Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7076  fidcenum 6917
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 6917
[AczelRathjen], p. 73Lemma 8.1.14enumct 7076
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12354
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6891
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6879
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12369
[AczelRathjen], p. 75Corollary 8.1.20unct 12371
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12360  znnen 12327
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12372
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12373
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10685
[AczelRathjen], p. 183Chapter 20ax-setind 4513
[Apostol] p. 18Theorem I.1addcan 8074  addcan2d 8079  addcan2i 8077  addcand 8078  addcani 8076
[Apostol] p. 18Theorem I.2negeu 8085
[Apostol] p. 18Theorem I.3negsub 8142  negsubd 8211  negsubi 8172
[Apostol] p. 18Theorem I.4negneg 8144  negnegd 8196  negnegi 8164
[Apostol] p. 18Theorem I.5subdi 8279  subdid 8308  subdii 8301  subdir 8280  subdird 8309  subdiri 8302
[Apostol] p. 18Theorem I.6mul01 8283  mul01d 8287  mul01i 8285  mul02 8281  mul02d 8286  mul02i 8284
[Apostol] p. 18Theorem I.9divrecapd 8685
[Apostol] p. 18Theorem I.10recrecapi 8636
[Apostol] p. 18Theorem I.12mul2neg 8292  mul2negd 8307  mul2negi 8300  mulneg1 8289  mulneg1d 8305  mulneg1i 8298
[Apostol] p. 18Theorem I.15divdivdivap 8605
[Apostol] p. 20Axiom 7rpaddcl 9609  rpaddcld 9644  rpmulcl 9610  rpmulcld 9645
[Apostol] p. 20Axiom 90nrp 9621
[Apostol] p. 20Theorem I.17lttri 7999
[Apostol] p. 20Theorem I.18ltadd1d 8432  ltadd1dd 8450  ltadd1i 8396
[Apostol] p. 20Theorem I.19ltmul1 8486  ltmul1a 8485  ltmul1i 8811  ltmul1ii 8819  ltmul2 8747  ltmul2d 9671  ltmul2dd 9685  ltmul2i 8814
[Apostol] p. 20Theorem I.210lt1 8021
[Apostol] p. 20Theorem I.23lt0neg1 8362  lt0neg1d 8409  ltneg 8356  ltnegd 8417  ltnegi 8387
[Apostol] p. 20Theorem I.25lt2add 8339  lt2addd 8461  lt2addi 8404
[Apostol] p. 20Definition of positive numbersdf-rp 9586
[Apostol] p. 21Exercise 4recgt0 8741  recgt0d 8825  recgt0i 8797  recgt0ii 8798
[Apostol] p. 22Definition of integersdf-z 9188
[Apostol] p. 22Definition of rationalsdf-q 9554
[Apostol] p. 24Theorem I.26supeuti 6955
[Apostol] p. 26Theorem I.29arch 9107
[Apostol] p. 28Exercise 2btwnz 9306
[Apostol] p. 28Exercise 3nnrecl 9108
[Apostol] p. 28Exercise 6qbtwnre 10188
[Apostol] p. 28Exercise 10(a)zeneo 11804  zneo 9288
[Apostol] p. 29Theorem I.35resqrtth 10969  sqrtthi 11057
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8856
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 11965
[Apostol] p. 363Remarkabsgt0api 11084
[Apostol] p. 363Exampleabssubd 11131  abssubi 11088
[ApostolNT] p. 14Definitiondf-dvds 11724
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11740
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11764
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11760
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11754
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11756
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11741
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11742
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11747
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11779
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11781
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11783
[ApostolNT] p. 15Definitiondfgcd2 11943
[ApostolNT] p. 16Definitionisprm2 12045
[ApostolNT] p. 16Theorem 1.5coprmdvds 12020
[ApostolNT] p. 16Theorem 1.7prminf 12384
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 11902
[ApostolNT] p. 16Theorem 1.4(b)gcdass 11944
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 11946
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 11916
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 11909
[ApostolNT] p. 17Theorem 1.8coprm 12072
[ApostolNT] p. 17Theorem 1.9euclemma 12074
[ApostolNT] p. 17Theorem 1.101arith2 12294
[ApostolNT] p. 19Theorem 1.14divalg 11857
[ApostolNT] p. 20Theorem 1.15eucalg 11987
[ApostolNT] p. 25Definitiondf-phi 12139
[ApostolNT] p. 26Theorem 2.2phisum 12168
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12150
[ApostolNT] p. 28Theorem 2.5(c)phimul 12154
[ApostolNT] p. 104Definitioncongr 12028
[ApostolNT] p. 106Remarkdvdsval3 11727
[ApostolNT] p. 106Definitionmoddvds 11735
[ApostolNT] p. 107Example 2mod2eq0even 11811
[ApostolNT] p. 107Example 3mod2eq1n2dvds 11812
[ApostolNT] p. 107Example 4zmod1congr 10272
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10309
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10577
[ApostolNT] p. 108Theorem 5.3modmulconst 11759
[ApostolNT] p. 109Theorem 5.4cncongr1 12031
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12033
[ApostolNT] p. 113Theorem 5.17eulerth 12161
[ApostolNT] p. 113Theorem 5.18vfermltl 12179
[ApostolNT] p. 114Theorem 5.19fermltl 12162
[ApostolNT] p. 179Definitiondf-lgs 13499  lgsprme0 13543
[ApostolNT] p. 180Example 11lgs 13544
[ApostolNT] p. 180Theorem 9.2lgsvalmod 13520
[ApostolNT] p. 180Theorem 9.3lgsdirprm 13535
[ApostolNT] p. 188Definitiondf-lgs 13499  lgs1 13545
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 13536
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 13538
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 13546
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 13547
[Bauer] p. 482Section 1.2pm2.01 606  pm2.65 649
[Bauer] p. 483Theorem 1.3acexmid 5840  onsucelsucexmidlem 4505
[Bauer], p. 481Section 1.1pwtrufal 13837
[Bauer], p. 483Definitionn0rf 3420
[Bauer], p. 483Theorem 1.22irrexpq 13494  2irrexpqap 13496
[Bauer], p. 485Theorem 2.1ssfiexmid 6838
[Bauer], p. 494Theorem 5.5ivthinc 13221
[BauerHanson], p. 27Proposition 5.2cnstab 8539
[BauerSwan], p. 14Remark0ct 7068  ctm 7070
[BauerSwan], p. 14Proposition 2.6subctctexmid 13841
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7076
[BauerTaylor], p. 32Lemma 6.16prarloclem 7438
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7351
[BauerTaylor], p. 52Proposition 11.15prarloc 7440
[BauerTaylor], p. 53Lemma 11.16addclpr 7474  addlocpr 7473
[BauerTaylor], p. 55Proposition 12.7appdivnq 7500
[BauerTaylor], p. 56Lemma 12.8prmuloc 7503
[BauerTaylor], p. 56Lemma 12.9mullocpr 7508
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2017
[BellMachover] p. 460Notationdf-mo 2018
[BellMachover] p. 460Definitionmo3 2068  mo3h 2067
[BellMachover] p. 462Theorem 1.1bm1.1 2150
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4102
[BellMachover] p. 466Axiom Powaxpow3 4155
[BellMachover] p. 466Axiom Unionaxun2 4412
[BellMachover] p. 469Theorem 2.2(i)ordirr 4518
[BellMachover] p. 469Theorem 2.2(iii)onelon 4361
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4521
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4472
[BellMachover] p. 471Definition of Limdf-ilim 4346
[BellMachover] p. 472Axiom Infzfinf2 4565
[BellMachover] p. 473Theorem 2.8limom 4590
[Bobzien] p. 116Statement T3stoic3 1419
[Bobzien] p. 117Statement T2stoic2a 1417
[Bobzien] p. 117Statement T4stoic4a 1420
[BourbakiEns] p. Proposition 8fcof1 5750  fcofo 5751
[BourbakiTop1] p. Remarkxnegmnf 9761  xnegpnf 9760
[BourbakiTop1] p. Remark rexneg 9762
[BourbakiTop1] p. Propositionishmeo 12904
[BourbakiTop1] p. Property V_issnei2 12757
[BourbakiTop1] p. Property V_iiinnei 12763
[BourbakiTop1] p. Property V_ivneissex 12765
[BourbakiTop1] p. Proposition 1neipsm 12754  neiss 12750
[BourbakiTop1] p. Proposition 2cnptopco 12822
[BourbakiTop1] p. Proposition 4imasnopn 12899
[BourbakiTop1] p. Property V_iiielnei 12752
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 12596
[ChoquetDD] p. 2Definition of mappingdf-mpt 4044
[Cohen] p. 301Remarkrelogoprlem 13389
[Cohen] p. 301Property 2relogmul 13390  relogmuld 13405
[Cohen] p. 301Property 3relogdiv 13391  relogdivd 13406
[Cohen] p. 301Property 4relogexp 13393
[Cohen] p. 301Property 1alog1 13387
[Cohen] p. 301Property 1bloge 13388
[Cohen4] p. 348Observationrelogbcxpbap 13483
[Cohen4] p. 352Definitionrpelogb 13467
[Cohen4] p. 361Property 2rprelogbmul 13473
[Cohen4] p. 361Property 3logbrec 13478  rprelogbdiv 13475
[Cohen4] p. 361Property 4rplogbreexp 13471
[Cohen4] p. 361Property 6relogbexpap 13476
[Cohen4] p. 361Property 1(a)rplogbid1 13465
[Cohen4] p. 361Property 1(b)rplogb1 13466
[Cohen4] p. 367Propertyrplogbchbase 13468
[Cohen4] p. 377Property 2logblt 13480
[Crosilla] p. Axiom 1ax-ext 2147
[Crosilla] p. Axiom 2ax-pr 4186
[Crosilla] p. Axiom 3ax-un 4410
[Crosilla] p. Axiom 4ax-nul 4107
[Crosilla] p. Axiom 5ax-iinf 4564
[Crosilla] p. Axiom 6ru 2949
[Crosilla] p. Axiom 8ax-pow 4152
[Crosilla] p. Axiom 9ax-setind 4513
[Crosilla], p. Axiom 6ax-sep 4099
[Crosilla], p. Axiom 7ax-coll 4096
[Crosilla], p. Axiom 7'repizf 4097
[Crosilla], p. Theorem is statedordtriexmid 4497
[Crosilla], p. Axiom of choice implies instancesacexmid 5840
[Crosilla], p. Definition of ordinaldf-iord 4343
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4511
[Eisenberg] p. 67Definition 5.3df-dif 3117
[Eisenberg] p. 82Definition 6.3df-iom 4567
[Eisenberg] p. 125Definition 8.21df-map 6612
[Enderton] p. 18Axiom of Empty Setaxnul 4106
[Enderton] p. 19Definitiondf-tp 3583
[Enderton] p. 26Exercise 5unissb 3818
[Enderton] p. 26Exercise 10pwel 4195
[Enderton] p. 28Exercise 7(b)pwunim 4263
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3934  iinin2m 3933  iunin1 3929  iunin2 3928
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3932  iundif2ss 3930
[Enderton] p. 33Exercise 23iinuniss 3947
[Enderton] p. 33Exercise 25iununir 3948
[Enderton] p. 33Exercise 24(a)iinpw 3955
[Enderton] p. 33Exercise 24(b)iunpw 4457  iunpwss 3956
[Enderton] p. 38Exercise 6(a)unipw 4194
[Enderton] p. 38Exercise 6(b)pwuni 4170
[Enderton] p. 41Lemma 3Dopeluu 4427  rnex 4870  rnexg 4868
[Enderton] p. 41Exercise 8dmuni 4813  rnuni 5014
[Enderton] p. 42Definition of a functiondffun7 5214  dffun8 5215
[Enderton] p. 43Definition of function valuefunfvdm2 5549
[Enderton] p. 43Definition of single-rootedfuncnv 5248
[Enderton] p. 44Definition (d)dfima2 4947  dfima3 4948
[Enderton] p. 47Theorem 3Hfvco2 5554
[Enderton] p. 49Axiom of Choice (first form)df-ac 7158
[Enderton] p. 50Theorem 3K(a)imauni 5728
[Enderton] p. 52Definitiondf-map 6612
[Enderton] p. 53Exercise 21coass 5121
[Enderton] p. 53Exercise 27dmco 5111
[Enderton] p. 53Exercise 14(a)funin 5258
[Enderton] p. 53Exercise 22(a)imass2 4979
[Enderton] p. 54Remarkixpf 6682  ixpssmap 6694
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6661
[Enderton] p. 56Theorem 3Merref 6517
[Enderton] p. 57Lemma 3Nerthi 6543
[Enderton] p. 57Definitiondf-ec 6499
[Enderton] p. 58Definitiondf-qs 6503
[Enderton] p. 60Theorem 3Qth3q 6602  th3qcor 6601  th3qlem1 6599  th3qlem2 6600
[Enderton] p. 61Exercise 35df-ec 6499
[Enderton] p. 65Exercise 56(a)dmun 4810
[Enderton] p. 68Definition of successordf-suc 4348
[Enderton] p. 71Definitiondf-tr 4080  dftr4 4084
[Enderton] p. 72Theorem 4Eunisuc 4390  unisucg 4391
[Enderton] p. 73Exercise 6unisuc 4390  unisucg 4391
[Enderton] p. 73Exercise 5(a)truni 4093
[Enderton] p. 73Exercise 5(b)trint 4094
[Enderton] p. 79Theorem 4I(A1)nna0 6438
[Enderton] p. 79Theorem 4I(A2)nnasuc 6440  onasuc 6430
[Enderton] p. 79Definition of operation valuedf-ov 5844
[Enderton] p. 80Theorem 4J(A1)nnm0 6439
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6441  onmsuc 6437
[Enderton] p. 81Theorem 4K(1)nnaass 6449
[Enderton] p. 81Theorem 4K(2)nna0r 6442  nnacom 6448
[Enderton] p. 81Theorem 4K(3)nndi 6450
[Enderton] p. 81Theorem 4K(4)nnmass 6451
[Enderton] p. 81Theorem 4K(5)nnmcom 6453
[Enderton] p. 82Exercise 16nnm0r 6443  nnmsucr 6452
[Enderton] p. 88Exercise 23nnaordex 6491
[Enderton] p. 129Definitiondf-en 6703
[Enderton] p. 132Theorem 6B(b)canth 5795
[Enderton] p. 133Exercise 1xpomen 12324
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6827
[Enderton] p. 136Corollary 6Enneneq 6819
[Enderton] p. 139Theorem 6H(c)mapen 6808
[Enderton] p. 142Theorem 6I(3)xpdjuen 7170
[Enderton] p. 143Theorem 6Jdju0en 7166  dju1en 7165
[Enderton] p. 144Corollary 6Kundif2ss 3483
[Enderton] p. 145Figure 38ffoss 5463
[Enderton] p. 145Definitiondf-dom 6704
[Enderton] p. 146Example 1domen 6713  domeng 6714
[Enderton] p. 146Example 3nndomo 6826
[Enderton] p. 149Theorem 6L(c)xpdom1 6797  xpdom1g 6795  xpdom2g 6794
[Enderton] p. 168Definitiondf-po 4273
[Enderton] p. 192Theorem 7M(a)oneli 4405
[Enderton] p. 192Theorem 7M(b)ontr1 4366
[Enderton] p. 192Theorem 7M(c)onirri 4519
[Enderton] p. 193Corollary 7N(b)0elon 4369
[Enderton] p. 193Corollary 7N(c)onsuci 4492
[Enderton] p. 193Corollary 7N(d)ssonunii 4465
[Enderton] p. 194Remarkonprc 4528
[Enderton] p. 194Exercise 16suc11 4534
[Enderton] p. 197Definitiondf-card 7132
[Enderton] p. 200Exercise 25tfis 4559
[Enderton] p. 206Theorem 7X(b)en2lp 4530
[Enderton] p. 207Exercise 34opthreg 4532
[Enderton] p. 208Exercise 35suc11g 4533
[Geuvers], p. 1Remarkexpap0 10481
[Geuvers], p. 6Lemma 2.13mulap0r 8509
[Geuvers], p. 6Lemma 2.15mulap0 8547
[Geuvers], p. 9Lemma 2.35msqge0 8510
[Geuvers], p. 9Definition 3.1(2)ax-arch 7868
[Geuvers], p. 10Lemma 3.9maxcom 11141
[Geuvers], p. 10Lemma 3.10maxle1 11149  maxle2 11150
[Geuvers], p. 10Lemma 3.11maxleast 11151
[Geuvers], p. 10Lemma 3.12maxleb 11154
[Geuvers], p. 11Definition 3.13dfabsmax 11155
[Geuvers], p. 17Definition 6.1df-ap 8476
[Gleason] p. 117Proposition 9-2.1df-enq 7284  enqer 7295
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7288  df-nqqs 7285
[Gleason] p. 117Proposition 9-2.3df-plpq 7281  df-plqqs 7286
[Gleason] p. 119Proposition 9-2.4df-mpq 7282  df-mqqs 7287
[Gleason] p. 119Proposition 9-2.5df-rq 7289
[Gleason] p. 119Proposition 9-2.6ltexnqq 7345
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7348  ltbtwnnq 7353  ltbtwnnqq 7352
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7337
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7338
[Gleason] p. 123Proposition 9-3.5addclpr 7474
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7516
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7515
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7534
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7550
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7556  ltaprlem 7555
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7553
[Gleason] p. 124Proposition 9-3.7mulclpr 7509
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7529
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7518
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7517
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7525
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7575
[Gleason] p. 126Proposition 9-4.1df-enr 7663  enrer 7672
[Gleason] p. 126Proposition 9-4.2df-0r 7668  df-1r 7669  df-nr 7664
[Gleason] p. 126Proposition 9-4.3df-mr 7666  df-plr 7665  negexsr 7709  recexsrlem 7711
[Gleason] p. 127Proposition 9-4.4df-ltr 7667
[Gleason] p. 130Proposition 10-1.3creui 8851  creur 8850  cru 8496
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7860  axcnre 7818
[Gleason] p. 132Definition 10-3.1crim 10796  crimd 10915  crimi 10875  crre 10795  crred 10914  crrei 10874
[Gleason] p. 132Definition 10-3.2remim 10798  remimd 10880
[Gleason] p. 133Definition 10.36absval2 10995  absval2d 11123  absval2i 11082
[Gleason] p. 133Proposition 10-3.4(a)cjadd 10822  cjaddd 10903  cjaddi 10870
[Gleason] p. 133Proposition 10-3.4(c)cjmul 10823  cjmuld 10904  cjmuli 10871
[Gleason] p. 133Proposition 10-3.4(e)cjcj 10821  cjcjd 10881  cjcji 10853
[Gleason] p. 133Proposition 10-3.4(f)cjre 10820  cjreb 10804  cjrebd 10884  cjrebi 10856  cjred 10909  rere 10803  rereb 10801  rerebd 10883  rerebi 10855  rered 10907
[Gleason] p. 133Proposition 10-3.4(h)addcj 10829  addcjd 10895  addcji 10865
[Gleason] p. 133Proposition 10-3.7(a)absval 10939
[Gleason] p. 133Proposition 10-3.7(b)abscj 10990  abscjd 11128  abscji 11086
[Gleason] p. 133Proposition 10-3.7(c)abs00 11002  abs00d 11124  abs00i 11083  absne0d 11125
[Gleason] p. 133Proposition 10-3.7(d)releabs 11034  releabsd 11129  releabsi 11087
[Gleason] p. 133Proposition 10-3.7(f)absmul 11007  absmuld 11132  absmuli 11089
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 10993  sqabsaddi 11090
[Gleason] p. 133Proposition 10-3.7(h)abstri 11042  abstrid 11134  abstrii 11093
[Gleason] p. 134Definition 10-4.1df-exp 10451  exp0 10455  expp1 10458  expp1d 10585
[Gleason] p. 135Proposition 10-4.2(a)expadd 10493  expaddd 10586
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 13433  cxpmuld 13456  expmul 10496  expmuld 10587
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10490  mulexpd 10599  rpmulcxp 13430
[Gleason] p. 141Definition 11-2.1fzval 9942
[Gleason] p. 168Proposition 12-2.1(a)climadd 11263
[Gleason] p. 168Proposition 12-2.1(b)climsub 11265
[Gleason] p. 168Proposition 12-2.1(c)climmul 11264
[Gleason] p. 171Corollary 12-2.2climmulc2 11268
[Gleason] p. 172Corollary 12-2.5climrecl 11261
[Gleason] p. 172Proposition 12-2.4(c)climabs 11257  climcj 11258  climim 11260  climre 11259
[Gleason] p. 173Definition 12-3.1df-ltxr 7934  df-xr 7933  ltxr 9707
[Gleason] p. 180Theorem 12-5.3climcau 11284
[Gleason] p. 217Lemma 13-4.1btwnzge0 10231
[Gleason] p. 223Definition 14-1.1df-met 12589
[Gleason] p. 223Definition 14-1.1(a)met0 12964  xmet0 12963
[Gleason] p. 223Definition 14-1.1(c)metsym 12971
[Gleason] p. 223Definition 14-1.1(d)mettri 12973  mstri 13073  xmettri 12972  xmstri 13072
[Gleason] p. 230Proposition 14-2.6txlm 12879
[Gleason] p. 240Proposition 14-4.2metcnp3 13111
[Gleason] p. 243Proposition 14-4.16addcn2 11247  addcncntop 13152  mulcn2 11249  mulcncntop 13154  subcn2 11248  subcncntop 13153
[Gleason] p. 295Remarkbcval3 10660  bcval4 10661
[Gleason] p. 295Equation 2bcpasc 10675
[Gleason] p. 295Definition of binomial coefficientbcval 10658  df-bc 10657
[Gleason] p. 296Remarkbcn0 10664  bcnn 10666
[Gleason] p. 296Theorem 15-2.8binom 11421
[Gleason] p. 308Equation 2ef0 11609
[Gleason] p. 308Equation 3efcj 11610
[Gleason] p. 309Corollary 15-4.3efne0 11615
[Gleason] p. 309Corollary 15-4.4efexp 11619
[Gleason] p. 310Equation 14sinadd 11673
[Gleason] p. 310Equation 15cosadd 11674
[Gleason] p. 311Equation 17sincossq 11685
[Gleason] p. 311Equation 18cosbnd 11690  sinbnd 11689
[Gleason] p. 311Definition of ` `df-pi 11590
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1437
[Heyting] p. 127Axiom #1ax1hfs 13910
[Hitchcock] p. 5Rule A3mptnan 1413
[Hitchcock] p. 5Rule A4mptxor 1414
[Hitchcock] p. 5Rule A5mtpxor 1416
[HoTT], p. Lemma 10.4.1exmidontriim 7177
[HoTT], p. Theorem 7.2.6nndceq 6463
[HoTT], p. Exercise 11.10neapmkv 13906
[HoTT], p. Exercise 11.11mulap0bd 8550
[HoTT], p. Section 11.2.1df-iltp 7407  df-imp 7406  df-iplp 7405  df-reap 8469
[HoTT], p. Theorem 11.2.12cauappcvgpr 7599
[HoTT], p. Corollary 11.4.3conventions 13562
[HoTT], p. Exercise 11.6(i)dcapnconst 13899  dceqnconst 13898
[HoTT], p. Corollary 11.2.13axcaucvg 7837  caucvgpr 7619  caucvgprpr 7649  caucvgsr 7739
[HoTT], p. Definition 11.2.1df-inp 7403
[HoTT], p. Exercise 11.6(ii)nconstwlpo 13904
[HoTT], p. Proposition 11.2.3df-iso 4274  ltpopr 7532  ltsopr 7533
[HoTT], p. Definition 11.2.7(v)apsym 8500  reapcotr 8492  reapirr 8471
[HoTT], p. Definition 11.2.7(vi)0lt1 8021  gt0add 8467  leadd1 8324  lelttr 7983  lemul1a 8749  lenlt 7970  ltadd1 8323  ltletr 7984  ltmul1 8486  reaplt 8482
[Jech] p. 4Definition of classcv 1342  cvjust 2160
[Jech] p. 78Noteopthprc 4654
[KalishMontague] p. 81Note 1ax-i9 1518
[Kreyszig] p. 3Property M1metcl 12953  xmetcl 12952
[Kreyszig] p. 4Property M2meteq0 12960
[Kreyszig] p. 12Equation 5muleqadd 8561
[Kreyszig] p. 18Definition 1.3-2mopnval 13042
[Kreyszig] p. 19Remarkmopntopon 13043
[Kreyszig] p. 19Theorem T1mopn0 13088  mopnm 13048
[Kreyszig] p. 19Theorem T2unimopn 13086
[Kreyszig] p. 19Definition of neighborhoodneibl 13091
[Kreyszig] p. 20Definition 1.3-3metcnp2 13113
[Kreyszig] p. 25Definition 1.4-1lmbr 12813
[Kunen] p. 10Axiom 0a9e 1684
[Kunen] p. 12Axiom 6zfrep6 4098
[Kunen] p. 24Definition 10.24mapval 6622  mapvalg 6620
[Kunen] p. 31Definition 10.24mapex 6616
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3875
[Levy] p. 338Axiomdf-clab 2152  df-clel 2161  df-cleq 2158
[Lopez-Astorga] p. 12Rule 1mptnan 1413
[Lopez-Astorga] p. 12Rule 2mptxor 1414
[Lopez-Astorga] p. 12Rule 3mtpxor 1416
[Margaris] p. 40Rule Cexlimiv 1586
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 843
[Margaris] p. 49Definitiondfbi2 386  dfordc 882  exalim 1490
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 641
[Margaris] p. 89Theorem 19.219.2 1626  r19.2m 3494
[Margaris] p. 89Theorem 19.319.3 1542  19.3h 1541  rr19.3v 2864
[Margaris] p. 89Theorem 19.5alcom 1466
[Margaris] p. 89Theorem 19.6alexdc 1607  alexim 1633
[Margaris] p. 89Theorem 19.7alnex 1487
[Margaris] p. 89Theorem 19.819.8a 1578  spsbe 1830
[Margaris] p. 89Theorem 19.919.9 1632  19.9h 1631  19.9v 1859  exlimd 1585
[Margaris] p. 89Theorem 19.11excom 1652  excomim 1651
[Margaris] p. 89Theorem 19.1219.12 1653  r19.12 2571
[Margaris] p. 90Theorem 19.14exnalim 1634
[Margaris] p. 90Theorem 19.15albi 1456  ralbi 2597
[Margaris] p. 90Theorem 19.1619.16 1543
[Margaris] p. 90Theorem 19.1719.17 1544
[Margaris] p. 90Theorem 19.18exbi 1592  rexbi 2598
[Margaris] p. 90Theorem 19.1919.19 1654
[Margaris] p. 90Theorem 19.20alim 1445  alimd 1509  alimdh 1455  alimdv 1867  ralimdaa 2531  ralimdv 2533  ralimdva 2532  ralimdvva 2534  sbcimdv 3015
[Margaris] p. 90Theorem 19.2119.21-2 1655  19.21 1571  19.21bi 1546  19.21h 1545  19.21ht 1569  19.21t 1570  19.21v 1861  alrimd 1598  alrimdd 1597  alrimdh 1467  alrimdv 1864  alrimi 1510  alrimih 1457  alrimiv 1862  alrimivv 1863  r19.21 2541  r19.21be 2556  r19.21bi 2553  r19.21t 2540  r19.21v 2542  ralrimd 2543  ralrimdv 2544  ralrimdva 2545  ralrimdvv 2549  ralrimdvva 2550  ralrimi 2536  ralrimiv 2537  ralrimiva 2538  ralrimivv 2546  ralrimivva 2547  ralrimivvva 2548  ralrimivw 2539  rexlimi 2575
[Margaris] p. 90Theorem 19.222alimdv 1869  2eximdv 1870  exim 1587  eximd 1600  eximdh 1599  eximdv 1868  rexim 2559  reximdai 2563  reximddv 2568  reximddv2 2570  reximdv 2566  reximdv2 2564  reximdva 2567  reximdvai 2565  reximi2 2561
[Margaris] p. 90Theorem 19.2319.23 1666  19.23bi 1580  19.23h 1486  19.23ht 1485  19.23t 1665  19.23v 1871  19.23vv 1872  exlimd2 1583  exlimdh 1584  exlimdv 1807  exlimdvv 1885  exlimi 1582  exlimih 1581  exlimiv 1586  exlimivv 1884  r19.23 2573  r19.23v 2574  rexlimd 2579  rexlimdv 2581  rexlimdv3a 2584  rexlimdva 2582  rexlimdva2 2585  rexlimdvaa 2583  rexlimdvv 2589  rexlimdvva 2590  rexlimdvw 2586  rexlimiv 2576  rexlimiva 2577  rexlimivv 2588
[Margaris] p. 90Theorem 19.24i19.24 1627
[Margaris] p. 90Theorem 19.2519.25 1614
[Margaris] p. 90Theorem 19.2619.26-2 1470  19.26-3an 1471  19.26 1469  r19.26-2 2594  r19.26-3 2595  r19.26 2591  r19.26m 2596
[Margaris] p. 90Theorem 19.2719.27 1549  19.27h 1548  19.27v 1887  r19.27av 2600  r19.27m 3503  r19.27mv 3504
[Margaris] p. 90Theorem 19.2819.28 1551  19.28h 1550  19.28v 1888  r19.28av 2601  r19.28m 3497  r19.28mv 3500  rr19.28v 2865
[Margaris] p. 90Theorem 19.2919.29 1608  19.29r 1609  19.29r2 1610  19.29x 1611  r19.29 2602  r19.29d2r 2609  r19.29r 2603
[Margaris] p. 90Theorem 19.3019.30dc 1615
[Margaris] p. 90Theorem 19.3119.31r 1669
[Margaris] p. 90Theorem 19.3219.32dc 1667  19.32r 1668  r19.32r 2611  r19.32vdc 2614  r19.32vr 2613
[Margaris] p. 90Theorem 19.3319.33 1472  19.33b2 1617  19.33bdc 1618
[Margaris] p. 90Theorem 19.3419.34 1672
[Margaris] p. 90Theorem 19.3519.35-1 1612  19.35i 1613
[Margaris] p. 90Theorem 19.3619.36-1 1661  19.36aiv 1889  19.36i 1660  r19.36av 2616
[Margaris] p. 90Theorem 19.3719.37-1 1662  19.37aiv 1663  r19.37 2617  r19.37av 2618
[Margaris] p. 90Theorem 19.3819.38 1664
[Margaris] p. 90Theorem 19.39i19.39 1628
[Margaris] p. 90Theorem 19.4019.40-2 1620  19.40 1619  r19.40 2619
[Margaris] p. 90Theorem 19.4119.41 1674  19.41h 1673  19.41v 1890  19.41vv 1891  19.41vvv 1892  19.41vvvv 1893  r19.41 2620  r19.41v 2621
[Margaris] p. 90Theorem 19.4219.42 1676  19.42h 1675  19.42v 1894  19.42vv 1899  19.42vvv 1900  19.42vvvv 1901  r19.42v 2622
[Margaris] p. 90Theorem 19.4319.43 1616  r19.43 2623
[Margaris] p. 90Theorem 19.4419.44 1670  r19.44av 2624  r19.44mv 3502
[Margaris] p. 90Theorem 19.4519.45 1671  r19.45av 2625  r19.45mv 3501
[Margaris] p. 110Exercise 2(b)eu1 2039
[Megill] p. 444Axiom C5ax-17 1514
[Megill] p. 445Lemma L12alequcom 1503  ax-10 1493
[Megill] p. 446Lemma L17equtrr 1698
[Megill] p. 446Lemma L19hbnae 1709
[Megill] p. 447Remark 9.1df-sb 1751  sbid 1762
[Megill] p. 448Scheme C5'ax-4 1498
[Megill] p. 448Scheme C6'ax-7 1436
[Megill] p. 448Scheme C8'ax-8 1492
[Megill] p. 448Scheme C9'ax-i12 1495
[Megill] p. 448Scheme C11'ax-10o 1704
[Megill] p. 448Scheme C12'ax-13 2138
[Megill] p. 448Scheme C13'ax-14 2139
[Megill] p. 448Scheme C15'ax-11o 1811
[Megill] p. 448Scheme C16'ax-16 1802
[Megill] p. 448Theorem 9.4dral1 1718  dral2 1719  drex1 1786  drex2 1720  drsb1 1787  drsb2 1829
[Megill] p. 449Theorem 9.7sbcom2 1975  sbequ 1828  sbid2v 1984
[Megill] p. 450Example in Appendixhba1 1528
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3032  rspsbca 3033  stdpc4 1763
[Mendelson] p. 69Axiom 5ra5 3038  stdpc5 1572
[Mendelson] p. 81Rule Cexlimiv 1586
[Mendelson] p. 95Axiom 6stdpc6 1691
[Mendelson] p. 95Axiom 7stdpc7 1758
[Mendelson] p. 231Exercise 4.10(k)inv1 3444
[Mendelson] p. 231Exercise 4.10(l)unv 3445
[Mendelson] p. 231Exercise 4.10(n)inssun 3361
[Mendelson] p. 231Exercise 4.10(o)df-nul 3409
[Mendelson] p. 231Exercise 4.10(q)inssddif 3362
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3252
[Mendelson] p. 231Definition of unionunssin 3360
[Mendelson] p. 235Exercise 4.12(c)univ 4453
[Mendelson] p. 235Exercise 4.12(d)pwv 3787
[Mendelson] p. 235Exercise 4.12(j)pwin 4259
[Mendelson] p. 235Exercise 4.12(k)pwunss 4260
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4261
[Mendelson] p. 235Exercise 4.12(n)uniin 3808
[Mendelson] p. 235Exercise 4.12(p)reli 4732
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5123
[Mendelson] p. 246Definition of successordf-suc 4348
[Mendelson] p. 254Proposition 4.22(b)xpen 6807
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6783  xpsneng 6784
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6789  xpcomeng 6790
[Mendelson] p. 254Proposition 4.22(e)xpassen 6792
[Mendelson] p. 255Exercise 4.39endisj 6786
[Mendelson] p. 255Exercise 4.41mapprc 6614
[Mendelson] p. 255Exercise 4.43mapsnen 6773
[Mendelson] p. 255Exercise 4.47xpmapen 6812
[Mendelson] p. 255Exercise 4.42(a)map0e 6648
[Mendelson] p. 255Exercise 4.42(b)map1 6774
[Mendelson] p. 258Exercise 4.56(c)djuassen 7169  djucomen 7168
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7167
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6431
[Monk1] p. 26Theorem 2.8(vii)ssin 3343
[Monk1] p. 33Theorem 3.2(i)ssrel 4691
[Monk1] p. 33Theorem 3.2(ii)eqrel 4692
[Monk1] p. 34Definition 3.3df-opab 4043
[Monk1] p. 36Theorem 3.7(i)coi1 5118  coi2 5119
[Monk1] p. 36Theorem 3.8(v)dm0 4817  rn0 4859
[Monk1] p. 36Theorem 3.7(ii)cnvi 5007
[Monk1] p. 37Theorem 3.13(i)relxp 4712
[Monk1] p. 37Theorem 3.13(x)dmxpm 4823  rnxpm 5032
[Monk1] p. 37Theorem 3.13(ii)0xp 4683  xp0 5022
[Monk1] p. 38Theorem 3.16(ii)ima0 4962
[Monk1] p. 38Theorem 3.16(viii)imai 4959
[Monk1] p. 39Theorem 3.17imaex 4958  imaexg 4957
[Monk1] p. 39Theorem 3.16(xi)imassrn 4956
[Monk1] p. 41Theorem 4.3(i)fnopfv 5614  funfvop 5596
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5529
[Monk1] p. 42Theorem 4.4(iii)fvelima 5537
[Monk1] p. 43Theorem 4.6funun 5231
[Monk1] p. 43Theorem 4.8(iv)dff13 5735  dff13f 5737
[Monk1] p. 46Theorem 4.15(v)funex 5707  funrnex 6079
[Monk1] p. 50Definition 5.4fniunfv 5729
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5086
[Monk1] p. 52Theorem 5.11(viii)ssint 3839
[Monk1] p. 52Definition 5.13 (i)1stval2 6120  df-1st 6105
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6121  df-2nd 6106
[Monk2] p. 105Axiom C4ax-5 1435
[Monk2] p. 105Axiom C7ax-8 1492
[Monk2] p. 105Axiom C8ax-11 1494  ax-11o 1811
[Monk2] p. 105Axiom (C8)ax11v 1815
[Monk2] p. 109Lemma 12ax-7 1436
[Monk2] p. 109Lemma 15equvin 1851  equvini 1746  eqvinop 4220
[Monk2] p. 113Axiom C5-1ax-17 1514
[Monk2] p. 113Axiom C5-2ax6b 1639
[Monk2] p. 113Axiom C5-3ax-7 1436
[Monk2] p. 114Lemma 22hba1 1528
[Monk2] p. 114Lemma 23hbia1 1540  nfia1 1568
[Monk2] p. 114Lemma 24hba2 1539  nfa2 1567
[Moschovakis] p. 2Chapter 2 df-stab 821  dftest 13911
[Munkres] p. 77Example 2distop 12685
[Munkres] p. 78Definition of basisdf-bases 12641  isbasis3g 12644
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12572  tgval2 12651
[Munkres] p. 79Remarktgcl 12664
[Munkres] p. 80Lemma 2.1tgval3 12658
[Munkres] p. 80Lemma 2.2tgss2 12679  tgss3 12678
[Munkres] p. 81Lemma 2.3basgen 12680  basgen2 12681
[Munkres] p. 89Definition of subspace topologyresttop 12770
[Munkres] p. 93Theorem 6.1(1)0cld 12712  topcld 12709
[Munkres] p. 93Theorem 6.1(3)uncld 12713
[Munkres] p. 94Definition of closureclsval 12711
[Munkres] p. 94Definition of interiorntrval 12710
[Munkres] p. 102Definition of continuous functiondf-cn 12788  iscn 12797  iscn2 12800
[Munkres] p. 107Theorem 7.2(g)cncnp 12830  cncnp2m 12831  cncnpi 12828  df-cnp 12789  iscnp 12799
[Munkres] p. 127Theorem 10.1metcn 13114
[Pierik], p. 8Section 2.2.1dfrex2fin 6865
[Pierik], p. 9Definition 2.4df-womni 7124
[Pierik], p. 9Definition 2.5df-markov 7112  omniwomnimkv 7127
[Pierik], p. 10Section 2.3dfdif3 3231
[Pierik], p. 14Definition 3.1df-omni 7095  exmidomniim 7101  finomni 7100
[Pierik], p. 15Section 3.1df-nninf 7081
[PradicBrown2022], p. 1Theorem 1exmidsbthr 13862
[PradicBrown2022], p. 2Remarkexmidpw 6870
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7153
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7154  exmidfodomrlemrALT 7155
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7109
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 13847  peano4nninf 13846
[PradicBrown2022], p. 5Lemma 3.5nninfall 13849
[PradicBrown2022], p. 5Theorem 3.6nninfsel 13857
[PradicBrown2022], p. 5Corollary 3.7nninfomni 13859
[PradicBrown2022], p. 5Definition 3.3nnsf 13845
[Quine] p. 16Definition 2.1df-clab 2152  rabid 2640
[Quine] p. 17Definition 2.1''dfsb7 1979
[Quine] p. 18Definition 2.7df-cleq 2158
[Quine] p. 19Definition 2.9df-v 2727
[Quine] p. 34Theorem 5.1abeq2 2274
[Quine] p. 35Theorem 5.2abid2 2286  abid2f 2333
[Quine] p. 40Theorem 6.1sb5 1875
[Quine] p. 40Theorem 6.2sb56 1873  sb6 1874
[Quine] p. 41Theorem 6.3df-clel 2161
[Quine] p. 41Theorem 6.4eqid 2165
[Quine] p. 41Theorem 6.5eqcom 2167
[Quine] p. 42Theorem 6.6df-sbc 2951
[Quine] p. 42Theorem 6.7dfsbcq 2952  dfsbcq2 2953
[Quine] p. 43Theorem 6.8vex 2728
[Quine] p. 43Theorem 6.9isset 2731
[Quine] p. 44Theorem 7.3spcgf 2807  spcgv 2812  spcimgf 2805
[Quine] p. 44Theorem 6.11spsbc 2961  spsbcd 2962
[Quine] p. 44Theorem 6.12elex 2736
[Quine] p. 44Theorem 6.13elab 2869  elabg 2871  elabgf 2867
[Quine] p. 44Theorem 6.14noel 3412
[Quine] p. 48Theorem 7.2snprc 3640
[Quine] p. 48Definition 7.1df-pr 3582  df-sn 3581
[Quine] p. 49Theorem 7.4snss 3701  snssg 3708
[Quine] p. 49Theorem 7.5prss 3728  prssg 3729
[Quine] p. 49Theorem 7.6prid1 3681  prid1g 3679  prid2 3682  prid2g 3680  snid 3606  snidg 3604
[Quine] p. 51Theorem 7.12snexg 4162  snexprc 4164
[Quine] p. 51Theorem 7.13prexg 4188
[Quine] p. 53Theorem 8.2unisn 3804  unisng 3805
[Quine] p. 53Theorem 8.3uniun 3807
[Quine] p. 54Theorem 8.6elssuni 3816
[Quine] p. 54Theorem 8.7uni0 3815
[Quine] p. 56Theorem 8.17uniabio 5162
[Quine] p. 56Definition 8.18dfiota2 5153
[Quine] p. 57Theorem 8.19iotaval 5163
[Quine] p. 57Theorem 8.22iotanul 5167
[Quine] p. 58Theorem 8.23euiotaex 5168
[Quine] p. 58Definition 9.1df-op 3584
[Quine] p. 61Theorem 9.5opabid 4234  opelopab 4248  opelopaba 4243  opelopabaf 4250  opelopabf 4251  opelopabg 4245  opelopabga 4240  oprabid 5870
[Quine] p. 64Definition 9.11df-xp 4609
[Quine] p. 64Definition 9.12df-cnv 4611
[Quine] p. 64Definition 9.15df-id 4270
[Quine] p. 65Theorem 10.3fun0 5245
[Quine] p. 65Theorem 10.4funi 5219
[Quine] p. 65Theorem 10.5funsn 5235  funsng 5233
[Quine] p. 65Definition 10.1df-fun 5189
[Quine] p. 65Definition 10.2args 4972  dffv4g 5482
[Quine] p. 68Definition 10.11df-fv 5195  fv2 5480
[Quine] p. 124Theorem 17.3nn0opth2 10633  nn0opth2d 10632  nn0opthd 10631
[Quine] p. 284Axiom 39(vi)funimaex 5272  funimaexg 5271
[Rudin] p. 164Equation 27efcan 11613
[Rudin] p. 164Equation 30efzval 11620
[Rudin] p. 167Equation 48absefi 11705
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1416
[Sanford] p. 39Rule 4mptxor 1414
[Sanford] p. 40Rule 1mptnan 1413
[Schechter] p. 51Definition of antisymmetryintasym 4987
[Schechter] p. 51Definition of irreflexivityintirr 4989
[Schechter] p. 51Definition of symmetrycnvsym 4986
[Schechter] p. 51Definition of transitivitycotr 4984
[Schechter] p. 428Definition 15.35bastop1 12683
[Stoll] p. 13Definition of symmetric differencesymdif1 3386
[Stoll] p. 16Exercise 4.40dif 3479  dif0 3478
[Stoll] p. 16Exercise 4.8difdifdirss 3492
[Stoll] p. 19Theorem 5.2(13)undm 3379
[Stoll] p. 19Theorem 5.2(13')indmss 3380
[Stoll] p. 20Remarkinvdif 3363
[Stoll] p. 25Definition of ordered tripledf-ot 3585
[Stoll] p. 43Definitionuniiun 3918
[Stoll] p. 44Definitionintiin 3919
[Stoll] p. 45Definitiondf-iin 3868
[Stoll] p. 45Definition indexed uniondf-iun 3867
[Stoll] p. 176Theorem 3.4(27)imandc 879  imanst 878
[Stoll] p. 262Example 4.1symdif1 3386
[Suppes] p. 22Theorem 2eq0 3426
[Suppes] p. 22Theorem 4eqss 3156  eqssd 3158  eqssi 3157
[Suppes] p. 23Theorem 5ss0 3448  ss0b 3447
[Suppes] p. 23Theorem 6sstr 3149
[Suppes] p. 25Theorem 12elin 3304  elun 3262
[Suppes] p. 26Theorem 15inidm 3330
[Suppes] p. 26Theorem 16in0 3442
[Suppes] p. 27Theorem 23unidm 3264
[Suppes] p. 27Theorem 24un0 3441
[Suppes] p. 27Theorem 25ssun1 3284
[Suppes] p. 27Theorem 26ssequn1 3291
[Suppes] p. 27Theorem 27unss 3295
[Suppes] p. 27Theorem 28indir 3370
[Suppes] p. 27Theorem 29undir 3371
[Suppes] p. 28Theorem 32difid 3476  difidALT 3477
[Suppes] p. 29Theorem 33difin 3358
[Suppes] p. 29Theorem 34indif 3364
[Suppes] p. 29Theorem 35undif1ss 3482
[Suppes] p. 29Theorem 36difun2 3487
[Suppes] p. 29Theorem 37difin0 3481
[Suppes] p. 29Theorem 38disjdif 3480
[Suppes] p. 29Theorem 39difundi 3373
[Suppes] p. 29Theorem 40difindiss 3375
[Suppes] p. 30Theorem 41nalset 4111
[Suppes] p. 39Theorem 61uniss 3809
[Suppes] p. 39Theorem 65uniop 4232
[Suppes] p. 41Theorem 70intsn 3858
[Suppes] p. 42Theorem 71intpr 3855  intprg 3856
[Suppes] p. 42Theorem 73op1stb 4455  op1stbg 4456
[Suppes] p. 42Theorem 78intun 3854
[Suppes] p. 44Definition 15(a)dfiun2 3899  dfiun2g 3897
[Suppes] p. 44Definition 15(b)dfiin2 3900
[Suppes] p. 47Theorem 86elpw 3564  elpw2 4135  elpw2g 4134  elpwg 3566
[Suppes] p. 47Theorem 87pwid 3573
[Suppes] p. 47Theorem 89pw0 3719
[Suppes] p. 48Theorem 90pwpw0ss 3783
[Suppes] p. 52Theorem 101xpss12 4710
[Suppes] p. 52Theorem 102xpindi 4738  xpindir 4739
[Suppes] p. 52Theorem 103xpundi 4659  xpundir 4660
[Suppes] p. 54Theorem 105elirrv 4524
[Suppes] p. 58Theorem 2relss 4690
[Suppes] p. 59Theorem 4eldm 4800  eldm2 4801  eldm2g 4799  eldmg 4798
[Suppes] p. 59Definition 3df-dm 4613
[Suppes] p. 60Theorem 6dmin 4811
[Suppes] p. 60Theorem 8rnun 5011
[Suppes] p. 60Theorem 9rnin 5012
[Suppes] p. 60Definition 4dfrn2 4791
[Suppes] p. 61Theorem 11brcnv 4786  brcnvg 4784
[Suppes] p. 62Equation 5elcnv 4780  elcnv2 4781
[Suppes] p. 62Theorem 12relcnv 4981
[Suppes] p. 62Theorem 15cnvin 5010
[Suppes] p. 62Theorem 16cnvun 5008
[Suppes] p. 63Theorem 20co02 5116
[Suppes] p. 63Theorem 21dmcoss 4872
[Suppes] p. 63Definition 7df-co 4612
[Suppes] p. 64Theorem 26cnvco 4788
[Suppes] p. 64Theorem 27coass 5121
[Suppes] p. 65Theorem 31resundi 4896
[Suppes] p. 65Theorem 34elima 4950  elima2 4951  elima3 4952  elimag 4949
[Suppes] p. 65Theorem 35imaundi 5015
[Suppes] p. 66Theorem 40dminss 5017
[Suppes] p. 66Theorem 41imainss 5018
[Suppes] p. 67Exercise 11cnvxp 5021
[Suppes] p. 81Definition 34dfec2 6500
[Suppes] p. 82Theorem 72elec 6536  elecg 6535
[Suppes] p. 82Theorem 73erth 6541  erth2 6542
[Suppes] p. 89Theorem 96map0b 6649
[Suppes] p. 89Theorem 97map0 6651  map0g 6650
[Suppes] p. 89Theorem 98mapsn 6652
[Suppes] p. 89Theorem 99mapss 6653
[Suppes] p. 92Theorem 1enref 6727  enrefg 6726
[Suppes] p. 92Theorem 2ensym 6743  ensymb 6742  ensymi 6744
[Suppes] p. 92Theorem 3entr 6746
[Suppes] p. 92Theorem 4unen 6778
[Suppes] p. 94Theorem 15endom 6725
[Suppes] p. 94Theorem 16ssdomg 6740
[Suppes] p. 94Theorem 17domtr 6747
[Suppes] p. 95Theorem 18isbth 6928
[Suppes] p. 98Exercise 4fundmen 6768  fundmeng 6769
[Suppes] p. 98Exercise 6xpdom3m 6796
[Suppes] p. 130Definition 3df-tr 4080
[Suppes] p. 132Theorem 9ssonuni 4464
[Suppes] p. 134Definition 6df-suc 4348
[Suppes] p. 136Theorem Schema 22findes 4579  finds 4576  finds1 4578  finds2 4577
[Suppes] p. 162Definition 5df-ltnqqs 7290  df-ltpq 7283
[Suppes] p. 228Theorem Schema 61onintss 4367
[TakeutiZaring] p. 8Axiom 1ax-ext 2147
[TakeutiZaring] p. 13Definition 4.5df-cleq 2158
[TakeutiZaring] p. 13Proposition 4.6df-clel 2161
[TakeutiZaring] p. 13Proposition 4.9cvjust 2160
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2183
[TakeutiZaring] p. 14Definition 4.16df-oprab 5845
[TakeutiZaring] p. 14Proposition 4.14ru 2949
[TakeutiZaring] p. 15Exercise 1elpr 3596  elpr2 3597  elprg 3595
[TakeutiZaring] p. 15Exercise 2elsn 3591  elsn2 3609  elsn2g 3608  elsng 3590  velsn 3592
[TakeutiZaring] p. 15Exercise 3elop 4208
[TakeutiZaring] p. 15Exercise 4sneq 3586  sneqr 3739
[TakeutiZaring] p. 15Definition 5.1dfpr2 3594  dfsn2 3589
[TakeutiZaring] p. 16Axiom 3uniex 4414
[TakeutiZaring] p. 16Exercise 6opth 4214
[TakeutiZaring] p. 16Exercise 8rext 4192
[TakeutiZaring] p. 16Corollary 5.8unex 4418  unexg 4420
[TakeutiZaring] p. 16Definition 5.3dftp2 3624
[TakeutiZaring] p. 16Definition 5.5df-uni 3789
[TakeutiZaring] p. 16Definition 5.6df-in 3121  df-un 3119
[TakeutiZaring] p. 16Proposition 5.7unipr 3802  uniprg 3803
[TakeutiZaring] p. 17Axiom 4vpwex 4157
[TakeutiZaring] p. 17Exercise 1eltp 3623
[TakeutiZaring] p. 17Exercise 5elsuc 4383  elsucg 4381  sstr2 3148
[TakeutiZaring] p. 17Exercise 6uncom 3265
[TakeutiZaring] p. 17Exercise 7incom 3313
[TakeutiZaring] p. 17Exercise 8unass 3278
[TakeutiZaring] p. 17Exercise 9inass 3331
[TakeutiZaring] p. 17Exercise 10indi 3368
[TakeutiZaring] p. 17Exercise 11undi 3369
[TakeutiZaring] p. 17Definition 5.9dfss2 3130
[TakeutiZaring] p. 17Definition 5.10df-pw 3560
[TakeutiZaring] p. 18Exercise 7unss2 3292
[TakeutiZaring] p. 18Exercise 9df-ss 3128  sseqin2 3340
[TakeutiZaring] p. 18Exercise 10ssid 3161
[TakeutiZaring] p. 18Exercise 12inss1 3341  inss2 3342
[TakeutiZaring] p. 18Exercise 13nssr 3201
[TakeutiZaring] p. 18Exercise 15unieq 3797
[TakeutiZaring] p. 18Exercise 18sspwb 4193
[TakeutiZaring] p. 18Exercise 19pweqb 4200
[TakeutiZaring] p. 20Definitiondf-rab 2452
[TakeutiZaring] p. 20Corollary 5.160ex 4108
[TakeutiZaring] p. 20Definition 5.12df-dif 3117
[TakeutiZaring] p. 20Definition 5.14dfnul2 3410
[TakeutiZaring] p. 20Proposition 5.15difid 3476  difidALT 3477
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3420
[TakeutiZaring] p. 21Theorem 5.22setind 4515
[TakeutiZaring] p. 21Definition 5.20df-v 2727
[TakeutiZaring] p. 21Proposition 5.21vprc 4113
[TakeutiZaring] p. 22Exercise 10ss 3446
[TakeutiZaring] p. 22Exercise 3ssex 4118  ssexg 4120
[TakeutiZaring] p. 22Exercise 4inex1 4115
[TakeutiZaring] p. 22Exercise 5ruv 4526
[TakeutiZaring] p. 22Exercise 6elirr 4517
[TakeutiZaring] p. 22Exercise 7ssdif0im 3472
[TakeutiZaring] p. 22Exercise 11difdif 3246
[TakeutiZaring] p. 22Exercise 13undif3ss 3382
[TakeutiZaring] p. 22Exercise 14difss 3247
[TakeutiZaring] p. 22Exercise 15sscon 3255
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2448
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2449
[TakeutiZaring] p. 23Proposition 6.2xpex 4718  xpexg 4717  xpexgALT 6098
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4610
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5251
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5403  fun11 5254
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5198  svrelfun 5252
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4790
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4792
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4615
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4616
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4612
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5057  dfrel2 5053
[TakeutiZaring] p. 25Exercise 3xpss 4711
[TakeutiZaring] p. 25Exercise 5relun 4720
[TakeutiZaring] p. 25Exercise 6reluni 4726
[TakeutiZaring] p. 25Exercise 9inxp 4737
[TakeutiZaring] p. 25Exercise 12relres 4911
[TakeutiZaring] p. 25Exercise 13opelres 4888  opelresg 4890
[TakeutiZaring] p. 25Exercise 14dmres 4904
[TakeutiZaring] p. 25Exercise 15resss 4907
[TakeutiZaring] p. 25Exercise 17resabs1 4912
[TakeutiZaring] p. 25Exercise 18funres 5228
[TakeutiZaring] p. 25Exercise 24relco 5101
[TakeutiZaring] p. 25Exercise 29funco 5227
[TakeutiZaring] p. 25Exercise 30f1co 5404
[TakeutiZaring] p. 26Definition 6.10eu2 2058
[TakeutiZaring] p. 26Definition 6.11df-fv 5195  fv3 5508
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5141  cnvexg 5140
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4869  dmexg 4867
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4870  rnexg 4868
[TakeutiZaring] p. 27Corollary 6.13funfvex 5502
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5512  tz6.12 5513  tz6.12c 5515
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5476
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5190
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5191
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5193  wfo 5185
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5192  wf1 5184
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5194  wf1o 5186
[TakeutiZaring] p. 28Exercise 4eqfnfv 5582  eqfnfv2 5583  eqfnfv2f 5586
[TakeutiZaring] p. 28Exercise 5fvco 5555
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5706  fnexALT 6078
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5705  resfunexgALT 6075
[TakeutiZaring] p. 29Exercise 9funimaex 5272  funimaexg 5271
[TakeutiZaring] p. 29Definition 6.18df-br 3982
[TakeutiZaring] p. 30Definition 6.21eliniseg 4973  iniseg 4975
[TakeutiZaring] p. 30Definition 6.22df-eprel 4266
[TakeutiZaring] p. 32Definition 6.28df-isom 5196
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5777
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5778
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5783
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5785
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5793
[TakeutiZaring] p. 35Notationwtr 4079
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4331
[TakeutiZaring] p. 35Definition 7.1dftr3 4083
[TakeutiZaring] p. 36Proposition 7.4ordwe 4552
[TakeutiZaring] p. 36Proposition 7.6ordelord 4358
[TakeutiZaring] p. 37Proposition 7.9ordin 4362
[TakeutiZaring] p. 38Corollary 7.15ordsson 4468
[TakeutiZaring] p. 38Definition 7.11df-on 4345
[TakeutiZaring] p. 38Proposition 7.12ordon 4462
[TakeutiZaring] p. 38Proposition 7.13onprc 4528
[TakeutiZaring] p. 39Theorem 7.17tfi 4558
[TakeutiZaring] p. 40Exercise 7dftr2 4081
[TakeutiZaring] p. 40Exercise 11unon 4487
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4463
[TakeutiZaring] p. 40Proposition 7.20elssuni 3816
[TakeutiZaring] p. 41Definition 7.22df-suc 4348
[TakeutiZaring] p. 41Proposition 7.23sssucid 4392  sucidg 4393
[TakeutiZaring] p. 41Proposition 7.24suceloni 4477
[TakeutiZaring] p. 42Exercise 1df-ilim 4346
[TakeutiZaring] p. 42Exercise 8onsucssi 4482  ordelsuc 4481
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4570
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4571
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4572
[TakeutiZaring] p. 43Axiom 7omex 4569
[TakeutiZaring] p. 43Theorem 7.32ordom 4583
[TakeutiZaring] p. 43Corollary 7.31find 4575
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4573
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4574
[TakeutiZaring] p. 44Exercise 2int0 3837
[TakeutiZaring] p. 44Exercise 3trintssm 4095
[TakeutiZaring] p. 44Exercise 4intss1 3838
[TakeutiZaring] p. 44Exercise 6onintonm 4493
[TakeutiZaring] p. 44Definition 7.35df-int 3824
[TakeutiZaring] p. 47Lemma 1tfrlem1 6272
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6329  tfri1d 6299
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6330  tfri2d 6300
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6331
[TakeutiZaring] p. 50Exercise 3smoiso 6266
[TakeutiZaring] p. 50Definition 7.46df-smo 6250
[TakeutiZaring] p. 56Definition 8.1oasuc 6428
[TakeutiZaring] p. 57Proposition 8.2oacl 6424
[TakeutiZaring] p. 57Proposition 8.3oa0 6421
[TakeutiZaring] p. 57Proposition 8.16omcl 6425
[TakeutiZaring] p. 58Proposition 8.4nnaord 6473  nnaordi 6472
[TakeutiZaring] p. 59Proposition 8.6iunss2 3910  uniss2 3819
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6434
[TakeutiZaring] p. 59Proposition 8.9nnacl 6444
[TakeutiZaring] p. 62Exercise 5oaword1 6435
[TakeutiZaring] p. 62Definition 8.15om0 6422  omsuc 6436
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6445
[TakeutiZaring] p. 63Proposition 8.19nnmord 6481  nnmordi 6480
[TakeutiZaring] p. 67Definition 8.30oei0 6423
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7139
[TakeutiZaring] p. 88Exercise 1en0 6757
[TakeutiZaring] p. 90Proposition 10.20nneneq 6819
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6820
[TakeutiZaring] p. 91Definition 10.29df-fin 6705  isfi 6723
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6793
[TakeutiZaring] p. 95Definition 10.42df-map 6612
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6810
[Tarski] p. 67Axiom B5ax-4 1498
[Tarski] p. 68Lemma 6equid 1689
[Tarski] p. 69Lemma 7equcomi 1692
[Tarski] p. 70Lemma 14spim 1726  spime 1729  spimeh 1727  spimh 1725
[Tarski] p. 70Lemma 16ax-11 1494  ax-11o 1811  ax11i 1702
[Tarski] p. 70Lemmas 16 and 17sb6 1874
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1514
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2138  ax-14 2139
[WhiteheadRussell] p. 96Axiom *1.3olc 701
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 717
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 746
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 755
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 779
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 606
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 633
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 827
[WhiteheadRussell] p. 101Theorem *2.06barbara 2112  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 727
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 826
[WhiteheadRussell] p. 101Theorem *2.12notnot 619
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 875
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 833
[WhiteheadRussell] p. 102Theorem *2.15con1dc 846
[WhiteheadRussell] p. 103Theorem *2.16con3 632
[WhiteheadRussell] p. 103Theorem *2.17condc 843
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 845
[WhiteheadRussell] p. 104Theorem *2.2orc 702
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 765
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 607
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 611
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 883
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 897
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 758
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 759
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 794
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 795
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 793
[WhiteheadRussell] p. 105Definition *2.33df-3or 969
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 768
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 766
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 767
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 728
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 729
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 857  pm2.5gdc 856
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 852
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 730
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 731
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 732
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 645
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 646
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 712
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 881
[WhiteheadRussell] p. 107Theorem *2.55orel1 715
[WhiteheadRussell] p. 107Theorem *2.56orel2 716
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 855
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 738
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 790
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 791
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 649
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 703  pm2.67 733
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 859  pm2.521gdc 858
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 737
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 800
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 884
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 905
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 796
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 797
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 799
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 798
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 801
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 802
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 895
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 100
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 744
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 138
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 947
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 948
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 949
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 743
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 262
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 263
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 683
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 345
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 259
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 260
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 108  simplimdc 850
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 109  simprimdc 849
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 343
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 344
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 679
[WhiteheadRussell] p. 113Fact)pm3.45 587
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 331
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 329
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 330
[WhiteheadRussell] p. 113Theorem *3.44jao 745  pm3.44 705
[WhiteheadRussell] p. 113Theorem *3.47anim12 342
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 592
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 775
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 861
[WhiteheadRussell] p. 117Theorem *4.2biid 170
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 862
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 880
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 684
[WhiteheadRussell] p. 117Theorem *4.21bicom 139
[WhiteheadRussell] p. 117Theorem *4.22biantr 942  bitr 464
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 393
[WhiteheadRussell] p. 117Theorem *4.25oridm 747  pm4.25 748
[WhiteheadRussell] p. 118Theorem *4.3ancom 264
[WhiteheadRussell] p. 118Theorem *4.4andi 808
[WhiteheadRussell] p. 118Theorem *4.31orcom 718
[WhiteheadRussell] p. 118Theorem *4.32anass 399
[WhiteheadRussell] p. 118Theorem *4.33orass 757
[WhiteheadRussell] p. 118Theorem *4.36anbi1 462
[WhiteheadRussell] p. 118Theorem *4.37orbi1 782
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 595
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 812
[WhiteheadRussell] p. 118Definition *4.34df-3an 970
[WhiteheadRussell] p. 119Theorem *4.41ordi 806
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 961
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 939
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 769
[WhiteheadRussell] p. 119Theorem *4.45orabs 804  pm4.45 774  pm4.45im 332
[WhiteheadRussell] p. 119Theorem *10.2219.26 1469
[WhiteheadRussell] p. 120Theorem *4.5anordc 946
[WhiteheadRussell] p. 120Theorem *4.6imordc 887  imorr 711
[WhiteheadRussell] p. 120Theorem *4.7anclb 317
[WhiteheadRussell] p. 120Theorem *4.51ianordc 889
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 740
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 741
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 892
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 928
[WhiteheadRussell] p. 120Theorem *4.56ioran 742  pm4.56 770
[WhiteheadRussell] p. 120Theorem *4.57orandc 929  oranim 771
[WhiteheadRussell] p. 120Theorem *4.61annimim 676
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 888
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 876
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 890
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 677
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 891
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 877
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 387  pm4.71d 391  pm4.71i 389  pm4.71r 388  pm4.71rd 392  pm4.71ri 390
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 817
[WhiteheadRussell] p. 121Theorem *4.73iba 298
[WhiteheadRussell] p. 121Theorem *4.74biorf 734
[WhiteheadRussell] p. 121Theorem *4.76jcab 593  pm4.76 594
[WhiteheadRussell] p. 121Theorem *4.77jaob 700  pm4.77 789
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 772
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 893
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 697
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 898
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 940
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 941
[WhiteheadRussell] p. 122Theorem *4.84imbi1 235
[WhiteheadRussell] p. 122Theorem *4.85imbi2 236
[WhiteheadRussell] p. 122Theorem *4.86bibi1 239
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 247  impexp 261  pm4.87 547
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 591
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 899
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 900
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 902
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 901
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1379
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 818
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 894
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1384  pm5.18dc 873
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 696
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 685
[WhiteheadRussell] p. 124Theorem *5.22xordc 1382
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1387
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1388
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 885
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 467
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 248
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 241
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 916  pm5.6r 917
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 944
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 346
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 449
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 599
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 907
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 600
[WhiteheadRussell] p. 125Theorem *5.41imdi 249  pm5.41 250
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 318
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 915
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 792
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 908
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 903
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 784
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 935
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 936
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 951
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 243
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 178
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 952
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1623
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1473
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1620
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1883
[WhiteheadRussell] p. 175Definition *14.02df-eu 2017
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2416
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2417
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2863
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3006
[WhiteheadRussell] p. 190Theorem *14.22iota4 5170
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5171
[WhiteheadRussell] p. 192Theorem *14.26eupick 2093  eupickbi 2096
[WhiteheadRussell] p. 235Definition *30.01df-fv 5195
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7142

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]