Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
| Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
|---|
| [AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7282 fidcenum 7123 |
| [AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 7123 |
| [AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7282 |
| [AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12996 |
| [AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 7094 |
| [AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 7080 |
| [AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 13011 |
| [AczelRathjen], p.
75 | Corollary 8.1.20 | unct 13013 |
| [AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 13002 znnen 12969 |
| [AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 13014 |
| [AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 13015 |
| [AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10998 |
| [AczelRathjen], p.
183 | Chapter 20 | ax-setind 4629 |
| [AhoHopUll] p.
318 | Section 9.1 | df-concat 11126 df-pfx 11205 df-substr 11178 df-word 11072 lencl 11075 wrd0 11096 |
| [Apostol] p. 18 | Theorem
I.1 | addcan 8326 addcan2d 8331 addcan2i 8329 addcand 8330 addcani 8328 |
| [Apostol] p. 18 | Theorem
I.2 | negeu 8337 |
| [Apostol] p. 18 | Theorem
I.3 | negsub 8394 negsubd 8463 negsubi 8424 |
| [Apostol] p. 18 | Theorem
I.4 | negneg 8396 negnegd 8448 negnegi 8416 |
| [Apostol] p. 18 | Theorem
I.5 | subdi 8531 subdid 8560 subdii 8553 subdir 8532 subdird 8561 subdiri 8554 |
| [Apostol] p. 18 | Theorem
I.6 | mul01 8535 mul01d 8539 mul01i 8537 mul02 8533 mul02d 8538 mul02i 8536 |
| [Apostol] p. 18 | Theorem
I.9 | divrecapd 8940 |
| [Apostol] p. 18 | Theorem
I.10 | recrecapi 8891 |
| [Apostol] p. 18 | Theorem
I.12 | mul2neg 8544 mul2negd 8559 mul2negi 8552 mulneg1 8541 mulneg1d 8557 mulneg1i 8550 |
| [Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 14108 |
| [Apostol] p. 18 | Theorem
I.15 | divdivdivap 8860 |
| [Apostol] p. 20 | Axiom
7 | rpaddcl 9873 rpaddcld 9908 rpmulcl 9874 rpmulcld 9909 |
| [Apostol] p. 20 | Axiom
9 | 0nrp 9885 |
| [Apostol] p. 20 | Theorem
I.17 | lttri 8251 |
| [Apostol] p. 20 | Theorem
I.18 | ltadd1d 8685 ltadd1dd 8703 ltadd1i 8649 |
| [Apostol] p. 20 | Theorem
I.19 | ltmul1 8739 ltmul1a 8738 ltmul1i 9067 ltmul1ii 9075 ltmul2 9003 ltmul2d 9935 ltmul2dd 9949 ltmul2i 9070 |
| [Apostol] p. 20 | Theorem
I.21 | 0lt1 8273 |
| [Apostol] p. 20 | Theorem
I.23 | lt0neg1 8615 lt0neg1d 8662 ltneg 8609 ltnegd 8670 ltnegi 8640 |
| [Apostol] p. 20 | Theorem
I.25 | lt2add 8592 lt2addd 8714 lt2addi 8657 |
| [Apostol] p.
20 | Definition of positive numbers | df-rp 9850 |
| [Apostol] p. 21 | Exercise
4 | recgt0 8997 recgt0d 9081 recgt0i 9053 recgt0ii 9054 |
| [Apostol] p.
22 | Definition of integers | df-z 9447 |
| [Apostol] p.
22 | Definition of rationals | df-q 9815 |
| [Apostol] p. 24 | Theorem
I.26 | supeuti 7161 |
| [Apostol] p. 26 | Theorem
I.29 | arch 9366 |
| [Apostol] p. 28 | Exercise
2 | btwnz 9566 |
| [Apostol] p. 28 | Exercise
3 | nnrecl 9367 |
| [Apostol] p. 28 | Exercise
6 | qbtwnre 10476 |
| [Apostol] p. 28 | Exercise
10(a) | zeneo 12382 zneo 9548 |
| [Apostol] p. 29 | Theorem
I.35 | resqrtth 11542 sqrtthi 11630 |
| [Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 9113 |
| [Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12557 |
| [Apostol] p.
363 | Remark | absgt0api 11657 |
| [Apostol] p.
363 | Example | abssubd 11704 abssubi 11661 |
| [ApostolNT] p.
14 | Definition | df-dvds 12299 |
| [ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 12315 |
| [ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 12339 |
| [ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 12335 |
| [ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 12329 |
| [ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 12331 |
| [ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 12316 |
| [ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 12317 |
| [ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 12322 |
| [ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 12356 |
| [ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 12358 |
| [ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 12360 |
| [ApostolNT] p.
15 | Definition | dfgcd2 12535 |
| [ApostolNT] p.
16 | Definition | isprm2 12639 |
| [ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12614 |
| [ApostolNT] p.
16 | Theorem 1.7 | prminf 13026 |
| [ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 12494 |
| [ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12536 |
| [ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12538 |
| [ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 12508 |
| [ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 12501 |
| [ApostolNT] p.
17 | Theorem 1.8 | coprm 12666 |
| [ApostolNT] p.
17 | Theorem 1.9 | euclemma 12668 |
| [ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12891 |
| [ApostolNT] p.
19 | Theorem 1.14 | divalg 12435 |
| [ApostolNT] p.
20 | Theorem 1.15 | eucalg 12581 |
| [ApostolNT] p.
25 | Definition | df-phi 12733 |
| [ApostolNT] p.
26 | Theorem 2.2 | phisum 12763 |
| [ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12744 |
| [ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12748 |
| [ApostolNT] p.
38 | Remark | df-sgm 15656 |
| [ApostolNT] p.
38 | Definition | df-sgm 15656 |
| [ApostolNT] p.
104 | Definition | congr 12622 |
| [ApostolNT] p.
106 | Remark | dvdsval3 12302 |
| [ApostolNT] p.
106 | Definition | moddvds 12310 |
| [ApostolNT] p.
107 | Example 2 | mod2eq0even 12389 |
| [ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 12390 |
| [ApostolNT] p.
107 | Example 4 | zmod1congr 10563 |
| [ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10600 |
| [ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10888 |
| [ApostolNT] p.
108 | Theorem 5.3 | modmulconst 12334 |
| [ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12625 |
| [ApostolNT] p.
109 | Theorem 5.6 | gcdmodi 12944 |
| [ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12627 |
| [ApostolNT] p.
113 | Theorem 5.17 | eulerth 12755 |
| [ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12774 |
| [ApostolNT] p.
114 | Theorem 5.19 | fermltl 12756 |
| [ApostolNT] p.
179 | Definition | df-lgs 15677 lgsprme0 15721 |
| [ApostolNT] p.
180 | Example 1 | 1lgs 15722 |
| [ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 15698 |
| [ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 15713 |
| [ApostolNT] p.
181 | Theorem 9.4 | m1lgs 15764 |
| [ApostolNT] p.
181 | Theorem 9.5 | 2lgs 15783 2lgsoddprm 15792 |
| [ApostolNT] p.
182 | Theorem 9.6 | gausslemma2d 15748 |
| [ApostolNT] p.
185 | Theorem 9.8 | lgsquad 15759 |
| [ApostolNT] p.
188 | Definition | df-lgs 15677 lgs1 15723 |
| [ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 15714 |
| [ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 15716 |
| [ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 15724 |
| [ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 15725 |
| [Bauer] p. 482 | Section
1.2 | pm2.01 619 pm2.65 663 |
| [Bauer] p. 483 | Theorem
1.3 | acexmid 6000 onsucelsucexmidlem 4621 |
| [Bauer], p.
481 | Section 1.1 | pwtrufal 16363 |
| [Bauer], p.
483 | Definition | n0rf 3504 |
| [Bauer], p. 483 | Theorem
1.2 | 2irrexpq 15650 2irrexpqap 15652 |
| [Bauer], p. 485 | Theorem
2.1 | ssfiexmid 7038 |
| [Bauer], p. 493 | Section
5.1 | ivthdich 15327 |
| [Bauer], p. 494 | Theorem
5.5 | ivthinc 15317 |
| [BauerHanson], p.
27 | Proposition 5.2 | cnstab 8792 |
| [BauerSwan], p.
14 | Remark | 0ct 7274 ctm 7276 |
| [BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 16366 |
| [BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7282 |
| [BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7688 |
| [BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7601 |
| [BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7690 |
| [BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7724 addlocpr 7723 |
| [BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7750 |
| [BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7753 |
| [BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7758 |
| [BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
| [BellMachover] p.
97 | Definition 10.1 | df-eu 2080 |
| [BellMachover] p.
460 | Notation | df-mo 2081 |
| [BellMachover] p.
460 | Definition | mo3 2132 mo3h 2131 |
| [BellMachover] p.
462 | Theorem 1.1 | bm1.1 2214 |
| [BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4205 |
| [BellMachover] p.
466 | Axiom Pow | axpow3 4261 |
| [BellMachover] p.
466 | Axiom Union | axun2 4526 |
| [BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4634 |
| [BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4475 |
| [BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4637 |
| [BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4588 |
| [BellMachover] p.
471 | Definition of Lim | df-ilim 4460 |
| [BellMachover] p.
472 | Axiom Inf | zfinf2 4681 |
| [BellMachover] p.
473 | Theorem 2.8 | limom 4706 |
| [Bobzien] p.
116 | Statement T3 | stoic3 1473 |
| [Bobzien] p.
117 | Statement T2 | stoic2a 1471 |
| [Bobzien] p.
117 | Statement T4 | stoic4a 1474 |
| [Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1469 |
| [Bollobas] p. 1 | Section
I.1 | df-edg 15859 isuhgropm 15881 isusgropen 15963 isuspgropen 15962 |
| [Bollobas] p.
4 | Definition | df-wlks 16031 |
| [Bollobas] p. 7 | Section
I.1 | df-ushgrm 15870 |
| [BourbakiAlg1] p.
1 | Definition 1 | df-mgm 13389 |
| [BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 13435 |
| [BourbakiAlg1] p.
12 | Definition 2 | df-mnd 13450 |
| [BourbakiAlg1] p.
92 | Definition 1 | df-ring 13961 |
| [BourbakiAlg1] p.
93 | Section I.8.1 | df-rng 13896 |
| [BourbakiEns] p.
| Proposition 8 | fcof1 5907 fcofo 5908 |
| [BourbakiTop1] p.
| Remark | xnegmnf 10025 xnegpnf 10024 |
| [BourbakiTop1] p.
| Remark | rexneg 10026 |
| [BourbakiTop1] p.
| Proposition | ishmeo 14978 |
| [BourbakiTop1] p.
| Property V_i | ssnei2 14831 |
| [BourbakiTop1] p.
| Property V_ii | innei 14837 |
| [BourbakiTop1] p.
| Property V_iv | neissex 14839 |
| [BourbakiTop1] p.
| Proposition 1 | neipsm 14828 neiss 14824 |
| [BourbakiTop1] p.
| Proposition 2 | cnptopco 14896 |
| [BourbakiTop1] p.
| Proposition 4 | imasnopn 14973 |
| [BourbakiTop1] p.
| Property V_iii | elnei 14826 |
| [BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 14672 |
| [Bruck] p. 1 | Section
I.1 | df-mgm 13389 |
| [Bruck] p. 23 | Section
II.1 | df-sgrp 13435 |
| [Bruck] p. 28 | Theorem
3.2 | dfgrp3m 13632 |
| [ChoquetDD] p.
2 | Definition of mapping | df-mpt 4147 |
| [Church] p. 129 | Section
II.24 | df-ifp 984 dfifp2dc 987 |
| [Cohen] p.
301 | Remark | relogoprlem 15542 |
| [Cohen] p. 301 | Property
2 | relogmul 15543 relogmuld 15558 |
| [Cohen] p. 301 | Property
3 | relogdiv 15544 relogdivd 15559 |
| [Cohen] p. 301 | Property
4 | relogexp 15546 |
| [Cohen] p. 301 | Property
1a | log1 15540 |
| [Cohen] p. 301 | Property
1b | loge 15541 |
| [Cohen4] p.
348 | Observation | relogbcxpbap 15639 |
| [Cohen4] p.
352 | Definition | rpelogb 15623 |
| [Cohen4] p. 361 | Property
2 | rprelogbmul 15629 |
| [Cohen4] p. 361 | Property
3 | logbrec 15634 rprelogbdiv 15631 |
| [Cohen4] p. 361 | Property
4 | rplogbreexp 15627 |
| [Cohen4] p. 361 | Property
6 | relogbexpap 15632 |
| [Cohen4] p. 361 | Property
1(a) | rplogbid1 15621 |
| [Cohen4] p. 361 | Property
1(b) | rplogb1 15622 |
| [Cohen4] p.
367 | Property | rplogbchbase 15624 |
| [Cohen4] p. 377 | Property
2 | logblt 15636 |
| [Crosilla] p. | Axiom
1 | ax-ext 2211 |
| [Crosilla] p. | Axiom
2 | ax-pr 4293 |
| [Crosilla] p. | Axiom
3 | ax-un 4524 |
| [Crosilla] p. | Axiom
4 | ax-nul 4210 |
| [Crosilla] p. | Axiom
5 | ax-iinf 4680 |
| [Crosilla] p. | Axiom
6 | ru 3027 |
| [Crosilla] p. | Axiom
8 | ax-pow 4258 |
| [Crosilla] p. | Axiom
9 | ax-setind 4629 |
| [Crosilla], p. | Axiom
6 | ax-sep 4202 |
| [Crosilla], p. | Axiom
7 | ax-coll 4199 |
| [Crosilla], p. | Axiom
7' | repizf 4200 |
| [Crosilla], p. | Theorem
is stated | ordtriexmid 4613 |
| [Crosilla], p. | Axiom
of choice implies instances | acexmid 6000 |
| [Crosilla], p.
| Definition of ordinal | df-iord 4457 |
| [Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4627 |
| [Diestel] p. 27 | Section
1.10 | df-ushgrm 15870 |
| [Eisenberg] p.
67 | Definition 5.3 | df-dif 3199 |
| [Eisenberg] p.
82 | Definition 6.3 | df-iom 4683 |
| [Eisenberg] p.
125 | Definition 8.21 | df-map 6797 |
| [Enderton] p. 18 | Axiom
of Empty Set | axnul 4209 |
| [Enderton] p.
19 | Definition | df-tp 3674 |
| [Enderton] p.
26 | Exercise 5 | unissb 3918 |
| [Enderton] p.
26 | Exercise 10 | pwel 4304 |
| [Enderton] p.
28 | Exercise 7(b) | pwunim 4377 |
| [Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 4035 iinin2m 4034 iunin1 4030 iunin2 4029 |
| [Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 4033 iundif2ss 4031 |
| [Enderton] p.
33 | Exercise 23 | iinuniss 4048 |
| [Enderton] p.
33 | Exercise 25 | iununir 4049 |
| [Enderton] p.
33 | Exercise 24(a) | iinpw 4056 |
| [Enderton] p.
33 | Exercise 24(b) | iunpw 4571 iunpwss 4057 |
| [Enderton] p.
38 | Exercise 6(a) | unipw 4303 |
| [Enderton] p.
38 | Exercise 6(b) | pwuni 4276 |
| [Enderton] p. 41 | Lemma
3D | opeluu 4541 rnex 4992
rnexg 4989 |
| [Enderton] p.
41 | Exercise 8 | dmuni 4933 rnuni 5140 |
| [Enderton] p.
42 | Definition of a function | dffun7 5345 dffun8 5346 |
| [Enderton] p.
43 | Definition of function value | funfvdm2 5698 |
| [Enderton] p.
43 | Definition of single-rooted | funcnv 5382 |
| [Enderton] p.
44 | Definition (d) | dfima2 5070 dfima3 5071 |
| [Enderton] p.
47 | Theorem 3H | fvco2 5703 |
| [Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7388 |
| [Enderton] p.
50 | Theorem 3K(a) | imauni 5885 |
| [Enderton] p.
52 | Definition | df-map 6797 |
| [Enderton] p.
53 | Exercise 21 | coass 5247 |
| [Enderton] p.
53 | Exercise 27 | dmco 5237 |
| [Enderton] p.
53 | Exercise 14(a) | funin 5392 |
| [Enderton] p.
53 | Exercise 22(a) | imass2 5104 |
| [Enderton] p.
54 | Remark | ixpf 6867 ixpssmap 6879 |
| [Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6846 |
| [Enderton] p.
56 | Theorem 3M | erref 6700 |
| [Enderton] p. 57 | Lemma
3N | erthi 6728 |
| [Enderton] p.
57 | Definition | df-ec 6682 |
| [Enderton] p.
58 | Definition | df-qs 6686 |
| [Enderton] p.
60 | Theorem 3Q | th3q 6787 th3qcor 6786 th3qlem1 6784 th3qlem2 6785 |
| [Enderton] p.
61 | Exercise 35 | df-ec 6682 |
| [Enderton] p.
65 | Exercise 56(a) | dmun 4930 |
| [Enderton] p.
68 | Definition of successor | df-suc 4462 |
| [Enderton] p.
71 | Definition | df-tr 4183 dftr4 4187 |
| [Enderton] p.
72 | Theorem 4E | unisuc 4504 unisucg 4505 |
| [Enderton] p.
73 | Exercise 6 | unisuc 4504 unisucg 4505 |
| [Enderton] p.
73 | Exercise 5(a) | truni 4196 |
| [Enderton] p.
73 | Exercise 5(b) | trint 4197 |
| [Enderton] p.
79 | Theorem 4I(A1) | nna0 6620 |
| [Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6622 onasuc 6612 |
| [Enderton] p.
79 | Definition of operation value | df-ov 6004 |
| [Enderton] p.
80 | Theorem 4J(A1) | nnm0 6621 |
| [Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6623 onmsuc 6619 |
| [Enderton] p.
81 | Theorem 4K(1) | nnaass 6631 |
| [Enderton] p.
81 | Theorem 4K(2) | nna0r 6624 nnacom 6630 |
| [Enderton] p.
81 | Theorem 4K(3) | nndi 6632 |
| [Enderton] p.
81 | Theorem 4K(4) | nnmass 6633 |
| [Enderton] p.
81 | Theorem 4K(5) | nnmcom 6635 |
| [Enderton] p.
82 | Exercise 16 | nnm0r 6625 nnmsucr 6634 |
| [Enderton] p.
88 | Exercise 23 | nnaordex 6674 |
| [Enderton] p.
129 | Definition | df-en 6888 |
| [Enderton] p.
132 | Theorem 6B(b) | canth 5952 |
| [Enderton] p.
133 | Exercise 1 | xpomen 12966 |
| [Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 7027 |
| [Enderton] p.
136 | Corollary 6E | nneneq 7018 |
| [Enderton] p.
139 | Theorem 6H(c) | mapen 7007 |
| [Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7400 |
| [Enderton] p.
143 | Theorem 6J | dju0en 7396 dju1en 7395 |
| [Enderton] p.
144 | Corollary 6K | undif2ss 3567 |
| [Enderton] p.
145 | Figure 38 | ffoss 5604 |
| [Enderton] p.
145 | Definition | df-dom 6889 |
| [Enderton] p.
146 | Example 1 | domen 6900 domeng 6901 |
| [Enderton] p.
146 | Example 3 | nndomo 7025 |
| [Enderton] p.
149 | Theorem 6L(c) | xpdom1 6994 xpdom1g 6992 xpdom2g 6991 |
| [Enderton] p.
168 | Definition | df-po 4387 |
| [Enderton] p.
192 | Theorem 7M(a) | oneli 4519 |
| [Enderton] p.
192 | Theorem 7M(b) | ontr1 4480 |
| [Enderton] p.
192 | Theorem 7M(c) | onirri 4635 |
| [Enderton] p.
193 | Corollary 7N(b) | 0elon 4483 |
| [Enderton] p.
193 | Corollary 7N(c) | onsuci 4608 |
| [Enderton] p.
193 | Corollary 7N(d) | ssonunii 4581 |
| [Enderton] p.
194 | Remark | onprc 4644 |
| [Enderton] p.
194 | Exercise 16 | suc11 4650 |
| [Enderton] p.
197 | Definition | df-card 7351 |
| [Enderton] p.
200 | Exercise 25 | tfis 4675 |
| [Enderton] p.
206 | Theorem 7X(b) | en2lp 4646 |
| [Enderton] p.
207 | Exercise 34 | opthreg 4648 |
| [Enderton] p.
208 | Exercise 35 | suc11g 4649 |
| [Geuvers], p.
1 | Remark | expap0 10791 |
| [Geuvers], p. 6 | Lemma
2.13 | mulap0r 8762 |
| [Geuvers], p. 6 | Lemma
2.15 | mulap0 8801 |
| [Geuvers], p. 9 | Lemma
2.35 | msqge0 8763 |
| [Geuvers], p.
9 | Definition 3.1(2) | ax-arch 8118 |
| [Geuvers], p. 10 | Lemma
3.9 | maxcom 11714 |
| [Geuvers], p. 10 | Lemma
3.10 | maxle1 11722 maxle2 11723 |
| [Geuvers], p. 10 | Lemma
3.11 | maxleast 11724 |
| [Geuvers], p. 10 | Lemma
3.12 | maxleb 11727 |
| [Geuvers], p.
11 | Definition 3.13 | dfabsmax 11728 |
| [Geuvers], p.
17 | Definition 6.1 | df-ap 8729 |
| [Gleason] p.
117 | Proposition 9-2.1 | df-enq 7534 enqer 7545 |
| [Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7538 df-nqqs 7535 |
| [Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7531 df-plqqs 7536 |
| [Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7532 df-mqqs 7537 |
| [Gleason] p.
119 | Proposition 9-2.5 | df-rq 7539 |
| [Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7595 |
| [Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7598 ltbtwnnq 7603 ltbtwnnqq 7602 |
| [Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7587 |
| [Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7588 |
| [Gleason] p.
123 | Proposition 9-3.5 | addclpr 7724 |
| [Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7766 |
| [Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7765 |
| [Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7784 |
| [Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7800 |
| [Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7806 ltaprlem 7805 |
| [Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7803 |
| [Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7759 |
| [Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7779 |
| [Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7768 |
| [Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7767 |
| [Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7775 |
| [Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7825 |
| [Gleason] p.
126 | Proposition 9-4.1 | df-enr 7913 enrer 7922 |
| [Gleason] p.
126 | Proposition 9-4.2 | df-0r 7918 df-1r 7919 df-nr 7914 |
| [Gleason] p.
126 | Proposition 9-4.3 | df-mr 7916 df-plr 7915 negexsr 7959 recexsrlem 7961 |
| [Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7917 |
| [Gleason] p.
130 | Proposition 10-1.3 | creui 9107 creur 9106 cru 8749 |
| [Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 8110 axcnre 8068 |
| [Gleason] p.
132 | Definition 10-3.1 | crim 11369 crimd 11488 crimi 11448 crre 11368 crred 11487 crrei 11447 |
| [Gleason] p.
132 | Definition 10-3.2 | remim 11371 remimd 11453 |
| [Gleason] p.
133 | Definition 10.36 | absval2 11568 absval2d 11696 absval2i 11655 |
| [Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 11395 cjaddd 11476 cjaddi 11443 |
| [Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 11396 cjmuld 11477 cjmuli 11444 |
| [Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 11394 cjcjd 11454 cjcji 11426 |
| [Gleason] p.
133 | Proposition 10-3.4(f) | cjre 11393 cjreb 11377 cjrebd 11457 cjrebi 11429 cjred 11482 rere 11376 rereb 11374 rerebd 11456 rerebi 11428 rered 11480 |
| [Gleason] p.
133 | Proposition 10-3.4(h) | addcj 11402 addcjd 11468 addcji 11438 |
| [Gleason] p.
133 | Proposition 10-3.7(a) | absval 11512 |
| [Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11563 abscjd 11701 abscji 11659 |
| [Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11575 abs00d 11697 abs00i 11656 absne0d 11698 |
| [Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11607 releabsd 11702 releabsi 11660 |
| [Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11580 absmuld 11705 absmuli 11662 |
| [Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11566 sqabsaddi 11663 |
| [Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11615 abstrid 11707 abstrii 11666 |
| [Gleason] p.
134 | Definition 10-4.1 | df-exp 10761 exp0 10765 expp1 10768 expp1d 10896 |
| [Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10803 expaddd 10897 |
| [Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 15586 cxpmuld 15611 expmul 10806 expmuld 10898 |
| [Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10800 mulexpd 10910 rpmulcxp 15583 |
| [Gleason] p.
141 | Definition 11-2.1 | fzval 10206 |
| [Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11837 |
| [Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11839 |
| [Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11838 |
| [Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11842 |
| [Gleason] p.
172 | Corollary 12-2.5 | climrecl 11835 |
| [Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11831 climcj 11832 climim 11834 climre 11833 |
| [Gleason] p.
173 | Definition 12-3.1 | df-ltxr 8186 df-xr 8185 ltxr 9971 |
| [Gleason] p. 180 | Theorem
12-5.3 | climcau 11858 |
| [Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10520 |
| [Gleason] p.
223 | Definition 14-1.1 | df-met 14509 |
| [Gleason] p.
223 | Definition 14-1.1(a) | met0 15038 xmet0 15037 |
| [Gleason] p.
223 | Definition 14-1.1(c) | metsym 15045 |
| [Gleason] p.
223 | Definition 14-1.1(d) | mettri 15047 mstri 15147 xmettri 15046 xmstri 15146 |
| [Gleason] p.
230 | Proposition 14-2.6 | txlm 14953 |
| [Gleason] p.
240 | Proposition 14-4.2 | metcnp3 15185 |
| [Gleason] p.
243 | Proposition 14-4.16 | addcn2 11821 addcncntop 15236 mulcn2 11823 mulcncntop 15238 subcn2 11822 subcncntop 15237 |
| [Gleason] p.
295 | Remark | bcval3 10973 bcval4 10974 |
| [Gleason] p.
295 | Equation 2 | bcpasc 10988 |
| [Gleason] p.
295 | Definition of binomial coefficient | bcval 10971 df-bc 10970 |
| [Gleason] p.
296 | Remark | bcn0 10977 bcnn 10979 |
| [Gleason] p. 296 | Theorem
15-2.8 | binom 11995 |
| [Gleason] p.
308 | Equation 2 | ef0 12183 |
| [Gleason] p.
308 | Equation 3 | efcj 12184 |
| [Gleason] p.
309 | Corollary 15-4.3 | efne0 12189 |
| [Gleason] p.
309 | Corollary 15-4.4 | efexp 12193 |
| [Gleason] p.
310 | Equation 14 | sinadd 12247 |
| [Gleason] p.
310 | Equation 15 | cosadd 12248 |
| [Gleason] p.
311 | Equation 17 | sincossq 12259 |
| [Gleason] p.
311 | Equation 18 | cosbnd 12264 sinbnd 12263 |
| [Gleason] p.
311 | Definition of ` ` | df-pi 12164 |
| [Golan] p.
1 | Remark | srgisid 13949 |
| [Golan] p.
1 | Definition | df-srg 13927 |
| [Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
| [Hamilton] p. 73 | Rule
1 | ax-mp 5 |
| [Hamilton] p. 74 | Rule
2 | ax-gen 1495 |
| [Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 13544 mndideu 13459 |
| [Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 13571 |
| [Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 13600 |
| [Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 13611 |
| [Herstein] p.
57 | Exercise 1 | dfgrp3me 13633 |
| [Heyting] p.
127 | Axiom #1 | ax1hfs 16442 |
| [Hitchcock] p. 5 | Rule
A3 | mptnan 1465 |
| [Hitchcock] p. 5 | Rule
A4 | mptxor 1466 |
| [Hitchcock] p. 5 | Rule
A5 | mtpxor 1468 |
| [HoTT], p. | Lemma
10.4.1 | exmidontriim 7407 |
| [HoTT], p. | Theorem
7.2.6 | nndceq 6645 |
| [HoTT], p.
| Exercise 11.10 | neapmkv 16436 |
| [HoTT], p. | Exercise
11.11 | mulap0bd 8804 |
| [HoTT], p. | Section
11.2.1 | df-iltp 7657 df-imp 7656 df-iplp 7655 df-reap 8722 |
| [HoTT], p. | Theorem
11.2.4 | recapb 8818 rerecapb 8990 |
| [HoTT], p. | Corollary
3.9.2 | uchoice 6283 |
| [HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7849 |
| [HoTT], p. | Corollary
11.4.3 | conventions 16085 |
| [HoTT], p.
| Exercise 11.6(i) | dcapnconst 16429 dceqnconst 16428 |
| [HoTT], p. | Corollary
11.2.13 | axcaucvg 8087 caucvgpr 7869 caucvgprpr 7899 caucvgsr 7989 |
| [HoTT], p. | Definition
11.2.1 | df-inp 7653 |
| [HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 16434 |
| [HoTT], p. | Proposition
11.2.3 | df-iso 4388 ltpopr 7782 ltsopr 7783 |
| [HoTT], p. | Definition
11.2.7(v) | apsym 8753 reapcotr 8745 reapirr 8724 |
| [HoTT], p. | Definition
11.2.7(vi) | 0lt1 8273 gt0add 8720 leadd1 8577 lelttr 8235 lemul1a 9005 lenlt 8222 ltadd1 8576 ltletr 8236 ltmul1 8739 reaplt 8735 |
| [Jech] p. 4 | Definition of
class | cv 1394 cvjust 2224 |
| [Jech] p.
78 | Note | opthprc 4770 |
| [KalishMontague] p.
81 | Note 1 | ax-i9 1576 |
| [Kreyszig] p.
3 | Property M1 | metcl 15027 xmetcl 15026 |
| [Kreyszig] p.
4 | Property M2 | meteq0 15034 |
| [Kreyszig] p.
12 | Equation 5 | muleqadd 8815 |
| [Kreyszig] p.
18 | Definition 1.3-2 | mopnval 15116 |
| [Kreyszig] p.
19 | Remark | mopntopon 15117 |
| [Kreyszig] p.
19 | Theorem T1 | mopn0 15162 mopnm 15122 |
| [Kreyszig] p.
19 | Theorem T2 | unimopn 15160 |
| [Kreyszig] p.
19 | Definition of neighborhood | neibl 15165 |
| [Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 15187 |
| [Kreyszig] p.
25 | Definition 1.4-1 | lmbr 14887 |
| [Kreyszig] p.
51 | Equation 2 | lmodvneg1 14294 |
| [Kreyszig] p.
51 | Equation 1a | lmod0vs 14285 |
| [Kreyszig] p.
51 | Equation 1b | lmodvs0 14286 |
| [Kunen] p. 10 | Axiom
0 | a9e 1742 |
| [Kunen] p. 12 | Axiom
6 | zfrep6 4201 |
| [Kunen] p. 24 | Definition
10.24 | mapval 6807 mapvalg 6805 |
| [Kunen] p. 31 | Definition
10.24 | mapex 6801 |
| [KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3975 |
| [Lang] p.
3 | Statement | lidrideqd 13414 mndbn0 13464 |
| [Lang] p.
3 | Definition | df-mnd 13450 |
| [Lang] p. 4 | Definition of a
(finite) product | gsumsplit1r 13431 |
| [Lang] p.
5 | Equation | gsumfzreidx 13874 |
| [Lang] p.
6 | Definition | mulgnn0gsum 13665 |
| [Lang] p.
7 | Definition | dfgrp2e 13561 |
| [Levy] p.
338 | Axiom | df-clab 2216 df-clel 2225 df-cleq 2222 |
| [Lopez-Astorga] p.
12 | Rule 1 | mptnan 1465 |
| [Lopez-Astorga] p.
12 | Rule 2 | mptxor 1466 |
| [Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1468 |
| [Margaris] p. 40 | Rule
C | exlimiv 1644 |
| [Margaris] p. 49 | Axiom
A1 | ax-1 6 |
| [Margaris] p. 49 | Axiom
A2 | ax-2 7 |
| [Margaris] p. 49 | Axiom
A3 | condc 858 |
| [Margaris] p.
49 | Definition | dfbi2 388 dfordc 897 exalim 1548 |
| [Margaris] p.
51 | Theorem 1 | idALT 20 |
| [Margaris] p.
56 | Theorem 3 | syld 45 |
| [Margaris] p.
60 | Theorem 8 | jcn 655 |
| [Margaris] p.
89 | Theorem 19.2 | 19.2 1684 r19.2m 3578 |
| [Margaris] p.
89 | Theorem 19.3 | 19.3 1600 19.3h 1599 rr19.3v 2942 |
| [Margaris] p.
89 | Theorem 19.5 | alcom 1524 |
| [Margaris] p.
89 | Theorem 19.6 | alexdc 1665 alexim 1691 |
| [Margaris] p.
89 | Theorem 19.7 | alnex 1545 |
| [Margaris] p.
89 | Theorem 19.8 | 19.8a 1636 spsbe 1888 |
| [Margaris] p.
89 | Theorem 19.9 | 19.9 1690 19.9h 1689 19.9v 1917 exlimd 1643 |
| [Margaris] p.
89 | Theorem 19.11 | excom 1710 excomim 1709 |
| [Margaris] p.
89 | Theorem 19.12 | 19.12 1711 r19.12 2637 |
| [Margaris] p.
90 | Theorem 19.14 | exnalim 1692 |
| [Margaris] p.
90 | Theorem 19.15 | albi 1514 ralbi 2663 |
| [Margaris] p.
90 | Theorem 19.16 | 19.16 1601 |
| [Margaris] p.
90 | Theorem 19.17 | 19.17 1602 |
| [Margaris] p.
90 | Theorem 19.18 | exbi 1650 rexbi 2664 |
| [Margaris] p.
90 | Theorem 19.19 | 19.19 1712 |
| [Margaris] p.
90 | Theorem 19.20 | alim 1503 alimd 1567 alimdh 1513 alimdv 1925 ralimdaa 2596 ralimdv 2598 ralimdva 2597 ralimdvva 2599 sbcimdv 3094 |
| [Margaris] p.
90 | Theorem 19.21 | 19.21-2 1713 19.21 1629 19.21bi 1604 19.21h 1603 19.21ht 1627 19.21t 1628 19.21v 1919 alrimd 1656 alrimdd 1655 alrimdh 1525 alrimdv 1922 alrimi 1568 alrimih 1515 alrimiv 1920 alrimivv 1921 r19.21 2606 r19.21be 2621 r19.21bi 2618 r19.21t 2605 r19.21v 2607 ralrimd 2608 ralrimdv 2609 ralrimdva 2610 ralrimdvv 2614 ralrimdvva 2615 ralrimi 2601 ralrimiv 2602 ralrimiva 2603 ralrimivv 2611 ralrimivva 2612 ralrimivvva 2613 ralrimivw 2604 rexlimi 2641 |
| [Margaris] p.
90 | Theorem 19.22 | 2alimdv 1927 2eximdv 1928 exim 1645
eximd 1658 eximdh 1657 eximdv 1926 rexim 2624 reximdai 2628 reximddv 2633 reximddv2 2635 reximdv 2631 reximdv2 2629 reximdva 2632 reximdvai 2630 reximi2 2626 |
| [Margaris] p.
90 | Theorem 19.23 | 19.23 1724 19.23bi 1638 19.23h 1544 19.23ht 1543 19.23t 1723 19.23v 1929 19.23vv 1930 exlimd2 1641 exlimdh 1642 exlimdv 1865 exlimdvv 1944 exlimi 1640 exlimih 1639 exlimiv 1644 exlimivv 1943 r19.23 2639 r19.23v 2640 rexlimd 2645 rexlimdv 2647 rexlimdv3a 2650 rexlimdva 2648 rexlimdva2 2651 rexlimdvaa 2649 rexlimdvv 2655 rexlimdvva 2656 rexlimdvw 2652 rexlimiv 2642 rexlimiva 2643 rexlimivv 2654 |
| [Margaris] p.
90 | Theorem 19.24 | i19.24 1685 |
| [Margaris] p.
90 | Theorem 19.25 | 19.25 1672 |
| [Margaris] p.
90 | Theorem 19.26 | 19.26-2 1528 19.26-3an 1529 19.26 1527 r19.26-2 2660 r19.26-3 2661 r19.26 2657 r19.26m 2662 |
| [Margaris] p.
90 | Theorem 19.27 | 19.27 1607 19.27h 1606 19.27v 1946 r19.27av 2666 r19.27m 3587 r19.27mv 3588 |
| [Margaris] p.
90 | Theorem 19.28 | 19.28 1609 19.28h 1608 19.28v 1947 r19.28av 2667 r19.28m 3581 r19.28mv 3584 rr19.28v 2943 |
| [Margaris] p.
90 | Theorem 19.29 | 19.29 1666 19.29r 1667 19.29r2 1668 19.29x 1669 r19.29 2668 r19.29d2r 2675 r19.29r 2669 |
| [Margaris] p.
90 | Theorem 19.30 | 19.30dc 1673 |
| [Margaris] p.
90 | Theorem 19.31 | 19.31r 1727 |
| [Margaris] p.
90 | Theorem 19.32 | 19.32dc 1725 19.32r 1726 r19.32r 2677 r19.32vdc 2680 r19.32vr 2679 |
| [Margaris] p.
90 | Theorem 19.33 | 19.33 1530 19.33b2 1675 19.33bdc 1676 |
| [Margaris] p.
90 | Theorem 19.34 | 19.34 1730 |
| [Margaris] p.
90 | Theorem 19.35 | 19.35-1 1670 19.35i 1671 |
| [Margaris] p.
90 | Theorem 19.36 | 19.36-1 1719 19.36aiv 1948 19.36i 1718 r19.36av 2682 |
| [Margaris] p.
90 | Theorem 19.37 | 19.37-1 1720 19.37aiv 1721 r19.37 2683 r19.37av 2684 |
| [Margaris] p.
90 | Theorem 19.38 | 19.38 1722 |
| [Margaris] p.
90 | Theorem 19.39 | i19.39 1686 |
| [Margaris] p.
90 | Theorem 19.40 | 19.40-2 1678 19.40 1677 r19.40 2685 |
| [Margaris] p.
90 | Theorem 19.41 | 19.41 1732 19.41h 1731 19.41v 1949 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 r19.41 2686 r19.41v 2687 |
| [Margaris] p.
90 | Theorem 19.42 | 19.42 1734 19.42h 1733 19.42v 1953 19.42vv 1958 19.42vvv 1959 19.42vvvv 1960 r19.42v 2688 |
| [Margaris] p.
90 | Theorem 19.43 | 19.43 1674 r19.43 2689 |
| [Margaris] p.
90 | Theorem 19.44 | 19.44 1728 r19.44av 2690 r19.44mv 3586 |
| [Margaris] p.
90 | Theorem 19.45 | 19.45 1729 r19.45av 2691 r19.45mv 3585 |
| [Margaris] p.
110 | Exercise 2(b) | eu1 2102 |
| [Megill] p. 444 | Axiom
C5 | ax-17 1572 |
| [Megill] p. 445 | Lemma
L12 | alequcom 1561 ax-10 1551 |
| [Megill] p. 446 | Lemma
L17 | equtrr 1756 |
| [Megill] p. 446 | Lemma
L19 | hbnae 1767 |
| [Megill] p. 447 | Remark
9.1 | df-sb 1809 sbid 1820 |
| [Megill] p. 448 | Scheme
C5' | ax-4 1556 |
| [Megill] p. 448 | Scheme
C6' | ax-7 1494 |
| [Megill] p. 448 | Scheme
C8' | ax-8 1550 |
| [Megill] p. 448 | Scheme
C9' | ax-i12 1553 |
| [Megill] p. 448 | Scheme
C11' | ax-10o 1762 |
| [Megill] p. 448 | Scheme
C12' | ax-13 2202 |
| [Megill] p. 448 | Scheme
C13' | ax-14 2203 |
| [Megill] p. 448 | Scheme
C15' | ax-11o 1869 |
| [Megill] p. 448 | Scheme
C16' | ax-16 1860 |
| [Megill] p. 448 | Theorem
9.4 | dral1 1776 dral2 1777 drex1 1844 drex2 1778 drsb1 1845 drsb2 1887 |
| [Megill] p. 449 | Theorem
9.7 | sbcom2 2038 sbequ 1886 sbid2v 2047 |
| [Megill] p. 450 | Example
in Appendix | hba1 1586 |
| [Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
| [Mendelson] p.
69 | Axiom 4 | rspsbc 3112 rspsbca 3113 stdpc4 1821 |
| [Mendelson] p.
69 | Axiom 5 | ra5 3118 stdpc5 1630 |
| [Mendelson] p. 81 | Rule
C | exlimiv 1644 |
| [Mendelson] p.
95 | Axiom 6 | stdpc6 1749 |
| [Mendelson] p.
95 | Axiom 7 | stdpc7 1816 |
| [Mendelson] p.
231 | Exercise 4.10(k) | inv1 3528 |
| [Mendelson] p.
231 | Exercise 4.10(l) | unv 3529 |
| [Mendelson] p.
231 | Exercise 4.10(n) | inssun 3444 |
| [Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3492 |
| [Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3445 |
| [Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3335 |
| [Mendelson] p.
231 | Definition of union | unssin 3443 |
| [Mendelson] p.
235 | Exercise 4.12(c) | univ 4567 |
| [Mendelson] p.
235 | Exercise 4.12(d) | pwv 3887 |
| [Mendelson] p.
235 | Exercise 4.12(j) | pwin 4373 |
| [Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4374 |
| [Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4375 |
| [Mendelson] p.
235 | Exercise 4.12(n) | uniin 3908 |
| [Mendelson] p.
235 | Exercise 4.12(p) | reli 4851 |
| [Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5249 |
| [Mendelson] p.
246 | Definition of successor | df-suc 4462 |
| [Mendelson] p.
254 | Proposition 4.22(b) | xpen 7006 |
| [Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6980 xpsneng 6981 |
| [Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6986 xpcomeng 6987 |
| [Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6989 |
| [Mendelson] p.
255 | Exercise 4.39 | endisj 6983 |
| [Mendelson] p.
255 | Exercise 4.41 | mapprc 6799 |
| [Mendelson] p.
255 | Exercise 4.43 | mapsnen 6964 |
| [Mendelson] p.
255 | Exercise 4.47 | xpmapen 7011 |
| [Mendelson] p.
255 | Exercise 4.42(a) | map0e 6833 |
| [Mendelson] p.
255 | Exercise 4.42(b) | map1 6965 |
| [Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7399 djucomen 7398 |
| [Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7397 |
| [Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6613 |
| [Monk1] p. 26 | Theorem
2.8(vii) | ssin 3426 |
| [Monk1] p. 33 | Theorem
3.2(i) | ssrel 4807 |
| [Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4808 |
| [Monk1] p. 34 | Definition
3.3 | df-opab 4146 |
| [Monk1] p. 36 | Theorem
3.7(i) | coi1 5244 coi2 5245 |
| [Monk1] p. 36 | Theorem
3.8(v) | dm0 4937 rn0 4980 |
| [Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5133 |
| [Monk1] p. 37 | Theorem
3.13(i) | relxp 4828 |
| [Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4944 rnxpm 5158 |
| [Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4799 xp0 5148 |
| [Monk1] p. 38 | Theorem
3.16(ii) | ima0 5087 |
| [Monk1] p. 38 | Theorem
3.16(viii) | imai 5084 |
| [Monk1] p. 39 | Theorem
3.17 | imaex 5083 imaexg 5082 |
| [Monk1] p. 39 | Theorem
3.16(xi) | imassrn 5079 |
| [Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5765 funfvop 5747 |
| [Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5675 |
| [Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5685 |
| [Monk1] p. 43 | Theorem
4.6 | funun 5362 |
| [Monk1] p. 43 | Theorem
4.8(iv) | dff13 5892 dff13f 5894 |
| [Monk1] p. 46 | Theorem
4.15(v) | funex 5862 funrnex 6259 |
| [Monk1] p. 50 | Definition
5.4 | fniunfv 5886 |
| [Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5212 |
| [Monk1] p. 52 | Theorem
5.11(viii) | ssint 3939 |
| [Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6301 df-1st 6286 |
| [Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6302 df-2nd 6287 |
| [Monk2] p. 105 | Axiom
C4 | ax-5 1493 |
| [Monk2] p. 105 | Axiom
C7 | ax-8 1550 |
| [Monk2] p. 105 | Axiom
C8 | ax-11 1552 ax-11o 1869 |
| [Monk2] p. 105 | Axiom
(C8) | ax11v 1873 |
| [Monk2] p. 109 | Lemma
12 | ax-7 1494 |
| [Monk2] p. 109 | Lemma
15 | equvin 1909 equvini 1804 eqvinop 4329 |
| [Monk2] p. 113 | Axiom
C5-1 | ax-17 1572 |
| [Monk2] p. 113 | Axiom
C5-2 | ax6b 1697 |
| [Monk2] p. 113 | Axiom
C5-3 | ax-7 1494 |
| [Monk2] p. 114 | Lemma
22 | hba1 1586 |
| [Monk2] p. 114 | Lemma
23 | hbia1 1598 nfia1 1626 |
| [Monk2] p. 114 | Lemma
24 | hba2 1597 nfa2 1625 |
| [Moschovakis] p.
2 | Chapter 2 | df-stab 836 dftest 16443 |
| [Munkres] p. 77 | Example
2 | distop 14759 |
| [Munkres] p.
78 | Definition of basis | df-bases 14717 isbasis3g 14720 |
| [Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 13293 tgval2 14725 |
| [Munkres] p.
79 | Remark | tgcl 14738 |
| [Munkres] p. 80 | Lemma
2.1 | tgval3 14732 |
| [Munkres] p. 80 | Lemma
2.2 | tgss2 14753 tgss3 14752 |
| [Munkres] p. 81 | Lemma
2.3 | basgen 14754 basgen2 14755 |
| [Munkres] p.
89 | Definition of subspace topology | resttop 14844 |
| [Munkres] p. 93 | Theorem
6.1(1) | 0cld 14786 topcld 14783 |
| [Munkres] p. 93 | Theorem
6.1(3) | uncld 14787 |
| [Munkres] p.
94 | Definition of closure | clsval 14785 |
| [Munkres] p.
94 | Definition of interior | ntrval 14784 |
| [Munkres] p.
102 | Definition of continuous function | df-cn 14862 iscn 14871 iscn2 14874 |
| [Munkres] p. 107 | Theorem
7.2(g) | cncnp 14904 cncnp2m 14905 cncnpi 14902 df-cnp 14863 iscnp 14873 |
| [Munkres] p. 127 | Theorem
10.1 | metcn 15188 |
| [Pierik], p. 8 | Section
2.2.1 | dfrex2fin 7065 |
| [Pierik], p. 9 | Definition
2.4 | df-womni 7331 |
| [Pierik], p. 9 | Definition
2.5 | df-markov 7319 omniwomnimkv 7334 |
| [Pierik], p. 10 | Section
2.3 | dfdif3 3314 |
| [Pierik], p.
14 | Definition 3.1 | df-omni 7302 exmidomniim 7308 finomni 7307 |
| [Pierik], p. 15 | Section
3.1 | df-nninf 7287 |
| [Pradic2025], p. 2 | Section
1.1 | nnnninfen 16387 |
| [PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 16391 |
| [PradicBrown2022], p.
2 | Remark | exmidpw 7070 |
| [PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7379 |
| [PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 |
| [PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7316 |
| [PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 16373 peano4nninf 16372 |
| [PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 16375 |
| [PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 16383 |
| [PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 16385 |
| [PradicBrown2022], p. 5 | Definition
3.3 | nnsf 16371 |
| [Quine] p. 16 | Definition
2.1 | df-clab 2216 rabid 2707 |
| [Quine] p. 17 | Definition
2.1'' | dfsb7 2042 |
| [Quine] p. 18 | Definition
2.7 | df-cleq 2222 |
| [Quine] p. 19 | Definition
2.9 | df-v 2801 |
| [Quine] p. 34 | Theorem
5.1 | abeq2 2338 |
| [Quine] p. 35 | Theorem
5.2 | abid2 2350 abid2f 2398 |
| [Quine] p. 40 | Theorem
6.1 | sb5 1934 |
| [Quine] p. 40 | Theorem
6.2 | sb56 1932 sb6 1933 |
| [Quine] p. 41 | Theorem
6.3 | df-clel 2225 |
| [Quine] p. 41 | Theorem
6.4 | eqid 2229 |
| [Quine] p. 41 | Theorem
6.5 | eqcom 2231 |
| [Quine] p. 42 | Theorem
6.6 | df-sbc 3029 |
| [Quine] p. 42 | Theorem
6.7 | dfsbcq 3030 dfsbcq2 3031 |
| [Quine] p. 43 | Theorem
6.8 | vex 2802 |
| [Quine] p. 43 | Theorem
6.9 | isset 2806 |
| [Quine] p. 44 | Theorem
7.3 | spcgf 2885 spcgv 2890 spcimgf 2883 |
| [Quine] p. 44 | Theorem
6.11 | spsbc 3040 spsbcd 3041 |
| [Quine] p. 44 | Theorem
6.12 | elex 2811 |
| [Quine] p. 44 | Theorem
6.13 | elab 2947 elabg 2949 elabgf 2945 |
| [Quine] p. 44 | Theorem
6.14 | noel 3495 |
| [Quine] p. 48 | Theorem
7.2 | snprc 3731 |
| [Quine] p. 48 | Definition
7.1 | df-pr 3673 df-sn 3672 |
| [Quine] p. 49 | Theorem
7.4 | snss 3803 snssg 3802 |
| [Quine] p. 49 | Theorem
7.5 | prss 3824 prssg 3825 |
| [Quine] p. 49 | Theorem
7.6 | prid1 3772 prid1g 3770 prid2 3773 prid2g 3771 snid 3697
snidg 3695 |
| [Quine] p. 51 | Theorem
7.12 | snexg 4268 snexprc 4270 |
| [Quine] p. 51 | Theorem
7.13 | prexg 4295 |
| [Quine] p. 53 | Theorem
8.2 | unisn 3904 unisng 3905 |
| [Quine] p. 53 | Theorem
8.3 | uniun 3907 |
| [Quine] p. 54 | Theorem
8.6 | elssuni 3916 |
| [Quine] p. 54 | Theorem
8.7 | uni0 3915 |
| [Quine] p. 56 | Theorem
8.17 | uniabio 5289 |
| [Quine] p. 56 | Definition
8.18 | dfiota2 5279 |
| [Quine] p. 57 | Theorem
8.19 | iotaval 5290 |
| [Quine] p. 57 | Theorem
8.22 | iotanul 5294 |
| [Quine] p. 58 | Theorem
8.23 | euiotaex 5295 |
| [Quine] p. 58 | Definition
9.1 | df-op 3675 |
| [Quine] p. 61 | Theorem
9.5 | opabid 4344 opabidw 4345 opelopab 4360 opelopaba 4354 opelopabaf 4362 opelopabf 4363 opelopabg 4356 opelopabga 4351 opelopabgf 4358 oprabid 6033 |
| [Quine] p. 64 | Definition
9.11 | df-xp 4725 |
| [Quine] p. 64 | Definition
9.12 | df-cnv 4727 |
| [Quine] p. 64 | Definition
9.15 | df-id 4384 |
| [Quine] p. 65 | Theorem
10.3 | fun0 5379 |
| [Quine] p. 65 | Theorem
10.4 | funi 5350 |
| [Quine] p. 65 | Theorem
10.5 | funsn 5369 funsng 5367 |
| [Quine] p. 65 | Definition
10.1 | df-fun 5320 |
| [Quine] p. 65 | Definition
10.2 | args 5097 dffv4g 5624 |
| [Quine] p. 68 | Definition
10.11 | df-fv 5326 fv2 5622 |
| [Quine] p. 124 | Theorem
17.3 | nn0opth2 10946 nn0opth2d 10945 nn0opthd 10944 |
| [Quine] p. 284 | Axiom
39(vi) | funimaex 5406 funimaexg 5405 |
| [Roman] p. 18 | Part
Preliminaries | df-rng 13896 |
| [Roman] p. 19 | Part
Preliminaries | df-ring 13961 |
| [Rudin] p. 164 | Equation
27 | efcan 12187 |
| [Rudin] p. 164 | Equation
30 | efzval 12194 |
| [Rudin] p. 167 | Equation
48 | absefi 12280 |
| [Sanford] p.
39 | Remark | ax-mp 5 |
| [Sanford] p. 39 | Rule
3 | mtpxor 1468 |
| [Sanford] p. 39 | Rule
4 | mptxor 1466 |
| [Sanford] p. 40 | Rule
1 | mptnan 1465 |
| [Schechter] p.
51 | Definition of antisymmetry | intasym 5113 |
| [Schechter] p.
51 | Definition of irreflexivity | intirr 5115 |
| [Schechter] p.
51 | Definition of symmetry | cnvsym 5112 |
| [Schechter] p.
51 | Definition of transitivity | cotr 5110 |
| [Schechter] p.
187 | Definition of "ring with unit" | isring 13963 |
| [Schechter] p.
428 | Definition 15.35 | bastop1 14757 |
| [Stoll] p. 13 | Definition
of symmetric difference | symdif1 3469 |
| [Stoll] p. 16 | Exercise
4.4 | 0dif 3563 dif0 3562 |
| [Stoll] p. 16 | Exercise
4.8 | difdifdirss 3576 |
| [Stoll] p. 19 | Theorem
5.2(13) | undm 3462 |
| [Stoll] p. 19 | Theorem
5.2(13') | indmss 3463 |
| [Stoll] p.
20 | Remark | invdif 3446 |
| [Stoll] p. 25 | Definition
of ordered triple | df-ot 3676 |
| [Stoll] p.
43 | Definition | uniiun 4019 |
| [Stoll] p.
44 | Definition | intiin 4020 |
| [Stoll] p.
45 | Definition | df-iin 3968 |
| [Stoll] p. 45 | Definition
indexed union | df-iun 3967 |
| [Stoll] p. 176 | Theorem
3.4(27) | imandc 894 imanst 893 |
| [Stoll] p. 262 | Example
4.1 | symdif1 3469 |
| [Suppes] p. 22 | Theorem
2 | eq0 3510 |
| [Suppes] p. 22 | Theorem
4 | eqss 3239 eqssd 3241 eqssi 3240 |
| [Suppes] p. 23 | Theorem
5 | ss0 3532 ss0b 3531 |
| [Suppes] p. 23 | Theorem
6 | sstr 3232 |
| [Suppes] p. 25 | Theorem
12 | elin 3387 elun 3345 |
| [Suppes] p. 26 | Theorem
15 | inidm 3413 |
| [Suppes] p. 26 | Theorem
16 | in0 3526 |
| [Suppes] p. 27 | Theorem
23 | unidm 3347 |
| [Suppes] p. 27 | Theorem
24 | un0 3525 |
| [Suppes] p. 27 | Theorem
25 | ssun1 3367 |
| [Suppes] p. 27 | Theorem
26 | ssequn1 3374 |
| [Suppes] p. 27 | Theorem
27 | unss 3378 |
| [Suppes] p. 27 | Theorem
28 | indir 3453 |
| [Suppes] p. 27 | Theorem
29 | undir 3454 |
| [Suppes] p. 28 | Theorem
32 | difid 3560 difidALT 3561 |
| [Suppes] p. 29 | Theorem
33 | difin 3441 |
| [Suppes] p. 29 | Theorem
34 | indif 3447 |
| [Suppes] p. 29 | Theorem
35 | undif1ss 3566 |
| [Suppes] p. 29 | Theorem
36 | difun2 3571 |
| [Suppes] p. 29 | Theorem
37 | difin0 3565 |
| [Suppes] p. 29 | Theorem
38 | disjdif 3564 |
| [Suppes] p. 29 | Theorem
39 | difundi 3456 |
| [Suppes] p. 29 | Theorem
40 | difindiss 3458 |
| [Suppes] p. 30 | Theorem
41 | nalset 4214 |
| [Suppes] p. 39 | Theorem
61 | uniss 3909 |
| [Suppes] p. 39 | Theorem
65 | uniop 4342 |
| [Suppes] p. 41 | Theorem
70 | intsn 3958 |
| [Suppes] p. 42 | Theorem
71 | intpr 3955 intprg 3956 |
| [Suppes] p. 42 | Theorem
73 | op1stb 4569 op1stbg 4570 |
| [Suppes] p. 42 | Theorem
78 | intun 3954 |
| [Suppes] p. 44 | Definition
15(a) | dfiun2 3999 dfiun2g 3997 |
| [Suppes] p. 44 | Definition
15(b) | dfiin2 4000 |
| [Suppes] p. 47 | Theorem
86 | elpw 3655 elpw2 4241 elpw2g 4240 elpwg 3657 |
| [Suppes] p. 47 | Theorem
87 | pwid 3664 |
| [Suppes] p. 47 | Theorem
89 | pw0 3815 |
| [Suppes] p. 48 | Theorem
90 | pwpw0ss 3883 |
| [Suppes] p. 52 | Theorem
101 | xpss12 4826 |
| [Suppes] p. 52 | Theorem
102 | xpindi 4857 xpindir 4858 |
| [Suppes] p. 52 | Theorem
103 | xpundi 4775 xpundir 4776 |
| [Suppes] p. 54 | Theorem
105 | elirrv 4640 |
| [Suppes] p. 58 | Theorem
2 | relss 4806 |
| [Suppes] p. 59 | Theorem
4 | eldm 4920 eldm2 4921 eldm2g 4919 eldmg 4918 |
| [Suppes] p. 59 | Definition
3 | df-dm 4729 |
| [Suppes] p. 60 | Theorem
6 | dmin 4931 |
| [Suppes] p. 60 | Theorem
8 | rnun 5137 |
| [Suppes] p. 60 | Theorem
9 | rnin 5138 |
| [Suppes] p. 60 | Definition
4 | dfrn2 4910 |
| [Suppes] p. 61 | Theorem
11 | brcnv 4905 brcnvg 4903 |
| [Suppes] p. 62 | Equation
5 | elcnv 4899 elcnv2 4900 |
| [Suppes] p. 62 | Theorem
12 | relcnv 5106 |
| [Suppes] p. 62 | Theorem
15 | cnvin 5136 |
| [Suppes] p. 62 | Theorem
16 | cnvun 5134 |
| [Suppes] p. 63 | Theorem
20 | co02 5242 |
| [Suppes] p. 63 | Theorem
21 | dmcoss 4994 |
| [Suppes] p. 63 | Definition
7 | df-co 4728 |
| [Suppes] p. 64 | Theorem
26 | cnvco 4907 |
| [Suppes] p. 64 | Theorem
27 | coass 5247 |
| [Suppes] p. 65 | Theorem
31 | resundi 5018 |
| [Suppes] p. 65 | Theorem
34 | elima 5073 elima2 5074 elima3 5075 elimag 5072 |
| [Suppes] p. 65 | Theorem
35 | imaundi 5141 |
| [Suppes] p. 66 | Theorem
40 | dminss 5143 |
| [Suppes] p. 66 | Theorem
41 | imainss 5144 |
| [Suppes] p. 67 | Exercise
11 | cnvxp 5147 |
| [Suppes] p. 81 | Definition
34 | dfec2 6683 |
| [Suppes] p. 82 | Theorem
72 | elec 6721 elecg 6720 |
| [Suppes] p. 82 | Theorem
73 | erth 6726 erth2 6727 |
| [Suppes] p. 89 | Theorem
96 | map0b 6834 |
| [Suppes] p. 89 | Theorem
97 | map0 6836 map0g 6835 |
| [Suppes] p. 89 | Theorem
98 | mapsn 6837 |
| [Suppes] p. 89 | Theorem
99 | mapss 6838 |
| [Suppes] p. 92 | Theorem
1 | enref 6916 enrefg 6915 |
| [Suppes] p. 92 | Theorem
2 | ensym 6933 ensymb 6932 ensymi 6934 |
| [Suppes] p. 92 | Theorem
3 | entr 6936 |
| [Suppes] p. 92 | Theorem
4 | unen 6969 |
| [Suppes] p. 94 | Theorem
15 | endom 6914 |
| [Suppes] p. 94 | Theorem
16 | ssdomg 6930 |
| [Suppes] p. 94 | Theorem
17 | domtr 6937 |
| [Suppes] p. 95 | Theorem
18 | isbth 7134 |
| [Suppes] p. 98 | Exercise
4 | fundmen 6959 fundmeng 6960 |
| [Suppes] p. 98 | Exercise
6 | xpdom3m 6993 |
| [Suppes] p.
130 | Definition 3 | df-tr 4183 |
| [Suppes] p. 132 | Theorem
9 | ssonuni 4580 |
| [Suppes] p.
134 | Definition 6 | df-suc 4462 |
| [Suppes] p. 136 | Theorem
Schema 22 | findes 4695 finds 4692 finds1 4694 finds2 4693 |
| [Suppes] p.
162 | Definition 5 | df-ltnqqs 7540 df-ltpq 7533 |
| [Suppes] p. 228 | Theorem
Schema 61 | onintss 4481 |
| [TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2211 |
| [TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2222 |
| [TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2225 |
| [TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2224 |
| [TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2247 |
| [TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 6005 |
| [TakeutiZaring] p.
14 | Proposition 4.14 | ru 3027 |
| [TakeutiZaring] p.
15 | Exercise 1 | elpr 3687 elpr2 3688 elprg 3686 |
| [TakeutiZaring] p.
15 | Exercise 2 | elsn 3682 elsn2 3700 elsn2g 3699 elsng 3681 velsn 3683 |
| [TakeutiZaring] p.
15 | Exercise 3 | elop 4317 |
| [TakeutiZaring] p.
15 | Exercise 4 | sneq 3677 sneqr 3838 |
| [TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3685 dfsn2 3680 |
| [TakeutiZaring] p.
16 | Axiom 3 | uniex 4528 |
| [TakeutiZaring] p.
16 | Exercise 6 | opth 4323 |
| [TakeutiZaring] p.
16 | Exercise 8 | rext 4301 |
| [TakeutiZaring] p.
16 | Corollary 5.8 | unex 4532 unexg 4534 |
| [TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3715 |
| [TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3889 |
| [TakeutiZaring] p.
16 | Definition 5.6 | df-in 3203 df-un 3201 |
| [TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3902 uniprg 3903 |
| [TakeutiZaring] p.
17 | Axiom 4 | vpwex 4263 |
| [TakeutiZaring] p.
17 | Exercise 1 | eltp 3714 |
| [TakeutiZaring] p.
17 | Exercise 5 | elsuc 4497 elsucg 4495 sstr2 3231 |
| [TakeutiZaring] p.
17 | Exercise 6 | uncom 3348 |
| [TakeutiZaring] p.
17 | Exercise 7 | incom 3396 |
| [TakeutiZaring] p.
17 | Exercise 8 | unass 3361 |
| [TakeutiZaring] p.
17 | Exercise 9 | inass 3414 |
| [TakeutiZaring] p.
17 | Exercise 10 | indi 3451 |
| [TakeutiZaring] p.
17 | Exercise 11 | undi 3452 |
| [TakeutiZaring] p.
17 | Definition 5.9 | ssalel 3212 |
| [TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3651 |
| [TakeutiZaring] p.
18 | Exercise 7 | unss2 3375 |
| [TakeutiZaring] p.
18 | Exercise 9 | df-ss 3210 dfss2 3214 sseqin2 3423 |
| [TakeutiZaring] p.
18 | Exercise 10 | ssid 3244 |
| [TakeutiZaring] p.
18 | Exercise 12 | inss1 3424 inss2 3425 |
| [TakeutiZaring] p.
18 | Exercise 13 | nssr 3284 |
| [TakeutiZaring] p.
18 | Exercise 15 | unieq 3897 |
| [TakeutiZaring] p.
18 | Exercise 18 | sspwb 4302 |
| [TakeutiZaring] p.
18 | Exercise 19 | pweqb 4309 |
| [TakeutiZaring] p.
20 | Definition | df-rab 2517 |
| [TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4211 |
| [TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3199 |
| [TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3493 |
| [TakeutiZaring] p.
20 | Proposition 5.15 | difid 3560 difidALT 3561 |
| [TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3504 |
| [TakeutiZaring] p.
21 | Theorem 5.22 | setind 4631 |
| [TakeutiZaring] p.
21 | Definition 5.20 | df-v 2801 |
| [TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4216 |
| [TakeutiZaring] p.
22 | Exercise 1 | 0ss 3530 |
| [TakeutiZaring] p.
22 | Exercise 3 | ssex 4221 ssexg 4223 |
| [TakeutiZaring] p.
22 | Exercise 4 | inex1 4218 |
| [TakeutiZaring] p.
22 | Exercise 5 | ruv 4642 |
| [TakeutiZaring] p.
22 | Exercise 6 | elirr 4633 |
| [TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3556 |
| [TakeutiZaring] p.
22 | Exercise 11 | difdif 3329 |
| [TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3465 |
| [TakeutiZaring] p.
22 | Exercise 14 | difss 3330 |
| [TakeutiZaring] p.
22 | Exercise 15 | sscon 3338 |
| [TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2513 |
| [TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2514 |
| [TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4834 xpexg 4833 xpexgALT 6278 |
| [TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4726 |
| [TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5385 |
| [TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5542 fun11 5388 |
| [TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5329 svrelfun 5386 |
| [TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4909 |
| [TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4911 |
| [TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4731 |
| [TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4732 |
| [TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4728 |
| [TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5183 dfrel2 5179 |
| [TakeutiZaring] p.
25 | Exercise 3 | xpss 4827 |
| [TakeutiZaring] p.
25 | Exercise 5 | relun 4836 |
| [TakeutiZaring] p.
25 | Exercise 6 | reluni 4842 |
| [TakeutiZaring] p.
25 | Exercise 9 | inxp 4856 |
| [TakeutiZaring] p.
25 | Exercise 12 | relres 5033 |
| [TakeutiZaring] p.
25 | Exercise 13 | opelres 5010 opelresg 5012 |
| [TakeutiZaring] p.
25 | Exercise 14 | dmres 5026 |
| [TakeutiZaring] p.
25 | Exercise 15 | resss 5029 |
| [TakeutiZaring] p.
25 | Exercise 17 | resabs1 5034 |
| [TakeutiZaring] p.
25 | Exercise 18 | funres 5359 |
| [TakeutiZaring] p.
25 | Exercise 24 | relco 5227 |
| [TakeutiZaring] p.
25 | Exercise 29 | funco 5358 |
| [TakeutiZaring] p.
25 | Exercise 30 | f1co 5543 |
| [TakeutiZaring] p.
26 | Definition 6.10 | eu2 2122 |
| [TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5326 fv3 5650 |
| [TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5267 cnvexg 5266 |
| [TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4991 dmexg 4988 |
| [TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4992 rnexg 4989 |
| [TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5644 |
| [TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5654 tz6.12 5655 tz6.12c 5657 |
| [TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5618 |
| [TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5321 |
| [TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5322 |
| [TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5324 wfo 5316 |
| [TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5323 wf1 5315 |
| [TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5325 wf1o 5317 |
| [TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5732 eqfnfv2 5733 eqfnfv2f 5736 |
| [TakeutiZaring] p.
28 | Exercise 5 | fvco 5704 |
| [TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5861 fnexALT 6256 |
| [TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5860 resfunexgALT 6253 |
| [TakeutiZaring] p.
29 | Exercise 9 | funimaex 5406 funimaexg 5405 |
| [TakeutiZaring] p.
29 | Definition 6.18 | df-br 4084 |
| [TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 5098 iniseg 5100 |
| [TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4380 |
| [TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5327 |
| [TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5934 |
| [TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5935 |
| [TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5940 |
| [TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5942 |
| [TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5950 |
| [TakeutiZaring] p.
35 | Notation | wtr 4182 |
| [TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4445 |
| [TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4186 |
| [TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4668 |
| [TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4472 |
| [TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4476 |
| [TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4584 |
| [TakeutiZaring] p.
38 | Definition 7.11 | df-on 4459 |
| [TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4578 |
| [TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4644 |
| [TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4674 |
| [TakeutiZaring] p.
40 | Exercise 7 | dftr2 4184 |
| [TakeutiZaring] p.
40 | Exercise 11 | unon 4603 |
| [TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4579 |
| [TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3916 |
| [TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4462 |
| [TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4506 sucidg 4507 |
| [TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4593 |
| [TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4460 |
| [TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4598 ordelsuc 4597 |
| [TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4686 |
| [TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4687 |
| [TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4688 |
| [TakeutiZaring] p.
43 | Axiom 7 | omex 4685 |
| [TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4699 |
| [TakeutiZaring] p.
43 | Corollary 7.31 | find 4691 |
| [TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4689 |
| [TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4690 |
| [TakeutiZaring] p.
44 | Exercise 2 | int0 3937 |
| [TakeutiZaring] p.
44 | Exercise 3 | trintssm 4198 |
| [TakeutiZaring] p.
44 | Exercise 4 | intss1 3938 |
| [TakeutiZaring] p.
44 | Exercise 6 | onintonm 4609 |
| [TakeutiZaring] p.
44 | Definition 7.35 | df-int 3924 |
| [TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6454 |
| [TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6511 tfri1d 6481 |
| [TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6512 tfri2d 6482 |
| [TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6513 |
| [TakeutiZaring] p.
50 | Exercise 3 | smoiso 6448 |
| [TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6432 |
| [TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6610 |
| [TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6606 |
| [TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6603 |
| [TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6607 |
| [TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6655 nnaordi 6654 |
| [TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 4010 uniss2 3919 |
| [TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6616 |
| [TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6626 |
| [TakeutiZaring] p.
62 | Exercise 5 | oaword1 6617 |
| [TakeutiZaring] p.
62 | Definition 8.15 | om0 6604 omsuc 6618 |
| [TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6627 |
| [TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6663 nnmordi 6662 |
| [TakeutiZaring] p.
67 | Definition 8.30 | oei0 6605 |
| [TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7359 |
| [TakeutiZaring] p.
88 | Exercise 1 | en0 6947 |
| [TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 7018 |
| [TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 7019 |
| [TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6890 isfi 6912 |
| [TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6990 |
| [TakeutiZaring] p.
95 | Definition 10.42 | df-map 6797 |
| [TakeutiZaring] p.
96 | Proposition 10.44 | pw2f1odc 6996 |
| [TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 7009 |
| [Tarski] p. 67 | Axiom
B5 | ax-4 1556 |
| [Tarski] p. 68 | Lemma
6 | equid 1747 |
| [Tarski] p. 69 | Lemma
7 | equcomi 1750 |
| [Tarski] p. 70 | Lemma
14 | spim 1784 spime 1787 spimeh 1785 spimh 1783 |
| [Tarski] p. 70 | Lemma
16 | ax-11 1552 ax-11o 1869 ax11i 1760 |
| [Tarski] p. 70 | Lemmas 16
and 17 | sb6 1933 |
| [Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1572 |
| [Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2202 ax-14 2203 |
| [WhiteheadRussell] p.
96 | Axiom *1.3 | olc 716 |
| [WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 732 |
| [WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 761 |
| [WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 770 |
| [WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 794 |
| [WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 619 |
| [WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
| [WhiteheadRussell] p.
100 | Theorem *2.03 | con2 646 |
| [WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
| [WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
| [WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
| [WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 842 |
| [WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2176 syl 14 |
| [WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 742 |
| [WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
| [WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 841 |
| [WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 632 |
| [WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 890 |
| [WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 848 |
| [WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 861 |
| [WhiteheadRussell] p.
103 | Theorem *2.16 | con3 645 |
| [WhiteheadRussell] p.
103 | Theorem *2.17 | condc 858 |
| [WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 860 |
| [WhiteheadRussell] p.
104 | Theorem *2.2 | orc 717 |
| [WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 780 |
| [WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 620 |
| [WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 624 |
| [WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 898 |
| [WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 912 |
| [WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
| [WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 773 |
| [WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 774 |
| [WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 809 |
| [WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 810 |
| [WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 808 |
| [WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 1003 |
| [WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 783 |
| [WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 781 |
| [WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 782 |
| [WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
| [WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 743 |
| [WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 744 |
| [WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 872 pm2.5gdc 871 |
| [WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 867 |
| [WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 745 |
| [WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 746 |
| [WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 747 |
| [WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 659 |
| [WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 660 |
| [WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 727 |
| [WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 896 |
| [WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 730 |
| [WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 731 |
| [WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 870 |
| [WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 753 |
| [WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 805 |
| [WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 806 |
| [WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 663 |
| [WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 718 pm2.67 748 |
| [WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 874 pm2.521gdc 873 |
| [WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 752 |
| [WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 815 |
| [WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 899 |
| [WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 920 |
| [WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 811 |
| [WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 812 |
| [WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 814 |
| [WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 813 |
| [WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
| [WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 816 |
| [WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 817 |
| [WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
| [WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 910 |
| [WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
| [WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 759 |
| [WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
| [WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 963 |
| [WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 964 |
| [WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 965 |
| [WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 758 |
| [WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
| [WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
| [WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 698 |
| [WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
| [WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
| [WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
| [WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 865 |
| [WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 864 |
| [WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
| [WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
| [WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 693 |
| [WhiteheadRussell] p.
113 | Fact) | pm3.45 599 |
| [WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
| [WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
| [WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
| [WhiteheadRussell] p.
113 | Theorem *3.44 | jao 760 pm3.44 720 |
| [WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
| [WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 604 |
| [WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 790 |
| [WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 876 |
| [WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
| [WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 877 |
| [WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 895 |
| [WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 699 |
| [WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
| [WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 958 bitr 472 |
| [WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
| [WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 762 pm4.25 763 |
| [WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
| [WhiteheadRussell] p.
118 | Theorem *4.4 | andi 823 |
| [WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 733 |
| [WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
| [WhiteheadRussell] p.
118 | Theorem *4.33 | orass 772 |
| [WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
| [WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 797 |
| [WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 607 |
| [WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 827 |
| [WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 1004 |
| [WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 821 |
| [WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 977 |
| [WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 955 |
| [WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 784 |
| [WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 819 pm4.45 789 pm4.45im 334 |
| [WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1527 |
| [WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 962 |
| [WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 902 imorr 726 |
| [WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
| [WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 904 |
| [WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 755 |
| [WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 756 |
| [WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 907 |
| [WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 944 |
| [WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 757 pm4.56 785 |
| [WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 945 oranim 786 |
| [WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 690 |
| [WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 903 |
| [WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 891 |
| [WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 905 |
| [WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 691 |
| [WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 906 |
| [WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 892 |
| [WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
| [WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 832 |
| [WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
| [WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 749 |
| [WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 605 pm4.76 606 |
| [WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 715 pm4.77 804 |
| [WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 787 |
| [WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 908 |
| [WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 712 |
| [WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 913 |
| [WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 956 |
| [WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 957 |
| [WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
| [WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
| [WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
| [WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
| [WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 603 |
| [WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 914 |
| [WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 915 |
| [WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 917 |
| [WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 916 |
| [WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1431 |
| [WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 833 |
| [WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 909 |
| [WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1436 pm5.18dc 888 |
| [WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 711 |
| [WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 700 |
| [WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1434 |
| [WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1439 |
| [WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1440 |
| [WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 900 |
| [WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
| [WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
| [WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
| [WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 931 pm5.6r 932 |
| [WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 960 |
| [WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
| [WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
| [WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 611 |
| [WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 922 |
| [WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 612 |
| [WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
| [WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
| [WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 930 |
| [WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 807 |
| [WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 923 |
| [WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 918 |
| [WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 799 |
| [WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 951 |
| [WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 952 |
| [WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 967 |
| [WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
| [WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
| [WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 968 |
| [WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1681 |
| [WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1531 |
| [WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1678 |
| [WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1942 |
| [WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2080 |
| [WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2481 |
| [WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2482 |
| [WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2941 |
| [WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3085 |
| [WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5298 |
| [WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5299 |
| [WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2157 eupickbi 2160 |
| [WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5326 |
| [WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7363 |