Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7190  fidcenum 7031
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7031
[AczelRathjen], p. 73Lemma 8.1.14enumct 7190
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12667
[AczelRathjen], p. 74Lemma 8.1.16xpfi 7002
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6988
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12682
[AczelRathjen], p. 75Corollary 8.1.20unct 12684
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12673  znnen 12640
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12685
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12686
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10885
[AczelRathjen], p. 183Chapter 20ax-setind 4574
[AhoHopUll] p. 318Section 9.1df-word 10953  lencl 10956  wrd0 10977
[Apostol] p. 18Theorem I.1addcan 8223  addcan2d 8228  addcan2i 8226  addcand 8227  addcani 8225
[Apostol] p. 18Theorem I.2negeu 8234
[Apostol] p. 18Theorem I.3negsub 8291  negsubd 8360  negsubi 8321
[Apostol] p. 18Theorem I.4negneg 8293  negnegd 8345  negnegi 8313
[Apostol] p. 18Theorem I.5subdi 8428  subdid 8457  subdii 8450  subdir 8429  subdird 8458  subdiri 8451
[Apostol] p. 18Theorem I.6mul01 8432  mul01d 8436  mul01i 8434  mul02 8430  mul02d 8435  mul02i 8433
[Apostol] p. 18Theorem I.9divrecapd 8837
[Apostol] p. 18Theorem I.10recrecapi 8788
[Apostol] p. 18Theorem I.12mul2neg 8441  mul2negd 8456  mul2negi 8449  mulneg1 8438  mulneg1d 8454  mulneg1i 8447
[Apostol] p. 18Theorem I.14rdivmuldivd 13776
[Apostol] p. 18Theorem I.15divdivdivap 8757
[Apostol] p. 20Axiom 7rpaddcl 9769  rpaddcld 9804  rpmulcl 9770  rpmulcld 9805
[Apostol] p. 20Axiom 90nrp 9781
[Apostol] p. 20Theorem I.17lttri 8148
[Apostol] p. 20Theorem I.18ltadd1d 8582  ltadd1dd 8600  ltadd1i 8546
[Apostol] p. 20Theorem I.19ltmul1 8636  ltmul1a 8635  ltmul1i 8964  ltmul1ii 8972  ltmul2 8900  ltmul2d 9831  ltmul2dd 9845  ltmul2i 8967
[Apostol] p. 20Theorem I.210lt1 8170
[Apostol] p. 20Theorem I.23lt0neg1 8512  lt0neg1d 8559  ltneg 8506  ltnegd 8567  ltnegi 8537
[Apostol] p. 20Theorem I.25lt2add 8489  lt2addd 8611  lt2addi 8554
[Apostol] p. 20Definition of positive numbersdf-rp 9746
[Apostol] p. 21Exercise 4recgt0 8894  recgt0d 8978  recgt0i 8950  recgt0ii 8951
[Apostol] p. 22Definition of integersdf-z 9344
[Apostol] p. 22Definition of rationalsdf-q 9711
[Apostol] p. 24Theorem I.26supeuti 7069
[Apostol] p. 26Theorem I.29arch 9263
[Apostol] p. 28Exercise 2btwnz 9462
[Apostol] p. 28Exercise 3nnrecl 9264
[Apostol] p. 28Exercise 6qbtwnre 10363
[Apostol] p. 28Exercise 10(a)zeneo 12053  zneo 9444
[Apostol] p. 29Theorem I.35resqrtth 11213  sqrtthi 11301
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 9010
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12228
[Apostol] p. 363Remarkabsgt0api 11328
[Apostol] p. 363Exampleabssubd 11375  abssubi 11332
[ApostolNT] p. 14Definitiondf-dvds 11970
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11986
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 12010
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 12006
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 12000
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 12002
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11987
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11988
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11993
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12027
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12029
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12031
[ApostolNT] p. 15Definitiondfgcd2 12206
[ApostolNT] p. 16Definitionisprm2 12310
[ApostolNT] p. 16Theorem 1.5coprmdvds 12285
[ApostolNT] p. 16Theorem 1.7prminf 12697
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12165
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12207
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12209
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12179
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12172
[ApostolNT] p. 17Theorem 1.8coprm 12337
[ApostolNT] p. 17Theorem 1.9euclemma 12339
[ApostolNT] p. 17Theorem 1.101arith2 12562
[ApostolNT] p. 19Theorem 1.14divalg 12106
[ApostolNT] p. 20Theorem 1.15eucalg 12252
[ApostolNT] p. 25Definitiondf-phi 12404
[ApostolNT] p. 26Theorem 2.2phisum 12434
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12415
[ApostolNT] p. 28Theorem 2.5(c)phimul 12419
[ApostolNT] p. 38Remarkdf-sgm 15302
[ApostolNT] p. 38Definitiondf-sgm 15302
[ApostolNT] p. 104Definitioncongr 12293
[ApostolNT] p. 106Remarkdvdsval3 11973
[ApostolNT] p. 106Definitionmoddvds 11981
[ApostolNT] p. 107Example 2mod2eq0even 12060
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12061
[ApostolNT] p. 107Example 4zmod1congr 10450
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10487
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10775
[ApostolNT] p. 108Theorem 5.3modmulconst 12005
[ApostolNT] p. 109Theorem 5.4cncongr1 12296
[ApostolNT] p. 109Theorem 5.6gcdmodi 12615
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12298
[ApostolNT] p. 113Theorem 5.17eulerth 12426
[ApostolNT] p. 113Theorem 5.18vfermltl 12445
[ApostolNT] p. 114Theorem 5.19fermltl 12427
[ApostolNT] p. 179Definitiondf-lgs 15323  lgsprme0 15367
[ApostolNT] p. 180Example 11lgs 15368
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15344
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15359
[ApostolNT] p. 181Theorem 9.4m1lgs 15410
[ApostolNT] p. 181Theorem 9.52lgs 15429  2lgsoddprm 15438
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15394
[ApostolNT] p. 185Theorem 9.8lgsquad 15405
[ApostolNT] p. 188Definitiondf-lgs 15323  lgs1 15369
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15360
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15362
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15370
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15371
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 660
[Bauer] p. 483Theorem 1.3acexmid 5924  onsucelsucexmidlem 4566
[Bauer], p. 481Section 1.1pwtrufal 15728
[Bauer], p. 483Definitionn0rf 3464
[Bauer], p. 483Theorem 1.22irrexpq 15296  2irrexpqap 15298
[Bauer], p. 485Theorem 2.1ssfiexmid 6946
[Bauer], p. 493Section 5.1ivthdich 14973
[Bauer], p. 494Theorem 5.5ivthinc 14963
[BauerHanson], p. 27Proposition 5.2cnstab 8689
[BauerSwan], p. 14Remark0ct 7182  ctm 7184
[BauerSwan], p. 14Proposition 2.6subctctexmid 15731
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7190
[BauerTaylor], p. 32Lemma 6.16prarloclem 7585
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7498
[BauerTaylor], p. 52Proposition 11.15prarloc 7587
[BauerTaylor], p. 53Lemma 11.16addclpr 7621  addlocpr 7620
[BauerTaylor], p. 55Proposition 12.7appdivnq 7647
[BauerTaylor], p. 56Lemma 12.8prmuloc 7650
[BauerTaylor], p. 56Lemma 12.9mullocpr 7655
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2048
[BellMachover] p. 460Notationdf-mo 2049
[BellMachover] p. 460Definitionmo3 2099  mo3h 2098
[BellMachover] p. 462Theorem 1.1bm1.1 2181
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4155
[BellMachover] p. 466Axiom Powaxpow3 4211
[BellMachover] p. 466Axiom Unionaxun2 4471
[BellMachover] p. 469Theorem 2.2(i)ordirr 4579
[BellMachover] p. 469Theorem 2.2(iii)onelon 4420
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4582
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4533
[BellMachover] p. 471Definition of Limdf-ilim 4405
[BellMachover] p. 472Axiom Infzfinf2 4626
[BellMachover] p. 473Theorem 2.8limom 4651
[Bobzien] p. 116Statement T3stoic3 1442
[Bobzien] p. 117Statement T2stoic2a 1440
[Bobzien] p. 117Statement T4stoic4a 1443
[Bobzien] p. 117Conclusion the contradictorystoic1a 1438
[BourbakiAlg1] p. 1Definition 1df-mgm 13058
[BourbakiAlg1] p. 4Definition 5df-sgrp 13104
[BourbakiAlg1] p. 12Definition 2df-mnd 13119
[BourbakiAlg1] p. 92Definition 1df-ring 13630
[BourbakiAlg1] p. 93Section I.8.1df-rng 13565
[BourbakiEns] p. Proposition 8fcof1 5833  fcofo 5834
[BourbakiTop1] p. Remarkxnegmnf 9921  xnegpnf 9920
[BourbakiTop1] p. Remark rexneg 9922
[BourbakiTop1] p. Propositionishmeo 14624
[BourbakiTop1] p. Property V_issnei2 14477
[BourbakiTop1] p. Property V_iiinnei 14483
[BourbakiTop1] p. Property V_ivneissex 14485
[BourbakiTop1] p. Proposition 1neipsm 14474  neiss 14470
[BourbakiTop1] p. Proposition 2cnptopco 14542
[BourbakiTop1] p. Proposition 4imasnopn 14619
[BourbakiTop1] p. Property V_iiielnei 14472
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14318
[Bruck] p. 1Section I.1df-mgm 13058
[Bruck] p. 23Section II.1df-sgrp 13104
[Bruck] p. 28Theorem 3.2dfgrp3m 13301
[ChoquetDD] p. 2Definition of mappingdf-mpt 4097
[Cohen] p. 301Remarkrelogoprlem 15188
[Cohen] p. 301Property 2relogmul 15189  relogmuld 15204
[Cohen] p. 301Property 3relogdiv 15190  relogdivd 15205
[Cohen] p. 301Property 4relogexp 15192
[Cohen] p. 301Property 1alog1 15186
[Cohen] p. 301Property 1bloge 15187
[Cohen4] p. 348Observationrelogbcxpbap 15285
[Cohen4] p. 352Definitionrpelogb 15269
[Cohen4] p. 361Property 2rprelogbmul 15275
[Cohen4] p. 361Property 3logbrec 15280  rprelogbdiv 15277
[Cohen4] p. 361Property 4rplogbreexp 15273
[Cohen4] p. 361Property 6relogbexpap 15278
[Cohen4] p. 361Property 1(a)rplogbid1 15267
[Cohen4] p. 361Property 1(b)rplogb1 15268
[Cohen4] p. 367Propertyrplogbchbase 15270
[Cohen4] p. 377Property 2logblt 15282
[Crosilla] p. Axiom 1ax-ext 2178
[Crosilla] p. Axiom 2ax-pr 4243
[Crosilla] p. Axiom 3ax-un 4469
[Crosilla] p. Axiom 4ax-nul 4160
[Crosilla] p. Axiom 5ax-iinf 4625
[Crosilla] p. Axiom 6ru 2988
[Crosilla] p. Axiom 8ax-pow 4208
[Crosilla] p. Axiom 9ax-setind 4574
[Crosilla], p. Axiom 6ax-sep 4152
[Crosilla], p. Axiom 7ax-coll 4149
[Crosilla], p. Axiom 7'repizf 4150
[Crosilla], p. Theorem is statedordtriexmid 4558
[Crosilla], p. Axiom of choice implies instancesacexmid 5924
[Crosilla], p. Definition of ordinaldf-iord 4402
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4572
[Eisenberg] p. 67Definition 5.3df-dif 3159
[Eisenberg] p. 82Definition 6.3df-iom 4628
[Eisenberg] p. 125Definition 8.21df-map 6718
[Enderton] p. 18Axiom of Empty Setaxnul 4159
[Enderton] p. 19Definitiondf-tp 3631
[Enderton] p. 26Exercise 5unissb 3870
[Enderton] p. 26Exercise 10pwel 4252
[Enderton] p. 28Exercise 7(b)pwunim 4322
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3987  iinin2m 3986  iunin1 3982  iunin2 3981
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3985  iundif2ss 3983
[Enderton] p. 33Exercise 23iinuniss 4000
[Enderton] p. 33Exercise 25iununir 4001
[Enderton] p. 33Exercise 24(a)iinpw 4008
[Enderton] p. 33Exercise 24(b)iunpw 4516  iunpwss 4009
[Enderton] p. 38Exercise 6(a)unipw 4251
[Enderton] p. 38Exercise 6(b)pwuni 4226
[Enderton] p. 41Lemma 3Dopeluu 4486  rnex 4934  rnexg 4932
[Enderton] p. 41Exercise 8dmuni 4877  rnuni 5082
[Enderton] p. 42Definition of a functiondffun7 5286  dffun8 5287
[Enderton] p. 43Definition of function valuefunfvdm2 5628
[Enderton] p. 43Definition of single-rootedfuncnv 5320
[Enderton] p. 44Definition (d)dfima2 5012  dfima3 5013
[Enderton] p. 47Theorem 3Hfvco2 5633
[Enderton] p. 49Axiom of Choice (first form)df-ac 7289
[Enderton] p. 50Theorem 3K(a)imauni 5811
[Enderton] p. 52Definitiondf-map 6718
[Enderton] p. 53Exercise 21coass 5189
[Enderton] p. 53Exercise 27dmco 5179
[Enderton] p. 53Exercise 14(a)funin 5330
[Enderton] p. 53Exercise 22(a)imass2 5046
[Enderton] p. 54Remarkixpf 6788  ixpssmap 6800
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6767
[Enderton] p. 56Theorem 3Merref 6621
[Enderton] p. 57Lemma 3Nerthi 6649
[Enderton] p. 57Definitiondf-ec 6603
[Enderton] p. 58Definitiondf-qs 6607
[Enderton] p. 60Theorem 3Qth3q 6708  th3qcor 6707  th3qlem1 6705  th3qlem2 6706
[Enderton] p. 61Exercise 35df-ec 6603
[Enderton] p. 65Exercise 56(a)dmun 4874
[Enderton] p. 68Definition of successordf-suc 4407
[Enderton] p. 71Definitiondf-tr 4133  dftr4 4137
[Enderton] p. 72Theorem 4Eunisuc 4449  unisucg 4450
[Enderton] p. 73Exercise 6unisuc 4449  unisucg 4450
[Enderton] p. 73Exercise 5(a)truni 4146
[Enderton] p. 73Exercise 5(b)trint 4147
[Enderton] p. 79Theorem 4I(A1)nna0 6541
[Enderton] p. 79Theorem 4I(A2)nnasuc 6543  onasuc 6533
[Enderton] p. 79Definition of operation valuedf-ov 5928
[Enderton] p. 80Theorem 4J(A1)nnm0 6542
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6544  onmsuc 6540
[Enderton] p. 81Theorem 4K(1)nnaass 6552
[Enderton] p. 81Theorem 4K(2)nna0r 6545  nnacom 6551
[Enderton] p. 81Theorem 4K(3)nndi 6553
[Enderton] p. 81Theorem 4K(4)nnmass 6554
[Enderton] p. 81Theorem 4K(5)nnmcom 6556
[Enderton] p. 82Exercise 16nnm0r 6546  nnmsucr 6555
[Enderton] p. 88Exercise 23nnaordex 6595
[Enderton] p. 129Definitiondf-en 6809
[Enderton] p. 132Theorem 6B(b)canth 5878
[Enderton] p. 133Exercise 1xpomen 12637
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6935
[Enderton] p. 136Corollary 6Enneneq 6927
[Enderton] p. 139Theorem 6H(c)mapen 6916
[Enderton] p. 142Theorem 6I(3)xpdjuen 7301
[Enderton] p. 143Theorem 6Jdju0en 7297  dju1en 7296
[Enderton] p. 144Corollary 6Kundif2ss 3527
[Enderton] p. 145Figure 38ffoss 5539
[Enderton] p. 145Definitiondf-dom 6810
[Enderton] p. 146Example 1domen 6819  domeng 6820
[Enderton] p. 146Example 3nndomo 6934
[Enderton] p. 149Theorem 6L(c)xpdom1 6903  xpdom1g 6901  xpdom2g 6900
[Enderton] p. 168Definitiondf-po 4332
[Enderton] p. 192Theorem 7M(a)oneli 4464
[Enderton] p. 192Theorem 7M(b)ontr1 4425
[Enderton] p. 192Theorem 7M(c)onirri 4580
[Enderton] p. 193Corollary 7N(b)0elon 4428
[Enderton] p. 193Corollary 7N(c)onsuci 4553
[Enderton] p. 193Corollary 7N(d)ssonunii 4526
[Enderton] p. 194Remarkonprc 4589
[Enderton] p. 194Exercise 16suc11 4595
[Enderton] p. 197Definitiondf-card 7257
[Enderton] p. 200Exercise 25tfis 4620
[Enderton] p. 206Theorem 7X(b)en2lp 4591
[Enderton] p. 207Exercise 34opthreg 4593
[Enderton] p. 208Exercise 35suc11g 4594
[Geuvers], p. 1Remarkexpap0 10678
[Geuvers], p. 6Lemma 2.13mulap0r 8659
[Geuvers], p. 6Lemma 2.15mulap0 8698
[Geuvers], p. 9Lemma 2.35msqge0 8660
[Geuvers], p. 9Definition 3.1(2)ax-arch 8015
[Geuvers], p. 10Lemma 3.9maxcom 11385
[Geuvers], p. 10Lemma 3.10maxle1 11393  maxle2 11394
[Geuvers], p. 10Lemma 3.11maxleast 11395
[Geuvers], p. 10Lemma 3.12maxleb 11398
[Geuvers], p. 11Definition 3.13dfabsmax 11399
[Geuvers], p. 17Definition 6.1df-ap 8626
[Gleason] p. 117Proposition 9-2.1df-enq 7431  enqer 7442
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7435  df-nqqs 7432
[Gleason] p. 117Proposition 9-2.3df-plpq 7428  df-plqqs 7433
[Gleason] p. 119Proposition 9-2.4df-mpq 7429  df-mqqs 7434
[Gleason] p. 119Proposition 9-2.5df-rq 7436
[Gleason] p. 119Proposition 9-2.6ltexnqq 7492
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7495  ltbtwnnq 7500  ltbtwnnqq 7499
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7484
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7485
[Gleason] p. 123Proposition 9-3.5addclpr 7621
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7663
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7662
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7681
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7697
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7703  ltaprlem 7702
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7700
[Gleason] p. 124Proposition 9-3.7mulclpr 7656
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7676
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7665
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7664
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7672
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7722
[Gleason] p. 126Proposition 9-4.1df-enr 7810  enrer 7819
[Gleason] p. 126Proposition 9-4.2df-0r 7815  df-1r 7816  df-nr 7811
[Gleason] p. 126Proposition 9-4.3df-mr 7813  df-plr 7812  negexsr 7856  recexsrlem 7858
[Gleason] p. 127Proposition 9-4.4df-ltr 7814
[Gleason] p. 130Proposition 10-1.3creui 9004  creur 9003  cru 8646
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 8007  axcnre 7965
[Gleason] p. 132Definition 10-3.1crim 11040  crimd 11159  crimi 11119  crre 11039  crred 11158  crrei 11118
[Gleason] p. 132Definition 10-3.2remim 11042  remimd 11124
[Gleason] p. 133Definition 10.36absval2 11239  absval2d 11367  absval2i 11326
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11066  cjaddd 11147  cjaddi 11114
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11067  cjmuld 11148  cjmuli 11115
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11065  cjcjd 11125  cjcji 11097
[Gleason] p. 133Proposition 10-3.4(f)cjre 11064  cjreb 11048  cjrebd 11128  cjrebi 11100  cjred 11153  rere 11047  rereb 11045  rerebd 11127  rerebi 11099  rered 11151
[Gleason] p. 133Proposition 10-3.4(h)addcj 11073  addcjd 11139  addcji 11109
[Gleason] p. 133Proposition 10-3.7(a)absval 11183
[Gleason] p. 133Proposition 10-3.7(b)abscj 11234  abscjd 11372  abscji 11330
[Gleason] p. 133Proposition 10-3.7(c)abs00 11246  abs00d 11368  abs00i 11327  absne0d 11369
[Gleason] p. 133Proposition 10-3.7(d)releabs 11278  releabsd 11373  releabsi 11331
[Gleason] p. 133Proposition 10-3.7(f)absmul 11251  absmuld 11376  absmuli 11333
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11237  sqabsaddi 11334
[Gleason] p. 133Proposition 10-3.7(h)abstri 11286  abstrid 11378  abstrii 11337
[Gleason] p. 134Definition 10-4.1df-exp 10648  exp0 10652  expp1 10655  expp1d 10783
[Gleason] p. 135Proposition 10-4.2(a)expadd 10690  expaddd 10784
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15232  cxpmuld 15257  expmul 10693  expmuld 10785
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10687  mulexpd 10797  rpmulcxp 15229
[Gleason] p. 141Definition 11-2.1fzval 10102
[Gleason] p. 168Proposition 12-2.1(a)climadd 11508
[Gleason] p. 168Proposition 12-2.1(b)climsub 11510
[Gleason] p. 168Proposition 12-2.1(c)climmul 11509
[Gleason] p. 171Corollary 12-2.2climmulc2 11513
[Gleason] p. 172Corollary 12-2.5climrecl 11506
[Gleason] p. 172Proposition 12-2.4(c)climabs 11502  climcj 11503  climim 11505  climre 11504
[Gleason] p. 173Definition 12-3.1df-ltxr 8083  df-xr 8082  ltxr 9867
[Gleason] p. 180Theorem 12-5.3climcau 11529
[Gleason] p. 217Lemma 13-4.1btwnzge0 10407
[Gleason] p. 223Definition 14-1.1df-met 14177
[Gleason] p. 223Definition 14-1.1(a)met0 14684  xmet0 14683
[Gleason] p. 223Definition 14-1.1(c)metsym 14691
[Gleason] p. 223Definition 14-1.1(d)mettri 14693  mstri 14793  xmettri 14692  xmstri 14792
[Gleason] p. 230Proposition 14-2.6txlm 14599
[Gleason] p. 240Proposition 14-4.2metcnp3 14831
[Gleason] p. 243Proposition 14-4.16addcn2 11492  addcncntop 14882  mulcn2 11494  mulcncntop 14884  subcn2 11493  subcncntop 14883
[Gleason] p. 295Remarkbcval3 10860  bcval4 10861
[Gleason] p. 295Equation 2bcpasc 10875
[Gleason] p. 295Definition of binomial coefficientbcval 10858  df-bc 10857
[Gleason] p. 296Remarkbcn0 10864  bcnn 10866
[Gleason] p. 296Theorem 15-2.8binom 11666
[Gleason] p. 308Equation 2ef0 11854
[Gleason] p. 308Equation 3efcj 11855
[Gleason] p. 309Corollary 15-4.3efne0 11860
[Gleason] p. 309Corollary 15-4.4efexp 11864
[Gleason] p. 310Equation 14sinadd 11918
[Gleason] p. 310Equation 15cosadd 11919
[Gleason] p. 311Equation 17sincossq 11930
[Gleason] p. 311Equation 18cosbnd 11935  sinbnd 11934
[Gleason] p. 311Definition of ` `df-pi 11835
[Golan] p. 1Remarksrgisid 13618
[Golan] p. 1Definitiondf-srg 13596
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1463
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13213  mndideu 13128
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13240
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13269
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13280
[Herstein] p. 57Exercise 1dfgrp3me 13302
[Heyting] p. 127Axiom #1ax1hfs 15805
[Hitchcock] p. 5Rule A3mptnan 1434
[Hitchcock] p. 5Rule A4mptxor 1435
[Hitchcock] p. 5Rule A5mtpxor 1437
[HoTT], p. Lemma 10.4.1exmidontriim 7308
[HoTT], p. Theorem 7.2.6nndceq 6566
[HoTT], p. Exercise 11.10neapmkv 15799
[HoTT], p. Exercise 11.11mulap0bd 8701
[HoTT], p. Section 11.2.1df-iltp 7554  df-imp 7553  df-iplp 7552  df-reap 8619
[HoTT], p. Theorem 11.2.4recapb 8715  rerecapb 8887
[HoTT], p. Corollary 3.9.2uchoice 6204
[HoTT], p. Theorem 11.2.12cauappcvgpr 7746
[HoTT], p. Corollary 11.4.3conventions 15451
[HoTT], p. Exercise 11.6(i)dcapnconst 15792  dceqnconst 15791
[HoTT], p. Corollary 11.2.13axcaucvg 7984  caucvgpr 7766  caucvgprpr 7796  caucvgsr 7886
[HoTT], p. Definition 11.2.1df-inp 7550
[HoTT], p. Exercise 11.6(ii)nconstwlpo 15797
[HoTT], p. Proposition 11.2.3df-iso 4333  ltpopr 7679  ltsopr 7680
[HoTT], p. Definition 11.2.7(v)apsym 8650  reapcotr 8642  reapirr 8621
[HoTT], p. Definition 11.2.7(vi)0lt1 8170  gt0add 8617  leadd1 8474  lelttr 8132  lemul1a 8902  lenlt 8119  ltadd1 8473  ltletr 8133  ltmul1 8636  reaplt 8632
[Jech] p. 4Definition of classcv 1363  cvjust 2191
[Jech] p. 78Noteopthprc 4715
[KalishMontague] p. 81Note 1ax-i9 1544
[Kreyszig] p. 3Property M1metcl 14673  xmetcl 14672
[Kreyszig] p. 4Property M2meteq0 14680
[Kreyszig] p. 12Equation 5muleqadd 8712
[Kreyszig] p. 18Definition 1.3-2mopnval 14762
[Kreyszig] p. 19Remarkmopntopon 14763
[Kreyszig] p. 19Theorem T1mopn0 14808  mopnm 14768
[Kreyszig] p. 19Theorem T2unimopn 14806
[Kreyszig] p. 19Definition of neighborhoodneibl 14811
[Kreyszig] p. 20Definition 1.3-3metcnp2 14833
[Kreyszig] p. 25Definition 1.4-1lmbr 14533
[Kreyszig] p. 51Equation 2lmodvneg1 13962
[Kreyszig] p. 51Equation 1almod0vs 13953
[Kreyszig] p. 51Equation 1blmodvs0 13954
[Kunen] p. 10Axiom 0a9e 1710
[Kunen] p. 12Axiom 6zfrep6 4151
[Kunen] p. 24Definition 10.24mapval 6728  mapvalg 6726
[Kunen] p. 31Definition 10.24mapex 6722
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3927
[Lang] p. 3Statementlidrideqd 13083  mndbn0 13133
[Lang] p. 3Definitiondf-mnd 13119
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13100
[Lang] p. 5Equationgsumfzreidx 13543
[Lang] p. 6Definitionmulgnn0gsum 13334
[Lang] p. 7Definitiondfgrp2e 13230
[Levy] p. 338Axiomdf-clab 2183  df-clel 2192  df-cleq 2189
[Lopez-Astorga] p. 12Rule 1mptnan 1434
[Lopez-Astorga] p. 12Rule 2mptxor 1435
[Lopez-Astorga] p. 12Rule 3mtpxor 1437
[Margaris] p. 40Rule Cexlimiv 1612
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 854
[Margaris] p. 49Definitiondfbi2 388  dfordc 893  exalim 1516
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 652
[Margaris] p. 89Theorem 19.219.2 1652  r19.2m 3538
[Margaris] p. 89Theorem 19.319.3 1568  19.3h 1567  rr19.3v 2903
[Margaris] p. 89Theorem 19.5alcom 1492
[Margaris] p. 89Theorem 19.6alexdc 1633  alexim 1659
[Margaris] p. 89Theorem 19.7alnex 1513
[Margaris] p. 89Theorem 19.819.8a 1604  spsbe 1856
[Margaris] p. 89Theorem 19.919.9 1658  19.9h 1657  19.9v 1885  exlimd 1611
[Margaris] p. 89Theorem 19.11excom 1678  excomim 1677
[Margaris] p. 89Theorem 19.1219.12 1679  r19.12 2603
[Margaris] p. 90Theorem 19.14exnalim 1660
[Margaris] p. 90Theorem 19.15albi 1482  ralbi 2629
[Margaris] p. 90Theorem 19.1619.16 1569
[Margaris] p. 90Theorem 19.1719.17 1570
[Margaris] p. 90Theorem 19.18exbi 1618  rexbi 2630
[Margaris] p. 90Theorem 19.1919.19 1680
[Margaris] p. 90Theorem 19.20alim 1471  alimd 1535  alimdh 1481  alimdv 1893  ralimdaa 2563  ralimdv 2565  ralimdva 2564  ralimdvva 2566  sbcimdv 3055
[Margaris] p. 90Theorem 19.2119.21-2 1681  19.21 1597  19.21bi 1572  19.21h 1571  19.21ht 1595  19.21t 1596  19.21v 1887  alrimd 1624  alrimdd 1623  alrimdh 1493  alrimdv 1890  alrimi 1536  alrimih 1483  alrimiv 1888  alrimivv 1889  r19.21 2573  r19.21be 2588  r19.21bi 2585  r19.21t 2572  r19.21v 2574  ralrimd 2575  ralrimdv 2576  ralrimdva 2577  ralrimdvv 2581  ralrimdvva 2582  ralrimi 2568  ralrimiv 2569  ralrimiva 2570  ralrimivv 2578  ralrimivva 2579  ralrimivvva 2580  ralrimivw 2571  rexlimi 2607
[Margaris] p. 90Theorem 19.222alimdv 1895  2eximdv 1896  exim 1613  eximd 1626  eximdh 1625  eximdv 1894  rexim 2591  reximdai 2595  reximddv 2600  reximddv2 2602  reximdv 2598  reximdv2 2596  reximdva 2599  reximdvai 2597  reximi2 2593
[Margaris] p. 90Theorem 19.2319.23 1692  19.23bi 1606  19.23h 1512  19.23ht 1511  19.23t 1691  19.23v 1897  19.23vv 1898  exlimd2 1609  exlimdh 1610  exlimdv 1833  exlimdvv 1912  exlimi 1608  exlimih 1607  exlimiv 1612  exlimivv 1911  r19.23 2605  r19.23v 2606  rexlimd 2611  rexlimdv 2613  rexlimdv3a 2616  rexlimdva 2614  rexlimdva2 2617  rexlimdvaa 2615  rexlimdvv 2621  rexlimdvva 2622  rexlimdvw 2618  rexlimiv 2608  rexlimiva 2609  rexlimivv 2620
[Margaris] p. 90Theorem 19.24i19.24 1653
[Margaris] p. 90Theorem 19.2519.25 1640
[Margaris] p. 90Theorem 19.2619.26-2 1496  19.26-3an 1497  19.26 1495  r19.26-2 2626  r19.26-3 2627  r19.26 2623  r19.26m 2628
[Margaris] p. 90Theorem 19.2719.27 1575  19.27h 1574  19.27v 1914  r19.27av 2632  r19.27m 3547  r19.27mv 3548
[Margaris] p. 90Theorem 19.2819.28 1577  19.28h 1576  19.28v 1915  r19.28av 2633  r19.28m 3541  r19.28mv 3544  rr19.28v 2904
[Margaris] p. 90Theorem 19.2919.29 1634  19.29r 1635  19.29r2 1636  19.29x 1637  r19.29 2634  r19.29d2r 2641  r19.29r 2635
[Margaris] p. 90Theorem 19.3019.30dc 1641
[Margaris] p. 90Theorem 19.3119.31r 1695
[Margaris] p. 90Theorem 19.3219.32dc 1693  19.32r 1694  r19.32r 2643  r19.32vdc 2646  r19.32vr 2645
[Margaris] p. 90Theorem 19.3319.33 1498  19.33b2 1643  19.33bdc 1644
[Margaris] p. 90Theorem 19.3419.34 1698
[Margaris] p. 90Theorem 19.3519.35-1 1638  19.35i 1639
[Margaris] p. 90Theorem 19.3619.36-1 1687  19.36aiv 1916  19.36i 1686  r19.36av 2648
[Margaris] p. 90Theorem 19.3719.37-1 1688  19.37aiv 1689  r19.37 2649  r19.37av 2650
[Margaris] p. 90Theorem 19.3819.38 1690
[Margaris] p. 90Theorem 19.39i19.39 1654
[Margaris] p. 90Theorem 19.4019.40-2 1646  19.40 1645  r19.40 2651
[Margaris] p. 90Theorem 19.4119.41 1700  19.41h 1699  19.41v 1917  19.41vv 1918  19.41vvv 1919  19.41vvvv 1920  r19.41 2652  r19.41v 2653
[Margaris] p. 90Theorem 19.4219.42 1702  19.42h 1701  19.42v 1921  19.42vv 1926  19.42vvv 1927  19.42vvvv 1928  r19.42v 2654
[Margaris] p. 90Theorem 19.4319.43 1642  r19.43 2655
[Margaris] p. 90Theorem 19.4419.44 1696  r19.44av 2656  r19.44mv 3546
[Margaris] p. 90Theorem 19.4519.45 1697  r19.45av 2657  r19.45mv 3545
[Margaris] p. 110Exercise 2(b)eu1 2070
[Megill] p. 444Axiom C5ax-17 1540
[Megill] p. 445Lemma L12alequcom 1529  ax-10 1519
[Megill] p. 446Lemma L17equtrr 1724
[Megill] p. 446Lemma L19hbnae 1735
[Megill] p. 447Remark 9.1df-sb 1777  sbid 1788
[Megill] p. 448Scheme C5'ax-4 1524
[Megill] p. 448Scheme C6'ax-7 1462
[Megill] p. 448Scheme C8'ax-8 1518
[Megill] p. 448Scheme C9'ax-i12 1521
[Megill] p. 448Scheme C11'ax-10o 1730
[Megill] p. 448Scheme C12'ax-13 2169
[Megill] p. 448Scheme C13'ax-14 2170
[Megill] p. 448Scheme C15'ax-11o 1837
[Megill] p. 448Scheme C16'ax-16 1828
[Megill] p. 448Theorem 9.4dral1 1744  dral2 1745  drex1 1812  drex2 1746  drsb1 1813  drsb2 1855
[Megill] p. 449Theorem 9.7sbcom2 2006  sbequ 1854  sbid2v 2015
[Megill] p. 450Example in Appendixhba1 1554
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3072  rspsbca 3073  stdpc4 1789
[Mendelson] p. 69Axiom 5ra5 3078  stdpc5 1598
[Mendelson] p. 81Rule Cexlimiv 1612
[Mendelson] p. 95Axiom 6stdpc6 1717
[Mendelson] p. 95Axiom 7stdpc7 1784
[Mendelson] p. 231Exercise 4.10(k)inv1 3488
[Mendelson] p. 231Exercise 4.10(l)unv 3489
[Mendelson] p. 231Exercise 4.10(n)inssun 3404
[Mendelson] p. 231Exercise 4.10(o)df-nul 3452
[Mendelson] p. 231Exercise 4.10(q)inssddif 3405
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3295
[Mendelson] p. 231Definition of unionunssin 3403
[Mendelson] p. 235Exercise 4.12(c)univ 4512
[Mendelson] p. 235Exercise 4.12(d)pwv 3839
[Mendelson] p. 235Exercise 4.12(j)pwin 4318
[Mendelson] p. 235Exercise 4.12(k)pwunss 4319
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4320
[Mendelson] p. 235Exercise 4.12(n)uniin 3860
[Mendelson] p. 235Exercise 4.12(p)reli 4796
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5191
[Mendelson] p. 246Definition of successordf-suc 4407
[Mendelson] p. 254Proposition 4.22(b)xpen 6915
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6889  xpsneng 6890
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6895  xpcomeng 6896
[Mendelson] p. 254Proposition 4.22(e)xpassen 6898
[Mendelson] p. 255Exercise 4.39endisj 6892
[Mendelson] p. 255Exercise 4.41mapprc 6720
[Mendelson] p. 255Exercise 4.43mapsnen 6879
[Mendelson] p. 255Exercise 4.47xpmapen 6920
[Mendelson] p. 255Exercise 4.42(a)map0e 6754
[Mendelson] p. 255Exercise 4.42(b)map1 6880
[Mendelson] p. 258Exercise 4.56(c)djuassen 7300  djucomen 7299
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7298
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6534
[Monk1] p. 26Theorem 2.8(vii)ssin 3386
[Monk1] p. 33Theorem 3.2(i)ssrel 4752
[Monk1] p. 33Theorem 3.2(ii)eqrel 4753
[Monk1] p. 34Definition 3.3df-opab 4096
[Monk1] p. 36Theorem 3.7(i)coi1 5186  coi2 5187
[Monk1] p. 36Theorem 3.8(v)dm0 4881  rn0 4923
[Monk1] p. 36Theorem 3.7(ii)cnvi 5075
[Monk1] p. 37Theorem 3.13(i)relxp 4773
[Monk1] p. 37Theorem 3.13(x)dmxpm 4887  rnxpm 5100
[Monk1] p. 37Theorem 3.13(ii)0xp 4744  xp0 5090
[Monk1] p. 38Theorem 3.16(ii)ima0 5029
[Monk1] p. 38Theorem 3.16(viii)imai 5026
[Monk1] p. 39Theorem 3.17imaex 5025  imaexg 5024
[Monk1] p. 39Theorem 3.16(xi)imassrn 5021
[Monk1] p. 41Theorem 4.3(i)fnopfv 5695  funfvop 5677
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5607
[Monk1] p. 42Theorem 4.4(iii)fvelima 5615
[Monk1] p. 43Theorem 4.6funun 5303
[Monk1] p. 43Theorem 4.8(iv)dff13 5818  dff13f 5820
[Monk1] p. 46Theorem 4.15(v)funex 5788  funrnex 6180
[Monk1] p. 50Definition 5.4fniunfv 5812
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5154
[Monk1] p. 52Theorem 5.11(viii)ssint 3891
[Monk1] p. 52Definition 5.13 (i)1stval2 6222  df-1st 6207
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6223  df-2nd 6208
[Monk2] p. 105Axiom C4ax-5 1461
[Monk2] p. 105Axiom C7ax-8 1518
[Monk2] p. 105Axiom C8ax-11 1520  ax-11o 1837
[Monk2] p. 105Axiom (C8)ax11v 1841
[Monk2] p. 109Lemma 12ax-7 1462
[Monk2] p. 109Lemma 15equvin 1877  equvini 1772  eqvinop 4277
[Monk2] p. 113Axiom C5-1ax-17 1540
[Monk2] p. 113Axiom C5-2ax6b 1665
[Monk2] p. 113Axiom C5-3ax-7 1462
[Monk2] p. 114Lemma 22hba1 1554
[Monk2] p. 114Lemma 23hbia1 1566  nfia1 1594
[Monk2] p. 114Lemma 24hba2 1565  nfa2 1593
[Moschovakis] p. 2Chapter 2 df-stab 832  dftest 15806
[Munkres] p. 77Example 2distop 14405
[Munkres] p. 78Definition of basisdf-bases 14363  isbasis3g 14366
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12962  tgval2 14371
[Munkres] p. 79Remarktgcl 14384
[Munkres] p. 80Lemma 2.1tgval3 14378
[Munkres] p. 80Lemma 2.2tgss2 14399  tgss3 14398
[Munkres] p. 81Lemma 2.3basgen 14400  basgen2 14401
[Munkres] p. 89Definition of subspace topologyresttop 14490
[Munkres] p. 93Theorem 6.1(1)0cld 14432  topcld 14429
[Munkres] p. 93Theorem 6.1(3)uncld 14433
[Munkres] p. 94Definition of closureclsval 14431
[Munkres] p. 94Definition of interiorntrval 14430
[Munkres] p. 102Definition of continuous functiondf-cn 14508  iscn 14517  iscn2 14520
[Munkres] p. 107Theorem 7.2(g)cncnp 14550  cncnp2m 14551  cncnpi 14548  df-cnp 14509  iscnp 14519
[Munkres] p. 127Theorem 10.1metcn 14834
[Pierik], p. 8Section 2.2.1dfrex2fin 6973
[Pierik], p. 9Definition 2.4df-womni 7239
[Pierik], p. 9Definition 2.5df-markov 7227  omniwomnimkv 7242
[Pierik], p. 10Section 2.3dfdif3 3274
[Pierik], p. 14Definition 3.1df-omni 7210  exmidomniim 7216  finomni 7215
[Pierik], p. 15Section 3.1df-nninf 7195
[Pradic2025], p. 2Section 1.1nnnninfen 15752
[PradicBrown2022], p. 1Theorem 1exmidsbthr 15754
[PradicBrown2022], p. 2Remarkexmidpw 6978
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7280
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7281  exmidfodomrlemrALT 7282
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7224
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 15738  peano4nninf 15737
[PradicBrown2022], p. 5Lemma 3.5nninfall 15740
[PradicBrown2022], p. 5Theorem 3.6nninfsel 15748
[PradicBrown2022], p. 5Corollary 3.7nninfomni 15750
[PradicBrown2022], p. 5Definition 3.3nnsf 15736
[Quine] p. 16Definition 2.1df-clab 2183  rabid 2673
[Quine] p. 17Definition 2.1''dfsb7 2010
[Quine] p. 18Definition 2.7df-cleq 2189
[Quine] p. 19Definition 2.9df-v 2765
[Quine] p. 34Theorem 5.1abeq2 2305
[Quine] p. 35Theorem 5.2abid2 2317  abid2f 2365
[Quine] p. 40Theorem 6.1sb5 1902
[Quine] p. 40Theorem 6.2sb56 1900  sb6 1901
[Quine] p. 41Theorem 6.3df-clel 2192
[Quine] p. 41Theorem 6.4eqid 2196
[Quine] p. 41Theorem 6.5eqcom 2198
[Quine] p. 42Theorem 6.6df-sbc 2990
[Quine] p. 42Theorem 6.7dfsbcq 2991  dfsbcq2 2992
[Quine] p. 43Theorem 6.8vex 2766
[Quine] p. 43Theorem 6.9isset 2769
[Quine] p. 44Theorem 7.3spcgf 2846  spcgv 2851  spcimgf 2844
[Quine] p. 44Theorem 6.11spsbc 3001  spsbcd 3002
[Quine] p. 44Theorem 6.12elex 2774
[Quine] p. 44Theorem 6.13elab 2908  elabg 2910  elabgf 2906
[Quine] p. 44Theorem 6.14noel 3455
[Quine] p. 48Theorem 7.2snprc 3688
[Quine] p. 48Definition 7.1df-pr 3630  df-sn 3629
[Quine] p. 49Theorem 7.4snss 3758  snssg 3757
[Quine] p. 49Theorem 7.5prss 3779  prssg 3780
[Quine] p. 49Theorem 7.6prid1 3729  prid1g 3727  prid2 3730  prid2g 3728  snid 3654  snidg 3652
[Quine] p. 51Theorem 7.12snexg 4218  snexprc 4220
[Quine] p. 51Theorem 7.13prexg 4245
[Quine] p. 53Theorem 8.2unisn 3856  unisng 3857
[Quine] p. 53Theorem 8.3uniun 3859
[Quine] p. 54Theorem 8.6elssuni 3868
[Quine] p. 54Theorem 8.7uni0 3867
[Quine] p. 56Theorem 8.17uniabio 5230
[Quine] p. 56Definition 8.18dfiota2 5221
[Quine] p. 57Theorem 8.19iotaval 5231
[Quine] p. 57Theorem 8.22iotanul 5235
[Quine] p. 58Theorem 8.23euiotaex 5236
[Quine] p. 58Definition 9.1df-op 3632
[Quine] p. 61Theorem 9.5opabid 4291  opabidw 4292  opelopab 4307  opelopaba 4301  opelopabaf 4309  opelopabf 4310  opelopabg 4303  opelopabga 4298  opelopabgf 4305  oprabid 5957
[Quine] p. 64Definition 9.11df-xp 4670
[Quine] p. 64Definition 9.12df-cnv 4672
[Quine] p. 64Definition 9.15df-id 4329
[Quine] p. 65Theorem 10.3fun0 5317
[Quine] p. 65Theorem 10.4funi 5291
[Quine] p. 65Theorem 10.5funsn 5307  funsng 5305
[Quine] p. 65Definition 10.1df-fun 5261
[Quine] p. 65Definition 10.2args 5039  dffv4g 5558
[Quine] p. 68Definition 10.11df-fv 5267  fv2 5556
[Quine] p. 124Theorem 17.3nn0opth2 10833  nn0opth2d 10832  nn0opthd 10831
[Quine] p. 284Axiom 39(vi)funimaex 5344  funimaexg 5343
[Roman] p. 18Part Preliminariesdf-rng 13565
[Roman] p. 19Part Preliminariesdf-ring 13630
[Rudin] p. 164Equation 27efcan 11858
[Rudin] p. 164Equation 30efzval 11865
[Rudin] p. 167Equation 48absefi 11951
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1437
[Sanford] p. 39Rule 4mptxor 1435
[Sanford] p. 40Rule 1mptnan 1434
[Schechter] p. 51Definition of antisymmetryintasym 5055
[Schechter] p. 51Definition of irreflexivityintirr 5057
[Schechter] p. 51Definition of symmetrycnvsym 5054
[Schechter] p. 51Definition of transitivitycotr 5052
[Schechter] p. 187Definition of "ring with unit"isring 13632
[Schechter] p. 428Definition 15.35bastop1 14403
[Stoll] p. 13Definition of symmetric differencesymdif1 3429
[Stoll] p. 16Exercise 4.40dif 3523  dif0 3522
[Stoll] p. 16Exercise 4.8difdifdirss 3536
[Stoll] p. 19Theorem 5.2(13)undm 3422
[Stoll] p. 19Theorem 5.2(13')indmss 3423
[Stoll] p. 20Remarkinvdif 3406
[Stoll] p. 25Definition of ordered tripledf-ot 3633
[Stoll] p. 43Definitionuniiun 3971
[Stoll] p. 44Definitionintiin 3972
[Stoll] p. 45Definitiondf-iin 3920
[Stoll] p. 45Definition indexed uniondf-iun 3919
[Stoll] p. 176Theorem 3.4(27)imandc 890  imanst 889
[Stoll] p. 262Example 4.1symdif1 3429
[Suppes] p. 22Theorem 2eq0 3470
[Suppes] p. 22Theorem 4eqss 3199  eqssd 3201  eqssi 3200
[Suppes] p. 23Theorem 5ss0 3492  ss0b 3491
[Suppes] p. 23Theorem 6sstr 3192
[Suppes] p. 25Theorem 12elin 3347  elun 3305
[Suppes] p. 26Theorem 15inidm 3373
[Suppes] p. 26Theorem 16in0 3486
[Suppes] p. 27Theorem 23unidm 3307
[Suppes] p. 27Theorem 24un0 3485
[Suppes] p. 27Theorem 25ssun1 3327
[Suppes] p. 27Theorem 26ssequn1 3334
[Suppes] p. 27Theorem 27unss 3338
[Suppes] p. 27Theorem 28indir 3413
[Suppes] p. 27Theorem 29undir 3414
[Suppes] p. 28Theorem 32difid 3520  difidALT 3521
[Suppes] p. 29Theorem 33difin 3401
[Suppes] p. 29Theorem 34indif 3407
[Suppes] p. 29Theorem 35undif1ss 3526
[Suppes] p. 29Theorem 36difun2 3531
[Suppes] p. 29Theorem 37difin0 3525
[Suppes] p. 29Theorem 38disjdif 3524
[Suppes] p. 29Theorem 39difundi 3416
[Suppes] p. 29Theorem 40difindiss 3418
[Suppes] p. 30Theorem 41nalset 4164
[Suppes] p. 39Theorem 61uniss 3861
[Suppes] p. 39Theorem 65uniop 4289
[Suppes] p. 41Theorem 70intsn 3910
[Suppes] p. 42Theorem 71intpr 3907  intprg 3908
[Suppes] p. 42Theorem 73op1stb 4514  op1stbg 4515
[Suppes] p. 42Theorem 78intun 3906
[Suppes] p. 44Definition 15(a)dfiun2 3951  dfiun2g 3949
[Suppes] p. 44Definition 15(b)dfiin2 3952
[Suppes] p. 47Theorem 86elpw 3612  elpw2 4191  elpw2g 4190  elpwg 3614
[Suppes] p. 47Theorem 87pwid 3621
[Suppes] p. 47Theorem 89pw0 3770
[Suppes] p. 48Theorem 90pwpw0ss 3835
[Suppes] p. 52Theorem 101xpss12 4771
[Suppes] p. 52Theorem 102xpindi 4802  xpindir 4803
[Suppes] p. 52Theorem 103xpundi 4720  xpundir 4721
[Suppes] p. 54Theorem 105elirrv 4585
[Suppes] p. 58Theorem 2relss 4751
[Suppes] p. 59Theorem 4eldm 4864  eldm2 4865  eldm2g 4863  eldmg 4862
[Suppes] p. 59Definition 3df-dm 4674
[Suppes] p. 60Theorem 6dmin 4875
[Suppes] p. 60Theorem 8rnun 5079
[Suppes] p. 60Theorem 9rnin 5080
[Suppes] p. 60Definition 4dfrn2 4855
[Suppes] p. 61Theorem 11brcnv 4850  brcnvg 4848
[Suppes] p. 62Equation 5elcnv 4844  elcnv2 4845
[Suppes] p. 62Theorem 12relcnv 5048
[Suppes] p. 62Theorem 15cnvin 5078
[Suppes] p. 62Theorem 16cnvun 5076
[Suppes] p. 63Theorem 20co02 5184
[Suppes] p. 63Theorem 21dmcoss 4936
[Suppes] p. 63Definition 7df-co 4673
[Suppes] p. 64Theorem 26cnvco 4852
[Suppes] p. 64Theorem 27coass 5189
[Suppes] p. 65Theorem 31resundi 4960
[Suppes] p. 65Theorem 34elima 5015  elima2 5016  elima3 5017  elimag 5014
[Suppes] p. 65Theorem 35imaundi 5083
[Suppes] p. 66Theorem 40dminss 5085
[Suppes] p. 66Theorem 41imainss 5086
[Suppes] p. 67Exercise 11cnvxp 5089
[Suppes] p. 81Definition 34dfec2 6604
[Suppes] p. 82Theorem 72elec 6642  elecg 6641
[Suppes] p. 82Theorem 73erth 6647  erth2 6648
[Suppes] p. 89Theorem 96map0b 6755
[Suppes] p. 89Theorem 97map0 6757  map0g 6756
[Suppes] p. 89Theorem 98mapsn 6758
[Suppes] p. 89Theorem 99mapss 6759
[Suppes] p. 92Theorem 1enref 6833  enrefg 6832
[Suppes] p. 92Theorem 2ensym 6849  ensymb 6848  ensymi 6850
[Suppes] p. 92Theorem 3entr 6852
[Suppes] p. 92Theorem 4unen 6884
[Suppes] p. 94Theorem 15endom 6831
[Suppes] p. 94Theorem 16ssdomg 6846
[Suppes] p. 94Theorem 17domtr 6853
[Suppes] p. 95Theorem 18isbth 7042
[Suppes] p. 98Exercise 4fundmen 6874  fundmeng 6875
[Suppes] p. 98Exercise 6xpdom3m 6902
[Suppes] p. 130Definition 3df-tr 4133
[Suppes] p. 132Theorem 9ssonuni 4525
[Suppes] p. 134Definition 6df-suc 4407
[Suppes] p. 136Theorem Schema 22findes 4640  finds 4637  finds1 4639  finds2 4638
[Suppes] p. 162Definition 5df-ltnqqs 7437  df-ltpq 7430
[Suppes] p. 228Theorem Schema 61onintss 4426
[TakeutiZaring] p. 8Axiom 1ax-ext 2178
[TakeutiZaring] p. 13Definition 4.5df-cleq 2189
[TakeutiZaring] p. 13Proposition 4.6df-clel 2192
[TakeutiZaring] p. 13Proposition 4.9cvjust 2191
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2214
[TakeutiZaring] p. 14Definition 4.16df-oprab 5929
[TakeutiZaring] p. 14Proposition 4.14ru 2988
[TakeutiZaring] p. 15Exercise 1elpr 3644  elpr2 3645  elprg 3643
[TakeutiZaring] p. 15Exercise 2elsn 3639  elsn2 3657  elsn2g 3656  elsng 3638  velsn 3640
[TakeutiZaring] p. 15Exercise 3elop 4265
[TakeutiZaring] p. 15Exercise 4sneq 3634  sneqr 3791
[TakeutiZaring] p. 15Definition 5.1dfpr2 3642  dfsn2 3637
[TakeutiZaring] p. 16Axiom 3uniex 4473
[TakeutiZaring] p. 16Exercise 6opth 4271
[TakeutiZaring] p. 16Exercise 8rext 4249
[TakeutiZaring] p. 16Corollary 5.8unex 4477  unexg 4479
[TakeutiZaring] p. 16Definition 5.3dftp2 3672
[TakeutiZaring] p. 16Definition 5.5df-uni 3841
[TakeutiZaring] p. 16Definition 5.6df-in 3163  df-un 3161
[TakeutiZaring] p. 16Proposition 5.7unipr 3854  uniprg 3855
[TakeutiZaring] p. 17Axiom 4vpwex 4213
[TakeutiZaring] p. 17Exercise 1eltp 3671
[TakeutiZaring] p. 17Exercise 5elsuc 4442  elsucg 4440  sstr2 3191
[TakeutiZaring] p. 17Exercise 6uncom 3308
[TakeutiZaring] p. 17Exercise 7incom 3356
[TakeutiZaring] p. 17Exercise 8unass 3321
[TakeutiZaring] p. 17Exercise 9inass 3374
[TakeutiZaring] p. 17Exercise 10indi 3411
[TakeutiZaring] p. 17Exercise 11undi 3412
[TakeutiZaring] p. 17Definition 5.9ssalel 3172
[TakeutiZaring] p. 17Definition 5.10df-pw 3608
[TakeutiZaring] p. 18Exercise 7unss2 3335
[TakeutiZaring] p. 18Exercise 9df-ss 3170  dfss2 3174  sseqin2 3383
[TakeutiZaring] p. 18Exercise 10ssid 3204
[TakeutiZaring] p. 18Exercise 12inss1 3384  inss2 3385
[TakeutiZaring] p. 18Exercise 13nssr 3244
[TakeutiZaring] p. 18Exercise 15unieq 3849
[TakeutiZaring] p. 18Exercise 18sspwb 4250
[TakeutiZaring] p. 18Exercise 19pweqb 4257
[TakeutiZaring] p. 20Definitiondf-rab 2484
[TakeutiZaring] p. 20Corollary 5.160ex 4161
[TakeutiZaring] p. 20Definition 5.12df-dif 3159
[TakeutiZaring] p. 20Definition 5.14dfnul2 3453
[TakeutiZaring] p. 20Proposition 5.15difid 3520  difidALT 3521
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3464
[TakeutiZaring] p. 21Theorem 5.22setind 4576
[TakeutiZaring] p. 21Definition 5.20df-v 2765
[TakeutiZaring] p. 21Proposition 5.21vprc 4166
[TakeutiZaring] p. 22Exercise 10ss 3490
[TakeutiZaring] p. 22Exercise 3ssex 4171  ssexg 4173
[TakeutiZaring] p. 22Exercise 4inex1 4168
[TakeutiZaring] p. 22Exercise 5ruv 4587
[TakeutiZaring] p. 22Exercise 6elirr 4578
[TakeutiZaring] p. 22Exercise 7ssdif0im 3516
[TakeutiZaring] p. 22Exercise 11difdif 3289
[TakeutiZaring] p. 22Exercise 13undif3ss 3425
[TakeutiZaring] p. 22Exercise 14difss 3290
[TakeutiZaring] p. 22Exercise 15sscon 3298
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2480
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2481
[TakeutiZaring] p. 23Proposition 6.2xpex 4779  xpexg 4778  xpexgALT 6199
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4671
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5323
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5477  fun11 5326
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5270  svrelfun 5324
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4854
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4856
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4676
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4677
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4673
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5125  dfrel2 5121
[TakeutiZaring] p. 25Exercise 3xpss 4772
[TakeutiZaring] p. 25Exercise 5relun 4781
[TakeutiZaring] p. 25Exercise 6reluni 4787
[TakeutiZaring] p. 25Exercise 9inxp 4801
[TakeutiZaring] p. 25Exercise 12relres 4975
[TakeutiZaring] p. 25Exercise 13opelres 4952  opelresg 4954
[TakeutiZaring] p. 25Exercise 14dmres 4968
[TakeutiZaring] p. 25Exercise 15resss 4971
[TakeutiZaring] p. 25Exercise 17resabs1 4976
[TakeutiZaring] p. 25Exercise 18funres 5300
[TakeutiZaring] p. 25Exercise 24relco 5169
[TakeutiZaring] p. 25Exercise 29funco 5299
[TakeutiZaring] p. 25Exercise 30f1co 5478
[TakeutiZaring] p. 26Definition 6.10eu2 2089
[TakeutiZaring] p. 26Definition 6.11df-fv 5267  fv3 5584
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5209  cnvexg 5208
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4933  dmexg 4931
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4934  rnexg 4932
[TakeutiZaring] p. 27Corollary 6.13funfvex 5578
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5588  tz6.12 5589  tz6.12c 5591
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5552
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5262
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5263
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5265  wfo 5257
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5264  wf1 5256
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5266  wf1o 5258
[TakeutiZaring] p. 28Exercise 4eqfnfv 5662  eqfnfv2 5663  eqfnfv2f 5666
[TakeutiZaring] p. 28Exercise 5fvco 5634
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5787  fnexALT 6177
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5786  resfunexgALT 6174
[TakeutiZaring] p. 29Exercise 9funimaex 5344  funimaexg 5343
[TakeutiZaring] p. 29Definition 6.18df-br 4035
[TakeutiZaring] p. 30Definition 6.21eliniseg 5040  iniseg 5042
[TakeutiZaring] p. 30Definition 6.22df-eprel 4325
[TakeutiZaring] p. 32Definition 6.28df-isom 5268
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5860
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5861
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5866
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5868
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5876
[TakeutiZaring] p. 35Notationwtr 4132
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4390
[TakeutiZaring] p. 35Definition 7.1dftr3 4136
[TakeutiZaring] p. 36Proposition 7.4ordwe 4613
[TakeutiZaring] p. 36Proposition 7.6ordelord 4417
[TakeutiZaring] p. 37Proposition 7.9ordin 4421
[TakeutiZaring] p. 38Corollary 7.15ordsson 4529
[TakeutiZaring] p. 38Definition 7.11df-on 4404
[TakeutiZaring] p. 38Proposition 7.12ordon 4523
[TakeutiZaring] p. 38Proposition 7.13onprc 4589
[TakeutiZaring] p. 39Theorem 7.17tfi 4619
[TakeutiZaring] p. 40Exercise 7dftr2 4134
[TakeutiZaring] p. 40Exercise 11unon 4548
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4524
[TakeutiZaring] p. 40Proposition 7.20elssuni 3868
[TakeutiZaring] p. 41Definition 7.22df-suc 4407
[TakeutiZaring] p. 41Proposition 7.23sssucid 4451  sucidg 4452
[TakeutiZaring] p. 41Proposition 7.24onsuc 4538
[TakeutiZaring] p. 42Exercise 1df-ilim 4405
[TakeutiZaring] p. 42Exercise 8onsucssi 4543  ordelsuc 4542
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4631
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4632
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4633
[TakeutiZaring] p. 43Axiom 7omex 4630
[TakeutiZaring] p. 43Theorem 7.32ordom 4644
[TakeutiZaring] p. 43Corollary 7.31find 4636
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4634
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4635
[TakeutiZaring] p. 44Exercise 2int0 3889
[TakeutiZaring] p. 44Exercise 3trintssm 4148
[TakeutiZaring] p. 44Exercise 4intss1 3890
[TakeutiZaring] p. 44Exercise 6onintonm 4554
[TakeutiZaring] p. 44Definition 7.35df-int 3876
[TakeutiZaring] p. 47Lemma 1tfrlem1 6375
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6432  tfri1d 6402
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6433  tfri2d 6403
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6434
[TakeutiZaring] p. 50Exercise 3smoiso 6369
[TakeutiZaring] p. 50Definition 7.46df-smo 6353
[TakeutiZaring] p. 56Definition 8.1oasuc 6531
[TakeutiZaring] p. 57Proposition 8.2oacl 6527
[TakeutiZaring] p. 57Proposition 8.3oa0 6524
[TakeutiZaring] p. 57Proposition 8.16omcl 6528
[TakeutiZaring] p. 58Proposition 8.4nnaord 6576  nnaordi 6575
[TakeutiZaring] p. 59Proposition 8.6iunss2 3962  uniss2 3871
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6537
[TakeutiZaring] p. 59Proposition 8.9nnacl 6547
[TakeutiZaring] p. 62Exercise 5oaword1 6538
[TakeutiZaring] p. 62Definition 8.15om0 6525  omsuc 6539
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6548
[TakeutiZaring] p. 63Proposition 8.19nnmord 6584  nnmordi 6583
[TakeutiZaring] p. 67Definition 8.30oei0 6526
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7265
[TakeutiZaring] p. 88Exercise 1en0 6863
[TakeutiZaring] p. 90Proposition 10.20nneneq 6927
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6928
[TakeutiZaring] p. 91Definition 10.29df-fin 6811  isfi 6829
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6899
[TakeutiZaring] p. 95Definition 10.42df-map 6718
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6905
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6918
[Tarski] p. 67Axiom B5ax-4 1524
[Tarski] p. 68Lemma 6equid 1715
[Tarski] p. 69Lemma 7equcomi 1718
[Tarski] p. 70Lemma 14spim 1752  spime 1755  spimeh 1753  spimh 1751
[Tarski] p. 70Lemma 16ax-11 1520  ax-11o 1837  ax11i 1728
[Tarski] p. 70Lemmas 16 and 17sb6 1901
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1540
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2169  ax-14 2170
[WhiteheadRussell] p. 96Axiom *1.3olc 712
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 728
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 757
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 766
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 790
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 838
[WhiteheadRussell] p. 101Theorem *2.06barbara 2143  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 738
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 837
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 886
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 844
[WhiteheadRussell] p. 102Theorem *2.15con1dc 857
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 854
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 856
[WhiteheadRussell] p. 104Theorem *2.2orc 713
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 776
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 894
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 908
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 769
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 770
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 805
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 806
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 804
[WhiteheadRussell] p. 105Definition *2.33df-3or 981
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 779
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 777
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 778
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 739
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 740
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 868  pm2.5gdc 867
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 863
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 741
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 742
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 743
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 656
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 657
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 723
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 892
[WhiteheadRussell] p. 107Theorem *2.55orel1 726
[WhiteheadRussell] p. 107Theorem *2.56orel2 727
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 866
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 749
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 801
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 802
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 660
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 714  pm2.67 744
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 870  pm2.521gdc 869
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 748
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 811
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 895
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 916
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 807
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 808
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 810
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 809
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 812
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 813
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 906
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 755
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 959
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 960
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 961
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 754
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 694
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 861
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 860
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 690
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 756  pm3.44 716
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 786
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 872
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 873
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 891
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 695
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 954  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 758  pm4.25 759
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 819
[WhiteheadRussell] p. 118Theorem *4.31orcom 729
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 768
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 793
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 823
[WhiteheadRussell] p. 118Definition *4.34df-3an 982
[WhiteheadRussell] p. 119Theorem *4.41ordi 817
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 973
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 951
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 780
[WhiteheadRussell] p. 119Theorem *4.45orabs 815  pm4.45 785  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1495
[WhiteheadRussell] p. 120Theorem *4.5anordc 958
[WhiteheadRussell] p. 120Theorem *4.6imordc 898  imorr 722
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 900
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 751
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 752
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 903
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 940
[WhiteheadRussell] p. 120Theorem *4.56ioran 753  pm4.56 781
[WhiteheadRussell] p. 120Theorem *4.57orandc 941  oranim 782
[WhiteheadRussell] p. 120Theorem *4.61annimim 687
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 899
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 887
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 901
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 688
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 902
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 888
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 828
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 745
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 711  pm4.77 800
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 783
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 904
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 708
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 909
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 952
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 953
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 910
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 911
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 913
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 912
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1400
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 829
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 905
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1405  pm5.18dc 884
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 707
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 696
[WhiteheadRussell] p. 124Theorem *5.22xordc 1403
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1408
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1409
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 896
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 927  pm5.6r 928
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 956
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 918
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 926
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 803
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 919
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 914
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 795
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 947
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 948
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 963
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 964
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1649
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1499
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1646
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1910
[WhiteheadRussell] p. 175Definition *14.02df-eu 2048
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2448
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2449
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2902
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3046
[WhiteheadRussell] p. 190Theorem *14.22iota4 5239
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5240
[WhiteheadRussell] p. 192Theorem *14.26eupick 2124  eupickbi 2127
[WhiteheadRussell] p. 235Definition *30.01df-fv 5267
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7269

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]