Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7270  fidcenum 7111
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7111
[AczelRathjen], p. 73Lemma 8.1.14enumct 7270
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12982
[AczelRathjen], p. 74Lemma 8.1.16xpfi 7082
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 7068
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12997
[AczelRathjen], p. 75Corollary 8.1.20unct 12999
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12988  znnen 12955
[AczelRathjen], p. 77Lemma 8.1.27omctfn 13000
[AczelRathjen], p. 78Theorem 8.1.28omiunct 13001
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10985
[AczelRathjen], p. 183Chapter 20ax-setind 4626
[AhoHopUll] p. 318Section 9.1df-concat 11112  df-pfx 11191  df-substr 11164  df-word 11059  lencl 11062  wrd0 11083
[Apostol] p. 18Theorem I.1addcan 8314  addcan2d 8319  addcan2i 8317  addcand 8318  addcani 8316
[Apostol] p. 18Theorem I.2negeu 8325
[Apostol] p. 18Theorem I.3negsub 8382  negsubd 8451  negsubi 8412
[Apostol] p. 18Theorem I.4negneg 8384  negnegd 8436  negnegi 8404
[Apostol] p. 18Theorem I.5subdi 8519  subdid 8548  subdii 8541  subdir 8520  subdird 8549  subdiri 8542
[Apostol] p. 18Theorem I.6mul01 8523  mul01d 8527  mul01i 8525  mul02 8521  mul02d 8526  mul02i 8524
[Apostol] p. 18Theorem I.9divrecapd 8928
[Apostol] p. 18Theorem I.10recrecapi 8879
[Apostol] p. 18Theorem I.12mul2neg 8532  mul2negd 8547  mul2negi 8540  mulneg1 8529  mulneg1d 8545  mulneg1i 8538
[Apostol] p. 18Theorem I.14rdivmuldivd 14093
[Apostol] p. 18Theorem I.15divdivdivap 8848
[Apostol] p. 20Axiom 7rpaddcl 9861  rpaddcld 9896  rpmulcl 9862  rpmulcld 9897
[Apostol] p. 20Axiom 90nrp 9873
[Apostol] p. 20Theorem I.17lttri 8239
[Apostol] p. 20Theorem I.18ltadd1d 8673  ltadd1dd 8691  ltadd1i 8637
[Apostol] p. 20Theorem I.19ltmul1 8727  ltmul1a 8726  ltmul1i 9055  ltmul1ii 9063  ltmul2 8991  ltmul2d 9923  ltmul2dd 9937  ltmul2i 9058
[Apostol] p. 20Theorem I.210lt1 8261
[Apostol] p. 20Theorem I.23lt0neg1 8603  lt0neg1d 8650  ltneg 8597  ltnegd 8658  ltnegi 8628
[Apostol] p. 20Theorem I.25lt2add 8580  lt2addd 8702  lt2addi 8645
[Apostol] p. 20Definition of positive numbersdf-rp 9838
[Apostol] p. 21Exercise 4recgt0 8985  recgt0d 9069  recgt0i 9041  recgt0ii 9042
[Apostol] p. 22Definition of integersdf-z 9435
[Apostol] p. 22Definition of rationalsdf-q 9803
[Apostol] p. 24Theorem I.26supeuti 7149
[Apostol] p. 26Theorem I.29arch 9354
[Apostol] p. 28Exercise 2btwnz 9554
[Apostol] p. 28Exercise 3nnrecl 9355
[Apostol] p. 28Exercise 6qbtwnre 10463
[Apostol] p. 28Exercise 10(a)zeneo 12368  zneo 9536
[Apostol] p. 29Theorem I.35resqrtth 11528  sqrtthi 11616
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 9101
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12543
[Apostol] p. 363Remarkabsgt0api 11643
[Apostol] p. 363Exampleabssubd 11690  abssubi 11647
[ApostolNT] p. 14Definitiondf-dvds 12285
[ApostolNT] p. 14Theorem 1.1(a)iddvds 12301
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 12325
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 12321
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 12315
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 12317
[ApostolNT] p. 14Theorem 1.1(f)1dvds 12302
[ApostolNT] p. 14Theorem 1.1(g)dvds0 12303
[ApostolNT] p. 14Theorem 1.1(h)0dvds 12308
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12342
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12344
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12346
[ApostolNT] p. 15Definitiondfgcd2 12521
[ApostolNT] p. 16Definitionisprm2 12625
[ApostolNT] p. 16Theorem 1.5coprmdvds 12600
[ApostolNT] p. 16Theorem 1.7prminf 13012
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12480
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12522
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12524
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12494
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12487
[ApostolNT] p. 17Theorem 1.8coprm 12652
[ApostolNT] p. 17Theorem 1.9euclemma 12654
[ApostolNT] p. 17Theorem 1.101arith2 12877
[ApostolNT] p. 19Theorem 1.14divalg 12421
[ApostolNT] p. 20Theorem 1.15eucalg 12567
[ApostolNT] p. 25Definitiondf-phi 12719
[ApostolNT] p. 26Theorem 2.2phisum 12749
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12730
[ApostolNT] p. 28Theorem 2.5(c)phimul 12734
[ApostolNT] p. 38Remarkdf-sgm 15641
[ApostolNT] p. 38Definitiondf-sgm 15641
[ApostolNT] p. 104Definitioncongr 12608
[ApostolNT] p. 106Remarkdvdsval3 12288
[ApostolNT] p. 106Definitionmoddvds 12296
[ApostolNT] p. 107Example 2mod2eq0even 12375
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12376
[ApostolNT] p. 107Example 4zmod1congr 10550
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10587
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10875
[ApostolNT] p. 108Theorem 5.3modmulconst 12320
[ApostolNT] p. 109Theorem 5.4cncongr1 12611
[ApostolNT] p. 109Theorem 5.6gcdmodi 12930
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12613
[ApostolNT] p. 113Theorem 5.17eulerth 12741
[ApostolNT] p. 113Theorem 5.18vfermltl 12760
[ApostolNT] p. 114Theorem 5.19fermltl 12742
[ApostolNT] p. 179Definitiondf-lgs 15662  lgsprme0 15706
[ApostolNT] p. 180Example 11lgs 15707
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15683
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15698
[ApostolNT] p. 181Theorem 9.4m1lgs 15749
[ApostolNT] p. 181Theorem 9.52lgs 15768  2lgsoddprm 15777
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15733
[ApostolNT] p. 185Theorem 9.8lgsquad 15744
[ApostolNT] p. 188Definitiondf-lgs 15662  lgs1 15708
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15699
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15701
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15709
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15710
[Bauer] p. 482Section 1.2pm2.01 619  pm2.65 663
[Bauer] p. 483Theorem 1.3acexmid 5993  onsucelsucexmidlem 4618
[Bauer], p. 481Section 1.1pwtrufal 16294
[Bauer], p. 483Definitionn0rf 3504
[Bauer], p. 483Theorem 1.22irrexpq 15635  2irrexpqap 15637
[Bauer], p. 485Theorem 2.1ssfiexmid 7026
[Bauer], p. 493Section 5.1ivthdich 15312
[Bauer], p. 494Theorem 5.5ivthinc 15302
[BauerHanson], p. 27Proposition 5.2cnstab 8780
[BauerSwan], p. 14Remark0ct 7262  ctm 7264
[BauerSwan], p. 14Proposition 2.6subctctexmid 16297
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7270
[BauerTaylor], p. 32Lemma 6.16prarloclem 7676
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7589
[BauerTaylor], p. 52Proposition 11.15prarloc 7678
[BauerTaylor], p. 53Lemma 11.16addclpr 7712  addlocpr 7711
[BauerTaylor], p. 55Proposition 12.7appdivnq 7738
[BauerTaylor], p. 56Lemma 12.8prmuloc 7741
[BauerTaylor], p. 56Lemma 12.9mullocpr 7746
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2080
[BellMachover] p. 460Notationdf-mo 2081
[BellMachover] p. 460Definitionmo3 2132  mo3h 2131
[BellMachover] p. 462Theorem 1.1bm1.1 2214
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4204
[BellMachover] p. 466Axiom Powaxpow3 4260
[BellMachover] p. 466Axiom Unionaxun2 4523
[BellMachover] p. 469Theorem 2.2(i)ordirr 4631
[BellMachover] p. 469Theorem 2.2(iii)onelon 4472
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4634
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4585
[BellMachover] p. 471Definition of Limdf-ilim 4457
[BellMachover] p. 472Axiom Infzfinf2 4678
[BellMachover] p. 473Theorem 2.8limom 4703
[Bobzien] p. 116Statement T3stoic3 1473
[Bobzien] p. 117Statement T2stoic2a 1471
[Bobzien] p. 117Statement T4stoic4a 1474
[Bobzien] p. 117Conclusion the contradictorystoic1a 1469
[Bollobas] p. 1Section I.1df-edg 15844  isuhgropm 15866  isusgropen 15948  isuspgropen 15947
[Bollobas] p. 7Section I.1df-ushgrm 15855
[BourbakiAlg1] p. 1Definition 1df-mgm 13375
[BourbakiAlg1] p. 4Definition 5df-sgrp 13421
[BourbakiAlg1] p. 12Definition 2df-mnd 13436
[BourbakiAlg1] p. 92Definition 1df-ring 13947
[BourbakiAlg1] p. 93Section I.8.1df-rng 13882
[BourbakiEns] p. Proposition 8fcof1 5900  fcofo 5901
[BourbakiTop1] p. Remarkxnegmnf 10013  xnegpnf 10012
[BourbakiTop1] p. Remark rexneg 10014
[BourbakiTop1] p. Propositionishmeo 14963
[BourbakiTop1] p. Property V_issnei2 14816
[BourbakiTop1] p. Property V_iiinnei 14822
[BourbakiTop1] p. Property V_ivneissex 14824
[BourbakiTop1] p. Proposition 1neipsm 14813  neiss 14809
[BourbakiTop1] p. Proposition 2cnptopco 14881
[BourbakiTop1] p. Proposition 4imasnopn 14958
[BourbakiTop1] p. Property V_iiielnei 14811
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14657
[Bruck] p. 1Section I.1df-mgm 13375
[Bruck] p. 23Section II.1df-sgrp 13421
[Bruck] p. 28Theorem 3.2dfgrp3m 13618
[ChoquetDD] p. 2Definition of mappingdf-mpt 4146
[Church] p. 129Section II.24df-ifp 984  dfifp2dc 987
[Cohen] p. 301Remarkrelogoprlem 15527
[Cohen] p. 301Property 2relogmul 15528  relogmuld 15543
[Cohen] p. 301Property 3relogdiv 15529  relogdivd 15544
[Cohen] p. 301Property 4relogexp 15531
[Cohen] p. 301Property 1alog1 15525
[Cohen] p. 301Property 1bloge 15526
[Cohen4] p. 348Observationrelogbcxpbap 15624
[Cohen4] p. 352Definitionrpelogb 15608
[Cohen4] p. 361Property 2rprelogbmul 15614
[Cohen4] p. 361Property 3logbrec 15619  rprelogbdiv 15616
[Cohen4] p. 361Property 4rplogbreexp 15612
[Cohen4] p. 361Property 6relogbexpap 15617
[Cohen4] p. 361Property 1(a)rplogbid1 15606
[Cohen4] p. 361Property 1(b)rplogb1 15607
[Cohen4] p. 367Propertyrplogbchbase 15609
[Cohen4] p. 377Property 2logblt 15621
[Crosilla] p. Axiom 1ax-ext 2211
[Crosilla] p. Axiom 2ax-pr 4292
[Crosilla] p. Axiom 3ax-un 4521
[Crosilla] p. Axiom 4ax-nul 4209
[Crosilla] p. Axiom 5ax-iinf 4677
[Crosilla] p. Axiom 6ru 3027
[Crosilla] p. Axiom 8ax-pow 4257
[Crosilla] p. Axiom 9ax-setind 4626
[Crosilla], p. Axiom 6ax-sep 4201
[Crosilla], p. Axiom 7ax-coll 4198
[Crosilla], p. Axiom 7'repizf 4199
[Crosilla], p. Theorem is statedordtriexmid 4610
[Crosilla], p. Axiom of choice implies instancesacexmid 5993
[Crosilla], p. Definition of ordinaldf-iord 4454
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4624
[Diestel] p. 27Section 1.10df-ushgrm 15855
[Eisenberg] p. 67Definition 5.3df-dif 3199
[Eisenberg] p. 82Definition 6.3df-iom 4680
[Eisenberg] p. 125Definition 8.21df-map 6787
[Enderton] p. 18Axiom of Empty Setaxnul 4208
[Enderton] p. 19Definitiondf-tp 3674
[Enderton] p. 26Exercise 5unissb 3917
[Enderton] p. 26Exercise 10pwel 4303
[Enderton] p. 28Exercise 7(b)pwunim 4374
[Enderton] p. 30Theorem "Distributive laws"iinin1m 4034  iinin2m 4033  iunin1 4029  iunin2 4028
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 4032  iundif2ss 4030
[Enderton] p. 33Exercise 23iinuniss 4047
[Enderton] p. 33Exercise 25iununir 4048
[Enderton] p. 33Exercise 24(a)iinpw 4055
[Enderton] p. 33Exercise 24(b)iunpw 4568  iunpwss 4056
[Enderton] p. 38Exercise 6(a)unipw 4302
[Enderton] p. 38Exercise 6(b)pwuni 4275
[Enderton] p. 41Lemma 3Dopeluu 4538  rnex 4988  rnexg 4985
[Enderton] p. 41Exercise 8dmuni 4930  rnuni 5136
[Enderton] p. 42Definition of a functiondffun7 5341  dffun8 5342
[Enderton] p. 43Definition of function valuefunfvdm2 5691
[Enderton] p. 43Definition of single-rootedfuncnv 5378
[Enderton] p. 44Definition (d)dfima2 5066  dfima3 5067
[Enderton] p. 47Theorem 3Hfvco2 5696
[Enderton] p. 49Axiom of Choice (first form)df-ac 7376
[Enderton] p. 50Theorem 3K(a)imauni 5878
[Enderton] p. 52Definitiondf-map 6787
[Enderton] p. 53Exercise 21coass 5243
[Enderton] p. 53Exercise 27dmco 5233
[Enderton] p. 53Exercise 14(a)funin 5388
[Enderton] p. 53Exercise 22(a)imass2 5100
[Enderton] p. 54Remarkixpf 6857  ixpssmap 6869
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6836
[Enderton] p. 56Theorem 3Merref 6690
[Enderton] p. 57Lemma 3Nerthi 6718
[Enderton] p. 57Definitiondf-ec 6672
[Enderton] p. 58Definitiondf-qs 6676
[Enderton] p. 60Theorem 3Qth3q 6777  th3qcor 6776  th3qlem1 6774  th3qlem2 6775
[Enderton] p. 61Exercise 35df-ec 6672
[Enderton] p. 65Exercise 56(a)dmun 4927
[Enderton] p. 68Definition of successordf-suc 4459
[Enderton] p. 71Definitiondf-tr 4182  dftr4 4186
[Enderton] p. 72Theorem 4Eunisuc 4501  unisucg 4502
[Enderton] p. 73Exercise 6unisuc 4501  unisucg 4502
[Enderton] p. 73Exercise 5(a)truni 4195
[Enderton] p. 73Exercise 5(b)trint 4196
[Enderton] p. 79Theorem 4I(A1)nna0 6610
[Enderton] p. 79Theorem 4I(A2)nnasuc 6612  onasuc 6602
[Enderton] p. 79Definition of operation valuedf-ov 5997
[Enderton] p. 80Theorem 4J(A1)nnm0 6611
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6613  onmsuc 6609
[Enderton] p. 81Theorem 4K(1)nnaass 6621
[Enderton] p. 81Theorem 4K(2)nna0r 6614  nnacom 6620
[Enderton] p. 81Theorem 4K(3)nndi 6622
[Enderton] p. 81Theorem 4K(4)nnmass 6623
[Enderton] p. 81Theorem 4K(5)nnmcom 6625
[Enderton] p. 82Exercise 16nnm0r 6615  nnmsucr 6624
[Enderton] p. 88Exercise 23nnaordex 6664
[Enderton] p. 129Definitiondf-en 6878
[Enderton] p. 132Theorem 6B(b)canth 5945
[Enderton] p. 133Exercise 1xpomen 12952
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 7015
[Enderton] p. 136Corollary 6Enneneq 7006
[Enderton] p. 139Theorem 6H(c)mapen 6995
[Enderton] p. 142Theorem 6I(3)xpdjuen 7388
[Enderton] p. 143Theorem 6Jdju0en 7384  dju1en 7383
[Enderton] p. 144Corollary 6Kundif2ss 3567
[Enderton] p. 145Figure 38ffoss 5600
[Enderton] p. 145Definitiondf-dom 6879
[Enderton] p. 146Example 1domen 6890  domeng 6891
[Enderton] p. 146Example 3nndomo 7013
[Enderton] p. 149Theorem 6L(c)xpdom1 6982  xpdom1g 6980  xpdom2g 6979
[Enderton] p. 168Definitiondf-po 4384
[Enderton] p. 192Theorem 7M(a)oneli 4516
[Enderton] p. 192Theorem 7M(b)ontr1 4477
[Enderton] p. 192Theorem 7M(c)onirri 4632
[Enderton] p. 193Corollary 7N(b)0elon 4480
[Enderton] p. 193Corollary 7N(c)onsuci 4605
[Enderton] p. 193Corollary 7N(d)ssonunii 4578
[Enderton] p. 194Remarkonprc 4641
[Enderton] p. 194Exercise 16suc11 4647
[Enderton] p. 197Definitiondf-card 7339
[Enderton] p. 200Exercise 25tfis 4672
[Enderton] p. 206Theorem 7X(b)en2lp 4643
[Enderton] p. 207Exercise 34opthreg 4645
[Enderton] p. 208Exercise 35suc11g 4646
[Geuvers], p. 1Remarkexpap0 10778
[Geuvers], p. 6Lemma 2.13mulap0r 8750
[Geuvers], p. 6Lemma 2.15mulap0 8789
[Geuvers], p. 9Lemma 2.35msqge0 8751
[Geuvers], p. 9Definition 3.1(2)ax-arch 8106
[Geuvers], p. 10Lemma 3.9maxcom 11700
[Geuvers], p. 10Lemma 3.10maxle1 11708  maxle2 11709
[Geuvers], p. 10Lemma 3.11maxleast 11710
[Geuvers], p. 10Lemma 3.12maxleb 11713
[Geuvers], p. 11Definition 3.13dfabsmax 11714
[Geuvers], p. 17Definition 6.1df-ap 8717
[Gleason] p. 117Proposition 9-2.1df-enq 7522  enqer 7533
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7526  df-nqqs 7523
[Gleason] p. 117Proposition 9-2.3df-plpq 7519  df-plqqs 7524
[Gleason] p. 119Proposition 9-2.4df-mpq 7520  df-mqqs 7525
[Gleason] p. 119Proposition 9-2.5df-rq 7527
[Gleason] p. 119Proposition 9-2.6ltexnqq 7583
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7586  ltbtwnnq 7591  ltbtwnnqq 7590
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7575
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7576
[Gleason] p. 123Proposition 9-3.5addclpr 7712
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7754
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7753
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7772
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7788
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7794  ltaprlem 7793
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7791
[Gleason] p. 124Proposition 9-3.7mulclpr 7747
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7767
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7756
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7755
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7763
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7813
[Gleason] p. 126Proposition 9-4.1df-enr 7901  enrer 7910
[Gleason] p. 126Proposition 9-4.2df-0r 7906  df-1r 7907  df-nr 7902
[Gleason] p. 126Proposition 9-4.3df-mr 7904  df-plr 7903  negexsr 7947  recexsrlem 7949
[Gleason] p. 127Proposition 9-4.4df-ltr 7905
[Gleason] p. 130Proposition 10-1.3creui 9095  creur 9094  cru 8737
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 8098  axcnre 8056
[Gleason] p. 132Definition 10-3.1crim 11355  crimd 11474  crimi 11434  crre 11354  crred 11473  crrei 11433
[Gleason] p. 132Definition 10-3.2remim 11357  remimd 11439
[Gleason] p. 133Definition 10.36absval2 11554  absval2d 11682  absval2i 11641
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11381  cjaddd 11462  cjaddi 11429
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11382  cjmuld 11463  cjmuli 11430
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11380  cjcjd 11440  cjcji 11412
[Gleason] p. 133Proposition 10-3.4(f)cjre 11379  cjreb 11363  cjrebd 11443  cjrebi 11415  cjred 11468  rere 11362  rereb 11360  rerebd 11442  rerebi 11414  rered 11466
[Gleason] p. 133Proposition 10-3.4(h)addcj 11388  addcjd 11454  addcji 11424
[Gleason] p. 133Proposition 10-3.7(a)absval 11498
[Gleason] p. 133Proposition 10-3.7(b)abscj 11549  abscjd 11687  abscji 11645
[Gleason] p. 133Proposition 10-3.7(c)abs00 11561  abs00d 11683  abs00i 11642  absne0d 11684
[Gleason] p. 133Proposition 10-3.7(d)releabs 11593  releabsd 11688  releabsi 11646
[Gleason] p. 133Proposition 10-3.7(f)absmul 11566  absmuld 11691  absmuli 11648
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11552  sqabsaddi 11649
[Gleason] p. 133Proposition 10-3.7(h)abstri 11601  abstrid 11693  abstrii 11652
[Gleason] p. 134Definition 10-4.1df-exp 10748  exp0 10752  expp1 10755  expp1d 10883
[Gleason] p. 135Proposition 10-4.2(a)expadd 10790  expaddd 10884
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15571  cxpmuld 15596  expmul 10793  expmuld 10885
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10787  mulexpd 10897  rpmulcxp 15568
[Gleason] p. 141Definition 11-2.1fzval 10194
[Gleason] p. 168Proposition 12-2.1(a)climadd 11823
[Gleason] p. 168Proposition 12-2.1(b)climsub 11825
[Gleason] p. 168Proposition 12-2.1(c)climmul 11824
[Gleason] p. 171Corollary 12-2.2climmulc2 11828
[Gleason] p. 172Corollary 12-2.5climrecl 11821
[Gleason] p. 172Proposition 12-2.4(c)climabs 11817  climcj 11818  climim 11820  climre 11819
[Gleason] p. 173Definition 12-3.1df-ltxr 8174  df-xr 8173  ltxr 9959
[Gleason] p. 180Theorem 12-5.3climcau 11844
[Gleason] p. 217Lemma 13-4.1btwnzge0 10507
[Gleason] p. 223Definition 14-1.1df-met 14494
[Gleason] p. 223Definition 14-1.1(a)met0 15023  xmet0 15022
[Gleason] p. 223Definition 14-1.1(c)metsym 15030
[Gleason] p. 223Definition 14-1.1(d)mettri 15032  mstri 15132  xmettri 15031  xmstri 15131
[Gleason] p. 230Proposition 14-2.6txlm 14938
[Gleason] p. 240Proposition 14-4.2metcnp3 15170
[Gleason] p. 243Proposition 14-4.16addcn2 11807  addcncntop 15221  mulcn2 11809  mulcncntop 15223  subcn2 11808  subcncntop 15222
[Gleason] p. 295Remarkbcval3 10960  bcval4 10961
[Gleason] p. 295Equation 2bcpasc 10975
[Gleason] p. 295Definition of binomial coefficientbcval 10958  df-bc 10957
[Gleason] p. 296Remarkbcn0 10964  bcnn 10966
[Gleason] p. 296Theorem 15-2.8binom 11981
[Gleason] p. 308Equation 2ef0 12169
[Gleason] p. 308Equation 3efcj 12170
[Gleason] p. 309Corollary 15-4.3efne0 12175
[Gleason] p. 309Corollary 15-4.4efexp 12179
[Gleason] p. 310Equation 14sinadd 12233
[Gleason] p. 310Equation 15cosadd 12234
[Gleason] p. 311Equation 17sincossq 12245
[Gleason] p. 311Equation 18cosbnd 12250  sinbnd 12249
[Gleason] p. 311Definition of ` `df-pi 12150
[Golan] p. 1Remarksrgisid 13935
[Golan] p. 1Definitiondf-srg 13913
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1495
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13530  mndideu 13445
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13557
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13586
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13597
[Herstein] p. 57Exercise 1dfgrp3me 13619
[Heyting] p. 127Axiom #1ax1hfs 16373
[Hitchcock] p. 5Rule A3mptnan 1465
[Hitchcock] p. 5Rule A4mptxor 1466
[Hitchcock] p. 5Rule A5mtpxor 1468
[HoTT], p. Lemma 10.4.1exmidontriim 7395
[HoTT], p. Theorem 7.2.6nndceq 6635
[HoTT], p. Exercise 11.10neapmkv 16367
[HoTT], p. Exercise 11.11mulap0bd 8792
[HoTT], p. Section 11.2.1df-iltp 7645  df-imp 7644  df-iplp 7643  df-reap 8710
[HoTT], p. Theorem 11.2.4recapb 8806  rerecapb 8978
[HoTT], p. Corollary 3.9.2uchoice 6273
[HoTT], p. Theorem 11.2.12cauappcvgpr 7837
[HoTT], p. Corollary 11.4.3conventions 16015
[HoTT], p. Exercise 11.6(i)dcapnconst 16360  dceqnconst 16359
[HoTT], p. Corollary 11.2.13axcaucvg 8075  caucvgpr 7857  caucvgprpr 7887  caucvgsr 7977
[HoTT], p. Definition 11.2.1df-inp 7641
[HoTT], p. Exercise 11.6(ii)nconstwlpo 16365
[HoTT], p. Proposition 11.2.3df-iso 4385  ltpopr 7770  ltsopr 7771
[HoTT], p. Definition 11.2.7(v)apsym 8741  reapcotr 8733  reapirr 8712
[HoTT], p. Definition 11.2.7(vi)0lt1 8261  gt0add 8708  leadd1 8565  lelttr 8223  lemul1a 8993  lenlt 8210  ltadd1 8564  ltletr 8224  ltmul1 8727  reaplt 8723
[Jech] p. 4Definition of classcv 1394  cvjust 2224
[Jech] p. 78Noteopthprc 4767
[KalishMontague] p. 81Note 1ax-i9 1576
[Kreyszig] p. 3Property M1metcl 15012  xmetcl 15011
[Kreyszig] p. 4Property M2meteq0 15019
[Kreyszig] p. 12Equation 5muleqadd 8803
[Kreyszig] p. 18Definition 1.3-2mopnval 15101
[Kreyszig] p. 19Remarkmopntopon 15102
[Kreyszig] p. 19Theorem T1mopn0 15147  mopnm 15107
[Kreyszig] p. 19Theorem T2unimopn 15145
[Kreyszig] p. 19Definition of neighborhoodneibl 15150
[Kreyszig] p. 20Definition 1.3-3metcnp2 15172
[Kreyszig] p. 25Definition 1.4-1lmbr 14872
[Kreyszig] p. 51Equation 2lmodvneg1 14279
[Kreyszig] p. 51Equation 1almod0vs 14270
[Kreyszig] p. 51Equation 1blmodvs0 14271
[Kunen] p. 10Axiom 0a9e 1742
[Kunen] p. 12Axiom 6zfrep6 4200
[Kunen] p. 24Definition 10.24mapval 6797  mapvalg 6795
[Kunen] p. 31Definition 10.24mapex 6791
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3974
[Lang] p. 3Statementlidrideqd 13400  mndbn0 13450
[Lang] p. 3Definitiondf-mnd 13436
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13417
[Lang] p. 5Equationgsumfzreidx 13860
[Lang] p. 6Definitionmulgnn0gsum 13651
[Lang] p. 7Definitiondfgrp2e 13547
[Levy] p. 338Axiomdf-clab 2216  df-clel 2225  df-cleq 2222
[Lopez-Astorga] p. 12Rule 1mptnan 1465
[Lopez-Astorga] p. 12Rule 2mptxor 1466
[Lopez-Astorga] p. 12Rule 3mtpxor 1468
[Margaris] p. 40Rule Cexlimiv 1644
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 858
[Margaris] p. 49Definitiondfbi2 388  dfordc 897  exalim 1548
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 655
[Margaris] p. 89Theorem 19.219.2 1684  r19.2m 3578
[Margaris] p. 89Theorem 19.319.3 1600  19.3h 1599  rr19.3v 2942
[Margaris] p. 89Theorem 19.5alcom 1524
[Margaris] p. 89Theorem 19.6alexdc 1665  alexim 1691
[Margaris] p. 89Theorem 19.7alnex 1545
[Margaris] p. 89Theorem 19.819.8a 1636  spsbe 1888
[Margaris] p. 89Theorem 19.919.9 1690  19.9h 1689  19.9v 1917  exlimd 1643
[Margaris] p. 89Theorem 19.11excom 1710  excomim 1709
[Margaris] p. 89Theorem 19.1219.12 1711  r19.12 2637
[Margaris] p. 90Theorem 19.14exnalim 1692
[Margaris] p. 90Theorem 19.15albi 1514  ralbi 2663
[Margaris] p. 90Theorem 19.1619.16 1601
[Margaris] p. 90Theorem 19.1719.17 1602
[Margaris] p. 90Theorem 19.18exbi 1650  rexbi 2664
[Margaris] p. 90Theorem 19.1919.19 1712
[Margaris] p. 90Theorem 19.20alim 1503  alimd 1567  alimdh 1513  alimdv 1925  ralimdaa 2596  ralimdv 2598  ralimdva 2597  ralimdvva 2599  sbcimdv 3094
[Margaris] p. 90Theorem 19.2119.21-2 1713  19.21 1629  19.21bi 1604  19.21h 1603  19.21ht 1627  19.21t 1628  19.21v 1919  alrimd 1656  alrimdd 1655  alrimdh 1525  alrimdv 1922  alrimi 1568  alrimih 1515  alrimiv 1920  alrimivv 1921  r19.21 2606  r19.21be 2621  r19.21bi 2618  r19.21t 2605  r19.21v 2607  ralrimd 2608  ralrimdv 2609  ralrimdva 2610  ralrimdvv 2614  ralrimdvva 2615  ralrimi 2601  ralrimiv 2602  ralrimiva 2603  ralrimivv 2611  ralrimivva 2612  ralrimivvva 2613  ralrimivw 2604  rexlimi 2641
[Margaris] p. 90Theorem 19.222alimdv 1927  2eximdv 1928  exim 1645  eximd 1658  eximdh 1657  eximdv 1926  rexim 2624  reximdai 2628  reximddv 2633  reximddv2 2635  reximdv 2631  reximdv2 2629  reximdva 2632  reximdvai 2630  reximi2 2626
[Margaris] p. 90Theorem 19.2319.23 1724  19.23bi 1638  19.23h 1544  19.23ht 1543  19.23t 1723  19.23v 1929  19.23vv 1930  exlimd2 1641  exlimdh 1642  exlimdv 1865  exlimdvv 1944  exlimi 1640  exlimih 1639  exlimiv 1644  exlimivv 1943  r19.23 2639  r19.23v 2640  rexlimd 2645  rexlimdv 2647  rexlimdv3a 2650  rexlimdva 2648  rexlimdva2 2651  rexlimdvaa 2649  rexlimdvv 2655  rexlimdvva 2656  rexlimdvw 2652  rexlimiv 2642  rexlimiva 2643  rexlimivv 2654
[Margaris] p. 90Theorem 19.24i19.24 1685
[Margaris] p. 90Theorem 19.2519.25 1672
[Margaris] p. 90Theorem 19.2619.26-2 1528  19.26-3an 1529  19.26 1527  r19.26-2 2660  r19.26-3 2661  r19.26 2657  r19.26m 2662
[Margaris] p. 90Theorem 19.2719.27 1607  19.27h 1606  19.27v 1946  r19.27av 2666  r19.27m 3587  r19.27mv 3588
[Margaris] p. 90Theorem 19.2819.28 1609  19.28h 1608  19.28v 1947  r19.28av 2667  r19.28m 3581  r19.28mv 3584  rr19.28v 2943
[Margaris] p. 90Theorem 19.2919.29 1666  19.29r 1667  19.29r2 1668  19.29x 1669  r19.29 2668  r19.29d2r 2675  r19.29r 2669
[Margaris] p. 90Theorem 19.3019.30dc 1673
[Margaris] p. 90Theorem 19.3119.31r 1727
[Margaris] p. 90Theorem 19.3219.32dc 1725  19.32r 1726  r19.32r 2677  r19.32vdc 2680  r19.32vr 2679
[Margaris] p. 90Theorem 19.3319.33 1530  19.33b2 1675  19.33bdc 1676
[Margaris] p. 90Theorem 19.3419.34 1730
[Margaris] p. 90Theorem 19.3519.35-1 1670  19.35i 1671
[Margaris] p. 90Theorem 19.3619.36-1 1719  19.36aiv 1948  19.36i 1718  r19.36av 2682
[Margaris] p. 90Theorem 19.3719.37-1 1720  19.37aiv 1721  r19.37 2683  r19.37av 2684
[Margaris] p. 90Theorem 19.3819.38 1722
[Margaris] p. 90Theorem 19.39i19.39 1686
[Margaris] p. 90Theorem 19.4019.40-2 1678  19.40 1677  r19.40 2685
[Margaris] p. 90Theorem 19.4119.41 1732  19.41h 1731  19.41v 1949  19.41vv 1950  19.41vvv 1951  19.41vvvv 1952  r19.41 2686  r19.41v 2687
[Margaris] p. 90Theorem 19.4219.42 1734  19.42h 1733  19.42v 1953  19.42vv 1958  19.42vvv 1959  19.42vvvv 1960  r19.42v 2688
[Margaris] p. 90Theorem 19.4319.43 1674  r19.43 2689
[Margaris] p. 90Theorem 19.4419.44 1728  r19.44av 2690  r19.44mv 3586
[Margaris] p. 90Theorem 19.4519.45 1729  r19.45av 2691  r19.45mv 3585
[Margaris] p. 110Exercise 2(b)eu1 2102
[Megill] p. 444Axiom C5ax-17 1572
[Megill] p. 445Lemma L12alequcom 1561  ax-10 1551
[Megill] p. 446Lemma L17equtrr 1756
[Megill] p. 446Lemma L19hbnae 1767
[Megill] p. 447Remark 9.1df-sb 1809  sbid 1820
[Megill] p. 448Scheme C5'ax-4 1556
[Megill] p. 448Scheme C6'ax-7 1494
[Megill] p. 448Scheme C8'ax-8 1550
[Megill] p. 448Scheme C9'ax-i12 1553
[Megill] p. 448Scheme C11'ax-10o 1762
[Megill] p. 448Scheme C12'ax-13 2202
[Megill] p. 448Scheme C13'ax-14 2203
[Megill] p. 448Scheme C15'ax-11o 1869
[Megill] p. 448Scheme C16'ax-16 1860
[Megill] p. 448Theorem 9.4dral1 1776  dral2 1777  drex1 1844  drex2 1778  drsb1 1845  drsb2 1887
[Megill] p. 449Theorem 9.7sbcom2 2038  sbequ 1886  sbid2v 2047
[Megill] p. 450Example in Appendixhba1 1586
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3112  rspsbca 3113  stdpc4 1821
[Mendelson] p. 69Axiom 5ra5 3118  stdpc5 1630
[Mendelson] p. 81Rule Cexlimiv 1644
[Mendelson] p. 95Axiom 6stdpc6 1749
[Mendelson] p. 95Axiom 7stdpc7 1816
[Mendelson] p. 231Exercise 4.10(k)inv1 3528
[Mendelson] p. 231Exercise 4.10(l)unv 3529
[Mendelson] p. 231Exercise 4.10(n)inssun 3444
[Mendelson] p. 231Exercise 4.10(o)df-nul 3492
[Mendelson] p. 231Exercise 4.10(q)inssddif 3445
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3335
[Mendelson] p. 231Definition of unionunssin 3443
[Mendelson] p. 235Exercise 4.12(c)univ 4564
[Mendelson] p. 235Exercise 4.12(d)pwv 3886
[Mendelson] p. 235Exercise 4.12(j)pwin 4370
[Mendelson] p. 235Exercise 4.12(k)pwunss 4371
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4372
[Mendelson] p. 235Exercise 4.12(n)uniin 3907
[Mendelson] p. 235Exercise 4.12(p)reli 4848
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5245
[Mendelson] p. 246Definition of successordf-suc 4459
[Mendelson] p. 254Proposition 4.22(b)xpen 6994
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6968  xpsneng 6969
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6974  xpcomeng 6975
[Mendelson] p. 254Proposition 4.22(e)xpassen 6977
[Mendelson] p. 255Exercise 4.39endisj 6971
[Mendelson] p. 255Exercise 4.41mapprc 6789
[Mendelson] p. 255Exercise 4.43mapsnen 6954
[Mendelson] p. 255Exercise 4.47xpmapen 6999
[Mendelson] p. 255Exercise 4.42(a)map0e 6823
[Mendelson] p. 255Exercise 4.42(b)map1 6955
[Mendelson] p. 258Exercise 4.56(c)djuassen 7387  djucomen 7386
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7385
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6603
[Monk1] p. 26Theorem 2.8(vii)ssin 3426
[Monk1] p. 33Theorem 3.2(i)ssrel 4804
[Monk1] p. 33Theorem 3.2(ii)eqrel 4805
[Monk1] p. 34Definition 3.3df-opab 4145
[Monk1] p. 36Theorem 3.7(i)coi1 5240  coi2 5241
[Monk1] p. 36Theorem 3.8(v)dm0 4934  rn0 4976
[Monk1] p. 36Theorem 3.7(ii)cnvi 5129
[Monk1] p. 37Theorem 3.13(i)relxp 4825
[Monk1] p. 37Theorem 3.13(x)dmxpm 4940  rnxpm 5154
[Monk1] p. 37Theorem 3.13(ii)0xp 4796  xp0 5144
[Monk1] p. 38Theorem 3.16(ii)ima0 5083
[Monk1] p. 38Theorem 3.16(viii)imai 5080
[Monk1] p. 39Theorem 3.17imaex 5079  imaexg 5078
[Monk1] p. 39Theorem 3.16(xi)imassrn 5075
[Monk1] p. 41Theorem 4.3(i)fnopfv 5758  funfvop 5740
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5669
[Monk1] p. 42Theorem 4.4(iii)fvelima 5678
[Monk1] p. 43Theorem 4.6funun 5358
[Monk1] p. 43Theorem 4.8(iv)dff13 5885  dff13f 5887
[Monk1] p. 46Theorem 4.15(v)funex 5855  funrnex 6249
[Monk1] p. 50Definition 5.4fniunfv 5879
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5208
[Monk1] p. 52Theorem 5.11(viii)ssint 3938
[Monk1] p. 52Definition 5.13 (i)1stval2 6291  df-1st 6276
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6292  df-2nd 6277
[Monk2] p. 105Axiom C4ax-5 1493
[Monk2] p. 105Axiom C7ax-8 1550
[Monk2] p. 105Axiom C8ax-11 1552  ax-11o 1869
[Monk2] p. 105Axiom (C8)ax11v 1873
[Monk2] p. 109Lemma 12ax-7 1494
[Monk2] p. 109Lemma 15equvin 1909  equvini 1804  eqvinop 4328
[Monk2] p. 113Axiom C5-1ax-17 1572
[Monk2] p. 113Axiom C5-2ax6b 1697
[Monk2] p. 113Axiom C5-3ax-7 1494
[Monk2] p. 114Lemma 22hba1 1586
[Monk2] p. 114Lemma 23hbia1 1598  nfia1 1626
[Monk2] p. 114Lemma 24hba2 1597  nfa2 1625
[Moschovakis] p. 2Chapter 2 df-stab 836  dftest 16374
[Munkres] p. 77Example 2distop 14744
[Munkres] p. 78Definition of basisdf-bases 14702  isbasis3g 14705
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 13279  tgval2 14710
[Munkres] p. 79Remarktgcl 14723
[Munkres] p. 80Lemma 2.1tgval3 14717
[Munkres] p. 80Lemma 2.2tgss2 14738  tgss3 14737
[Munkres] p. 81Lemma 2.3basgen 14739  basgen2 14740
[Munkres] p. 89Definition of subspace topologyresttop 14829
[Munkres] p. 93Theorem 6.1(1)0cld 14771  topcld 14768
[Munkres] p. 93Theorem 6.1(3)uncld 14772
[Munkres] p. 94Definition of closureclsval 14770
[Munkres] p. 94Definition of interiorntrval 14769
[Munkres] p. 102Definition of continuous functiondf-cn 14847  iscn 14856  iscn2 14859
[Munkres] p. 107Theorem 7.2(g)cncnp 14889  cncnp2m 14890  cncnpi 14887  df-cnp 14848  iscnp 14858
[Munkres] p. 127Theorem 10.1metcn 15173
[Pierik], p. 8Section 2.2.1dfrex2fin 7053
[Pierik], p. 9Definition 2.4df-womni 7319
[Pierik], p. 9Definition 2.5df-markov 7307  omniwomnimkv 7322
[Pierik], p. 10Section 2.3dfdif3 3314
[Pierik], p. 14Definition 3.1df-omni 7290  exmidomniim 7296  finomni 7295
[Pierik], p. 15Section 3.1df-nninf 7275
[Pradic2025], p. 2Section 1.1nnnninfen 16318
[PradicBrown2022], p. 1Theorem 1exmidsbthr 16322
[PradicBrown2022], p. 2Remarkexmidpw 7058
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7367
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7368  exmidfodomrlemrALT 7369
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7304
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 16304  peano4nninf 16303
[PradicBrown2022], p. 5Lemma 3.5nninfall 16306
[PradicBrown2022], p. 5Theorem 3.6nninfsel 16314
[PradicBrown2022], p. 5Corollary 3.7nninfomni 16316
[PradicBrown2022], p. 5Definition 3.3nnsf 16302
[Quine] p. 16Definition 2.1df-clab 2216  rabid 2707
[Quine] p. 17Definition 2.1''dfsb7 2042
[Quine] p. 18Definition 2.7df-cleq 2222
[Quine] p. 19Definition 2.9df-v 2801
[Quine] p. 34Theorem 5.1abeq2 2338
[Quine] p. 35Theorem 5.2abid2 2350  abid2f 2398
[Quine] p. 40Theorem 6.1sb5 1934
[Quine] p. 40Theorem 6.2sb56 1932  sb6 1933
[Quine] p. 41Theorem 6.3df-clel 2225
[Quine] p. 41Theorem 6.4eqid 2229
[Quine] p. 41Theorem 6.5eqcom 2231
[Quine] p. 42Theorem 6.6df-sbc 3029
[Quine] p. 42Theorem 6.7dfsbcq 3030  dfsbcq2 3031
[Quine] p. 43Theorem 6.8vex 2802
[Quine] p. 43Theorem 6.9isset 2806
[Quine] p. 44Theorem 7.3spcgf 2885  spcgv 2890  spcimgf 2883
[Quine] p. 44Theorem 6.11spsbc 3040  spsbcd 3041
[Quine] p. 44Theorem 6.12elex 2811
[Quine] p. 44Theorem 6.13elab 2947  elabg 2949  elabgf 2945
[Quine] p. 44Theorem 6.14noel 3495
[Quine] p. 48Theorem 7.2snprc 3731
[Quine] p. 48Definition 7.1df-pr 3673  df-sn 3672
[Quine] p. 49Theorem 7.4snss 3802  snssg 3801
[Quine] p. 49Theorem 7.5prss 3823  prssg 3824
[Quine] p. 49Theorem 7.6prid1 3772  prid1g 3770  prid2 3773  prid2g 3771  snid 3697  snidg 3695
[Quine] p. 51Theorem 7.12snexg 4267  snexprc 4269
[Quine] p. 51Theorem 7.13prexg 4294
[Quine] p. 53Theorem 8.2unisn 3903  unisng 3904
[Quine] p. 53Theorem 8.3uniun 3906
[Quine] p. 54Theorem 8.6elssuni 3915
[Quine] p. 54Theorem 8.7uni0 3914
[Quine] p. 56Theorem 8.17uniabio 5285
[Quine] p. 56Definition 8.18dfiota2 5275
[Quine] p. 57Theorem 8.19iotaval 5286
[Quine] p. 57Theorem 8.22iotanul 5290
[Quine] p. 58Theorem 8.23euiotaex 5291
[Quine] p. 58Definition 9.1df-op 3675
[Quine] p. 61Theorem 9.5opabid 4343  opabidw 4344  opelopab 4359  opelopaba 4353  opelopabaf 4361  opelopabf 4362  opelopabg 4355  opelopabga 4350  opelopabgf 4357  oprabid 6026
[Quine] p. 64Definition 9.11df-xp 4722
[Quine] p. 64Definition 9.12df-cnv 4724
[Quine] p. 64Definition 9.15df-id 4381
[Quine] p. 65Theorem 10.3fun0 5375
[Quine] p. 65Theorem 10.4funi 5346
[Quine] p. 65Theorem 10.5funsn 5365  funsng 5363
[Quine] p. 65Definition 10.1df-fun 5316
[Quine] p. 65Definition 10.2args 5093  dffv4g 5620
[Quine] p. 68Definition 10.11df-fv 5322  fv2 5618
[Quine] p. 124Theorem 17.3nn0opth2 10933  nn0opth2d 10932  nn0opthd 10931
[Quine] p. 284Axiom 39(vi)funimaex 5402  funimaexg 5401
[Roman] p. 18Part Preliminariesdf-rng 13882
[Roman] p. 19Part Preliminariesdf-ring 13947
[Rudin] p. 164Equation 27efcan 12173
[Rudin] p. 164Equation 30efzval 12180
[Rudin] p. 167Equation 48absefi 12266
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1468
[Sanford] p. 39Rule 4mptxor 1466
[Sanford] p. 40Rule 1mptnan 1465
[Schechter] p. 51Definition of antisymmetryintasym 5109
[Schechter] p. 51Definition of irreflexivityintirr 5111
[Schechter] p. 51Definition of symmetrycnvsym 5108
[Schechter] p. 51Definition of transitivitycotr 5106
[Schechter] p. 187Definition of "ring with unit"isring 13949
[Schechter] p. 428Definition 15.35bastop1 14742
[Stoll] p. 13Definition of symmetric differencesymdif1 3469
[Stoll] p. 16Exercise 4.40dif 3563  dif0 3562
[Stoll] p. 16Exercise 4.8difdifdirss 3576
[Stoll] p. 19Theorem 5.2(13)undm 3462
[Stoll] p. 19Theorem 5.2(13')indmss 3463
[Stoll] p. 20Remarkinvdif 3446
[Stoll] p. 25Definition of ordered tripledf-ot 3676
[Stoll] p. 43Definitionuniiun 4018
[Stoll] p. 44Definitionintiin 4019
[Stoll] p. 45Definitiondf-iin 3967
[Stoll] p. 45Definition indexed uniondf-iun 3966
[Stoll] p. 176Theorem 3.4(27)imandc 894  imanst 893
[Stoll] p. 262Example 4.1symdif1 3469
[Suppes] p. 22Theorem 2eq0 3510
[Suppes] p. 22Theorem 4eqss 3239  eqssd 3241  eqssi 3240
[Suppes] p. 23Theorem 5ss0 3532  ss0b 3531
[Suppes] p. 23Theorem 6sstr 3232
[Suppes] p. 25Theorem 12elin 3387  elun 3345
[Suppes] p. 26Theorem 15inidm 3413
[Suppes] p. 26Theorem 16in0 3526
[Suppes] p. 27Theorem 23unidm 3347
[Suppes] p. 27Theorem 24un0 3525
[Suppes] p. 27Theorem 25ssun1 3367
[Suppes] p. 27Theorem 26ssequn1 3374
[Suppes] p. 27Theorem 27unss 3378
[Suppes] p. 27Theorem 28indir 3453
[Suppes] p. 27Theorem 29undir 3454
[Suppes] p. 28Theorem 32difid 3560  difidALT 3561
[Suppes] p. 29Theorem 33difin 3441
[Suppes] p. 29Theorem 34indif 3447
[Suppes] p. 29Theorem 35undif1ss 3566
[Suppes] p. 29Theorem 36difun2 3571
[Suppes] p. 29Theorem 37difin0 3565
[Suppes] p. 29Theorem 38disjdif 3564
[Suppes] p. 29Theorem 39difundi 3456
[Suppes] p. 29Theorem 40difindiss 3458
[Suppes] p. 30Theorem 41nalset 4213
[Suppes] p. 39Theorem 61uniss 3908
[Suppes] p. 39Theorem 65uniop 4341
[Suppes] p. 41Theorem 70intsn 3957
[Suppes] p. 42Theorem 71intpr 3954  intprg 3955
[Suppes] p. 42Theorem 73op1stb 4566  op1stbg 4567
[Suppes] p. 42Theorem 78intun 3953
[Suppes] p. 44Definition 15(a)dfiun2 3998  dfiun2g 3996
[Suppes] p. 44Definition 15(b)dfiin2 3999
[Suppes] p. 47Theorem 86elpw 3655  elpw2 4240  elpw2g 4239  elpwg 3657
[Suppes] p. 47Theorem 87pwid 3664
[Suppes] p. 47Theorem 89pw0 3814
[Suppes] p. 48Theorem 90pwpw0ss 3882
[Suppes] p. 52Theorem 101xpss12 4823
[Suppes] p. 52Theorem 102xpindi 4854  xpindir 4855
[Suppes] p. 52Theorem 103xpundi 4772  xpundir 4773
[Suppes] p. 54Theorem 105elirrv 4637
[Suppes] p. 58Theorem 2relss 4803
[Suppes] p. 59Theorem 4eldm 4917  eldm2 4918  eldm2g 4916  eldmg 4915
[Suppes] p. 59Definition 3df-dm 4726
[Suppes] p. 60Theorem 6dmin 4928
[Suppes] p. 60Theorem 8rnun 5133
[Suppes] p. 60Theorem 9rnin 5134
[Suppes] p. 60Definition 4dfrn2 4907
[Suppes] p. 61Theorem 11brcnv 4902  brcnvg 4900
[Suppes] p. 62Equation 5elcnv 4896  elcnv2 4897
[Suppes] p. 62Theorem 12relcnv 5102
[Suppes] p. 62Theorem 15cnvin 5132
[Suppes] p. 62Theorem 16cnvun 5130
[Suppes] p. 63Theorem 20co02 5238
[Suppes] p. 63Theorem 21dmcoss 4990
[Suppes] p. 63Definition 7df-co 4725
[Suppes] p. 64Theorem 26cnvco 4904
[Suppes] p. 64Theorem 27coass 5243
[Suppes] p. 65Theorem 31resundi 5014
[Suppes] p. 65Theorem 34elima 5069  elima2 5070  elima3 5071  elimag 5068
[Suppes] p. 65Theorem 35imaundi 5137
[Suppes] p. 66Theorem 40dminss 5139
[Suppes] p. 66Theorem 41imainss 5140
[Suppes] p. 67Exercise 11cnvxp 5143
[Suppes] p. 81Definition 34dfec2 6673
[Suppes] p. 82Theorem 72elec 6711  elecg 6710
[Suppes] p. 82Theorem 73erth 6716  erth2 6717
[Suppes] p. 89Theorem 96map0b 6824
[Suppes] p. 89Theorem 97map0 6826  map0g 6825
[Suppes] p. 89Theorem 98mapsn 6827
[Suppes] p. 89Theorem 99mapss 6828
[Suppes] p. 92Theorem 1enref 6906  enrefg 6905
[Suppes] p. 92Theorem 2ensym 6923  ensymb 6922  ensymi 6924
[Suppes] p. 92Theorem 3entr 6926
[Suppes] p. 92Theorem 4unen 6959
[Suppes] p. 94Theorem 15endom 6904
[Suppes] p. 94Theorem 16ssdomg 6920
[Suppes] p. 94Theorem 17domtr 6927
[Suppes] p. 95Theorem 18isbth 7122
[Suppes] p. 98Exercise 4fundmen 6949  fundmeng 6950
[Suppes] p. 98Exercise 6xpdom3m 6981
[Suppes] p. 130Definition 3df-tr 4182
[Suppes] p. 132Theorem 9ssonuni 4577
[Suppes] p. 134Definition 6df-suc 4459
[Suppes] p. 136Theorem Schema 22findes 4692  finds 4689  finds1 4691  finds2 4690
[Suppes] p. 162Definition 5df-ltnqqs 7528  df-ltpq 7521
[Suppes] p. 228Theorem Schema 61onintss 4478
[TakeutiZaring] p. 8Axiom 1ax-ext 2211
[TakeutiZaring] p. 13Definition 4.5df-cleq 2222
[TakeutiZaring] p. 13Proposition 4.6df-clel 2225
[TakeutiZaring] p. 13Proposition 4.9cvjust 2224
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2247
[TakeutiZaring] p. 14Definition 4.16df-oprab 5998
[TakeutiZaring] p. 14Proposition 4.14ru 3027
[TakeutiZaring] p. 15Exercise 1elpr 3687  elpr2 3688  elprg 3686
[TakeutiZaring] p. 15Exercise 2elsn 3682  elsn2 3700  elsn2g 3699  elsng 3681  velsn 3683
[TakeutiZaring] p. 15Exercise 3elop 4316
[TakeutiZaring] p. 15Exercise 4sneq 3677  sneqr 3837
[TakeutiZaring] p. 15Definition 5.1dfpr2 3685  dfsn2 3680
[TakeutiZaring] p. 16Axiom 3uniex 4525
[TakeutiZaring] p. 16Exercise 6opth 4322
[TakeutiZaring] p. 16Exercise 8rext 4300
[TakeutiZaring] p. 16Corollary 5.8unex 4529  unexg 4531
[TakeutiZaring] p. 16Definition 5.3dftp2 3715
[TakeutiZaring] p. 16Definition 5.5df-uni 3888
[TakeutiZaring] p. 16Definition 5.6df-in 3203  df-un 3201
[TakeutiZaring] p. 16Proposition 5.7unipr 3901  uniprg 3902
[TakeutiZaring] p. 17Axiom 4vpwex 4262
[TakeutiZaring] p. 17Exercise 1eltp 3714
[TakeutiZaring] p. 17Exercise 5elsuc 4494  elsucg 4492  sstr2 3231
[TakeutiZaring] p. 17Exercise 6uncom 3348
[TakeutiZaring] p. 17Exercise 7incom 3396
[TakeutiZaring] p. 17Exercise 8unass 3361
[TakeutiZaring] p. 17Exercise 9inass 3414
[TakeutiZaring] p. 17Exercise 10indi 3451
[TakeutiZaring] p. 17Exercise 11undi 3452
[TakeutiZaring] p. 17Definition 5.9ssalel 3212
[TakeutiZaring] p. 17Definition 5.10df-pw 3651
[TakeutiZaring] p. 18Exercise 7unss2 3375
[TakeutiZaring] p. 18Exercise 9df-ss 3210  dfss2 3214  sseqin2 3423
[TakeutiZaring] p. 18Exercise 10ssid 3244
[TakeutiZaring] p. 18Exercise 12inss1 3424  inss2 3425
[TakeutiZaring] p. 18Exercise 13nssr 3284
[TakeutiZaring] p. 18Exercise 15unieq 3896
[TakeutiZaring] p. 18Exercise 18sspwb 4301
[TakeutiZaring] p. 18Exercise 19pweqb 4308
[TakeutiZaring] p. 20Definitiondf-rab 2517
[TakeutiZaring] p. 20Corollary 5.160ex 4210
[TakeutiZaring] p. 20Definition 5.12df-dif 3199
[TakeutiZaring] p. 20Definition 5.14dfnul2 3493
[TakeutiZaring] p. 20Proposition 5.15difid 3560  difidALT 3561
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3504
[TakeutiZaring] p. 21Theorem 5.22setind 4628
[TakeutiZaring] p. 21Definition 5.20df-v 2801
[TakeutiZaring] p. 21Proposition 5.21vprc 4215
[TakeutiZaring] p. 22Exercise 10ss 3530
[TakeutiZaring] p. 22Exercise 3ssex 4220  ssexg 4222
[TakeutiZaring] p. 22Exercise 4inex1 4217
[TakeutiZaring] p. 22Exercise 5ruv 4639
[TakeutiZaring] p. 22Exercise 6elirr 4630
[TakeutiZaring] p. 22Exercise 7ssdif0im 3556
[TakeutiZaring] p. 22Exercise 11difdif 3329
[TakeutiZaring] p. 22Exercise 13undif3ss 3465
[TakeutiZaring] p. 22Exercise 14difss 3330
[TakeutiZaring] p. 22Exercise 15sscon 3338
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2513
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2514
[TakeutiZaring] p. 23Proposition 6.2xpex 4831  xpexg 4830  xpexgALT 6268
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4723
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5381
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5538  fun11 5384
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5325  svrelfun 5382
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4906
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4908
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4728
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4729
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4725
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5179  dfrel2 5175
[TakeutiZaring] p. 25Exercise 3xpss 4824
[TakeutiZaring] p. 25Exercise 5relun 4833
[TakeutiZaring] p. 25Exercise 6reluni 4839
[TakeutiZaring] p. 25Exercise 9inxp 4853
[TakeutiZaring] p. 25Exercise 12relres 5029
[TakeutiZaring] p. 25Exercise 13opelres 5006  opelresg 5008
[TakeutiZaring] p. 25Exercise 14dmres 5022
[TakeutiZaring] p. 25Exercise 15resss 5025
[TakeutiZaring] p. 25Exercise 17resabs1 5030
[TakeutiZaring] p. 25Exercise 18funres 5355
[TakeutiZaring] p. 25Exercise 24relco 5223
[TakeutiZaring] p. 25Exercise 29funco 5354
[TakeutiZaring] p. 25Exercise 30f1co 5539
[TakeutiZaring] p. 26Definition 6.10eu2 2122
[TakeutiZaring] p. 26Definition 6.11df-fv 5322  fv3 5646
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5263  cnvexg 5262
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4987  dmexg 4984
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4988  rnexg 4985
[TakeutiZaring] p. 27Corollary 6.13funfvex 5640
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5650  tz6.12 5651  tz6.12c 5653
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5614
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5317
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5318
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5320  wfo 5312
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5319  wf1 5311
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5321  wf1o 5313
[TakeutiZaring] p. 28Exercise 4eqfnfv 5725  eqfnfv2 5726  eqfnfv2f 5729
[TakeutiZaring] p. 28Exercise 5fvco 5697
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5854  fnexALT 6246
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5853  resfunexgALT 6243
[TakeutiZaring] p. 29Exercise 9funimaex 5402  funimaexg 5401
[TakeutiZaring] p. 29Definition 6.18df-br 4083
[TakeutiZaring] p. 30Definition 6.21eliniseg 5094  iniseg 5096
[TakeutiZaring] p. 30Definition 6.22df-eprel 4377
[TakeutiZaring] p. 32Definition 6.28df-isom 5323
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5927
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5928
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5933
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5935
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5943
[TakeutiZaring] p. 35Notationwtr 4181
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4442
[TakeutiZaring] p. 35Definition 7.1dftr3 4185
[TakeutiZaring] p. 36Proposition 7.4ordwe 4665
[TakeutiZaring] p. 36Proposition 7.6ordelord 4469
[TakeutiZaring] p. 37Proposition 7.9ordin 4473
[TakeutiZaring] p. 38Corollary 7.15ordsson 4581
[TakeutiZaring] p. 38Definition 7.11df-on 4456
[TakeutiZaring] p. 38Proposition 7.12ordon 4575
[TakeutiZaring] p. 38Proposition 7.13onprc 4641
[TakeutiZaring] p. 39Theorem 7.17tfi 4671
[TakeutiZaring] p. 40Exercise 7dftr2 4183
[TakeutiZaring] p. 40Exercise 11unon 4600
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4576
[TakeutiZaring] p. 40Proposition 7.20elssuni 3915
[TakeutiZaring] p. 41Definition 7.22df-suc 4459
[TakeutiZaring] p. 41Proposition 7.23sssucid 4503  sucidg 4504
[TakeutiZaring] p. 41Proposition 7.24onsuc 4590
[TakeutiZaring] p. 42Exercise 1df-ilim 4457
[TakeutiZaring] p. 42Exercise 8onsucssi 4595  ordelsuc 4594
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4683
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4684
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4685
[TakeutiZaring] p. 43Axiom 7omex 4682
[TakeutiZaring] p. 43Theorem 7.32ordom 4696
[TakeutiZaring] p. 43Corollary 7.31find 4688
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4686
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4687
[TakeutiZaring] p. 44Exercise 2int0 3936
[TakeutiZaring] p. 44Exercise 3trintssm 4197
[TakeutiZaring] p. 44Exercise 4intss1 3937
[TakeutiZaring] p. 44Exercise 6onintonm 4606
[TakeutiZaring] p. 44Definition 7.35df-int 3923
[TakeutiZaring] p. 47Lemma 1tfrlem1 6444
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6501  tfri1d 6471
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6502  tfri2d 6472
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6503
[TakeutiZaring] p. 50Exercise 3smoiso 6438
[TakeutiZaring] p. 50Definition 7.46df-smo 6422
[TakeutiZaring] p. 56Definition 8.1oasuc 6600
[TakeutiZaring] p. 57Proposition 8.2oacl 6596
[TakeutiZaring] p. 57Proposition 8.3oa0 6593
[TakeutiZaring] p. 57Proposition 8.16omcl 6597
[TakeutiZaring] p. 58Proposition 8.4nnaord 6645  nnaordi 6644
[TakeutiZaring] p. 59Proposition 8.6iunss2 4009  uniss2 3918
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6606
[TakeutiZaring] p. 59Proposition 8.9nnacl 6616
[TakeutiZaring] p. 62Exercise 5oaword1 6607
[TakeutiZaring] p. 62Definition 8.15om0 6594  omsuc 6608
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6617
[TakeutiZaring] p. 63Proposition 8.19nnmord 6653  nnmordi 6652
[TakeutiZaring] p. 67Definition 8.30oei0 6595
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7347
[TakeutiZaring] p. 88Exercise 1en0 6937
[TakeutiZaring] p. 90Proposition 10.20nneneq 7006
[TakeutiZaring] p. 90Corollary 10.21(1)php5 7007
[TakeutiZaring] p. 91Definition 10.29df-fin 6880  isfi 6902
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6978
[TakeutiZaring] p. 95Definition 10.42df-map 6787
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6984
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6997
[Tarski] p. 67Axiom B5ax-4 1556
[Tarski] p. 68Lemma 6equid 1747
[Tarski] p. 69Lemma 7equcomi 1750
[Tarski] p. 70Lemma 14spim 1784  spime 1787  spimeh 1785  spimh 1783
[Tarski] p. 70Lemma 16ax-11 1552  ax-11o 1869  ax11i 1760
[Tarski] p. 70Lemmas 16 and 17sb6 1933
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1572
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2202  ax-14 2203
[WhiteheadRussell] p. 96Axiom *1.3olc 716
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 732
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 761
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 770
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 794
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 619
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 646
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 842
[WhiteheadRussell] p. 101Theorem *2.06barbara 2176  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 742
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 841
[WhiteheadRussell] p. 101Theorem *2.12notnot 632
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 890
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 848
[WhiteheadRussell] p. 102Theorem *2.15con1dc 861
[WhiteheadRussell] p. 103Theorem *2.16con3 645
[WhiteheadRussell] p. 103Theorem *2.17condc 858
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 860
[WhiteheadRussell] p. 104Theorem *2.2orc 717
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 780
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 620
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 624
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 898
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 912
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 773
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 774
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 809
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 810
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 808
[WhiteheadRussell] p. 105Definition *2.33df-3or 1003
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 783
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 781
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 782
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 743
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 744
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 872  pm2.5gdc 871
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 867
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 745
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 746
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 747
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 659
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 660
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 727
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 896
[WhiteheadRussell] p. 107Theorem *2.55orel1 730
[WhiteheadRussell] p. 107Theorem *2.56orel2 731
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 870
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 753
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 805
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 806
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 663
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 718  pm2.67 748
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 874  pm2.521gdc 873
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 752
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 815
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 899
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 920
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 811
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 812
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 814
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 813
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 816
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 817
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 910
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 759
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 963
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 964
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 965
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 758
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 698
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 865
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 864
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 693
[WhiteheadRussell] p. 113Fact)pm3.45 599
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 760  pm3.44 720
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 604
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 790
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 876
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 877
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 895
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 699
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 958  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 762  pm4.25 763
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 823
[WhiteheadRussell] p. 118Theorem *4.31orcom 733
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 772
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 797
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 607
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 827
[WhiteheadRussell] p. 118Definition *4.34df-3an 1004
[WhiteheadRussell] p. 119Theorem *4.41ordi 821
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 977
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 955
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 784
[WhiteheadRussell] p. 119Theorem *4.45orabs 819  pm4.45 789  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1527
[WhiteheadRussell] p. 120Theorem *4.5anordc 962
[WhiteheadRussell] p. 120Theorem *4.6imordc 902  imorr 726
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 904
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 755
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 756
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 907
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 944
[WhiteheadRussell] p. 120Theorem *4.56ioran 757  pm4.56 785
[WhiteheadRussell] p. 120Theorem *4.57orandc 945  oranim 786
[WhiteheadRussell] p. 120Theorem *4.61annimim 690
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 903
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 891
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 905
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 691
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 906
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 892
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 832
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 749
[WhiteheadRussell] p. 121Theorem *4.76jcab 605  pm4.76 606
[WhiteheadRussell] p. 121Theorem *4.77jaob 715  pm4.77 804
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 787
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 908
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 712
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 913
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 956
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 957
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 603
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 914
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 915
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 917
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 916
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1431
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 833
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 909
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1436  pm5.18dc 888
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 711
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 700
[WhiteheadRussell] p. 124Theorem *5.22xordc 1434
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1439
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1440
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 900
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 931  pm5.6r 932
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 960
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 611
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 922
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 612
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 930
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 807
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 923
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 918
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 799
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 951
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 952
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 967
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 968
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1681
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1531
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1678
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1942
[WhiteheadRussell] p. 175Definition *14.02df-eu 2080
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2481
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2482
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2941
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3085
[WhiteheadRussell] p. 190Theorem *14.22iota4 5294
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5295
[WhiteheadRussell] p. 192Theorem *14.26eupick 2157  eupickbi 2160
[WhiteheadRussell] p. 235Definition *30.01df-fv 5322
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7351

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]