Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7174  fidcenum 7015
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7015
[AczelRathjen], p. 73Lemma 8.1.14enumct 7174
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12582
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6986
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6974
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12597
[AczelRathjen], p. 75Corollary 8.1.20unct 12599
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12588  znnen 12555
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12600
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12601
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10847
[AczelRathjen], p. 183Chapter 20ax-setind 4569
[AhoHopUll] p. 318Section 9.1df-word 10915  lencl 10918  wrd0 10939
[Apostol] p. 18Theorem I.1addcan 8199  addcan2d 8204  addcan2i 8202  addcand 8203  addcani 8201
[Apostol] p. 18Theorem I.2negeu 8210
[Apostol] p. 18Theorem I.3negsub 8267  negsubd 8336  negsubi 8297
[Apostol] p. 18Theorem I.4negneg 8269  negnegd 8321  negnegi 8289
[Apostol] p. 18Theorem I.5subdi 8404  subdid 8433  subdii 8426  subdir 8405  subdird 8434  subdiri 8427
[Apostol] p. 18Theorem I.6mul01 8408  mul01d 8412  mul01i 8410  mul02 8406  mul02d 8411  mul02i 8409
[Apostol] p. 18Theorem I.9divrecapd 8812
[Apostol] p. 18Theorem I.10recrecapi 8763
[Apostol] p. 18Theorem I.12mul2neg 8417  mul2negd 8432  mul2negi 8425  mulneg1 8414  mulneg1d 8430  mulneg1i 8423
[Apostol] p. 18Theorem I.14rdivmuldivd 13640
[Apostol] p. 18Theorem I.15divdivdivap 8732
[Apostol] p. 20Axiom 7rpaddcl 9743  rpaddcld 9778  rpmulcl 9744  rpmulcld 9779
[Apostol] p. 20Axiom 90nrp 9755
[Apostol] p. 20Theorem I.17lttri 8124
[Apostol] p. 20Theorem I.18ltadd1d 8557  ltadd1dd 8575  ltadd1i 8521
[Apostol] p. 20Theorem I.19ltmul1 8611  ltmul1a 8610  ltmul1i 8939  ltmul1ii 8947  ltmul2 8875  ltmul2d 9805  ltmul2dd 9819  ltmul2i 8942
[Apostol] p. 20Theorem I.210lt1 8146
[Apostol] p. 20Theorem I.23lt0neg1 8487  lt0neg1d 8534  ltneg 8481  ltnegd 8542  ltnegi 8512
[Apostol] p. 20Theorem I.25lt2add 8464  lt2addd 8586  lt2addi 8529
[Apostol] p. 20Definition of positive numbersdf-rp 9720
[Apostol] p. 21Exercise 4recgt0 8869  recgt0d 8953  recgt0i 8925  recgt0ii 8926
[Apostol] p. 22Definition of integersdf-z 9318
[Apostol] p. 22Definition of rationalsdf-q 9685
[Apostol] p. 24Theorem I.26supeuti 7053
[Apostol] p. 26Theorem I.29arch 9237
[Apostol] p. 28Exercise 2btwnz 9436
[Apostol] p. 28Exercise 3nnrecl 9238
[Apostol] p. 28Exercise 6qbtwnre 10325
[Apostol] p. 28Exercise 10(a)zeneo 12012  zneo 9418
[Apostol] p. 29Theorem I.35resqrtth 11175  sqrtthi 11263
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8985
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12173
[Apostol] p. 363Remarkabsgt0api 11290
[Apostol] p. 363Exampleabssubd 11337  abssubi 11294
[ApostolNT] p. 14Definitiondf-dvds 11931
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11947
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11971
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11967
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11961
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11963
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11948
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11949
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11954
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11987
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11989
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11991
[ApostolNT] p. 15Definitiondfgcd2 12151
[ApostolNT] p. 16Definitionisprm2 12255
[ApostolNT] p. 16Theorem 1.5coprmdvds 12230
[ApostolNT] p. 16Theorem 1.7prminf 12612
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12110
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12152
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12154
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12124
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12117
[ApostolNT] p. 17Theorem 1.8coprm 12282
[ApostolNT] p. 17Theorem 1.9euclemma 12284
[ApostolNT] p. 17Theorem 1.101arith2 12506
[ApostolNT] p. 19Theorem 1.14divalg 12065
[ApostolNT] p. 20Theorem 1.15eucalg 12197
[ApostolNT] p. 25Definitiondf-phi 12349
[ApostolNT] p. 26Theorem 2.2phisum 12378
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12360
[ApostolNT] p. 28Theorem 2.5(c)phimul 12364
[ApostolNT] p. 104Definitioncongr 12238
[ApostolNT] p. 106Remarkdvdsval3 11934
[ApostolNT] p. 106Definitionmoddvds 11942
[ApostolNT] p. 107Example 2mod2eq0even 12019
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12020
[ApostolNT] p. 107Example 4zmod1congr 10412
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10449
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10737
[ApostolNT] p. 108Theorem 5.3modmulconst 11966
[ApostolNT] p. 109Theorem 5.4cncongr1 12241
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12243
[ApostolNT] p. 113Theorem 5.17eulerth 12371
[ApostolNT] p. 113Theorem 5.18vfermltl 12389
[ApostolNT] p. 114Theorem 5.19fermltl 12372
[ApostolNT] p. 179Definitiondf-lgs 15114  lgsprme0 15158
[ApostolNT] p. 180Example 11lgs 15159
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15135
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15150
[ApostolNT] p. 181Theorem 9.4m1lgs 15192
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15185
[ApostolNT] p. 188Definitiondf-lgs 15114  lgs1 15160
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15151
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15153
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15161
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15162
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 660
[Bauer] p. 483Theorem 1.3acexmid 5917  onsucelsucexmidlem 4561
[Bauer], p. 481Section 1.1pwtrufal 15488
[Bauer], p. 483Definitionn0rf 3459
[Bauer], p. 483Theorem 1.22irrexpq 15108  2irrexpqap 15110
[Bauer], p. 485Theorem 2.1ssfiexmid 6932
[Bauer], p. 493Section 5.1ivthdich 14807
[Bauer], p. 494Theorem 5.5ivthinc 14797
[BauerHanson], p. 27Proposition 5.2cnstab 8664
[BauerSwan], p. 14Remark0ct 7166  ctm 7168
[BauerSwan], p. 14Proposition 2.6subctctexmid 15491
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7174
[BauerTaylor], p. 32Lemma 6.16prarloclem 7561
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7474
[BauerTaylor], p. 52Proposition 11.15prarloc 7563
[BauerTaylor], p. 53Lemma 11.16addclpr 7597  addlocpr 7596
[BauerTaylor], p. 55Proposition 12.7appdivnq 7623
[BauerTaylor], p. 56Lemma 12.8prmuloc 7626
[BauerTaylor], p. 56Lemma 12.9mullocpr 7631
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2045
[BellMachover] p. 460Notationdf-mo 2046
[BellMachover] p. 460Definitionmo3 2096  mo3h 2095
[BellMachover] p. 462Theorem 1.1bm1.1 2178
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4150
[BellMachover] p. 466Axiom Powaxpow3 4206
[BellMachover] p. 466Axiom Unionaxun2 4466
[BellMachover] p. 469Theorem 2.2(i)ordirr 4574
[BellMachover] p. 469Theorem 2.2(iii)onelon 4415
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4577
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4528
[BellMachover] p. 471Definition of Limdf-ilim 4400
[BellMachover] p. 472Axiom Infzfinf2 4621
[BellMachover] p. 473Theorem 2.8limom 4646
[Bobzien] p. 116Statement T3stoic3 1442
[Bobzien] p. 117Statement T2stoic2a 1440
[Bobzien] p. 117Statement T4stoic4a 1443
[Bobzien] p. 117Conclusion the contradictorystoic1a 1438
[BourbakiAlg1] p. 1Definition 1df-mgm 12939
[BourbakiAlg1] p. 4Definition 5df-sgrp 12985
[BourbakiAlg1] p. 12Definition 2df-mnd 12998
[BourbakiAlg1] p. 92Definition 1df-ring 13494
[BourbakiAlg1] p. 93Section I.8.1df-rng 13429
[BourbakiEns] p. Proposition 8fcof1 5826  fcofo 5827
[BourbakiTop1] p. Remarkxnegmnf 9895  xnegpnf 9894
[BourbakiTop1] p. Remark rexneg 9896
[BourbakiTop1] p. Propositionishmeo 14472
[BourbakiTop1] p. Property V_issnei2 14325
[BourbakiTop1] p. Property V_iiinnei 14331
[BourbakiTop1] p. Property V_ivneissex 14333
[BourbakiTop1] p. Proposition 1neipsm 14322  neiss 14318
[BourbakiTop1] p. Proposition 2cnptopco 14390
[BourbakiTop1] p. Proposition 4imasnopn 14467
[BourbakiTop1] p. Property V_iiielnei 14320
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14166
[Bruck] p. 1Section I.1df-mgm 12939
[Bruck] p. 23Section II.1df-sgrp 12985
[Bruck] p. 28Theorem 3.2dfgrp3m 13171
[ChoquetDD] p. 2Definition of mappingdf-mpt 4092
[Cohen] p. 301Remarkrelogoprlem 15003
[Cohen] p. 301Property 2relogmul 15004  relogmuld 15019
[Cohen] p. 301Property 3relogdiv 15005  relogdivd 15020
[Cohen] p. 301Property 4relogexp 15007
[Cohen] p. 301Property 1alog1 15001
[Cohen] p. 301Property 1bloge 15002
[Cohen4] p. 348Observationrelogbcxpbap 15097
[Cohen4] p. 352Definitionrpelogb 15081
[Cohen4] p. 361Property 2rprelogbmul 15087
[Cohen4] p. 361Property 3logbrec 15092  rprelogbdiv 15089
[Cohen4] p. 361Property 4rplogbreexp 15085
[Cohen4] p. 361Property 6relogbexpap 15090
[Cohen4] p. 361Property 1(a)rplogbid1 15079
[Cohen4] p. 361Property 1(b)rplogb1 15080
[Cohen4] p. 367Propertyrplogbchbase 15082
[Cohen4] p. 377Property 2logblt 15094
[Crosilla] p. Axiom 1ax-ext 2175
[Crosilla] p. Axiom 2ax-pr 4238
[Crosilla] p. Axiom 3ax-un 4464
[Crosilla] p. Axiom 4ax-nul 4155
[Crosilla] p. Axiom 5ax-iinf 4620
[Crosilla] p. Axiom 6ru 2984
[Crosilla] p. Axiom 8ax-pow 4203
[Crosilla] p. Axiom 9ax-setind 4569
[Crosilla], p. Axiom 6ax-sep 4147
[Crosilla], p. Axiom 7ax-coll 4144
[Crosilla], p. Axiom 7'repizf 4145
[Crosilla], p. Theorem is statedordtriexmid 4553
[Crosilla], p. Axiom of choice implies instancesacexmid 5917
[Crosilla], p. Definition of ordinaldf-iord 4397
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4567
[Eisenberg] p. 67Definition 5.3df-dif 3155
[Eisenberg] p. 82Definition 6.3df-iom 4623
[Eisenberg] p. 125Definition 8.21df-map 6704
[Enderton] p. 18Axiom of Empty Setaxnul 4154
[Enderton] p. 19Definitiondf-tp 3626
[Enderton] p. 26Exercise 5unissb 3865
[Enderton] p. 26Exercise 10pwel 4247
[Enderton] p. 28Exercise 7(b)pwunim 4317
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3982  iinin2m 3981  iunin1 3977  iunin2 3976
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3980  iundif2ss 3978
[Enderton] p. 33Exercise 23iinuniss 3995
[Enderton] p. 33Exercise 25iununir 3996
[Enderton] p. 33Exercise 24(a)iinpw 4003
[Enderton] p. 33Exercise 24(b)iunpw 4511  iunpwss 4004
[Enderton] p. 38Exercise 6(a)unipw 4246
[Enderton] p. 38Exercise 6(b)pwuni 4221
[Enderton] p. 41Lemma 3Dopeluu 4481  rnex 4929  rnexg 4927
[Enderton] p. 41Exercise 8dmuni 4872  rnuni 5077
[Enderton] p. 42Definition of a functiondffun7 5281  dffun8 5282
[Enderton] p. 43Definition of function valuefunfvdm2 5621
[Enderton] p. 43Definition of single-rootedfuncnv 5315
[Enderton] p. 44Definition (d)dfima2 5007  dfima3 5008
[Enderton] p. 47Theorem 3Hfvco2 5626
[Enderton] p. 49Axiom of Choice (first form)df-ac 7266
[Enderton] p. 50Theorem 3K(a)imauni 5804
[Enderton] p. 52Definitiondf-map 6704
[Enderton] p. 53Exercise 21coass 5184
[Enderton] p. 53Exercise 27dmco 5174
[Enderton] p. 53Exercise 14(a)funin 5325
[Enderton] p. 53Exercise 22(a)imass2 5041
[Enderton] p. 54Remarkixpf 6774  ixpssmap 6786
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6753
[Enderton] p. 56Theorem 3Merref 6607
[Enderton] p. 57Lemma 3Nerthi 6635
[Enderton] p. 57Definitiondf-ec 6589
[Enderton] p. 58Definitiondf-qs 6593
[Enderton] p. 60Theorem 3Qth3q 6694  th3qcor 6693  th3qlem1 6691  th3qlem2 6692
[Enderton] p. 61Exercise 35df-ec 6589
[Enderton] p. 65Exercise 56(a)dmun 4869
[Enderton] p. 68Definition of successordf-suc 4402
[Enderton] p. 71Definitiondf-tr 4128  dftr4 4132
[Enderton] p. 72Theorem 4Eunisuc 4444  unisucg 4445
[Enderton] p. 73Exercise 6unisuc 4444  unisucg 4445
[Enderton] p. 73Exercise 5(a)truni 4141
[Enderton] p. 73Exercise 5(b)trint 4142
[Enderton] p. 79Theorem 4I(A1)nna0 6527
[Enderton] p. 79Theorem 4I(A2)nnasuc 6529  onasuc 6519
[Enderton] p. 79Definition of operation valuedf-ov 5921
[Enderton] p. 80Theorem 4J(A1)nnm0 6528
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6530  onmsuc 6526
[Enderton] p. 81Theorem 4K(1)nnaass 6538
[Enderton] p. 81Theorem 4K(2)nna0r 6531  nnacom 6537
[Enderton] p. 81Theorem 4K(3)nndi 6539
[Enderton] p. 81Theorem 4K(4)nnmass 6540
[Enderton] p. 81Theorem 4K(5)nnmcom 6542
[Enderton] p. 82Exercise 16nnm0r 6532  nnmsucr 6541
[Enderton] p. 88Exercise 23nnaordex 6581
[Enderton] p. 129Definitiondf-en 6795
[Enderton] p. 132Theorem 6B(b)canth 5871
[Enderton] p. 133Exercise 1xpomen 12552
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6921
[Enderton] p. 136Corollary 6Enneneq 6913
[Enderton] p. 139Theorem 6H(c)mapen 6902
[Enderton] p. 142Theorem 6I(3)xpdjuen 7278
[Enderton] p. 143Theorem 6Jdju0en 7274  dju1en 7273
[Enderton] p. 144Corollary 6Kundif2ss 3522
[Enderton] p. 145Figure 38ffoss 5532
[Enderton] p. 145Definitiondf-dom 6796
[Enderton] p. 146Example 1domen 6805  domeng 6806
[Enderton] p. 146Example 3nndomo 6920
[Enderton] p. 149Theorem 6L(c)xpdom1 6889  xpdom1g 6887  xpdom2g 6886
[Enderton] p. 168Definitiondf-po 4327
[Enderton] p. 192Theorem 7M(a)oneli 4459
[Enderton] p. 192Theorem 7M(b)ontr1 4420
[Enderton] p. 192Theorem 7M(c)onirri 4575
[Enderton] p. 193Corollary 7N(b)0elon 4423
[Enderton] p. 193Corollary 7N(c)onsuci 4548
[Enderton] p. 193Corollary 7N(d)ssonunii 4521
[Enderton] p. 194Remarkonprc 4584
[Enderton] p. 194Exercise 16suc11 4590
[Enderton] p. 197Definitiondf-card 7240
[Enderton] p. 200Exercise 25tfis 4615
[Enderton] p. 206Theorem 7X(b)en2lp 4586
[Enderton] p. 207Exercise 34opthreg 4588
[Enderton] p. 208Exercise 35suc11g 4589
[Geuvers], p. 1Remarkexpap0 10640
[Geuvers], p. 6Lemma 2.13mulap0r 8634
[Geuvers], p. 6Lemma 2.15mulap0 8673
[Geuvers], p. 9Lemma 2.35msqge0 8635
[Geuvers], p. 9Definition 3.1(2)ax-arch 7991
[Geuvers], p. 10Lemma 3.9maxcom 11347
[Geuvers], p. 10Lemma 3.10maxle1 11355  maxle2 11356
[Geuvers], p. 10Lemma 3.11maxleast 11357
[Geuvers], p. 10Lemma 3.12maxleb 11360
[Geuvers], p. 11Definition 3.13dfabsmax 11361
[Geuvers], p. 17Definition 6.1df-ap 8601
[Gleason] p. 117Proposition 9-2.1df-enq 7407  enqer 7418
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7411  df-nqqs 7408
[Gleason] p. 117Proposition 9-2.3df-plpq 7404  df-plqqs 7409
[Gleason] p. 119Proposition 9-2.4df-mpq 7405  df-mqqs 7410
[Gleason] p. 119Proposition 9-2.5df-rq 7412
[Gleason] p. 119Proposition 9-2.6ltexnqq 7468
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7471  ltbtwnnq 7476  ltbtwnnqq 7475
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7460
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7461
[Gleason] p. 123Proposition 9-3.5addclpr 7597
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7639
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7638
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7657
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7673
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7679  ltaprlem 7678
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7676
[Gleason] p. 124Proposition 9-3.7mulclpr 7632
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7652
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7641
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7640
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7648
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7698
[Gleason] p. 126Proposition 9-4.1df-enr 7786  enrer 7795
[Gleason] p. 126Proposition 9-4.2df-0r 7791  df-1r 7792  df-nr 7787
[Gleason] p. 126Proposition 9-4.3df-mr 7789  df-plr 7788  negexsr 7832  recexsrlem 7834
[Gleason] p. 127Proposition 9-4.4df-ltr 7790
[Gleason] p. 130Proposition 10-1.3creui 8979  creur 8978  cru 8621
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7983  axcnre 7941
[Gleason] p. 132Definition 10-3.1crim 11002  crimd 11121  crimi 11081  crre 11001  crred 11120  crrei 11080
[Gleason] p. 132Definition 10-3.2remim 11004  remimd 11086
[Gleason] p. 133Definition 10.36absval2 11201  absval2d 11329  absval2i 11288
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11028  cjaddd 11109  cjaddi 11076
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11029  cjmuld 11110  cjmuli 11077
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11027  cjcjd 11087  cjcji 11059
[Gleason] p. 133Proposition 10-3.4(f)cjre 11026  cjreb 11010  cjrebd 11090  cjrebi 11062  cjred 11115  rere 11009  rereb 11007  rerebd 11089  rerebi 11061  rered 11113
[Gleason] p. 133Proposition 10-3.4(h)addcj 11035  addcjd 11101  addcji 11071
[Gleason] p. 133Proposition 10-3.7(a)absval 11145
[Gleason] p. 133Proposition 10-3.7(b)abscj 11196  abscjd 11334  abscji 11292
[Gleason] p. 133Proposition 10-3.7(c)abs00 11208  abs00d 11330  abs00i 11289  absne0d 11331
[Gleason] p. 133Proposition 10-3.7(d)releabs 11240  releabsd 11335  releabsi 11293
[Gleason] p. 133Proposition 10-3.7(f)absmul 11213  absmuld 11338  absmuli 11295
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11199  sqabsaddi 11296
[Gleason] p. 133Proposition 10-3.7(h)abstri 11248  abstrid 11340  abstrii 11299
[Gleason] p. 134Definition 10-4.1df-exp 10610  exp0 10614  expp1 10617  expp1d 10745
[Gleason] p. 135Proposition 10-4.2(a)expadd 10652  expaddd 10746
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15047  cxpmuld 15070  expmul 10655  expmuld 10747
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10649  mulexpd 10759  rpmulcxp 15044
[Gleason] p. 141Definition 11-2.1fzval 10076
[Gleason] p. 168Proposition 12-2.1(a)climadd 11469
[Gleason] p. 168Proposition 12-2.1(b)climsub 11471
[Gleason] p. 168Proposition 12-2.1(c)climmul 11470
[Gleason] p. 171Corollary 12-2.2climmulc2 11474
[Gleason] p. 172Corollary 12-2.5climrecl 11467
[Gleason] p. 172Proposition 12-2.4(c)climabs 11463  climcj 11464  climim 11466  climre 11465
[Gleason] p. 173Definition 12-3.1df-ltxr 8059  df-xr 8058  ltxr 9841
[Gleason] p. 180Theorem 12-5.3climcau 11490
[Gleason] p. 217Lemma 13-4.1btwnzge0 10369
[Gleason] p. 223Definition 14-1.1df-met 14041
[Gleason] p. 223Definition 14-1.1(a)met0 14532  xmet0 14531
[Gleason] p. 223Definition 14-1.1(c)metsym 14539
[Gleason] p. 223Definition 14-1.1(d)mettri 14541  mstri 14641  xmettri 14540  xmstri 14640
[Gleason] p. 230Proposition 14-2.6txlm 14447
[Gleason] p. 240Proposition 14-4.2metcnp3 14679
[Gleason] p. 243Proposition 14-4.16addcn2 11453  addcncntop 14720  mulcn2 11455  mulcncntop 14722  subcn2 11454  subcncntop 14721
[Gleason] p. 295Remarkbcval3 10822  bcval4 10823
[Gleason] p. 295Equation 2bcpasc 10837
[Gleason] p. 295Definition of binomial coefficientbcval 10820  df-bc 10819
[Gleason] p. 296Remarkbcn0 10826  bcnn 10828
[Gleason] p. 296Theorem 15-2.8binom 11627
[Gleason] p. 308Equation 2ef0 11815
[Gleason] p. 308Equation 3efcj 11816
[Gleason] p. 309Corollary 15-4.3efne0 11821
[Gleason] p. 309Corollary 15-4.4efexp 11825
[Gleason] p. 310Equation 14sinadd 11879
[Gleason] p. 310Equation 15cosadd 11880
[Gleason] p. 311Equation 17sincossq 11891
[Gleason] p. 311Equation 18cosbnd 11896  sinbnd 11895
[Gleason] p. 311Definition of ` `df-pi 11796
[Golan] p. 1Remarksrgisid 13482
[Golan] p. 1Definitiondf-srg 13460
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1460
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13083  mndideu 13007
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13110
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13139
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13150
[Herstein] p. 57Exercise 1dfgrp3me 13172
[Heyting] p. 127Axiom #1ax1hfs 15564
[Hitchcock] p. 5Rule A3mptnan 1434
[Hitchcock] p. 5Rule A4mptxor 1435
[Hitchcock] p. 5Rule A5mtpxor 1437
[HoTT], p. Lemma 10.4.1exmidontriim 7285
[HoTT], p. Theorem 7.2.6nndceq 6552
[HoTT], p. Exercise 11.10neapmkv 15558
[HoTT], p. Exercise 11.11mulap0bd 8676
[HoTT], p. Section 11.2.1df-iltp 7530  df-imp 7529  df-iplp 7528  df-reap 8594
[HoTT], p. Theorem 11.2.4recapb 8690  rerecapb 8862
[HoTT], p. Corollary 3.9.2uchoice 6190
[HoTT], p. Theorem 11.2.12cauappcvgpr 7722
[HoTT], p. Corollary 11.4.3conventions 15213
[HoTT], p. Exercise 11.6(i)dcapnconst 15551  dceqnconst 15550
[HoTT], p. Corollary 11.2.13axcaucvg 7960  caucvgpr 7742  caucvgprpr 7772  caucvgsr 7862
[HoTT], p. Definition 11.2.1df-inp 7526
[HoTT], p. Exercise 11.6(ii)nconstwlpo 15556
[HoTT], p. Proposition 11.2.3df-iso 4328  ltpopr 7655  ltsopr 7656
[HoTT], p. Definition 11.2.7(v)apsym 8625  reapcotr 8617  reapirr 8596
[HoTT], p. Definition 11.2.7(vi)0lt1 8146  gt0add 8592  leadd1 8449  lelttr 8108  lemul1a 8877  lenlt 8095  ltadd1 8448  ltletr 8109  ltmul1 8611  reaplt 8607
[Jech] p. 4Definition of classcv 1363  cvjust 2188
[Jech] p. 78Noteopthprc 4710
[KalishMontague] p. 81Note 1ax-i9 1541
[Kreyszig] p. 3Property M1metcl 14521  xmetcl 14520
[Kreyszig] p. 4Property M2meteq0 14528
[Kreyszig] p. 12Equation 5muleqadd 8687
[Kreyszig] p. 18Definition 1.3-2mopnval 14610
[Kreyszig] p. 19Remarkmopntopon 14611
[Kreyszig] p. 19Theorem T1mopn0 14656  mopnm 14616
[Kreyszig] p. 19Theorem T2unimopn 14654
[Kreyszig] p. 19Definition of neighborhoodneibl 14659
[Kreyszig] p. 20Definition 1.3-3metcnp2 14681
[Kreyszig] p. 25Definition 1.4-1lmbr 14381
[Kreyszig] p. 51Equation 2lmodvneg1 13826
[Kreyszig] p. 51Equation 1almod0vs 13817
[Kreyszig] p. 51Equation 1blmodvs0 13818
[Kunen] p. 10Axiom 0a9e 1707
[Kunen] p. 12Axiom 6zfrep6 4146
[Kunen] p. 24Definition 10.24mapval 6714  mapvalg 6712
[Kunen] p. 31Definition 10.24mapex 6708
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3922
[Lang] p. 3Statementlidrideqd 12964  mndbn0 13012
[Lang] p. 3Definitiondf-mnd 12998
[Lang] p. 4Definition of a (finite) productgsumsplit1r 12981
[Lang] p. 5Equationgsumfzreidx 13407
[Lang] p. 6Definitionmulgnn0gsum 13198
[Lang] p. 7Definitiondfgrp2e 13100
[Levy] p. 338Axiomdf-clab 2180  df-clel 2189  df-cleq 2186
[Lopez-Astorga] p. 12Rule 1mptnan 1434
[Lopez-Astorga] p. 12Rule 2mptxor 1435
[Lopez-Astorga] p. 12Rule 3mtpxor 1437
[Margaris] p. 40Rule Cexlimiv 1609
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 854
[Margaris] p. 49Definitiondfbi2 388  dfordc 893  exalim 1513
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 652
[Margaris] p. 89Theorem 19.219.2 1649  r19.2m 3533
[Margaris] p. 89Theorem 19.319.3 1565  19.3h 1564  rr19.3v 2899
[Margaris] p. 89Theorem 19.5alcom 1489
[Margaris] p. 89Theorem 19.6alexdc 1630  alexim 1656
[Margaris] p. 89Theorem 19.7alnex 1510
[Margaris] p. 89Theorem 19.819.8a 1601  spsbe 1853
[Margaris] p. 89Theorem 19.919.9 1655  19.9h 1654  19.9v 1882  exlimd 1608
[Margaris] p. 89Theorem 19.11excom 1675  excomim 1674
[Margaris] p. 89Theorem 19.1219.12 1676  r19.12 2600
[Margaris] p. 90Theorem 19.14exnalim 1657
[Margaris] p. 90Theorem 19.15albi 1479  ralbi 2626
[Margaris] p. 90Theorem 19.1619.16 1566
[Margaris] p. 90Theorem 19.1719.17 1567
[Margaris] p. 90Theorem 19.18exbi 1615  rexbi 2627
[Margaris] p. 90Theorem 19.1919.19 1677
[Margaris] p. 90Theorem 19.20alim 1468  alimd 1532  alimdh 1478  alimdv 1890  ralimdaa 2560  ralimdv 2562  ralimdva 2561  ralimdvva 2563  sbcimdv 3051
[Margaris] p. 90Theorem 19.2119.21-2 1678  19.21 1594  19.21bi 1569  19.21h 1568  19.21ht 1592  19.21t 1593  19.21v 1884  alrimd 1621  alrimdd 1620  alrimdh 1490  alrimdv 1887  alrimi 1533  alrimih 1480  alrimiv 1885  alrimivv 1886  r19.21 2570  r19.21be 2585  r19.21bi 2582  r19.21t 2569  r19.21v 2571  ralrimd 2572  ralrimdv 2573  ralrimdva 2574  ralrimdvv 2578  ralrimdvva 2579  ralrimi 2565  ralrimiv 2566  ralrimiva 2567  ralrimivv 2575  ralrimivva 2576  ralrimivvva 2577  ralrimivw 2568  rexlimi 2604
[Margaris] p. 90Theorem 19.222alimdv 1892  2eximdv 1893  exim 1610  eximd 1623  eximdh 1622  eximdv 1891  rexim 2588  reximdai 2592  reximddv 2597  reximddv2 2599  reximdv 2595  reximdv2 2593  reximdva 2596  reximdvai 2594  reximi2 2590
[Margaris] p. 90Theorem 19.2319.23 1689  19.23bi 1603  19.23h 1509  19.23ht 1508  19.23t 1688  19.23v 1894  19.23vv 1895  exlimd2 1606  exlimdh 1607  exlimdv 1830  exlimdvv 1909  exlimi 1605  exlimih 1604  exlimiv 1609  exlimivv 1908  r19.23 2602  r19.23v 2603  rexlimd 2608  rexlimdv 2610  rexlimdv3a 2613  rexlimdva 2611  rexlimdva2 2614  rexlimdvaa 2612  rexlimdvv 2618  rexlimdvva 2619  rexlimdvw 2615  rexlimiv 2605  rexlimiva 2606  rexlimivv 2617
[Margaris] p. 90Theorem 19.24i19.24 1650
[Margaris] p. 90Theorem 19.2519.25 1637
[Margaris] p. 90Theorem 19.2619.26-2 1493  19.26-3an 1494  19.26 1492  r19.26-2 2623  r19.26-3 2624  r19.26 2620  r19.26m 2625
[Margaris] p. 90Theorem 19.2719.27 1572  19.27h 1571  19.27v 1911  r19.27av 2629  r19.27m 3542  r19.27mv 3543
[Margaris] p. 90Theorem 19.2819.28 1574  19.28h 1573  19.28v 1912  r19.28av 2630  r19.28m 3536  r19.28mv 3539  rr19.28v 2900
[Margaris] p. 90Theorem 19.2919.29 1631  19.29r 1632  19.29r2 1633  19.29x 1634  r19.29 2631  r19.29d2r 2638  r19.29r 2632
[Margaris] p. 90Theorem 19.3019.30dc 1638
[Margaris] p. 90Theorem 19.3119.31r 1692
[Margaris] p. 90Theorem 19.3219.32dc 1690  19.32r 1691  r19.32r 2640  r19.32vdc 2643  r19.32vr 2642
[Margaris] p. 90Theorem 19.3319.33 1495  19.33b2 1640  19.33bdc 1641
[Margaris] p. 90Theorem 19.3419.34 1695
[Margaris] p. 90Theorem 19.3519.35-1 1635  19.35i 1636
[Margaris] p. 90Theorem 19.3619.36-1 1684  19.36aiv 1913  19.36i 1683  r19.36av 2645
[Margaris] p. 90Theorem 19.3719.37-1 1685  19.37aiv 1686  r19.37 2646  r19.37av 2647
[Margaris] p. 90Theorem 19.3819.38 1687
[Margaris] p. 90Theorem 19.39i19.39 1651
[Margaris] p. 90Theorem 19.4019.40-2 1643  19.40 1642  r19.40 2648
[Margaris] p. 90Theorem 19.4119.41 1697  19.41h 1696  19.41v 1914  19.41vv 1915  19.41vvv 1916  19.41vvvv 1917  r19.41 2649  r19.41v 2650
[Margaris] p. 90Theorem 19.4219.42 1699  19.42h 1698  19.42v 1918  19.42vv 1923  19.42vvv 1924  19.42vvvv 1925  r19.42v 2651
[Margaris] p. 90Theorem 19.4319.43 1639  r19.43 2652
[Margaris] p. 90Theorem 19.4419.44 1693  r19.44av 2653  r19.44mv 3541
[Margaris] p. 90Theorem 19.4519.45 1694  r19.45av 2654  r19.45mv 3540
[Margaris] p. 110Exercise 2(b)eu1 2067
[Megill] p. 444Axiom C5ax-17 1537
[Megill] p. 445Lemma L12alequcom 1526  ax-10 1516
[Megill] p. 446Lemma L17equtrr 1721
[Megill] p. 446Lemma L19hbnae 1732
[Megill] p. 447Remark 9.1df-sb 1774  sbid 1785
[Megill] p. 448Scheme C5'ax-4 1521
[Megill] p. 448Scheme C6'ax-7 1459
[Megill] p. 448Scheme C8'ax-8 1515
[Megill] p. 448Scheme C9'ax-i12 1518
[Megill] p. 448Scheme C11'ax-10o 1727
[Megill] p. 448Scheme C12'ax-13 2166
[Megill] p. 448Scheme C13'ax-14 2167
[Megill] p. 448Scheme C15'ax-11o 1834
[Megill] p. 448Scheme C16'ax-16 1825
[Megill] p. 448Theorem 9.4dral1 1741  dral2 1742  drex1 1809  drex2 1743  drsb1 1810  drsb2 1852
[Megill] p. 449Theorem 9.7sbcom2 2003  sbequ 1851  sbid2v 2012
[Megill] p. 450Example in Appendixhba1 1551
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3068  rspsbca 3069  stdpc4 1786
[Mendelson] p. 69Axiom 5ra5 3074  stdpc5 1595
[Mendelson] p. 81Rule Cexlimiv 1609
[Mendelson] p. 95Axiom 6stdpc6 1714
[Mendelson] p. 95Axiom 7stdpc7 1781
[Mendelson] p. 231Exercise 4.10(k)inv1 3483
[Mendelson] p. 231Exercise 4.10(l)unv 3484
[Mendelson] p. 231Exercise 4.10(n)inssun 3399
[Mendelson] p. 231Exercise 4.10(o)df-nul 3447
[Mendelson] p. 231Exercise 4.10(q)inssddif 3400
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3290
[Mendelson] p. 231Definition of unionunssin 3398
[Mendelson] p. 235Exercise 4.12(c)univ 4507
[Mendelson] p. 235Exercise 4.12(d)pwv 3834
[Mendelson] p. 235Exercise 4.12(j)pwin 4313
[Mendelson] p. 235Exercise 4.12(k)pwunss 4314
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4315
[Mendelson] p. 235Exercise 4.12(n)uniin 3855
[Mendelson] p. 235Exercise 4.12(p)reli 4791
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5186
[Mendelson] p. 246Definition of successordf-suc 4402
[Mendelson] p. 254Proposition 4.22(b)xpen 6901
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6875  xpsneng 6876
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6881  xpcomeng 6882
[Mendelson] p. 254Proposition 4.22(e)xpassen 6884
[Mendelson] p. 255Exercise 4.39endisj 6878
[Mendelson] p. 255Exercise 4.41mapprc 6706
[Mendelson] p. 255Exercise 4.43mapsnen 6865
[Mendelson] p. 255Exercise 4.47xpmapen 6906
[Mendelson] p. 255Exercise 4.42(a)map0e 6740
[Mendelson] p. 255Exercise 4.42(b)map1 6866
[Mendelson] p. 258Exercise 4.56(c)djuassen 7277  djucomen 7276
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7275
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6520
[Monk1] p. 26Theorem 2.8(vii)ssin 3381
[Monk1] p. 33Theorem 3.2(i)ssrel 4747
[Monk1] p. 33Theorem 3.2(ii)eqrel 4748
[Monk1] p. 34Definition 3.3df-opab 4091
[Monk1] p. 36Theorem 3.7(i)coi1 5181  coi2 5182
[Monk1] p. 36Theorem 3.8(v)dm0 4876  rn0 4918
[Monk1] p. 36Theorem 3.7(ii)cnvi 5070
[Monk1] p. 37Theorem 3.13(i)relxp 4768
[Monk1] p. 37Theorem 3.13(x)dmxpm 4882  rnxpm 5095
[Monk1] p. 37Theorem 3.13(ii)0xp 4739  xp0 5085
[Monk1] p. 38Theorem 3.16(ii)ima0 5024
[Monk1] p. 38Theorem 3.16(viii)imai 5021
[Monk1] p. 39Theorem 3.17imaex 5020  imaexg 5019
[Monk1] p. 39Theorem 3.16(xi)imassrn 5016
[Monk1] p. 41Theorem 4.3(i)fnopfv 5688  funfvop 5670
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5600
[Monk1] p. 42Theorem 4.4(iii)fvelima 5608
[Monk1] p. 43Theorem 4.6funun 5298
[Monk1] p. 43Theorem 4.8(iv)dff13 5811  dff13f 5813
[Monk1] p. 46Theorem 4.15(v)funex 5781  funrnex 6166
[Monk1] p. 50Definition 5.4fniunfv 5805
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5149
[Monk1] p. 52Theorem 5.11(viii)ssint 3886
[Monk1] p. 52Definition 5.13 (i)1stval2 6208  df-1st 6193
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6209  df-2nd 6194
[Monk2] p. 105Axiom C4ax-5 1458
[Monk2] p. 105Axiom C7ax-8 1515
[Monk2] p. 105Axiom C8ax-11 1517  ax-11o 1834
[Monk2] p. 105Axiom (C8)ax11v 1838
[Monk2] p. 109Lemma 12ax-7 1459
[Monk2] p. 109Lemma 15equvin 1874  equvini 1769  eqvinop 4272
[Monk2] p. 113Axiom C5-1ax-17 1537
[Monk2] p. 113Axiom C5-2ax6b 1662
[Monk2] p. 113Axiom C5-3ax-7 1459
[Monk2] p. 114Lemma 22hba1 1551
[Monk2] p. 114Lemma 23hbia1 1563  nfia1 1591
[Monk2] p. 114Lemma 24hba2 1562  nfa2 1590
[Moschovakis] p. 2Chapter 2 df-stab 832  dftest 15565
[Munkres] p. 77Example 2distop 14253
[Munkres] p. 78Definition of basisdf-bases 14211  isbasis3g 14214
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12871  tgval2 14219
[Munkres] p. 79Remarktgcl 14232
[Munkres] p. 80Lemma 2.1tgval3 14226
[Munkres] p. 80Lemma 2.2tgss2 14247  tgss3 14246
[Munkres] p. 81Lemma 2.3basgen 14248  basgen2 14249
[Munkres] p. 89Definition of subspace topologyresttop 14338
[Munkres] p. 93Theorem 6.1(1)0cld 14280  topcld 14277
[Munkres] p. 93Theorem 6.1(3)uncld 14281
[Munkres] p. 94Definition of closureclsval 14279
[Munkres] p. 94Definition of interiorntrval 14278
[Munkres] p. 102Definition of continuous functiondf-cn 14356  iscn 14365  iscn2 14368
[Munkres] p. 107Theorem 7.2(g)cncnp 14398  cncnp2m 14399  cncnpi 14396  df-cnp 14357  iscnp 14367
[Munkres] p. 127Theorem 10.1metcn 14682
[Pierik], p. 8Section 2.2.1dfrex2fin 6959
[Pierik], p. 9Definition 2.4df-womni 7223
[Pierik], p. 9Definition 2.5df-markov 7211  omniwomnimkv 7226
[Pierik], p. 10Section 2.3dfdif3 3269
[Pierik], p. 14Definition 3.1df-omni 7194  exmidomniim 7200  finomni 7199
[Pierik], p. 15Section 3.1df-nninf 7179
[Pradic2025], p. 2Section 1.1nnnninfen 15511
[PradicBrown2022], p. 1Theorem 1exmidsbthr 15513
[PradicBrown2022], p. 2Remarkexmidpw 6964
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7261
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7262  exmidfodomrlemrALT 7263
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7208
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 15497  peano4nninf 15496
[PradicBrown2022], p. 5Lemma 3.5nninfall 15499
[PradicBrown2022], p. 5Theorem 3.6nninfsel 15507
[PradicBrown2022], p. 5Corollary 3.7nninfomni 15509
[PradicBrown2022], p. 5Definition 3.3nnsf 15495
[Quine] p. 16Definition 2.1df-clab 2180  rabid 2670
[Quine] p. 17Definition 2.1''dfsb7 2007
[Quine] p. 18Definition 2.7df-cleq 2186
[Quine] p. 19Definition 2.9df-v 2762
[Quine] p. 34Theorem 5.1abeq2 2302
[Quine] p. 35Theorem 5.2abid2 2314  abid2f 2362
[Quine] p. 40Theorem 6.1sb5 1899
[Quine] p. 40Theorem 6.2sb56 1897  sb6 1898
[Quine] p. 41Theorem 6.3df-clel 2189
[Quine] p. 41Theorem 6.4eqid 2193
[Quine] p. 41Theorem 6.5eqcom 2195
[Quine] p. 42Theorem 6.6df-sbc 2986
[Quine] p. 42Theorem 6.7dfsbcq 2987  dfsbcq2 2988
[Quine] p. 43Theorem 6.8vex 2763
[Quine] p. 43Theorem 6.9isset 2766
[Quine] p. 44Theorem 7.3spcgf 2842  spcgv 2847  spcimgf 2840
[Quine] p. 44Theorem 6.11spsbc 2997  spsbcd 2998
[Quine] p. 44Theorem 6.12elex 2771
[Quine] p. 44Theorem 6.13elab 2904  elabg 2906  elabgf 2902
[Quine] p. 44Theorem 6.14noel 3450
[Quine] p. 48Theorem 7.2snprc 3683
[Quine] p. 48Definition 7.1df-pr 3625  df-sn 3624
[Quine] p. 49Theorem 7.4snss 3753  snssg 3752
[Quine] p. 49Theorem 7.5prss 3774  prssg 3775
[Quine] p. 49Theorem 7.6prid1 3724  prid1g 3722  prid2 3725  prid2g 3723  snid 3649  snidg 3647
[Quine] p. 51Theorem 7.12snexg 4213  snexprc 4215
[Quine] p. 51Theorem 7.13prexg 4240
[Quine] p. 53Theorem 8.2unisn 3851  unisng 3852
[Quine] p. 53Theorem 8.3uniun 3854
[Quine] p. 54Theorem 8.6elssuni 3863
[Quine] p. 54Theorem 8.7uni0 3862
[Quine] p. 56Theorem 8.17uniabio 5225
[Quine] p. 56Definition 8.18dfiota2 5216
[Quine] p. 57Theorem 8.19iotaval 5226
[Quine] p. 57Theorem 8.22iotanul 5230
[Quine] p. 58Theorem 8.23euiotaex 5231
[Quine] p. 58Definition 9.1df-op 3627
[Quine] p. 61Theorem 9.5opabid 4286  opabidw 4287  opelopab 4302  opelopaba 4296  opelopabaf 4304  opelopabf 4305  opelopabg 4298  opelopabga 4293  opelopabgf 4300  oprabid 5950
[Quine] p. 64Definition 9.11df-xp 4665
[Quine] p. 64Definition 9.12df-cnv 4667
[Quine] p. 64Definition 9.15df-id 4324
[Quine] p. 65Theorem 10.3fun0 5312
[Quine] p. 65Theorem 10.4funi 5286
[Quine] p. 65Theorem 10.5funsn 5302  funsng 5300
[Quine] p. 65Definition 10.1df-fun 5256
[Quine] p. 65Definition 10.2args 5034  dffv4g 5551
[Quine] p. 68Definition 10.11df-fv 5262  fv2 5549
[Quine] p. 124Theorem 17.3nn0opth2 10795  nn0opth2d 10794  nn0opthd 10793
[Quine] p. 284Axiom 39(vi)funimaex 5339  funimaexg 5338
[Roman] p. 18Part Preliminariesdf-rng 13429
[Roman] p. 19Part Preliminariesdf-ring 13494
[Rudin] p. 164Equation 27efcan 11819
[Rudin] p. 164Equation 30efzval 11826
[Rudin] p. 167Equation 48absefi 11912
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1437
[Sanford] p. 39Rule 4mptxor 1435
[Sanford] p. 40Rule 1mptnan 1434
[Schechter] p. 51Definition of antisymmetryintasym 5050
[Schechter] p. 51Definition of irreflexivityintirr 5052
[Schechter] p. 51Definition of symmetrycnvsym 5049
[Schechter] p. 51Definition of transitivitycotr 5047
[Schechter] p. 187Definition of "ring with unit"isring 13496
[Schechter] p. 428Definition 15.35bastop1 14251
[Stoll] p. 13Definition of symmetric differencesymdif1 3424
[Stoll] p. 16Exercise 4.40dif 3518  dif0 3517
[Stoll] p. 16Exercise 4.8difdifdirss 3531
[Stoll] p. 19Theorem 5.2(13)undm 3417
[Stoll] p. 19Theorem 5.2(13')indmss 3418
[Stoll] p. 20Remarkinvdif 3401
[Stoll] p. 25Definition of ordered tripledf-ot 3628
[Stoll] p. 43Definitionuniiun 3966
[Stoll] p. 44Definitionintiin 3967
[Stoll] p. 45Definitiondf-iin 3915
[Stoll] p. 45Definition indexed uniondf-iun 3914
[Stoll] p. 176Theorem 3.4(27)imandc 890  imanst 889
[Stoll] p. 262Example 4.1symdif1 3424
[Suppes] p. 22Theorem 2eq0 3465
[Suppes] p. 22Theorem 4eqss 3194  eqssd 3196  eqssi 3195
[Suppes] p. 23Theorem 5ss0 3487  ss0b 3486
[Suppes] p. 23Theorem 6sstr 3187
[Suppes] p. 25Theorem 12elin 3342  elun 3300
[Suppes] p. 26Theorem 15inidm 3368
[Suppes] p. 26Theorem 16in0 3481
[Suppes] p. 27Theorem 23unidm 3302
[Suppes] p. 27Theorem 24un0 3480
[Suppes] p. 27Theorem 25ssun1 3322
[Suppes] p. 27Theorem 26ssequn1 3329
[Suppes] p. 27Theorem 27unss 3333
[Suppes] p. 27Theorem 28indir 3408
[Suppes] p. 27Theorem 29undir 3409
[Suppes] p. 28Theorem 32difid 3515  difidALT 3516
[Suppes] p. 29Theorem 33difin 3396
[Suppes] p. 29Theorem 34indif 3402
[Suppes] p. 29Theorem 35undif1ss 3521
[Suppes] p. 29Theorem 36difun2 3526
[Suppes] p. 29Theorem 37difin0 3520
[Suppes] p. 29Theorem 38disjdif 3519
[Suppes] p. 29Theorem 39difundi 3411
[Suppes] p. 29Theorem 40difindiss 3413
[Suppes] p. 30Theorem 41nalset 4159
[Suppes] p. 39Theorem 61uniss 3856
[Suppes] p. 39Theorem 65uniop 4284
[Suppes] p. 41Theorem 70intsn 3905
[Suppes] p. 42Theorem 71intpr 3902  intprg 3903
[Suppes] p. 42Theorem 73op1stb 4509  op1stbg 4510
[Suppes] p. 42Theorem 78intun 3901
[Suppes] p. 44Definition 15(a)dfiun2 3946  dfiun2g 3944
[Suppes] p. 44Definition 15(b)dfiin2 3947
[Suppes] p. 47Theorem 86elpw 3607  elpw2 4186  elpw2g 4185  elpwg 3609
[Suppes] p. 47Theorem 87pwid 3616
[Suppes] p. 47Theorem 89pw0 3765
[Suppes] p. 48Theorem 90pwpw0ss 3830
[Suppes] p. 52Theorem 101xpss12 4766
[Suppes] p. 52Theorem 102xpindi 4797  xpindir 4798
[Suppes] p. 52Theorem 103xpundi 4715  xpundir 4716
[Suppes] p. 54Theorem 105elirrv 4580
[Suppes] p. 58Theorem 2relss 4746
[Suppes] p. 59Theorem 4eldm 4859  eldm2 4860  eldm2g 4858  eldmg 4857
[Suppes] p. 59Definition 3df-dm 4669
[Suppes] p. 60Theorem 6dmin 4870
[Suppes] p. 60Theorem 8rnun 5074
[Suppes] p. 60Theorem 9rnin 5075
[Suppes] p. 60Definition 4dfrn2 4850
[Suppes] p. 61Theorem 11brcnv 4845  brcnvg 4843
[Suppes] p. 62Equation 5elcnv 4839  elcnv2 4840
[Suppes] p. 62Theorem 12relcnv 5043
[Suppes] p. 62Theorem 15cnvin 5073
[Suppes] p. 62Theorem 16cnvun 5071
[Suppes] p. 63Theorem 20co02 5179
[Suppes] p. 63Theorem 21dmcoss 4931
[Suppes] p. 63Definition 7df-co 4668
[Suppes] p. 64Theorem 26cnvco 4847
[Suppes] p. 64Theorem 27coass 5184
[Suppes] p. 65Theorem 31resundi 4955
[Suppes] p. 65Theorem 34elima 5010  elima2 5011  elima3 5012  elimag 5009
[Suppes] p. 65Theorem 35imaundi 5078
[Suppes] p. 66Theorem 40dminss 5080
[Suppes] p. 66Theorem 41imainss 5081
[Suppes] p. 67Exercise 11cnvxp 5084
[Suppes] p. 81Definition 34dfec2 6590
[Suppes] p. 82Theorem 72elec 6628  elecg 6627
[Suppes] p. 82Theorem 73erth 6633  erth2 6634
[Suppes] p. 89Theorem 96map0b 6741
[Suppes] p. 89Theorem 97map0 6743  map0g 6742
[Suppes] p. 89Theorem 98mapsn 6744
[Suppes] p. 89Theorem 99mapss 6745
[Suppes] p. 92Theorem 1enref 6819  enrefg 6818
[Suppes] p. 92Theorem 2ensym 6835  ensymb 6834  ensymi 6836
[Suppes] p. 92Theorem 3entr 6838
[Suppes] p. 92Theorem 4unen 6870
[Suppes] p. 94Theorem 15endom 6817
[Suppes] p. 94Theorem 16ssdomg 6832
[Suppes] p. 94Theorem 17domtr 6839
[Suppes] p. 95Theorem 18isbth 7026
[Suppes] p. 98Exercise 4fundmen 6860  fundmeng 6861
[Suppes] p. 98Exercise 6xpdom3m 6888
[Suppes] p. 130Definition 3df-tr 4128
[Suppes] p. 132Theorem 9ssonuni 4520
[Suppes] p. 134Definition 6df-suc 4402
[Suppes] p. 136Theorem Schema 22findes 4635  finds 4632  finds1 4634  finds2 4633
[Suppes] p. 162Definition 5df-ltnqqs 7413  df-ltpq 7406
[Suppes] p. 228Theorem Schema 61onintss 4421
[TakeutiZaring] p. 8Axiom 1ax-ext 2175
[TakeutiZaring] p. 13Definition 4.5df-cleq 2186
[TakeutiZaring] p. 13Proposition 4.6df-clel 2189
[TakeutiZaring] p. 13Proposition 4.9cvjust 2188
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2211
[TakeutiZaring] p. 14Definition 4.16df-oprab 5922
[TakeutiZaring] p. 14Proposition 4.14ru 2984
[TakeutiZaring] p. 15Exercise 1elpr 3639  elpr2 3640  elprg 3638
[TakeutiZaring] p. 15Exercise 2elsn 3634  elsn2 3652  elsn2g 3651  elsng 3633  velsn 3635
[TakeutiZaring] p. 15Exercise 3elop 4260
[TakeutiZaring] p. 15Exercise 4sneq 3629  sneqr 3786
[TakeutiZaring] p. 15Definition 5.1dfpr2 3637  dfsn2 3632
[TakeutiZaring] p. 16Axiom 3uniex 4468
[TakeutiZaring] p. 16Exercise 6opth 4266
[TakeutiZaring] p. 16Exercise 8rext 4244
[TakeutiZaring] p. 16Corollary 5.8unex 4472  unexg 4474
[TakeutiZaring] p. 16Definition 5.3dftp2 3667
[TakeutiZaring] p. 16Definition 5.5df-uni 3836
[TakeutiZaring] p. 16Definition 5.6df-in 3159  df-un 3157
[TakeutiZaring] p. 16Proposition 5.7unipr 3849  uniprg 3850
[TakeutiZaring] p. 17Axiom 4vpwex 4208
[TakeutiZaring] p. 17Exercise 1eltp 3666
[TakeutiZaring] p. 17Exercise 5elsuc 4437  elsucg 4435  sstr2 3186
[TakeutiZaring] p. 17Exercise 6uncom 3303
[TakeutiZaring] p. 17Exercise 7incom 3351
[TakeutiZaring] p. 17Exercise 8unass 3316
[TakeutiZaring] p. 17Exercise 9inass 3369
[TakeutiZaring] p. 17Exercise 10indi 3406
[TakeutiZaring] p. 17Exercise 11undi 3407
[TakeutiZaring] p. 17Definition 5.9dfss2 3168
[TakeutiZaring] p. 17Definition 5.10df-pw 3603
[TakeutiZaring] p. 18Exercise 7unss2 3330
[TakeutiZaring] p. 18Exercise 9df-ss 3166  sseqin2 3378
[TakeutiZaring] p. 18Exercise 10ssid 3199
[TakeutiZaring] p. 18Exercise 12inss1 3379  inss2 3380
[TakeutiZaring] p. 18Exercise 13nssr 3239
[TakeutiZaring] p. 18Exercise 15unieq 3844
[TakeutiZaring] p. 18Exercise 18sspwb 4245
[TakeutiZaring] p. 18Exercise 19pweqb 4252
[TakeutiZaring] p. 20Definitiondf-rab 2481
[TakeutiZaring] p. 20Corollary 5.160ex 4156
[TakeutiZaring] p. 20Definition 5.12df-dif 3155
[TakeutiZaring] p. 20Definition 5.14dfnul2 3448
[TakeutiZaring] p. 20Proposition 5.15difid 3515  difidALT 3516
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3459
[TakeutiZaring] p. 21Theorem 5.22setind 4571
[TakeutiZaring] p. 21Definition 5.20df-v 2762
[TakeutiZaring] p. 21Proposition 5.21vprc 4161
[TakeutiZaring] p. 22Exercise 10ss 3485
[TakeutiZaring] p. 22Exercise 3ssex 4166  ssexg 4168
[TakeutiZaring] p. 22Exercise 4inex1 4163
[TakeutiZaring] p. 22Exercise 5ruv 4582
[TakeutiZaring] p. 22Exercise 6elirr 4573
[TakeutiZaring] p. 22Exercise 7ssdif0im 3511
[TakeutiZaring] p. 22Exercise 11difdif 3284
[TakeutiZaring] p. 22Exercise 13undif3ss 3420
[TakeutiZaring] p. 22Exercise 14difss 3285
[TakeutiZaring] p. 22Exercise 15sscon 3293
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2477
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2478
[TakeutiZaring] p. 23Proposition 6.2xpex 4774  xpexg 4773  xpexgALT 6185
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4666
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5318
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5470  fun11 5321
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5265  svrelfun 5319
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4849
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4851
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4671
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4672
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4668
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5120  dfrel2 5116
[TakeutiZaring] p. 25Exercise 3xpss 4767
[TakeutiZaring] p. 25Exercise 5relun 4776
[TakeutiZaring] p. 25Exercise 6reluni 4782
[TakeutiZaring] p. 25Exercise 9inxp 4796
[TakeutiZaring] p. 25Exercise 12relres 4970
[TakeutiZaring] p. 25Exercise 13opelres 4947  opelresg 4949
[TakeutiZaring] p. 25Exercise 14dmres 4963
[TakeutiZaring] p. 25Exercise 15resss 4966
[TakeutiZaring] p. 25Exercise 17resabs1 4971
[TakeutiZaring] p. 25Exercise 18funres 5295
[TakeutiZaring] p. 25Exercise 24relco 5164
[TakeutiZaring] p. 25Exercise 29funco 5294
[TakeutiZaring] p. 25Exercise 30f1co 5471
[TakeutiZaring] p. 26Definition 6.10eu2 2086
[TakeutiZaring] p. 26Definition 6.11df-fv 5262  fv3 5577
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5204  cnvexg 5203
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4928  dmexg 4926
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4929  rnexg 4927
[TakeutiZaring] p. 27Corollary 6.13funfvex 5571
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5581  tz6.12 5582  tz6.12c 5584
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5545
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5257
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5258
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5260  wfo 5252
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5259  wf1 5251
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5261  wf1o 5253
[TakeutiZaring] p. 28Exercise 4eqfnfv 5655  eqfnfv2 5656  eqfnfv2f 5659
[TakeutiZaring] p. 28Exercise 5fvco 5627
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5780  fnexALT 6163
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5779  resfunexgALT 6160
[TakeutiZaring] p. 29Exercise 9funimaex 5339  funimaexg 5338
[TakeutiZaring] p. 29Definition 6.18df-br 4030
[TakeutiZaring] p. 30Definition 6.21eliniseg 5035  iniseg 5037
[TakeutiZaring] p. 30Definition 6.22df-eprel 4320
[TakeutiZaring] p. 32Definition 6.28df-isom 5263
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5853
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5854
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5859
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5861
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5869
[TakeutiZaring] p. 35Notationwtr 4127
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4385
[TakeutiZaring] p. 35Definition 7.1dftr3 4131
[TakeutiZaring] p. 36Proposition 7.4ordwe 4608
[TakeutiZaring] p. 36Proposition 7.6ordelord 4412
[TakeutiZaring] p. 37Proposition 7.9ordin 4416
[TakeutiZaring] p. 38Corollary 7.15ordsson 4524
[TakeutiZaring] p. 38Definition 7.11df-on 4399
[TakeutiZaring] p. 38Proposition 7.12ordon 4518
[TakeutiZaring] p. 38Proposition 7.13onprc 4584
[TakeutiZaring] p. 39Theorem 7.17tfi 4614
[TakeutiZaring] p. 40Exercise 7dftr2 4129
[TakeutiZaring] p. 40Exercise 11unon 4543
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4519
[TakeutiZaring] p. 40Proposition 7.20elssuni 3863
[TakeutiZaring] p. 41Definition 7.22df-suc 4402
[TakeutiZaring] p. 41Proposition 7.23sssucid 4446  sucidg 4447
[TakeutiZaring] p. 41Proposition 7.24onsuc 4533
[TakeutiZaring] p. 42Exercise 1df-ilim 4400
[TakeutiZaring] p. 42Exercise 8onsucssi 4538  ordelsuc 4537
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4626
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4627
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4628
[TakeutiZaring] p. 43Axiom 7omex 4625
[TakeutiZaring] p. 43Theorem 7.32ordom 4639
[TakeutiZaring] p. 43Corollary 7.31find 4631
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4629
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4630
[TakeutiZaring] p. 44Exercise 2int0 3884
[TakeutiZaring] p. 44Exercise 3trintssm 4143
[TakeutiZaring] p. 44Exercise 4intss1 3885
[TakeutiZaring] p. 44Exercise 6onintonm 4549
[TakeutiZaring] p. 44Definition 7.35df-int 3871
[TakeutiZaring] p. 47Lemma 1tfrlem1 6361
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6418  tfri1d 6388
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6419  tfri2d 6389
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6420
[TakeutiZaring] p. 50Exercise 3smoiso 6355
[TakeutiZaring] p. 50Definition 7.46df-smo 6339
[TakeutiZaring] p. 56Definition 8.1oasuc 6517
[TakeutiZaring] p. 57Proposition 8.2oacl 6513
[TakeutiZaring] p. 57Proposition 8.3oa0 6510
[TakeutiZaring] p. 57Proposition 8.16omcl 6514
[TakeutiZaring] p. 58Proposition 8.4nnaord 6562  nnaordi 6561
[TakeutiZaring] p. 59Proposition 8.6iunss2 3957  uniss2 3866
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6523
[TakeutiZaring] p. 59Proposition 8.9nnacl 6533
[TakeutiZaring] p. 62Exercise 5oaword1 6524
[TakeutiZaring] p. 62Definition 8.15om0 6511  omsuc 6525
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6534
[TakeutiZaring] p. 63Proposition 8.19nnmord 6570  nnmordi 6569
[TakeutiZaring] p. 67Definition 8.30oei0 6512
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7247
[TakeutiZaring] p. 88Exercise 1en0 6849
[TakeutiZaring] p. 90Proposition 10.20nneneq 6913
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6914
[TakeutiZaring] p. 91Definition 10.29df-fin 6797  isfi 6815
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6885
[TakeutiZaring] p. 95Definition 10.42df-map 6704
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6891
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6904
[Tarski] p. 67Axiom B5ax-4 1521
[Tarski] p. 68Lemma 6equid 1712
[Tarski] p. 69Lemma 7equcomi 1715
[Tarski] p. 70Lemma 14spim 1749  spime 1752  spimeh 1750  spimh 1748
[Tarski] p. 70Lemma 16ax-11 1517  ax-11o 1834  ax11i 1725
[Tarski] p. 70Lemmas 16 and 17sb6 1898
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1537
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2166  ax-14 2167
[WhiteheadRussell] p. 96Axiom *1.3olc 712
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 728
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 757
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 766
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 790
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 838
[WhiteheadRussell] p. 101Theorem *2.06barbara 2140  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 738
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 837
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 886
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 844
[WhiteheadRussell] p. 102Theorem *2.15con1dc 857
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 854
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 856
[WhiteheadRussell] p. 104Theorem *2.2orc 713
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 776
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 894
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 908
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 769
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 770
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 805
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 806
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 804
[WhiteheadRussell] p. 105Definition *2.33df-3or 981
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 779
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 777
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 778
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 739
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 740
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 868  pm2.5gdc 867
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 863
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 741
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 742
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 743
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 656
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 657
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 723
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 892
[WhiteheadRussell] p. 107Theorem *2.55orel1 726
[WhiteheadRussell] p. 107Theorem *2.56orel2 727
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 866
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 749
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 801
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 802
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 660
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 714  pm2.67 744
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 870  pm2.521gdc 869
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 748
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 811
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 895
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 916
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 807
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 808
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 810
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 809
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 812
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 813
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 906
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 755
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 959
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 960
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 961
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 754
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 694
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 861
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 860
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 690
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 756  pm3.44 716
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 786
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 872
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 873
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 891
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 695
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 954  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 758  pm4.25 759
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 819
[WhiteheadRussell] p. 118Theorem *4.31orcom 729
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 768
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 793
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 823
[WhiteheadRussell] p. 118Definition *4.34df-3an 982
[WhiteheadRussell] p. 119Theorem *4.41ordi 817
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 973
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 951
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 780
[WhiteheadRussell] p. 119Theorem *4.45orabs 815  pm4.45 785  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1492
[WhiteheadRussell] p. 120Theorem *4.5anordc 958
[WhiteheadRussell] p. 120Theorem *4.6imordc 898  imorr 722
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 900
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 751
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 752
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 903
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 940
[WhiteheadRussell] p. 120Theorem *4.56ioran 753  pm4.56 781
[WhiteheadRussell] p. 120Theorem *4.57orandc 941  oranim 782
[WhiteheadRussell] p. 120Theorem *4.61annimim 687
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 899
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 887
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 901
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 688
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 902
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 888
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 828
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 745
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 711  pm4.77 800
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 783
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 904
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 708
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 909
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 952
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 953
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 910
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 911
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 913
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 912
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1400
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 829
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 905
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1405  pm5.18dc 884
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 707
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 696
[WhiteheadRussell] p. 124Theorem *5.22xordc 1403
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1408
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1409
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 896
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 927  pm5.6r 928
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 956
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 918
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 926
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 803
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 919
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 914
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 795
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 947
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 948
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 963
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 964
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1646
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1496
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1643
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1907
[WhiteheadRussell] p. 175Definition *14.02df-eu 2045
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2445
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2446
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2898
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3042
[WhiteheadRussell] p. 190Theorem *14.22iota4 5234
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5235
[WhiteheadRussell] p. 192Theorem *14.26eupick 2121  eupickbi 2124
[WhiteheadRussell] p. 235Definition *30.01df-fv 5262
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7250

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]