Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7219  fidcenum 7060
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7060
[AczelRathjen], p. 73Lemma 8.1.14enumct 7219
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12829
[AczelRathjen], p. 74Lemma 8.1.16xpfi 7031
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 7017
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12844
[AczelRathjen], p. 75Corollary 8.1.20unct 12846
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12835  znnen 12802
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12847
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12848
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10923
[AczelRathjen], p. 183Chapter 20ax-setind 4586
[AhoHopUll] p. 318Section 9.1df-concat 11050  df-pfx 11129  df-substr 11102  df-word 10997  lencl 11000  wrd0 11021
[Apostol] p. 18Theorem I.1addcan 8254  addcan2d 8259  addcan2i 8257  addcand 8258  addcani 8256
[Apostol] p. 18Theorem I.2negeu 8265
[Apostol] p. 18Theorem I.3negsub 8322  negsubd 8391  negsubi 8352
[Apostol] p. 18Theorem I.4negneg 8324  negnegd 8376  negnegi 8344
[Apostol] p. 18Theorem I.5subdi 8459  subdid 8488  subdii 8481  subdir 8460  subdird 8489  subdiri 8482
[Apostol] p. 18Theorem I.6mul01 8463  mul01d 8467  mul01i 8465  mul02 8461  mul02d 8466  mul02i 8464
[Apostol] p. 18Theorem I.9divrecapd 8868
[Apostol] p. 18Theorem I.10recrecapi 8819
[Apostol] p. 18Theorem I.12mul2neg 8472  mul2negd 8487  mul2negi 8480  mulneg1 8469  mulneg1d 8485  mulneg1i 8478
[Apostol] p. 18Theorem I.14rdivmuldivd 13939
[Apostol] p. 18Theorem I.15divdivdivap 8788
[Apostol] p. 20Axiom 7rpaddcl 9801  rpaddcld 9836  rpmulcl 9802  rpmulcld 9837
[Apostol] p. 20Axiom 90nrp 9813
[Apostol] p. 20Theorem I.17lttri 8179
[Apostol] p. 20Theorem I.18ltadd1d 8613  ltadd1dd 8631  ltadd1i 8577
[Apostol] p. 20Theorem I.19ltmul1 8667  ltmul1a 8666  ltmul1i 8995  ltmul1ii 9003  ltmul2 8931  ltmul2d 9863  ltmul2dd 9877  ltmul2i 8998
[Apostol] p. 20Theorem I.210lt1 8201
[Apostol] p. 20Theorem I.23lt0neg1 8543  lt0neg1d 8590  ltneg 8537  ltnegd 8598  ltnegi 8568
[Apostol] p. 20Theorem I.25lt2add 8520  lt2addd 8642  lt2addi 8585
[Apostol] p. 20Definition of positive numbersdf-rp 9778
[Apostol] p. 21Exercise 4recgt0 8925  recgt0d 9009  recgt0i 8981  recgt0ii 8982
[Apostol] p. 22Definition of integersdf-z 9375
[Apostol] p. 22Definition of rationalsdf-q 9743
[Apostol] p. 24Theorem I.26supeuti 7098
[Apostol] p. 26Theorem I.29arch 9294
[Apostol] p. 28Exercise 2btwnz 9494
[Apostol] p. 28Exercise 3nnrecl 9295
[Apostol] p. 28Exercise 6qbtwnre 10401
[Apostol] p. 28Exercise 10(a)zeneo 12215  zneo 9476
[Apostol] p. 29Theorem I.35resqrtth 11375  sqrtthi 11463
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 9041
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12390
[Apostol] p. 363Remarkabsgt0api 11490
[Apostol] p. 363Exampleabssubd 11537  abssubi 11494
[ApostolNT] p. 14Definitiondf-dvds 12132
[ApostolNT] p. 14Theorem 1.1(a)iddvds 12148
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 12172
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 12168
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 12162
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 12164
[ApostolNT] p. 14Theorem 1.1(f)1dvds 12149
[ApostolNT] p. 14Theorem 1.1(g)dvds0 12150
[ApostolNT] p. 14Theorem 1.1(h)0dvds 12155
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12189
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12191
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12193
[ApostolNT] p. 15Definitiondfgcd2 12368
[ApostolNT] p. 16Definitionisprm2 12472
[ApostolNT] p. 16Theorem 1.5coprmdvds 12447
[ApostolNT] p. 16Theorem 1.7prminf 12859
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12327
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12369
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12371
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12341
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12334
[ApostolNT] p. 17Theorem 1.8coprm 12499
[ApostolNT] p. 17Theorem 1.9euclemma 12501
[ApostolNT] p. 17Theorem 1.101arith2 12724
[ApostolNT] p. 19Theorem 1.14divalg 12268
[ApostolNT] p. 20Theorem 1.15eucalg 12414
[ApostolNT] p. 25Definitiondf-phi 12566
[ApostolNT] p. 26Theorem 2.2phisum 12596
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12577
[ApostolNT] p. 28Theorem 2.5(c)phimul 12581
[ApostolNT] p. 38Remarkdf-sgm 15487
[ApostolNT] p. 38Definitiondf-sgm 15487
[ApostolNT] p. 104Definitioncongr 12455
[ApostolNT] p. 106Remarkdvdsval3 12135
[ApostolNT] p. 106Definitionmoddvds 12143
[ApostolNT] p. 107Example 2mod2eq0even 12222
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12223
[ApostolNT] p. 107Example 4zmod1congr 10488
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10525
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10813
[ApostolNT] p. 108Theorem 5.3modmulconst 12167
[ApostolNT] p. 109Theorem 5.4cncongr1 12458
[ApostolNT] p. 109Theorem 5.6gcdmodi 12777
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12460
[ApostolNT] p. 113Theorem 5.17eulerth 12588
[ApostolNT] p. 113Theorem 5.18vfermltl 12607
[ApostolNT] p. 114Theorem 5.19fermltl 12589
[ApostolNT] p. 179Definitiondf-lgs 15508  lgsprme0 15552
[ApostolNT] p. 180Example 11lgs 15553
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15529
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15544
[ApostolNT] p. 181Theorem 9.4m1lgs 15595
[ApostolNT] p. 181Theorem 9.52lgs 15614  2lgsoddprm 15623
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15579
[ApostolNT] p. 185Theorem 9.8lgsquad 15590
[ApostolNT] p. 188Definitiondf-lgs 15508  lgs1 15554
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15545
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15547
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15555
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15556
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 661
[Bauer] p. 483Theorem 1.3acexmid 5945  onsucelsucexmidlem 4578
[Bauer], p. 481Section 1.1pwtrufal 15971
[Bauer], p. 483Definitionn0rf 3473
[Bauer], p. 483Theorem 1.22irrexpq 15481  2irrexpqap 15483
[Bauer], p. 485Theorem 2.1ssfiexmid 6975
[Bauer], p. 493Section 5.1ivthdich 15158
[Bauer], p. 494Theorem 5.5ivthinc 15148
[BauerHanson], p. 27Proposition 5.2cnstab 8720
[BauerSwan], p. 14Remark0ct 7211  ctm 7213
[BauerSwan], p. 14Proposition 2.6subctctexmid 15974
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7219
[BauerTaylor], p. 32Lemma 6.16prarloclem 7616
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7529
[BauerTaylor], p. 52Proposition 11.15prarloc 7618
[BauerTaylor], p. 53Lemma 11.16addclpr 7652  addlocpr 7651
[BauerTaylor], p. 55Proposition 12.7appdivnq 7678
[BauerTaylor], p. 56Lemma 12.8prmuloc 7681
[BauerTaylor], p. 56Lemma 12.9mullocpr 7686
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2057
[BellMachover] p. 460Notationdf-mo 2058
[BellMachover] p. 460Definitionmo3 2108  mo3h 2107
[BellMachover] p. 462Theorem 1.1bm1.1 2190
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4166
[BellMachover] p. 466Axiom Powaxpow3 4222
[BellMachover] p. 466Axiom Unionaxun2 4483
[BellMachover] p. 469Theorem 2.2(i)ordirr 4591
[BellMachover] p. 469Theorem 2.2(iii)onelon 4432
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4594
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4545
[BellMachover] p. 471Definition of Limdf-ilim 4417
[BellMachover] p. 472Axiom Infzfinf2 4638
[BellMachover] p. 473Theorem 2.8limom 4663
[Bobzien] p. 116Statement T3stoic3 1451
[Bobzien] p. 117Statement T2stoic2a 1449
[Bobzien] p. 117Statement T4stoic4a 1452
[Bobzien] p. 117Conclusion the contradictorystoic1a 1447
[Bollobas] p. 1Section I.1df-edg 15686
[BourbakiAlg1] p. 1Definition 1df-mgm 13221
[BourbakiAlg1] p. 4Definition 5df-sgrp 13267
[BourbakiAlg1] p. 12Definition 2df-mnd 13282
[BourbakiAlg1] p. 92Definition 1df-ring 13793
[BourbakiAlg1] p. 93Section I.8.1df-rng 13728
[BourbakiEns] p. Proposition 8fcof1 5854  fcofo 5855
[BourbakiTop1] p. Remarkxnegmnf 9953  xnegpnf 9952
[BourbakiTop1] p. Remark rexneg 9954
[BourbakiTop1] p. Propositionishmeo 14809
[BourbakiTop1] p. Property V_issnei2 14662
[BourbakiTop1] p. Property V_iiinnei 14668
[BourbakiTop1] p. Property V_ivneissex 14670
[BourbakiTop1] p. Proposition 1neipsm 14659  neiss 14655
[BourbakiTop1] p. Proposition 2cnptopco 14727
[BourbakiTop1] p. Proposition 4imasnopn 14804
[BourbakiTop1] p. Property V_iiielnei 14657
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14503
[Bruck] p. 1Section I.1df-mgm 13221
[Bruck] p. 23Section II.1df-sgrp 13267
[Bruck] p. 28Theorem 3.2dfgrp3m 13464
[ChoquetDD] p. 2Definition of mappingdf-mpt 4108
[Cohen] p. 301Remarkrelogoprlem 15373
[Cohen] p. 301Property 2relogmul 15374  relogmuld 15389
[Cohen] p. 301Property 3relogdiv 15375  relogdivd 15390
[Cohen] p. 301Property 4relogexp 15377
[Cohen] p. 301Property 1alog1 15371
[Cohen] p. 301Property 1bloge 15372
[Cohen4] p. 348Observationrelogbcxpbap 15470
[Cohen4] p. 352Definitionrpelogb 15454
[Cohen4] p. 361Property 2rprelogbmul 15460
[Cohen4] p. 361Property 3logbrec 15465  rprelogbdiv 15462
[Cohen4] p. 361Property 4rplogbreexp 15458
[Cohen4] p. 361Property 6relogbexpap 15463
[Cohen4] p. 361Property 1(a)rplogbid1 15452
[Cohen4] p. 361Property 1(b)rplogb1 15453
[Cohen4] p. 367Propertyrplogbchbase 15455
[Cohen4] p. 377Property 2logblt 15467
[Crosilla] p. Axiom 1ax-ext 2187
[Crosilla] p. Axiom 2ax-pr 4254
[Crosilla] p. Axiom 3ax-un 4481
[Crosilla] p. Axiom 4ax-nul 4171
[Crosilla] p. Axiom 5ax-iinf 4637
[Crosilla] p. Axiom 6ru 2997
[Crosilla] p. Axiom 8ax-pow 4219
[Crosilla] p. Axiom 9ax-setind 4586
[Crosilla], p. Axiom 6ax-sep 4163
[Crosilla], p. Axiom 7ax-coll 4160
[Crosilla], p. Axiom 7'repizf 4161
[Crosilla], p. Theorem is statedordtriexmid 4570
[Crosilla], p. Axiom of choice implies instancesacexmid 5945
[Crosilla], p. Definition of ordinaldf-iord 4414
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4584
[Eisenberg] p. 67Definition 5.3df-dif 3168
[Eisenberg] p. 82Definition 6.3df-iom 4640
[Eisenberg] p. 125Definition 8.21df-map 6739
[Enderton] p. 18Axiom of Empty Setaxnul 4170
[Enderton] p. 19Definitiondf-tp 3641
[Enderton] p. 26Exercise 5unissb 3880
[Enderton] p. 26Exercise 10pwel 4263
[Enderton] p. 28Exercise 7(b)pwunim 4334
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3997  iinin2m 3996  iunin1 3992  iunin2 3991
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3995  iundif2ss 3993
[Enderton] p. 33Exercise 23iinuniss 4010
[Enderton] p. 33Exercise 25iununir 4011
[Enderton] p. 33Exercise 24(a)iinpw 4018
[Enderton] p. 33Exercise 24(b)iunpw 4528  iunpwss 4019
[Enderton] p. 38Exercise 6(a)unipw 4262
[Enderton] p. 38Exercise 6(b)pwuni 4237
[Enderton] p. 41Lemma 3Dopeluu 4498  rnex 4947  rnexg 4944
[Enderton] p. 41Exercise 8dmuni 4889  rnuni 5095
[Enderton] p. 42Definition of a functiondffun7 5299  dffun8 5300
[Enderton] p. 43Definition of function valuefunfvdm2 5645
[Enderton] p. 43Definition of single-rootedfuncnv 5336
[Enderton] p. 44Definition (d)dfima2 5025  dfima3 5026
[Enderton] p. 47Theorem 3Hfvco2 5650
[Enderton] p. 49Axiom of Choice (first form)df-ac 7320
[Enderton] p. 50Theorem 3K(a)imauni 5832
[Enderton] p. 52Definitiondf-map 6739
[Enderton] p. 53Exercise 21coass 5202
[Enderton] p. 53Exercise 27dmco 5192
[Enderton] p. 53Exercise 14(a)funin 5346
[Enderton] p. 53Exercise 22(a)imass2 5059
[Enderton] p. 54Remarkixpf 6809  ixpssmap 6821
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6788
[Enderton] p. 56Theorem 3Merref 6642
[Enderton] p. 57Lemma 3Nerthi 6670
[Enderton] p. 57Definitiondf-ec 6624
[Enderton] p. 58Definitiondf-qs 6628
[Enderton] p. 60Theorem 3Qth3q 6729  th3qcor 6728  th3qlem1 6726  th3qlem2 6727
[Enderton] p. 61Exercise 35df-ec 6624
[Enderton] p. 65Exercise 56(a)dmun 4886
[Enderton] p. 68Definition of successordf-suc 4419
[Enderton] p. 71Definitiondf-tr 4144  dftr4 4148
[Enderton] p. 72Theorem 4Eunisuc 4461  unisucg 4462
[Enderton] p. 73Exercise 6unisuc 4461  unisucg 4462
[Enderton] p. 73Exercise 5(a)truni 4157
[Enderton] p. 73Exercise 5(b)trint 4158
[Enderton] p. 79Theorem 4I(A1)nna0 6562
[Enderton] p. 79Theorem 4I(A2)nnasuc 6564  onasuc 6554
[Enderton] p. 79Definition of operation valuedf-ov 5949
[Enderton] p. 80Theorem 4J(A1)nnm0 6563
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6565  onmsuc 6561
[Enderton] p. 81Theorem 4K(1)nnaass 6573
[Enderton] p. 81Theorem 4K(2)nna0r 6566  nnacom 6572
[Enderton] p. 81Theorem 4K(3)nndi 6574
[Enderton] p. 81Theorem 4K(4)nnmass 6575
[Enderton] p. 81Theorem 4K(5)nnmcom 6577
[Enderton] p. 82Exercise 16nnm0r 6567  nnmsucr 6576
[Enderton] p. 88Exercise 23nnaordex 6616
[Enderton] p. 129Definitiondf-en 6830
[Enderton] p. 132Theorem 6B(b)canth 5899
[Enderton] p. 133Exercise 1xpomen 12799
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6964
[Enderton] p. 136Corollary 6Enneneq 6956
[Enderton] p. 139Theorem 6H(c)mapen 6945
[Enderton] p. 142Theorem 6I(3)xpdjuen 7332
[Enderton] p. 143Theorem 6Jdju0en 7328  dju1en 7327
[Enderton] p. 144Corollary 6Kundif2ss 3536
[Enderton] p. 145Figure 38ffoss 5556
[Enderton] p. 145Definitiondf-dom 6831
[Enderton] p. 146Example 1domen 6842  domeng 6843
[Enderton] p. 146Example 3nndomo 6963
[Enderton] p. 149Theorem 6L(c)xpdom1 6932  xpdom1g 6930  xpdom2g 6929
[Enderton] p. 168Definitiondf-po 4344
[Enderton] p. 192Theorem 7M(a)oneli 4476
[Enderton] p. 192Theorem 7M(b)ontr1 4437
[Enderton] p. 192Theorem 7M(c)onirri 4592
[Enderton] p. 193Corollary 7N(b)0elon 4440
[Enderton] p. 193Corollary 7N(c)onsuci 4565
[Enderton] p. 193Corollary 7N(d)ssonunii 4538
[Enderton] p. 194Remarkonprc 4601
[Enderton] p. 194Exercise 16suc11 4607
[Enderton] p. 197Definitiondf-card 7288
[Enderton] p. 200Exercise 25tfis 4632
[Enderton] p. 206Theorem 7X(b)en2lp 4603
[Enderton] p. 207Exercise 34opthreg 4605
[Enderton] p. 208Exercise 35suc11g 4606
[Geuvers], p. 1Remarkexpap0 10716
[Geuvers], p. 6Lemma 2.13mulap0r 8690
[Geuvers], p. 6Lemma 2.15mulap0 8729
[Geuvers], p. 9Lemma 2.35msqge0 8691
[Geuvers], p. 9Definition 3.1(2)ax-arch 8046
[Geuvers], p. 10Lemma 3.9maxcom 11547
[Geuvers], p. 10Lemma 3.10maxle1 11555  maxle2 11556
[Geuvers], p. 10Lemma 3.11maxleast 11557
[Geuvers], p. 10Lemma 3.12maxleb 11560
[Geuvers], p. 11Definition 3.13dfabsmax 11561
[Geuvers], p. 17Definition 6.1df-ap 8657
[Gleason] p. 117Proposition 9-2.1df-enq 7462  enqer 7473
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7466  df-nqqs 7463
[Gleason] p. 117Proposition 9-2.3df-plpq 7459  df-plqqs 7464
[Gleason] p. 119Proposition 9-2.4df-mpq 7460  df-mqqs 7465
[Gleason] p. 119Proposition 9-2.5df-rq 7467
[Gleason] p. 119Proposition 9-2.6ltexnqq 7523
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7526  ltbtwnnq 7531  ltbtwnnqq 7530
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7515
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7516
[Gleason] p. 123Proposition 9-3.5addclpr 7652
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7694
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7693
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7712
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7728
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7734  ltaprlem 7733
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7731
[Gleason] p. 124Proposition 9-3.7mulclpr 7687
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7707
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7696
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7695
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7703
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7753
[Gleason] p. 126Proposition 9-4.1df-enr 7841  enrer 7850
[Gleason] p. 126Proposition 9-4.2df-0r 7846  df-1r 7847  df-nr 7842
[Gleason] p. 126Proposition 9-4.3df-mr 7844  df-plr 7843  negexsr 7887  recexsrlem 7889
[Gleason] p. 127Proposition 9-4.4df-ltr 7845
[Gleason] p. 130Proposition 10-1.3creui 9035  creur 9034  cru 8677
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 8038  axcnre 7996
[Gleason] p. 132Definition 10-3.1crim 11202  crimd 11321  crimi 11281  crre 11201  crred 11320  crrei 11280
[Gleason] p. 132Definition 10-3.2remim 11204  remimd 11286
[Gleason] p. 133Definition 10.36absval2 11401  absval2d 11529  absval2i 11488
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11228  cjaddd 11309  cjaddi 11276
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11229  cjmuld 11310  cjmuli 11277
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11227  cjcjd 11287  cjcji 11259
[Gleason] p. 133Proposition 10-3.4(f)cjre 11226  cjreb 11210  cjrebd 11290  cjrebi 11262  cjred 11315  rere 11209  rereb 11207  rerebd 11289  rerebi 11261  rered 11313
[Gleason] p. 133Proposition 10-3.4(h)addcj 11235  addcjd 11301  addcji 11271
[Gleason] p. 133Proposition 10-3.7(a)absval 11345
[Gleason] p. 133Proposition 10-3.7(b)abscj 11396  abscjd 11534  abscji 11492
[Gleason] p. 133Proposition 10-3.7(c)abs00 11408  abs00d 11530  abs00i 11489  absne0d 11531
[Gleason] p. 133Proposition 10-3.7(d)releabs 11440  releabsd 11535  releabsi 11493
[Gleason] p. 133Proposition 10-3.7(f)absmul 11413  absmuld 11538  absmuli 11495
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11399  sqabsaddi 11496
[Gleason] p. 133Proposition 10-3.7(h)abstri 11448  abstrid 11540  abstrii 11499
[Gleason] p. 134Definition 10-4.1df-exp 10686  exp0 10690  expp1 10693  expp1d 10821
[Gleason] p. 135Proposition 10-4.2(a)expadd 10728  expaddd 10822
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15417  cxpmuld 15442  expmul 10731  expmuld 10823
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10725  mulexpd 10835  rpmulcxp 15414
[Gleason] p. 141Definition 11-2.1fzval 10134
[Gleason] p. 168Proposition 12-2.1(a)climadd 11670
[Gleason] p. 168Proposition 12-2.1(b)climsub 11672
[Gleason] p. 168Proposition 12-2.1(c)climmul 11671
[Gleason] p. 171Corollary 12-2.2climmulc2 11675
[Gleason] p. 172Corollary 12-2.5climrecl 11668
[Gleason] p. 172Proposition 12-2.4(c)climabs 11664  climcj 11665  climim 11667  climre 11666
[Gleason] p. 173Definition 12-3.1df-ltxr 8114  df-xr 8113  ltxr 9899
[Gleason] p. 180Theorem 12-5.3climcau 11691
[Gleason] p. 217Lemma 13-4.1btwnzge0 10445
[Gleason] p. 223Definition 14-1.1df-met 14340
[Gleason] p. 223Definition 14-1.1(a)met0 14869  xmet0 14868
[Gleason] p. 223Definition 14-1.1(c)metsym 14876
[Gleason] p. 223Definition 14-1.1(d)mettri 14878  mstri 14978  xmettri 14877  xmstri 14977
[Gleason] p. 230Proposition 14-2.6txlm 14784
[Gleason] p. 240Proposition 14-4.2metcnp3 15016
[Gleason] p. 243Proposition 14-4.16addcn2 11654  addcncntop 15067  mulcn2 11656  mulcncntop 15069  subcn2 11655  subcncntop 15068
[Gleason] p. 295Remarkbcval3 10898  bcval4 10899
[Gleason] p. 295Equation 2bcpasc 10913
[Gleason] p. 295Definition of binomial coefficientbcval 10896  df-bc 10895
[Gleason] p. 296Remarkbcn0 10902  bcnn 10904
[Gleason] p. 296Theorem 15-2.8binom 11828
[Gleason] p. 308Equation 2ef0 12016
[Gleason] p. 308Equation 3efcj 12017
[Gleason] p. 309Corollary 15-4.3efne0 12022
[Gleason] p. 309Corollary 15-4.4efexp 12026
[Gleason] p. 310Equation 14sinadd 12080
[Gleason] p. 310Equation 15cosadd 12081
[Gleason] p. 311Equation 17sincossq 12092
[Gleason] p. 311Equation 18cosbnd 12097  sinbnd 12096
[Gleason] p. 311Definition of ` `df-pi 11997
[Golan] p. 1Remarksrgisid 13781
[Golan] p. 1Definitiondf-srg 13759
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1472
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13376  mndideu 13291
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13403
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13432
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13443
[Herstein] p. 57Exercise 1dfgrp3me 13465
[Heyting] p. 127Axiom #1ax1hfs 16050
[Hitchcock] p. 5Rule A3mptnan 1443
[Hitchcock] p. 5Rule A4mptxor 1444
[Hitchcock] p. 5Rule A5mtpxor 1446
[HoTT], p. Lemma 10.4.1exmidontriim 7339
[HoTT], p. Theorem 7.2.6nndceq 6587
[HoTT], p. Exercise 11.10neapmkv 16044
[HoTT], p. Exercise 11.11mulap0bd 8732
[HoTT], p. Section 11.2.1df-iltp 7585  df-imp 7584  df-iplp 7583  df-reap 8650
[HoTT], p. Theorem 11.2.4recapb 8746  rerecapb 8918
[HoTT], p. Corollary 3.9.2uchoice 6225
[HoTT], p. Theorem 11.2.12cauappcvgpr 7777
[HoTT], p. Corollary 11.4.3conventions 15694
[HoTT], p. Exercise 11.6(i)dcapnconst 16037  dceqnconst 16036
[HoTT], p. Corollary 11.2.13axcaucvg 8015  caucvgpr 7797  caucvgprpr 7827  caucvgsr 7917
[HoTT], p. Definition 11.2.1df-inp 7581
[HoTT], p. Exercise 11.6(ii)nconstwlpo 16042
[HoTT], p. Proposition 11.2.3df-iso 4345  ltpopr 7710  ltsopr 7711
[HoTT], p. Definition 11.2.7(v)apsym 8681  reapcotr 8673  reapirr 8652
[HoTT], p. Definition 11.2.7(vi)0lt1 8201  gt0add 8648  leadd1 8505  lelttr 8163  lemul1a 8933  lenlt 8150  ltadd1 8504  ltletr 8164  ltmul1 8667  reaplt 8663
[Jech] p. 4Definition of classcv 1372  cvjust 2200
[Jech] p. 78Noteopthprc 4727
[KalishMontague] p. 81Note 1ax-i9 1553
[Kreyszig] p. 3Property M1metcl 14858  xmetcl 14857
[Kreyszig] p. 4Property M2meteq0 14865
[Kreyszig] p. 12Equation 5muleqadd 8743
[Kreyszig] p. 18Definition 1.3-2mopnval 14947
[Kreyszig] p. 19Remarkmopntopon 14948
[Kreyszig] p. 19Theorem T1mopn0 14993  mopnm 14953
[Kreyszig] p. 19Theorem T2unimopn 14991
[Kreyszig] p. 19Definition of neighborhoodneibl 14996
[Kreyszig] p. 20Definition 1.3-3metcnp2 15018
[Kreyszig] p. 25Definition 1.4-1lmbr 14718
[Kreyszig] p. 51Equation 2lmodvneg1 14125
[Kreyszig] p. 51Equation 1almod0vs 14116
[Kreyszig] p. 51Equation 1blmodvs0 14117
[Kunen] p. 10Axiom 0a9e 1719
[Kunen] p. 12Axiom 6zfrep6 4162
[Kunen] p. 24Definition 10.24mapval 6749  mapvalg 6747
[Kunen] p. 31Definition 10.24mapex 6743
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3937
[Lang] p. 3Statementlidrideqd 13246  mndbn0 13296
[Lang] p. 3Definitiondf-mnd 13282
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13263
[Lang] p. 5Equationgsumfzreidx 13706
[Lang] p. 6Definitionmulgnn0gsum 13497
[Lang] p. 7Definitiondfgrp2e 13393
[Levy] p. 338Axiomdf-clab 2192  df-clel 2201  df-cleq 2198
[Lopez-Astorga] p. 12Rule 1mptnan 1443
[Lopez-Astorga] p. 12Rule 2mptxor 1444
[Lopez-Astorga] p. 12Rule 3mtpxor 1446
[Margaris] p. 40Rule Cexlimiv 1621
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 855
[Margaris] p. 49Definitiondfbi2 388  dfordc 894  exalim 1525
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 653
[Margaris] p. 89Theorem 19.219.2 1661  r19.2m 3547
[Margaris] p. 89Theorem 19.319.3 1577  19.3h 1576  rr19.3v 2912
[Margaris] p. 89Theorem 19.5alcom 1501
[Margaris] p. 89Theorem 19.6alexdc 1642  alexim 1668
[Margaris] p. 89Theorem 19.7alnex 1522
[Margaris] p. 89Theorem 19.819.8a 1613  spsbe 1865
[Margaris] p. 89Theorem 19.919.9 1667  19.9h 1666  19.9v 1894  exlimd 1620
[Margaris] p. 89Theorem 19.11excom 1687  excomim 1686
[Margaris] p. 89Theorem 19.1219.12 1688  r19.12 2612
[Margaris] p. 90Theorem 19.14exnalim 1669
[Margaris] p. 90Theorem 19.15albi 1491  ralbi 2638
[Margaris] p. 90Theorem 19.1619.16 1578
[Margaris] p. 90Theorem 19.1719.17 1579
[Margaris] p. 90Theorem 19.18exbi 1627  rexbi 2639
[Margaris] p. 90Theorem 19.1919.19 1689
[Margaris] p. 90Theorem 19.20alim 1480  alimd 1544  alimdh 1490  alimdv 1902  ralimdaa 2572  ralimdv 2574  ralimdva 2573  ralimdvva 2575  sbcimdv 3064
[Margaris] p. 90Theorem 19.2119.21-2 1690  19.21 1606  19.21bi 1581  19.21h 1580  19.21ht 1604  19.21t 1605  19.21v 1896  alrimd 1633  alrimdd 1632  alrimdh 1502  alrimdv 1899  alrimi 1545  alrimih 1492  alrimiv 1897  alrimivv 1898  r19.21 2582  r19.21be 2597  r19.21bi 2594  r19.21t 2581  r19.21v 2583  ralrimd 2584  ralrimdv 2585  ralrimdva 2586  ralrimdvv 2590  ralrimdvva 2591  ralrimi 2577  ralrimiv 2578  ralrimiva 2579  ralrimivv 2587  ralrimivva 2588  ralrimivvva 2589  ralrimivw 2580  rexlimi 2616
[Margaris] p. 90Theorem 19.222alimdv 1904  2eximdv 1905  exim 1622  eximd 1635  eximdh 1634  eximdv 1903  rexim 2600  reximdai 2604  reximddv 2609  reximddv2 2611  reximdv 2607  reximdv2 2605  reximdva 2608  reximdvai 2606  reximi2 2602
[Margaris] p. 90Theorem 19.2319.23 1701  19.23bi 1615  19.23h 1521  19.23ht 1520  19.23t 1700  19.23v 1906  19.23vv 1907  exlimd2 1618  exlimdh 1619  exlimdv 1842  exlimdvv 1921  exlimi 1617  exlimih 1616  exlimiv 1621  exlimivv 1920  r19.23 2614  r19.23v 2615  rexlimd 2620  rexlimdv 2622  rexlimdv3a 2625  rexlimdva 2623  rexlimdva2 2626  rexlimdvaa 2624  rexlimdvv 2630  rexlimdvva 2631  rexlimdvw 2627  rexlimiv 2617  rexlimiva 2618  rexlimivv 2629
[Margaris] p. 90Theorem 19.24i19.24 1662
[Margaris] p. 90Theorem 19.2519.25 1649
[Margaris] p. 90Theorem 19.2619.26-2 1505  19.26-3an 1506  19.26 1504  r19.26-2 2635  r19.26-3 2636  r19.26 2632  r19.26m 2637
[Margaris] p. 90Theorem 19.2719.27 1584  19.27h 1583  19.27v 1923  r19.27av 2641  r19.27m 3556  r19.27mv 3557
[Margaris] p. 90Theorem 19.2819.28 1586  19.28h 1585  19.28v 1924  r19.28av 2642  r19.28m 3550  r19.28mv 3553  rr19.28v 2913
[Margaris] p. 90Theorem 19.2919.29 1643  19.29r 1644  19.29r2 1645  19.29x 1646  r19.29 2643  r19.29d2r 2650  r19.29r 2644
[Margaris] p. 90Theorem 19.3019.30dc 1650
[Margaris] p. 90Theorem 19.3119.31r 1704
[Margaris] p. 90Theorem 19.3219.32dc 1702  19.32r 1703  r19.32r 2652  r19.32vdc 2655  r19.32vr 2654
[Margaris] p. 90Theorem 19.3319.33 1507  19.33b2 1652  19.33bdc 1653
[Margaris] p. 90Theorem 19.3419.34 1707
[Margaris] p. 90Theorem 19.3519.35-1 1647  19.35i 1648
[Margaris] p. 90Theorem 19.3619.36-1 1696  19.36aiv 1925  19.36i 1695  r19.36av 2657
[Margaris] p. 90Theorem 19.3719.37-1 1697  19.37aiv 1698  r19.37 2658  r19.37av 2659
[Margaris] p. 90Theorem 19.3819.38 1699
[Margaris] p. 90Theorem 19.39i19.39 1663
[Margaris] p. 90Theorem 19.4019.40-2 1655  19.40 1654  r19.40 2660
[Margaris] p. 90Theorem 19.4119.41 1709  19.41h 1708  19.41v 1926  19.41vv 1927  19.41vvv 1928  19.41vvvv 1929  r19.41 2661  r19.41v 2662
[Margaris] p. 90Theorem 19.4219.42 1711  19.42h 1710  19.42v 1930  19.42vv 1935  19.42vvv 1936  19.42vvvv 1937  r19.42v 2663
[Margaris] p. 90Theorem 19.4319.43 1651  r19.43 2664
[Margaris] p. 90Theorem 19.4419.44 1705  r19.44av 2665  r19.44mv 3555
[Margaris] p. 90Theorem 19.4519.45 1706  r19.45av 2666  r19.45mv 3554
[Margaris] p. 110Exercise 2(b)eu1 2079
[Megill] p. 444Axiom C5ax-17 1549
[Megill] p. 445Lemma L12alequcom 1538  ax-10 1528
[Megill] p. 446Lemma L17equtrr 1733
[Megill] p. 446Lemma L19hbnae 1744
[Megill] p. 447Remark 9.1df-sb 1786  sbid 1797
[Megill] p. 448Scheme C5'ax-4 1533
[Megill] p. 448Scheme C6'ax-7 1471
[Megill] p. 448Scheme C8'ax-8 1527
[Megill] p. 448Scheme C9'ax-i12 1530
[Megill] p. 448Scheme C11'ax-10o 1739
[Megill] p. 448Scheme C12'ax-13 2178
[Megill] p. 448Scheme C13'ax-14 2179
[Megill] p. 448Scheme C15'ax-11o 1846
[Megill] p. 448Scheme C16'ax-16 1837
[Megill] p. 448Theorem 9.4dral1 1753  dral2 1754  drex1 1821  drex2 1755  drsb1 1822  drsb2 1864
[Megill] p. 449Theorem 9.7sbcom2 2015  sbequ 1863  sbid2v 2024
[Megill] p. 450Example in Appendixhba1 1563
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3081  rspsbca 3082  stdpc4 1798
[Mendelson] p. 69Axiom 5ra5 3087  stdpc5 1607
[Mendelson] p. 81Rule Cexlimiv 1621
[Mendelson] p. 95Axiom 6stdpc6 1726
[Mendelson] p. 95Axiom 7stdpc7 1793
[Mendelson] p. 231Exercise 4.10(k)inv1 3497
[Mendelson] p. 231Exercise 4.10(l)unv 3498
[Mendelson] p. 231Exercise 4.10(n)inssun 3413
[Mendelson] p. 231Exercise 4.10(o)df-nul 3461
[Mendelson] p. 231Exercise 4.10(q)inssddif 3414
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3304
[Mendelson] p. 231Definition of unionunssin 3412
[Mendelson] p. 235Exercise 4.12(c)univ 4524
[Mendelson] p. 235Exercise 4.12(d)pwv 3849
[Mendelson] p. 235Exercise 4.12(j)pwin 4330
[Mendelson] p. 235Exercise 4.12(k)pwunss 4331
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4332
[Mendelson] p. 235Exercise 4.12(n)uniin 3870
[Mendelson] p. 235Exercise 4.12(p)reli 4808
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5204
[Mendelson] p. 246Definition of successordf-suc 4419
[Mendelson] p. 254Proposition 4.22(b)xpen 6944
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6918  xpsneng 6919
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6924  xpcomeng 6925
[Mendelson] p. 254Proposition 4.22(e)xpassen 6927
[Mendelson] p. 255Exercise 4.39endisj 6921
[Mendelson] p. 255Exercise 4.41mapprc 6741
[Mendelson] p. 255Exercise 4.43mapsnen 6905
[Mendelson] p. 255Exercise 4.47xpmapen 6949
[Mendelson] p. 255Exercise 4.42(a)map0e 6775
[Mendelson] p. 255Exercise 4.42(b)map1 6906
[Mendelson] p. 258Exercise 4.56(c)djuassen 7331  djucomen 7330
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7329
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6555
[Monk1] p. 26Theorem 2.8(vii)ssin 3395
[Monk1] p. 33Theorem 3.2(i)ssrel 4764
[Monk1] p. 33Theorem 3.2(ii)eqrel 4765
[Monk1] p. 34Definition 3.3df-opab 4107
[Monk1] p. 36Theorem 3.7(i)coi1 5199  coi2 5200
[Monk1] p. 36Theorem 3.8(v)dm0 4893  rn0 4935
[Monk1] p. 36Theorem 3.7(ii)cnvi 5088
[Monk1] p. 37Theorem 3.13(i)relxp 4785
[Monk1] p. 37Theorem 3.13(x)dmxpm 4899  rnxpm 5113
[Monk1] p. 37Theorem 3.13(ii)0xp 4756  xp0 5103
[Monk1] p. 38Theorem 3.16(ii)ima0 5042
[Monk1] p. 38Theorem 3.16(viii)imai 5039
[Monk1] p. 39Theorem 3.17imaex 5038  imaexg 5037
[Monk1] p. 39Theorem 3.16(xi)imassrn 5034
[Monk1] p. 41Theorem 4.3(i)fnopfv 5712  funfvop 5694
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5624
[Monk1] p. 42Theorem 4.4(iii)fvelima 5632
[Monk1] p. 43Theorem 4.6funun 5316
[Monk1] p. 43Theorem 4.8(iv)dff13 5839  dff13f 5841
[Monk1] p. 46Theorem 4.15(v)funex 5809  funrnex 6201
[Monk1] p. 50Definition 5.4fniunfv 5833
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5167
[Monk1] p. 52Theorem 5.11(viii)ssint 3901
[Monk1] p. 52Definition 5.13 (i)1stval2 6243  df-1st 6228
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6244  df-2nd 6229
[Monk2] p. 105Axiom C4ax-5 1470
[Monk2] p. 105Axiom C7ax-8 1527
[Monk2] p. 105Axiom C8ax-11 1529  ax-11o 1846
[Monk2] p. 105Axiom (C8)ax11v 1850
[Monk2] p. 109Lemma 12ax-7 1471
[Monk2] p. 109Lemma 15equvin 1886  equvini 1781  eqvinop 4288
[Monk2] p. 113Axiom C5-1ax-17 1549
[Monk2] p. 113Axiom C5-2ax6b 1674
[Monk2] p. 113Axiom C5-3ax-7 1471
[Monk2] p. 114Lemma 22hba1 1563
[Monk2] p. 114Lemma 23hbia1 1575  nfia1 1603
[Monk2] p. 114Lemma 24hba2 1574  nfa2 1602
[Moschovakis] p. 2Chapter 2 df-stab 833  dftest 16051
[Munkres] p. 77Example 2distop 14590
[Munkres] p. 78Definition of basisdf-bases 14548  isbasis3g 14551
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 13125  tgval2 14556
[Munkres] p. 79Remarktgcl 14569
[Munkres] p. 80Lemma 2.1tgval3 14563
[Munkres] p. 80Lemma 2.2tgss2 14584  tgss3 14583
[Munkres] p. 81Lemma 2.3basgen 14585  basgen2 14586
[Munkres] p. 89Definition of subspace topologyresttop 14675
[Munkres] p. 93Theorem 6.1(1)0cld 14617  topcld 14614
[Munkres] p. 93Theorem 6.1(3)uncld 14618
[Munkres] p. 94Definition of closureclsval 14616
[Munkres] p. 94Definition of interiorntrval 14615
[Munkres] p. 102Definition of continuous functiondf-cn 14693  iscn 14702  iscn2 14705
[Munkres] p. 107Theorem 7.2(g)cncnp 14735  cncnp2m 14736  cncnpi 14733  df-cnp 14694  iscnp 14704
[Munkres] p. 127Theorem 10.1metcn 15019
[Pierik], p. 8Section 2.2.1dfrex2fin 7002
[Pierik], p. 9Definition 2.4df-womni 7268
[Pierik], p. 9Definition 2.5df-markov 7256  omniwomnimkv 7271
[Pierik], p. 10Section 2.3dfdif3 3283
[Pierik], p. 14Definition 3.1df-omni 7239  exmidomniim 7245  finomni 7244
[Pierik], p. 15Section 3.1df-nninf 7224
[Pradic2025], p. 2Section 1.1nnnninfen 15995
[PradicBrown2022], p. 1Theorem 1exmidsbthr 15999
[PradicBrown2022], p. 2Remarkexmidpw 7007
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7311
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7312  exmidfodomrlemrALT 7313
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7253
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 15981  peano4nninf 15980
[PradicBrown2022], p. 5Lemma 3.5nninfall 15983
[PradicBrown2022], p. 5Theorem 3.6nninfsel 15991
[PradicBrown2022], p. 5Corollary 3.7nninfomni 15993
[PradicBrown2022], p. 5Definition 3.3nnsf 15979
[Quine] p. 16Definition 2.1df-clab 2192  rabid 2682
[Quine] p. 17Definition 2.1''dfsb7 2019
[Quine] p. 18Definition 2.7df-cleq 2198
[Quine] p. 19Definition 2.9df-v 2774
[Quine] p. 34Theorem 5.1abeq2 2314
[Quine] p. 35Theorem 5.2abid2 2326  abid2f 2374
[Quine] p. 40Theorem 6.1sb5 1911
[Quine] p. 40Theorem 6.2sb56 1909  sb6 1910
[Quine] p. 41Theorem 6.3df-clel 2201
[Quine] p. 41Theorem 6.4eqid 2205
[Quine] p. 41Theorem 6.5eqcom 2207
[Quine] p. 42Theorem 6.6df-sbc 2999
[Quine] p. 42Theorem 6.7dfsbcq 3000  dfsbcq2 3001
[Quine] p. 43Theorem 6.8vex 2775
[Quine] p. 43Theorem 6.9isset 2778
[Quine] p. 44Theorem 7.3spcgf 2855  spcgv 2860  spcimgf 2853
[Quine] p. 44Theorem 6.11spsbc 3010  spsbcd 3011
[Quine] p. 44Theorem 6.12elex 2783
[Quine] p. 44Theorem 6.13elab 2917  elabg 2919  elabgf 2915
[Quine] p. 44Theorem 6.14noel 3464
[Quine] p. 48Theorem 7.2snprc 3698
[Quine] p. 48Definition 7.1df-pr 3640  df-sn 3639
[Quine] p. 49Theorem 7.4snss 3768  snssg 3767
[Quine] p. 49Theorem 7.5prss 3789  prssg 3790
[Quine] p. 49Theorem 7.6prid1 3739  prid1g 3737  prid2 3740  prid2g 3738  snid 3664  snidg 3662
[Quine] p. 51Theorem 7.12snexg 4229  snexprc 4231
[Quine] p. 51Theorem 7.13prexg 4256
[Quine] p. 53Theorem 8.2unisn 3866  unisng 3867
[Quine] p. 53Theorem 8.3uniun 3869
[Quine] p. 54Theorem 8.6elssuni 3878
[Quine] p. 54Theorem 8.7uni0 3877
[Quine] p. 56Theorem 8.17uniabio 5243
[Quine] p. 56Definition 8.18dfiota2 5234
[Quine] p. 57Theorem 8.19iotaval 5244
[Quine] p. 57Theorem 8.22iotanul 5248
[Quine] p. 58Theorem 8.23euiotaex 5249
[Quine] p. 58Definition 9.1df-op 3642
[Quine] p. 61Theorem 9.5opabid 4303  opabidw 4304  opelopab 4319  opelopaba 4313  opelopabaf 4321  opelopabf 4322  opelopabg 4315  opelopabga 4310  opelopabgf 4317  oprabid 5978
[Quine] p. 64Definition 9.11df-xp 4682
[Quine] p. 64Definition 9.12df-cnv 4684
[Quine] p. 64Definition 9.15df-id 4341
[Quine] p. 65Theorem 10.3fun0 5333
[Quine] p. 65Theorem 10.4funi 5304
[Quine] p. 65Theorem 10.5funsn 5323  funsng 5321
[Quine] p. 65Definition 10.1df-fun 5274
[Quine] p. 65Definition 10.2args 5052  dffv4g 5575
[Quine] p. 68Definition 10.11df-fv 5280  fv2 5573
[Quine] p. 124Theorem 17.3nn0opth2 10871  nn0opth2d 10870  nn0opthd 10869
[Quine] p. 284Axiom 39(vi)funimaex 5360  funimaexg 5359
[Roman] p. 18Part Preliminariesdf-rng 13728
[Roman] p. 19Part Preliminariesdf-ring 13793
[Rudin] p. 164Equation 27efcan 12020
[Rudin] p. 164Equation 30efzval 12027
[Rudin] p. 167Equation 48absefi 12113
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1446
[Sanford] p. 39Rule 4mptxor 1444
[Sanford] p. 40Rule 1mptnan 1443
[Schechter] p. 51Definition of antisymmetryintasym 5068
[Schechter] p. 51Definition of irreflexivityintirr 5070
[Schechter] p. 51Definition of symmetrycnvsym 5067
[Schechter] p. 51Definition of transitivitycotr 5065
[Schechter] p. 187Definition of "ring with unit"isring 13795
[Schechter] p. 428Definition 15.35bastop1 14588
[Stoll] p. 13Definition of symmetric differencesymdif1 3438
[Stoll] p. 16Exercise 4.40dif 3532  dif0 3531
[Stoll] p. 16Exercise 4.8difdifdirss 3545
[Stoll] p. 19Theorem 5.2(13)undm 3431
[Stoll] p. 19Theorem 5.2(13')indmss 3432
[Stoll] p. 20Remarkinvdif 3415
[Stoll] p. 25Definition of ordered tripledf-ot 3643
[Stoll] p. 43Definitionuniiun 3981
[Stoll] p. 44Definitionintiin 3982
[Stoll] p. 45Definitiondf-iin 3930
[Stoll] p. 45Definition indexed uniondf-iun 3929
[Stoll] p. 176Theorem 3.4(27)imandc 891  imanst 890
[Stoll] p. 262Example 4.1symdif1 3438
[Suppes] p. 22Theorem 2eq0 3479
[Suppes] p. 22Theorem 4eqss 3208  eqssd 3210  eqssi 3209
[Suppes] p. 23Theorem 5ss0 3501  ss0b 3500
[Suppes] p. 23Theorem 6sstr 3201
[Suppes] p. 25Theorem 12elin 3356  elun 3314
[Suppes] p. 26Theorem 15inidm 3382
[Suppes] p. 26Theorem 16in0 3495
[Suppes] p. 27Theorem 23unidm 3316
[Suppes] p. 27Theorem 24un0 3494
[Suppes] p. 27Theorem 25ssun1 3336
[Suppes] p. 27Theorem 26ssequn1 3343
[Suppes] p. 27Theorem 27unss 3347
[Suppes] p. 27Theorem 28indir 3422
[Suppes] p. 27Theorem 29undir 3423
[Suppes] p. 28Theorem 32difid 3529  difidALT 3530
[Suppes] p. 29Theorem 33difin 3410
[Suppes] p. 29Theorem 34indif 3416
[Suppes] p. 29Theorem 35undif1ss 3535
[Suppes] p. 29Theorem 36difun2 3540
[Suppes] p. 29Theorem 37difin0 3534
[Suppes] p. 29Theorem 38disjdif 3533
[Suppes] p. 29Theorem 39difundi 3425
[Suppes] p. 29Theorem 40difindiss 3427
[Suppes] p. 30Theorem 41nalset 4175
[Suppes] p. 39Theorem 61uniss 3871
[Suppes] p. 39Theorem 65uniop 4301
[Suppes] p. 41Theorem 70intsn 3920
[Suppes] p. 42Theorem 71intpr 3917  intprg 3918
[Suppes] p. 42Theorem 73op1stb 4526  op1stbg 4527
[Suppes] p. 42Theorem 78intun 3916
[Suppes] p. 44Definition 15(a)dfiun2 3961  dfiun2g 3959
[Suppes] p. 44Definition 15(b)dfiin2 3962
[Suppes] p. 47Theorem 86elpw 3622  elpw2 4202  elpw2g 4201  elpwg 3624
[Suppes] p. 47Theorem 87pwid 3631
[Suppes] p. 47Theorem 89pw0 3780
[Suppes] p. 48Theorem 90pwpw0ss 3845
[Suppes] p. 52Theorem 101xpss12 4783
[Suppes] p. 52Theorem 102xpindi 4814  xpindir 4815
[Suppes] p. 52Theorem 103xpundi 4732  xpundir 4733
[Suppes] p. 54Theorem 105elirrv 4597
[Suppes] p. 58Theorem 2relss 4763
[Suppes] p. 59Theorem 4eldm 4876  eldm2 4877  eldm2g 4875  eldmg 4874
[Suppes] p. 59Definition 3df-dm 4686
[Suppes] p. 60Theorem 6dmin 4887
[Suppes] p. 60Theorem 8rnun 5092
[Suppes] p. 60Theorem 9rnin 5093
[Suppes] p. 60Definition 4dfrn2 4867
[Suppes] p. 61Theorem 11brcnv 4862  brcnvg 4860
[Suppes] p. 62Equation 5elcnv 4856  elcnv2 4857
[Suppes] p. 62Theorem 12relcnv 5061
[Suppes] p. 62Theorem 15cnvin 5091
[Suppes] p. 62Theorem 16cnvun 5089
[Suppes] p. 63Theorem 20co02 5197
[Suppes] p. 63Theorem 21dmcoss 4949
[Suppes] p. 63Definition 7df-co 4685
[Suppes] p. 64Theorem 26cnvco 4864
[Suppes] p. 64Theorem 27coass 5202
[Suppes] p. 65Theorem 31resundi 4973
[Suppes] p. 65Theorem 34elima 5028  elima2 5029  elima3 5030  elimag 5027
[Suppes] p. 65Theorem 35imaundi 5096
[Suppes] p. 66Theorem 40dminss 5098
[Suppes] p. 66Theorem 41imainss 5099
[Suppes] p. 67Exercise 11cnvxp 5102
[Suppes] p. 81Definition 34dfec2 6625
[Suppes] p. 82Theorem 72elec 6663  elecg 6662
[Suppes] p. 82Theorem 73erth 6668  erth2 6669
[Suppes] p. 89Theorem 96map0b 6776
[Suppes] p. 89Theorem 97map0 6778  map0g 6777
[Suppes] p. 89Theorem 98mapsn 6779
[Suppes] p. 89Theorem 99mapss 6780
[Suppes] p. 92Theorem 1enref 6858  enrefg 6857
[Suppes] p. 92Theorem 2ensym 6875  ensymb 6874  ensymi 6876
[Suppes] p. 92Theorem 3entr 6878
[Suppes] p. 92Theorem 4unen 6910
[Suppes] p. 94Theorem 15endom 6856
[Suppes] p. 94Theorem 16ssdomg 6872
[Suppes] p. 94Theorem 17domtr 6879
[Suppes] p. 95Theorem 18isbth 7071
[Suppes] p. 98Exercise 4fundmen 6900  fundmeng 6901
[Suppes] p. 98Exercise 6xpdom3m 6931
[Suppes] p. 130Definition 3df-tr 4144
[Suppes] p. 132Theorem 9ssonuni 4537
[Suppes] p. 134Definition 6df-suc 4419
[Suppes] p. 136Theorem Schema 22findes 4652  finds 4649  finds1 4651  finds2 4650
[Suppes] p. 162Definition 5df-ltnqqs 7468  df-ltpq 7461
[Suppes] p. 228Theorem Schema 61onintss 4438
[TakeutiZaring] p. 8Axiom 1ax-ext 2187
[TakeutiZaring] p. 13Definition 4.5df-cleq 2198
[TakeutiZaring] p. 13Proposition 4.6df-clel 2201
[TakeutiZaring] p. 13Proposition 4.9cvjust 2200
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2223
[TakeutiZaring] p. 14Definition 4.16df-oprab 5950
[TakeutiZaring] p. 14Proposition 4.14ru 2997
[TakeutiZaring] p. 15Exercise 1elpr 3654  elpr2 3655  elprg 3653
[TakeutiZaring] p. 15Exercise 2elsn 3649  elsn2 3667  elsn2g 3666  elsng 3648  velsn 3650
[TakeutiZaring] p. 15Exercise 3elop 4276
[TakeutiZaring] p. 15Exercise 4sneq 3644  sneqr 3801
[TakeutiZaring] p. 15Definition 5.1dfpr2 3652  dfsn2 3647
[TakeutiZaring] p. 16Axiom 3uniex 4485
[TakeutiZaring] p. 16Exercise 6opth 4282
[TakeutiZaring] p. 16Exercise 8rext 4260
[TakeutiZaring] p. 16Corollary 5.8unex 4489  unexg 4491
[TakeutiZaring] p. 16Definition 5.3dftp2 3682
[TakeutiZaring] p. 16Definition 5.5df-uni 3851
[TakeutiZaring] p. 16Definition 5.6df-in 3172  df-un 3170
[TakeutiZaring] p. 16Proposition 5.7unipr 3864  uniprg 3865
[TakeutiZaring] p. 17Axiom 4vpwex 4224
[TakeutiZaring] p. 17Exercise 1eltp 3681
[TakeutiZaring] p. 17Exercise 5elsuc 4454  elsucg 4452  sstr2 3200
[TakeutiZaring] p. 17Exercise 6uncom 3317
[TakeutiZaring] p. 17Exercise 7incom 3365
[TakeutiZaring] p. 17Exercise 8unass 3330
[TakeutiZaring] p. 17Exercise 9inass 3383
[TakeutiZaring] p. 17Exercise 10indi 3420
[TakeutiZaring] p. 17Exercise 11undi 3421
[TakeutiZaring] p. 17Definition 5.9ssalel 3181
[TakeutiZaring] p. 17Definition 5.10df-pw 3618
[TakeutiZaring] p. 18Exercise 7unss2 3344
[TakeutiZaring] p. 18Exercise 9df-ss 3179  dfss2 3183  sseqin2 3392
[TakeutiZaring] p. 18Exercise 10ssid 3213
[TakeutiZaring] p. 18Exercise 12inss1 3393  inss2 3394
[TakeutiZaring] p. 18Exercise 13nssr 3253
[TakeutiZaring] p. 18Exercise 15unieq 3859
[TakeutiZaring] p. 18Exercise 18sspwb 4261
[TakeutiZaring] p. 18Exercise 19pweqb 4268
[TakeutiZaring] p. 20Definitiondf-rab 2493
[TakeutiZaring] p. 20Corollary 5.160ex 4172
[TakeutiZaring] p. 20Definition 5.12df-dif 3168
[TakeutiZaring] p. 20Definition 5.14dfnul2 3462
[TakeutiZaring] p. 20Proposition 5.15difid 3529  difidALT 3530
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3473
[TakeutiZaring] p. 21Theorem 5.22setind 4588
[TakeutiZaring] p. 21Definition 5.20df-v 2774
[TakeutiZaring] p. 21Proposition 5.21vprc 4177
[TakeutiZaring] p. 22Exercise 10ss 3499
[TakeutiZaring] p. 22Exercise 3ssex 4182  ssexg 4184
[TakeutiZaring] p. 22Exercise 4inex1 4179
[TakeutiZaring] p. 22Exercise 5ruv 4599
[TakeutiZaring] p. 22Exercise 6elirr 4590
[TakeutiZaring] p. 22Exercise 7ssdif0im 3525
[TakeutiZaring] p. 22Exercise 11difdif 3298
[TakeutiZaring] p. 22Exercise 13undif3ss 3434
[TakeutiZaring] p. 22Exercise 14difss 3299
[TakeutiZaring] p. 22Exercise 15sscon 3307
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2489
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2490
[TakeutiZaring] p. 23Proposition 6.2xpex 4791  xpexg 4790  xpexgALT 6220
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4683
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5339
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5494  fun11 5342
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5283  svrelfun 5340
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4866
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4868
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4688
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4689
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4685
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5138  dfrel2 5134
[TakeutiZaring] p. 25Exercise 3xpss 4784
[TakeutiZaring] p. 25Exercise 5relun 4793
[TakeutiZaring] p. 25Exercise 6reluni 4799
[TakeutiZaring] p. 25Exercise 9inxp 4813
[TakeutiZaring] p. 25Exercise 12relres 4988
[TakeutiZaring] p. 25Exercise 13opelres 4965  opelresg 4967
[TakeutiZaring] p. 25Exercise 14dmres 4981
[TakeutiZaring] p. 25Exercise 15resss 4984
[TakeutiZaring] p. 25Exercise 17resabs1 4989
[TakeutiZaring] p. 25Exercise 18funres 5313
[TakeutiZaring] p. 25Exercise 24relco 5182
[TakeutiZaring] p. 25Exercise 29funco 5312
[TakeutiZaring] p. 25Exercise 30f1co 5495
[TakeutiZaring] p. 26Definition 6.10eu2 2098
[TakeutiZaring] p. 26Definition 6.11df-fv 5280  fv3 5601
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5222  cnvexg 5221
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4946  dmexg 4943
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4947  rnexg 4944
[TakeutiZaring] p. 27Corollary 6.13funfvex 5595
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5605  tz6.12 5606  tz6.12c 5608
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5569
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5275
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5276
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5278  wfo 5270
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5277  wf1 5269
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5279  wf1o 5271
[TakeutiZaring] p. 28Exercise 4eqfnfv 5679  eqfnfv2 5680  eqfnfv2f 5683
[TakeutiZaring] p. 28Exercise 5fvco 5651
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5808  fnexALT 6198
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5807  resfunexgALT 6195
[TakeutiZaring] p. 29Exercise 9funimaex 5360  funimaexg 5359
[TakeutiZaring] p. 29Definition 6.18df-br 4046
[TakeutiZaring] p. 30Definition 6.21eliniseg 5053  iniseg 5055
[TakeutiZaring] p. 30Definition 6.22df-eprel 4337
[TakeutiZaring] p. 32Definition 6.28df-isom 5281
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5881
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5882
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5887
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5889
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5897
[TakeutiZaring] p. 35Notationwtr 4143
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4402
[TakeutiZaring] p. 35Definition 7.1dftr3 4147
[TakeutiZaring] p. 36Proposition 7.4ordwe 4625
[TakeutiZaring] p. 36Proposition 7.6ordelord 4429
[TakeutiZaring] p. 37Proposition 7.9ordin 4433
[TakeutiZaring] p. 38Corollary 7.15ordsson 4541
[TakeutiZaring] p. 38Definition 7.11df-on 4416
[TakeutiZaring] p. 38Proposition 7.12ordon 4535
[TakeutiZaring] p. 38Proposition 7.13onprc 4601
[TakeutiZaring] p. 39Theorem 7.17tfi 4631
[TakeutiZaring] p. 40Exercise 7dftr2 4145
[TakeutiZaring] p. 40Exercise 11unon 4560
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4536
[TakeutiZaring] p. 40Proposition 7.20elssuni 3878
[TakeutiZaring] p. 41Definition 7.22df-suc 4419
[TakeutiZaring] p. 41Proposition 7.23sssucid 4463  sucidg 4464
[TakeutiZaring] p. 41Proposition 7.24onsuc 4550
[TakeutiZaring] p. 42Exercise 1df-ilim 4417
[TakeutiZaring] p. 42Exercise 8onsucssi 4555  ordelsuc 4554
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4643
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4644
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4645
[TakeutiZaring] p. 43Axiom 7omex 4642
[TakeutiZaring] p. 43Theorem 7.32ordom 4656
[TakeutiZaring] p. 43Corollary 7.31find 4648
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4646
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4647
[TakeutiZaring] p. 44Exercise 2int0 3899
[TakeutiZaring] p. 44Exercise 3trintssm 4159
[TakeutiZaring] p. 44Exercise 4intss1 3900
[TakeutiZaring] p. 44Exercise 6onintonm 4566
[TakeutiZaring] p. 44Definition 7.35df-int 3886
[TakeutiZaring] p. 47Lemma 1tfrlem1 6396
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6453  tfri1d 6423
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6454  tfri2d 6424
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6455
[TakeutiZaring] p. 50Exercise 3smoiso 6390
[TakeutiZaring] p. 50Definition 7.46df-smo 6374
[TakeutiZaring] p. 56Definition 8.1oasuc 6552
[TakeutiZaring] p. 57Proposition 8.2oacl 6548
[TakeutiZaring] p. 57Proposition 8.3oa0 6545
[TakeutiZaring] p. 57Proposition 8.16omcl 6549
[TakeutiZaring] p. 58Proposition 8.4nnaord 6597  nnaordi 6596
[TakeutiZaring] p. 59Proposition 8.6iunss2 3972  uniss2 3881
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6558
[TakeutiZaring] p. 59Proposition 8.9nnacl 6568
[TakeutiZaring] p. 62Exercise 5oaword1 6559
[TakeutiZaring] p. 62Definition 8.15om0 6546  omsuc 6560
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6569
[TakeutiZaring] p. 63Proposition 8.19nnmord 6605  nnmordi 6604
[TakeutiZaring] p. 67Definition 8.30oei0 6547
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7296
[TakeutiZaring] p. 88Exercise 1en0 6889
[TakeutiZaring] p. 90Proposition 10.20nneneq 6956
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6957
[TakeutiZaring] p. 91Definition 10.29df-fin 6832  isfi 6854
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6928
[TakeutiZaring] p. 95Definition 10.42df-map 6739
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6934
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6947
[Tarski] p. 67Axiom B5ax-4 1533
[Tarski] p. 68Lemma 6equid 1724
[Tarski] p. 69Lemma 7equcomi 1727
[Tarski] p. 70Lemma 14spim 1761  spime 1764  spimeh 1762  spimh 1760
[Tarski] p. 70Lemma 16ax-11 1529  ax-11o 1846  ax11i 1737
[Tarski] p. 70Lemmas 16 and 17sb6 1910
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1549
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2178  ax-14 2179
[WhiteheadRussell] p. 96Axiom *1.3olc 713
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 729
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 758
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 767
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 791
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 839
[WhiteheadRussell] p. 101Theorem *2.06barbara 2152  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 739
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 838
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 887
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 845
[WhiteheadRussell] p. 102Theorem *2.15con1dc 858
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 855
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 857
[WhiteheadRussell] p. 104Theorem *2.2orc 714
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 777
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 895
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 909
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 770
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 771
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 806
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 807
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 805
[WhiteheadRussell] p. 105Definition *2.33df-3or 982
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 780
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 778
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 779
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 740
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 741
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 869  pm2.5gdc 868
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 864
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 742
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 743
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 744
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 657
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 658
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 724
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 893
[WhiteheadRussell] p. 107Theorem *2.55orel1 727
[WhiteheadRussell] p. 107Theorem *2.56orel2 728
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 867
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 750
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 802
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 803
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 661
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 715  pm2.67 745
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 871  pm2.521gdc 870
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 749
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 812
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 896
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 917
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 808
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 809
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 811
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 810
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 813
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 814
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 907
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 756
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 960
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 961
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 962
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 755
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 695
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 862
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 861
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 691
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 757  pm3.44 717
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 787
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 873
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 874
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 892
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 696
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 955  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 759  pm4.25 760
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 820
[WhiteheadRussell] p. 118Theorem *4.31orcom 730
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 769
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 794
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 824
[WhiteheadRussell] p. 118Definition *4.34df-3an 983
[WhiteheadRussell] p. 119Theorem *4.41ordi 818
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 974
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 952
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 781
[WhiteheadRussell] p. 119Theorem *4.45orabs 816  pm4.45 786  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1504
[WhiteheadRussell] p. 120Theorem *4.5anordc 959
[WhiteheadRussell] p. 120Theorem *4.6imordc 899  imorr 723
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 901
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 752
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 753
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 904
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 941
[WhiteheadRussell] p. 120Theorem *4.56ioran 754  pm4.56 782
[WhiteheadRussell] p. 120Theorem *4.57orandc 942  oranim 783
[WhiteheadRussell] p. 120Theorem *4.61annimim 688
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 900
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 888
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 902
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 689
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 903
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 889
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 829
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 746
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 712  pm4.77 801
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 784
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 905
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 709
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 910
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 953
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 954
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 911
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 912
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 914
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 913
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1409
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 830
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 906
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1414  pm5.18dc 885
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 708
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 697
[WhiteheadRussell] p. 124Theorem *5.22xordc 1412
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1417
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1418
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 897
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 928  pm5.6r 929
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 957
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 919
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 927
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 804
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 920
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 915
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 796
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 948
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 949
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 964
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 965
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1658
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1508
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1655
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1919
[WhiteheadRussell] p. 175Definition *14.02df-eu 2057
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2457
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2458
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2911
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3055
[WhiteheadRussell] p. 190Theorem *14.22iota4 5252
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5253
[WhiteheadRussell] p. 192Theorem *14.26eupick 2133  eupickbi 2136
[WhiteheadRussell] p. 235Definition *30.01df-fv 5280
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7300

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]