28%; see README.TXT for more information. (2) In web pages with proofs, local hyperlinks on step hypotheses no longer clip the Expression cell at the top of the page.
(9-May-2015) Stefan O'Rear has created an archive of older set.mm releases back to 1998: https://github.com/sorear/set.mm-history/.
(7-May-2015) The set.mm dated 7-May-2015 is a major revision, updated by Mario, that incorporates the new ordered pair definition df-op that was agreed upon. There were 700 changes, listed at the top of set.mm. Mathbox users are advised to update their local mathboxes. As usual, if any mathbox user has trouble incorporating these changes into their mathbox in progress, Mario or I will be glad to do them for you.
(7-May-2015) Mario has added 4 new theorems to the 100 theorem list: Ramsey's Theorem ramsey, The Solution of a Cubic cubic, The Solution of the General Quartic Equation quart, and The Birthday Problem birthday. In the Supplementary List, Stefan O'Rear added the Hilbert Basis Theorem hbt.
(28-Apr-2015) A while ago, Mario Carneiro wrote up a proof of the unambiguity of set.mm's grammar, which has now been added to this site: grammar-ambiguity.txt.
(22-Apr-2015) The metamath program has been updated to version 0.114. In MM-PA, 'show new_proof/unknown' now shows the relative offset (-1, -2,...) used for 'assign' arguments, suggested by Stefan O'Rear.
(20-Apr-2015) I retrieved an old version of the missing "Metamath 100" page from archive.org and updated it to what I think is the current state: mm_100.html. Anyone who wants to edit it can email updates to this page to me.
(19-Apr-2015) The metamath program has been updated to version 0.113, mostly with patches provided by Stefan O'Rear. (1) 'show statement %' (or any command allowing label wildcards) will select statements whose proofs were changed in current session. ('help search' will show all wildcard matching rules.) (2) 'show statement =' will select the statement being proved in MM-PA. (3) The proof date stamp is now created only if the proof is complete.
(18-Apr-2015) There is now a section for Scott Fenton's NF database: New Foundations Explorer.
(16-Apr-2015) Mario describes his recent additions to set.mm at https://groups.google.com/forum/#!topic/metamath/VAGNmzFkHCs. It include 2 new additions to the Formalizing 100 Theorems list, Leibniz' series for pi (leibpi) and the Konigsberg Bridge problem (konigsberg)
(10-Mar-2015) Mario Carneiro has written a paper, "Arithmetic in Metamath, Case Study: Bertrand's Postulate," for CICM 2015. A preprint is available at arXiv:1503.02349.
(23-Feb-2015) Scott Fenton has created a Metamath formalization of NF set theory: https://github.com/sctfn/metamath-nf/. For more information, see the Metamath Google Group posting.
(28-Jan-2015) Mario Carneiro added Wilson's Theorem (wilth), Ascending or Descending Sequences (erdsze, erdsze2), and Derangements Formula (derangfmla, subfaclim), bringing the Metamath total for Formalizing 100 Theorems to 44.
(19-Jan-2015) Mario Carneiro added Sylow's Theorem (sylow1, sylow2, sylow2b, sylow3), bringing the Metamath total for Formalizing 100 Theorems to 41.
(9-Jan-2015) The hypothesis order of mpbi*an* was changed. See the Notes entry of 9-Jan-2015.
(1-Jan-2015) Mario Carneiro has written a paper, "Conversion of HOL Light proofs into Metamath," that has been submitted to the Journal of Formalized Reasoning. A preprint is available on arxiv.org.
(22-Nov-2014) Stefan O'Rear added the Solutions to Pell's Equation (rmxycomplete) and Liouville's Theorem and the Construction of Transcendental Numbers (aaliou), bringing the Metamath total for Formalizing 100 Theorems to 40.
(22-Nov-2014) The metamath program has been updated with version 0.111. (1) Label wildcards now have a label range indicator "~" so that e.g. you can show or search all of the statements in a mathbox. See 'help search'. (Stefan O'Rear added this to the program.) (2) A qualifier was added to 'minimize_with' to prevent the use of any axioms not already used in the proof e.g. 'minimize_with * /no_new_axioms_from ax-*' will prevent the use of ax-ac if the proof doesn't already use it. See 'help minimize_with'.
(10-Oct-2014) Mario Carneiro has encoded the axiomatic basis for the HOL theorem prover into a Metamath source file, hol.mm.
(24-Sep-2014) Mario Carneiro added the Sum of the Angles of a Triangle (ang180), bringing the Metamath total for Formalizing 100 Theorems to 38.
(15-Sep-2014) Mario Carneiro added the Fundamental Theorem of Algebra (fta), bringing the Metamath total for Formalizing 100 Theorems to 37.
(3-Sep-2014) Mario Carneiro added the Fundamental Theorem of Integral Calculus (ftc1, ftc2). This brings the Metamath total for Formalizing 100 Theorems to 35. (added 14-Sep-2014) Along the way, he added the Mean Value Theorem (mvth), bringing the total to 36.
(16-Aug-2014) Mario Carneiro started a Metamath blog at http://metamath-blog.blogspot.com/.
(10-Aug-2014) Mario Carneiro added Erdős's proof of the divergence of the inverse prime series (prmrec). This brings the Metamath total for Formalizing 100 Theorems to 34.
(31-Jul-2014) Mario Carneiro added proofs for Euler's Summation of 1 + (1/2)^2 + (1/3)^2 + .... (basel) and The Factor and Remainder Theorems (facth, plyrem). This brings the Metamath total for Formalizing 100 Theorems to 33.
(16-Jul-2014) Mario Carneiro added proofs for Four Squares Theorem (4sq), Formula for the Number of Combinations (hashbc), and Divisibility by 3 Rule (3dvds). This brings the Metamath total for Formalizing 100 Theorems to 31.
(11-Jul-2014) Mario Carneiro added proofs for Divergence of the Harmonic Series (harmonic), Order of a Subgroup (lagsubg), and Lebesgue Measure and Integration (itgcl). This brings the Metamath total for Formalizing 100 Theorems to 28.
(7-Jul-2014) Mario Carneiro presented a talk, "Natural Deduction in the Metamath Proof Language," at the 6PCM conference. Slides Audio
(25-Jun-2014) In version 0.108 of the metamath program, the 'minimize_with' command is now more automated. It now considers compressed proof length; it scans the statements in forward and reverse order and chooses the best; and it avoids $d conflicts. The '/no_distinct', '/brief', and '/reverse' qualifiers are obsolete, and '/verbose' no longer lists all statements scanned but gives more details about decision criteria.
(12-Jun-2014) To improve naming uniformity, theorems about operation values now use the abbreviation "ov". For example, df-opr, opreq1, oprabval5, and oprvres are now called df-ov, oveq1, ov5, and ovres respectively.
(11-Jun-2014) Mario Carneiro finished a major revision of set.mm. His notes are under the 11-Jun-2014 entry in the Notes
(4-Jun-2014) Mario Carneiro provided instructions and screenshots for syntax highlighting for the jEdit editor for use with Metamath and mmj2 source files.
(19-May-2014) Mario Carneiro added a feature to mmj2, in the build at
https://github.com/digama0/mmj2/raw/dev-build/mmj2jar/mmj2.jar, which
tests all but 5 definitions in set.mm for soundness. You can turn on
the test by adding
SetMMDefinitionsCheckWithExclusions,ax-*,df-bi,df-clab,df-cleq,df-clel,df-sbc
to your RunParms.txt file.
(17-May-2014) A number of labels were changed in set.mm, listed at the top of set.mm as usual. Note in particular that the heavily-used visset, elisseti, syl11anc, syl111anc were changed respectively to vex, elexi, syl2anc, syl3anc.
(16-May-2014) Scott Fenton formalized a proof for "Sum of kth powers": fsumkthpow. This brings the Metamath total for Formalizing 100 Theorems to 25.
(9-May-2014) I (Norm Megill) presented an overview of Metamath at the "Formalization of mathematics in proof assistants" workshop at the Institut Henri Poincar� in Paris. The slides for this talk are here.
(22-Jun-2014) Version 0.107 of the metamath program adds a "PART" indention level to the Statement List table of contents, adds 'show proof ... /size' to show source file bytes used, and adds 'show elapsed_time'. The last one is helpful for measuring the run time of long commands. See 'help write theorem_list', 'help show proof', and 'help show elapsed_time' for more information.
(2-May-2014) Scott Fenton formalized a proof of Sum of the Reciprocals of the Triangular Numbers: trirecip. This brings the Metamath total for Formalizing 100 Theorems to 24.
(19-Apr-2014) Scott Fenton formalized a proof of the Formula for Pythagorean Triples: pythagtrip. This brings the Metamath total for Formalizing 100 Theorems to 23.
(11-Apr-2014) David A. Wheeler produced a much-needed and well-done video for mmj2, called "Introduction to Metamath & mmj2". Thanks, David!
(15-Mar-2014) Mario Carneiro formalized a proof of Bertrand's postulate: bpos. This brings the Metamath total for Formalizing 100 Theorems to 22.
(18-Feb-2014) Mario Carneiro proved that complex number axiom ax-cnex is redundant (theorem cnex). See also Real and Complex Numbers.
(11-Feb-2014) David A. Wheeler has created a theorem compilation that tracks those theorems in Freek Wiedijk's Formalizing 100 Theorems list that have been proved in set.mm. If you find a error or omission in this list, let me know so it can be corrected. (Update 1-Mar-2014: Mario has added eulerth and bezout to the list.)
(4-Feb-2014) Mario Carneiro writes:
The latest commit on the mmj2 development branch introduced an exciting new feature, namely syntax highlighting for mmp files in the main window. (You can pick up the latest mmj2.jar at https://github.com/digama0/mmj2/blob/develop/mmj2jar/mmj2.jar .) The reason I am asking for your help at this stage is to help with design for the syntax tokenizer, which is responsible for breaking down the input into various tokens with names like "comment", "set", and "stephypref", which are then colored according to the user's preference. As users of mmj2 and metamath, what types of highlighting would be useful to you?One limitation of the tokenizer is that since (for performance reasons) it can be started at any line in the file, highly contextual coloring, like highlighting step references that don't exist previously in the file, is difficult to do. Similarly, true parsing of the formulas using the grammar is possible but likely to be unmanageably slow. But things like checking theorem labels against the database is quite simple to do under the current setup.
That said, how can this new feature be optimized to help you when writing proofs?
(13-Jan-2014) Mathbox users: the *19.21a*, *19.23a* series of theorems have been renamed to *alrim*, *exlim*. You can update your mathbox with a global replacement of string '19.21a' with 'alrim' and '19.23a' with 'exlim'.
(5-Jan-2014) If you downloaded mmj2 in the past 3 days, please update it with the current version, which fixes a bug introduced by the recent changes that made it unable to read in most of the proofs in the textarea properly.
(4-Jan-2014) I added a list of "Allowed substitutions" under the "Distinct variable groups" list on the theorem web pages, for example axsep. This is an experimental feature and comments are welcome.
(3-Jan-2014) Version 0.102 of the metamath program produces more space-efficient compressed proofs (still compatible with the specification in Appendix B of the Metamath book) using an algorithm suggested by Mario Carneiro. See 'help save proof' in the program. Also, mmj2 now generates proofs in the new format. The new mmj2 also has a mandatory update that fixes a bug related to the new format; you must update your mmj2 copy to use it with the latest set.mm.
(23-Dec-2013) Mario Carneiro has updated many older definitions to use the maps-to notation. If you have difficulty updating your local mathbox, contact him or me for assistance.
(1-Nov-2013) 'undo' and 'redo' commands were added to the Proof Assistant in metamath program version 0.07.99. See 'help undo' in the program.
(8-Oct-2013) Today's Notes entry describes some proof repair techniques.
(5-Oct-2013) Today's Notes entry explains some recent extensible structure improvements.
(8-Sep-2013) Mario Carneiro has revised the square root and sequence generator definitions. See today's Notes entry.
(3-Aug-2013) Mario Carneiro writes: "I finally found enough time to create a GitHub repository for development at https://github.com/digama0/mmj2. A permalink to the latest version plus source (akin to mmj2.zip) is https://github.com/digama0/mmj2/zipball/, and the jar file on its own (mmj2.jar) is at https://github.com/digama0/mmj2/blob/master/mmj2jar/mmj2.jar?raw=true. Unfortunately there is no easy way to automatically generate mmj2jar.zip, but this is available as part of the zip distribution for mmj2.zip. History tracking will be handled by the repository now. Do you have old versions of the mmj2 directory? I could add them as historical commits if you do."
(18-Jun-2013) Mario Carneiro has done a major revision and cleanup of the construction of real and complex numbers. In particular, rather than using equivalence classes as is customary for the construction of the temporary rationals, he used only "reduced fractions", so that the use of the axiom of infinity is avoided until it becomes necessary for the construction of the temporary reals.
(18-May-2013) Mario Carneiro has added the ability to produce compressed proofs to mmj2. This is not an official release but can be downloaded here if you want to try it: mmj2.jar. If you have any feedback, send it to me (NM), and I will forward it to Mario. (Disclaimer: this release has not been endorsed by Mel O'Cat. If anyone has been in contact with him, please let me know.)
(29-Mar-2013) Charles Greathouse reduced the size of our PNG symbol images using the pngout program.
(8-Mar-2013) Wolf Lammen has reorganized the theorems in the "Logical negation" section of set.mm into a more orderly, less scattered arrangement.
(27-Feb-2013) Scott Fenton has done a large cleanup of set.mm, eliminating *OLD references in 144 proofs. See the Notes entry for 27-Feb-2013.
(21-Feb-2013) *ATTENTION MATHBOX USERS* The order of hypotheses of many syl* theorems were changed, per a suggestion of Mario Carneiro. You need to update your local mathbox copy for compatibility with the new set.mm, or I can do it for you if you wish. See the Notes entry for 21-Feb-2013.
(16-Feb-2013) Scott Fenton shortened the direct-from-axiom proofs of *3.1, *3.43, *4.4, *4.41, *4.5, *4.76, *4.83, *5.33, *5.35, *5.36, and meredith in the "Shortest known proofs of the propositional calculus theorems from Principia Mathematica" (pmproofs.txt).
(27-Jan-2013) Scott Fenton writes, "I've updated Ralph Levien's mmverify.py. It's now a Python 3 program, and supports compressed proofs and file inclusion statements. This adds about fifty lines to the original program. Enjoy!"
(10-Jan-2013) A new mathbox was added for Mario Carneiro, who has contributed a number of cardinality theorems without invoking the Axiom of Choice. This is nice work, and I will be using some of these (those suffixed with "NEW") to replace the existing ones in the main part of set.mm that currently invoke AC unnecessarily.
(4-Jan-2013) As mentioned in the 19-Jun-2012 item below, Eric Schmidt discovered that the complex number axioms axaddcom (now addcom) and ax0id (now addid1) are redundant (schmidt-cnaxioms.pdf, .tex). In addition, ax1id (now mulid1) can be weakened to ax1rid. Scott Fenton has now formalized this work, so that now there are 23 instead of 25 axioms for real and complex numbers in set.mm. The Axioms for Complex Numbers page has been updated with these results. An interesting part of the proof, showing how commutativity of addition follows from other laws, is in addcomi.
(27-Nov-2012) The frequently-used theorems "an1s", "an1rs", "ancom13s", "ancom31s" were renamed to "an12s", "an32s", "an13s", "an31s" to conform to the convention for an12 etc.
(4-Nov-2012) The changes proposed in the Notes, renaming Grp to GrpOp etc., have been incorporated into set.mm. See the list of changes at the top of set.mm. If you want me to update your mathbox with these changes, send it to me along with the version of set.mm that it works with.
(20-Sep-2012) Mel O'Cat updated https://us.metamath.org/ocat/mmj2/TESTmmj2jar.zip. See the README.TXT for a description of the new features.
(21-Aug-2012) Mel O'Cat has uploaded SearchOptionsMockup9.zip, a mockup for the new search screen in mmj2. See the README.txt file for instructions. He will welcome feedback via x178g243 at yahoo.com.
(19-Jun-2012) Eric Schmidt has discovered that in our axioms for complex numbers, axaddcom and ax0id are redundant. (At some point these need to be formalized for set.mm.) He has written up these and some other nice results, including some independence results for the axioms, in schmidt-cnaxioms.pdf (schmidt-cnaxioms.tex).
(23-Apr-2012) Frédéric Liné sent me a PDF (LaTeX source) developed with Lamport's pf2 package. He wrote: "I think it works well with Metamath since the proofs are in a tree form. I use it to have a sketch of a proof. I get this way a better understanding of the proof and I can cut down its size. For instance, inpreima5 was reduced by 50% when I wrote the corresponding proof with pf2."
(5-Mar-2012) I added links to Wikiproofs and its recent changes in the "Wikis" list at the top of this page.
(12-Jan-2012) Thanks to William Hoza who sent me a ZFC T-shirt, and thanks to the ZFC models (courtesy of the Inaccessible Cardinals agency).
Front | Back | Detail |
(24-Nov-2011) In metamath program version 0.07.71, the 'minimize_with' command by default now scans from bottom to top instead of top to bottom, since empirically this often (although not always) results in a shorter proof. A top to bottom scan can be specified with a new qualifier '/reverse'. You can try both methods (starting from the same original proof, of course) and pick the shorter proof.
(15-Oct-2011) From Mel O'Cat:
I just uploaded mmj2.zip containing the 1-Nov-2011 (20111101)
release:
https://us.metamath.org/ocat/mmj2/mmj2.zip
https://us.metamath.org/ocat/mmj2/mmj2.md5
A few last minute tweaks:
1. I now bless double-click starting of mmj2.bat (MacMMJ2.command in Mac OS-X)!
See mmj2\QuickStart.html
2. Much improved support of Mac OS-X systems.
See mmj2\QuickStart.html
3. I tweaked the Command Line Argument Options report to
a) print every time;
b) print as much as possible even if
there are errors in the command line arguments -- and the
last line printed corresponds to the argument in error;
c) removed Y/N argument on the command line to enable/disable
the report. this simplifies things.
4) Documentation revised, including the PATutorial.
See CHGLOG.TXT for list of all changes.
Good luck. And thanks for all of your help!
(15-Sep-2011) MATHBOX USERS: I made a large number of label name changes to set.mm to improve naming consistency. There is a script at the top of the current set.mm that you can use to update your mathbox or older set.mm. Or if you wish, I can do the update on your next mathbox submission - in that case, please include a .zip of the set.mm version you used.
(30-Aug-2011) Scott Fenton shortened the direct-from-axiom proofs of *3.33, *3.45, *4.36, and meredith in the "Shortest known proofs of the propositional calculus theorems from Principia Mathematica" (pmproofs.txt).
(21-Aug-2011) A post on reddit generated 60,000 hits (and a TOS violation notice from my provider...),
(18-Aug-2011) The Metamath Google Group has a discussion of my canonical conjunctions proposal. Any feedback directly to me (Norm Megill) is also welcome.
(4-Jul-2011) John Baker has provided (metamath_kindle.zip) "a modified version of [the] metamath.tex [Metamath] book source that is formatted for the Kindle. If you compile the document the resulting PDF can be loaded into into a Kindle and easily read." (Update: the PDF file is now included also.)
(3-Jul-2011) Nested 'submit' calls are now allowed, in metamath program version 0.07.68. Thus you can create or modify a command file (script) from within a command file then 'submit' it. While 'submit' cannot pass arguments (nor are there plans to add this feature), you can 'substitute' strings in the 'submit' target file before calling it in order to emulate this.
(28-Jun-2011)The metamath program version 0.07.64 adds the '/include_mathboxes' qualifier to 'minimize_with'; by default, 'minimize_with *' will now skip checking user mathboxes. Since mathboxes should be independent from each other, this will help prevent accidental cross-"contamination". Also, '/rewrap' was added to 'write source' to automatically wrap $a and $p comments so as to conform to the current formatting conventions used in set.mm. This means you no longer have to be concerned about line length < 80 etc.
(19-Jun-2011) ATTENTION MATHBOX USERS: The wff variables et, ze, si, and rh are now global. This change was made primarily to resolve some conflicts between mathboxes, but it will also let you avoid having to constantly redeclare these locally in the future. Unfortunately, this change can affect the $f hypothesis order, which can cause proofs referencing theorems that use these variables to fail. All mathbox proofs currently in set.mm have been corrected for this, and you should refresh your local copy for further development of your mathbox. You can correct your proofs that are not in set.mm as follows. Only the proofs that fail under the current set.mm (using version 0.07.62 or later of the metamath program) need to be modified.
To fix a proof that references earlier theorems using et, ze, si, and rh, do the following (using a hypothetical theorem 'abc' as an example): 'prove abc' (ignore error messages), 'delete floating', 'initialize all', 'unify all/interactive', 'improve all', 'save new_proof/compressed'. If your proof uses dummy variables, these must be reassigned manually.
To fix a proof that uses et, ze, si, and rh as local variables, make sure the proof is saved in 'compressed' format. Then delete the local declarations ($v and $f statements) and follow the same steps above to correct the proof.
I apologize for the inconvenience. If you have trouble fixing your proofs, you can contact me for assistance.
Note: Versions of the metamath program before 0.07.62 did not flag an error when global variables were redeclared locally, as it should have according to the spec. This caused these spec violations to go unnoticed in some older set.mm versions. The new error messages are in fact just informational and can be ignored when working with older set.mm versions.
(7-Jun-2011) The metamath program version 0.07.60 fixes a bug with the 'minimize_with' command found by Andrew Salmon.
(12-May-2010) Andrew Salmon shortened many proofs, shown above. For comparison, I have temporarily kept the old version, which is suffixed with OLD, such as oridmOLD for oridm.
(9-Dec-2010) Eric Schmidt has written a Metamath proof verifier in C++, called checkmm.cpp.
(3-Oct-2010) The following changes were made to the tokens in set.mm. The subset and proper subset symbol changes to C_ and C. were made to prevent defeating the parenthesis matching in Emacs. Other changes were made so that all letters a-z and A-Z are now available for variable names. One-letter constants such as _V, _e, and _i are now shown on the web pages with Roman instead of italic font, to disambiguate italic variable names. The new convention is that a prefix of _ indicates Roman font and a prefix of ~ indicates a script (curly) font. Thanks to Stefan Allan and Frédéric Liné for discussions leading to this change.
Old | New | Description |
---|---|---|
C. | _C | binomial coefficient |
E | _E | epsilon relation |
e | _e | Euler's constant |
I | _I | identity relation |
i | _i | imaginary unit |
V | _V | universal class |
(_ | C_ | subset |
(. | C. | proper subset |
P~ | ~P | power class |
H~ | ~H | Hilbert space |
(25-Sep-2010) The metamath program (version 0.07.54) now implements the current Metamath spec, so footnote 2 on p. 92 of the Metamath book can be ignored.
(24-Sep-2010) The metamath program (version 0.07.53) fixes bug 2106, reported by Michal Burger.
(14-Sep-2010) The metamath program (version 0.07.52) has a revamped LaTeX output with 'show statement xxx /tex', which produces the combined statement, description, and proof similar to the web page generation. Also, 'show proof xxx /lemmon/renumber' now matches the web page step numbers. ('show proof xxx/renumber' still has the indented form conforming to the actual RPN proof, with slightly different numbering.)
(9-Sep-2010) The metamath program (version 0.07.51) was updated with a modification by Stefan Allan that adds hyperlinks the the Ref column of proofs.
(12-Jun-2010) Scott Fenton contributed a D-proof (directly from axioms) of Meredith's single axiom (see the end of pmproofs.txt). A description of Meredith's axiom can be found in theorem meredith.
(11-Jun-2010) A new Metamath mirror was added in Austria, courtesy of Kinder-Enduro.
(28-Feb-2010) Raph Levien's Ghilbert project now has a new Ghilbert site and a Google Group.
(26-Jan-2010) Dmitri Vlasov writes, "I admire the simplicity and power of the metamath language, but still I see its great disadvantage - the proofs in metamath are completely non-manageable by humans without proof assistants. Therefore I decided to develop another language, which would be a higher-level superstructure language towards metamath, and which will support human-readable/writable proofs directly, without proof assistants. I call this language mdl (acronym for 'mathematics development language')." The latest version of Dmitri's translators from metamath to mdl and back can be downloaded from http://mathdevlanguage.sourceforge.net/. Currently only Linux is supported, but Dmitri says is should not be difficult to port it to other platforms that have a g++ compiler.
(11-Sep-2009) The metamath program (version 0.07.48) has been updated to enforce the whitespace requirement of the current spec.
(10-Sep-2009) Matthew Leitch has written an nice article, "How to write mathematics clearly", that briefly mentions Metamath. Overall it makes some excellent points. (I have written to him about a few things I disagree with.)
(28-May-2009) AsteroidMeta is back on-line. Note the URL change.
(12-May-2009) Charles Greathouse wrote a Greasemonkey script to reformat the axiom list on Metamath web site proof pages. This is a beta version; he will appreciate feedback.
(11-May-2009) Stefan Allan modified the metamath program to add the command "show statement xxx /mnemonics", which produces the output file Mnemosyne.txt for use with the Mnemosyne project. The current Metamath program download incorporates this command. Instructions: Create the file mnemosyne.txt with e.g. "show statement ax-* /mnemonics". In the Mnemosyne program, load the file by choosing File->Import then file format "Q and A on separate lines". Notes: (1) Don't try to load all of set.mm, it will crash the program due to a bug in Mnemosyne. (2) On my computer, the arrows in ax-1 don't display. Stefan reports that they do on his computer. (Both are Windows XP.)
(3-May-2009) Steven Baldasty wrote a Metamath syntax highlighting file for the gedit editor. Screenshot.
(1-May-2009) Users on a gaming forum discuss our 2+2=4 proof. Notable comments include "Ew math!" and "Whoever wrote this has absolutely no life."
(12-Mar-2009) Chris Capel has created a Javascript theorem viewer demo that (1) shows substitutions and (2) allows expanding and collapsing proof steps. You are invited to take a look and give him feedback at his Metablog.
(28-Feb-2009) Chris Capel has written a Metamath proof verifier in C#, available at http://pdf23ds.net/bzr/MathEditor/Verifier/Verifier.cs and weighing in at 550 lines. Also, that same URL without the file on it is a Bazaar repository.
(2-Dec-2008) A new section was added to the Deduction Theorem page, called Logic, Metalogic, Metametalogic, and Metametametalogic.
(24-Aug-2008) (From ocat): The 1-Aug-2008 version of mmj2 is ready (mmj2.zip), size = 1,534,041 bytes. This version contains the Theorem Loader enhancement which provides a "sandboxing" capability for user theorems and dynamic update of new theorems to the Metamath database already loaded in memory by mmj2. Also, the new "mmj2 Service" feature enables calling mmj2 as a subroutine, or having mmj2 call your program, and provides access to the mmj2 data structures and objects loaded in memory (i.e. get started writing those Jython programs!) See also mmj2 on AsteroidMeta.
(23-May-2008) Gérard Lang pointed me to Bob Solovay's note on AC and strongly inaccessible cardinals. One of the eventual goals for set.mm is to prove the Axiom of Choice from Grothendieck's axiom, like Mizar does, and this note may be helpful for anyone wanting to attempt that. Separately, I also came across a history of the size reduction of grothprim (viewable in Firefox and some versions of Internet Explorer).
(14-Apr-2008) A "/join" qualifier was added to the "search" command in the metamath program (version 0.07.37). This qualifier will join the $e hypotheses to the $a or $p for searching, so that math tokens in the $e's can be matched as well. For example, "search *com* +v" produces no results, but "search *com* +v /join" yields commutative laws involving vector addition. Thanks to Stefan Allan for suggesting this idea.
(8-Apr-2008) The 8,000th theorem, hlrel, was added to the Metamath Proof Explorer part of the database.
(2-Mar-2008) I added a small section to the end of the Deduction Theorem page.
(17-Feb-2008) ocat has uploaded the "1-Mar-2008" mmj2: mmj2.zip. See the description.
(16-Jan-2008) O'Cat has written mmj2 Proof Assistant Quick Tips.
(30-Dec-2007) "How to build a library of formalized mathematics".
(22-Dec-2007) The Metamath Proof Explorer was included in the top 30 science resources for 2007 by the University at Albany Science Library.
(17-Dec-2007) Metamath's Wikipedia entry says, "This article may require cleanup to meet Wikipedia's quality standards" (see its discussion page). Volunteers are welcome. :) (In the interest of objectivity, I don't edit this entry.)
(20-Nov-2007) Jeff Hoffman created nicod.mm and posted it to the Google Metamath Group.
(19-Nov-2007) Reinder Verlinde suggested adding tooltips to the hyperlinks on the proof pages, which I did for proof step hyperlinks. Discussion.
(5-Nov-2007) A Usenet challenge. :)
(4-Aug-2007) I added a "Request for comments on proposed 'maps to' notation" at the bottom of the AsteroidMeta set.mm discussion page.
(21-Jun-2007) A preprint (PDF file) describing Kurt Maes' axiom of choice with 5 quantifiers, proved in set.mm as ackm.
(20-Jun-2007) The 7,000th theorem, ifpr, was added to the Metamath Proof Explorer part of the database.
(29-Apr-2007) Blog mentions of Metamath: here and here.
(21-Mar-2007) Paul Chapman is working on a new proof browser, which has highlighting that allows you to see the referenced theorem before and after the substitution was made. Here is a screenshot of theorem 0nn0 and a screenshot of theorem 2p2e4.
(15-Mar-2007) A picture of Penny the cat guarding the us.metamath.org server and making the rounds.
(16-Feb-2007) For convenience, the program "drule.c" (pronounced "D-rule", not "drool") mentioned in pmproofs.txt can now be downloaded (drule.c) without having to ask me for it. The same disclaimer applies: even though this program works and has no known bugs, it was not intended for general release. Read the comments at the top of the program for instructions.
(28-Jan-2007) Jason Orendorff set up a new mailing list for Metamath: http://groups.google.com/group/metamath.
(20-Jan-2007) Bob Solovay provided a revised version of his Metamath database for Peano arithmetic, peano.mm.
(2-Jan-2007) Raph Levien has set up a wiki called Barghest for the Ghilbert language and software.
(26-Dec-2006) I posted an explanation of theorem ecoprass on Usenet.
(2-Dec-2006) Berislav Žarnić translated the Metamath Solitaire applet to Croatian.
(26-Nov-2006) Dan Getz has created an RSS feed for new theorems as they appear on this page.
(6-Nov-2006) The first 3 paragraphs in Appendix 2: Note on the Axioms were rewritten to clarify the connection between Tarski's axiom system and Metamath.
(31-Oct-2006) ocat asked for a do-over due to a bug in mmj2 -- if you downloaded the mmj2.zip version dated 10/28/2006, then download the new version dated 10/30.
(29-Oct-2006) ocat has announced that the
long-awaited 1-Nov-2006 release of mmj2 is available now.
The new "Unify+Get Hints" is quite
useful, and any proof can be generated as follows. With "?" in the Hyp
field and Ref field blank, select "Unify+Get Hints". Select a hint from
the list and put it in the Ref field. Edit any $n dummy variables to
become the desired wffs. Rinse and repeat for the new proof steps
generated, until the proof is done.
The new tutorial, mmj2PATutorial.bat,
explains this in detail. One way to reduce or avoid dummy $n's is to
fill in the Hyp field with a comma-separated list of any known
hypothesis matches to earlier proof steps, keeping a "?" in the list to
indicate that the remaining hypotheses are unknown. Then "Unify+Get
Hints" can be applied. The tutorial page
\mmj2\data\mmp\PATutorial\Page405.mmp has an example.
Don't forget that the eimm
export/import program lets you go back and forth between the mmj2 and
the metamath program proof assistants, without exiting from either one,
to exploit the best features of each as required.
(21-Oct-2006) Martin Kiselkov has written a Metamath proof verifier in the Lua scripting language, called verify.lua. While it is not practical as an everyday verifier - he writes that it takes about 40 minutes to verify set.mm on a a Pentium 4 - it could be useful to someone learning Lua or Metamath, and importantly it provides another independent way of verifying the correctness of Metamath proofs. His code looks like it is nicely structured and very readable. He is currently working on a faster version in C++.
(19-Oct-2006) New AsteroidMeta page by Raph, Distinctors_vs_binders.
(13-Oct-2006) I put a simple Metamath browser on my PDA (Palm Tungsten E) so that I don't have to lug around my laptop. Here is a screenshot. It isn't polished, but I'll provide the file + instructions if anyone wants it.
(3-Oct-2006) A blog entry, Principia for Reverse Mathematics.
(28-Sep-2006) A blog entry, Metamath responds.
(26-Sep-2006) A blog entry, Metamath isn't hygienic.
(11-Aug-2006) A blog entry, Metamath and the Peano Induction Axiom.
(26-Jul-2006) A new open problem in predicate calculus was added.
(18-Jun-2006) The 6,000th theorem, mt4d, was added to the Metamath Proof Explorer part of the database.
(9-May-2006) Luca Ciciriello has upgraded the t2mf program, which is a C
program used to create the MIDI files on the
Metamath Music Page, so
that it works on MacOS X. This is a nice accomplishment, since the
original program was written before C was standardized by ANSI and will
not compile on modern compilers.
Unfortunately, the original program source states no copyright terms.
The main author, Tim Thompson, has kindly agreed to release his code to
public domain, but two other authors have also contributed to the code,
and so far I have been unable to contact them for copyright clearance.
Therefore I cannot offer the MacOS X version for public download on this
site until this is resolved. Update 10-May-2006: Another author,
M. Czeiszperger, has released his contribution to public domain.
If you are interested in Luca's modified source code,
please contact me directly.
(18-Apr-2006) Incomplete proofs in progress can now be interchanged between the Metamath program's CLI Proof Assistant and mmj2's GUI Proof Assistant, using a new export-import program called eimm. This can be done without exiting either proof assistant, so that the strengths of each approach can be exploited during proof development. See "Use Case 5a" and "Use Case 5b" at mmj2ProofAssistantFeedback.
(28-Mar-2006) Scott Fenton updated his second version of Metamath Solitaire (the one that uses external axioms). He writes: "I've switched to making it a standalone program, as it seems silly to have an applet that can't be run in a web browser. Check the README file for further info." The download is mmsol-0.5.tar.gz.
(27-Mar-2006) Scott Fenton has updated the Metamath Solitaire Java
applet to Java 1.5: (1) QSort has been stripped out: its functionality
is in the Collections class that Sun ships; (2) all Vectors have been
replaced by ArrayLists; (3) generic types have been tossed in wherever
they fit: this cuts back drastically on casting; and (4) any warnings
Eclipse spouted out have been dealt with. I haven't yet updated it
officially, because I don't know if it will work with Microsoft's JVM in
older versions of Internet Explorer. The current official version is
compiled with Java 1.3, because it won't work with Microsoft's JVM if it
is compiled with Java 1.4. (As distasteful as that seems,
I will get complaints from users if it
doesn't work with Microsoft's JVM.) If anyone can verify that Scott's new
version runs on Microsoft's JVM, I would be grateful. Scott's new
version is mm.java-1.5.gz; after
uncompressing it, rename it to mm.java,
use it to replace the existing mm.java file in the
Metamath Solitaire download, and recompile according to instructions
in the mm.java comments.
Scott has also created a second version, mmsol-0.2.tar.gz, that reads
the axioms from ASCII files, instead of having the axioms hard-coded in
the program. This can be very useful if you want to play with custom
axioms, and you can also add a collection of starting theorems as
"axioms" to work from. However, it must be run from the local directory
with appletviewer, since the default Java security model doesn't allow
reading files from a browser. It works with the JDK 5 Update 6
Java download.
To compile (from Windows Command Prompt): C:\Program
Files\Java\jdk1.5.0_06\bin\javac.exe mm.java
To run (from Windows Command Prompt): C:\Program
Files\Java\jdk1.5.0_06\bin\appletviewer.exe mms.html
(21-Jan-2006) Juha Arpiainen proved the independence of axiom ax-11 from the others. This was published as an open problem in my 1995 paper (Remark 9.5 on PDF page 17). See Item 9a on the Workshop Miscellany for his seven-line proof. See also the Asteroid Meta metamathMathQuestions page under the heading "Axiom of variable substitution: ax-11". Congratulations, Juha!
(20-Oct-2005) Juha Arpiainen is working on a proof verifier in Common Lisp called Bourbaki. Its proof language has its roots in Metamath, with the goal of providing a more powerful syntax and definitional soundness checking. See its documentation and related discussion.
(17-Oct-2005) Marnix Klooster has written a Metamath proof verifier in Haskell, called Hmm. Also see his Announcement. The complete program (Hmm.hs, HmmImpl.hs, and HmmVerify.hs) has only 444 lines of code, excluding comments and blank lines. It verifies compressed as well as regular proofs; moreover, it transparently verifies both per-spec compressed proofs and the flawed format he uncovered (see comment below of 16-Oct-05).
(16-Oct-2005) Marnix Klooster noticed that for large proofs, the compressed proof format did not match the spec in the book. His algorithm to correct the problem has been put into the Metamath program (version 0.07.6). The program still verifies older proofs with the incorrect format, but the user will be nagged to update them with 'save proof *'. In set.mm, 285 out of 6376 proofs are affected. (The incorrect format did not affect proof correctness or verification, since the compression and decompression algorithms matched each other.)
(13-Sep-2005) Scott Fenton found an interesting axiom, ax46, which could be used to replace both ax-4 and ax-6.
(29-Jul-2005) Metamath was selected as site of the week by American Scientist Online.
(8-Jul-2005) Roy Longton has contributed 53 new theorems to the Quantum Logic Explorer. You can see them in the Theorem List starting at lem3.3.3lem1. He writes, "If you want, you can post an open challenge to see if anyone can find shorter proofs of the theorems I submitted."
(10-May-2005) A Usenet post I posted about the infinite prime proof; another one about indexed unions.
(3-May-2005) The theorem divexpt is the 5,000th theorem added to the Metamath Proof Explorer database.
(12-Apr-2005) Raph Levien solved the open problem in item 16 on the Workshop Miscellany page and as a corollary proved that axiom ax-9 is independent from the other axioms of predicate calculus and equality. This is the first such independence proof so far; a goal is to prove all of them independent (or to derive any redundant ones from the others).
(8-Mar-2005) I added a paragraph above our complex number axioms table, summarizing the construction and indicating where Dedekind cuts are defined. Thanks to Andrew Buhr for comments on this.
(16-Feb-2005) The Metamath Music Page is mentioned as a reference or resource for a university course called Math, Mind, and Music. .
(28-Jan-2005) Steven Cullinane parodied the Metamath Music Page in his blog.
(18-Jan-2005) Waldek Hebisch upgraded the Metamath program to run on the AMD64 64-bit processor.
(17-Jan-2005) A symbol list summary was added to the beginning of the Hilbert Space Explorer Home Page. Thanks to Mladen Pavicic for suggesting this.
(6-Jan-2005) Someone assembled an amazon.com list of some of the books in the Metamath Proof Explorer Bibliography.
(4-Jan-2005) The definition of ordinal exponentiation was decided on after this Usenet discussion.
(19-Dec-2004) A bit of trivia: my Erdös number is 2, as you can see from this list.
(20-Oct-2004) I started this Usenet discussion about the "reals are uncountable" proof (127 comments; last one on Nov. 12).
(12-Oct-2004) gch-kn shows the equivalence of the Generalized Continuum Hypothesis and Prof. Nambiar's Axiom of Combinatorial Sets. This proof answers his Open Problem 2 (PDF file).
(5-Aug-2004) I gave a talk on "Hilbert Lattice Equations" at the Argonne workshop.
(25-Jul-2004) The theorem nthruz is the 4,000th theorem added to the Metamath Proof Explorer database.
(27-May-2004) Josiah Burroughs contributed the proofs u1lemn1b, u1lem3var1, oi3oa3lem1, and oi3oa3 to the Quantum Logic Explorer database ql.mm.
(23-May-2004) Some minor typos found by Josh Purinton were corrected in the Metamath book. In addition, Josh simplified the definition of the closure of a pre-statement of a formal system in Appendix C.
(5-May-2004) Gregory Bush has found shorter proofs for 67 of the 193 propositional calculus theorems listed in Principia Mathematica, thus establishing 67 new records. (This was challenge #4 on the open problems page.)
Copyright terms: Public domain | W3C HTML validation [external] |