Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
| Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
|---|
| [AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7219 fidcenum 7060 |
| [AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 7060 |
| [AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7219 |
| [AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12829 |
| [AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 7031 |
| [AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 7017 |
| [AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12844 |
| [AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12846 |
| [AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12835 znnen 12802 |
| [AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12847 |
| [AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12848 |
| [AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10923 |
| [AczelRathjen], p.
183 | Chapter 20 | ax-setind 4586 |
| [AhoHopUll] p.
318 | Section 9.1 | df-concat 11050 df-pfx 11129 df-substr 11102 df-word 10997 lencl 11000 wrd0 11021 |
| [Apostol] p. 18 | Theorem
I.1 | addcan 8254 addcan2d 8259 addcan2i 8257 addcand 8258 addcani 8256 |
| [Apostol] p. 18 | Theorem
I.2 | negeu 8265 |
| [Apostol] p. 18 | Theorem
I.3 | negsub 8322 negsubd 8391 negsubi 8352 |
| [Apostol] p. 18 | Theorem
I.4 | negneg 8324 negnegd 8376 negnegi 8344 |
| [Apostol] p. 18 | Theorem
I.5 | subdi 8459 subdid 8488 subdii 8481 subdir 8460 subdird 8489 subdiri 8482 |
| [Apostol] p. 18 | Theorem
I.6 | mul01 8463 mul01d 8467 mul01i 8465 mul02 8461 mul02d 8466 mul02i 8464 |
| [Apostol] p. 18 | Theorem
I.9 | divrecapd 8868 |
| [Apostol] p. 18 | Theorem
I.10 | recrecapi 8819 |
| [Apostol] p. 18 | Theorem
I.12 | mul2neg 8472 mul2negd 8487 mul2negi 8480 mulneg1 8469 mulneg1d 8485 mulneg1i 8478 |
| [Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 13939 |
| [Apostol] p. 18 | Theorem
I.15 | divdivdivap 8788 |
| [Apostol] p. 20 | Axiom
7 | rpaddcl 9801 rpaddcld 9836 rpmulcl 9802 rpmulcld 9837 |
| [Apostol] p. 20 | Axiom
9 | 0nrp 9813 |
| [Apostol] p. 20 | Theorem
I.17 | lttri 8179 |
| [Apostol] p. 20 | Theorem
I.18 | ltadd1d 8613 ltadd1dd 8631 ltadd1i 8577 |
| [Apostol] p. 20 | Theorem
I.19 | ltmul1 8667 ltmul1a 8666 ltmul1i 8995 ltmul1ii 9003 ltmul2 8931 ltmul2d 9863 ltmul2dd 9877 ltmul2i 8998 |
| [Apostol] p. 20 | Theorem
I.21 | 0lt1 8201 |
| [Apostol] p. 20 | Theorem
I.23 | lt0neg1 8543 lt0neg1d 8590 ltneg 8537 ltnegd 8598 ltnegi 8568 |
| [Apostol] p. 20 | Theorem
I.25 | lt2add 8520 lt2addd 8642 lt2addi 8585 |
| [Apostol] p.
20 | Definition of positive numbers | df-rp 9778 |
| [Apostol] p. 21 | Exercise
4 | recgt0 8925 recgt0d 9009 recgt0i 8981 recgt0ii 8982 |
| [Apostol] p.
22 | Definition of integers | df-z 9375 |
| [Apostol] p.
22 | Definition of rationals | df-q 9743 |
| [Apostol] p. 24 | Theorem
I.26 | supeuti 7098 |
| [Apostol] p. 26 | Theorem
I.29 | arch 9294 |
| [Apostol] p. 28 | Exercise
2 | btwnz 9494 |
| [Apostol] p. 28 | Exercise
3 | nnrecl 9295 |
| [Apostol] p. 28 | Exercise
6 | qbtwnre 10401 |
| [Apostol] p. 28 | Exercise
10(a) | zeneo 12215 zneo 9476 |
| [Apostol] p. 29 | Theorem
I.35 | resqrtth 11375 sqrtthi 11463 |
| [Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 9041 |
| [Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12390 |
| [Apostol] p.
363 | Remark | absgt0api 11490 |
| [Apostol] p.
363 | Example | abssubd 11537 abssubi 11494 |
| [ApostolNT] p.
14 | Definition | df-dvds 12132 |
| [ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 12148 |
| [ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 12172 |
| [ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 12168 |
| [ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 12162 |
| [ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 12164 |
| [ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 12149 |
| [ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 12150 |
| [ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 12155 |
| [ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 12189 |
| [ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 12191 |
| [ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 12193 |
| [ApostolNT] p.
15 | Definition | dfgcd2 12368 |
| [ApostolNT] p.
16 | Definition | isprm2 12472 |
| [ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12447 |
| [ApostolNT] p.
16 | Theorem 1.7 | prminf 12859 |
| [ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 12327 |
| [ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12369 |
| [ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12371 |
| [ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 12341 |
| [ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 12334 |
| [ApostolNT] p.
17 | Theorem 1.8 | coprm 12499 |
| [ApostolNT] p.
17 | Theorem 1.9 | euclemma 12501 |
| [ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12724 |
| [ApostolNT] p.
19 | Theorem 1.14 | divalg 12268 |
| [ApostolNT] p.
20 | Theorem 1.15 | eucalg 12414 |
| [ApostolNT] p.
25 | Definition | df-phi 12566 |
| [ApostolNT] p.
26 | Theorem 2.2 | phisum 12596 |
| [ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12577 |
| [ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12581 |
| [ApostolNT] p.
38 | Remark | df-sgm 15487 |
| [ApostolNT] p.
38 | Definition | df-sgm 15487 |
| [ApostolNT] p.
104 | Definition | congr 12455 |
| [ApostolNT] p.
106 | Remark | dvdsval3 12135 |
| [ApostolNT] p.
106 | Definition | moddvds 12143 |
| [ApostolNT] p.
107 | Example 2 | mod2eq0even 12222 |
| [ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 12223 |
| [ApostolNT] p.
107 | Example 4 | zmod1congr 10488 |
| [ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10525 |
| [ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10813 |
| [ApostolNT] p.
108 | Theorem 5.3 | modmulconst 12167 |
| [ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12458 |
| [ApostolNT] p.
109 | Theorem 5.6 | gcdmodi 12777 |
| [ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12460 |
| [ApostolNT] p.
113 | Theorem 5.17 | eulerth 12588 |
| [ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12607 |
| [ApostolNT] p.
114 | Theorem 5.19 | fermltl 12589 |
| [ApostolNT] p.
179 | Definition | df-lgs 15508 lgsprme0 15552 |
| [ApostolNT] p.
180 | Example 1 | 1lgs 15553 |
| [ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 15529 |
| [ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 15544 |
| [ApostolNT] p.
181 | Theorem 9.4 | m1lgs 15595 |
| [ApostolNT] p.
181 | Theorem 9.5 | 2lgs 15614 2lgsoddprm 15623 |
| [ApostolNT] p.
182 | Theorem 9.6 | gausslemma2d 15579 |
| [ApostolNT] p.
185 | Theorem 9.8 | lgsquad 15590 |
| [ApostolNT] p.
188 | Definition | df-lgs 15508 lgs1 15554 |
| [ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 15545 |
| [ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 15547 |
| [ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 15555 |
| [ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 15556 |
| [Bauer] p. 482 | Section
1.2 | pm2.01 617 pm2.65 661 |
| [Bauer] p. 483 | Theorem
1.3 | acexmid 5945 onsucelsucexmidlem 4578 |
| [Bauer], p.
481 | Section 1.1 | pwtrufal 15971 |
| [Bauer], p.
483 | Definition | n0rf 3473 |
| [Bauer], p. 483 | Theorem
1.2 | 2irrexpq 15481 2irrexpqap 15483 |
| [Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6975 |
| [Bauer], p. 493 | Section
5.1 | ivthdich 15158 |
| [Bauer], p. 494 | Theorem
5.5 | ivthinc 15148 |
| [BauerHanson], p.
27 | Proposition 5.2 | cnstab 8720 |
| [BauerSwan], p.
14 | Remark | 0ct 7211 ctm 7213 |
| [BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 15974 |
| [BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7219 |
| [BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7616 |
| [BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7529 |
| [BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7618 |
| [BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7652 addlocpr 7651 |
| [BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7678 |
| [BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7681 |
| [BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7686 |
| [BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
| [BellMachover] p.
97 | Definition 10.1 | df-eu 2057 |
| [BellMachover] p.
460 | Notation | df-mo 2058 |
| [BellMachover] p.
460 | Definition | mo3 2108 mo3h 2107 |
| [BellMachover] p.
462 | Theorem 1.1 | bm1.1 2190 |
| [BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4166 |
| [BellMachover] p.
466 | Axiom Pow | axpow3 4222 |
| [BellMachover] p.
466 | Axiom Union | axun2 4483 |
| [BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4591 |
| [BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4432 |
| [BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4594 |
| [BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4545 |
| [BellMachover] p.
471 | Definition of Lim | df-ilim 4417 |
| [BellMachover] p.
472 | Axiom Inf | zfinf2 4638 |
| [BellMachover] p.
473 | Theorem 2.8 | limom 4663 |
| [Bobzien] p.
116 | Statement T3 | stoic3 1451 |
| [Bobzien] p.
117 | Statement T2 | stoic2a 1449 |
| [Bobzien] p.
117 | Statement T4 | stoic4a 1452 |
| [Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1447 |
| [Bollobas] p. 1 | Section
I.1 | df-edg 15686 |
| [BourbakiAlg1] p.
1 | Definition 1 | df-mgm 13221 |
| [BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 13267 |
| [BourbakiAlg1] p.
12 | Definition 2 | df-mnd 13282 |
| [BourbakiAlg1] p.
92 | Definition 1 | df-ring 13793 |
| [BourbakiAlg1] p.
93 | Section I.8.1 | df-rng 13728 |
| [BourbakiEns] p.
| Proposition 8 | fcof1 5854 fcofo 5855 |
| [BourbakiTop1] p.
| Remark | xnegmnf 9953 xnegpnf 9952 |
| [BourbakiTop1] p.
| Remark | rexneg 9954 |
| [BourbakiTop1] p.
| Proposition | ishmeo 14809 |
| [BourbakiTop1] p.
| Property V_i | ssnei2 14662 |
| [BourbakiTop1] p.
| Property V_ii | innei 14668 |
| [BourbakiTop1] p.
| Property V_iv | neissex 14670 |
| [BourbakiTop1] p.
| Proposition 1 | neipsm 14659 neiss 14655 |
| [BourbakiTop1] p.
| Proposition 2 | cnptopco 14727 |
| [BourbakiTop1] p.
| Proposition 4 | imasnopn 14804 |
| [BourbakiTop1] p.
| Property V_iii | elnei 14657 |
| [BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 14503 |
| [Bruck] p. 1 | Section
I.1 | df-mgm 13221 |
| [Bruck] p. 23 | Section
II.1 | df-sgrp 13267 |
| [Bruck] p. 28 | Theorem
3.2 | dfgrp3m 13464 |
| [ChoquetDD] p.
2 | Definition of mapping | df-mpt 4108 |
| [Cohen] p.
301 | Remark | relogoprlem 15373 |
| [Cohen] p. 301 | Property
2 | relogmul 15374 relogmuld 15389 |
| [Cohen] p. 301 | Property
3 | relogdiv 15375 relogdivd 15390 |
| [Cohen] p. 301 | Property
4 | relogexp 15377 |
| [Cohen] p. 301 | Property
1a | log1 15371 |
| [Cohen] p. 301 | Property
1b | loge 15372 |
| [Cohen4] p.
348 | Observation | relogbcxpbap 15470 |
| [Cohen4] p.
352 | Definition | rpelogb 15454 |
| [Cohen4] p. 361 | Property
2 | rprelogbmul 15460 |
| [Cohen4] p. 361 | Property
3 | logbrec 15465 rprelogbdiv 15462 |
| [Cohen4] p. 361 | Property
4 | rplogbreexp 15458 |
| [Cohen4] p. 361 | Property
6 | relogbexpap 15463 |
| [Cohen4] p. 361 | Property
1(a) | rplogbid1 15452 |
| [Cohen4] p. 361 | Property
1(b) | rplogb1 15453 |
| [Cohen4] p.
367 | Property | rplogbchbase 15455 |
| [Cohen4] p. 377 | Property
2 | logblt 15467 |
| [Crosilla] p. | Axiom
1 | ax-ext 2187 |
| [Crosilla] p. | Axiom
2 | ax-pr 4254 |
| [Crosilla] p. | Axiom
3 | ax-un 4481 |
| [Crosilla] p. | Axiom
4 | ax-nul 4171 |
| [Crosilla] p. | Axiom
5 | ax-iinf 4637 |
| [Crosilla] p. | Axiom
6 | ru 2997 |
| [Crosilla] p. | Axiom
8 | ax-pow 4219 |
| [Crosilla] p. | Axiom
9 | ax-setind 4586 |
| [Crosilla], p. | Axiom
6 | ax-sep 4163 |
| [Crosilla], p. | Axiom
7 | ax-coll 4160 |
| [Crosilla], p. | Axiom
7' | repizf 4161 |
| [Crosilla], p. | Theorem
is stated | ordtriexmid 4570 |
| [Crosilla], p. | Axiom
of choice implies instances | acexmid 5945 |
| [Crosilla], p.
| Definition of ordinal | df-iord 4414 |
| [Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4584 |
| [Eisenberg] p.
67 | Definition 5.3 | df-dif 3168 |
| [Eisenberg] p.
82 | Definition 6.3 | df-iom 4640 |
| [Eisenberg] p.
125 | Definition 8.21 | df-map 6739 |
| [Enderton] p. 18 | Axiom
of Empty Set | axnul 4170 |
| [Enderton] p.
19 | Definition | df-tp 3641 |
| [Enderton] p.
26 | Exercise 5 | unissb 3880 |
| [Enderton] p.
26 | Exercise 10 | pwel 4263 |
| [Enderton] p.
28 | Exercise 7(b) | pwunim 4334 |
| [Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3997 iinin2m 3996 iunin1 3992 iunin2 3991 |
| [Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3995 iundif2ss 3993 |
| [Enderton] p.
33 | Exercise 23 | iinuniss 4010 |
| [Enderton] p.
33 | Exercise 25 | iununir 4011 |
| [Enderton] p.
33 | Exercise 24(a) | iinpw 4018 |
| [Enderton] p.
33 | Exercise 24(b) | iunpw 4528 iunpwss 4019 |
| [Enderton] p.
38 | Exercise 6(a) | unipw 4262 |
| [Enderton] p.
38 | Exercise 6(b) | pwuni 4237 |
| [Enderton] p. 41 | Lemma
3D | opeluu 4498 rnex 4947
rnexg 4944 |
| [Enderton] p.
41 | Exercise 8 | dmuni 4889 rnuni 5095 |
| [Enderton] p.
42 | Definition of a function | dffun7 5299 dffun8 5300 |
| [Enderton] p.
43 | Definition of function value | funfvdm2 5645 |
| [Enderton] p.
43 | Definition of single-rooted | funcnv 5336 |
| [Enderton] p.
44 | Definition (d) | dfima2 5025 dfima3 5026 |
| [Enderton] p.
47 | Theorem 3H | fvco2 5650 |
| [Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7320 |
| [Enderton] p.
50 | Theorem 3K(a) | imauni 5832 |
| [Enderton] p.
52 | Definition | df-map 6739 |
| [Enderton] p.
53 | Exercise 21 | coass 5202 |
| [Enderton] p.
53 | Exercise 27 | dmco 5192 |
| [Enderton] p.
53 | Exercise 14(a) | funin 5346 |
| [Enderton] p.
53 | Exercise 22(a) | imass2 5059 |
| [Enderton] p.
54 | Remark | ixpf 6809 ixpssmap 6821 |
| [Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6788 |
| [Enderton] p.
56 | Theorem 3M | erref 6642 |
| [Enderton] p. 57 | Lemma
3N | erthi 6670 |
| [Enderton] p.
57 | Definition | df-ec 6624 |
| [Enderton] p.
58 | Definition | df-qs 6628 |
| [Enderton] p.
60 | Theorem 3Q | th3q 6729 th3qcor 6728 th3qlem1 6726 th3qlem2 6727 |
| [Enderton] p.
61 | Exercise 35 | df-ec 6624 |
| [Enderton] p.
65 | Exercise 56(a) | dmun 4886 |
| [Enderton] p.
68 | Definition of successor | df-suc 4419 |
| [Enderton] p.
71 | Definition | df-tr 4144 dftr4 4148 |
| [Enderton] p.
72 | Theorem 4E | unisuc 4461 unisucg 4462 |
| [Enderton] p.
73 | Exercise 6 | unisuc 4461 unisucg 4462 |
| [Enderton] p.
73 | Exercise 5(a) | truni 4157 |
| [Enderton] p.
73 | Exercise 5(b) | trint 4158 |
| [Enderton] p.
79 | Theorem 4I(A1) | nna0 6562 |
| [Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6564 onasuc 6554 |
| [Enderton] p.
79 | Definition of operation value | df-ov 5949 |
| [Enderton] p.
80 | Theorem 4J(A1) | nnm0 6563 |
| [Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6565 onmsuc 6561 |
| [Enderton] p.
81 | Theorem 4K(1) | nnaass 6573 |
| [Enderton] p.
81 | Theorem 4K(2) | nna0r 6566 nnacom 6572 |
| [Enderton] p.
81 | Theorem 4K(3) | nndi 6574 |
| [Enderton] p.
81 | Theorem 4K(4) | nnmass 6575 |
| [Enderton] p.
81 | Theorem 4K(5) | nnmcom 6577 |
| [Enderton] p.
82 | Exercise 16 | nnm0r 6567 nnmsucr 6576 |
| [Enderton] p.
88 | Exercise 23 | nnaordex 6616 |
| [Enderton] p.
129 | Definition | df-en 6830 |
| [Enderton] p.
132 | Theorem 6B(b) | canth 5899 |
| [Enderton] p.
133 | Exercise 1 | xpomen 12799 |
| [Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6964 |
| [Enderton] p.
136 | Corollary 6E | nneneq 6956 |
| [Enderton] p.
139 | Theorem 6H(c) | mapen 6945 |
| [Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7332 |
| [Enderton] p.
143 | Theorem 6J | dju0en 7328 dju1en 7327 |
| [Enderton] p.
144 | Corollary 6K | undif2ss 3536 |
| [Enderton] p.
145 | Figure 38 | ffoss 5556 |
| [Enderton] p.
145 | Definition | df-dom 6831 |
| [Enderton] p.
146 | Example 1 | domen 6842 domeng 6843 |
| [Enderton] p.
146 | Example 3 | nndomo 6963 |
| [Enderton] p.
149 | Theorem 6L(c) | xpdom1 6932 xpdom1g 6930 xpdom2g 6929 |
| [Enderton] p.
168 | Definition | df-po 4344 |
| [Enderton] p.
192 | Theorem 7M(a) | oneli 4476 |
| [Enderton] p.
192 | Theorem 7M(b) | ontr1 4437 |
| [Enderton] p.
192 | Theorem 7M(c) | onirri 4592 |
| [Enderton] p.
193 | Corollary 7N(b) | 0elon 4440 |
| [Enderton] p.
193 | Corollary 7N(c) | onsuci 4565 |
| [Enderton] p.
193 | Corollary 7N(d) | ssonunii 4538 |
| [Enderton] p.
194 | Remark | onprc 4601 |
| [Enderton] p.
194 | Exercise 16 | suc11 4607 |
| [Enderton] p.
197 | Definition | df-card 7288 |
| [Enderton] p.
200 | Exercise 25 | tfis 4632 |
| [Enderton] p.
206 | Theorem 7X(b) | en2lp 4603 |
| [Enderton] p.
207 | Exercise 34 | opthreg 4605 |
| [Enderton] p.
208 | Exercise 35 | suc11g 4606 |
| [Geuvers], p.
1 | Remark | expap0 10716 |
| [Geuvers], p. 6 | Lemma
2.13 | mulap0r 8690 |
| [Geuvers], p. 6 | Lemma
2.15 | mulap0 8729 |
| [Geuvers], p. 9 | Lemma
2.35 | msqge0 8691 |
| [Geuvers], p.
9 | Definition 3.1(2) | ax-arch 8046 |
| [Geuvers], p. 10 | Lemma
3.9 | maxcom 11547 |
| [Geuvers], p. 10 | Lemma
3.10 | maxle1 11555 maxle2 11556 |
| [Geuvers], p. 10 | Lemma
3.11 | maxleast 11557 |
| [Geuvers], p. 10 | Lemma
3.12 | maxleb 11560 |
| [Geuvers], p.
11 | Definition 3.13 | dfabsmax 11561 |
| [Geuvers], p.
17 | Definition 6.1 | df-ap 8657 |
| [Gleason] p.
117 | Proposition 9-2.1 | df-enq 7462 enqer 7473 |
| [Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7466 df-nqqs 7463 |
| [Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7459 df-plqqs 7464 |
| [Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7460 df-mqqs 7465 |
| [Gleason] p.
119 | Proposition 9-2.5 | df-rq 7467 |
| [Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7523 |
| [Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7526 ltbtwnnq 7531 ltbtwnnqq 7530 |
| [Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7515 |
| [Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7516 |
| [Gleason] p.
123 | Proposition 9-3.5 | addclpr 7652 |
| [Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7694 |
| [Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7693 |
| [Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7712 |
| [Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7728 |
| [Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7734 ltaprlem 7733 |
| [Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7731 |
| [Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7687 |
| [Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7707 |
| [Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7696 |
| [Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7695 |
| [Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7703 |
| [Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7753 |
| [Gleason] p.
126 | Proposition 9-4.1 | df-enr 7841 enrer 7850 |
| [Gleason] p.
126 | Proposition 9-4.2 | df-0r 7846 df-1r 7847 df-nr 7842 |
| [Gleason] p.
126 | Proposition 9-4.3 | df-mr 7844 df-plr 7843 negexsr 7887 recexsrlem 7889 |
| [Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7845 |
| [Gleason] p.
130 | Proposition 10-1.3 | creui 9035 creur 9034 cru 8677 |
| [Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 8038 axcnre 7996 |
| [Gleason] p.
132 | Definition 10-3.1 | crim 11202 crimd 11321 crimi 11281 crre 11201 crred 11320 crrei 11280 |
| [Gleason] p.
132 | Definition 10-3.2 | remim 11204 remimd 11286 |
| [Gleason] p.
133 | Definition 10.36 | absval2 11401 absval2d 11529 absval2i 11488 |
| [Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 11228 cjaddd 11309 cjaddi 11276 |
| [Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 11229 cjmuld 11310 cjmuli 11277 |
| [Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 11227 cjcjd 11287 cjcji 11259 |
| [Gleason] p.
133 | Proposition 10-3.4(f) | cjre 11226 cjreb 11210 cjrebd 11290 cjrebi 11262 cjred 11315 rere 11209 rereb 11207 rerebd 11289 rerebi 11261 rered 11313 |
| [Gleason] p.
133 | Proposition 10-3.4(h) | addcj 11235 addcjd 11301 addcji 11271 |
| [Gleason] p.
133 | Proposition 10-3.7(a) | absval 11345 |
| [Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11396 abscjd 11534 abscji 11492 |
| [Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11408 abs00d 11530 abs00i 11489 absne0d 11531 |
| [Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11440 releabsd 11535 releabsi 11493 |
| [Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11413 absmuld 11538 absmuli 11495 |
| [Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11399 sqabsaddi 11496 |
| [Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11448 abstrid 11540 abstrii 11499 |
| [Gleason] p.
134 | Definition 10-4.1 | df-exp 10686 exp0 10690 expp1 10693 expp1d 10821 |
| [Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10728 expaddd 10822 |
| [Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 15417 cxpmuld 15442 expmul 10731 expmuld 10823 |
| [Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10725 mulexpd 10835 rpmulcxp 15414 |
| [Gleason] p.
141 | Definition 11-2.1 | fzval 10134 |
| [Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11670 |
| [Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11672 |
| [Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11671 |
| [Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11675 |
| [Gleason] p.
172 | Corollary 12-2.5 | climrecl 11668 |
| [Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11664 climcj 11665 climim 11667 climre 11666 |
| [Gleason] p.
173 | Definition 12-3.1 | df-ltxr 8114 df-xr 8113 ltxr 9899 |
| [Gleason] p. 180 | Theorem
12-5.3 | climcau 11691 |
| [Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10445 |
| [Gleason] p.
223 | Definition 14-1.1 | df-met 14340 |
| [Gleason] p.
223 | Definition 14-1.1(a) | met0 14869 xmet0 14868 |
| [Gleason] p.
223 | Definition 14-1.1(c) | metsym 14876 |
| [Gleason] p.
223 | Definition 14-1.1(d) | mettri 14878 mstri 14978 xmettri 14877 xmstri 14977 |
| [Gleason] p.
230 | Proposition 14-2.6 | txlm 14784 |
| [Gleason] p.
240 | Proposition 14-4.2 | metcnp3 15016 |
| [Gleason] p.
243 | Proposition 14-4.16 | addcn2 11654 addcncntop 15067 mulcn2 11656 mulcncntop 15069 subcn2 11655 subcncntop 15068 |
| [Gleason] p.
295 | Remark | bcval3 10898 bcval4 10899 |
| [Gleason] p.
295 | Equation 2 | bcpasc 10913 |
| [Gleason] p.
295 | Definition of binomial coefficient | bcval 10896 df-bc 10895 |
| [Gleason] p.
296 | Remark | bcn0 10902 bcnn 10904 |
| [Gleason] p. 296 | Theorem
15-2.8 | binom 11828 |
| [Gleason] p.
308 | Equation 2 | ef0 12016 |
| [Gleason] p.
308 | Equation 3 | efcj 12017 |
| [Gleason] p.
309 | Corollary 15-4.3 | efne0 12022 |
| [Gleason] p.
309 | Corollary 15-4.4 | efexp 12026 |
| [Gleason] p.
310 | Equation 14 | sinadd 12080 |
| [Gleason] p.
310 | Equation 15 | cosadd 12081 |
| [Gleason] p.
311 | Equation 17 | sincossq 12092 |
| [Gleason] p.
311 | Equation 18 | cosbnd 12097 sinbnd 12096 |
| [Gleason] p.
311 | Definition of ` ` | df-pi 11997 |
| [Golan] p.
1 | Remark | srgisid 13781 |
| [Golan] p.
1 | Definition | df-srg 13759 |
| [Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
| [Hamilton] p. 73 | Rule
1 | ax-mp 5 |
| [Hamilton] p. 74 | Rule
2 | ax-gen 1472 |
| [Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 13376 mndideu 13291 |
| [Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 13403 |
| [Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 13432 |
| [Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 13443 |
| [Herstein] p.
57 | Exercise 1 | dfgrp3me 13465 |
| [Heyting] p.
127 | Axiom #1 | ax1hfs 16050 |
| [Hitchcock] p. 5 | Rule
A3 | mptnan 1443 |
| [Hitchcock] p. 5 | Rule
A4 | mptxor 1444 |
| [Hitchcock] p. 5 | Rule
A5 | mtpxor 1446 |
| [HoTT], p. | Lemma
10.4.1 | exmidontriim 7339 |
| [HoTT], p. | Theorem
7.2.6 | nndceq 6587 |
| [HoTT], p.
| Exercise 11.10 | neapmkv 16044 |
| [HoTT], p. | Exercise
11.11 | mulap0bd 8732 |
| [HoTT], p. | Section
11.2.1 | df-iltp 7585 df-imp 7584 df-iplp 7583 df-reap 8650 |
| [HoTT], p. | Theorem
11.2.4 | recapb 8746 rerecapb 8918 |
| [HoTT], p. | Corollary
3.9.2 | uchoice 6225 |
| [HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7777 |
| [HoTT], p. | Corollary
11.4.3 | conventions 15694 |
| [HoTT], p.
| Exercise 11.6(i) | dcapnconst 16037 dceqnconst 16036 |
| [HoTT], p. | Corollary
11.2.13 | axcaucvg 8015 caucvgpr 7797 caucvgprpr 7827 caucvgsr 7917 |
| [HoTT], p. | Definition
11.2.1 | df-inp 7581 |
| [HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 16042 |
| [HoTT], p. | Proposition
11.2.3 | df-iso 4345 ltpopr 7710 ltsopr 7711 |
| [HoTT], p. | Definition
11.2.7(v) | apsym 8681 reapcotr 8673 reapirr 8652 |
| [HoTT], p. | Definition
11.2.7(vi) | 0lt1 8201 gt0add 8648 leadd1 8505 lelttr 8163 lemul1a 8933 lenlt 8150 ltadd1 8504 ltletr 8164 ltmul1 8667 reaplt 8663 |
| [Jech] p. 4 | Definition of
class | cv 1372 cvjust 2200 |
| [Jech] p.
78 | Note | opthprc 4727 |
| [KalishMontague] p.
81 | Note 1 | ax-i9 1553 |
| [Kreyszig] p.
3 | Property M1 | metcl 14858 xmetcl 14857 |
| [Kreyszig] p.
4 | Property M2 | meteq0 14865 |
| [Kreyszig] p.
12 | Equation 5 | muleqadd 8743 |
| [Kreyszig] p.
18 | Definition 1.3-2 | mopnval 14947 |
| [Kreyszig] p.
19 | Remark | mopntopon 14948 |
| [Kreyszig] p.
19 | Theorem T1 | mopn0 14993 mopnm 14953 |
| [Kreyszig] p.
19 | Theorem T2 | unimopn 14991 |
| [Kreyszig] p.
19 | Definition of neighborhood | neibl 14996 |
| [Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 15018 |
| [Kreyszig] p.
25 | Definition 1.4-1 | lmbr 14718 |
| [Kreyszig] p.
51 | Equation 2 | lmodvneg1 14125 |
| [Kreyszig] p.
51 | Equation 1a | lmod0vs 14116 |
| [Kreyszig] p.
51 | Equation 1b | lmodvs0 14117 |
| [Kunen] p. 10 | Axiom
0 | a9e 1719 |
| [Kunen] p. 12 | Axiom
6 | zfrep6 4162 |
| [Kunen] p. 24 | Definition
10.24 | mapval 6749 mapvalg 6747 |
| [Kunen] p. 31 | Definition
10.24 | mapex 6743 |
| [KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3937 |
| [Lang] p.
3 | Statement | lidrideqd 13246 mndbn0 13296 |
| [Lang] p.
3 | Definition | df-mnd 13282 |
| [Lang] p. 4 | Definition of a
(finite) product | gsumsplit1r 13263 |
| [Lang] p.
5 | Equation | gsumfzreidx 13706 |
| [Lang] p.
6 | Definition | mulgnn0gsum 13497 |
| [Lang] p.
7 | Definition | dfgrp2e 13393 |
| [Levy] p.
338 | Axiom | df-clab 2192 df-clel 2201 df-cleq 2198 |
| [Lopez-Astorga] p.
12 | Rule 1 | mptnan 1443 |
| [Lopez-Astorga] p.
12 | Rule 2 | mptxor 1444 |
| [Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1446 |
| [Margaris] p. 40 | Rule
C | exlimiv 1621 |
| [Margaris] p. 49 | Axiom
A1 | ax-1 6 |
| [Margaris] p. 49 | Axiom
A2 | ax-2 7 |
| [Margaris] p. 49 | Axiom
A3 | condc 855 |
| [Margaris] p.
49 | Definition | dfbi2 388 dfordc 894 exalim 1525 |
| [Margaris] p.
51 | Theorem 1 | idALT 20 |
| [Margaris] p.
56 | Theorem 3 | syld 45 |
| [Margaris] p.
60 | Theorem 8 | jcn 653 |
| [Margaris] p.
89 | Theorem 19.2 | 19.2 1661 r19.2m 3547 |
| [Margaris] p.
89 | Theorem 19.3 | 19.3 1577 19.3h 1576 rr19.3v 2912 |
| [Margaris] p.
89 | Theorem 19.5 | alcom 1501 |
| [Margaris] p.
89 | Theorem 19.6 | alexdc 1642 alexim 1668 |
| [Margaris] p.
89 | Theorem 19.7 | alnex 1522 |
| [Margaris] p.
89 | Theorem 19.8 | 19.8a 1613 spsbe 1865 |
| [Margaris] p.
89 | Theorem 19.9 | 19.9 1667 19.9h 1666 19.9v 1894 exlimd 1620 |
| [Margaris] p.
89 | Theorem 19.11 | excom 1687 excomim 1686 |
| [Margaris] p.
89 | Theorem 19.12 | 19.12 1688 r19.12 2612 |
| [Margaris] p.
90 | Theorem 19.14 | exnalim 1669 |
| [Margaris] p.
90 | Theorem 19.15 | albi 1491 ralbi 2638 |
| [Margaris] p.
90 | Theorem 19.16 | 19.16 1578 |
| [Margaris] p.
90 | Theorem 19.17 | 19.17 1579 |
| [Margaris] p.
90 | Theorem 19.18 | exbi 1627 rexbi 2639 |
| [Margaris] p.
90 | Theorem 19.19 | 19.19 1689 |
| [Margaris] p.
90 | Theorem 19.20 | alim 1480 alimd 1544 alimdh 1490 alimdv 1902 ralimdaa 2572 ralimdv 2574 ralimdva 2573 ralimdvva 2575 sbcimdv 3064 |
| [Margaris] p.
90 | Theorem 19.21 | 19.21-2 1690 19.21 1606 19.21bi 1581 19.21h 1580 19.21ht 1604 19.21t 1605 19.21v 1896 alrimd 1633 alrimdd 1632 alrimdh 1502 alrimdv 1899 alrimi 1545 alrimih 1492 alrimiv 1897 alrimivv 1898 r19.21 2582 r19.21be 2597 r19.21bi 2594 r19.21t 2581 r19.21v 2583 ralrimd 2584 ralrimdv 2585 ralrimdva 2586 ralrimdvv 2590 ralrimdvva 2591 ralrimi 2577 ralrimiv 2578 ralrimiva 2579 ralrimivv 2587 ralrimivva 2588 ralrimivvva 2589 ralrimivw 2580 rexlimi 2616 |
| [Margaris] p.
90 | Theorem 19.22 | 2alimdv 1904 2eximdv 1905 exim 1622
eximd 1635 eximdh 1634 eximdv 1903 rexim 2600 reximdai 2604 reximddv 2609 reximddv2 2611 reximdv 2607 reximdv2 2605 reximdva 2608 reximdvai 2606 reximi2 2602 |
| [Margaris] p.
90 | Theorem 19.23 | 19.23 1701 19.23bi 1615 19.23h 1521 19.23ht 1520 19.23t 1700 19.23v 1906 19.23vv 1907 exlimd2 1618 exlimdh 1619 exlimdv 1842 exlimdvv 1921 exlimi 1617 exlimih 1616 exlimiv 1621 exlimivv 1920 r19.23 2614 r19.23v 2615 rexlimd 2620 rexlimdv 2622 rexlimdv3a 2625 rexlimdva 2623 rexlimdva2 2626 rexlimdvaa 2624 rexlimdvv 2630 rexlimdvva 2631 rexlimdvw 2627 rexlimiv 2617 rexlimiva 2618 rexlimivv 2629 |
| [Margaris] p.
90 | Theorem 19.24 | i19.24 1662 |
| [Margaris] p.
90 | Theorem 19.25 | 19.25 1649 |
| [Margaris] p.
90 | Theorem 19.26 | 19.26-2 1505 19.26-3an 1506 19.26 1504 r19.26-2 2635 r19.26-3 2636 r19.26 2632 r19.26m 2637 |
| [Margaris] p.
90 | Theorem 19.27 | 19.27 1584 19.27h 1583 19.27v 1923 r19.27av 2641 r19.27m 3556 r19.27mv 3557 |
| [Margaris] p.
90 | Theorem 19.28 | 19.28 1586 19.28h 1585 19.28v 1924 r19.28av 2642 r19.28m 3550 r19.28mv 3553 rr19.28v 2913 |
| [Margaris] p.
90 | Theorem 19.29 | 19.29 1643 19.29r 1644 19.29r2 1645 19.29x 1646 r19.29 2643 r19.29d2r 2650 r19.29r 2644 |
| [Margaris] p.
90 | Theorem 19.30 | 19.30dc 1650 |
| [Margaris] p.
90 | Theorem 19.31 | 19.31r 1704 |
| [Margaris] p.
90 | Theorem 19.32 | 19.32dc 1702 19.32r 1703 r19.32r 2652 r19.32vdc 2655 r19.32vr 2654 |
| [Margaris] p.
90 | Theorem 19.33 | 19.33 1507 19.33b2 1652 19.33bdc 1653 |
| [Margaris] p.
90 | Theorem 19.34 | 19.34 1707 |
| [Margaris] p.
90 | Theorem 19.35 | 19.35-1 1647 19.35i 1648 |
| [Margaris] p.
90 | Theorem 19.36 | 19.36-1 1696 19.36aiv 1925 19.36i 1695 r19.36av 2657 |
| [Margaris] p.
90 | Theorem 19.37 | 19.37-1 1697 19.37aiv 1698 r19.37 2658 r19.37av 2659 |
| [Margaris] p.
90 | Theorem 19.38 | 19.38 1699 |
| [Margaris] p.
90 | Theorem 19.39 | i19.39 1663 |
| [Margaris] p.
90 | Theorem 19.40 | 19.40-2 1655 19.40 1654 r19.40 2660 |
| [Margaris] p.
90 | Theorem 19.41 | 19.41 1709 19.41h 1708 19.41v 1926 19.41vv 1927 19.41vvv 1928 19.41vvvv 1929 r19.41 2661 r19.41v 2662 |
| [Margaris] p.
90 | Theorem 19.42 | 19.42 1711 19.42h 1710 19.42v 1930 19.42vv 1935 19.42vvv 1936 19.42vvvv 1937 r19.42v 2663 |
| [Margaris] p.
90 | Theorem 19.43 | 19.43 1651 r19.43 2664 |
| [Margaris] p.
90 | Theorem 19.44 | 19.44 1705 r19.44av 2665 r19.44mv 3555 |
| [Margaris] p.
90 | Theorem 19.45 | 19.45 1706 r19.45av 2666 r19.45mv 3554 |
| [Margaris] p.
110 | Exercise 2(b) | eu1 2079 |
| [Megill] p. 444 | Axiom
C5 | ax-17 1549 |
| [Megill] p. 445 | Lemma
L12 | alequcom 1538 ax-10 1528 |
| [Megill] p. 446 | Lemma
L17 | equtrr 1733 |
| [Megill] p. 446 | Lemma
L19 | hbnae 1744 |
| [Megill] p. 447 | Remark
9.1 | df-sb 1786 sbid 1797 |
| [Megill] p. 448 | Scheme
C5' | ax-4 1533 |
| [Megill] p. 448 | Scheme
C6' | ax-7 1471 |
| [Megill] p. 448 | Scheme
C8' | ax-8 1527 |
| [Megill] p. 448 | Scheme
C9' | ax-i12 1530 |
| [Megill] p. 448 | Scheme
C11' | ax-10o 1739 |
| [Megill] p. 448 | Scheme
C12' | ax-13 2178 |
| [Megill] p. 448 | Scheme
C13' | ax-14 2179 |
| [Megill] p. 448 | Scheme
C15' | ax-11o 1846 |
| [Megill] p. 448 | Scheme
C16' | ax-16 1837 |
| [Megill] p. 448 | Theorem
9.4 | dral1 1753 dral2 1754 drex1 1821 drex2 1755 drsb1 1822 drsb2 1864 |
| [Megill] p. 449 | Theorem
9.7 | sbcom2 2015 sbequ 1863 sbid2v 2024 |
| [Megill] p. 450 | Example
in Appendix | hba1 1563 |
| [Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
| [Mendelson] p.
69 | Axiom 4 | rspsbc 3081 rspsbca 3082 stdpc4 1798 |
| [Mendelson] p.
69 | Axiom 5 | ra5 3087 stdpc5 1607 |
| [Mendelson] p. 81 | Rule
C | exlimiv 1621 |
| [Mendelson] p.
95 | Axiom 6 | stdpc6 1726 |
| [Mendelson] p.
95 | Axiom 7 | stdpc7 1793 |
| [Mendelson] p.
231 | Exercise 4.10(k) | inv1 3497 |
| [Mendelson] p.
231 | Exercise 4.10(l) | unv 3498 |
| [Mendelson] p.
231 | Exercise 4.10(n) | inssun 3413 |
| [Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3461 |
| [Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3414 |
| [Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3304 |
| [Mendelson] p.
231 | Definition of union | unssin 3412 |
| [Mendelson] p.
235 | Exercise 4.12(c) | univ 4524 |
| [Mendelson] p.
235 | Exercise 4.12(d) | pwv 3849 |
| [Mendelson] p.
235 | Exercise 4.12(j) | pwin 4330 |
| [Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4331 |
| [Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4332 |
| [Mendelson] p.
235 | Exercise 4.12(n) | uniin 3870 |
| [Mendelson] p.
235 | Exercise 4.12(p) | reli 4808 |
| [Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5204 |
| [Mendelson] p.
246 | Definition of successor | df-suc 4419 |
| [Mendelson] p.
254 | Proposition 4.22(b) | xpen 6944 |
| [Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6918 xpsneng 6919 |
| [Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6924 xpcomeng 6925 |
| [Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6927 |
| [Mendelson] p.
255 | Exercise 4.39 | endisj 6921 |
| [Mendelson] p.
255 | Exercise 4.41 | mapprc 6741 |
| [Mendelson] p.
255 | Exercise 4.43 | mapsnen 6905 |
| [Mendelson] p.
255 | Exercise 4.47 | xpmapen 6949 |
| [Mendelson] p.
255 | Exercise 4.42(a) | map0e 6775 |
| [Mendelson] p.
255 | Exercise 4.42(b) | map1 6906 |
| [Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7331 djucomen 7330 |
| [Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7329 |
| [Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6555 |
| [Monk1] p. 26 | Theorem
2.8(vii) | ssin 3395 |
| [Monk1] p. 33 | Theorem
3.2(i) | ssrel 4764 |
| [Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4765 |
| [Monk1] p. 34 | Definition
3.3 | df-opab 4107 |
| [Monk1] p. 36 | Theorem
3.7(i) | coi1 5199 coi2 5200 |
| [Monk1] p. 36 | Theorem
3.8(v) | dm0 4893 rn0 4935 |
| [Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5088 |
| [Monk1] p. 37 | Theorem
3.13(i) | relxp 4785 |
| [Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4899 rnxpm 5113 |
| [Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4756 xp0 5103 |
| [Monk1] p. 38 | Theorem
3.16(ii) | ima0 5042 |
| [Monk1] p. 38 | Theorem
3.16(viii) | imai 5039 |
| [Monk1] p. 39 | Theorem
3.17 | imaex 5038 imaexg 5037 |
| [Monk1] p. 39 | Theorem
3.16(xi) | imassrn 5034 |
| [Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5712 funfvop 5694 |
| [Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5624 |
| [Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5632 |
| [Monk1] p. 43 | Theorem
4.6 | funun 5316 |
| [Monk1] p. 43 | Theorem
4.8(iv) | dff13 5839 dff13f 5841 |
| [Monk1] p. 46 | Theorem
4.15(v) | funex 5809 funrnex 6201 |
| [Monk1] p. 50 | Definition
5.4 | fniunfv 5833 |
| [Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5167 |
| [Monk1] p. 52 | Theorem
5.11(viii) | ssint 3901 |
| [Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6243 df-1st 6228 |
| [Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6244 df-2nd 6229 |
| [Monk2] p. 105 | Axiom
C4 | ax-5 1470 |
| [Monk2] p. 105 | Axiom
C7 | ax-8 1527 |
| [Monk2] p. 105 | Axiom
C8 | ax-11 1529 ax-11o 1846 |
| [Monk2] p. 105 | Axiom
(C8) | ax11v 1850 |
| [Monk2] p. 109 | Lemma
12 | ax-7 1471 |
| [Monk2] p. 109 | Lemma
15 | equvin 1886 equvini 1781 eqvinop 4288 |
| [Monk2] p. 113 | Axiom
C5-1 | ax-17 1549 |
| [Monk2] p. 113 | Axiom
C5-2 | ax6b 1674 |
| [Monk2] p. 113 | Axiom
C5-3 | ax-7 1471 |
| [Monk2] p. 114 | Lemma
22 | hba1 1563 |
| [Monk2] p. 114 | Lemma
23 | hbia1 1575 nfia1 1603 |
| [Monk2] p. 114 | Lemma
24 | hba2 1574 nfa2 1602 |
| [Moschovakis] p.
2 | Chapter 2 | df-stab 833 dftest 16051 |
| [Munkres] p. 77 | Example
2 | distop 14590 |
| [Munkres] p.
78 | Definition of basis | df-bases 14548 isbasis3g 14551 |
| [Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 13125 tgval2 14556 |
| [Munkres] p.
79 | Remark | tgcl 14569 |
| [Munkres] p. 80 | Lemma
2.1 | tgval3 14563 |
| [Munkres] p. 80 | Lemma
2.2 | tgss2 14584 tgss3 14583 |
| [Munkres] p. 81 | Lemma
2.3 | basgen 14585 basgen2 14586 |
| [Munkres] p.
89 | Definition of subspace topology | resttop 14675 |
| [Munkres] p. 93 | Theorem
6.1(1) | 0cld 14617 topcld 14614 |
| [Munkres] p. 93 | Theorem
6.1(3) | uncld 14618 |
| [Munkres] p.
94 | Definition of closure | clsval 14616 |
| [Munkres] p.
94 | Definition of interior | ntrval 14615 |
| [Munkres] p.
102 | Definition of continuous function | df-cn 14693 iscn 14702 iscn2 14705 |
| [Munkres] p. 107 | Theorem
7.2(g) | cncnp 14735 cncnp2m 14736 cncnpi 14733 df-cnp 14694 iscnp 14704 |
| [Munkres] p. 127 | Theorem
10.1 | metcn 15019 |
| [Pierik], p. 8 | Section
2.2.1 | dfrex2fin 7002 |
| [Pierik], p. 9 | Definition
2.4 | df-womni 7268 |
| [Pierik], p. 9 | Definition
2.5 | df-markov 7256 omniwomnimkv 7271 |
| [Pierik], p. 10 | Section
2.3 | dfdif3 3283 |
| [Pierik], p.
14 | Definition 3.1 | df-omni 7239 exmidomniim 7245 finomni 7244 |
| [Pierik], p. 15 | Section
3.1 | df-nninf 7224 |
| [Pradic2025], p. 2 | Section
1.1 | nnnninfen 15995 |
| [PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 15999 |
| [PradicBrown2022], p.
2 | Remark | exmidpw 7007 |
| [PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7311 |
| [PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 |
| [PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7253 |
| [PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 15981 peano4nninf 15980 |
| [PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 15983 |
| [PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 15991 |
| [PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 15993 |
| [PradicBrown2022], p. 5 | Definition
3.3 | nnsf 15979 |
| [Quine] p. 16 | Definition
2.1 | df-clab 2192 rabid 2682 |
| [Quine] p. 17 | Definition
2.1'' | dfsb7 2019 |
| [Quine] p. 18 | Definition
2.7 | df-cleq 2198 |
| [Quine] p. 19 | Definition
2.9 | df-v 2774 |
| [Quine] p. 34 | Theorem
5.1 | abeq2 2314 |
| [Quine] p. 35 | Theorem
5.2 | abid2 2326 abid2f 2374 |
| [Quine] p. 40 | Theorem
6.1 | sb5 1911 |
| [Quine] p. 40 | Theorem
6.2 | sb56 1909 sb6 1910 |
| [Quine] p. 41 | Theorem
6.3 | df-clel 2201 |
| [Quine] p. 41 | Theorem
6.4 | eqid 2205 |
| [Quine] p. 41 | Theorem
6.5 | eqcom 2207 |
| [Quine] p. 42 | Theorem
6.6 | df-sbc 2999 |
| [Quine] p. 42 | Theorem
6.7 | dfsbcq 3000 dfsbcq2 3001 |
| [Quine] p. 43 | Theorem
6.8 | vex 2775 |
| [Quine] p. 43 | Theorem
6.9 | isset 2778 |
| [Quine] p. 44 | Theorem
7.3 | spcgf 2855 spcgv 2860 spcimgf 2853 |
| [Quine] p. 44 | Theorem
6.11 | spsbc 3010 spsbcd 3011 |
| [Quine] p. 44 | Theorem
6.12 | elex 2783 |
| [Quine] p. 44 | Theorem
6.13 | elab 2917 elabg 2919 elabgf 2915 |
| [Quine] p. 44 | Theorem
6.14 | noel 3464 |
| [Quine] p. 48 | Theorem
7.2 | snprc 3698 |
| [Quine] p. 48 | Definition
7.1 | df-pr 3640 df-sn 3639 |
| [Quine] p. 49 | Theorem
7.4 | snss 3768 snssg 3767 |
| [Quine] p. 49 | Theorem
7.5 | prss 3789 prssg 3790 |
| [Quine] p. 49 | Theorem
7.6 | prid1 3739 prid1g 3737 prid2 3740 prid2g 3738 snid 3664
snidg 3662 |
| [Quine] p. 51 | Theorem
7.12 | snexg 4229 snexprc 4231 |
| [Quine] p. 51 | Theorem
7.13 | prexg 4256 |
| [Quine] p. 53 | Theorem
8.2 | unisn 3866 unisng 3867 |
| [Quine] p. 53 | Theorem
8.3 | uniun 3869 |
| [Quine] p. 54 | Theorem
8.6 | elssuni 3878 |
| [Quine] p. 54 | Theorem
8.7 | uni0 3877 |
| [Quine] p. 56 | Theorem
8.17 | uniabio 5243 |
| [Quine] p. 56 | Definition
8.18 | dfiota2 5234 |
| [Quine] p. 57 | Theorem
8.19 | iotaval 5244 |
| [Quine] p. 57 | Theorem
8.22 | iotanul 5248 |
| [Quine] p. 58 | Theorem
8.23 | euiotaex 5249 |
| [Quine] p. 58 | Definition
9.1 | df-op 3642 |
| [Quine] p. 61 | Theorem
9.5 | opabid 4303 opabidw 4304 opelopab 4319 opelopaba 4313 opelopabaf 4321 opelopabf 4322 opelopabg 4315 opelopabga 4310 opelopabgf 4317 oprabid 5978 |
| [Quine] p. 64 | Definition
9.11 | df-xp 4682 |
| [Quine] p. 64 | Definition
9.12 | df-cnv 4684 |
| [Quine] p. 64 | Definition
9.15 | df-id 4341 |
| [Quine] p. 65 | Theorem
10.3 | fun0 5333 |
| [Quine] p. 65 | Theorem
10.4 | funi 5304 |
| [Quine] p. 65 | Theorem
10.5 | funsn 5323 funsng 5321 |
| [Quine] p. 65 | Definition
10.1 | df-fun 5274 |
| [Quine] p. 65 | Definition
10.2 | args 5052 dffv4g 5575 |
| [Quine] p. 68 | Definition
10.11 | df-fv 5280 fv2 5573 |
| [Quine] p. 124 | Theorem
17.3 | nn0opth2 10871 nn0opth2d 10870 nn0opthd 10869 |
| [Quine] p. 284 | Axiom
39(vi) | funimaex 5360 funimaexg 5359 |
| [Roman] p. 18 | Part
Preliminaries | df-rng 13728 |
| [Roman] p. 19 | Part
Preliminaries | df-ring 13793 |
| [Rudin] p. 164 | Equation
27 | efcan 12020 |
| [Rudin] p. 164 | Equation
30 | efzval 12027 |
| [Rudin] p. 167 | Equation
48 | absefi 12113 |
| [Sanford] p.
39 | Remark | ax-mp 5 |
| [Sanford] p. 39 | Rule
3 | mtpxor 1446 |
| [Sanford] p. 39 | Rule
4 | mptxor 1444 |
| [Sanford] p. 40 | Rule
1 | mptnan 1443 |
| [Schechter] p.
51 | Definition of antisymmetry | intasym 5068 |
| [Schechter] p.
51 | Definition of irreflexivity | intirr 5070 |
| [Schechter] p.
51 | Definition of symmetry | cnvsym 5067 |
| [Schechter] p.
51 | Definition of transitivity | cotr 5065 |
| [Schechter] p.
187 | Definition of "ring with unit" | isring 13795 |
| [Schechter] p.
428 | Definition 15.35 | bastop1 14588 |
| [Stoll] p. 13 | Definition
of symmetric difference | symdif1 3438 |
| [Stoll] p. 16 | Exercise
4.4 | 0dif 3532 dif0 3531 |
| [Stoll] p. 16 | Exercise
4.8 | difdifdirss 3545 |
| [Stoll] p. 19 | Theorem
5.2(13) | undm 3431 |
| [Stoll] p. 19 | Theorem
5.2(13') | indmss 3432 |
| [Stoll] p.
20 | Remark | invdif 3415 |
| [Stoll] p. 25 | Definition
of ordered triple | df-ot 3643 |
| [Stoll] p.
43 | Definition | uniiun 3981 |
| [Stoll] p.
44 | Definition | intiin 3982 |
| [Stoll] p.
45 | Definition | df-iin 3930 |
| [Stoll] p. 45 | Definition
indexed union | df-iun 3929 |
| [Stoll] p. 176 | Theorem
3.4(27) | imandc 891 imanst 890 |
| [Stoll] p. 262 | Example
4.1 | symdif1 3438 |
| [Suppes] p. 22 | Theorem
2 | eq0 3479 |
| [Suppes] p. 22 | Theorem
4 | eqss 3208 eqssd 3210 eqssi 3209 |
| [Suppes] p. 23 | Theorem
5 | ss0 3501 ss0b 3500 |
| [Suppes] p. 23 | Theorem
6 | sstr 3201 |
| [Suppes] p. 25 | Theorem
12 | elin 3356 elun 3314 |
| [Suppes] p. 26 | Theorem
15 | inidm 3382 |
| [Suppes] p. 26 | Theorem
16 | in0 3495 |
| [Suppes] p. 27 | Theorem
23 | unidm 3316 |
| [Suppes] p. 27 | Theorem
24 | un0 3494 |
| [Suppes] p. 27 | Theorem
25 | ssun1 3336 |
| [Suppes] p. 27 | Theorem
26 | ssequn1 3343 |
| [Suppes] p. 27 | Theorem
27 | unss 3347 |
| [Suppes] p. 27 | Theorem
28 | indir 3422 |
| [Suppes] p. 27 | Theorem
29 | undir 3423 |
| [Suppes] p. 28 | Theorem
32 | difid 3529 difidALT 3530 |
| [Suppes] p. 29 | Theorem
33 | difin 3410 |
| [Suppes] p. 29 | Theorem
34 | indif 3416 |
| [Suppes] p. 29 | Theorem
35 | undif1ss 3535 |
| [Suppes] p. 29 | Theorem
36 | difun2 3540 |
| [Suppes] p. 29 | Theorem
37 | difin0 3534 |
| [Suppes] p. 29 | Theorem
38 | disjdif 3533 |
| [Suppes] p. 29 | Theorem
39 | difundi 3425 |
| [Suppes] p. 29 | Theorem
40 | difindiss 3427 |
| [Suppes] p. 30 | Theorem
41 | nalset 4175 |
| [Suppes] p. 39 | Theorem
61 | uniss 3871 |
| [Suppes] p. 39 | Theorem
65 | uniop 4301 |
| [Suppes] p. 41 | Theorem
70 | intsn 3920 |
| [Suppes] p. 42 | Theorem
71 | intpr 3917 intprg 3918 |
| [Suppes] p. 42 | Theorem
73 | op1stb 4526 op1stbg 4527 |
| [Suppes] p. 42 | Theorem
78 | intun 3916 |
| [Suppes] p. 44 | Definition
15(a) | dfiun2 3961 dfiun2g 3959 |
| [Suppes] p. 44 | Definition
15(b) | dfiin2 3962 |
| [Suppes] p. 47 | Theorem
86 | elpw 3622 elpw2 4202 elpw2g 4201 elpwg 3624 |
| [Suppes] p. 47 | Theorem
87 | pwid 3631 |
| [Suppes] p. 47 | Theorem
89 | pw0 3780 |
| [Suppes] p. 48 | Theorem
90 | pwpw0ss 3845 |
| [Suppes] p. 52 | Theorem
101 | xpss12 4783 |
| [Suppes] p. 52 | Theorem
102 | xpindi 4814 xpindir 4815 |
| [Suppes] p. 52 | Theorem
103 | xpundi 4732 xpundir 4733 |
| [Suppes] p. 54 | Theorem
105 | elirrv 4597 |
| [Suppes] p. 58 | Theorem
2 | relss 4763 |
| [Suppes] p. 59 | Theorem
4 | eldm 4876 eldm2 4877 eldm2g 4875 eldmg 4874 |
| [Suppes] p. 59 | Definition
3 | df-dm 4686 |
| [Suppes] p. 60 | Theorem
6 | dmin 4887 |
| [Suppes] p. 60 | Theorem
8 | rnun 5092 |
| [Suppes] p. 60 | Theorem
9 | rnin 5093 |
| [Suppes] p. 60 | Definition
4 | dfrn2 4867 |
| [Suppes] p. 61 | Theorem
11 | brcnv 4862 brcnvg 4860 |
| [Suppes] p. 62 | Equation
5 | elcnv 4856 elcnv2 4857 |
| [Suppes] p. 62 | Theorem
12 | relcnv 5061 |
| [Suppes] p. 62 | Theorem
15 | cnvin 5091 |
| [Suppes] p. 62 | Theorem
16 | cnvun 5089 |
| [Suppes] p. 63 | Theorem
20 | co02 5197 |
| [Suppes] p. 63 | Theorem
21 | dmcoss 4949 |
| [Suppes] p. 63 | Definition
7 | df-co 4685 |
| [Suppes] p. 64 | Theorem
26 | cnvco 4864 |
| [Suppes] p. 64 | Theorem
27 | coass 5202 |
| [Suppes] p. 65 | Theorem
31 | resundi 4973 |
| [Suppes] p. 65 | Theorem
34 | elima 5028 elima2 5029 elima3 5030 elimag 5027 |
| [Suppes] p. 65 | Theorem
35 | imaundi 5096 |
| [Suppes] p. 66 | Theorem
40 | dminss 5098 |
| [Suppes] p. 66 | Theorem
41 | imainss 5099 |
| [Suppes] p. 67 | Exercise
11 | cnvxp 5102 |
| [Suppes] p. 81 | Definition
34 | dfec2 6625 |
| [Suppes] p. 82 | Theorem
72 | elec 6663 elecg 6662 |
| [Suppes] p. 82 | Theorem
73 | erth 6668 erth2 6669 |
| [Suppes] p. 89 | Theorem
96 | map0b 6776 |
| [Suppes] p. 89 | Theorem
97 | map0 6778 map0g 6777 |
| [Suppes] p. 89 | Theorem
98 | mapsn 6779 |
| [Suppes] p. 89 | Theorem
99 | mapss 6780 |
| [Suppes] p. 92 | Theorem
1 | enref 6858 enrefg 6857 |
| [Suppes] p. 92 | Theorem
2 | ensym 6875 ensymb 6874 ensymi 6876 |
| [Suppes] p. 92 | Theorem
3 | entr 6878 |
| [Suppes] p. 92 | Theorem
4 | unen 6910 |
| [Suppes] p. 94 | Theorem
15 | endom 6856 |
| [Suppes] p. 94 | Theorem
16 | ssdomg 6872 |
| [Suppes] p. 94 | Theorem
17 | domtr 6879 |
| [Suppes] p. 95 | Theorem
18 | isbth 7071 |
| [Suppes] p. 98 | Exercise
4 | fundmen 6900 fundmeng 6901 |
| [Suppes] p. 98 | Exercise
6 | xpdom3m 6931 |
| [Suppes] p.
130 | Definition 3 | df-tr 4144 |
| [Suppes] p. 132 | Theorem
9 | ssonuni 4537 |
| [Suppes] p.
134 | Definition 6 | df-suc 4419 |
| [Suppes] p. 136 | Theorem
Schema 22 | findes 4652 finds 4649 finds1 4651 finds2 4650 |
| [Suppes] p.
162 | Definition 5 | df-ltnqqs 7468 df-ltpq 7461 |
| [Suppes] p. 228 | Theorem
Schema 61 | onintss 4438 |
| [TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2187 |
| [TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2198 |
| [TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2201 |
| [TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2200 |
| [TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2223 |
| [TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5950 |
| [TakeutiZaring] p.
14 | Proposition 4.14 | ru 2997 |
| [TakeutiZaring] p.
15 | Exercise 1 | elpr 3654 elpr2 3655 elprg 3653 |
| [TakeutiZaring] p.
15 | Exercise 2 | elsn 3649 elsn2 3667 elsn2g 3666 elsng 3648 velsn 3650 |
| [TakeutiZaring] p.
15 | Exercise 3 | elop 4276 |
| [TakeutiZaring] p.
15 | Exercise 4 | sneq 3644 sneqr 3801 |
| [TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3652 dfsn2 3647 |
| [TakeutiZaring] p.
16 | Axiom 3 | uniex 4485 |
| [TakeutiZaring] p.
16 | Exercise 6 | opth 4282 |
| [TakeutiZaring] p.
16 | Exercise 8 | rext 4260 |
| [TakeutiZaring] p.
16 | Corollary 5.8 | unex 4489 unexg 4491 |
| [TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3682 |
| [TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3851 |
| [TakeutiZaring] p.
16 | Definition 5.6 | df-in 3172 df-un 3170 |
| [TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3864 uniprg 3865 |
| [TakeutiZaring] p.
17 | Axiom 4 | vpwex 4224 |
| [TakeutiZaring] p.
17 | Exercise 1 | eltp 3681 |
| [TakeutiZaring] p.
17 | Exercise 5 | elsuc 4454 elsucg 4452 sstr2 3200 |
| [TakeutiZaring] p.
17 | Exercise 6 | uncom 3317 |
| [TakeutiZaring] p.
17 | Exercise 7 | incom 3365 |
| [TakeutiZaring] p.
17 | Exercise 8 | unass 3330 |
| [TakeutiZaring] p.
17 | Exercise 9 | inass 3383 |
| [TakeutiZaring] p.
17 | Exercise 10 | indi 3420 |
| [TakeutiZaring] p.
17 | Exercise 11 | undi 3421 |
| [TakeutiZaring] p.
17 | Definition 5.9 | ssalel 3181 |
| [TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3618 |
| [TakeutiZaring] p.
18 | Exercise 7 | unss2 3344 |
| [TakeutiZaring] p.
18 | Exercise 9 | df-ss 3179 dfss2 3183 sseqin2 3392 |
| [TakeutiZaring] p.
18 | Exercise 10 | ssid 3213 |
| [TakeutiZaring] p.
18 | Exercise 12 | inss1 3393 inss2 3394 |
| [TakeutiZaring] p.
18 | Exercise 13 | nssr 3253 |
| [TakeutiZaring] p.
18 | Exercise 15 | unieq 3859 |
| [TakeutiZaring] p.
18 | Exercise 18 | sspwb 4261 |
| [TakeutiZaring] p.
18 | Exercise 19 | pweqb 4268 |
| [TakeutiZaring] p.
20 | Definition | df-rab 2493 |
| [TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4172 |
| [TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3168 |
| [TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3462 |
| [TakeutiZaring] p.
20 | Proposition 5.15 | difid 3529 difidALT 3530 |
| [TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3473 |
| [TakeutiZaring] p.
21 | Theorem 5.22 | setind 4588 |
| [TakeutiZaring] p.
21 | Definition 5.20 | df-v 2774 |
| [TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4177 |
| [TakeutiZaring] p.
22 | Exercise 1 | 0ss 3499 |
| [TakeutiZaring] p.
22 | Exercise 3 | ssex 4182 ssexg 4184 |
| [TakeutiZaring] p.
22 | Exercise 4 | inex1 4179 |
| [TakeutiZaring] p.
22 | Exercise 5 | ruv 4599 |
| [TakeutiZaring] p.
22 | Exercise 6 | elirr 4590 |
| [TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3525 |
| [TakeutiZaring] p.
22 | Exercise 11 | difdif 3298 |
| [TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3434 |
| [TakeutiZaring] p.
22 | Exercise 14 | difss 3299 |
| [TakeutiZaring] p.
22 | Exercise 15 | sscon 3307 |
| [TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2489 |
| [TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2490 |
| [TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4791 xpexg 4790 xpexgALT 6220 |
| [TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4683 |
| [TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5339 |
| [TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5494 fun11 5342 |
| [TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5283 svrelfun 5340 |
| [TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4866 |
| [TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4868 |
| [TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4688 |
| [TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4689 |
| [TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4685 |
| [TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5138 dfrel2 5134 |
| [TakeutiZaring] p.
25 | Exercise 3 | xpss 4784 |
| [TakeutiZaring] p.
25 | Exercise 5 | relun 4793 |
| [TakeutiZaring] p.
25 | Exercise 6 | reluni 4799 |
| [TakeutiZaring] p.
25 | Exercise 9 | inxp 4813 |
| [TakeutiZaring] p.
25 | Exercise 12 | relres 4988 |
| [TakeutiZaring] p.
25 | Exercise 13 | opelres 4965 opelresg 4967 |
| [TakeutiZaring] p.
25 | Exercise 14 | dmres 4981 |
| [TakeutiZaring] p.
25 | Exercise 15 | resss 4984 |
| [TakeutiZaring] p.
25 | Exercise 17 | resabs1 4989 |
| [TakeutiZaring] p.
25 | Exercise 18 | funres 5313 |
| [TakeutiZaring] p.
25 | Exercise 24 | relco 5182 |
| [TakeutiZaring] p.
25 | Exercise 29 | funco 5312 |
| [TakeutiZaring] p.
25 | Exercise 30 | f1co 5495 |
| [TakeutiZaring] p.
26 | Definition 6.10 | eu2 2098 |
| [TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5280 fv3 5601 |
| [TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5222 cnvexg 5221 |
| [TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4946 dmexg 4943 |
| [TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4947 rnexg 4944 |
| [TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5595 |
| [TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5605 tz6.12 5606 tz6.12c 5608 |
| [TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5569 |
| [TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5275 |
| [TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5276 |
| [TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5278 wfo 5270 |
| [TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5277 wf1 5269 |
| [TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5279 wf1o 5271 |
| [TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5679 eqfnfv2 5680 eqfnfv2f 5683 |
| [TakeutiZaring] p.
28 | Exercise 5 | fvco 5651 |
| [TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5808 fnexALT 6198 |
| [TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5807 resfunexgALT 6195 |
| [TakeutiZaring] p.
29 | Exercise 9 | funimaex 5360 funimaexg 5359 |
| [TakeutiZaring] p.
29 | Definition 6.18 | df-br 4046 |
| [TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 5053 iniseg 5055 |
| [TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4337 |
| [TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5281 |
| [TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5881 |
| [TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5882 |
| [TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5887 |
| [TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5889 |
| [TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5897 |
| [TakeutiZaring] p.
35 | Notation | wtr 4143 |
| [TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4402 |
| [TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4147 |
| [TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4625 |
| [TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4429 |
| [TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4433 |
| [TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4541 |
| [TakeutiZaring] p.
38 | Definition 7.11 | df-on 4416 |
| [TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4535 |
| [TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4601 |
| [TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4631 |
| [TakeutiZaring] p.
40 | Exercise 7 | dftr2 4145 |
| [TakeutiZaring] p.
40 | Exercise 11 | unon 4560 |
| [TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4536 |
| [TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3878 |
| [TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4419 |
| [TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4463 sucidg 4464 |
| [TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4550 |
| [TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4417 |
| [TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4555 ordelsuc 4554 |
| [TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4643 |
| [TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4644 |
| [TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4645 |
| [TakeutiZaring] p.
43 | Axiom 7 | omex 4642 |
| [TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4656 |
| [TakeutiZaring] p.
43 | Corollary 7.31 | find 4648 |
| [TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4646 |
| [TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4647 |
| [TakeutiZaring] p.
44 | Exercise 2 | int0 3899 |
| [TakeutiZaring] p.
44 | Exercise 3 | trintssm 4159 |
| [TakeutiZaring] p.
44 | Exercise 4 | intss1 3900 |
| [TakeutiZaring] p.
44 | Exercise 6 | onintonm 4566 |
| [TakeutiZaring] p.
44 | Definition 7.35 | df-int 3886 |
| [TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6396 |
| [TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6453 tfri1d 6423 |
| [TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6454 tfri2d 6424 |
| [TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6455 |
| [TakeutiZaring] p.
50 | Exercise 3 | smoiso 6390 |
| [TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6374 |
| [TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6552 |
| [TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6548 |
| [TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6545 |
| [TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6549 |
| [TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6597 nnaordi 6596 |
| [TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3972 uniss2 3881 |
| [TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6558 |
| [TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6568 |
| [TakeutiZaring] p.
62 | Exercise 5 | oaword1 6559 |
| [TakeutiZaring] p.
62 | Definition 8.15 | om0 6546 omsuc 6560 |
| [TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6569 |
| [TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6605 nnmordi 6604 |
| [TakeutiZaring] p.
67 | Definition 8.30 | oei0 6547 |
| [TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7296 |
| [TakeutiZaring] p.
88 | Exercise 1 | en0 6889 |
| [TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6956 |
| [TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6957 |
| [TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6832 isfi 6854 |
| [TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6928 |
| [TakeutiZaring] p.
95 | Definition 10.42 | df-map 6739 |
| [TakeutiZaring] p.
96 | Proposition 10.44 | pw2f1odc 6934 |
| [TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6947 |
| [Tarski] p. 67 | Axiom
B5 | ax-4 1533 |
| [Tarski] p. 68 | Lemma
6 | equid 1724 |
| [Tarski] p. 69 | Lemma
7 | equcomi 1727 |
| [Tarski] p. 70 | Lemma
14 | spim 1761 spime 1764 spimeh 1762 spimh 1760 |
| [Tarski] p. 70 | Lemma
16 | ax-11 1529 ax-11o 1846 ax11i 1737 |
| [Tarski] p. 70 | Lemmas 16
and 17 | sb6 1910 |
| [Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1549 |
| [Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2178 ax-14 2179 |
| [WhiteheadRussell] p.
96 | Axiom *1.3 | olc 713 |
| [WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 729 |
| [WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 758 |
| [WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 767 |
| [WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 791 |
| [WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 617 |
| [WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
| [WhiteheadRussell] p.
100 | Theorem *2.03 | con2 644 |
| [WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
| [WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
| [WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
| [WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 839 |
| [WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2152 syl 14 |
| [WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 739 |
| [WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
| [WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 838 |
| [WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 630 |
| [WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 887 |
| [WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 845 |
| [WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 858 |
| [WhiteheadRussell] p.
103 | Theorem *2.16 | con3 643 |
| [WhiteheadRussell] p.
103 | Theorem *2.17 | condc 855 |
| [WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 857 |
| [WhiteheadRussell] p.
104 | Theorem *2.2 | orc 714 |
| [WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 777 |
| [WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 618 |
| [WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 622 |
| [WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 895 |
| [WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 909 |
| [WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
| [WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 770 |
| [WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 771 |
| [WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 806 |
| [WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 807 |
| [WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 805 |
| [WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 982 |
| [WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 780 |
| [WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 778 |
| [WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 779 |
| [WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
| [WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 740 |
| [WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 741 |
| [WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 869 pm2.5gdc 868 |
| [WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 864 |
| [WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 742 |
| [WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 743 |
| [WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 744 |
| [WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 657 |
| [WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 658 |
| [WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 724 |
| [WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 893 |
| [WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 727 |
| [WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 728 |
| [WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 867 |
| [WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 750 |
| [WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 802 |
| [WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 803 |
| [WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 661 |
| [WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 715 pm2.67 745 |
| [WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 871 pm2.521gdc 870 |
| [WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 749 |
| [WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 812 |
| [WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 896 |
| [WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 917 |
| [WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 808 |
| [WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 809 |
| [WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 811 |
| [WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 810 |
| [WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
| [WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 813 |
| [WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 814 |
| [WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
| [WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 907 |
| [WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
| [WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 756 |
| [WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
| [WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 960 |
| [WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 961 |
| [WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 962 |
| [WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 755 |
| [WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
| [WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
| [WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 695 |
| [WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
| [WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
| [WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
| [WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 862 |
| [WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 861 |
| [WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
| [WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
| [WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 691 |
| [WhiteheadRussell] p.
113 | Fact) | pm3.45 597 |
| [WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
| [WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
| [WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
| [WhiteheadRussell] p.
113 | Theorem *3.44 | jao 757 pm3.44 717 |
| [WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
| [WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 602 |
| [WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 787 |
| [WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 873 |
| [WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
| [WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 874 |
| [WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 892 |
| [WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 696 |
| [WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
| [WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 955 bitr 472 |
| [WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
| [WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 759 pm4.25 760 |
| [WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
| [WhiteheadRussell] p.
118 | Theorem *4.4 | andi 820 |
| [WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 730 |
| [WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
| [WhiteheadRussell] p.
118 | Theorem *4.33 | orass 769 |
| [WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
| [WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 794 |
| [WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 605 |
| [WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 824 |
| [WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 983 |
| [WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 818 |
| [WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 974 |
| [WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 952 |
| [WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 781 |
| [WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 816 pm4.45 786 pm4.45im 334 |
| [WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1504 |
| [WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 959 |
| [WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 899 imorr 723 |
| [WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
| [WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 901 |
| [WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 752 |
| [WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 753 |
| [WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 904 |
| [WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 941 |
| [WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 754 pm4.56 782 |
| [WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 942 oranim 783 |
| [WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 688 |
| [WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 900 |
| [WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 888 |
| [WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 902 |
| [WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 689 |
| [WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 903 |
| [WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 889 |
| [WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
| [WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 829 |
| [WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
| [WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 746 |
| [WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 603 pm4.76 604 |
| [WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 712 pm4.77 801 |
| [WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 784 |
| [WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 905 |
| [WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 709 |
| [WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 910 |
| [WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 953 |
| [WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 954 |
| [WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
| [WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
| [WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
| [WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
| [WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 601 |
| [WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 911 |
| [WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 912 |
| [WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 914 |
| [WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 913 |
| [WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1409 |
| [WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 830 |
| [WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 906 |
| [WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1414 pm5.18dc 885 |
| [WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 708 |
| [WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 697 |
| [WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1412 |
| [WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1417 |
| [WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1418 |
| [WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 897 |
| [WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
| [WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
| [WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
| [WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 928 pm5.6r 929 |
| [WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 957 |
| [WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
| [WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
| [WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 609 |
| [WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 919 |
| [WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 610 |
| [WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
| [WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
| [WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 927 |
| [WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 804 |
| [WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 920 |
| [WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 915 |
| [WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 796 |
| [WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 948 |
| [WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 949 |
| [WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 964 |
| [WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
| [WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
| [WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 965 |
| [WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1658 |
| [WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1508 |
| [WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1655 |
| [WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1919 |
| [WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2057 |
| [WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2457 |
| [WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2458 |
| [WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2911 |
| [WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3055 |
| [WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5252 |
| [WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5253 |
| [WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2133 eupickbi 2136 |
| [WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5280 |
| [WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7300 |