Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
---|
[AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7116 fidcenum 6957 |
[AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 6957 |
[AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7116 |
[AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12428 |
[AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 6931 |
[AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 6919 |
[AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12443 |
[AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12445 |
[AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12434 znnen 12401 |
[AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12446 |
[AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12447 |
[AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10758 |
[AczelRathjen], p.
183 | Chapter 20 | ax-setind 4538 |
[Apostol] p. 18 | Theorem
I.1 | addcan 8139 addcan2d 8144 addcan2i 8142 addcand 8143 addcani 8141 |
[Apostol] p. 18 | Theorem
I.2 | negeu 8150 |
[Apostol] p. 18 | Theorem
I.3 | negsub 8207 negsubd 8276 negsubi 8237 |
[Apostol] p. 18 | Theorem
I.4 | negneg 8209 negnegd 8261 negnegi 8229 |
[Apostol] p. 18 | Theorem
I.5 | subdi 8344 subdid 8373 subdii 8366 subdir 8345 subdird 8374 subdiri 8367 |
[Apostol] p. 18 | Theorem
I.6 | mul01 8348 mul01d 8352 mul01i 8350 mul02 8346 mul02d 8351 mul02i 8349 |
[Apostol] p. 18 | Theorem
I.9 | divrecapd 8752 |
[Apostol] p. 18 | Theorem
I.10 | recrecapi 8703 |
[Apostol] p. 18 | Theorem
I.12 | mul2neg 8357 mul2negd 8372 mul2negi 8365 mulneg1 8354 mulneg1d 8370 mulneg1i 8363 |
[Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 13318 |
[Apostol] p. 18 | Theorem
I.15 | divdivdivap 8672 |
[Apostol] p. 20 | Axiom
7 | rpaddcl 9679 rpaddcld 9714 rpmulcl 9680 rpmulcld 9715 |
[Apostol] p. 20 | Axiom
9 | 0nrp 9691 |
[Apostol] p. 20 | Theorem
I.17 | lttri 8064 |
[Apostol] p. 20 | Theorem
I.18 | ltadd1d 8497 ltadd1dd 8515 ltadd1i 8461 |
[Apostol] p. 20 | Theorem
I.19 | ltmul1 8551 ltmul1a 8550 ltmul1i 8879 ltmul1ii 8887 ltmul2 8815 ltmul2d 9741 ltmul2dd 9755 ltmul2i 8882 |
[Apostol] p. 20 | Theorem
I.21 | 0lt1 8086 |
[Apostol] p. 20 | Theorem
I.23 | lt0neg1 8427 lt0neg1d 8474 ltneg 8421 ltnegd 8482 ltnegi 8452 |
[Apostol] p. 20 | Theorem
I.25 | lt2add 8404 lt2addd 8526 lt2addi 8469 |
[Apostol] p.
20 | Definition of positive numbers | df-rp 9656 |
[Apostol] p. 21 | Exercise
4 | recgt0 8809 recgt0d 8893 recgt0i 8865 recgt0ii 8866 |
[Apostol] p.
22 | Definition of integers | df-z 9256 |
[Apostol] p.
22 | Definition of rationals | df-q 9622 |
[Apostol] p. 24 | Theorem
I.26 | supeuti 6995 |
[Apostol] p. 26 | Theorem
I.29 | arch 9175 |
[Apostol] p. 28 | Exercise
2 | btwnz 9374 |
[Apostol] p. 28 | Exercise
3 | nnrecl 9176 |
[Apostol] p. 28 | Exercise
6 | qbtwnre 10259 |
[Apostol] p. 28 | Exercise
10(a) | zeneo 11878 zneo 9356 |
[Apostol] p. 29 | Theorem
I.35 | resqrtth 11042 sqrtthi 11130 |
[Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 8924 |
[Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12039 |
[Apostol] p.
363 | Remark | absgt0api 11157 |
[Apostol] p.
363 | Example | abssubd 11204 abssubi 11161 |
[ApostolNT] p.
14 | Definition | df-dvds 11797 |
[ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 11813 |
[ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 11837 |
[ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 11833 |
[ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 11827 |
[ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 11829 |
[ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 11814 |
[ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 11815 |
[ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 11820 |
[ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 11853 |
[ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 11855 |
[ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 11857 |
[ApostolNT] p.
15 | Definition | dfgcd2 12017 |
[ApostolNT] p.
16 | Definition | isprm2 12119 |
[ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12094 |
[ApostolNT] p.
16 | Theorem 1.7 | prminf 12458 |
[ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 11976 |
[ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12018 |
[ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12020 |
[ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 11990 |
[ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 11983 |
[ApostolNT] p.
17 | Theorem 1.8 | coprm 12146 |
[ApostolNT] p.
17 | Theorem 1.9 | euclemma 12148 |
[ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12368 |
[ApostolNT] p.
19 | Theorem 1.14 | divalg 11931 |
[ApostolNT] p.
20 | Theorem 1.15 | eucalg 12061 |
[ApostolNT] p.
25 | Definition | df-phi 12213 |
[ApostolNT] p.
26 | Theorem 2.2 | phisum 12242 |
[ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12224 |
[ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12228 |
[ApostolNT] p.
104 | Definition | congr 12102 |
[ApostolNT] p.
106 | Remark | dvdsval3 11800 |
[ApostolNT] p.
106 | Definition | moddvds 11808 |
[ApostolNT] p.
107 | Example 2 | mod2eq0even 11885 |
[ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 11886 |
[ApostolNT] p.
107 | Example 4 | zmod1congr 10343 |
[ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10380 |
[ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10649 |
[ApostolNT] p.
108 | Theorem 5.3 | modmulconst 11832 |
[ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12105 |
[ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12107 |
[ApostolNT] p.
113 | Theorem 5.17 | eulerth 12235 |
[ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12253 |
[ApostolNT] p.
114 | Theorem 5.19 | fermltl 12236 |
[ApostolNT] p.
179 | Definition | df-lgs 14438 lgsprme0 14482 |
[ApostolNT] p.
180 | Example 1 | 1lgs 14483 |
[ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 14459 |
[ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 14474 |
[ApostolNT] p.
181 | Theorem 9.4 | m1lgs 14491 |
[ApostolNT] p.
188 | Definition | df-lgs 14438 lgs1 14484 |
[ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 14475 |
[ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 14477 |
[ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 14485 |
[ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 14486 |
[Bauer] p. 482 | Section
1.2 | pm2.01 616 pm2.65 659 |
[Bauer] p. 483 | Theorem
1.3 | acexmid 5876 onsucelsucexmidlem 4530 |
[Bauer], p.
481 | Section 1.1 | pwtrufal 14786 |
[Bauer], p.
483 | Definition | n0rf 3437 |
[Bauer], p. 483 | Theorem
1.2 | 2irrexpq 14433 2irrexpqap 14435 |
[Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6878 |
[Bauer], p. 494 | Theorem
5.5 | ivthinc 14160 |
[BauerHanson], p.
27 | Proposition 5.2 | cnstab 8604 |
[BauerSwan], p.
14 | Remark | 0ct 7108 ctm 7110 |
[BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 14789 |
[BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7116 |
[BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7502 |
[BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7415 |
[BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7504 |
[BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7538 addlocpr 7537 |
[BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7564 |
[BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7567 |
[BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7572 |
[BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
[BellMachover] p.
97 | Definition 10.1 | df-eu 2029 |
[BellMachover] p.
460 | Notation | df-mo 2030 |
[BellMachover] p.
460 | Definition | mo3 2080 mo3h 2079 |
[BellMachover] p.
462 | Theorem 1.1 | bm1.1 2162 |
[BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4126 |
[BellMachover] p.
466 | Axiom Pow | axpow3 4179 |
[BellMachover] p.
466 | Axiom Union | axun2 4437 |
[BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4543 |
[BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4386 |
[BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4546 |
[BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4497 |
[BellMachover] p.
471 | Definition of Lim | df-ilim 4371 |
[BellMachover] p.
472 | Axiom Inf | zfinf2 4590 |
[BellMachover] p.
473 | Theorem 2.8 | limom 4615 |
[Bobzien] p.
116 | Statement T3 | stoic3 1431 |
[Bobzien] p.
117 | Statement T2 | stoic2a 1429 |
[Bobzien] p.
117 | Statement T4 | stoic4a 1432 |
[Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1427 |
[BourbakiAlg1] p.
1 | Definition 1 | df-mgm 12780 |
[BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 12813 |
[BourbakiAlg1] p.
12 | Definition 2 | df-mnd 12823 |
[BourbakiAlg1] p.
92 | Definition 1 | df-ring 13186 |
[BourbakiEns] p.
| Proposition 8 | fcof1 5786 fcofo 5787 |
[BourbakiTop1] p.
| Remark | xnegmnf 9831 xnegpnf 9830 |
[BourbakiTop1] p.
| Remark | rexneg 9832 |
[BourbakiTop1] p.
| Proposition | ishmeo 13843 |
[BourbakiTop1] p.
| Property V_i | ssnei2 13696 |
[BourbakiTop1] p.
| Property V_ii | innei 13702 |
[BourbakiTop1] p.
| Property V_iv | neissex 13704 |
[BourbakiTop1] p.
| Proposition 1 | neipsm 13693 neiss 13689 |
[BourbakiTop1] p.
| Proposition 2 | cnptopco 13761 |
[BourbakiTop1] p.
| Proposition 4 | imasnopn 13838 |
[BourbakiTop1] p.
| Property V_iii | elnei 13691 |
[BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 13537 |
[Bruck] p. 1 | Section
I.1 | df-mgm 12780 |
[Bruck] p. 23 | Section
II.1 | df-sgrp 12813 |
[Bruck] p. 28 | Theorem
3.2 | dfgrp3m 12974 |
[ChoquetDD] p.
2 | Definition of mapping | df-mpt 4068 |
[Cohen] p.
301 | Remark | relogoprlem 14328 |
[Cohen] p. 301 | Property
2 | relogmul 14329 relogmuld 14344 |
[Cohen] p. 301 | Property
3 | relogdiv 14330 relogdivd 14345 |
[Cohen] p. 301 | Property
4 | relogexp 14332 |
[Cohen] p. 301 | Property
1a | log1 14326 |
[Cohen] p. 301 | Property
1b | loge 14327 |
[Cohen4] p.
348 | Observation | relogbcxpbap 14422 |
[Cohen4] p.
352 | Definition | rpelogb 14406 |
[Cohen4] p. 361 | Property
2 | rprelogbmul 14412 |
[Cohen4] p. 361 | Property
3 | logbrec 14417 rprelogbdiv 14414 |
[Cohen4] p. 361 | Property
4 | rplogbreexp 14410 |
[Cohen4] p. 361 | Property
6 | relogbexpap 14415 |
[Cohen4] p. 361 | Property
1(a) | rplogbid1 14404 |
[Cohen4] p. 361 | Property
1(b) | rplogb1 14405 |
[Cohen4] p.
367 | Property | rplogbchbase 14407 |
[Cohen4] p. 377 | Property
2 | logblt 14419 |
[Crosilla] p. | Axiom
1 | ax-ext 2159 |
[Crosilla] p. | Axiom
2 | ax-pr 4211 |
[Crosilla] p. | Axiom
3 | ax-un 4435 |
[Crosilla] p. | Axiom
4 | ax-nul 4131 |
[Crosilla] p. | Axiom
5 | ax-iinf 4589 |
[Crosilla] p. | Axiom
6 | ru 2963 |
[Crosilla] p. | Axiom
8 | ax-pow 4176 |
[Crosilla] p. | Axiom
9 | ax-setind 4538 |
[Crosilla], p. | Axiom
6 | ax-sep 4123 |
[Crosilla], p. | Axiom
7 | ax-coll 4120 |
[Crosilla], p. | Axiom
7' | repizf 4121 |
[Crosilla], p. | Theorem
is stated | ordtriexmid 4522 |
[Crosilla], p. | Axiom
of choice implies instances | acexmid 5876 |
[Crosilla], p.
| Definition of ordinal | df-iord 4368 |
[Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4536 |
[Eisenberg] p.
67 | Definition 5.3 | df-dif 3133 |
[Eisenberg] p.
82 | Definition 6.3 | df-iom 4592 |
[Eisenberg] p.
125 | Definition 8.21 | df-map 6652 |
[Enderton] p. 18 | Axiom
of Empty Set | axnul 4130 |
[Enderton] p.
19 | Definition | df-tp 3602 |
[Enderton] p.
26 | Exercise 5 | unissb 3841 |
[Enderton] p.
26 | Exercise 10 | pwel 4220 |
[Enderton] p.
28 | Exercise 7(b) | pwunim 4288 |
[Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3958 iinin2m 3957 iunin1 3953 iunin2 3952 |
[Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3956 iundif2ss 3954 |
[Enderton] p.
33 | Exercise 23 | iinuniss 3971 |
[Enderton] p.
33 | Exercise 25 | iununir 3972 |
[Enderton] p.
33 | Exercise 24(a) | iinpw 3979 |
[Enderton] p.
33 | Exercise 24(b) | iunpw 4482 iunpwss 3980 |
[Enderton] p.
38 | Exercise 6(a) | unipw 4219 |
[Enderton] p.
38 | Exercise 6(b) | pwuni 4194 |
[Enderton] p. 41 | Lemma
3D | opeluu 4452 rnex 4896
rnexg 4894 |
[Enderton] p.
41 | Exercise 8 | dmuni 4839 rnuni 5042 |
[Enderton] p.
42 | Definition of a function | dffun7 5245 dffun8 5246 |
[Enderton] p.
43 | Definition of function value | funfvdm2 5582 |
[Enderton] p.
43 | Definition of single-rooted | funcnv 5279 |
[Enderton] p.
44 | Definition (d) | dfima2 4974 dfima3 4975 |
[Enderton] p.
47 | Theorem 3H | fvco2 5587 |
[Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7207 |
[Enderton] p.
50 | Theorem 3K(a) | imauni 5764 |
[Enderton] p.
52 | Definition | df-map 6652 |
[Enderton] p.
53 | Exercise 21 | coass 5149 |
[Enderton] p.
53 | Exercise 27 | dmco 5139 |
[Enderton] p.
53 | Exercise 14(a) | funin 5289 |
[Enderton] p.
53 | Exercise 22(a) | imass2 5006 |
[Enderton] p.
54 | Remark | ixpf 6722 ixpssmap 6734 |
[Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6701 |
[Enderton] p.
56 | Theorem 3M | erref 6557 |
[Enderton] p. 57 | Lemma
3N | erthi 6583 |
[Enderton] p.
57 | Definition | df-ec 6539 |
[Enderton] p.
58 | Definition | df-qs 6543 |
[Enderton] p.
60 | Theorem 3Q | th3q 6642 th3qcor 6641 th3qlem1 6639 th3qlem2 6640 |
[Enderton] p.
61 | Exercise 35 | df-ec 6539 |
[Enderton] p.
65 | Exercise 56(a) | dmun 4836 |
[Enderton] p.
68 | Definition of successor | df-suc 4373 |
[Enderton] p.
71 | Definition | df-tr 4104 dftr4 4108 |
[Enderton] p.
72 | Theorem 4E | unisuc 4415 unisucg 4416 |
[Enderton] p.
73 | Exercise 6 | unisuc 4415 unisucg 4416 |
[Enderton] p.
73 | Exercise 5(a) | truni 4117 |
[Enderton] p.
73 | Exercise 5(b) | trint 4118 |
[Enderton] p.
79 | Theorem 4I(A1) | nna0 6477 |
[Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6479 onasuc 6469 |
[Enderton] p.
79 | Definition of operation value | df-ov 5880 |
[Enderton] p.
80 | Theorem 4J(A1) | nnm0 6478 |
[Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6480 onmsuc 6476 |
[Enderton] p.
81 | Theorem 4K(1) | nnaass 6488 |
[Enderton] p.
81 | Theorem 4K(2) | nna0r 6481 nnacom 6487 |
[Enderton] p.
81 | Theorem 4K(3) | nndi 6489 |
[Enderton] p.
81 | Theorem 4K(4) | nnmass 6490 |
[Enderton] p.
81 | Theorem 4K(5) | nnmcom 6492 |
[Enderton] p.
82 | Exercise 16 | nnm0r 6482 nnmsucr 6491 |
[Enderton] p.
88 | Exercise 23 | nnaordex 6531 |
[Enderton] p.
129 | Definition | df-en 6743 |
[Enderton] p.
132 | Theorem 6B(b) | canth 5831 |
[Enderton] p.
133 | Exercise 1 | xpomen 12398 |
[Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6867 |
[Enderton] p.
136 | Corollary 6E | nneneq 6859 |
[Enderton] p.
139 | Theorem 6H(c) | mapen 6848 |
[Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7219 |
[Enderton] p.
143 | Theorem 6J | dju0en 7215 dju1en 7214 |
[Enderton] p.
144 | Corollary 6K | undif2ss 3500 |
[Enderton] p.
145 | Figure 38 | ffoss 5495 |
[Enderton] p.
145 | Definition | df-dom 6744 |
[Enderton] p.
146 | Example 1 | domen 6753 domeng 6754 |
[Enderton] p.
146 | Example 3 | nndomo 6866 |
[Enderton] p.
149 | Theorem 6L(c) | xpdom1 6837 xpdom1g 6835 xpdom2g 6834 |
[Enderton] p.
168 | Definition | df-po 4298 |
[Enderton] p.
192 | Theorem 7M(a) | oneli 4430 |
[Enderton] p.
192 | Theorem 7M(b) | ontr1 4391 |
[Enderton] p.
192 | Theorem 7M(c) | onirri 4544 |
[Enderton] p.
193 | Corollary 7N(b) | 0elon 4394 |
[Enderton] p.
193 | Corollary 7N(c) | onsuci 4517 |
[Enderton] p.
193 | Corollary 7N(d) | ssonunii 4490 |
[Enderton] p.
194 | Remark | onprc 4553 |
[Enderton] p.
194 | Exercise 16 | suc11 4559 |
[Enderton] p.
197 | Definition | df-card 7181 |
[Enderton] p.
200 | Exercise 25 | tfis 4584 |
[Enderton] p.
206 | Theorem 7X(b) | en2lp 4555 |
[Enderton] p.
207 | Exercise 34 | opthreg 4557 |
[Enderton] p.
208 | Exercise 35 | suc11g 4558 |
[Geuvers], p.
1 | Remark | expap0 10552 |
[Geuvers], p. 6 | Lemma
2.13 | mulap0r 8574 |
[Geuvers], p. 6 | Lemma
2.15 | mulap0 8613 |
[Geuvers], p. 9 | Lemma
2.35 | msqge0 8575 |
[Geuvers], p.
9 | Definition 3.1(2) | ax-arch 7932 |
[Geuvers], p. 10 | Lemma
3.9 | maxcom 11214 |
[Geuvers], p. 10 | Lemma
3.10 | maxle1 11222 maxle2 11223 |
[Geuvers], p. 10 | Lemma
3.11 | maxleast 11224 |
[Geuvers], p. 10 | Lemma
3.12 | maxleb 11227 |
[Geuvers], p.
11 | Definition 3.13 | dfabsmax 11228 |
[Geuvers], p.
17 | Definition 6.1 | df-ap 8541 |
[Gleason] p.
117 | Proposition 9-2.1 | df-enq 7348 enqer 7359 |
[Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7352 df-nqqs 7349 |
[Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7345 df-plqqs 7350 |
[Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7346 df-mqqs 7351 |
[Gleason] p.
119 | Proposition 9-2.5 | df-rq 7353 |
[Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7409 |
[Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7412 ltbtwnnq 7417 ltbtwnnqq 7416 |
[Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7401 |
[Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7402 |
[Gleason] p.
123 | Proposition 9-3.5 | addclpr 7538 |
[Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7580 |
[Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7579 |
[Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7598 |
[Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7614 |
[Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7620 ltaprlem 7619 |
[Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7617 |
[Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7573 |
[Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7593 |
[Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7582 |
[Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7581 |
[Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7589 |
[Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7639 |
[Gleason] p.
126 | Proposition 9-4.1 | df-enr 7727 enrer 7736 |
[Gleason] p.
126 | Proposition 9-4.2 | df-0r 7732 df-1r 7733 df-nr 7728 |
[Gleason] p.
126 | Proposition 9-4.3 | df-mr 7730 df-plr 7729 negexsr 7773 recexsrlem 7775 |
[Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7731 |
[Gleason] p.
130 | Proposition 10-1.3 | creui 8919 creur 8918 cru 8561 |
[Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 7924 axcnre 7882 |
[Gleason] p.
132 | Definition 10-3.1 | crim 10869 crimd 10988 crimi 10948 crre 10868 crred 10987 crrei 10947 |
[Gleason] p.
132 | Definition 10-3.2 | remim 10871 remimd 10953 |
[Gleason] p.
133 | Definition 10.36 | absval2 11068 absval2d 11196 absval2i 11155 |
[Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 10895 cjaddd 10976 cjaddi 10943 |
[Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 10896 cjmuld 10977 cjmuli 10944 |
[Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 10894 cjcjd 10954 cjcji 10926 |
[Gleason] p.
133 | Proposition 10-3.4(f) | cjre 10893 cjreb 10877 cjrebd 10957 cjrebi 10929 cjred 10982 rere 10876 rereb 10874 rerebd 10956 rerebi 10928 rered 10980 |
[Gleason] p.
133 | Proposition 10-3.4(h) | addcj 10902 addcjd 10968 addcji 10938 |
[Gleason] p.
133 | Proposition 10-3.7(a) | absval 11012 |
[Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11063 abscjd 11201 abscji 11159 |
[Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11075 abs00d 11197 abs00i 11156 absne0d 11198 |
[Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11107 releabsd 11202 releabsi 11160 |
[Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11080 absmuld 11205 absmuli 11162 |
[Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11066 sqabsaddi 11163 |
[Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11115 abstrid 11207 abstrii 11166 |
[Gleason] p.
134 | Definition 10-4.1 | df-exp 10522 exp0 10526 expp1 10529 expp1d 10657 |
[Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10564 expaddd 10658 |
[Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 14372 cxpmuld 14395 expmul 10567 expmuld 10659 |
[Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10561 mulexpd 10671 rpmulcxp 14369 |
[Gleason] p.
141 | Definition 11-2.1 | fzval 10012 |
[Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11336 |
[Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11338 |
[Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11337 |
[Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11341 |
[Gleason] p.
172 | Corollary 12-2.5 | climrecl 11334 |
[Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11330 climcj 11331 climim 11333 climre 11332 |
[Gleason] p.
173 | Definition 12-3.1 | df-ltxr 7999 df-xr 7998 ltxr 9777 |
[Gleason] p. 180 | Theorem
12-5.3 | climcau 11357 |
[Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10302 |
[Gleason] p.
223 | Definition 14-1.1 | df-met 13488 |
[Gleason] p.
223 | Definition 14-1.1(a) | met0 13903 xmet0 13902 |
[Gleason] p.
223 | Definition 14-1.1(c) | metsym 13910 |
[Gleason] p.
223 | Definition 14-1.1(d) | mettri 13912 mstri 14012 xmettri 13911 xmstri 14011 |
[Gleason] p.
230 | Proposition 14-2.6 | txlm 13818 |
[Gleason] p.
240 | Proposition 14-4.2 | metcnp3 14050 |
[Gleason] p.
243 | Proposition 14-4.16 | addcn2 11320 addcncntop 14091 mulcn2 11322 mulcncntop 14093 subcn2 11321 subcncntop 14092 |
[Gleason] p.
295 | Remark | bcval3 10733 bcval4 10734 |
[Gleason] p.
295 | Equation 2 | bcpasc 10748 |
[Gleason] p.
295 | Definition of binomial coefficient | bcval 10731 df-bc 10730 |
[Gleason] p.
296 | Remark | bcn0 10737 bcnn 10739 |
[Gleason] p. 296 | Theorem
15-2.8 | binom 11494 |
[Gleason] p.
308 | Equation 2 | ef0 11682 |
[Gleason] p.
308 | Equation 3 | efcj 11683 |
[Gleason] p.
309 | Corollary 15-4.3 | efne0 11688 |
[Gleason] p.
309 | Corollary 15-4.4 | efexp 11692 |
[Gleason] p.
310 | Equation 14 | sinadd 11746 |
[Gleason] p.
310 | Equation 15 | cosadd 11747 |
[Gleason] p.
311 | Equation 17 | sincossq 11758 |
[Gleason] p.
311 | Equation 18 | cosbnd 11763 sinbnd 11762 |
[Gleason] p.
311 | Definition of ` ` | df-pi 11663 |
[Golan] p.
1 | Remark | srgisid 13174 |
[Golan] p.
1 | Definition | df-srg 13152 |
[Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
[Hamilton] p. 73 | Rule
1 | ax-mp 5 |
[Hamilton] p. 74 | Rule
2 | ax-gen 1449 |
[Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 12893 mndideu 12832 |
[Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 12916 |
[Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 12942 |
[Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 12953 |
[Herstein] p.
57 | Exercise 1 | dfgrp3me 12975 |
[Heyting] p.
127 | Axiom #1 | ax1hfs 14861 |
[Hitchcock] p. 5 | Rule
A3 | mptnan 1423 |
[Hitchcock] p. 5 | Rule
A4 | mptxor 1424 |
[Hitchcock] p. 5 | Rule
A5 | mtpxor 1426 |
[HoTT], p. | Lemma
10.4.1 | exmidontriim 7226 |
[HoTT], p. | Theorem
7.2.6 | nndceq 6502 |
[HoTT], p.
| Exercise 11.10 | neapmkv 14855 |
[HoTT], p. | Exercise
11.11 | mulap0bd 8616 |
[HoTT], p. | Section
11.2.1 | df-iltp 7471 df-imp 7470 df-iplp 7469 df-reap 8534 |
[HoTT], p. | Theorem
11.2.4 | recapb 8630 rerecapb 8802 |
[HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7663 |
[HoTT], p. | Corollary
11.4.3 | conventions 14512 |
[HoTT], p.
| Exercise 11.6(i) | dcapnconst 14848 dceqnconst 14847 |
[HoTT], p. | Corollary
11.2.13 | axcaucvg 7901 caucvgpr 7683 caucvgprpr 7713 caucvgsr 7803 |
[HoTT], p. | Definition
11.2.1 | df-inp 7467 |
[HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 14853 |
[HoTT], p. | Proposition
11.2.3 | df-iso 4299 ltpopr 7596 ltsopr 7597 |
[HoTT], p. | Definition
11.2.7(v) | apsym 8565 reapcotr 8557 reapirr 8536 |
[HoTT], p. | Definition
11.2.7(vi) | 0lt1 8086 gt0add 8532 leadd1 8389 lelttr 8048 lemul1a 8817 lenlt 8035 ltadd1 8388 ltletr 8049 ltmul1 8551 reaplt 8547 |
[Jech] p. 4 | Definition of
class | cv 1352 cvjust 2172 |
[Jech] p.
78 | Note | opthprc 4679 |
[KalishMontague] p.
81 | Note 1 | ax-i9 1530 |
[Kreyszig] p.
3 | Property M1 | metcl 13892 xmetcl 13891 |
[Kreyszig] p.
4 | Property M2 | meteq0 13899 |
[Kreyszig] p.
12 | Equation 5 | muleqadd 8627 |
[Kreyszig] p.
18 | Definition 1.3-2 | mopnval 13981 |
[Kreyszig] p.
19 | Remark | mopntopon 13982 |
[Kreyszig] p.
19 | Theorem T1 | mopn0 14027 mopnm 13987 |
[Kreyszig] p.
19 | Theorem T2 | unimopn 14025 |
[Kreyszig] p.
19 | Definition of neighborhood | neibl 14030 |
[Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 14052 |
[Kreyszig] p.
25 | Definition 1.4-1 | lmbr 13752 |
[Kreyszig] p.
51 | Equation 2 | lmodvneg1 13425 |
[Kreyszig] p.
51 | Equation 1a | lmod0vs 13416 |
[Kreyszig] p.
51 | Equation 1b | lmodvs0 13417 |
[Kunen] p. 10 | Axiom
0 | a9e 1696 |
[Kunen] p. 12 | Axiom
6 | zfrep6 4122 |
[Kunen] p. 24 | Definition
10.24 | mapval 6662 mapvalg 6660 |
[Kunen] p. 31 | Definition
10.24 | mapex 6656 |
[KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3898 |
[Lang] p.
3 | Statement | lidrideqd 12805 mndbn0 12837 |
[Lang] p.
3 | Definition | df-mnd 12823 |
[Lang] p.
7 | Definition | dfgrp2e 12908 |
[Levy] p.
338 | Axiom | df-clab 2164 df-clel 2173 df-cleq 2170 |
[Lopez-Astorga] p.
12 | Rule 1 | mptnan 1423 |
[Lopez-Astorga] p.
12 | Rule 2 | mptxor 1424 |
[Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1426 |
[Margaris] p. 40 | Rule
C | exlimiv 1598 |
[Margaris] p. 49 | Axiom
A1 | ax-1 6 |
[Margaris] p. 49 | Axiom
A2 | ax-2 7 |
[Margaris] p. 49 | Axiom
A3 | condc 853 |
[Margaris] p.
49 | Definition | dfbi2 388 dfordc 892 exalim 1502 |
[Margaris] p.
51 | Theorem 1 | idALT 20 |
[Margaris] p.
56 | Theorem 3 | syld 45 |
[Margaris] p.
60 | Theorem 8 | jcn 651 |
[Margaris] p.
89 | Theorem 19.2 | 19.2 1638 r19.2m 3511 |
[Margaris] p.
89 | Theorem 19.3 | 19.3 1554 19.3h 1553 rr19.3v 2878 |
[Margaris] p.
89 | Theorem 19.5 | alcom 1478 |
[Margaris] p.
89 | Theorem 19.6 | alexdc 1619 alexim 1645 |
[Margaris] p.
89 | Theorem 19.7 | alnex 1499 |
[Margaris] p.
89 | Theorem 19.8 | 19.8a 1590 spsbe 1842 |
[Margaris] p.
89 | Theorem 19.9 | 19.9 1644 19.9h 1643 19.9v 1871 exlimd 1597 |
[Margaris] p.
89 | Theorem 19.11 | excom 1664 excomim 1663 |
[Margaris] p.
89 | Theorem 19.12 | 19.12 1665 r19.12 2583 |
[Margaris] p.
90 | Theorem 19.14 | exnalim 1646 |
[Margaris] p.
90 | Theorem 19.15 | albi 1468 ralbi 2609 |
[Margaris] p.
90 | Theorem 19.16 | 19.16 1555 |
[Margaris] p.
90 | Theorem 19.17 | 19.17 1556 |
[Margaris] p.
90 | Theorem 19.18 | exbi 1604 rexbi 2610 |
[Margaris] p.
90 | Theorem 19.19 | 19.19 1666 |
[Margaris] p.
90 | Theorem 19.20 | alim 1457 alimd 1521 alimdh 1467 alimdv 1879 ralimdaa 2543 ralimdv 2545 ralimdva 2544 ralimdvva 2546 sbcimdv 3030 |
[Margaris] p.
90 | Theorem 19.21 | 19.21-2 1667 19.21 1583 19.21bi 1558 19.21h 1557 19.21ht 1581 19.21t 1582 19.21v 1873 alrimd 1610 alrimdd 1609 alrimdh 1479 alrimdv 1876 alrimi 1522 alrimih 1469 alrimiv 1874 alrimivv 1875 r19.21 2553 r19.21be 2568 r19.21bi 2565 r19.21t 2552 r19.21v 2554 ralrimd 2555 ralrimdv 2556 ralrimdva 2557 ralrimdvv 2561 ralrimdvva 2562 ralrimi 2548 ralrimiv 2549 ralrimiva 2550 ralrimivv 2558 ralrimivva 2559 ralrimivvva 2560 ralrimivw 2551 rexlimi 2587 |
[Margaris] p.
90 | Theorem 19.22 | 2alimdv 1881 2eximdv 1882 exim 1599
eximd 1612 eximdh 1611 eximdv 1880 rexim 2571 reximdai 2575 reximddv 2580 reximddv2 2582 reximdv 2578 reximdv2 2576 reximdva 2579 reximdvai 2577 reximi2 2573 |
[Margaris] p.
90 | Theorem 19.23 | 19.23 1678 19.23bi 1592 19.23h 1498 19.23ht 1497 19.23t 1677 19.23v 1883 19.23vv 1884 exlimd2 1595 exlimdh 1596 exlimdv 1819 exlimdvv 1897 exlimi 1594 exlimih 1593 exlimiv 1598 exlimivv 1896 r19.23 2585 r19.23v 2586 rexlimd 2591 rexlimdv 2593 rexlimdv3a 2596 rexlimdva 2594 rexlimdva2 2597 rexlimdvaa 2595 rexlimdvv 2601 rexlimdvva 2602 rexlimdvw 2598 rexlimiv 2588 rexlimiva 2589 rexlimivv 2600 |
[Margaris] p.
90 | Theorem 19.24 | i19.24 1639 |
[Margaris] p.
90 | Theorem 19.25 | 19.25 1626 |
[Margaris] p.
90 | Theorem 19.26 | 19.26-2 1482 19.26-3an 1483 19.26 1481 r19.26-2 2606 r19.26-3 2607 r19.26 2603 r19.26m 2608 |
[Margaris] p.
90 | Theorem 19.27 | 19.27 1561 19.27h 1560 19.27v 1899 r19.27av 2612 r19.27m 3520 r19.27mv 3521 |
[Margaris] p.
90 | Theorem 19.28 | 19.28 1563 19.28h 1562 19.28v 1900 r19.28av 2613 r19.28m 3514 r19.28mv 3517 rr19.28v 2879 |
[Margaris] p.
90 | Theorem 19.29 | 19.29 1620 19.29r 1621 19.29r2 1622 19.29x 1623 r19.29 2614 r19.29d2r 2621 r19.29r 2615 |
[Margaris] p.
90 | Theorem 19.30 | 19.30dc 1627 |
[Margaris] p.
90 | Theorem 19.31 | 19.31r 1681 |
[Margaris] p.
90 | Theorem 19.32 | 19.32dc 1679 19.32r 1680 r19.32r 2623 r19.32vdc 2626 r19.32vr 2625 |
[Margaris] p.
90 | Theorem 19.33 | 19.33 1484 19.33b2 1629 19.33bdc 1630 |
[Margaris] p.
90 | Theorem 19.34 | 19.34 1684 |
[Margaris] p.
90 | Theorem 19.35 | 19.35-1 1624 19.35i 1625 |
[Margaris] p.
90 | Theorem 19.36 | 19.36-1 1673 19.36aiv 1901 19.36i 1672 r19.36av 2628 |
[Margaris] p.
90 | Theorem 19.37 | 19.37-1 1674 19.37aiv 1675 r19.37 2629 r19.37av 2630 |
[Margaris] p.
90 | Theorem 19.38 | 19.38 1676 |
[Margaris] p.
90 | Theorem 19.39 | i19.39 1640 |
[Margaris] p.
90 | Theorem 19.40 | 19.40-2 1632 19.40 1631 r19.40 2631 |
[Margaris] p.
90 | Theorem 19.41 | 19.41 1686 19.41h 1685 19.41v 1902 19.41vv 1903 19.41vvv 1904 19.41vvvv 1905 r19.41 2632 r19.41v 2633 |
[Margaris] p.
90 | Theorem 19.42 | 19.42 1688 19.42h 1687 19.42v 1906 19.42vv 1911 19.42vvv 1912 19.42vvvv 1913 r19.42v 2634 |
[Margaris] p.
90 | Theorem 19.43 | 19.43 1628 r19.43 2635 |
[Margaris] p.
90 | Theorem 19.44 | 19.44 1682 r19.44av 2636 r19.44mv 3519 |
[Margaris] p.
90 | Theorem 19.45 | 19.45 1683 r19.45av 2637 r19.45mv 3518 |
[Margaris] p.
110 | Exercise 2(b) | eu1 2051 |
[Megill] p. 444 | Axiom
C5 | ax-17 1526 |
[Megill] p. 445 | Lemma
L12 | alequcom 1515 ax-10 1505 |
[Megill] p. 446 | Lemma
L17 | equtrr 1710 |
[Megill] p. 446 | Lemma
L19 | hbnae 1721 |
[Megill] p. 447 | Remark
9.1 | df-sb 1763 sbid 1774 |
[Megill] p. 448 | Scheme
C5' | ax-4 1510 |
[Megill] p. 448 | Scheme
C6' | ax-7 1448 |
[Megill] p. 448 | Scheme
C8' | ax-8 1504 |
[Megill] p. 448 | Scheme
C9' | ax-i12 1507 |
[Megill] p. 448 | Scheme
C11' | ax-10o 1716 |
[Megill] p. 448 | Scheme
C12' | ax-13 2150 |
[Megill] p. 448 | Scheme
C13' | ax-14 2151 |
[Megill] p. 448 | Scheme
C15' | ax-11o 1823 |
[Megill] p. 448 | Scheme
C16' | ax-16 1814 |
[Megill] p. 448 | Theorem
9.4 | dral1 1730 dral2 1731 drex1 1798 drex2 1732 drsb1 1799 drsb2 1841 |
[Megill] p. 449 | Theorem
9.7 | sbcom2 1987 sbequ 1840 sbid2v 1996 |
[Megill] p. 450 | Example
in Appendix | hba1 1540 |
[Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
[Mendelson] p.
69 | Axiom 4 | rspsbc 3047 rspsbca 3048 stdpc4 1775 |
[Mendelson] p.
69 | Axiom 5 | ra5 3053 stdpc5 1584 |
[Mendelson] p. 81 | Rule
C | exlimiv 1598 |
[Mendelson] p.
95 | Axiom 6 | stdpc6 1703 |
[Mendelson] p.
95 | Axiom 7 | stdpc7 1770 |
[Mendelson] p.
231 | Exercise 4.10(k) | inv1 3461 |
[Mendelson] p.
231 | Exercise 4.10(l) | unv 3462 |
[Mendelson] p.
231 | Exercise 4.10(n) | inssun 3377 |
[Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3425 |
[Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3378 |
[Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3268 |
[Mendelson] p.
231 | Definition of union | unssin 3376 |
[Mendelson] p.
235 | Exercise 4.12(c) | univ 4478 |
[Mendelson] p.
235 | Exercise 4.12(d) | pwv 3810 |
[Mendelson] p.
235 | Exercise 4.12(j) | pwin 4284 |
[Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4285 |
[Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4286 |
[Mendelson] p.
235 | Exercise 4.12(n) | uniin 3831 |
[Mendelson] p.
235 | Exercise 4.12(p) | reli 4758 |
[Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5151 |
[Mendelson] p.
246 | Definition of successor | df-suc 4373 |
[Mendelson] p.
254 | Proposition 4.22(b) | xpen 6847 |
[Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6823 xpsneng 6824 |
[Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6829 xpcomeng 6830 |
[Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6832 |
[Mendelson] p.
255 | Exercise 4.39 | endisj 6826 |
[Mendelson] p.
255 | Exercise 4.41 | mapprc 6654 |
[Mendelson] p.
255 | Exercise 4.43 | mapsnen 6813 |
[Mendelson] p.
255 | Exercise 4.47 | xpmapen 6852 |
[Mendelson] p.
255 | Exercise 4.42(a) | map0e 6688 |
[Mendelson] p.
255 | Exercise 4.42(b) | map1 6814 |
[Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7218 djucomen 7217 |
[Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7216 |
[Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6470 |
[Monk1] p. 26 | Theorem
2.8(vii) | ssin 3359 |
[Monk1] p. 33 | Theorem
3.2(i) | ssrel 4716 |
[Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4717 |
[Monk1] p. 34 | Definition
3.3 | df-opab 4067 |
[Monk1] p. 36 | Theorem
3.7(i) | coi1 5146 coi2 5147 |
[Monk1] p. 36 | Theorem
3.8(v) | dm0 4843 rn0 4885 |
[Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5035 |
[Monk1] p. 37 | Theorem
3.13(i) | relxp 4737 |
[Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4849 rnxpm 5060 |
[Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4708 xp0 5050 |
[Monk1] p. 38 | Theorem
3.16(ii) | ima0 4989 |
[Monk1] p. 38 | Theorem
3.16(viii) | imai 4986 |
[Monk1] p. 39 | Theorem
3.17 | imaex 4985 imaexg 4984 |
[Monk1] p. 39 | Theorem
3.16(xi) | imassrn 4983 |
[Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5648 funfvop 5630 |
[Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5561 |
[Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5569 |
[Monk1] p. 43 | Theorem
4.6 | funun 5262 |
[Monk1] p. 43 | Theorem
4.8(iv) | dff13 5771 dff13f 5773 |
[Monk1] p. 46 | Theorem
4.15(v) | funex 5741 funrnex 6117 |
[Monk1] p. 50 | Definition
5.4 | fniunfv 5765 |
[Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5114 |
[Monk1] p. 52 | Theorem
5.11(viii) | ssint 3862 |
[Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6158 df-1st 6143 |
[Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6159 df-2nd 6144 |
[Monk2] p. 105 | Axiom
C4 | ax-5 1447 |
[Monk2] p. 105 | Axiom
C7 | ax-8 1504 |
[Monk2] p. 105 | Axiom
C8 | ax-11 1506 ax-11o 1823 |
[Monk2] p. 105 | Axiom
(C8) | ax11v 1827 |
[Monk2] p. 109 | Lemma
12 | ax-7 1448 |
[Monk2] p. 109 | Lemma
15 | equvin 1863 equvini 1758 eqvinop 4245 |
[Monk2] p. 113 | Axiom
C5-1 | ax-17 1526 |
[Monk2] p. 113 | Axiom
C5-2 | ax6b 1651 |
[Monk2] p. 113 | Axiom
C5-3 | ax-7 1448 |
[Monk2] p. 114 | Lemma
22 | hba1 1540 |
[Monk2] p. 114 | Lemma
23 | hbia1 1552 nfia1 1580 |
[Monk2] p. 114 | Lemma
24 | hba2 1551 nfa2 1579 |
[Moschovakis] p.
2 | Chapter 2 | df-stab 831 dftest 14862 |
[Munkres] p. 77 | Example
2 | distop 13624 |
[Munkres] p.
78 | Definition of basis | df-bases 13582 isbasis3g 13585 |
[Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 12714 tgval2 13590 |
[Munkres] p.
79 | Remark | tgcl 13603 |
[Munkres] p. 80 | Lemma
2.1 | tgval3 13597 |
[Munkres] p. 80 | Lemma
2.2 | tgss2 13618 tgss3 13617 |
[Munkres] p. 81 | Lemma
2.3 | basgen 13619 basgen2 13620 |
[Munkres] p.
89 | Definition of subspace topology | resttop 13709 |
[Munkres] p. 93 | Theorem
6.1(1) | 0cld 13651 topcld 13648 |
[Munkres] p. 93 | Theorem
6.1(3) | uncld 13652 |
[Munkres] p.
94 | Definition of closure | clsval 13650 |
[Munkres] p.
94 | Definition of interior | ntrval 13649 |
[Munkres] p.
102 | Definition of continuous function | df-cn 13727 iscn 13736 iscn2 13739 |
[Munkres] p. 107 | Theorem
7.2(g) | cncnp 13769 cncnp2m 13770 cncnpi 13767 df-cnp 13728 iscnp 13738 |
[Munkres] p. 127 | Theorem
10.1 | metcn 14053 |
[Pierik], p. 8 | Section
2.2.1 | dfrex2fin 6905 |
[Pierik], p. 9 | Definition
2.4 | df-womni 7164 |
[Pierik], p. 9 | Definition
2.5 | df-markov 7152 omniwomnimkv 7167 |
[Pierik], p. 10 | Section
2.3 | dfdif3 3247 |
[Pierik], p.
14 | Definition 3.1 | df-omni 7135 exmidomniim 7141 finomni 7140 |
[Pierik], p. 15 | Section
3.1 | df-nninf 7121 |
[PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 14810 |
[PradicBrown2022], p.
2 | Remark | exmidpw 6910 |
[PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7202 |
[PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 |
[PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7149 |
[PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 14795 peano4nninf 14794 |
[PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 14797 |
[PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 14805 |
[PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 14807 |
[PradicBrown2022], p. 5 | Definition
3.3 | nnsf 14793 |
[Quine] p. 16 | Definition
2.1 | df-clab 2164 rabid 2653 |
[Quine] p. 17 | Definition
2.1'' | dfsb7 1991 |
[Quine] p. 18 | Definition
2.7 | df-cleq 2170 |
[Quine] p. 19 | Definition
2.9 | df-v 2741 |
[Quine] p. 34 | Theorem
5.1 | abeq2 2286 |
[Quine] p. 35 | Theorem
5.2 | abid2 2298 abid2f 2345 |
[Quine] p. 40 | Theorem
6.1 | sb5 1887 |
[Quine] p. 40 | Theorem
6.2 | sb56 1885 sb6 1886 |
[Quine] p. 41 | Theorem
6.3 | df-clel 2173 |
[Quine] p. 41 | Theorem
6.4 | eqid 2177 |
[Quine] p. 41 | Theorem
6.5 | eqcom 2179 |
[Quine] p. 42 | Theorem
6.6 | df-sbc 2965 |
[Quine] p. 42 | Theorem
6.7 | dfsbcq 2966 dfsbcq2 2967 |
[Quine] p. 43 | Theorem
6.8 | vex 2742 |
[Quine] p. 43 | Theorem
6.9 | isset 2745 |
[Quine] p. 44 | Theorem
7.3 | spcgf 2821 spcgv 2826 spcimgf 2819 |
[Quine] p. 44 | Theorem
6.11 | spsbc 2976 spsbcd 2977 |
[Quine] p. 44 | Theorem
6.12 | elex 2750 |
[Quine] p. 44 | Theorem
6.13 | elab 2883 elabg 2885 elabgf 2881 |
[Quine] p. 44 | Theorem
6.14 | noel 3428 |
[Quine] p. 48 | Theorem
7.2 | snprc 3659 |
[Quine] p. 48 | Definition
7.1 | df-pr 3601 df-sn 3600 |
[Quine] p. 49 | Theorem
7.4 | snss 3729 snssg 3728 |
[Quine] p. 49 | Theorem
7.5 | prss 3750 prssg 3751 |
[Quine] p. 49 | Theorem
7.6 | prid1 3700 prid1g 3698 prid2 3701 prid2g 3699 snid 3625
snidg 3623 |
[Quine] p. 51 | Theorem
7.12 | snexg 4186 snexprc 4188 |
[Quine] p. 51 | Theorem
7.13 | prexg 4213 |
[Quine] p. 53 | Theorem
8.2 | unisn 3827 unisng 3828 |
[Quine] p. 53 | Theorem
8.3 | uniun 3830 |
[Quine] p. 54 | Theorem
8.6 | elssuni 3839 |
[Quine] p. 54 | Theorem
8.7 | uni0 3838 |
[Quine] p. 56 | Theorem
8.17 | uniabio 5190 |
[Quine] p. 56 | Definition
8.18 | dfiota2 5181 |
[Quine] p. 57 | Theorem
8.19 | iotaval 5191 |
[Quine] p. 57 | Theorem
8.22 | iotanul 5195 |
[Quine] p. 58 | Theorem
8.23 | euiotaex 5196 |
[Quine] p. 58 | Definition
9.1 | df-op 3603 |
[Quine] p. 61 | Theorem
9.5 | opabid 4259 opelopab 4273 opelopaba 4268 opelopabaf 4275 opelopabf 4276 opelopabg 4270 opelopabga 4265 oprabid 5909 |
[Quine] p. 64 | Definition
9.11 | df-xp 4634 |
[Quine] p. 64 | Definition
9.12 | df-cnv 4636 |
[Quine] p. 64 | Definition
9.15 | df-id 4295 |
[Quine] p. 65 | Theorem
10.3 | fun0 5276 |
[Quine] p. 65 | Theorem
10.4 | funi 5250 |
[Quine] p. 65 | Theorem
10.5 | funsn 5266 funsng 5264 |
[Quine] p. 65 | Definition
10.1 | df-fun 5220 |
[Quine] p. 65 | Definition
10.2 | args 4999 dffv4g 5514 |
[Quine] p. 68 | Definition
10.11 | df-fv 5226 fv2 5512 |
[Quine] p. 124 | Theorem
17.3 | nn0opth2 10706 nn0opth2d 10705 nn0opthd 10704 |
[Quine] p. 284 | Axiom
39(vi) | funimaex 5303 funimaexg 5302 |
[Roman] p. 19 | Part
Preliminaries | df-ring 13186 |
[Rudin] p. 164 | Equation
27 | efcan 11686 |
[Rudin] p. 164 | Equation
30 | efzval 11693 |
[Rudin] p. 167 | Equation
48 | absefi 11778 |
[Sanford] p.
39 | Remark | ax-mp 5 |
[Sanford] p. 39 | Rule
3 | mtpxor 1426 |
[Sanford] p. 39 | Rule
4 | mptxor 1424 |
[Sanford] p. 40 | Rule
1 | mptnan 1423 |
[Schechter] p.
51 | Definition of antisymmetry | intasym 5015 |
[Schechter] p.
51 | Definition of irreflexivity | intirr 5017 |
[Schechter] p.
51 | Definition of symmetry | cnvsym 5014 |
[Schechter] p.
51 | Definition of transitivity | cotr 5012 |
[Schechter] p.
187 | Definition of "ring with unit" | isring 13188 |
[Schechter] p.
428 | Definition 15.35 | bastop1 13622 |
[Stoll] p. 13 | Definition
of symmetric difference | symdif1 3402 |
[Stoll] p. 16 | Exercise
4.4 | 0dif 3496 dif0 3495 |
[Stoll] p. 16 | Exercise
4.8 | difdifdirss 3509 |
[Stoll] p. 19 | Theorem
5.2(13) | undm 3395 |
[Stoll] p. 19 | Theorem
5.2(13') | indmss 3396 |
[Stoll] p.
20 | Remark | invdif 3379 |
[Stoll] p. 25 | Definition
of ordered triple | df-ot 3604 |
[Stoll] p.
43 | Definition | uniiun 3942 |
[Stoll] p.
44 | Definition | intiin 3943 |
[Stoll] p.
45 | Definition | df-iin 3891 |
[Stoll] p. 45 | Definition
indexed union | df-iun 3890 |
[Stoll] p. 176 | Theorem
3.4(27) | imandc 889 imanst 888 |
[Stoll] p. 262 | Example
4.1 | symdif1 3402 |
[Suppes] p. 22 | Theorem
2 | eq0 3443 |
[Suppes] p. 22 | Theorem
4 | eqss 3172 eqssd 3174 eqssi 3173 |
[Suppes] p. 23 | Theorem
5 | ss0 3465 ss0b 3464 |
[Suppes] p. 23 | Theorem
6 | sstr 3165 |
[Suppes] p. 25 | Theorem
12 | elin 3320 elun 3278 |
[Suppes] p. 26 | Theorem
15 | inidm 3346 |
[Suppes] p. 26 | Theorem
16 | in0 3459 |
[Suppes] p. 27 | Theorem
23 | unidm 3280 |
[Suppes] p. 27 | Theorem
24 | un0 3458 |
[Suppes] p. 27 | Theorem
25 | ssun1 3300 |
[Suppes] p. 27 | Theorem
26 | ssequn1 3307 |
[Suppes] p. 27 | Theorem
27 | unss 3311 |
[Suppes] p. 27 | Theorem
28 | indir 3386 |
[Suppes] p. 27 | Theorem
29 | undir 3387 |
[Suppes] p. 28 | Theorem
32 | difid 3493 difidALT 3494 |
[Suppes] p. 29 | Theorem
33 | difin 3374 |
[Suppes] p. 29 | Theorem
34 | indif 3380 |
[Suppes] p. 29 | Theorem
35 | undif1ss 3499 |
[Suppes] p. 29 | Theorem
36 | difun2 3504 |
[Suppes] p. 29 | Theorem
37 | difin0 3498 |
[Suppes] p. 29 | Theorem
38 | disjdif 3497 |
[Suppes] p. 29 | Theorem
39 | difundi 3389 |
[Suppes] p. 29 | Theorem
40 | difindiss 3391 |
[Suppes] p. 30 | Theorem
41 | nalset 4135 |
[Suppes] p. 39 | Theorem
61 | uniss 3832 |
[Suppes] p. 39 | Theorem
65 | uniop 4257 |
[Suppes] p. 41 | Theorem
70 | intsn 3881 |
[Suppes] p. 42 | Theorem
71 | intpr 3878 intprg 3879 |
[Suppes] p. 42 | Theorem
73 | op1stb 4480 op1stbg 4481 |
[Suppes] p. 42 | Theorem
78 | intun 3877 |
[Suppes] p. 44 | Definition
15(a) | dfiun2 3922 dfiun2g 3920 |
[Suppes] p. 44 | Definition
15(b) | dfiin2 3923 |
[Suppes] p. 47 | Theorem
86 | elpw 3583 elpw2 4159 elpw2g 4158 elpwg 3585 |
[Suppes] p. 47 | Theorem
87 | pwid 3592 |
[Suppes] p. 47 | Theorem
89 | pw0 3741 |
[Suppes] p. 48 | Theorem
90 | pwpw0ss 3806 |
[Suppes] p. 52 | Theorem
101 | xpss12 4735 |
[Suppes] p. 52 | Theorem
102 | xpindi 4764 xpindir 4765 |
[Suppes] p. 52 | Theorem
103 | xpundi 4684 xpundir 4685 |
[Suppes] p. 54 | Theorem
105 | elirrv 4549 |
[Suppes] p. 58 | Theorem
2 | relss 4715 |
[Suppes] p. 59 | Theorem
4 | eldm 4826 eldm2 4827 eldm2g 4825 eldmg 4824 |
[Suppes] p. 59 | Definition
3 | df-dm 4638 |
[Suppes] p. 60 | Theorem
6 | dmin 4837 |
[Suppes] p. 60 | Theorem
8 | rnun 5039 |
[Suppes] p. 60 | Theorem
9 | rnin 5040 |
[Suppes] p. 60 | Definition
4 | dfrn2 4817 |
[Suppes] p. 61 | Theorem
11 | brcnv 4812 brcnvg 4810 |
[Suppes] p. 62 | Equation
5 | elcnv 4806 elcnv2 4807 |
[Suppes] p. 62 | Theorem
12 | relcnv 5008 |
[Suppes] p. 62 | Theorem
15 | cnvin 5038 |
[Suppes] p. 62 | Theorem
16 | cnvun 5036 |
[Suppes] p. 63 | Theorem
20 | co02 5144 |
[Suppes] p. 63 | Theorem
21 | dmcoss 4898 |
[Suppes] p. 63 | Definition
7 | df-co 4637 |
[Suppes] p. 64 | Theorem
26 | cnvco 4814 |
[Suppes] p. 64 | Theorem
27 | coass 5149 |
[Suppes] p. 65 | Theorem
31 | resundi 4922 |
[Suppes] p. 65 | Theorem
34 | elima 4977 elima2 4978 elima3 4979 elimag 4976 |
[Suppes] p. 65 | Theorem
35 | imaundi 5043 |
[Suppes] p. 66 | Theorem
40 | dminss 5045 |
[Suppes] p. 66 | Theorem
41 | imainss 5046 |
[Suppes] p. 67 | Exercise
11 | cnvxp 5049 |
[Suppes] p. 81 | Definition
34 | dfec2 6540 |
[Suppes] p. 82 | Theorem
72 | elec 6576 elecg 6575 |
[Suppes] p. 82 | Theorem
73 | erth 6581 erth2 6582 |
[Suppes] p. 89 | Theorem
96 | map0b 6689 |
[Suppes] p. 89 | Theorem
97 | map0 6691 map0g 6690 |
[Suppes] p. 89 | Theorem
98 | mapsn 6692 |
[Suppes] p. 89 | Theorem
99 | mapss 6693 |
[Suppes] p. 92 | Theorem
1 | enref 6767 enrefg 6766 |
[Suppes] p. 92 | Theorem
2 | ensym 6783 ensymb 6782 ensymi 6784 |
[Suppes] p. 92 | Theorem
3 | entr 6786 |
[Suppes] p. 92 | Theorem
4 | unen 6818 |
[Suppes] p. 94 | Theorem
15 | endom 6765 |
[Suppes] p. 94 | Theorem
16 | ssdomg 6780 |
[Suppes] p. 94 | Theorem
17 | domtr 6787 |
[Suppes] p. 95 | Theorem
18 | isbth 6968 |
[Suppes] p. 98 | Exercise
4 | fundmen 6808 fundmeng 6809 |
[Suppes] p. 98 | Exercise
6 | xpdom3m 6836 |
[Suppes] p.
130 | Definition 3 | df-tr 4104 |
[Suppes] p. 132 | Theorem
9 | ssonuni 4489 |
[Suppes] p.
134 | Definition 6 | df-suc 4373 |
[Suppes] p. 136 | Theorem
Schema 22 | findes 4604 finds 4601 finds1 4603 finds2 4602 |
[Suppes] p.
162 | Definition 5 | df-ltnqqs 7354 df-ltpq 7347 |
[Suppes] p. 228 | Theorem
Schema 61 | onintss 4392 |
[TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2159 |
[TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2170 |
[TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2173 |
[TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2172 |
[TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2195 |
[TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5881 |
[TakeutiZaring] p.
14 | Proposition 4.14 | ru 2963 |
[TakeutiZaring] p.
15 | Exercise 1 | elpr 3615 elpr2 3616 elprg 3614 |
[TakeutiZaring] p.
15 | Exercise 2 | elsn 3610 elsn2 3628 elsn2g 3627 elsng 3609 velsn 3611 |
[TakeutiZaring] p.
15 | Exercise 3 | elop 4233 |
[TakeutiZaring] p.
15 | Exercise 4 | sneq 3605 sneqr 3762 |
[TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3613 dfsn2 3608 |
[TakeutiZaring] p.
16 | Axiom 3 | uniex 4439 |
[TakeutiZaring] p.
16 | Exercise 6 | opth 4239 |
[TakeutiZaring] p.
16 | Exercise 8 | rext 4217 |
[TakeutiZaring] p.
16 | Corollary 5.8 | unex 4443 unexg 4445 |
[TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3643 |
[TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3812 |
[TakeutiZaring] p.
16 | Definition 5.6 | df-in 3137 df-un 3135 |
[TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3825 uniprg 3826 |
[TakeutiZaring] p.
17 | Axiom 4 | vpwex 4181 |
[TakeutiZaring] p.
17 | Exercise 1 | eltp 3642 |
[TakeutiZaring] p.
17 | Exercise 5 | elsuc 4408 elsucg 4406 sstr2 3164 |
[TakeutiZaring] p.
17 | Exercise 6 | uncom 3281 |
[TakeutiZaring] p.
17 | Exercise 7 | incom 3329 |
[TakeutiZaring] p.
17 | Exercise 8 | unass 3294 |
[TakeutiZaring] p.
17 | Exercise 9 | inass 3347 |
[TakeutiZaring] p.
17 | Exercise 10 | indi 3384 |
[TakeutiZaring] p.
17 | Exercise 11 | undi 3385 |
[TakeutiZaring] p.
17 | Definition 5.9 | dfss2 3146 |
[TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3579 |
[TakeutiZaring] p.
18 | Exercise 7 | unss2 3308 |
[TakeutiZaring] p.
18 | Exercise 9 | df-ss 3144 sseqin2 3356 |
[TakeutiZaring] p.
18 | Exercise 10 | ssid 3177 |
[TakeutiZaring] p.
18 | Exercise 12 | inss1 3357 inss2 3358 |
[TakeutiZaring] p.
18 | Exercise 13 | nssr 3217 |
[TakeutiZaring] p.
18 | Exercise 15 | unieq 3820 |
[TakeutiZaring] p.
18 | Exercise 18 | sspwb 4218 |
[TakeutiZaring] p.
18 | Exercise 19 | pweqb 4225 |
[TakeutiZaring] p.
20 | Definition | df-rab 2464 |
[TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4132 |
[TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3133 |
[TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3426 |
[TakeutiZaring] p.
20 | Proposition 5.15 | difid 3493 difidALT 3494 |
[TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3437 |
[TakeutiZaring] p.
21 | Theorem 5.22 | setind 4540 |
[TakeutiZaring] p.
21 | Definition 5.20 | df-v 2741 |
[TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4137 |
[TakeutiZaring] p.
22 | Exercise 1 | 0ss 3463 |
[TakeutiZaring] p.
22 | Exercise 3 | ssex 4142 ssexg 4144 |
[TakeutiZaring] p.
22 | Exercise 4 | inex1 4139 |
[TakeutiZaring] p.
22 | Exercise 5 | ruv 4551 |
[TakeutiZaring] p.
22 | Exercise 6 | elirr 4542 |
[TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3489 |
[TakeutiZaring] p.
22 | Exercise 11 | difdif 3262 |
[TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3398 |
[TakeutiZaring] p.
22 | Exercise 14 | difss 3263 |
[TakeutiZaring] p.
22 | Exercise 15 | sscon 3271 |
[TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2460 |
[TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2461 |
[TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4743 xpexg 4742 xpexgALT 6136 |
[TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4635 |
[TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5282 |
[TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5434 fun11 5285 |
[TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5229 svrelfun 5283 |
[TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4816 |
[TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4818 |
[TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4640 |
[TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4641 |
[TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4637 |
[TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5085 dfrel2 5081 |
[TakeutiZaring] p.
25 | Exercise 3 | xpss 4736 |
[TakeutiZaring] p.
25 | Exercise 5 | relun 4745 |
[TakeutiZaring] p.
25 | Exercise 6 | reluni 4751 |
[TakeutiZaring] p.
25 | Exercise 9 | inxp 4763 |
[TakeutiZaring] p.
25 | Exercise 12 | relres 4937 |
[TakeutiZaring] p.
25 | Exercise 13 | opelres 4914 opelresg 4916 |
[TakeutiZaring] p.
25 | Exercise 14 | dmres 4930 |
[TakeutiZaring] p.
25 | Exercise 15 | resss 4933 |
[TakeutiZaring] p.
25 | Exercise 17 | resabs1 4938 |
[TakeutiZaring] p.
25 | Exercise 18 | funres 5259 |
[TakeutiZaring] p.
25 | Exercise 24 | relco 5129 |
[TakeutiZaring] p.
25 | Exercise 29 | funco 5258 |
[TakeutiZaring] p.
25 | Exercise 30 | f1co 5435 |
[TakeutiZaring] p.
26 | Definition 6.10 | eu2 2070 |
[TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5226 fv3 5540 |
[TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5169 cnvexg 5168 |
[TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4895 dmexg 4893 |
[TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4896 rnexg 4894 |
[TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5534 |
[TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5544 tz6.12 5545 tz6.12c 5547 |
[TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5508 |
[TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5221 |
[TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5222 |
[TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5224 wfo 5216 |
[TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5223 wf1 5215 |
[TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5225 wf1o 5217 |
[TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5615 eqfnfv2 5616 eqfnfv2f 5619 |
[TakeutiZaring] p.
28 | Exercise 5 | fvco 5588 |
[TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5740 fnexALT 6114 |
[TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5739 resfunexgALT 6111 |
[TakeutiZaring] p.
29 | Exercise 9 | funimaex 5303 funimaexg 5302 |
[TakeutiZaring] p.
29 | Definition 6.18 | df-br 4006 |
[TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 5000 iniseg 5002 |
[TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4291 |
[TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5227 |
[TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5813 |
[TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5814 |
[TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5819 |
[TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5821 |
[TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5829 |
[TakeutiZaring] p.
35 | Notation | wtr 4103 |
[TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4356 |
[TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4107 |
[TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4577 |
[TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4383 |
[TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4387 |
[TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4493 |
[TakeutiZaring] p.
38 | Definition 7.11 | df-on 4370 |
[TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4487 |
[TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4553 |
[TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4583 |
[TakeutiZaring] p.
40 | Exercise 7 | dftr2 4105 |
[TakeutiZaring] p.
40 | Exercise 11 | unon 4512 |
[TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4488 |
[TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3839 |
[TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4373 |
[TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4417 sucidg 4418 |
[TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4502 |
[TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4371 |
[TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4507 ordelsuc 4506 |
[TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4595 |
[TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4596 |
[TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4597 |
[TakeutiZaring] p.
43 | Axiom 7 | omex 4594 |
[TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4608 |
[TakeutiZaring] p.
43 | Corollary 7.31 | find 4600 |
[TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4598 |
[TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4599 |
[TakeutiZaring] p.
44 | Exercise 2 | int0 3860 |
[TakeutiZaring] p.
44 | Exercise 3 | trintssm 4119 |
[TakeutiZaring] p.
44 | Exercise 4 | intss1 3861 |
[TakeutiZaring] p.
44 | Exercise 6 | onintonm 4518 |
[TakeutiZaring] p.
44 | Definition 7.35 | df-int 3847 |
[TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6311 |
[TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6368 tfri1d 6338 |
[TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6369 tfri2d 6339 |
[TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6370 |
[TakeutiZaring] p.
50 | Exercise 3 | smoiso 6305 |
[TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6289 |
[TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6467 |
[TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6463 |
[TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6460 |
[TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6464 |
[TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6512 nnaordi 6511 |
[TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3933 uniss2 3842 |
[TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6473 |
[TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6483 |
[TakeutiZaring] p.
62 | Exercise 5 | oaword1 6474 |
[TakeutiZaring] p.
62 | Definition 8.15 | om0 6461 omsuc 6475 |
[TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6484 |
[TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6520 nnmordi 6519 |
[TakeutiZaring] p.
67 | Definition 8.30 | oei0 6462 |
[TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7188 |
[TakeutiZaring] p.
88 | Exercise 1 | en0 6797 |
[TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6859 |
[TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6860 |
[TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6745 isfi 6763 |
[TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6833 |
[TakeutiZaring] p.
95 | Definition 10.42 | df-map 6652 |
[TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6850 |
[Tarski] p. 67 | Axiom
B5 | ax-4 1510 |
[Tarski] p. 68 | Lemma
6 | equid 1701 |
[Tarski] p. 69 | Lemma
7 | equcomi 1704 |
[Tarski] p. 70 | Lemma
14 | spim 1738 spime 1741 spimeh 1739 spimh 1737 |
[Tarski] p. 70 | Lemma
16 | ax-11 1506 ax-11o 1823 ax11i 1714 |
[Tarski] p. 70 | Lemmas 16
and 17 | sb6 1886 |
[Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1526 |
[Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2150 ax-14 2151 |
[WhiteheadRussell] p.
96 | Axiom *1.3 | olc 711 |
[WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 727 |
[WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 756 |
[WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 765 |
[WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 789 |
[WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 616 |
[WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
[WhiteheadRussell] p.
100 | Theorem *2.03 | con2 643 |
[WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
[WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
[WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
[WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 837 |
[WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2124 syl 14 |
[WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 737 |
[WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
[WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 836 |
[WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 629 |
[WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 885 |
[WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 843 |
[WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 856 |
[WhiteheadRussell] p.
103 | Theorem *2.16 | con3 642 |
[WhiteheadRussell] p.
103 | Theorem *2.17 | condc 853 |
[WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 855 |
[WhiteheadRussell] p.
104 | Theorem *2.2 | orc 712 |
[WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 775 |
[WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 617 |
[WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 621 |
[WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 893 |
[WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 907 |
[WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
[WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 768 |
[WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 769 |
[WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 804 |
[WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 805 |
[WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 803 |
[WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 979 |
[WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 778 |
[WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 776 |
[WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 777 |
[WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
[WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 738 |
[WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 739 |
[WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 867 pm2.5gdc 866 |
[WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 862 |
[WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 740 |
[WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 741 |
[WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 742 |
[WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 655 |
[WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 656 |
[WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 722 |
[WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 891 |
[WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 725 |
[WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 726 |
[WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 865 |
[WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 748 |
[WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 800 |
[WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 801 |
[WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 659 |
[WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 713 pm2.67 743 |
[WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 869 pm2.521gdc 868 |
[WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 747 |
[WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 810 |
[WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 894 |
[WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 915 |
[WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 806 |
[WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 807 |
[WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 809 |
[WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 808 |
[WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
[WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 811 |
[WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 812 |
[WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
[WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 905 |
[WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
[WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 754 |
[WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
[WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 957 |
[WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 958 |
[WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 959 |
[WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 753 |
[WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
[WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
[WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 693 |
[WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
[WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
[WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
[WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 860 |
[WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 859 |
[WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
[WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
[WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 689 |
[WhiteheadRussell] p.
113 | Fact) | pm3.45 597 |
[WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
[WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
[WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
[WhiteheadRussell] p.
113 | Theorem *3.44 | jao 755 pm3.44 715 |
[WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
[WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 602 |
[WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 785 |
[WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 871 |
[WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
[WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 872 |
[WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 890 |
[WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 694 |
[WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
[WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 952 bitr 472 |
[WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
[WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 757 pm4.25 758 |
[WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
[WhiteheadRussell] p.
118 | Theorem *4.4 | andi 818 |
[WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 728 |
[WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
[WhiteheadRussell] p.
118 | Theorem *4.33 | orass 767 |
[WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
[WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 792 |
[WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 605 |
[WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 822 |
[WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 980 |
[WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 816 |
[WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 971 |
[WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 949 |
[WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 779 |
[WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 814 pm4.45 784 pm4.45im 334 |
[WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1481 |
[WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 956 |
[WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 897 imorr 721 |
[WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
[WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 899 |
[WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 750 |
[WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 751 |
[WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 902 |
[WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 938 |
[WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 752 pm4.56 780 |
[WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 939 oranim 781 |
[WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 686 |
[WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 898 |
[WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 886 |
[WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 900 |
[WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 687 |
[WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 901 |
[WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 887 |
[WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
[WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 827 |
[WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
[WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 744 |
[WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 603 pm4.76 604 |
[WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 710 pm4.77 799 |
[WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 782 |
[WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 903 |
[WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 707 |
[WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 908 |
[WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 950 |
[WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 951 |
[WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
[WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
[WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
[WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
[WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 601 |
[WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 909 |
[WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 910 |
[WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 912 |
[WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 911 |
[WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1389 |
[WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 828 |
[WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 904 |
[WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1394 pm5.18dc 883 |
[WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 706 |
[WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 695 |
[WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1392 |
[WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1397 |
[WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1398 |
[WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 895 |
[WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
[WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
[WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
[WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 926 pm5.6r 927 |
[WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 954 |
[WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
[WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
[WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 609 |
[WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 917 |
[WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 610 |
[WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
[WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
[WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 925 |
[WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 802 |
[WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 918 |
[WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 913 |
[WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 794 |
[WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 945 |
[WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 946 |
[WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 961 |
[WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
[WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
[WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 962 |
[WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1635 |
[WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1485 |
[WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1632 |
[WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1895 |
[WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2029 |
[WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2428 |
[WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2429 |
[WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2877 |
[WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3021 |
[WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5198 |
[WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5199 |
[WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2105 eupickbi 2108 |
[WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5226 |
[WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7191 |