Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
---|
[AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7076 fidcenum 6917 |
[AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 6917 |
[AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7076 |
[AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12354 |
[AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 6891 |
[AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 6879 |
[AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12369 |
[AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12371 |
[AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12360 znnen 12327 |
[AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12372 |
[AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12373 |
[AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10685 |
[AczelRathjen], p.
183 | Chapter 20 | ax-setind 4513 |
[Apostol] p. 18 | Theorem
I.1 | addcan 8074 addcan2d 8079 addcan2i 8077 addcand 8078 addcani 8076 |
[Apostol] p. 18 | Theorem
I.2 | negeu 8085 |
[Apostol] p. 18 | Theorem
I.3 | negsub 8142 negsubd 8211 negsubi 8172 |
[Apostol] p. 18 | Theorem
I.4 | negneg 8144 negnegd 8196 negnegi 8164 |
[Apostol] p. 18 | Theorem
I.5 | subdi 8279 subdid 8308 subdii 8301 subdir 8280 subdird 8309 subdiri 8302 |
[Apostol] p. 18 | Theorem
I.6 | mul01 8283 mul01d 8287 mul01i 8285 mul02 8281 mul02d 8286 mul02i 8284 |
[Apostol] p. 18 | Theorem
I.9 | divrecapd 8685 |
[Apostol] p. 18 | Theorem
I.10 | recrecapi 8636 |
[Apostol] p. 18 | Theorem
I.12 | mul2neg 8292 mul2negd 8307 mul2negi 8300 mulneg1 8289 mulneg1d 8305 mulneg1i 8298 |
[Apostol] p. 18 | Theorem
I.15 | divdivdivap 8605 |
[Apostol] p. 20 | Axiom
7 | rpaddcl 9609 rpaddcld 9644 rpmulcl 9610 rpmulcld 9645 |
[Apostol] p. 20 | Axiom
9 | 0nrp 9621 |
[Apostol] p. 20 | Theorem
I.17 | lttri 7999 |
[Apostol] p. 20 | Theorem
I.18 | ltadd1d 8432 ltadd1dd 8450 ltadd1i 8396 |
[Apostol] p. 20 | Theorem
I.19 | ltmul1 8486 ltmul1a 8485 ltmul1i 8811 ltmul1ii 8819 ltmul2 8747 ltmul2d 9671 ltmul2dd 9685 ltmul2i 8814 |
[Apostol] p. 20 | Theorem
I.21 | 0lt1 8021 |
[Apostol] p. 20 | Theorem
I.23 | lt0neg1 8362 lt0neg1d 8409 ltneg 8356 ltnegd 8417 ltnegi 8387 |
[Apostol] p. 20 | Theorem
I.25 | lt2add 8339 lt2addd 8461 lt2addi 8404 |
[Apostol] p.
20 | Definition of positive numbers | df-rp 9586 |
[Apostol] p. 21 | Exercise
4 | recgt0 8741 recgt0d 8825 recgt0i 8797 recgt0ii 8798 |
[Apostol] p.
22 | Definition of integers | df-z 9188 |
[Apostol] p.
22 | Definition of rationals | df-q 9554 |
[Apostol] p. 24 | Theorem
I.26 | supeuti 6955 |
[Apostol] p. 26 | Theorem
I.29 | arch 9107 |
[Apostol] p. 28 | Exercise
2 | btwnz 9306 |
[Apostol] p. 28 | Exercise
3 | nnrecl 9108 |
[Apostol] p. 28 | Exercise
6 | qbtwnre 10188 |
[Apostol] p. 28 | Exercise
10(a) | zeneo 11804 zneo 9288 |
[Apostol] p. 29 | Theorem
I.35 | resqrtth 10969 sqrtthi 11057 |
[Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 8856 |
[Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 11965 |
[Apostol] p.
363 | Remark | absgt0api 11084 |
[Apostol] p.
363 | Example | abssubd 11131 abssubi 11088 |
[ApostolNT] p.
14 | Definition | df-dvds 11724 |
[ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 11740 |
[ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 11764 |
[ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 11760 |
[ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 11754 |
[ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 11756 |
[ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 11741 |
[ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 11742 |
[ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 11747 |
[ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 11779 |
[ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 11781 |
[ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 11783 |
[ApostolNT] p.
15 | Definition | dfgcd2 11943 |
[ApostolNT] p.
16 | Definition | isprm2 12045 |
[ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12020 |
[ApostolNT] p.
16 | Theorem 1.7 | prminf 12384 |
[ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 11902 |
[ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 11944 |
[ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 11946 |
[ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 11916 |
[ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 11909 |
[ApostolNT] p.
17 | Theorem 1.8 | coprm 12072 |
[ApostolNT] p.
17 | Theorem 1.9 | euclemma 12074 |
[ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12294 |
[ApostolNT] p.
19 | Theorem 1.14 | divalg 11857 |
[ApostolNT] p.
20 | Theorem 1.15 | eucalg 11987 |
[ApostolNT] p.
25 | Definition | df-phi 12139 |
[ApostolNT] p.
26 | Theorem 2.2 | phisum 12168 |
[ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12150 |
[ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12154 |
[ApostolNT] p.
104 | Definition | congr 12028 |
[ApostolNT] p.
106 | Remark | dvdsval3 11727 |
[ApostolNT] p.
106 | Definition | moddvds 11735 |
[ApostolNT] p.
107 | Example 2 | mod2eq0even 11811 |
[ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 11812 |
[ApostolNT] p.
107 | Example 4 | zmod1congr 10272 |
[ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10309 |
[ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10577 |
[ApostolNT] p.
108 | Theorem 5.3 | modmulconst 11759 |
[ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12031 |
[ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12033 |
[ApostolNT] p.
113 | Theorem 5.17 | eulerth 12161 |
[ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12179 |
[ApostolNT] p.
114 | Theorem 5.19 | fermltl 12162 |
[ApostolNT] p.
179 | Definition | df-lgs 13499 lgsprme0 13543 |
[ApostolNT] p.
180 | Example 1 | 1lgs 13544 |
[ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 13520 |
[ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 13535 |
[ApostolNT] p.
188 | Definition | df-lgs 13499 lgs1 13545 |
[ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 13536 |
[ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 13538 |
[ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 13546 |
[ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 13547 |
[Bauer] p. 482 | Section
1.2 | pm2.01 606 pm2.65 649 |
[Bauer] p. 483 | Theorem
1.3 | acexmid 5840 onsucelsucexmidlem 4505 |
[Bauer], p.
481 | Section 1.1 | pwtrufal 13837 |
[Bauer], p.
483 | Definition | n0rf 3420 |
[Bauer], p. 483 | Theorem
1.2 | 2irrexpq 13494 2irrexpqap 13496 |
[Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6838 |
[Bauer], p. 494 | Theorem
5.5 | ivthinc 13221 |
[BauerHanson], p.
27 | Proposition 5.2 | cnstab 8539 |
[BauerSwan], p.
14 | Remark | 0ct 7068 ctm 7070 |
[BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 13841 |
[BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7076 |
[BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7438 |
[BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7351 |
[BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7440 |
[BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7474 addlocpr 7473 |
[BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7500 |
[BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7503 |
[BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7508 |
[BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
[BellMachover] p.
97 | Definition 10.1 | df-eu 2017 |
[BellMachover] p.
460 | Notation | df-mo 2018 |
[BellMachover] p.
460 | Definition | mo3 2068 mo3h 2067 |
[BellMachover] p.
462 | Theorem 1.1 | bm1.1 2150 |
[BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4102 |
[BellMachover] p.
466 | Axiom Pow | axpow3 4155 |
[BellMachover] p.
466 | Axiom Union | axun2 4412 |
[BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4518 |
[BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4361 |
[BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4521 |
[BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4472 |
[BellMachover] p.
471 | Definition of Lim | df-ilim 4346 |
[BellMachover] p.
472 | Axiom Inf | zfinf2 4565 |
[BellMachover] p.
473 | Theorem 2.8 | limom 4590 |
[Bobzien] p.
116 | Statement T3 | stoic3 1419 |
[Bobzien] p.
117 | Statement T2 | stoic2a 1417 |
[Bobzien] p.
117 | Statement T4 | stoic4a 1420 |
[BourbakiEns] p.
| Proposition 8 | fcof1 5750 fcofo 5751 |
[BourbakiTop1] p.
| Remark | xnegmnf 9761 xnegpnf 9760 |
[BourbakiTop1] p.
| Remark | rexneg 9762 |
[BourbakiTop1] p.
| Proposition | ishmeo 12904 |
[BourbakiTop1] p.
| Property V_i | ssnei2 12757 |
[BourbakiTop1] p.
| Property V_ii | innei 12763 |
[BourbakiTop1] p.
| Property V_iv | neissex 12765 |
[BourbakiTop1] p.
| Proposition 1 | neipsm 12754 neiss 12750 |
[BourbakiTop1] p.
| Proposition 2 | cnptopco 12822 |
[BourbakiTop1] p.
| Proposition 4 | imasnopn 12899 |
[BourbakiTop1] p.
| Property V_iii | elnei 12752 |
[BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 12596 |
[ChoquetDD] p.
2 | Definition of mapping | df-mpt 4044 |
[Cohen] p.
301 | Remark | relogoprlem 13389 |
[Cohen] p. 301 | Property
2 | relogmul 13390 relogmuld 13405 |
[Cohen] p. 301 | Property
3 | relogdiv 13391 relogdivd 13406 |
[Cohen] p. 301 | Property
4 | relogexp 13393 |
[Cohen] p. 301 | Property
1a | log1 13387 |
[Cohen] p. 301 | Property
1b | loge 13388 |
[Cohen4] p.
348 | Observation | relogbcxpbap 13483 |
[Cohen4] p.
352 | Definition | rpelogb 13467 |
[Cohen4] p. 361 | Property
2 | rprelogbmul 13473 |
[Cohen4] p. 361 | Property
3 | logbrec 13478 rprelogbdiv 13475 |
[Cohen4] p. 361 | Property
4 | rplogbreexp 13471 |
[Cohen4] p. 361 | Property
6 | relogbexpap 13476 |
[Cohen4] p. 361 | Property
1(a) | rplogbid1 13465 |
[Cohen4] p. 361 | Property
1(b) | rplogb1 13466 |
[Cohen4] p.
367 | Property | rplogbchbase 13468 |
[Cohen4] p. 377 | Property
2 | logblt 13480 |
[Crosilla] p. | Axiom
1 | ax-ext 2147 |
[Crosilla] p. | Axiom
2 | ax-pr 4186 |
[Crosilla] p. | Axiom
3 | ax-un 4410 |
[Crosilla] p. | Axiom
4 | ax-nul 4107 |
[Crosilla] p. | Axiom
5 | ax-iinf 4564 |
[Crosilla] p. | Axiom
6 | ru 2949 |
[Crosilla] p. | Axiom
8 | ax-pow 4152 |
[Crosilla] p. | Axiom
9 | ax-setind 4513 |
[Crosilla], p. | Axiom
6 | ax-sep 4099 |
[Crosilla], p. | Axiom
7 | ax-coll 4096 |
[Crosilla], p. | Axiom
7' | repizf 4097 |
[Crosilla], p. | Theorem
is stated | ordtriexmid 4497 |
[Crosilla], p. | Axiom
of choice implies instances | acexmid 5840 |
[Crosilla], p.
| Definition of ordinal | df-iord 4343 |
[Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4511 |
[Eisenberg] p.
67 | Definition 5.3 | df-dif 3117 |
[Eisenberg] p.
82 | Definition 6.3 | df-iom 4567 |
[Eisenberg] p.
125 | Definition 8.21 | df-map 6612 |
[Enderton] p. 18 | Axiom
of Empty Set | axnul 4106 |
[Enderton] p.
19 | Definition | df-tp 3583 |
[Enderton] p.
26 | Exercise 5 | unissb 3818 |
[Enderton] p.
26 | Exercise 10 | pwel 4195 |
[Enderton] p.
28 | Exercise 7(b) | pwunim 4263 |
[Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3934 iinin2m 3933 iunin1 3929 iunin2 3928 |
[Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3932 iundif2ss 3930 |
[Enderton] p.
33 | Exercise 23 | iinuniss 3947 |
[Enderton] p.
33 | Exercise 25 | iununir 3948 |
[Enderton] p.
33 | Exercise 24(a) | iinpw 3955 |
[Enderton] p.
33 | Exercise 24(b) | iunpw 4457 iunpwss 3956 |
[Enderton] p.
38 | Exercise 6(a) | unipw 4194 |
[Enderton] p.
38 | Exercise 6(b) | pwuni 4170 |
[Enderton] p. 41 | Lemma
3D | opeluu 4427 rnex 4870
rnexg 4868 |
[Enderton] p.
41 | Exercise 8 | dmuni 4813 rnuni 5014 |
[Enderton] p.
42 | Definition of a function | dffun7 5214 dffun8 5215 |
[Enderton] p.
43 | Definition of function value | funfvdm2 5549 |
[Enderton] p.
43 | Definition of single-rooted | funcnv 5248 |
[Enderton] p.
44 | Definition (d) | dfima2 4947 dfima3 4948 |
[Enderton] p.
47 | Theorem 3H | fvco2 5554 |
[Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7158 |
[Enderton] p.
50 | Theorem 3K(a) | imauni 5728 |
[Enderton] p.
52 | Definition | df-map 6612 |
[Enderton] p.
53 | Exercise 21 | coass 5121 |
[Enderton] p.
53 | Exercise 27 | dmco 5111 |
[Enderton] p.
53 | Exercise 14(a) | funin 5258 |
[Enderton] p.
53 | Exercise 22(a) | imass2 4979 |
[Enderton] p.
54 | Remark | ixpf 6682 ixpssmap 6694 |
[Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6661 |
[Enderton] p.
56 | Theorem 3M | erref 6517 |
[Enderton] p. 57 | Lemma
3N | erthi 6543 |
[Enderton] p.
57 | Definition | df-ec 6499 |
[Enderton] p.
58 | Definition | df-qs 6503 |
[Enderton] p.
60 | Theorem 3Q | th3q 6602 th3qcor 6601 th3qlem1 6599 th3qlem2 6600 |
[Enderton] p.
61 | Exercise 35 | df-ec 6499 |
[Enderton] p.
65 | Exercise 56(a) | dmun 4810 |
[Enderton] p.
68 | Definition of successor | df-suc 4348 |
[Enderton] p.
71 | Definition | df-tr 4080 dftr4 4084 |
[Enderton] p.
72 | Theorem 4E | unisuc 4390 unisucg 4391 |
[Enderton] p.
73 | Exercise 6 | unisuc 4390 unisucg 4391 |
[Enderton] p.
73 | Exercise 5(a) | truni 4093 |
[Enderton] p.
73 | Exercise 5(b) | trint 4094 |
[Enderton] p.
79 | Theorem 4I(A1) | nna0 6438 |
[Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6440 onasuc 6430 |
[Enderton] p.
79 | Definition of operation value | df-ov 5844 |
[Enderton] p.
80 | Theorem 4J(A1) | nnm0 6439 |
[Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6441 onmsuc 6437 |
[Enderton] p.
81 | Theorem 4K(1) | nnaass 6449 |
[Enderton] p.
81 | Theorem 4K(2) | nna0r 6442 nnacom 6448 |
[Enderton] p.
81 | Theorem 4K(3) | nndi 6450 |
[Enderton] p.
81 | Theorem 4K(4) | nnmass 6451 |
[Enderton] p.
81 | Theorem 4K(5) | nnmcom 6453 |
[Enderton] p.
82 | Exercise 16 | nnm0r 6443 nnmsucr 6452 |
[Enderton] p.
88 | Exercise 23 | nnaordex 6491 |
[Enderton] p.
129 | Definition | df-en 6703 |
[Enderton] p.
132 | Theorem 6B(b) | canth 5795 |
[Enderton] p.
133 | Exercise 1 | xpomen 12324 |
[Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6827 |
[Enderton] p.
136 | Corollary 6E | nneneq 6819 |
[Enderton] p.
139 | Theorem 6H(c) | mapen 6808 |
[Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7170 |
[Enderton] p.
143 | Theorem 6J | dju0en 7166 dju1en 7165 |
[Enderton] p.
144 | Corollary 6K | undif2ss 3483 |
[Enderton] p.
145 | Figure 38 | ffoss 5463 |
[Enderton] p.
145 | Definition | df-dom 6704 |
[Enderton] p.
146 | Example 1 | domen 6713 domeng 6714 |
[Enderton] p.
146 | Example 3 | nndomo 6826 |
[Enderton] p.
149 | Theorem 6L(c) | xpdom1 6797 xpdom1g 6795 xpdom2g 6794 |
[Enderton] p.
168 | Definition | df-po 4273 |
[Enderton] p.
192 | Theorem 7M(a) | oneli 4405 |
[Enderton] p.
192 | Theorem 7M(b) | ontr1 4366 |
[Enderton] p.
192 | Theorem 7M(c) | onirri 4519 |
[Enderton] p.
193 | Corollary 7N(b) | 0elon 4369 |
[Enderton] p.
193 | Corollary 7N(c) | onsuci 4492 |
[Enderton] p.
193 | Corollary 7N(d) | ssonunii 4465 |
[Enderton] p.
194 | Remark | onprc 4528 |
[Enderton] p.
194 | Exercise 16 | suc11 4534 |
[Enderton] p.
197 | Definition | df-card 7132 |
[Enderton] p.
200 | Exercise 25 | tfis 4559 |
[Enderton] p.
206 | Theorem 7X(b) | en2lp 4530 |
[Enderton] p.
207 | Exercise 34 | opthreg 4532 |
[Enderton] p.
208 | Exercise 35 | suc11g 4533 |
[Geuvers], p.
1 | Remark | expap0 10481 |
[Geuvers], p. 6 | Lemma
2.13 | mulap0r 8509 |
[Geuvers], p. 6 | Lemma
2.15 | mulap0 8547 |
[Geuvers], p. 9 | Lemma
2.35 | msqge0 8510 |
[Geuvers], p.
9 | Definition 3.1(2) | ax-arch 7868 |
[Geuvers], p. 10 | Lemma
3.9 | maxcom 11141 |
[Geuvers], p. 10 | Lemma
3.10 | maxle1 11149 maxle2 11150 |
[Geuvers], p. 10 | Lemma
3.11 | maxleast 11151 |
[Geuvers], p. 10 | Lemma
3.12 | maxleb 11154 |
[Geuvers], p.
11 | Definition 3.13 | dfabsmax 11155 |
[Geuvers], p.
17 | Definition 6.1 | df-ap 8476 |
[Gleason] p.
117 | Proposition 9-2.1 | df-enq 7284 enqer 7295 |
[Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7288 df-nqqs 7285 |
[Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7281 df-plqqs 7286 |
[Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7282 df-mqqs 7287 |
[Gleason] p.
119 | Proposition 9-2.5 | df-rq 7289 |
[Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7345 |
[Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7348 ltbtwnnq 7353 ltbtwnnqq 7352 |
[Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7337 |
[Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7338 |
[Gleason] p.
123 | Proposition 9-3.5 | addclpr 7474 |
[Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7516 |
[Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7515 |
[Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7534 |
[Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7550 |
[Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7556 ltaprlem 7555 |
[Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7553 |
[Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7509 |
[Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7529 |
[Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7518 |
[Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7517 |
[Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7525 |
[Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7575 |
[Gleason] p.
126 | Proposition 9-4.1 | df-enr 7663 enrer 7672 |
[Gleason] p.
126 | Proposition 9-4.2 | df-0r 7668 df-1r 7669 df-nr 7664 |
[Gleason] p.
126 | Proposition 9-4.3 | df-mr 7666 df-plr 7665 negexsr 7709 recexsrlem 7711 |
[Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7667 |
[Gleason] p.
130 | Proposition 10-1.3 | creui 8851 creur 8850 cru 8496 |
[Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 7860 axcnre 7818 |
[Gleason] p.
132 | Definition 10-3.1 | crim 10796 crimd 10915 crimi 10875 crre 10795 crred 10914 crrei 10874 |
[Gleason] p.
132 | Definition 10-3.2 | remim 10798 remimd 10880 |
[Gleason] p.
133 | Definition 10.36 | absval2 10995 absval2d 11123 absval2i 11082 |
[Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 10822 cjaddd 10903 cjaddi 10870 |
[Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 10823 cjmuld 10904 cjmuli 10871 |
[Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 10821 cjcjd 10881 cjcji 10853 |
[Gleason] p.
133 | Proposition 10-3.4(f) | cjre 10820 cjreb 10804 cjrebd 10884 cjrebi 10856 cjred 10909 rere 10803 rereb 10801 rerebd 10883 rerebi 10855 rered 10907 |
[Gleason] p.
133 | Proposition 10-3.4(h) | addcj 10829 addcjd 10895 addcji 10865 |
[Gleason] p.
133 | Proposition 10-3.7(a) | absval 10939 |
[Gleason] p.
133 | Proposition 10-3.7(b) | abscj 10990 abscjd 11128 abscji 11086 |
[Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11002 abs00d 11124 abs00i 11083 absne0d 11125 |
[Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11034 releabsd 11129 releabsi 11087 |
[Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11007 absmuld 11132 absmuli 11089 |
[Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 10993 sqabsaddi 11090 |
[Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11042 abstrid 11134 abstrii 11093 |
[Gleason] p.
134 | Definition 10-4.1 | df-exp 10451 exp0 10455 expp1 10458 expp1d 10585 |
[Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10493 expaddd 10586 |
[Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 13433 cxpmuld 13456 expmul 10496 expmuld 10587 |
[Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10490 mulexpd 10599 rpmulcxp 13430 |
[Gleason] p.
141 | Definition 11-2.1 | fzval 9942 |
[Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11263 |
[Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11265 |
[Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11264 |
[Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11268 |
[Gleason] p.
172 | Corollary 12-2.5 | climrecl 11261 |
[Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11257 climcj 11258 climim 11260 climre 11259 |
[Gleason] p.
173 | Definition 12-3.1 | df-ltxr 7934 df-xr 7933 ltxr 9707 |
[Gleason] p. 180 | Theorem
12-5.3 | climcau 11284 |
[Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10231 |
[Gleason] p.
223 | Definition 14-1.1 | df-met 12589 |
[Gleason] p.
223 | Definition 14-1.1(a) | met0 12964 xmet0 12963 |
[Gleason] p.
223 | Definition 14-1.1(c) | metsym 12971 |
[Gleason] p.
223 | Definition 14-1.1(d) | mettri 12973 mstri 13073 xmettri 12972 xmstri 13072 |
[Gleason] p.
230 | Proposition 14-2.6 | txlm 12879 |
[Gleason] p.
240 | Proposition 14-4.2 | metcnp3 13111 |
[Gleason] p.
243 | Proposition 14-4.16 | addcn2 11247 addcncntop 13152 mulcn2 11249 mulcncntop 13154 subcn2 11248 subcncntop 13153 |
[Gleason] p.
295 | Remark | bcval3 10660 bcval4 10661 |
[Gleason] p.
295 | Equation 2 | bcpasc 10675 |
[Gleason] p.
295 | Definition of binomial coefficient | bcval 10658 df-bc 10657 |
[Gleason] p.
296 | Remark | bcn0 10664 bcnn 10666 |
[Gleason] p. 296 | Theorem
15-2.8 | binom 11421 |
[Gleason] p.
308 | Equation 2 | ef0 11609 |
[Gleason] p.
308 | Equation 3 | efcj 11610 |
[Gleason] p.
309 | Corollary 15-4.3 | efne0 11615 |
[Gleason] p.
309 | Corollary 15-4.4 | efexp 11619 |
[Gleason] p.
310 | Equation 14 | sinadd 11673 |
[Gleason] p.
310 | Equation 15 | cosadd 11674 |
[Gleason] p.
311 | Equation 17 | sincossq 11685 |
[Gleason] p.
311 | Equation 18 | cosbnd 11690 sinbnd 11689 |
[Gleason] p.
311 | Definition of ` ` | df-pi 11590 |
[Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
[Hamilton] p. 73 | Rule
1 | ax-mp 5 |
[Hamilton] p. 74 | Rule
2 | ax-gen 1437 |
[Heyting] p.
127 | Axiom #1 | ax1hfs 13910 |
[Hitchcock] p. 5 | Rule
A3 | mptnan 1413 |
[Hitchcock] p. 5 | Rule
A4 | mptxor 1414 |
[Hitchcock] p. 5 | Rule
A5 | mtpxor 1416 |
[HoTT], p. | Lemma
10.4.1 | exmidontriim 7177 |
[HoTT], p. | Theorem
7.2.6 | nndceq 6463 |
[HoTT], p.
| Exercise 11.10 | neapmkv 13906 |
[HoTT], p. | Exercise
11.11 | mulap0bd 8550 |
[HoTT], p. | Section
11.2.1 | df-iltp 7407 df-imp 7406 df-iplp 7405 df-reap 8469 |
[HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7599 |
[HoTT], p. | Corollary
11.4.3 | conventions 13562 |
[HoTT], p.
| Exercise 11.6(i) | dcapnconst 13899 dceqnconst 13898 |
[HoTT], p. | Corollary
11.2.13 | axcaucvg 7837 caucvgpr 7619 caucvgprpr 7649 caucvgsr 7739 |
[HoTT], p. | Definition
11.2.1 | df-inp 7403 |
[HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 13904 |
[HoTT], p. | Proposition
11.2.3 | df-iso 4274 ltpopr 7532 ltsopr 7533 |
[HoTT], p. | Definition
11.2.7(v) | apsym 8500 reapcotr 8492 reapirr 8471 |
[HoTT], p. | Definition
11.2.7(vi) | 0lt1 8021 gt0add 8467 leadd1 8324 lelttr 7983 lemul1a 8749 lenlt 7970 ltadd1 8323 ltletr 7984 ltmul1 8486 reaplt 8482 |
[Jech] p. 4 | Definition of
class | cv 1342 cvjust 2160 |
[Jech] p.
78 | Note | opthprc 4654 |
[KalishMontague] p.
81 | Note 1 | ax-i9 1518 |
[Kreyszig] p.
3 | Property M1 | metcl 12953 xmetcl 12952 |
[Kreyszig] p.
4 | Property M2 | meteq0 12960 |
[Kreyszig] p.
12 | Equation 5 | muleqadd 8561 |
[Kreyszig] p.
18 | Definition 1.3-2 | mopnval 13042 |
[Kreyszig] p.
19 | Remark | mopntopon 13043 |
[Kreyszig] p.
19 | Theorem T1 | mopn0 13088 mopnm 13048 |
[Kreyszig] p.
19 | Theorem T2 | unimopn 13086 |
[Kreyszig] p.
19 | Definition of neighborhood | neibl 13091 |
[Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 13113 |
[Kreyszig] p.
25 | Definition 1.4-1 | lmbr 12813 |
[Kunen] p. 10 | Axiom
0 | a9e 1684 |
[Kunen] p. 12 | Axiom
6 | zfrep6 4098 |
[Kunen] p. 24 | Definition
10.24 | mapval 6622 mapvalg 6620 |
[Kunen] p. 31 | Definition
10.24 | mapex 6616 |
[KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3875 |
[Levy] p.
338 | Axiom | df-clab 2152 df-clel 2161 df-cleq 2158 |
[Lopez-Astorga] p.
12 | Rule 1 | mptnan 1413 |
[Lopez-Astorga] p.
12 | Rule 2 | mptxor 1414 |
[Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1416 |
[Margaris] p. 40 | Rule
C | exlimiv 1586 |
[Margaris] p. 49 | Axiom
A1 | ax-1 6 |
[Margaris] p. 49 | Axiom
A2 | ax-2 7 |
[Margaris] p. 49 | Axiom
A3 | condc 843 |
[Margaris] p.
49 | Definition | dfbi2 386 dfordc 882 exalim 1490 |
[Margaris] p.
51 | Theorem 1 | idALT 20 |
[Margaris] p.
56 | Theorem 3 | syld 45 |
[Margaris] p.
60 | Theorem 8 | jcn 641 |
[Margaris] p.
89 | Theorem 19.2 | 19.2 1626 r19.2m 3494 |
[Margaris] p.
89 | Theorem 19.3 | 19.3 1542 19.3h 1541 rr19.3v 2864 |
[Margaris] p.
89 | Theorem 19.5 | alcom 1466 |
[Margaris] p.
89 | Theorem 19.6 | alexdc 1607 alexim 1633 |
[Margaris] p.
89 | Theorem 19.7 | alnex 1487 |
[Margaris] p.
89 | Theorem 19.8 | 19.8a 1578 spsbe 1830 |
[Margaris] p.
89 | Theorem 19.9 | 19.9 1632 19.9h 1631 19.9v 1859 exlimd 1585 |
[Margaris] p.
89 | Theorem 19.11 | excom 1652 excomim 1651 |
[Margaris] p.
89 | Theorem 19.12 | 19.12 1653 r19.12 2571 |
[Margaris] p.
90 | Theorem 19.14 | exnalim 1634 |
[Margaris] p.
90 | Theorem 19.15 | albi 1456 ralbi 2597 |
[Margaris] p.
90 | Theorem 19.16 | 19.16 1543 |
[Margaris] p.
90 | Theorem 19.17 | 19.17 1544 |
[Margaris] p.
90 | Theorem 19.18 | exbi 1592 rexbi 2598 |
[Margaris] p.
90 | Theorem 19.19 | 19.19 1654 |
[Margaris] p.
90 | Theorem 19.20 | alim 1445 alimd 1509 alimdh 1455 alimdv 1867 ralimdaa 2531 ralimdv 2533 ralimdva 2532 ralimdvva 2534 sbcimdv 3015 |
[Margaris] p.
90 | Theorem 19.21 | 19.21-2 1655 19.21 1571 19.21bi 1546 19.21h 1545 19.21ht 1569 19.21t 1570 19.21v 1861 alrimd 1598 alrimdd 1597 alrimdh 1467 alrimdv 1864 alrimi 1510 alrimih 1457 alrimiv 1862 alrimivv 1863 r19.21 2541 r19.21be 2556 r19.21bi 2553 r19.21t 2540 r19.21v 2542 ralrimd 2543 ralrimdv 2544 ralrimdva 2545 ralrimdvv 2549 ralrimdvva 2550 ralrimi 2536 ralrimiv 2537 ralrimiva 2538 ralrimivv 2546 ralrimivva 2547 ralrimivvva 2548 ralrimivw 2539 rexlimi 2575 |
[Margaris] p.
90 | Theorem 19.22 | 2alimdv 1869 2eximdv 1870 exim 1587
eximd 1600 eximdh 1599 eximdv 1868 rexim 2559 reximdai 2563 reximddv 2568 reximddv2 2570 reximdv 2566 reximdv2 2564 reximdva 2567 reximdvai 2565 reximi2 2561 |
[Margaris] p.
90 | Theorem 19.23 | 19.23 1666 19.23bi 1580 19.23h 1486 19.23ht 1485 19.23t 1665 19.23v 1871 19.23vv 1872 exlimd2 1583 exlimdh 1584 exlimdv 1807 exlimdvv 1885 exlimi 1582 exlimih 1581 exlimiv 1586 exlimivv 1884 r19.23 2573 r19.23v 2574 rexlimd 2579 rexlimdv 2581 rexlimdv3a 2584 rexlimdva 2582 rexlimdva2 2585 rexlimdvaa 2583 rexlimdvv 2589 rexlimdvva 2590 rexlimdvw 2586 rexlimiv 2576 rexlimiva 2577 rexlimivv 2588 |
[Margaris] p.
90 | Theorem 19.24 | i19.24 1627 |
[Margaris] p.
90 | Theorem 19.25 | 19.25 1614 |
[Margaris] p.
90 | Theorem 19.26 | 19.26-2 1470 19.26-3an 1471 19.26 1469 r19.26-2 2594 r19.26-3 2595 r19.26 2591 r19.26m 2596 |
[Margaris] p.
90 | Theorem 19.27 | 19.27 1549 19.27h 1548 19.27v 1887 r19.27av 2600 r19.27m 3503 r19.27mv 3504 |
[Margaris] p.
90 | Theorem 19.28 | 19.28 1551 19.28h 1550 19.28v 1888 r19.28av 2601 r19.28m 3497 r19.28mv 3500 rr19.28v 2865 |
[Margaris] p.
90 | Theorem 19.29 | 19.29 1608 19.29r 1609 19.29r2 1610 19.29x 1611 r19.29 2602 r19.29d2r 2609 r19.29r 2603 |
[Margaris] p.
90 | Theorem 19.30 | 19.30dc 1615 |
[Margaris] p.
90 | Theorem 19.31 | 19.31r 1669 |
[Margaris] p.
90 | Theorem 19.32 | 19.32dc 1667 19.32r 1668 r19.32r 2611 r19.32vdc 2614 r19.32vr 2613 |
[Margaris] p.
90 | Theorem 19.33 | 19.33 1472 19.33b2 1617 19.33bdc 1618 |
[Margaris] p.
90 | Theorem 19.34 | 19.34 1672 |
[Margaris] p.
90 | Theorem 19.35 | 19.35-1 1612 19.35i 1613 |
[Margaris] p.
90 | Theorem 19.36 | 19.36-1 1661 19.36aiv 1889 19.36i 1660 r19.36av 2616 |
[Margaris] p.
90 | Theorem 19.37 | 19.37-1 1662 19.37aiv 1663 r19.37 2617 r19.37av 2618 |
[Margaris] p.
90 | Theorem 19.38 | 19.38 1664 |
[Margaris] p.
90 | Theorem 19.39 | i19.39 1628 |
[Margaris] p.
90 | Theorem 19.40 | 19.40-2 1620 19.40 1619 r19.40 2619 |
[Margaris] p.
90 | Theorem 19.41 | 19.41 1674 19.41h 1673 19.41v 1890 19.41vv 1891 19.41vvv 1892 19.41vvvv 1893 r19.41 2620 r19.41v 2621 |
[Margaris] p.
90 | Theorem 19.42 | 19.42 1676 19.42h 1675 19.42v 1894 19.42vv 1899 19.42vvv 1900 19.42vvvv 1901 r19.42v 2622 |
[Margaris] p.
90 | Theorem 19.43 | 19.43 1616 r19.43 2623 |
[Margaris] p.
90 | Theorem 19.44 | 19.44 1670 r19.44av 2624 r19.44mv 3502 |
[Margaris] p.
90 | Theorem 19.45 | 19.45 1671 r19.45av 2625 r19.45mv 3501 |
[Margaris] p.
110 | Exercise 2(b) | eu1 2039 |
[Megill] p. 444 | Axiom
C5 | ax-17 1514 |
[Megill] p. 445 | Lemma
L12 | alequcom 1503 ax-10 1493 |
[Megill] p. 446 | Lemma
L17 | equtrr 1698 |
[Megill] p. 446 | Lemma
L19 | hbnae 1709 |
[Megill] p. 447 | Remark
9.1 | df-sb 1751 sbid 1762 |
[Megill] p. 448 | Scheme
C5' | ax-4 1498 |
[Megill] p. 448 | Scheme
C6' | ax-7 1436 |
[Megill] p. 448 | Scheme
C8' | ax-8 1492 |
[Megill] p. 448 | Scheme
C9' | ax-i12 1495 |
[Megill] p. 448 | Scheme
C11' | ax-10o 1704 |
[Megill] p. 448 | Scheme
C12' | ax-13 2138 |
[Megill] p. 448 | Scheme
C13' | ax-14 2139 |
[Megill] p. 448 | Scheme
C15' | ax-11o 1811 |
[Megill] p. 448 | Scheme
C16' | ax-16 1802 |
[Megill] p. 448 | Theorem
9.4 | dral1 1718 dral2 1719 drex1 1786 drex2 1720 drsb1 1787 drsb2 1829 |
[Megill] p. 449 | Theorem
9.7 | sbcom2 1975 sbequ 1828 sbid2v 1984 |
[Megill] p. 450 | Example
in Appendix | hba1 1528 |
[Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
[Mendelson] p.
69 | Axiom 4 | rspsbc 3032 rspsbca 3033 stdpc4 1763 |
[Mendelson] p.
69 | Axiom 5 | ra5 3038 stdpc5 1572 |
[Mendelson] p. 81 | Rule
C | exlimiv 1586 |
[Mendelson] p.
95 | Axiom 6 | stdpc6 1691 |
[Mendelson] p.
95 | Axiom 7 | stdpc7 1758 |
[Mendelson] p.
231 | Exercise 4.10(k) | inv1 3444 |
[Mendelson] p.
231 | Exercise 4.10(l) | unv 3445 |
[Mendelson] p.
231 | Exercise 4.10(n) | inssun 3361 |
[Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3409 |
[Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3362 |
[Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3252 |
[Mendelson] p.
231 | Definition of union | unssin 3360 |
[Mendelson] p.
235 | Exercise 4.12(c) | univ 4453 |
[Mendelson] p.
235 | Exercise 4.12(d) | pwv 3787 |
[Mendelson] p.
235 | Exercise 4.12(j) | pwin 4259 |
[Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4260 |
[Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4261 |
[Mendelson] p.
235 | Exercise 4.12(n) | uniin 3808 |
[Mendelson] p.
235 | Exercise 4.12(p) | reli 4732 |
[Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5123 |
[Mendelson] p.
246 | Definition of successor | df-suc 4348 |
[Mendelson] p.
254 | Proposition 4.22(b) | xpen 6807 |
[Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6783 xpsneng 6784 |
[Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6789 xpcomeng 6790 |
[Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6792 |
[Mendelson] p.
255 | Exercise 4.39 | endisj 6786 |
[Mendelson] p.
255 | Exercise 4.41 | mapprc 6614 |
[Mendelson] p.
255 | Exercise 4.43 | mapsnen 6773 |
[Mendelson] p.
255 | Exercise 4.47 | xpmapen 6812 |
[Mendelson] p.
255 | Exercise 4.42(a) | map0e 6648 |
[Mendelson] p.
255 | Exercise 4.42(b) | map1 6774 |
[Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7169 djucomen 7168 |
[Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7167 |
[Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6431 |
[Monk1] p. 26 | Theorem
2.8(vii) | ssin 3343 |
[Monk1] p. 33 | Theorem
3.2(i) | ssrel 4691 |
[Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4692 |
[Monk1] p. 34 | Definition
3.3 | df-opab 4043 |
[Monk1] p. 36 | Theorem
3.7(i) | coi1 5118 coi2 5119 |
[Monk1] p. 36 | Theorem
3.8(v) | dm0 4817 rn0 4859 |
[Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5007 |
[Monk1] p. 37 | Theorem
3.13(i) | relxp 4712 |
[Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4823 rnxpm 5032 |
[Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4683 xp0 5022 |
[Monk1] p. 38 | Theorem
3.16(ii) | ima0 4962 |
[Monk1] p. 38 | Theorem
3.16(viii) | imai 4959 |
[Monk1] p. 39 | Theorem
3.17 | imaex 4958 imaexg 4957 |
[Monk1] p. 39 | Theorem
3.16(xi) | imassrn 4956 |
[Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5614 funfvop 5596 |
[Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5529 |
[Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5537 |
[Monk1] p. 43 | Theorem
4.6 | funun 5231 |
[Monk1] p. 43 | Theorem
4.8(iv) | dff13 5735 dff13f 5737 |
[Monk1] p. 46 | Theorem
4.15(v) | funex 5707 funrnex 6079 |
[Monk1] p. 50 | Definition
5.4 | fniunfv 5729 |
[Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5086 |
[Monk1] p. 52 | Theorem
5.11(viii) | ssint 3839 |
[Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6120 df-1st 6105 |
[Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6121 df-2nd 6106 |
[Monk2] p. 105 | Axiom
C4 | ax-5 1435 |
[Monk2] p. 105 | Axiom
C7 | ax-8 1492 |
[Monk2] p. 105 | Axiom
C8 | ax-11 1494 ax-11o 1811 |
[Monk2] p. 105 | Axiom
(C8) | ax11v 1815 |
[Monk2] p. 109 | Lemma
12 | ax-7 1436 |
[Monk2] p. 109 | Lemma
15 | equvin 1851 equvini 1746 eqvinop 4220 |
[Monk2] p. 113 | Axiom
C5-1 | ax-17 1514 |
[Monk2] p. 113 | Axiom
C5-2 | ax6b 1639 |
[Monk2] p. 113 | Axiom
C5-3 | ax-7 1436 |
[Monk2] p. 114 | Lemma
22 | hba1 1528 |
[Monk2] p. 114 | Lemma
23 | hbia1 1540 nfia1 1568 |
[Monk2] p. 114 | Lemma
24 | hba2 1539 nfa2 1567 |
[Moschovakis] p.
2 | Chapter 2 | df-stab 821 dftest 13911 |
[Munkres] p. 77 | Example
2 | distop 12685 |
[Munkres] p.
78 | Definition of basis | df-bases 12641 isbasis3g 12644 |
[Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 12572 tgval2 12651 |
[Munkres] p.
79 | Remark | tgcl 12664 |
[Munkres] p. 80 | Lemma
2.1 | tgval3 12658 |
[Munkres] p. 80 | Lemma
2.2 | tgss2 12679 tgss3 12678 |
[Munkres] p. 81 | Lemma
2.3 | basgen 12680 basgen2 12681 |
[Munkres] p.
89 | Definition of subspace topology | resttop 12770 |
[Munkres] p. 93 | Theorem
6.1(1) | 0cld 12712 topcld 12709 |
[Munkres] p. 93 | Theorem
6.1(3) | uncld 12713 |
[Munkres] p.
94 | Definition of closure | clsval 12711 |
[Munkres] p.
94 | Definition of interior | ntrval 12710 |
[Munkres] p.
102 | Definition of continuous function | df-cn 12788 iscn 12797 iscn2 12800 |
[Munkres] p. 107 | Theorem
7.2(g) | cncnp 12830 cncnp2m 12831 cncnpi 12828 df-cnp 12789 iscnp 12799 |
[Munkres] p. 127 | Theorem
10.1 | metcn 13114 |
[Pierik], p. 8 | Section
2.2.1 | dfrex2fin 6865 |
[Pierik], p. 9 | Definition
2.4 | df-womni 7124 |
[Pierik], p. 9 | Definition
2.5 | df-markov 7112 omniwomnimkv 7127 |
[Pierik], p. 10 | Section
2.3 | dfdif3 3231 |
[Pierik], p.
14 | Definition 3.1 | df-omni 7095 exmidomniim 7101 finomni 7100 |
[Pierik], p. 15 | Section
3.1 | df-nninf 7081 |
[PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 13862 |
[PradicBrown2022], p.
2 | Remark | exmidpw 6870 |
[PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7153 |
[PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 |
[PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7109 |
[PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 13847 peano4nninf 13846 |
[PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 13849 |
[PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 13857 |
[PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 13859 |
[PradicBrown2022], p. 5 | Definition
3.3 | nnsf 13845 |
[Quine] p. 16 | Definition
2.1 | df-clab 2152 rabid 2640 |
[Quine] p. 17 | Definition
2.1'' | dfsb7 1979 |
[Quine] p. 18 | Definition
2.7 | df-cleq 2158 |
[Quine] p. 19 | Definition
2.9 | df-v 2727 |
[Quine] p. 34 | Theorem
5.1 | abeq2 2274 |
[Quine] p. 35 | Theorem
5.2 | abid2 2286 abid2f 2333 |
[Quine] p. 40 | Theorem
6.1 | sb5 1875 |
[Quine] p. 40 | Theorem
6.2 | sb56 1873 sb6 1874 |
[Quine] p. 41 | Theorem
6.3 | df-clel 2161 |
[Quine] p. 41 | Theorem
6.4 | eqid 2165 |
[Quine] p. 41 | Theorem
6.5 | eqcom 2167 |
[Quine] p. 42 | Theorem
6.6 | df-sbc 2951 |
[Quine] p. 42 | Theorem
6.7 | dfsbcq 2952 dfsbcq2 2953 |
[Quine] p. 43 | Theorem
6.8 | vex 2728 |
[Quine] p. 43 | Theorem
6.9 | isset 2731 |
[Quine] p. 44 | Theorem
7.3 | spcgf 2807 spcgv 2812 spcimgf 2805 |
[Quine] p. 44 | Theorem
6.11 | spsbc 2961 spsbcd 2962 |
[Quine] p. 44 | Theorem
6.12 | elex 2736 |
[Quine] p. 44 | Theorem
6.13 | elab 2869 elabg 2871 elabgf 2867 |
[Quine] p. 44 | Theorem
6.14 | noel 3412 |
[Quine] p. 48 | Theorem
7.2 | snprc 3640 |
[Quine] p. 48 | Definition
7.1 | df-pr 3582 df-sn 3581 |
[Quine] p. 49 | Theorem
7.4 | snss 3701 snssg 3708 |
[Quine] p. 49 | Theorem
7.5 | prss 3728 prssg 3729 |
[Quine] p. 49 | Theorem
7.6 | prid1 3681 prid1g 3679 prid2 3682 prid2g 3680 snid 3606
snidg 3604 |
[Quine] p. 51 | Theorem
7.12 | snexg 4162 snexprc 4164 |
[Quine] p. 51 | Theorem
7.13 | prexg 4188 |
[Quine] p. 53 | Theorem
8.2 | unisn 3804 unisng 3805 |
[Quine] p. 53 | Theorem
8.3 | uniun 3807 |
[Quine] p. 54 | Theorem
8.6 | elssuni 3816 |
[Quine] p. 54 | Theorem
8.7 | uni0 3815 |
[Quine] p. 56 | Theorem
8.17 | uniabio 5162 |
[Quine] p. 56 | Definition
8.18 | dfiota2 5153 |
[Quine] p. 57 | Theorem
8.19 | iotaval 5163 |
[Quine] p. 57 | Theorem
8.22 | iotanul 5167 |
[Quine] p. 58 | Theorem
8.23 | euiotaex 5168 |
[Quine] p. 58 | Definition
9.1 | df-op 3584 |
[Quine] p. 61 | Theorem
9.5 | opabid 4234 opelopab 4248 opelopaba 4243 opelopabaf 4250 opelopabf 4251 opelopabg 4245 opelopabga 4240 oprabid 5870 |
[Quine] p. 64 | Definition
9.11 | df-xp 4609 |
[Quine] p. 64 | Definition
9.12 | df-cnv 4611 |
[Quine] p. 64 | Definition
9.15 | df-id 4270 |
[Quine] p. 65 | Theorem
10.3 | fun0 5245 |
[Quine] p. 65 | Theorem
10.4 | funi 5219 |
[Quine] p. 65 | Theorem
10.5 | funsn 5235 funsng 5233 |
[Quine] p. 65 | Definition
10.1 | df-fun 5189 |
[Quine] p. 65 | Definition
10.2 | args 4972 dffv4g 5482 |
[Quine] p. 68 | Definition
10.11 | df-fv 5195 fv2 5480 |
[Quine] p. 124 | Theorem
17.3 | nn0opth2 10633 nn0opth2d 10632 nn0opthd 10631 |
[Quine] p. 284 | Axiom
39(vi) | funimaex 5272 funimaexg 5271 |
[Rudin] p. 164 | Equation
27 | efcan 11613 |
[Rudin] p. 164 | Equation
30 | efzval 11620 |
[Rudin] p. 167 | Equation
48 | absefi 11705 |
[Sanford] p.
39 | Remark | ax-mp 5 |
[Sanford] p. 39 | Rule
3 | mtpxor 1416 |
[Sanford] p. 39 | Rule
4 | mptxor 1414 |
[Sanford] p. 40 | Rule
1 | mptnan 1413 |
[Schechter] p.
51 | Definition of antisymmetry | intasym 4987 |
[Schechter] p.
51 | Definition of irreflexivity | intirr 4989 |
[Schechter] p.
51 | Definition of symmetry | cnvsym 4986 |
[Schechter] p.
51 | Definition of transitivity | cotr 4984 |
[Schechter] p.
428 | Definition 15.35 | bastop1 12683 |
[Stoll] p. 13 | Definition
of symmetric difference | symdif1 3386 |
[Stoll] p. 16 | Exercise
4.4 | 0dif 3479 dif0 3478 |
[Stoll] p. 16 | Exercise
4.8 | difdifdirss 3492 |
[Stoll] p. 19 | Theorem
5.2(13) | undm 3379 |
[Stoll] p. 19 | Theorem
5.2(13') | indmss 3380 |
[Stoll] p.
20 | Remark | invdif 3363 |
[Stoll] p. 25 | Definition
of ordered triple | df-ot 3585 |
[Stoll] p.
43 | Definition | uniiun 3918 |
[Stoll] p.
44 | Definition | intiin 3919 |
[Stoll] p.
45 | Definition | df-iin 3868 |
[Stoll] p. 45 | Definition
indexed union | df-iun 3867 |
[Stoll] p. 176 | Theorem
3.4(27) | imandc 879 imanst 878 |
[Stoll] p. 262 | Example
4.1 | symdif1 3386 |
[Suppes] p. 22 | Theorem
2 | eq0 3426 |
[Suppes] p. 22 | Theorem
4 | eqss 3156 eqssd 3158 eqssi 3157 |
[Suppes] p. 23 | Theorem
5 | ss0 3448 ss0b 3447 |
[Suppes] p. 23 | Theorem
6 | sstr 3149 |
[Suppes] p. 25 | Theorem
12 | elin 3304 elun 3262 |
[Suppes] p. 26 | Theorem
15 | inidm 3330 |
[Suppes] p. 26 | Theorem
16 | in0 3442 |
[Suppes] p. 27 | Theorem
23 | unidm 3264 |
[Suppes] p. 27 | Theorem
24 | un0 3441 |
[Suppes] p. 27 | Theorem
25 | ssun1 3284 |
[Suppes] p. 27 | Theorem
26 | ssequn1 3291 |
[Suppes] p. 27 | Theorem
27 | unss 3295 |
[Suppes] p. 27 | Theorem
28 | indir 3370 |
[Suppes] p. 27 | Theorem
29 | undir 3371 |
[Suppes] p. 28 | Theorem
32 | difid 3476 difidALT 3477 |
[Suppes] p. 29 | Theorem
33 | difin 3358 |
[Suppes] p. 29 | Theorem
34 | indif 3364 |
[Suppes] p. 29 | Theorem
35 | undif1ss 3482 |
[Suppes] p. 29 | Theorem
36 | difun2 3487 |
[Suppes] p. 29 | Theorem
37 | difin0 3481 |
[Suppes] p. 29 | Theorem
38 | disjdif 3480 |
[Suppes] p. 29 | Theorem
39 | difundi 3373 |
[Suppes] p. 29 | Theorem
40 | difindiss 3375 |
[Suppes] p. 30 | Theorem
41 | nalset 4111 |
[Suppes] p. 39 | Theorem
61 | uniss 3809 |
[Suppes] p. 39 | Theorem
65 | uniop 4232 |
[Suppes] p. 41 | Theorem
70 | intsn 3858 |
[Suppes] p. 42 | Theorem
71 | intpr 3855 intprg 3856 |
[Suppes] p. 42 | Theorem
73 | op1stb 4455 op1stbg 4456 |
[Suppes] p. 42 | Theorem
78 | intun 3854 |
[Suppes] p. 44 | Definition
15(a) | dfiun2 3899 dfiun2g 3897 |
[Suppes] p. 44 | Definition
15(b) | dfiin2 3900 |
[Suppes] p. 47 | Theorem
86 | elpw 3564 elpw2 4135 elpw2g 4134 elpwg 3566 |
[Suppes] p. 47 | Theorem
87 | pwid 3573 |
[Suppes] p. 47 | Theorem
89 | pw0 3719 |
[Suppes] p. 48 | Theorem
90 | pwpw0ss 3783 |
[Suppes] p. 52 | Theorem
101 | xpss12 4710 |
[Suppes] p. 52 | Theorem
102 | xpindi 4738 xpindir 4739 |
[Suppes] p. 52 | Theorem
103 | xpundi 4659 xpundir 4660 |
[Suppes] p. 54 | Theorem
105 | elirrv 4524 |
[Suppes] p. 58 | Theorem
2 | relss 4690 |
[Suppes] p. 59 | Theorem
4 | eldm 4800 eldm2 4801 eldm2g 4799 eldmg 4798 |
[Suppes] p. 59 | Definition
3 | df-dm 4613 |
[Suppes] p. 60 | Theorem
6 | dmin 4811 |
[Suppes] p. 60 | Theorem
8 | rnun 5011 |
[Suppes] p. 60 | Theorem
9 | rnin 5012 |
[Suppes] p. 60 | Definition
4 | dfrn2 4791 |
[Suppes] p. 61 | Theorem
11 | brcnv 4786 brcnvg 4784 |
[Suppes] p. 62 | Equation
5 | elcnv 4780 elcnv2 4781 |
[Suppes] p. 62 | Theorem
12 | relcnv 4981 |
[Suppes] p. 62 | Theorem
15 | cnvin 5010 |
[Suppes] p. 62 | Theorem
16 | cnvun 5008 |
[Suppes] p. 63 | Theorem
20 | co02 5116 |
[Suppes] p. 63 | Theorem
21 | dmcoss 4872 |
[Suppes] p. 63 | Definition
7 | df-co 4612 |
[Suppes] p. 64 | Theorem
26 | cnvco 4788 |
[Suppes] p. 64 | Theorem
27 | coass 5121 |
[Suppes] p. 65 | Theorem
31 | resundi 4896 |
[Suppes] p. 65 | Theorem
34 | elima 4950 elima2 4951 elima3 4952 elimag 4949 |
[Suppes] p. 65 | Theorem
35 | imaundi 5015 |
[Suppes] p. 66 | Theorem
40 | dminss 5017 |
[Suppes] p. 66 | Theorem
41 | imainss 5018 |
[Suppes] p. 67 | Exercise
11 | cnvxp 5021 |
[Suppes] p. 81 | Definition
34 | dfec2 6500 |
[Suppes] p. 82 | Theorem
72 | elec 6536 elecg 6535 |
[Suppes] p. 82 | Theorem
73 | erth 6541 erth2 6542 |
[Suppes] p. 89 | Theorem
96 | map0b 6649 |
[Suppes] p. 89 | Theorem
97 | map0 6651 map0g 6650 |
[Suppes] p. 89 | Theorem
98 | mapsn 6652 |
[Suppes] p. 89 | Theorem
99 | mapss 6653 |
[Suppes] p. 92 | Theorem
1 | enref 6727 enrefg 6726 |
[Suppes] p. 92 | Theorem
2 | ensym 6743 ensymb 6742 ensymi 6744 |
[Suppes] p. 92 | Theorem
3 | entr 6746 |
[Suppes] p. 92 | Theorem
4 | unen 6778 |
[Suppes] p. 94 | Theorem
15 | endom 6725 |
[Suppes] p. 94 | Theorem
16 | ssdomg 6740 |
[Suppes] p. 94 | Theorem
17 | domtr 6747 |
[Suppes] p. 95 | Theorem
18 | isbth 6928 |
[Suppes] p. 98 | Exercise
4 | fundmen 6768 fundmeng 6769 |
[Suppes] p. 98 | Exercise
6 | xpdom3m 6796 |
[Suppes] p.
130 | Definition 3 | df-tr 4080 |
[Suppes] p. 132 | Theorem
9 | ssonuni 4464 |
[Suppes] p.
134 | Definition 6 | df-suc 4348 |
[Suppes] p. 136 | Theorem
Schema 22 | findes 4579 finds 4576 finds1 4578 finds2 4577 |
[Suppes] p.
162 | Definition 5 | df-ltnqqs 7290 df-ltpq 7283 |
[Suppes] p. 228 | Theorem
Schema 61 | onintss 4367 |
[TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2147 |
[TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2158 |
[TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2161 |
[TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2160 |
[TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2183 |
[TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5845 |
[TakeutiZaring] p.
14 | Proposition 4.14 | ru 2949 |
[TakeutiZaring] p.
15 | Exercise 1 | elpr 3596 elpr2 3597 elprg 3595 |
[TakeutiZaring] p.
15 | Exercise 2 | elsn 3591 elsn2 3609 elsn2g 3608 elsng 3590 velsn 3592 |
[TakeutiZaring] p.
15 | Exercise 3 | elop 4208 |
[TakeutiZaring] p.
15 | Exercise 4 | sneq 3586 sneqr 3739 |
[TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3594 dfsn2 3589 |
[TakeutiZaring] p.
16 | Axiom 3 | uniex 4414 |
[TakeutiZaring] p.
16 | Exercise 6 | opth 4214 |
[TakeutiZaring] p.
16 | Exercise 8 | rext 4192 |
[TakeutiZaring] p.
16 | Corollary 5.8 | unex 4418 unexg 4420 |
[TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3624 |
[TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3789 |
[TakeutiZaring] p.
16 | Definition 5.6 | df-in 3121 df-un 3119 |
[TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3802 uniprg 3803 |
[TakeutiZaring] p.
17 | Axiom 4 | vpwex 4157 |
[TakeutiZaring] p.
17 | Exercise 1 | eltp 3623 |
[TakeutiZaring] p.
17 | Exercise 5 | elsuc 4383 elsucg 4381 sstr2 3148 |
[TakeutiZaring] p.
17 | Exercise 6 | uncom 3265 |
[TakeutiZaring] p.
17 | Exercise 7 | incom 3313 |
[TakeutiZaring] p.
17 | Exercise 8 | unass 3278 |
[TakeutiZaring] p.
17 | Exercise 9 | inass 3331 |
[TakeutiZaring] p.
17 | Exercise 10 | indi 3368 |
[TakeutiZaring] p.
17 | Exercise 11 | undi 3369 |
[TakeutiZaring] p.
17 | Definition 5.9 | dfss2 3130 |
[TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3560 |
[TakeutiZaring] p.
18 | Exercise 7 | unss2 3292 |
[TakeutiZaring] p.
18 | Exercise 9 | df-ss 3128 sseqin2 3340 |
[TakeutiZaring] p.
18 | Exercise 10 | ssid 3161 |
[TakeutiZaring] p.
18 | Exercise 12 | inss1 3341 inss2 3342 |
[TakeutiZaring] p.
18 | Exercise 13 | nssr 3201 |
[TakeutiZaring] p.
18 | Exercise 15 | unieq 3797 |
[TakeutiZaring] p.
18 | Exercise 18 | sspwb 4193 |
[TakeutiZaring] p.
18 | Exercise 19 | pweqb 4200 |
[TakeutiZaring] p.
20 | Definition | df-rab 2452 |
[TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4108 |
[TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3117 |
[TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3410 |
[TakeutiZaring] p.
20 | Proposition 5.15 | difid 3476 difidALT 3477 |
[TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3420 |
[TakeutiZaring] p.
21 | Theorem 5.22 | setind 4515 |
[TakeutiZaring] p.
21 | Definition 5.20 | df-v 2727 |
[TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4113 |
[TakeutiZaring] p.
22 | Exercise 1 | 0ss 3446 |
[TakeutiZaring] p.
22 | Exercise 3 | ssex 4118 ssexg 4120 |
[TakeutiZaring] p.
22 | Exercise 4 | inex1 4115 |
[TakeutiZaring] p.
22 | Exercise 5 | ruv 4526 |
[TakeutiZaring] p.
22 | Exercise 6 | elirr 4517 |
[TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3472 |
[TakeutiZaring] p.
22 | Exercise 11 | difdif 3246 |
[TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3382 |
[TakeutiZaring] p.
22 | Exercise 14 | difss 3247 |
[TakeutiZaring] p.
22 | Exercise 15 | sscon 3255 |
[TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2448 |
[TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2449 |
[TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4718 xpexg 4717 xpexgALT 6098 |
[TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4610 |
[TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5251 |
[TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5403 fun11 5254 |
[TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5198 svrelfun 5252 |
[TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4790 |
[TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4792 |
[TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4615 |
[TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4616 |
[TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4612 |
[TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5057 dfrel2 5053 |
[TakeutiZaring] p.
25 | Exercise 3 | xpss 4711 |
[TakeutiZaring] p.
25 | Exercise 5 | relun 4720 |
[TakeutiZaring] p.
25 | Exercise 6 | reluni 4726 |
[TakeutiZaring] p.
25 | Exercise 9 | inxp 4737 |
[TakeutiZaring] p.
25 | Exercise 12 | relres 4911 |
[TakeutiZaring] p.
25 | Exercise 13 | opelres 4888 opelresg 4890 |
[TakeutiZaring] p.
25 | Exercise 14 | dmres 4904 |
[TakeutiZaring] p.
25 | Exercise 15 | resss 4907 |
[TakeutiZaring] p.
25 | Exercise 17 | resabs1 4912 |
[TakeutiZaring] p.
25 | Exercise 18 | funres 5228 |
[TakeutiZaring] p.
25 | Exercise 24 | relco 5101 |
[TakeutiZaring] p.
25 | Exercise 29 | funco 5227 |
[TakeutiZaring] p.
25 | Exercise 30 | f1co 5404 |
[TakeutiZaring] p.
26 | Definition 6.10 | eu2 2058 |
[TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5195 fv3 5508 |
[TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5141 cnvexg 5140 |
[TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4869 dmexg 4867 |
[TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4870 rnexg 4868 |
[TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5502 |
[TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5512 tz6.12 5513 tz6.12c 5515 |
[TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5476 |
[TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5190 |
[TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5191 |
[TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5193 wfo 5185 |
[TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5192 wf1 5184 |
[TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5194 wf1o 5186 |
[TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5582 eqfnfv2 5583 eqfnfv2f 5586 |
[TakeutiZaring] p.
28 | Exercise 5 | fvco 5555 |
[TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5706 fnexALT 6078 |
[TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5705 resfunexgALT 6075 |
[TakeutiZaring] p.
29 | Exercise 9 | funimaex 5272 funimaexg 5271 |
[TakeutiZaring] p.
29 | Definition 6.18 | df-br 3982 |
[TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 4973 iniseg 4975 |
[TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4266 |
[TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5196 |
[TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5777 |
[TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5778 |
[TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5783 |
[TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5785 |
[TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5793 |
[TakeutiZaring] p.
35 | Notation | wtr 4079 |
[TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4331 |
[TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4083 |
[TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4552 |
[TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4358 |
[TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4362 |
[TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4468 |
[TakeutiZaring] p.
38 | Definition 7.11 | df-on 4345 |
[TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4462 |
[TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4528 |
[TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4558 |
[TakeutiZaring] p.
40 | Exercise 7 | dftr2 4081 |
[TakeutiZaring] p.
40 | Exercise 11 | unon 4487 |
[TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4463 |
[TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3816 |
[TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4348 |
[TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4392 sucidg 4393 |
[TakeutiZaring] p.
41 | Proposition 7.24 | suceloni 4477 |
[TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4346 |
[TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4482 ordelsuc 4481 |
[TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4570 |
[TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4571 |
[TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4572 |
[TakeutiZaring] p.
43 | Axiom 7 | omex 4569 |
[TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4583 |
[TakeutiZaring] p.
43 | Corollary 7.31 | find 4575 |
[TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4573 |
[TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4574 |
[TakeutiZaring] p.
44 | Exercise 2 | int0 3837 |
[TakeutiZaring] p.
44 | Exercise 3 | trintssm 4095 |
[TakeutiZaring] p.
44 | Exercise 4 | intss1 3838 |
[TakeutiZaring] p.
44 | Exercise 6 | onintonm 4493 |
[TakeutiZaring] p.
44 | Definition 7.35 | df-int 3824 |
[TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6272 |
[TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6329 tfri1d 6299 |
[TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6330 tfri2d 6300 |
[TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6331 |
[TakeutiZaring] p.
50 | Exercise 3 | smoiso 6266 |
[TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6250 |
[TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6428 |
[TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6424 |
[TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6421 |
[TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6425 |
[TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6473 nnaordi 6472 |
[TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3910 uniss2 3819 |
[TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6434 |
[TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6444 |
[TakeutiZaring] p.
62 | Exercise 5 | oaword1 6435 |
[TakeutiZaring] p.
62 | Definition 8.15 | om0 6422 omsuc 6436 |
[TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6445 |
[TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6481 nnmordi 6480 |
[TakeutiZaring] p.
67 | Definition 8.30 | oei0 6423 |
[TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7139 |
[TakeutiZaring] p.
88 | Exercise 1 | en0 6757 |
[TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6819 |
[TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6820 |
[TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6705 isfi 6723 |
[TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6793 |
[TakeutiZaring] p.
95 | Definition 10.42 | df-map 6612 |
[TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6810 |
[Tarski] p. 67 | Axiom
B5 | ax-4 1498 |
[Tarski] p. 68 | Lemma
6 | equid 1689 |
[Tarski] p. 69 | Lemma
7 | equcomi 1692 |
[Tarski] p. 70 | Lemma
14 | spim 1726 spime 1729 spimeh 1727 spimh 1725 |
[Tarski] p. 70 | Lemma
16 | ax-11 1494 ax-11o 1811 ax11i 1702 |
[Tarski] p. 70 | Lemmas 16
and 17 | sb6 1874 |
[Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1514 |
[Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2138 ax-14 2139 |
[WhiteheadRussell] p.
96 | Axiom *1.3 | olc 701 |
[WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 717 |
[WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 746 |
[WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 755 |
[WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 779 |
[WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 606 |
[WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
[WhiteheadRussell] p.
100 | Theorem *2.03 | con2 633 |
[WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
[WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
[WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
[WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 827 |
[WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2112 syl 14 |
[WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 727 |
[WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
[WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 826 |
[WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 619 |
[WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 875 |
[WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 833 |
[WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 846 |
[WhiteheadRussell] p.
103 | Theorem *2.16 | con3 632 |
[WhiteheadRussell] p.
103 | Theorem *2.17 | condc 843 |
[WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 845 |
[WhiteheadRussell] p.
104 | Theorem *2.2 | orc 702 |
[WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 765 |
[WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 607 |
[WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 611 |
[WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 883 |
[WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 897 |
[WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
[WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 758 |
[WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 759 |
[WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 794 |
[WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 795 |
[WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 793 |
[WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 969 |
[WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 768 |
[WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 766 |
[WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 767 |
[WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
[WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 728 |
[WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 729 |
[WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 857 pm2.5gdc 856 |
[WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 852 |
[WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 730 |
[WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 731 |
[WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 732 |
[WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 645 |
[WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 646 |
[WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 712 |
[WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 881 |
[WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 715 |
[WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 716 |
[WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 855 |
[WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 738 |
[WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 790 |
[WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 791 |
[WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 649 |
[WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 703 pm2.67 733 |
[WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 859 pm2.521gdc 858 |
[WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 737 |
[WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 800 |
[WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 884 |
[WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 905 |
[WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 796 |
[WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 797 |
[WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 799 |
[WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 798 |
[WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
[WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 801 |
[WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 802 |
[WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
[WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 895 |
[WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 100 |
[WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 744 |
[WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 138 |
[WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 947 |
[WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 948 |
[WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 949 |
[WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 743 |
[WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 262 |
[WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 263 |
[WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 683 |
[WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 345 |
[WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 259 |
[WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 260 |
[WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 108 simplimdc 850 |
[WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 109 simprimdc 849 |
[WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 343 |
[WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 344 |
[WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 679 |
[WhiteheadRussell] p.
113 | Fact) | pm3.45 587 |
[WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 331 |
[WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 329 |
[WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 330 |
[WhiteheadRussell] p.
113 | Theorem *3.44 | jao 745 pm3.44 705 |
[WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 342 |
[WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 592 |
[WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 775 |
[WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 861 |
[WhiteheadRussell] p.
117 | Theorem *4.2 | biid 170 |
[WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 862 |
[WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 880 |
[WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 684 |
[WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 139 |
[WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 942 bitr 464 |
[WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 393 |
[WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 747 pm4.25 748 |
[WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 264 |
[WhiteheadRussell] p.
118 | Theorem *4.4 | andi 808 |
[WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 718 |
[WhiteheadRussell] p.
118 | Theorem *4.32 | anass 399 |
[WhiteheadRussell] p.
118 | Theorem *4.33 | orass 757 |
[WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 462 |
[WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 782 |
[WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 595 |
[WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 812 |
[WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 970 |
[WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 806 |
[WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 961 |
[WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 939 |
[WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 769 |
[WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 804 pm4.45 774 pm4.45im 332 |
[WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1469 |
[WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 946 |
[WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 887 imorr 711 |
[WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 317 |
[WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 889 |
[WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 740 |
[WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 741 |
[WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 892 |
[WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 928 |
[WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 742 pm4.56 770 |
[WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 929 oranim 771 |
[WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 676 |
[WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 888 |
[WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 876 |
[WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 890 |
[WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 677 |
[WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 891 |
[WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 877 |
[WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 387 pm4.71d 391 pm4.71i 389 pm4.71r 388 pm4.71rd 392 pm4.71ri 390 |
[WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 817 |
[WhiteheadRussell] p.
121 | Theorem *4.73 | iba 298 |
[WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 734 |
[WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 593 pm4.76 594 |
[WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 700 pm4.77 789 |
[WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 772 |
[WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 893 |
[WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 697 |
[WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 898 |
[WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 940 |
[WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 941 |
[WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 235 |
[WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 236 |
[WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 239 |
[WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 247 impexp 261 pm4.87 547 |
[WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 591 |
[WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 899 |
[WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 900 |
[WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 902 |
[WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 901 |
[WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1379 |
[WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 818 |
[WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 894 |
[WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1384 pm5.18dc 873 |
[WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 696 |
[WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 685 |
[WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1382 |
[WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1387 |
[WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1388 |
[WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 885 |
[WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 467 |
[WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 248 |
[WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 241 |
[WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 916 pm5.6r 917 |
[WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 944 |
[WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 346 |
[WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 449 |
[WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 599 |
[WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 907 |
[WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 600 |
[WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 249 pm5.41 250 |
[WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 318 |
[WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 915 |
[WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 792 |
[WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 908 |
[WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 903 |
[WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 784 |
[WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 935 |
[WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 936 |
[WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 951 |
[WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 243 |
[WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 178 |
[WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 952 |
[WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1623 |
[WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1473 |
[WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1620 |
[WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1883 |
[WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2017 |
[WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2416 |
[WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2417 |
[WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2863 |
[WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3006 |
[WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5170 |
[WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5171 |
[WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2093 eupickbi 2096 |
[WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5195 |
[WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7142 |