Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7290  fidcenum 7131
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7131
[AczelRathjen], p. 73Lemma 8.1.14enumct 7290
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 13004
[AczelRathjen], p. 74Lemma 8.1.16xpfi 7102
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 7088
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 13019
[AczelRathjen], p. 75Corollary 8.1.20unct 13021
[AczelRathjen], p. 75Corollary 8.1.23qnnen 13010  znnen 12977
[AczelRathjen], p. 77Lemma 8.1.27omctfn 13022
[AczelRathjen], p. 78Theorem 8.1.28omiunct 13023
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 11006
[AczelRathjen], p. 183Chapter 20ax-setind 4629
[AhoHopUll] p. 318Section 9.1df-concat 11134  df-pfx 11213  df-substr 11186  df-word 11080  lencl 11083  wrd0 11104
[Apostol] p. 18Theorem I.1addcan 8334  addcan2d 8339  addcan2i 8337  addcand 8338  addcani 8336
[Apostol] p. 18Theorem I.2negeu 8345
[Apostol] p. 18Theorem I.3negsub 8402  negsubd 8471  negsubi 8432
[Apostol] p. 18Theorem I.4negneg 8404  negnegd 8456  negnegi 8424
[Apostol] p. 18Theorem I.5subdi 8539  subdid 8568  subdii 8561  subdir 8540  subdird 8569  subdiri 8562
[Apostol] p. 18Theorem I.6mul01 8543  mul01d 8547  mul01i 8545  mul02 8541  mul02d 8546  mul02i 8544
[Apostol] p. 18Theorem I.9divrecapd 8948
[Apostol] p. 18Theorem I.10recrecapi 8899
[Apostol] p. 18Theorem I.12mul2neg 8552  mul2negd 8567  mul2negi 8560  mulneg1 8549  mulneg1d 8565  mulneg1i 8558
[Apostol] p. 18Theorem I.14rdivmuldivd 14116
[Apostol] p. 18Theorem I.15divdivdivap 8868
[Apostol] p. 20Axiom 7rpaddcl 9881  rpaddcld 9916  rpmulcl 9882  rpmulcld 9917
[Apostol] p. 20Axiom 90nrp 9893
[Apostol] p. 20Theorem I.17lttri 8259
[Apostol] p. 20Theorem I.18ltadd1d 8693  ltadd1dd 8711  ltadd1i 8657
[Apostol] p. 20Theorem I.19ltmul1 8747  ltmul1a 8746  ltmul1i 9075  ltmul1ii 9083  ltmul2 9011  ltmul2d 9943  ltmul2dd 9957  ltmul2i 9078
[Apostol] p. 20Theorem I.210lt1 8281
[Apostol] p. 20Theorem I.23lt0neg1 8623  lt0neg1d 8670  ltneg 8617  ltnegd 8678  ltnegi 8648
[Apostol] p. 20Theorem I.25lt2add 8600  lt2addd 8722  lt2addi 8665
[Apostol] p. 20Definition of positive numbersdf-rp 9858
[Apostol] p. 21Exercise 4recgt0 9005  recgt0d 9089  recgt0i 9061  recgt0ii 9062
[Apostol] p. 22Definition of integersdf-z 9455
[Apostol] p. 22Definition of rationalsdf-q 9823
[Apostol] p. 24Theorem I.26supeuti 7169
[Apostol] p. 26Theorem I.29arch 9374
[Apostol] p. 28Exercise 2btwnz 9574
[Apostol] p. 28Exercise 3nnrecl 9375
[Apostol] p. 28Exercise 6qbtwnre 10484
[Apostol] p. 28Exercise 10(a)zeneo 12390  zneo 9556
[Apostol] p. 29Theorem I.35resqrtth 11550  sqrtthi 11638
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 9121
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12565
[Apostol] p. 363Remarkabsgt0api 11665
[Apostol] p. 363Exampleabssubd 11712  abssubi 11669
[ApostolNT] p. 14Definitiondf-dvds 12307
[ApostolNT] p. 14Theorem 1.1(a)iddvds 12323
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 12347
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 12343
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 12337
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 12339
[ApostolNT] p. 14Theorem 1.1(f)1dvds 12324
[ApostolNT] p. 14Theorem 1.1(g)dvds0 12325
[ApostolNT] p. 14Theorem 1.1(h)0dvds 12330
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12364
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12366
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12368
[ApostolNT] p. 15Definitiondfgcd2 12543
[ApostolNT] p. 16Definitionisprm2 12647
[ApostolNT] p. 16Theorem 1.5coprmdvds 12622
[ApostolNT] p. 16Theorem 1.7prminf 13034
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12502
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12544
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12546
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12516
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12509
[ApostolNT] p. 17Theorem 1.8coprm 12674
[ApostolNT] p. 17Theorem 1.9euclemma 12676
[ApostolNT] p. 17Theorem 1.101arith2 12899
[ApostolNT] p. 19Theorem 1.14divalg 12443
[ApostolNT] p. 20Theorem 1.15eucalg 12589
[ApostolNT] p. 25Definitiondf-phi 12741
[ApostolNT] p. 26Theorem 2.2phisum 12771
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12752
[ApostolNT] p. 28Theorem 2.5(c)phimul 12756
[ApostolNT] p. 38Remarkdf-sgm 15664
[ApostolNT] p. 38Definitiondf-sgm 15664
[ApostolNT] p. 104Definitioncongr 12630
[ApostolNT] p. 106Remarkdvdsval3 12310
[ApostolNT] p. 106Definitionmoddvds 12318
[ApostolNT] p. 107Example 2mod2eq0even 12397
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12398
[ApostolNT] p. 107Example 4zmod1congr 10571
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10608
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10896
[ApostolNT] p. 108Theorem 5.3modmulconst 12342
[ApostolNT] p. 109Theorem 5.4cncongr1 12633
[ApostolNT] p. 109Theorem 5.6gcdmodi 12952
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12635
[ApostolNT] p. 113Theorem 5.17eulerth 12763
[ApostolNT] p. 113Theorem 5.18vfermltl 12782
[ApostolNT] p. 114Theorem 5.19fermltl 12764
[ApostolNT] p. 179Definitiondf-lgs 15685  lgsprme0 15729
[ApostolNT] p. 180Example 11lgs 15730
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15706
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15721
[ApostolNT] p. 181Theorem 9.4m1lgs 15772
[ApostolNT] p. 181Theorem 9.52lgs 15791  2lgsoddprm 15800
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15756
[ApostolNT] p. 185Theorem 9.8lgsquad 15767
[ApostolNT] p. 188Definitiondf-lgs 15685  lgs1 15731
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15722
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15724
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15732
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15733
[Bauer] p. 482Section 1.2pm2.01 619  pm2.65 663
[Bauer] p. 483Theorem 1.3acexmid 6006  onsucelsucexmidlem 4621
[Bauer], p. 481Section 1.1pwtrufal 16392
[Bauer], p. 483Definitionn0rf 3504
[Bauer], p. 483Theorem 1.22irrexpq 15658  2irrexpqap 15660
[Bauer], p. 485Theorem 2.1ssfiexmid 7046
[Bauer], p. 493Section 5.1ivthdich 15335
[Bauer], p. 494Theorem 5.5ivthinc 15325
[BauerHanson], p. 27Proposition 5.2cnstab 8800
[BauerSwan], p. 14Remark0ct 7282  ctm 7284
[BauerSwan], p. 14Proposition 2.6subctctexmid 16395
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7290
[BauerTaylor], p. 32Lemma 6.16prarloclem 7696
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7609
[BauerTaylor], p. 52Proposition 11.15prarloc 7698
[BauerTaylor], p. 53Lemma 11.16addclpr 7732  addlocpr 7731
[BauerTaylor], p. 55Proposition 12.7appdivnq 7758
[BauerTaylor], p. 56Lemma 12.8prmuloc 7761
[BauerTaylor], p. 56Lemma 12.9mullocpr 7766
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2080
[BellMachover] p. 460Notationdf-mo 2081
[BellMachover] p. 460Definitionmo3 2132  mo3h 2131
[BellMachover] p. 462Theorem 1.1bm1.1 2214
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4205
[BellMachover] p. 466Axiom Powaxpow3 4261
[BellMachover] p. 466Axiom Unionaxun2 4526
[BellMachover] p. 469Theorem 2.2(i)ordirr 4634
[BellMachover] p. 469Theorem 2.2(iii)onelon 4475
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4637
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4588
[BellMachover] p. 471Definition of Limdf-ilim 4460
[BellMachover] p. 472Axiom Infzfinf2 4681
[BellMachover] p. 473Theorem 2.8limom 4706
[Bobzien] p. 116Statement T3stoic3 1473
[Bobzien] p. 117Statement T2stoic2a 1471
[Bobzien] p. 117Statement T4stoic4a 1474
[Bobzien] p. 117Conclusion the contradictorystoic1a 1469
[Bollobas] p. 1Section I.1df-edg 15867  isuhgropm 15889  isusgropen 15971  isuspgropen 15970
[Bollobas] p. 4Definitiondf-wlks 16039
[Bollobas] p. 5Definitiondf-trls 16100
[Bollobas] p. 7Section I.1df-ushgrm 15878
[BourbakiAlg1] p. 1Definition 1df-mgm 13397
[BourbakiAlg1] p. 4Definition 5df-sgrp 13443
[BourbakiAlg1] p. 12Definition 2df-mnd 13458
[BourbakiAlg1] p. 92Definition 1df-ring 13969
[BourbakiAlg1] p. 93Section I.8.1df-rng 13904
[BourbakiEns] p. Proposition 8fcof1 5913  fcofo 5914
[BourbakiTop1] p. Remarkxnegmnf 10033  xnegpnf 10032
[BourbakiTop1] p. Remark rexneg 10034
[BourbakiTop1] p. Propositionishmeo 14986
[BourbakiTop1] p. Property V_issnei2 14839
[BourbakiTop1] p. Property V_iiinnei 14845
[BourbakiTop1] p. Property V_ivneissex 14847
[BourbakiTop1] p. Proposition 1neipsm 14836  neiss 14832
[BourbakiTop1] p. Proposition 2cnptopco 14904
[BourbakiTop1] p. Proposition 4imasnopn 14981
[BourbakiTop1] p. Property V_iiielnei 14834
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14680
[Bruck] p. 1Section I.1df-mgm 13397
[Bruck] p. 23Section II.1df-sgrp 13443
[Bruck] p. 28Theorem 3.2dfgrp3m 13640
[ChoquetDD] p. 2Definition of mappingdf-mpt 4147
[Church] p. 129Section II.24df-ifp 984  dfifp2dc 987
[Cohen] p. 301Remarkrelogoprlem 15550
[Cohen] p. 301Property 2relogmul 15551  relogmuld 15566
[Cohen] p. 301Property 3relogdiv 15552  relogdivd 15567
[Cohen] p. 301Property 4relogexp 15554
[Cohen] p. 301Property 1alog1 15548
[Cohen] p. 301Property 1bloge 15549
[Cohen4] p. 348Observationrelogbcxpbap 15647
[Cohen4] p. 352Definitionrpelogb 15631
[Cohen4] p. 361Property 2rprelogbmul 15637
[Cohen4] p. 361Property 3logbrec 15642  rprelogbdiv 15639
[Cohen4] p. 361Property 4rplogbreexp 15635
[Cohen4] p. 361Property 6relogbexpap 15640
[Cohen4] p. 361Property 1(a)rplogbid1 15629
[Cohen4] p. 361Property 1(b)rplogb1 15630
[Cohen4] p. 367Propertyrplogbchbase 15632
[Cohen4] p. 377Property 2logblt 15644
[Crosilla] p. Axiom 1ax-ext 2211
[Crosilla] p. Axiom 2ax-pr 4293
[Crosilla] p. Axiom 3ax-un 4524
[Crosilla] p. Axiom 4ax-nul 4210
[Crosilla] p. Axiom 5ax-iinf 4680
[Crosilla] p. Axiom 6ru 3027
[Crosilla] p. Axiom 8ax-pow 4258
[Crosilla] p. Axiom 9ax-setind 4629
[Crosilla], p. Axiom 6ax-sep 4202
[Crosilla], p. Axiom 7ax-coll 4199
[Crosilla], p. Axiom 7'repizf 4200
[Crosilla], p. Theorem is statedordtriexmid 4613
[Crosilla], p. Axiom of choice implies instancesacexmid 6006
[Crosilla], p. Definition of ordinaldf-iord 4457
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4627
[Diestel] p. 27Section 1.10df-ushgrm 15878
[Eisenberg] p. 67Definition 5.3df-dif 3199
[Eisenberg] p. 82Definition 6.3df-iom 4683
[Eisenberg] p. 125Definition 8.21df-map 6805
[Enderton] p. 18Axiom of Empty Setaxnul 4209
[Enderton] p. 19Definitiondf-tp 3674
[Enderton] p. 26Exercise 5unissb 3918
[Enderton] p. 26Exercise 10pwel 4304
[Enderton] p. 28Exercise 7(b)pwunim 4377
[Enderton] p. 30Theorem "Distributive laws"iinin1m 4035  iinin2m 4034  iunin1 4030  iunin2 4029
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 4033  iundif2ss 4031
[Enderton] p. 33Exercise 23iinuniss 4048
[Enderton] p. 33Exercise 25iununir 4049
[Enderton] p. 33Exercise 24(a)iinpw 4056
[Enderton] p. 33Exercise 24(b)iunpw 4571  iunpwss 4057
[Enderton] p. 38Exercise 6(a)unipw 4303
[Enderton] p. 38Exercise 6(b)pwuni 4276
[Enderton] p. 41Lemma 3Dopeluu 4541  rnex 4992  rnexg 4989
[Enderton] p. 41Exercise 8dmuni 4933  rnuni 5140
[Enderton] p. 42Definition of a functiondffun7 5345  dffun8 5346
[Enderton] p. 43Definition of function valuefunfvdm2 5700
[Enderton] p. 43Definition of single-rootedfuncnv 5382
[Enderton] p. 44Definition (d)dfima2 5070  dfima3 5071
[Enderton] p. 47Theorem 3Hfvco2 5705
[Enderton] p. 49Axiom of Choice (first form)df-ac 7396
[Enderton] p. 50Theorem 3K(a)imauni 5891
[Enderton] p. 52Definitiondf-map 6805
[Enderton] p. 53Exercise 21coass 5247
[Enderton] p. 53Exercise 27dmco 5237
[Enderton] p. 53Exercise 14(a)funin 5392
[Enderton] p. 53Exercise 22(a)imass2 5104
[Enderton] p. 54Remarkixpf 6875  ixpssmap 6887
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6854
[Enderton] p. 56Theorem 3Merref 6708
[Enderton] p. 57Lemma 3Nerthi 6736
[Enderton] p. 57Definitiondf-ec 6690
[Enderton] p. 58Definitiondf-qs 6694
[Enderton] p. 60Theorem 3Qth3q 6795  th3qcor 6794  th3qlem1 6792  th3qlem2 6793
[Enderton] p. 61Exercise 35df-ec 6690
[Enderton] p. 65Exercise 56(a)dmun 4930
[Enderton] p. 68Definition of successordf-suc 4462
[Enderton] p. 71Definitiondf-tr 4183  dftr4 4187
[Enderton] p. 72Theorem 4Eunisuc 4504  unisucg 4505
[Enderton] p. 73Exercise 6unisuc 4504  unisucg 4505
[Enderton] p. 73Exercise 5(a)truni 4196
[Enderton] p. 73Exercise 5(b)trint 4197
[Enderton] p. 79Theorem 4I(A1)nna0 6628
[Enderton] p. 79Theorem 4I(A2)nnasuc 6630  onasuc 6620
[Enderton] p. 79Definition of operation valuedf-ov 6010
[Enderton] p. 80Theorem 4J(A1)nnm0 6629
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6631  onmsuc 6627
[Enderton] p. 81Theorem 4K(1)nnaass 6639
[Enderton] p. 81Theorem 4K(2)nna0r 6632  nnacom 6638
[Enderton] p. 81Theorem 4K(3)nndi 6640
[Enderton] p. 81Theorem 4K(4)nnmass 6641
[Enderton] p. 81Theorem 4K(5)nnmcom 6643
[Enderton] p. 82Exercise 16nnm0r 6633  nnmsucr 6642
[Enderton] p. 88Exercise 23nnaordex 6682
[Enderton] p. 129Definitiondf-en 6896
[Enderton] p. 132Theorem 6B(b)canth 5958
[Enderton] p. 133Exercise 1xpomen 12974
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 7035
[Enderton] p. 136Corollary 6Enneneq 7026
[Enderton] p. 139Theorem 6H(c)mapen 7015
[Enderton] p. 142Theorem 6I(3)xpdjuen 7408
[Enderton] p. 143Theorem 6Jdju0en 7404  dju1en 7403
[Enderton] p. 144Corollary 6Kundif2ss 3567
[Enderton] p. 145Figure 38ffoss 5606
[Enderton] p. 145Definitiondf-dom 6897
[Enderton] p. 146Example 1domen 6908  domeng 6909
[Enderton] p. 146Example 3nndomo 7033
[Enderton] p. 149Theorem 6L(c)xpdom1 7002  xpdom1g 7000  xpdom2g 6999
[Enderton] p. 168Definitiondf-po 4387
[Enderton] p. 192Theorem 7M(a)oneli 4519
[Enderton] p. 192Theorem 7M(b)ontr1 4480
[Enderton] p. 192Theorem 7M(c)onirri 4635
[Enderton] p. 193Corollary 7N(b)0elon 4483
[Enderton] p. 193Corollary 7N(c)onsuci 4608
[Enderton] p. 193Corollary 7N(d)ssonunii 4581
[Enderton] p. 194Remarkonprc 4644
[Enderton] p. 194Exercise 16suc11 4650
[Enderton] p. 197Definitiondf-card 7359
[Enderton] p. 200Exercise 25tfis 4675
[Enderton] p. 206Theorem 7X(b)en2lp 4646
[Enderton] p. 207Exercise 34opthreg 4648
[Enderton] p. 208Exercise 35suc11g 4649
[Geuvers], p. 1Remarkexpap0 10799
[Geuvers], p. 6Lemma 2.13mulap0r 8770
[Geuvers], p. 6Lemma 2.15mulap0 8809
[Geuvers], p. 9Lemma 2.35msqge0 8771
[Geuvers], p. 9Definition 3.1(2)ax-arch 8126
[Geuvers], p. 10Lemma 3.9maxcom 11722
[Geuvers], p. 10Lemma 3.10maxle1 11730  maxle2 11731
[Geuvers], p. 10Lemma 3.11maxleast 11732
[Geuvers], p. 10Lemma 3.12maxleb 11735
[Geuvers], p. 11Definition 3.13dfabsmax 11736
[Geuvers], p. 17Definition 6.1df-ap 8737
[Gleason] p. 117Proposition 9-2.1df-enq 7542  enqer 7553
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7546  df-nqqs 7543
[Gleason] p. 117Proposition 9-2.3df-plpq 7539  df-plqqs 7544
[Gleason] p. 119Proposition 9-2.4df-mpq 7540  df-mqqs 7545
[Gleason] p. 119Proposition 9-2.5df-rq 7547
[Gleason] p. 119Proposition 9-2.6ltexnqq 7603
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7606  ltbtwnnq 7611  ltbtwnnqq 7610
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7595
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7596
[Gleason] p. 123Proposition 9-3.5addclpr 7732
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7774
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7773
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7792
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7808
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7814  ltaprlem 7813
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7811
[Gleason] p. 124Proposition 9-3.7mulclpr 7767
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7787
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7776
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7775
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7783
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7833
[Gleason] p. 126Proposition 9-4.1df-enr 7921  enrer 7930
[Gleason] p. 126Proposition 9-4.2df-0r 7926  df-1r 7927  df-nr 7922
[Gleason] p. 126Proposition 9-4.3df-mr 7924  df-plr 7923  negexsr 7967  recexsrlem 7969
[Gleason] p. 127Proposition 9-4.4df-ltr 7925
[Gleason] p. 130Proposition 10-1.3creui 9115  creur 9114  cru 8757
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 8118  axcnre 8076
[Gleason] p. 132Definition 10-3.1crim 11377  crimd 11496  crimi 11456  crre 11376  crred 11495  crrei 11455
[Gleason] p. 132Definition 10-3.2remim 11379  remimd 11461
[Gleason] p. 133Definition 10.36absval2 11576  absval2d 11704  absval2i 11663
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11403  cjaddd 11484  cjaddi 11451
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11404  cjmuld 11485  cjmuli 11452
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11402  cjcjd 11462  cjcji 11434
[Gleason] p. 133Proposition 10-3.4(f)cjre 11401  cjreb 11385  cjrebd 11465  cjrebi 11437  cjred 11490  rere 11384  rereb 11382  rerebd 11464  rerebi 11436  rered 11488
[Gleason] p. 133Proposition 10-3.4(h)addcj 11410  addcjd 11476  addcji 11446
[Gleason] p. 133Proposition 10-3.7(a)absval 11520
[Gleason] p. 133Proposition 10-3.7(b)abscj 11571  abscjd 11709  abscji 11667
[Gleason] p. 133Proposition 10-3.7(c)abs00 11583  abs00d 11705  abs00i 11664  absne0d 11706
[Gleason] p. 133Proposition 10-3.7(d)releabs 11615  releabsd 11710  releabsi 11668
[Gleason] p. 133Proposition 10-3.7(f)absmul 11588  absmuld 11713  absmuli 11670
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11574  sqabsaddi 11671
[Gleason] p. 133Proposition 10-3.7(h)abstri 11623  abstrid 11715  abstrii 11674
[Gleason] p. 134Definition 10-4.1df-exp 10769  exp0 10773  expp1 10776  expp1d 10904
[Gleason] p. 135Proposition 10-4.2(a)expadd 10811  expaddd 10905
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15594  cxpmuld 15619  expmul 10814  expmuld 10906
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10808  mulexpd 10918  rpmulcxp 15591
[Gleason] p. 141Definition 11-2.1fzval 10214
[Gleason] p. 168Proposition 12-2.1(a)climadd 11845
[Gleason] p. 168Proposition 12-2.1(b)climsub 11847
[Gleason] p. 168Proposition 12-2.1(c)climmul 11846
[Gleason] p. 171Corollary 12-2.2climmulc2 11850
[Gleason] p. 172Corollary 12-2.5climrecl 11843
[Gleason] p. 172Proposition 12-2.4(c)climabs 11839  climcj 11840  climim 11842  climre 11841
[Gleason] p. 173Definition 12-3.1df-ltxr 8194  df-xr 8193  ltxr 9979
[Gleason] p. 180Theorem 12-5.3climcau 11866
[Gleason] p. 217Lemma 13-4.1btwnzge0 10528
[Gleason] p. 223Definition 14-1.1df-met 14517
[Gleason] p. 223Definition 14-1.1(a)met0 15046  xmet0 15045
[Gleason] p. 223Definition 14-1.1(c)metsym 15053
[Gleason] p. 223Definition 14-1.1(d)mettri 15055  mstri 15155  xmettri 15054  xmstri 15154
[Gleason] p. 230Proposition 14-2.6txlm 14961
[Gleason] p. 240Proposition 14-4.2metcnp3 15193
[Gleason] p. 243Proposition 14-4.16addcn2 11829  addcncntop 15244  mulcn2 11831  mulcncntop 15246  subcn2 11830  subcncntop 15245
[Gleason] p. 295Remarkbcval3 10981  bcval4 10982
[Gleason] p. 295Equation 2bcpasc 10996
[Gleason] p. 295Definition of binomial coefficientbcval 10979  df-bc 10978
[Gleason] p. 296Remarkbcn0 10985  bcnn 10987
[Gleason] p. 296Theorem 15-2.8binom 12003
[Gleason] p. 308Equation 2ef0 12191
[Gleason] p. 308Equation 3efcj 12192
[Gleason] p. 309Corollary 15-4.3efne0 12197
[Gleason] p. 309Corollary 15-4.4efexp 12201
[Gleason] p. 310Equation 14sinadd 12255
[Gleason] p. 310Equation 15cosadd 12256
[Gleason] p. 311Equation 17sincossq 12267
[Gleason] p. 311Equation 18cosbnd 12272  sinbnd 12271
[Gleason] p. 311Definition of ` `df-pi 12172
[Golan] p. 1Remarksrgisid 13957
[Golan] p. 1Definitiondf-srg 13935
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1495
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13552  mndideu 13467
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13579
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13608
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13619
[Herstein] p. 57Exercise 1dfgrp3me 13641
[Heyting] p. 127Axiom #1ax1hfs 16472
[Hitchcock] p. 5Rule A3mptnan 1465
[Hitchcock] p. 5Rule A4mptxor 1466
[Hitchcock] p. 5Rule A5mtpxor 1468
[HoTT], p. Lemma 10.4.1exmidontriim 7415
[HoTT], p. Theorem 7.2.6nndceq 6653
[HoTT], p. Exercise 11.10neapmkv 16466
[HoTT], p. Exercise 11.11mulap0bd 8812
[HoTT], p. Section 11.2.1df-iltp 7665  df-imp 7664  df-iplp 7663  df-reap 8730
[HoTT], p. Theorem 11.2.4recapb 8826  rerecapb 8998
[HoTT], p. Corollary 3.9.2uchoice 6289
[HoTT], p. Theorem 11.2.12cauappcvgpr 7857
[HoTT], p. Corollary 11.4.3conventions 16109
[HoTT], p. Exercise 11.6(i)dcapnconst 16459  dceqnconst 16458
[HoTT], p. Corollary 11.2.13axcaucvg 8095  caucvgpr 7877  caucvgprpr 7907  caucvgsr 7997
[HoTT], p. Definition 11.2.1df-inp 7661
[HoTT], p. Exercise 11.6(ii)nconstwlpo 16464
[HoTT], p. Proposition 11.2.3df-iso 4388  ltpopr 7790  ltsopr 7791
[HoTT], p. Definition 11.2.7(v)apsym 8761  reapcotr 8753  reapirr 8732
[HoTT], p. Definition 11.2.7(vi)0lt1 8281  gt0add 8728  leadd1 8585  lelttr 8243  lemul1a 9013  lenlt 8230  ltadd1 8584  ltletr 8244  ltmul1 8747  reaplt 8743
[Jech] p. 4Definition of classcv 1394  cvjust 2224
[Jech] p. 78Noteopthprc 4770
[KalishMontague] p. 81Note 1ax-i9 1576
[Kreyszig] p. 3Property M1metcl 15035  xmetcl 15034
[Kreyszig] p. 4Property M2meteq0 15042
[Kreyszig] p. 12Equation 5muleqadd 8823
[Kreyszig] p. 18Definition 1.3-2mopnval 15124
[Kreyszig] p. 19Remarkmopntopon 15125
[Kreyszig] p. 19Theorem T1mopn0 15170  mopnm 15130
[Kreyszig] p. 19Theorem T2unimopn 15168
[Kreyszig] p. 19Definition of neighborhoodneibl 15173
[Kreyszig] p. 20Definition 1.3-3metcnp2 15195
[Kreyszig] p. 25Definition 1.4-1lmbr 14895
[Kreyszig] p. 51Equation 2lmodvneg1 14302
[Kreyszig] p. 51Equation 1almod0vs 14293
[Kreyszig] p. 51Equation 1blmodvs0 14294
[Kunen] p. 10Axiom 0a9e 1742
[Kunen] p. 12Axiom 6zfrep6 4201
[Kunen] p. 24Definition 10.24mapval 6815  mapvalg 6813
[Kunen] p. 31Definition 10.24mapex 6809
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3975
[Lang] p. 3Statementlidrideqd 13422  mndbn0 13472
[Lang] p. 3Definitiondf-mnd 13458
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13439
[Lang] p. 5Equationgsumfzreidx 13882
[Lang] p. 6Definitionmulgnn0gsum 13673
[Lang] p. 7Definitiondfgrp2e 13569
[Levy] p. 338Axiomdf-clab 2216  df-clel 2225  df-cleq 2222
[Lopez-Astorga] p. 12Rule 1mptnan 1465
[Lopez-Astorga] p. 12Rule 2mptxor 1466
[Lopez-Astorga] p. 12Rule 3mtpxor 1468
[Margaris] p. 40Rule Cexlimiv 1644
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 858
[Margaris] p. 49Definitiondfbi2 388  dfordc 897  exalim 1548
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 655
[Margaris] p. 89Theorem 19.219.2 1684  r19.2m 3578
[Margaris] p. 89Theorem 19.319.3 1600  19.3h 1599  rr19.3v 2942
[Margaris] p. 89Theorem 19.5alcom 1524
[Margaris] p. 89Theorem 19.6alexdc 1665  alexim 1691
[Margaris] p. 89Theorem 19.7alnex 1545
[Margaris] p. 89Theorem 19.819.8a 1636  spsbe 1888
[Margaris] p. 89Theorem 19.919.9 1690  19.9h 1689  19.9v 1917  exlimd 1643
[Margaris] p. 89Theorem 19.11excom 1710  excomim 1709
[Margaris] p. 89Theorem 19.1219.12 1711  r19.12 2637
[Margaris] p. 90Theorem 19.14exnalim 1692
[Margaris] p. 90Theorem 19.15albi 1514  ralbi 2663
[Margaris] p. 90Theorem 19.1619.16 1601
[Margaris] p. 90Theorem 19.1719.17 1602
[Margaris] p. 90Theorem 19.18exbi 1650  rexbi 2664
[Margaris] p. 90Theorem 19.1919.19 1712
[Margaris] p. 90Theorem 19.20alim 1503  alimd 1567  alimdh 1513  alimdv 1925  ralimdaa 2596  ralimdv 2598  ralimdva 2597  ralimdvva 2599  sbcimdv 3094
[Margaris] p. 90Theorem 19.2119.21-2 1713  19.21 1629  19.21bi 1604  19.21h 1603  19.21ht 1627  19.21t 1628  19.21v 1919  alrimd 1656  alrimdd 1655  alrimdh 1525  alrimdv 1922  alrimi 1568  alrimih 1515  alrimiv 1920  alrimivv 1921  r19.21 2606  r19.21be 2621  r19.21bi 2618  r19.21t 2605  r19.21v 2607  ralrimd 2608  ralrimdv 2609  ralrimdva 2610  ralrimdvv 2614  ralrimdvva 2615  ralrimi 2601  ralrimiv 2602  ralrimiva 2603  ralrimivv 2611  ralrimivva 2612  ralrimivvva 2613  ralrimivw 2604  rexlimi 2641
[Margaris] p. 90Theorem 19.222alimdv 1927  2eximdv 1928  exim 1645  eximd 1658  eximdh 1657  eximdv 1926  rexim 2624  reximdai 2628  reximddv 2633  reximddv2 2635  reximdv 2631  reximdv2 2629  reximdva 2632  reximdvai 2630  reximi2 2626
[Margaris] p. 90Theorem 19.2319.23 1724  19.23bi 1638  19.23h 1544  19.23ht 1543  19.23t 1723  19.23v 1929  19.23vv 1930  exlimd2 1641  exlimdh 1642  exlimdv 1865  exlimdvv 1944  exlimi 1640  exlimih 1639  exlimiv 1644  exlimivv 1943  r19.23 2639  r19.23v 2640  rexlimd 2645  rexlimdv 2647  rexlimdv3a 2650  rexlimdva 2648  rexlimdva2 2651  rexlimdvaa 2649  rexlimdvv 2655  rexlimdvva 2656  rexlimdvw 2652  rexlimiv 2642  rexlimiva 2643  rexlimivv 2654
[Margaris] p. 90Theorem 19.24i19.24 1685
[Margaris] p. 90Theorem 19.2519.25 1672
[Margaris] p. 90Theorem 19.2619.26-2 1528  19.26-3an 1529  19.26 1527  r19.26-2 2660  r19.26-3 2661  r19.26 2657  r19.26m 2662
[Margaris] p. 90Theorem 19.2719.27 1607  19.27h 1606  19.27v 1946  r19.27av 2666  r19.27m 3587  r19.27mv 3588
[Margaris] p. 90Theorem 19.2819.28 1609  19.28h 1608  19.28v 1947  r19.28av 2667  r19.28m 3581  r19.28mv 3584  rr19.28v 2943
[Margaris] p. 90Theorem 19.2919.29 1666  19.29r 1667  19.29r2 1668  19.29x 1669  r19.29 2668  r19.29d2r 2675  r19.29r 2669
[Margaris] p. 90Theorem 19.3019.30dc 1673
[Margaris] p. 90Theorem 19.3119.31r 1727
[Margaris] p. 90Theorem 19.3219.32dc 1725  19.32r 1726  r19.32r 2677  r19.32vdc 2680  r19.32vr 2679
[Margaris] p. 90Theorem 19.3319.33 1530  19.33b2 1675  19.33bdc 1676
[Margaris] p. 90Theorem 19.3419.34 1730
[Margaris] p. 90Theorem 19.3519.35-1 1670  19.35i 1671
[Margaris] p. 90Theorem 19.3619.36-1 1719  19.36aiv 1948  19.36i 1718  r19.36av 2682
[Margaris] p. 90Theorem 19.3719.37-1 1720  19.37aiv 1721  r19.37 2683  r19.37av 2684
[Margaris] p. 90Theorem 19.3819.38 1722
[Margaris] p. 90Theorem 19.39i19.39 1686
[Margaris] p. 90Theorem 19.4019.40-2 1678  19.40 1677  r19.40 2685
[Margaris] p. 90Theorem 19.4119.41 1732  19.41h 1731  19.41v 1949  19.41vv 1950  19.41vvv 1951  19.41vvvv 1952  r19.41 2686  r19.41v 2687
[Margaris] p. 90Theorem 19.4219.42 1734  19.42h 1733  19.42v 1953  19.42vv 1958  19.42vvv 1959  19.42vvvv 1960  r19.42v 2688
[Margaris] p. 90Theorem 19.4319.43 1674  r19.43 2689
[Margaris] p. 90Theorem 19.4419.44 1728  r19.44av 2690  r19.44mv 3586
[Margaris] p. 90Theorem 19.4519.45 1729  r19.45av 2691  r19.45mv 3585
[Margaris] p. 110Exercise 2(b)eu1 2102
[Megill] p. 444Axiom C5ax-17 1572
[Megill] p. 445Lemma L12alequcom 1561  ax-10 1551
[Megill] p. 446Lemma L17equtrr 1756
[Megill] p. 446Lemma L19hbnae 1767
[Megill] p. 447Remark 9.1df-sb 1809  sbid 1820
[Megill] p. 448Scheme C5'ax-4 1556
[Megill] p. 448Scheme C6'ax-7 1494
[Megill] p. 448Scheme C8'ax-8 1550
[Megill] p. 448Scheme C9'ax-i12 1553
[Megill] p. 448Scheme C11'ax-10o 1762
[Megill] p. 448Scheme C12'ax-13 2202
[Megill] p. 448Scheme C13'ax-14 2203
[Megill] p. 448Scheme C15'ax-11o 1869
[Megill] p. 448Scheme C16'ax-16 1860
[Megill] p. 448Theorem 9.4dral1 1776  dral2 1777  drex1 1844  drex2 1778  drsb1 1845  drsb2 1887
[Megill] p. 449Theorem 9.7sbcom2 2038  sbequ 1886  sbid2v 2047
[Megill] p. 450Example in Appendixhba1 1586
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3112  rspsbca 3113  stdpc4 1821
[Mendelson] p. 69Axiom 5ra5 3118  stdpc5 1630
[Mendelson] p. 81Rule Cexlimiv 1644
[Mendelson] p. 95Axiom 6stdpc6 1749
[Mendelson] p. 95Axiom 7stdpc7 1816
[Mendelson] p. 231Exercise 4.10(k)inv1 3528
[Mendelson] p. 231Exercise 4.10(l)unv 3529
[Mendelson] p. 231Exercise 4.10(n)inssun 3444
[Mendelson] p. 231Exercise 4.10(o)df-nul 3492
[Mendelson] p. 231Exercise 4.10(q)inssddif 3445
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3335
[Mendelson] p. 231Definition of unionunssin 3443
[Mendelson] p. 235Exercise 4.12(c)univ 4567
[Mendelson] p. 235Exercise 4.12(d)pwv 3887
[Mendelson] p. 235Exercise 4.12(j)pwin 4373
[Mendelson] p. 235Exercise 4.12(k)pwunss 4374
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4375
[Mendelson] p. 235Exercise 4.12(n)uniin 3908
[Mendelson] p. 235Exercise 4.12(p)reli 4851
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5249
[Mendelson] p. 246Definition of successordf-suc 4462
[Mendelson] p. 254Proposition 4.22(b)xpen 7014
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6988  xpsneng 6989
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6994  xpcomeng 6995
[Mendelson] p. 254Proposition 4.22(e)xpassen 6997
[Mendelson] p. 255Exercise 4.39endisj 6991
[Mendelson] p. 255Exercise 4.41mapprc 6807
[Mendelson] p. 255Exercise 4.43mapsnen 6972
[Mendelson] p. 255Exercise 4.47xpmapen 7019
[Mendelson] p. 255Exercise 4.42(a)map0e 6841
[Mendelson] p. 255Exercise 4.42(b)map1 6973
[Mendelson] p. 258Exercise 4.56(c)djuassen 7407  djucomen 7406
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7405
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6621
[Monk1] p. 26Theorem 2.8(vii)ssin 3426
[Monk1] p. 33Theorem 3.2(i)ssrel 4807
[Monk1] p. 33Theorem 3.2(ii)eqrel 4808
[Monk1] p. 34Definition 3.3df-opab 4146
[Monk1] p. 36Theorem 3.7(i)coi1 5244  coi2 5245
[Monk1] p. 36Theorem 3.8(v)dm0 4937  rn0 4980
[Monk1] p. 36Theorem 3.7(ii)cnvi 5133
[Monk1] p. 37Theorem 3.13(i)relxp 4828
[Monk1] p. 37Theorem 3.13(x)dmxpm 4944  rnxpm 5158
[Monk1] p. 37Theorem 3.13(ii)0xp 4799  xp0 5148
[Monk1] p. 38Theorem 3.16(ii)ima0 5087
[Monk1] p. 38Theorem 3.16(viii)imai 5084
[Monk1] p. 39Theorem 3.17imaex 5083  imaexg 5082
[Monk1] p. 39Theorem 3.16(xi)imassrn 5079
[Monk1] p. 41Theorem 4.3(i)fnopfv 5767  funfvop 5749
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5677
[Monk1] p. 42Theorem 4.4(iii)fvelima 5687
[Monk1] p. 43Theorem 4.6funun 5362
[Monk1] p. 43Theorem 4.8(iv)dff13 5898  dff13f 5900
[Monk1] p. 46Theorem 4.15(v)funex 5866  funrnex 6265
[Monk1] p. 50Definition 5.4fniunfv 5892
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5212
[Monk1] p. 52Theorem 5.11(viii)ssint 3939
[Monk1] p. 52Definition 5.13 (i)1stval2 6307  df-1st 6292
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6308  df-2nd 6293
[Monk2] p. 105Axiom C4ax-5 1493
[Monk2] p. 105Axiom C7ax-8 1550
[Monk2] p. 105Axiom C8ax-11 1552  ax-11o 1869
[Monk2] p. 105Axiom (C8)ax11v 1873
[Monk2] p. 109Lemma 12ax-7 1494
[Monk2] p. 109Lemma 15equvin 1909  equvini 1804  eqvinop 4329
[Monk2] p. 113Axiom C5-1ax-17 1572
[Monk2] p. 113Axiom C5-2ax6b 1697
[Monk2] p. 113Axiom C5-3ax-7 1494
[Monk2] p. 114Lemma 22hba1 1586
[Monk2] p. 114Lemma 23hbia1 1598  nfia1 1626
[Monk2] p. 114Lemma 24hba2 1597  nfa2 1625
[Moschovakis] p. 2Chapter 2 df-stab 836  dftest 16473
[Munkres] p. 77Example 2distop 14767
[Munkres] p. 78Definition of basisdf-bases 14725  isbasis3g 14728
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 13301  tgval2 14733
[Munkres] p. 79Remarktgcl 14746
[Munkres] p. 80Lemma 2.1tgval3 14740
[Munkres] p. 80Lemma 2.2tgss2 14761  tgss3 14760
[Munkres] p. 81Lemma 2.3basgen 14762  basgen2 14763
[Munkres] p. 89Definition of subspace topologyresttop 14852
[Munkres] p. 93Theorem 6.1(1)0cld 14794  topcld 14791
[Munkres] p. 93Theorem 6.1(3)uncld 14795
[Munkres] p. 94Definition of closureclsval 14793
[Munkres] p. 94Definition of interiorntrval 14792
[Munkres] p. 102Definition of continuous functiondf-cn 14870  iscn 14879  iscn2 14882
[Munkres] p. 107Theorem 7.2(g)cncnp 14912  cncnp2m 14913  cncnpi 14910  df-cnp 14871  iscnp 14881
[Munkres] p. 127Theorem 10.1metcn 15196
[Pierik], p. 8Section 2.2.1dfrex2fin 7073
[Pierik], p. 9Definition 2.4df-womni 7339
[Pierik], p. 9Definition 2.5df-markov 7327  omniwomnimkv 7342
[Pierik], p. 10Section 2.3dfdif3 3314
[Pierik], p. 14Definition 3.1df-omni 7310  exmidomniim 7316  finomni 7315
[Pierik], p. 15Section 3.1df-nninf 7295
[Pradic2025], p. 2Section 1.1nnnninfen 16417
[PradicBrown2022], p. 1Theorem 1exmidsbthr 16421
[PradicBrown2022], p. 2Remarkexmidpw 7078
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7387
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7388  exmidfodomrlemrALT 7389
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7324
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 16403  peano4nninf 16402
[PradicBrown2022], p. 5Lemma 3.5nninfall 16405
[PradicBrown2022], p. 5Theorem 3.6nninfsel 16413
[PradicBrown2022], p. 5Corollary 3.7nninfomni 16415
[PradicBrown2022], p. 5Definition 3.3nnsf 16401
[Quine] p. 16Definition 2.1df-clab 2216  rabid 2707
[Quine] p. 17Definition 2.1''dfsb7 2042
[Quine] p. 18Definition 2.7df-cleq 2222
[Quine] p. 19Definition 2.9df-v 2801
[Quine] p. 34Theorem 5.1abeq2 2338
[Quine] p. 35Theorem 5.2abid2 2350  abid2f 2398
[Quine] p. 40Theorem 6.1sb5 1934
[Quine] p. 40Theorem 6.2sb56 1932  sb6 1933
[Quine] p. 41Theorem 6.3df-clel 2225
[Quine] p. 41Theorem 6.4eqid 2229
[Quine] p. 41Theorem 6.5eqcom 2231
[Quine] p. 42Theorem 6.6df-sbc 3029
[Quine] p. 42Theorem 6.7dfsbcq 3030  dfsbcq2 3031
[Quine] p. 43Theorem 6.8vex 2802
[Quine] p. 43Theorem 6.9isset 2806
[Quine] p. 44Theorem 7.3spcgf 2885  spcgv 2890  spcimgf 2883
[Quine] p. 44Theorem 6.11spsbc 3040  spsbcd 3041
[Quine] p. 44Theorem 6.12elex 2811
[Quine] p. 44Theorem 6.13elab 2947  elabg 2949  elabgf 2945
[Quine] p. 44Theorem 6.14noel 3495
[Quine] p. 48Theorem 7.2snprc 3731
[Quine] p. 48Definition 7.1df-pr 3673  df-sn 3672
[Quine] p. 49Theorem 7.4snss 3803  snssg 3802
[Quine] p. 49Theorem 7.5prss 3824  prssg 3825
[Quine] p. 49Theorem 7.6prid1 3772  prid1g 3770  prid2 3773  prid2g 3771  snid 3697  snidg 3695
[Quine] p. 51Theorem 7.12snexg 4268  snexprc 4270
[Quine] p. 51Theorem 7.13prexg 4295
[Quine] p. 53Theorem 8.2unisn 3904  unisng 3905
[Quine] p. 53Theorem 8.3uniun 3907
[Quine] p. 54Theorem 8.6elssuni 3916
[Quine] p. 54Theorem 8.7uni0 3915
[Quine] p. 56Theorem 8.17uniabio 5289
[Quine] p. 56Definition 8.18dfiota2 5279
[Quine] p. 57Theorem 8.19iotaval 5290
[Quine] p. 57Theorem 8.22iotanul 5294
[Quine] p. 58Theorem 8.23euiotaex 5295
[Quine] p. 58Definition 9.1df-op 3675
[Quine] p. 61Theorem 9.5opabid 4344  opabidw 4345  opelopab 4360  opelopaba 4354  opelopabaf 4362  opelopabf 4363  opelopabg 4356  opelopabga 4351  opelopabgf 4358  oprabid 6039
[Quine] p. 64Definition 9.11df-xp 4725
[Quine] p. 64Definition 9.12df-cnv 4727
[Quine] p. 64Definition 9.15df-id 4384
[Quine] p. 65Theorem 10.3fun0 5379
[Quine] p. 65Theorem 10.4funi 5350
[Quine] p. 65Theorem 10.5funsn 5369  funsng 5367
[Quine] p. 65Definition 10.1df-fun 5320
[Quine] p. 65Definition 10.2args 5097  dffv4g 5626
[Quine] p. 68Definition 10.11df-fv 5326  fv2 5624
[Quine] p. 124Theorem 17.3nn0opth2 10954  nn0opth2d 10953  nn0opthd 10952
[Quine] p. 284Axiom 39(vi)funimaex 5406  funimaexg 5405
[Roman] p. 18Part Preliminariesdf-rng 13904
[Roman] p. 19Part Preliminariesdf-ring 13969
[Rudin] p. 164Equation 27efcan 12195
[Rudin] p. 164Equation 30efzval 12202
[Rudin] p. 167Equation 48absefi 12288
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1468
[Sanford] p. 39Rule 4mptxor 1466
[Sanford] p. 40Rule 1mptnan 1465
[Schechter] p. 51Definition of antisymmetryintasym 5113
[Schechter] p. 51Definition of irreflexivityintirr 5115
[Schechter] p. 51Definition of symmetrycnvsym 5112
[Schechter] p. 51Definition of transitivitycotr 5110
[Schechter] p. 187Definition of "ring with unit"isring 13971
[Schechter] p. 428Definition 15.35bastop1 14765
[Stoll] p. 13Definition of symmetric differencesymdif1 3469
[Stoll] p. 16Exercise 4.40dif 3563  dif0 3562
[Stoll] p. 16Exercise 4.8difdifdirss 3576
[Stoll] p. 19Theorem 5.2(13)undm 3462
[Stoll] p. 19Theorem 5.2(13')indmss 3463
[Stoll] p. 20Remarkinvdif 3446
[Stoll] p. 25Definition of ordered tripledf-ot 3676
[Stoll] p. 43Definitionuniiun 4019
[Stoll] p. 44Definitionintiin 4020
[Stoll] p. 45Definitiondf-iin 3968
[Stoll] p. 45Definition indexed uniondf-iun 3967
[Stoll] p. 176Theorem 3.4(27)imandc 894  imanst 893
[Stoll] p. 262Example 4.1symdif1 3469
[Suppes] p. 22Theorem 2eq0 3510
[Suppes] p. 22Theorem 4eqss 3239  eqssd 3241  eqssi 3240
[Suppes] p. 23Theorem 5ss0 3532  ss0b 3531
[Suppes] p. 23Theorem 6sstr 3232
[Suppes] p. 25Theorem 12elin 3387  elun 3345
[Suppes] p. 26Theorem 15inidm 3413
[Suppes] p. 26Theorem 16in0 3526
[Suppes] p. 27Theorem 23unidm 3347
[Suppes] p. 27Theorem 24un0 3525
[Suppes] p. 27Theorem 25ssun1 3367
[Suppes] p. 27Theorem 26ssequn1 3374
[Suppes] p. 27Theorem 27unss 3378
[Suppes] p. 27Theorem 28indir 3453
[Suppes] p. 27Theorem 29undir 3454
[Suppes] p. 28Theorem 32difid 3560  difidALT 3561
[Suppes] p. 29Theorem 33difin 3441
[Suppes] p. 29Theorem 34indif 3447
[Suppes] p. 29Theorem 35undif1ss 3566
[Suppes] p. 29Theorem 36difun2 3571
[Suppes] p. 29Theorem 37difin0 3565
[Suppes] p. 29Theorem 38disjdif 3564
[Suppes] p. 29Theorem 39difundi 3456
[Suppes] p. 29Theorem 40difindiss 3458
[Suppes] p. 30Theorem 41nalset 4214
[Suppes] p. 39Theorem 61uniss 3909
[Suppes] p. 39Theorem 65uniop 4342
[Suppes] p. 41Theorem 70intsn 3958
[Suppes] p. 42Theorem 71intpr 3955  intprg 3956
[Suppes] p. 42Theorem 73op1stb 4569  op1stbg 4570
[Suppes] p. 42Theorem 78intun 3954
[Suppes] p. 44Definition 15(a)dfiun2 3999  dfiun2g 3997
[Suppes] p. 44Definition 15(b)dfiin2 4000
[Suppes] p. 47Theorem 86elpw 3655  elpw2 4241  elpw2g 4240  elpwg 3657
[Suppes] p. 47Theorem 87pwid 3664
[Suppes] p. 47Theorem 89pw0 3815
[Suppes] p. 48Theorem 90pwpw0ss 3883
[Suppes] p. 52Theorem 101xpss12 4826
[Suppes] p. 52Theorem 102xpindi 4857  xpindir 4858
[Suppes] p. 52Theorem 103xpundi 4775  xpundir 4776
[Suppes] p. 54Theorem 105elirrv 4640
[Suppes] p. 58Theorem 2relss 4806
[Suppes] p. 59Theorem 4eldm 4920  eldm2 4921  eldm2g 4919  eldmg 4918
[Suppes] p. 59Definition 3df-dm 4729
[Suppes] p. 60Theorem 6dmin 4931
[Suppes] p. 60Theorem 8rnun 5137
[Suppes] p. 60Theorem 9rnin 5138
[Suppes] p. 60Definition 4dfrn2 4910
[Suppes] p. 61Theorem 11brcnv 4905  brcnvg 4903
[Suppes] p. 62Equation 5elcnv 4899  elcnv2 4900
[Suppes] p. 62Theorem 12relcnv 5106
[Suppes] p. 62Theorem 15cnvin 5136
[Suppes] p. 62Theorem 16cnvun 5134
[Suppes] p. 63Theorem 20co02 5242
[Suppes] p. 63Theorem 21dmcoss 4994
[Suppes] p. 63Definition 7df-co 4728
[Suppes] p. 64Theorem 26cnvco 4907
[Suppes] p. 64Theorem 27coass 5247
[Suppes] p. 65Theorem 31resundi 5018
[Suppes] p. 65Theorem 34elima 5073  elima2 5074  elima3 5075  elimag 5072
[Suppes] p. 65Theorem 35imaundi 5141
[Suppes] p. 66Theorem 40dminss 5143
[Suppes] p. 66Theorem 41imainss 5144
[Suppes] p. 67Exercise 11cnvxp 5147
[Suppes] p. 81Definition 34dfec2 6691
[Suppes] p. 82Theorem 72elec 6729  elecg 6728
[Suppes] p. 82Theorem 73erth 6734  erth2 6735
[Suppes] p. 89Theorem 96map0b 6842
[Suppes] p. 89Theorem 97map0 6844  map0g 6843
[Suppes] p. 89Theorem 98mapsn 6845
[Suppes] p. 89Theorem 99mapss 6846
[Suppes] p. 92Theorem 1enref 6924  enrefg 6923
[Suppes] p. 92Theorem 2ensym 6941  ensymb 6940  ensymi 6942
[Suppes] p. 92Theorem 3entr 6944
[Suppes] p. 92Theorem 4unen 6977
[Suppes] p. 94Theorem 15endom 6922
[Suppes] p. 94Theorem 16ssdomg 6938
[Suppes] p. 94Theorem 17domtr 6945
[Suppes] p. 95Theorem 18isbth 7142
[Suppes] p. 98Exercise 4fundmen 6967  fundmeng 6968
[Suppes] p. 98Exercise 6xpdom3m 7001
[Suppes] p. 130Definition 3df-tr 4183
[Suppes] p. 132Theorem 9ssonuni 4580
[Suppes] p. 134Definition 6df-suc 4462
[Suppes] p. 136Theorem Schema 22findes 4695  finds 4692  finds1 4694  finds2 4693
[Suppes] p. 162Definition 5df-ltnqqs 7548  df-ltpq 7541
[Suppes] p. 228Theorem Schema 61onintss 4481
[TakeutiZaring] p. 8Axiom 1ax-ext 2211
[TakeutiZaring] p. 13Definition 4.5df-cleq 2222
[TakeutiZaring] p. 13Proposition 4.6df-clel 2225
[TakeutiZaring] p. 13Proposition 4.9cvjust 2224
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2247
[TakeutiZaring] p. 14Definition 4.16df-oprab 6011
[TakeutiZaring] p. 14Proposition 4.14ru 3027
[TakeutiZaring] p. 15Exercise 1elpr 3687  elpr2 3688  elprg 3686
[TakeutiZaring] p. 15Exercise 2elsn 3682  elsn2 3700  elsn2g 3699  elsng 3681  velsn 3683
[TakeutiZaring] p. 15Exercise 3elop 4317
[TakeutiZaring] p. 15Exercise 4sneq 3677  sneqr 3838
[TakeutiZaring] p. 15Definition 5.1dfpr2 3685  dfsn2 3680
[TakeutiZaring] p. 16Axiom 3uniex 4528
[TakeutiZaring] p. 16Exercise 6opth 4323
[TakeutiZaring] p. 16Exercise 8rext 4301
[TakeutiZaring] p. 16Corollary 5.8unex 4532  unexg 4534
[TakeutiZaring] p. 16Definition 5.3dftp2 3715
[TakeutiZaring] p. 16Definition 5.5df-uni 3889
[TakeutiZaring] p. 16Definition 5.6df-in 3203  df-un 3201
[TakeutiZaring] p. 16Proposition 5.7unipr 3902  uniprg 3903
[TakeutiZaring] p. 17Axiom 4vpwex 4263
[TakeutiZaring] p. 17Exercise 1eltp 3714
[TakeutiZaring] p. 17Exercise 5elsuc 4497  elsucg 4495  sstr2 3231
[TakeutiZaring] p. 17Exercise 6uncom 3348
[TakeutiZaring] p. 17Exercise 7incom 3396
[TakeutiZaring] p. 17Exercise 8unass 3361
[TakeutiZaring] p. 17Exercise 9inass 3414
[TakeutiZaring] p. 17Exercise 10indi 3451
[TakeutiZaring] p. 17Exercise 11undi 3452
[TakeutiZaring] p. 17Definition 5.9ssalel 3212
[TakeutiZaring] p. 17Definition 5.10df-pw 3651
[TakeutiZaring] p. 18Exercise 7unss2 3375
[TakeutiZaring] p. 18Exercise 9df-ss 3210  dfss2 3214  sseqin2 3423
[TakeutiZaring] p. 18Exercise 10ssid 3244
[TakeutiZaring] p. 18Exercise 12inss1 3424  inss2 3425
[TakeutiZaring] p. 18Exercise 13nssr 3284
[TakeutiZaring] p. 18Exercise 15unieq 3897
[TakeutiZaring] p. 18Exercise 18sspwb 4302
[TakeutiZaring] p. 18Exercise 19pweqb 4309
[TakeutiZaring] p. 20Definitiondf-rab 2517
[TakeutiZaring] p. 20Corollary 5.160ex 4211
[TakeutiZaring] p. 20Definition 5.12df-dif 3199
[TakeutiZaring] p. 20Definition 5.14dfnul2 3493
[TakeutiZaring] p. 20Proposition 5.15difid 3560  difidALT 3561
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3504
[TakeutiZaring] p. 21Theorem 5.22setind 4631
[TakeutiZaring] p. 21Definition 5.20df-v 2801
[TakeutiZaring] p. 21Proposition 5.21vprc 4216
[TakeutiZaring] p. 22Exercise 10ss 3530
[TakeutiZaring] p. 22Exercise 3ssex 4221  ssexg 4223
[TakeutiZaring] p. 22Exercise 4inex1 4218
[TakeutiZaring] p. 22Exercise 5ruv 4642
[TakeutiZaring] p. 22Exercise 6elirr 4633
[TakeutiZaring] p. 22Exercise 7ssdif0im 3556
[TakeutiZaring] p. 22Exercise 11difdif 3329
[TakeutiZaring] p. 22Exercise 13undif3ss 3465
[TakeutiZaring] p. 22Exercise 14difss 3330
[TakeutiZaring] p. 22Exercise 15sscon 3338
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2513
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2514
[TakeutiZaring] p. 23Proposition 6.2xpex 4834  xpexg 4833  xpexgALT 6284
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4726
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5385
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5544  fun11 5388
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5329  svrelfun 5386
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4909
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4911
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4731
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4732
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4728
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5183  dfrel2 5179
[TakeutiZaring] p. 25Exercise 3xpss 4827
[TakeutiZaring] p. 25Exercise 5relun 4836
[TakeutiZaring] p. 25Exercise 6reluni 4842
[TakeutiZaring] p. 25Exercise 9inxp 4856
[TakeutiZaring] p. 25Exercise 12relres 5033
[TakeutiZaring] p. 25Exercise 13opelres 5010  opelresg 5012
[TakeutiZaring] p. 25Exercise 14dmres 5026
[TakeutiZaring] p. 25Exercise 15resss 5029
[TakeutiZaring] p. 25Exercise 17resabs1 5034
[TakeutiZaring] p. 25Exercise 18funres 5359
[TakeutiZaring] p. 25Exercise 24relco 5227
[TakeutiZaring] p. 25Exercise 29funco 5358
[TakeutiZaring] p. 25Exercise 30f1co 5545
[TakeutiZaring] p. 26Definition 6.10eu2 2122
[TakeutiZaring] p. 26Definition 6.11df-fv 5326  fv3 5652
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5267  cnvexg 5266
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4991  dmexg 4988
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4992  rnexg 4989
[TakeutiZaring] p. 27Corollary 6.13funfvex 5646
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5656  tz6.12 5657  tz6.12c 5659
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5620
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5321
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5322
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5324  wfo 5316
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5323  wf1 5315
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5325  wf1o 5317
[TakeutiZaring] p. 28Exercise 4eqfnfv 5734  eqfnfv2 5735  eqfnfv2f 5738
[TakeutiZaring] p. 28Exercise 5fvco 5706
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5865  fnexALT 6262
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5864  resfunexgALT 6259
[TakeutiZaring] p. 29Exercise 9funimaex 5406  funimaexg 5405
[TakeutiZaring] p. 29Definition 6.18df-br 4084
[TakeutiZaring] p. 30Definition 6.21eliniseg 5098  iniseg 5100
[TakeutiZaring] p. 30Definition 6.22df-eprel 4380
[TakeutiZaring] p. 32Definition 6.28df-isom 5327
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5940
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5941
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5946
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5948
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5956
[TakeutiZaring] p. 35Notationwtr 4182
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4445
[TakeutiZaring] p. 35Definition 7.1dftr3 4186
[TakeutiZaring] p. 36Proposition 7.4ordwe 4668
[TakeutiZaring] p. 36Proposition 7.6ordelord 4472
[TakeutiZaring] p. 37Proposition 7.9ordin 4476
[TakeutiZaring] p. 38Corollary 7.15ordsson 4584
[TakeutiZaring] p. 38Definition 7.11df-on 4459
[TakeutiZaring] p. 38Proposition 7.12ordon 4578
[TakeutiZaring] p. 38Proposition 7.13onprc 4644
[TakeutiZaring] p. 39Theorem 7.17tfi 4674
[TakeutiZaring] p. 40Exercise 7dftr2 4184
[TakeutiZaring] p. 40Exercise 11unon 4603
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4579
[TakeutiZaring] p. 40Proposition 7.20elssuni 3916
[TakeutiZaring] p. 41Definition 7.22df-suc 4462
[TakeutiZaring] p. 41Proposition 7.23sssucid 4506  sucidg 4507
[TakeutiZaring] p. 41Proposition 7.24onsuc 4593
[TakeutiZaring] p. 42Exercise 1df-ilim 4460
[TakeutiZaring] p. 42Exercise 8onsucssi 4598  ordelsuc 4597
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4686
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4687
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4688
[TakeutiZaring] p. 43Axiom 7omex 4685
[TakeutiZaring] p. 43Theorem 7.32ordom 4699
[TakeutiZaring] p. 43Corollary 7.31find 4691
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4689
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4690
[TakeutiZaring] p. 44Exercise 2int0 3937
[TakeutiZaring] p. 44Exercise 3trintssm 4198
[TakeutiZaring] p. 44Exercise 4intss1 3938
[TakeutiZaring] p. 44Exercise 6onintonm 4609
[TakeutiZaring] p. 44Definition 7.35df-int 3924
[TakeutiZaring] p. 47Lemma 1tfrlem1 6460
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6517  tfri1d 6487
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6518  tfri2d 6488
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6519
[TakeutiZaring] p. 50Exercise 3smoiso 6454
[TakeutiZaring] p. 50Definition 7.46df-smo 6438
[TakeutiZaring] p. 56Definition 8.1oasuc 6618
[TakeutiZaring] p. 57Proposition 8.2oacl 6614
[TakeutiZaring] p. 57Proposition 8.3oa0 6611
[TakeutiZaring] p. 57Proposition 8.16omcl 6615
[TakeutiZaring] p. 58Proposition 8.4nnaord 6663  nnaordi 6662
[TakeutiZaring] p. 59Proposition 8.6iunss2 4010  uniss2 3919
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6624
[TakeutiZaring] p. 59Proposition 8.9nnacl 6634
[TakeutiZaring] p. 62Exercise 5oaword1 6625
[TakeutiZaring] p. 62Definition 8.15om0 6612  omsuc 6626
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6635
[TakeutiZaring] p. 63Proposition 8.19nnmord 6671  nnmordi 6670
[TakeutiZaring] p. 67Definition 8.30oei0 6613
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7367
[TakeutiZaring] p. 88Exercise 1en0 6955
[TakeutiZaring] p. 90Proposition 10.20nneneq 7026
[TakeutiZaring] p. 90Corollary 10.21(1)php5 7027
[TakeutiZaring] p. 91Definition 10.29df-fin 6898  isfi 6920
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6998
[TakeutiZaring] p. 95Definition 10.42df-map 6805
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 7004
[TakeutiZaring] p. 96Proposition 10.45mapxpen 7017
[Tarski] p. 67Axiom B5ax-4 1556
[Tarski] p. 68Lemma 6equid 1747
[Tarski] p. 69Lemma 7equcomi 1750
[Tarski] p. 70Lemma 14spim 1784  spime 1787  spimeh 1785  spimh 1783
[Tarski] p. 70Lemma 16ax-11 1552  ax-11o 1869  ax11i 1760
[Tarski] p. 70Lemmas 16 and 17sb6 1933
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1572
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2202  ax-14 2203
[WhiteheadRussell] p. 96Axiom *1.3olc 716
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 732
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 761
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 770
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 794
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 619
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 646
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 842
[WhiteheadRussell] p. 101Theorem *2.06barbara 2176  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 742
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 841
[WhiteheadRussell] p. 101Theorem *2.12notnot 632
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 890
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 848
[WhiteheadRussell] p. 102Theorem *2.15con1dc 861
[WhiteheadRussell] p. 103Theorem *2.16con3 645
[WhiteheadRussell] p. 103Theorem *2.17condc 858
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 860
[WhiteheadRussell] p. 104Theorem *2.2orc 717
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 780
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 620
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 624
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 898
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 912
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 773
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 774
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 809
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 810
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 808
[WhiteheadRussell] p. 105Definition *2.33df-3or 1003
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 783
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 781
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 782
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 743
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 744
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 872  pm2.5gdc 871
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 867
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 745
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 746
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 747
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 659
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 660
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 727
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 896
[WhiteheadRussell] p. 107Theorem *2.55orel1 730
[WhiteheadRussell] p. 107Theorem *2.56orel2 731
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 870
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 753
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 805
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 806
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 663
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 718  pm2.67 748
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 874  pm2.521gdc 873
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 752
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 815
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 899
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 920
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 811
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 812
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 814
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 813
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 816
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 817
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 910
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 759
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 963
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 964
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 965
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 758
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 698
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 865
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 864
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 693
[WhiteheadRussell] p. 113Fact)pm3.45 599
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 760  pm3.44 720
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 604
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 790
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 876
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 877
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 895
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 699
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 958  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 762  pm4.25 763
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 823
[WhiteheadRussell] p. 118Theorem *4.31orcom 733
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 772
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 797
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 607
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 827
[WhiteheadRussell] p. 118Definition *4.34df-3an 1004
[WhiteheadRussell] p. 119Theorem *4.41ordi 821
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 977
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 955
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 784
[WhiteheadRussell] p. 119Theorem *4.45orabs 819  pm4.45 789  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1527
[WhiteheadRussell] p. 120Theorem *4.5anordc 962
[WhiteheadRussell] p. 120Theorem *4.6imordc 902  imorr 726
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 904
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 755
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 756
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 907
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 944
[WhiteheadRussell] p. 120Theorem *4.56ioran 757  pm4.56 785
[WhiteheadRussell] p. 120Theorem *4.57orandc 945  oranim 786
[WhiteheadRussell] p. 120Theorem *4.61annimim 690
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 903
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 891
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 905
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 691
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 906
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 892
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 832
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 749
[WhiteheadRussell] p. 121Theorem *4.76jcab 605  pm4.76 606
[WhiteheadRussell] p. 121Theorem *4.77jaob 715  pm4.77 804
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 787
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 908
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 712
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 913
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 956
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 957
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 603
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 914
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 915
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 917
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 916
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1431
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 833
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 909
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1436  pm5.18dc 888
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 711
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 700
[WhiteheadRussell] p. 124Theorem *5.22xordc 1434
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1439
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1440
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 900
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 931  pm5.6r 932
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 960
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 611
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 922
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 612
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 930
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 807
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 923
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 918
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 799
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 951
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 952
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 967
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 968
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1681
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1531
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1678
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1942
[WhiteheadRussell] p. 175Definition *14.02df-eu 2080
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2481
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2482
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2941
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3085
[WhiteheadRussell] p. 190Theorem *14.22iota4 5298
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5299
[WhiteheadRussell] p. 192Theorem *14.26eupick 2157  eupickbi 2160
[WhiteheadRussell] p. 235Definition *30.01df-fv 5326
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7371

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]