Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7080  fidcenum 6921
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 6921
[AczelRathjen], p. 73Lemma 8.1.14enumct 7080
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12358
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6895
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6883
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12373
[AczelRathjen], p. 75Corollary 8.1.20unct 12375
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12364  znnen 12331
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12376
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12377
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10689
[AczelRathjen], p. 183Chapter 20ax-setind 4514
[Apostol] p. 18Theorem I.1addcan 8078  addcan2d 8083  addcan2i 8081  addcand 8082  addcani 8080
[Apostol] p. 18Theorem I.2negeu 8089
[Apostol] p. 18Theorem I.3negsub 8146  negsubd 8215  negsubi 8176
[Apostol] p. 18Theorem I.4negneg 8148  negnegd 8200  negnegi 8168
[Apostol] p. 18Theorem I.5subdi 8283  subdid 8312  subdii 8305  subdir 8284  subdird 8313  subdiri 8306
[Apostol] p. 18Theorem I.6mul01 8287  mul01d 8291  mul01i 8289  mul02 8285  mul02d 8290  mul02i 8288
[Apostol] p. 18Theorem I.9divrecapd 8689
[Apostol] p. 18Theorem I.10recrecapi 8640
[Apostol] p. 18Theorem I.12mul2neg 8296  mul2negd 8311  mul2negi 8304  mulneg1 8293  mulneg1d 8309  mulneg1i 8302
[Apostol] p. 18Theorem I.15divdivdivap 8609
[Apostol] p. 20Axiom 7rpaddcl 9613  rpaddcld 9648  rpmulcl 9614  rpmulcld 9649
[Apostol] p. 20Axiom 90nrp 9625
[Apostol] p. 20Theorem I.17lttri 8003
[Apostol] p. 20Theorem I.18ltadd1d 8436  ltadd1dd 8454  ltadd1i 8400
[Apostol] p. 20Theorem I.19ltmul1 8490  ltmul1a 8489  ltmul1i 8815  ltmul1ii 8823  ltmul2 8751  ltmul2d 9675  ltmul2dd 9689  ltmul2i 8818
[Apostol] p. 20Theorem I.210lt1 8025
[Apostol] p. 20Theorem I.23lt0neg1 8366  lt0neg1d 8413  ltneg 8360  ltnegd 8421  ltnegi 8391
[Apostol] p. 20Theorem I.25lt2add 8343  lt2addd 8465  lt2addi 8408
[Apostol] p. 20Definition of positive numbersdf-rp 9590
[Apostol] p. 21Exercise 4recgt0 8745  recgt0d 8829  recgt0i 8801  recgt0ii 8802
[Apostol] p. 22Definition of integersdf-z 9192
[Apostol] p. 22Definition of rationalsdf-q 9558
[Apostol] p. 24Theorem I.26supeuti 6959
[Apostol] p. 26Theorem I.29arch 9111
[Apostol] p. 28Exercise 2btwnz 9310
[Apostol] p. 28Exercise 3nnrecl 9112
[Apostol] p. 28Exercise 6qbtwnre 10192
[Apostol] p. 28Exercise 10(a)zeneo 11808  zneo 9292
[Apostol] p. 29Theorem I.35resqrtth 10973  sqrtthi 11061
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8860
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 11969
[Apostol] p. 363Remarkabsgt0api 11088
[Apostol] p. 363Exampleabssubd 11135  abssubi 11092
[ApostolNT] p. 14Definitiondf-dvds 11728
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11744
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11768
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11764
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11758
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11760
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11745
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11746
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11751
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11783
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11785
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11787
[ApostolNT] p. 15Definitiondfgcd2 11947
[ApostolNT] p. 16Definitionisprm2 12049
[ApostolNT] p. 16Theorem 1.5coprmdvds 12024
[ApostolNT] p. 16Theorem 1.7prminf 12388
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 11906
[ApostolNT] p. 16Theorem 1.4(b)gcdass 11948
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 11950
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 11920
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 11913
[ApostolNT] p. 17Theorem 1.8coprm 12076
[ApostolNT] p. 17Theorem 1.9euclemma 12078
[ApostolNT] p. 17Theorem 1.101arith2 12298
[ApostolNT] p. 19Theorem 1.14divalg 11861
[ApostolNT] p. 20Theorem 1.15eucalg 11991
[ApostolNT] p. 25Definitiondf-phi 12143
[ApostolNT] p. 26Theorem 2.2phisum 12172
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12154
[ApostolNT] p. 28Theorem 2.5(c)phimul 12158
[ApostolNT] p. 104Definitioncongr 12032
[ApostolNT] p. 106Remarkdvdsval3 11731
[ApostolNT] p. 106Definitionmoddvds 11739
[ApostolNT] p. 107Example 2mod2eq0even 11815
[ApostolNT] p. 107Example 3mod2eq1n2dvds 11816
[ApostolNT] p. 107Example 4zmod1congr 10276
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10313
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10581
[ApostolNT] p. 108Theorem 5.3modmulconst 11763
[ApostolNT] p. 109Theorem 5.4cncongr1 12035
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12037
[ApostolNT] p. 113Theorem 5.17eulerth 12165
[ApostolNT] p. 113Theorem 5.18vfermltl 12183
[ApostolNT] p. 114Theorem 5.19fermltl 12166
[ApostolNT] p. 179Definitiondf-lgs 13539  lgsprme0 13583
[ApostolNT] p. 180Example 11lgs 13584
[ApostolNT] p. 180Theorem 9.2lgsvalmod 13560
[ApostolNT] p. 180Theorem 9.3lgsdirprm 13575
[ApostolNT] p. 188Definitiondf-lgs 13539  lgs1 13585
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 13576
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 13578
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 13586
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 13587
[Bauer] p. 482Section 1.2pm2.01 606  pm2.65 649
[Bauer] p. 483Theorem 1.3acexmid 5841  onsucelsucexmidlem 4506
[Bauer], p. 481Section 1.1pwtrufal 13877
[Bauer], p. 483Definitionn0rf 3421
[Bauer], p. 483Theorem 1.22irrexpq 13534  2irrexpqap 13536
[Bauer], p. 485Theorem 2.1ssfiexmid 6842
[Bauer], p. 494Theorem 5.5ivthinc 13261
[BauerHanson], p. 27Proposition 5.2cnstab 8543
[BauerSwan], p. 14Remark0ct 7072  ctm 7074
[BauerSwan], p. 14Proposition 2.6subctctexmid 13881
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7080
[BauerTaylor], p. 32Lemma 6.16prarloclem 7442
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7355
[BauerTaylor], p. 52Proposition 11.15prarloc 7444
[BauerTaylor], p. 53Lemma 11.16addclpr 7478  addlocpr 7477
[BauerTaylor], p. 55Proposition 12.7appdivnq 7504
[BauerTaylor], p. 56Lemma 12.8prmuloc 7507
[BauerTaylor], p. 56Lemma 12.9mullocpr 7512
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2017
[BellMachover] p. 460Notationdf-mo 2018
[BellMachover] p. 460Definitionmo3 2068  mo3h 2067
[BellMachover] p. 462Theorem 1.1bm1.1 2150
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4103
[BellMachover] p. 466Axiom Powaxpow3 4156
[BellMachover] p. 466Axiom Unionaxun2 4413
[BellMachover] p. 469Theorem 2.2(i)ordirr 4519
[BellMachover] p. 469Theorem 2.2(iii)onelon 4362
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4522
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4473
[BellMachover] p. 471Definition of Limdf-ilim 4347
[BellMachover] p. 472Axiom Infzfinf2 4566
[BellMachover] p. 473Theorem 2.8limom 4591
[Bobzien] p. 116Statement T3stoic3 1419
[Bobzien] p. 117Statement T2stoic2a 1417
[Bobzien] p. 117Statement T4stoic4a 1420
[BourbakiAlg1] p. 1Definition 1df-mgm 12587
[BourbakiEns] p. Proposition 8fcof1 5751  fcofo 5752
[BourbakiTop1] p. Remarkxnegmnf 9765  xnegpnf 9764
[BourbakiTop1] p. Remark rexneg 9766
[BourbakiTop1] p. Propositionishmeo 12944
[BourbakiTop1] p. Property V_issnei2 12797
[BourbakiTop1] p. Property V_iiinnei 12803
[BourbakiTop1] p. Property V_ivneissex 12805
[BourbakiTop1] p. Proposition 1neipsm 12794  neiss 12790
[BourbakiTop1] p. Proposition 2cnptopco 12862
[BourbakiTop1] p. Proposition 4imasnopn 12939
[BourbakiTop1] p. Property V_iiielnei 12792
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 12636
[Bruck] p. 1Section I.1df-mgm 12587
[ChoquetDD] p. 2Definition of mappingdf-mpt 4045
[Cohen] p. 301Remarkrelogoprlem 13429
[Cohen] p. 301Property 2relogmul 13430  relogmuld 13445
[Cohen] p. 301Property 3relogdiv 13431  relogdivd 13446
[Cohen] p. 301Property 4relogexp 13433
[Cohen] p. 301Property 1alog1 13427
[Cohen] p. 301Property 1bloge 13428
[Cohen4] p. 348Observationrelogbcxpbap 13523
[Cohen4] p. 352Definitionrpelogb 13507
[Cohen4] p. 361Property 2rprelogbmul 13513
[Cohen4] p. 361Property 3logbrec 13518  rprelogbdiv 13515
[Cohen4] p. 361Property 4rplogbreexp 13511
[Cohen4] p. 361Property 6relogbexpap 13516
[Cohen4] p. 361Property 1(a)rplogbid1 13505
[Cohen4] p. 361Property 1(b)rplogb1 13506
[Cohen4] p. 367Propertyrplogbchbase 13508
[Cohen4] p. 377Property 2logblt 13520
[Crosilla] p. Axiom 1ax-ext 2147
[Crosilla] p. Axiom 2ax-pr 4187
[Crosilla] p. Axiom 3ax-un 4411
[Crosilla] p. Axiom 4ax-nul 4108
[Crosilla] p. Axiom 5ax-iinf 4565
[Crosilla] p. Axiom 6ru 2950
[Crosilla] p. Axiom 8ax-pow 4153
[Crosilla] p. Axiom 9ax-setind 4514
[Crosilla], p. Axiom 6ax-sep 4100
[Crosilla], p. Axiom 7ax-coll 4097
[Crosilla], p. Axiom 7'repizf 4098
[Crosilla], p. Theorem is statedordtriexmid 4498
[Crosilla], p. Axiom of choice implies instancesacexmid 5841
[Crosilla], p. Definition of ordinaldf-iord 4344
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4512
[Eisenberg] p. 67Definition 5.3df-dif 3118
[Eisenberg] p. 82Definition 6.3df-iom 4568
[Eisenberg] p. 125Definition 8.21df-map 6616
[Enderton] p. 18Axiom of Empty Setaxnul 4107
[Enderton] p. 19Definitiondf-tp 3584
[Enderton] p. 26Exercise 5unissb 3819
[Enderton] p. 26Exercise 10pwel 4196
[Enderton] p. 28Exercise 7(b)pwunim 4264
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3935  iinin2m 3934  iunin1 3930  iunin2 3929
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3933  iundif2ss 3931
[Enderton] p. 33Exercise 23iinuniss 3948
[Enderton] p. 33Exercise 25iununir 3949
[Enderton] p. 33Exercise 24(a)iinpw 3956
[Enderton] p. 33Exercise 24(b)iunpw 4458  iunpwss 3957
[Enderton] p. 38Exercise 6(a)unipw 4195
[Enderton] p. 38Exercise 6(b)pwuni 4171
[Enderton] p. 41Lemma 3Dopeluu 4428  rnex 4871  rnexg 4869
[Enderton] p. 41Exercise 8dmuni 4814  rnuni 5015
[Enderton] p. 42Definition of a functiondffun7 5215  dffun8 5216
[Enderton] p. 43Definition of function valuefunfvdm2 5550
[Enderton] p. 43Definition of single-rootedfuncnv 5249
[Enderton] p. 44Definition (d)dfima2 4948  dfima3 4949
[Enderton] p. 47Theorem 3Hfvco2 5555
[Enderton] p. 49Axiom of Choice (first form)df-ac 7162
[Enderton] p. 50Theorem 3K(a)imauni 5729
[Enderton] p. 52Definitiondf-map 6616
[Enderton] p. 53Exercise 21coass 5122
[Enderton] p. 53Exercise 27dmco 5112
[Enderton] p. 53Exercise 14(a)funin 5259
[Enderton] p. 53Exercise 22(a)imass2 4980
[Enderton] p. 54Remarkixpf 6686  ixpssmap 6698
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6665
[Enderton] p. 56Theorem 3Merref 6521
[Enderton] p. 57Lemma 3Nerthi 6547
[Enderton] p. 57Definitiondf-ec 6503
[Enderton] p. 58Definitiondf-qs 6507
[Enderton] p. 60Theorem 3Qth3q 6606  th3qcor 6605  th3qlem1 6603  th3qlem2 6604
[Enderton] p. 61Exercise 35df-ec 6503
[Enderton] p. 65Exercise 56(a)dmun 4811
[Enderton] p. 68Definition of successordf-suc 4349
[Enderton] p. 71Definitiondf-tr 4081  dftr4 4085
[Enderton] p. 72Theorem 4Eunisuc 4391  unisucg 4392
[Enderton] p. 73Exercise 6unisuc 4391  unisucg 4392
[Enderton] p. 73Exercise 5(a)truni 4094
[Enderton] p. 73Exercise 5(b)trint 4095
[Enderton] p. 79Theorem 4I(A1)nna0 6442
[Enderton] p. 79Theorem 4I(A2)nnasuc 6444  onasuc 6434
[Enderton] p. 79Definition of operation valuedf-ov 5845
[Enderton] p. 80Theorem 4J(A1)nnm0 6443
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6445  onmsuc 6441
[Enderton] p. 81Theorem 4K(1)nnaass 6453
[Enderton] p. 81Theorem 4K(2)nna0r 6446  nnacom 6452
[Enderton] p. 81Theorem 4K(3)nndi 6454
[Enderton] p. 81Theorem 4K(4)nnmass 6455
[Enderton] p. 81Theorem 4K(5)nnmcom 6457
[Enderton] p. 82Exercise 16nnm0r 6447  nnmsucr 6456
[Enderton] p. 88Exercise 23nnaordex 6495
[Enderton] p. 129Definitiondf-en 6707
[Enderton] p. 132Theorem 6B(b)canth 5796
[Enderton] p. 133Exercise 1xpomen 12328
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6831
[Enderton] p. 136Corollary 6Enneneq 6823
[Enderton] p. 139Theorem 6H(c)mapen 6812
[Enderton] p. 142Theorem 6I(3)xpdjuen 7174
[Enderton] p. 143Theorem 6Jdju0en 7170  dju1en 7169
[Enderton] p. 144Corollary 6Kundif2ss 3484
[Enderton] p. 145Figure 38ffoss 5464
[Enderton] p. 145Definitiondf-dom 6708
[Enderton] p. 146Example 1domen 6717  domeng 6718
[Enderton] p. 146Example 3nndomo 6830
[Enderton] p. 149Theorem 6L(c)xpdom1 6801  xpdom1g 6799  xpdom2g 6798
[Enderton] p. 168Definitiondf-po 4274
[Enderton] p. 192Theorem 7M(a)oneli 4406
[Enderton] p. 192Theorem 7M(b)ontr1 4367
[Enderton] p. 192Theorem 7M(c)onirri 4520
[Enderton] p. 193Corollary 7N(b)0elon 4370
[Enderton] p. 193Corollary 7N(c)onsuci 4493
[Enderton] p. 193Corollary 7N(d)ssonunii 4466
[Enderton] p. 194Remarkonprc 4529
[Enderton] p. 194Exercise 16suc11 4535
[Enderton] p. 197Definitiondf-card 7136
[Enderton] p. 200Exercise 25tfis 4560
[Enderton] p. 206Theorem 7X(b)en2lp 4531
[Enderton] p. 207Exercise 34opthreg 4533
[Enderton] p. 208Exercise 35suc11g 4534
[Geuvers], p. 1Remarkexpap0 10485
[Geuvers], p. 6Lemma 2.13mulap0r 8513
[Geuvers], p. 6Lemma 2.15mulap0 8551
[Geuvers], p. 9Lemma 2.35msqge0 8514
[Geuvers], p. 9Definition 3.1(2)ax-arch 7872
[Geuvers], p. 10Lemma 3.9maxcom 11145
[Geuvers], p. 10Lemma 3.10maxle1 11153  maxle2 11154
[Geuvers], p. 10Lemma 3.11maxleast 11155
[Geuvers], p. 10Lemma 3.12maxleb 11158
[Geuvers], p. 11Definition 3.13dfabsmax 11159
[Geuvers], p. 17Definition 6.1df-ap 8480
[Gleason] p. 117Proposition 9-2.1df-enq 7288  enqer 7299
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7292  df-nqqs 7289
[Gleason] p. 117Proposition 9-2.3df-plpq 7285  df-plqqs 7290
[Gleason] p. 119Proposition 9-2.4df-mpq 7286  df-mqqs 7291
[Gleason] p. 119Proposition 9-2.5df-rq 7293
[Gleason] p. 119Proposition 9-2.6ltexnqq 7349
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7352  ltbtwnnq 7357  ltbtwnnqq 7356
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7341
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7342
[Gleason] p. 123Proposition 9-3.5addclpr 7478
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7520
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7519
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7538
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7554
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7560  ltaprlem 7559
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7557
[Gleason] p. 124Proposition 9-3.7mulclpr 7513
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7533
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7522
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7521
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7529
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7579
[Gleason] p. 126Proposition 9-4.1df-enr 7667  enrer 7676
[Gleason] p. 126Proposition 9-4.2df-0r 7672  df-1r 7673  df-nr 7668
[Gleason] p. 126Proposition 9-4.3df-mr 7670  df-plr 7669  negexsr 7713  recexsrlem 7715
[Gleason] p. 127Proposition 9-4.4df-ltr 7671
[Gleason] p. 130Proposition 10-1.3creui 8855  creur 8854  cru 8500
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7864  axcnre 7822
[Gleason] p. 132Definition 10-3.1crim 10800  crimd 10919  crimi 10879  crre 10799  crred 10918  crrei 10878
[Gleason] p. 132Definition 10-3.2remim 10802  remimd 10884
[Gleason] p. 133Definition 10.36absval2 10999  absval2d 11127  absval2i 11086
[Gleason] p. 133Proposition 10-3.4(a)cjadd 10826  cjaddd 10907  cjaddi 10874
[Gleason] p. 133Proposition 10-3.4(c)cjmul 10827  cjmuld 10908  cjmuli 10875
[Gleason] p. 133Proposition 10-3.4(e)cjcj 10825  cjcjd 10885  cjcji 10857
[Gleason] p. 133Proposition 10-3.4(f)cjre 10824  cjreb 10808  cjrebd 10888  cjrebi 10860  cjred 10913  rere 10807  rereb 10805  rerebd 10887  rerebi 10859  rered 10911
[Gleason] p. 133Proposition 10-3.4(h)addcj 10833  addcjd 10899  addcji 10869
[Gleason] p. 133Proposition 10-3.7(a)absval 10943
[Gleason] p. 133Proposition 10-3.7(b)abscj 10994  abscjd 11132  abscji 11090
[Gleason] p. 133Proposition 10-3.7(c)abs00 11006  abs00d 11128  abs00i 11087  absne0d 11129
[Gleason] p. 133Proposition 10-3.7(d)releabs 11038  releabsd 11133  releabsi 11091
[Gleason] p. 133Proposition 10-3.7(f)absmul 11011  absmuld 11136  absmuli 11093
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 10997  sqabsaddi 11094
[Gleason] p. 133Proposition 10-3.7(h)abstri 11046  abstrid 11138  abstrii 11097
[Gleason] p. 134Definition 10-4.1df-exp 10455  exp0 10459  expp1 10462  expp1d 10589
[Gleason] p. 135Proposition 10-4.2(a)expadd 10497  expaddd 10590
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 13473  cxpmuld 13496  expmul 10500  expmuld 10591
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10494  mulexpd 10603  rpmulcxp 13470
[Gleason] p. 141Definition 11-2.1fzval 9946
[Gleason] p. 168Proposition 12-2.1(a)climadd 11267
[Gleason] p. 168Proposition 12-2.1(b)climsub 11269
[Gleason] p. 168Proposition 12-2.1(c)climmul 11268
[Gleason] p. 171Corollary 12-2.2climmulc2 11272
[Gleason] p. 172Corollary 12-2.5climrecl 11265
[Gleason] p. 172Proposition 12-2.4(c)climabs 11261  climcj 11262  climim 11264  climre 11263
[Gleason] p. 173Definition 12-3.1df-ltxr 7938  df-xr 7937  ltxr 9711
[Gleason] p. 180Theorem 12-5.3climcau 11288
[Gleason] p. 217Lemma 13-4.1btwnzge0 10235
[Gleason] p. 223Definition 14-1.1df-met 12629
[Gleason] p. 223Definition 14-1.1(a)met0 13004  xmet0 13003
[Gleason] p. 223Definition 14-1.1(c)metsym 13011
[Gleason] p. 223Definition 14-1.1(d)mettri 13013  mstri 13113  xmettri 13012  xmstri 13112
[Gleason] p. 230Proposition 14-2.6txlm 12919
[Gleason] p. 240Proposition 14-4.2metcnp3 13151
[Gleason] p. 243Proposition 14-4.16addcn2 11251  addcncntop 13192  mulcn2 11253  mulcncntop 13194  subcn2 11252  subcncntop 13193
[Gleason] p. 295Remarkbcval3 10664  bcval4 10665
[Gleason] p. 295Equation 2bcpasc 10679
[Gleason] p. 295Definition of binomial coefficientbcval 10662  df-bc 10661
[Gleason] p. 296Remarkbcn0 10668  bcnn 10670
[Gleason] p. 296Theorem 15-2.8binom 11425
[Gleason] p. 308Equation 2ef0 11613
[Gleason] p. 308Equation 3efcj 11614
[Gleason] p. 309Corollary 15-4.3efne0 11619
[Gleason] p. 309Corollary 15-4.4efexp 11623
[Gleason] p. 310Equation 14sinadd 11677
[Gleason] p. 310Equation 15cosadd 11678
[Gleason] p. 311Equation 17sincossq 11689
[Gleason] p. 311Equation 18cosbnd 11694  sinbnd 11693
[Gleason] p. 311Definition of ` `df-pi 11594
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1437
[Heyting] p. 127Axiom #1ax1hfs 13950
[Hitchcock] p. 5Rule A3mptnan 1413
[Hitchcock] p. 5Rule A4mptxor 1414
[Hitchcock] p. 5Rule A5mtpxor 1416
[HoTT], p. Lemma 10.4.1exmidontriim 7181
[HoTT], p. Theorem 7.2.6nndceq 6467
[HoTT], p. Exercise 11.10neapmkv 13946
[HoTT], p. Exercise 11.11mulap0bd 8554
[HoTT], p. Section 11.2.1df-iltp 7411  df-imp 7410  df-iplp 7409  df-reap 8473
[HoTT], p. Theorem 11.2.12cauappcvgpr 7603
[HoTT], p. Corollary 11.4.3conventions 13602
[HoTT], p. Exercise 11.6(i)dcapnconst 13939  dceqnconst 13938
[HoTT], p. Corollary 11.2.13axcaucvg 7841  caucvgpr 7623  caucvgprpr 7653  caucvgsr 7743
[HoTT], p. Definition 11.2.1df-inp 7407
[HoTT], p. Exercise 11.6(ii)nconstwlpo 13944
[HoTT], p. Proposition 11.2.3df-iso 4275  ltpopr 7536  ltsopr 7537
[HoTT], p. Definition 11.2.7(v)apsym 8504  reapcotr 8496  reapirr 8475
[HoTT], p. Definition 11.2.7(vi)0lt1 8025  gt0add 8471  leadd1 8328  lelttr 7987  lemul1a 8753  lenlt 7974  ltadd1 8327  ltletr 7988  ltmul1 8490  reaplt 8486
[Jech] p. 4Definition of classcv 1342  cvjust 2160
[Jech] p. 78Noteopthprc 4655
[KalishMontague] p. 81Note 1ax-i9 1518
[Kreyszig] p. 3Property M1metcl 12993  xmetcl 12992
[Kreyszig] p. 4Property M2meteq0 13000
[Kreyszig] p. 12Equation 5muleqadd 8565
[Kreyszig] p. 18Definition 1.3-2mopnval 13082
[Kreyszig] p. 19Remarkmopntopon 13083
[Kreyszig] p. 19Theorem T1mopn0 13128  mopnm 13088
[Kreyszig] p. 19Theorem T2unimopn 13126
[Kreyszig] p. 19Definition of neighborhoodneibl 13131
[Kreyszig] p. 20Definition 1.3-3metcnp2 13153
[Kreyszig] p. 25Definition 1.4-1lmbr 12853
[Kunen] p. 10Axiom 0a9e 1684
[Kunen] p. 12Axiom 6zfrep6 4099
[Kunen] p. 24Definition 10.24mapval 6626  mapvalg 6624
[Kunen] p. 31Definition 10.24mapex 6620
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3876
[Lang] p. 3Statementlidrideqd 12612
[Levy] p. 338Axiomdf-clab 2152  df-clel 2161  df-cleq 2158
[Lopez-Astorga] p. 12Rule 1mptnan 1413
[Lopez-Astorga] p. 12Rule 2mptxor 1414
[Lopez-Astorga] p. 12Rule 3mtpxor 1416
[Margaris] p. 40Rule Cexlimiv 1586
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 843
[Margaris] p. 49Definitiondfbi2 386  dfordc 882  exalim 1490
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 641
[Margaris] p. 89Theorem 19.219.2 1626  r19.2m 3495
[Margaris] p. 89Theorem 19.319.3 1542  19.3h 1541  rr19.3v 2865
[Margaris] p. 89Theorem 19.5alcom 1466
[Margaris] p. 89Theorem 19.6alexdc 1607  alexim 1633
[Margaris] p. 89Theorem 19.7alnex 1487
[Margaris] p. 89Theorem 19.819.8a 1578  spsbe 1830
[Margaris] p. 89Theorem 19.919.9 1632  19.9h 1631  19.9v 1859  exlimd 1585
[Margaris] p. 89Theorem 19.11excom 1652  excomim 1651
[Margaris] p. 89Theorem 19.1219.12 1653  r19.12 2572
[Margaris] p. 90Theorem 19.14exnalim 1634
[Margaris] p. 90Theorem 19.15albi 1456  ralbi 2598
[Margaris] p. 90Theorem 19.1619.16 1543
[Margaris] p. 90Theorem 19.1719.17 1544
[Margaris] p. 90Theorem 19.18exbi 1592  rexbi 2599
[Margaris] p. 90Theorem 19.1919.19 1654
[Margaris] p. 90Theorem 19.20alim 1445  alimd 1509  alimdh 1455  alimdv 1867  ralimdaa 2532  ralimdv 2534  ralimdva 2533  ralimdvva 2535  sbcimdv 3016
[Margaris] p. 90Theorem 19.2119.21-2 1655  19.21 1571  19.21bi 1546  19.21h 1545  19.21ht 1569  19.21t 1570  19.21v 1861  alrimd 1598  alrimdd 1597  alrimdh 1467  alrimdv 1864  alrimi 1510  alrimih 1457  alrimiv 1862  alrimivv 1863  r19.21 2542  r19.21be 2557  r19.21bi 2554  r19.21t 2541  r19.21v 2543  ralrimd 2544  ralrimdv 2545  ralrimdva 2546  ralrimdvv 2550  ralrimdvva 2551  ralrimi 2537  ralrimiv 2538  ralrimiva 2539  ralrimivv 2547  ralrimivva 2548  ralrimivvva 2549  ralrimivw 2540  rexlimi 2576
[Margaris] p. 90Theorem 19.222alimdv 1869  2eximdv 1870  exim 1587  eximd 1600  eximdh 1599  eximdv 1868  rexim 2560  reximdai 2564  reximddv 2569  reximddv2 2571  reximdv 2567  reximdv2 2565  reximdva 2568  reximdvai 2566  reximi2 2562
[Margaris] p. 90Theorem 19.2319.23 1666  19.23bi 1580  19.23h 1486  19.23ht 1485  19.23t 1665  19.23v 1871  19.23vv 1872  exlimd2 1583  exlimdh 1584  exlimdv 1807  exlimdvv 1885  exlimi 1582  exlimih 1581  exlimiv 1586  exlimivv 1884  r19.23 2574  r19.23v 2575  rexlimd 2580  rexlimdv 2582  rexlimdv3a 2585  rexlimdva 2583  rexlimdva2 2586  rexlimdvaa 2584  rexlimdvv 2590  rexlimdvva 2591  rexlimdvw 2587  rexlimiv 2577  rexlimiva 2578  rexlimivv 2589
[Margaris] p. 90Theorem 19.24i19.24 1627
[Margaris] p. 90Theorem 19.2519.25 1614
[Margaris] p. 90Theorem 19.2619.26-2 1470  19.26-3an 1471  19.26 1469  r19.26-2 2595  r19.26-3 2596  r19.26 2592  r19.26m 2597
[Margaris] p. 90Theorem 19.2719.27 1549  19.27h 1548  19.27v 1887  r19.27av 2601  r19.27m 3504  r19.27mv 3505
[Margaris] p. 90Theorem 19.2819.28 1551  19.28h 1550  19.28v 1888  r19.28av 2602  r19.28m 3498  r19.28mv 3501  rr19.28v 2866
[Margaris] p. 90Theorem 19.2919.29 1608  19.29r 1609  19.29r2 1610  19.29x 1611  r19.29 2603  r19.29d2r 2610  r19.29r 2604
[Margaris] p. 90Theorem 19.3019.30dc 1615
[Margaris] p. 90Theorem 19.3119.31r 1669
[Margaris] p. 90Theorem 19.3219.32dc 1667  19.32r 1668  r19.32r 2612  r19.32vdc 2615  r19.32vr 2614
[Margaris] p. 90Theorem 19.3319.33 1472  19.33b2 1617  19.33bdc 1618
[Margaris] p. 90Theorem 19.3419.34 1672
[Margaris] p. 90Theorem 19.3519.35-1 1612  19.35i 1613
[Margaris] p. 90Theorem 19.3619.36-1 1661  19.36aiv 1889  19.36i 1660  r19.36av 2617
[Margaris] p. 90Theorem 19.3719.37-1 1662  19.37aiv 1663  r19.37 2618  r19.37av 2619
[Margaris] p. 90Theorem 19.3819.38 1664
[Margaris] p. 90Theorem 19.39i19.39 1628
[Margaris] p. 90Theorem 19.4019.40-2 1620  19.40 1619  r19.40 2620
[Margaris] p. 90Theorem 19.4119.41 1674  19.41h 1673  19.41v 1890  19.41vv 1891  19.41vvv 1892  19.41vvvv 1893  r19.41 2621  r19.41v 2622
[Margaris] p. 90Theorem 19.4219.42 1676  19.42h 1675  19.42v 1894  19.42vv 1899  19.42vvv 1900  19.42vvvv 1901  r19.42v 2623
[Margaris] p. 90Theorem 19.4319.43 1616  r19.43 2624
[Margaris] p. 90Theorem 19.4419.44 1670  r19.44av 2625  r19.44mv 3503
[Margaris] p. 90Theorem 19.4519.45 1671  r19.45av 2626  r19.45mv 3502
[Margaris] p. 110Exercise 2(b)eu1 2039
[Megill] p. 444Axiom C5ax-17 1514
[Megill] p. 445Lemma L12alequcom 1503  ax-10 1493
[Megill] p. 446Lemma L17equtrr 1698
[Megill] p. 446Lemma L19hbnae 1709
[Megill] p. 447Remark 9.1df-sb 1751  sbid 1762
[Megill] p. 448Scheme C5'ax-4 1498
[Megill] p. 448Scheme C6'ax-7 1436
[Megill] p. 448Scheme C8'ax-8 1492
[Megill] p. 448Scheme C9'ax-i12 1495
[Megill] p. 448Scheme C11'ax-10o 1704
[Megill] p. 448Scheme C12'ax-13 2138
[Megill] p. 448Scheme C13'ax-14 2139
[Megill] p. 448Scheme C15'ax-11o 1811
[Megill] p. 448Scheme C16'ax-16 1802
[Megill] p. 448Theorem 9.4dral1 1718  dral2 1719  drex1 1786  drex2 1720  drsb1 1787  drsb2 1829
[Megill] p. 449Theorem 9.7sbcom2 1975  sbequ 1828  sbid2v 1984
[Megill] p. 450Example in Appendixhba1 1528
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3033  rspsbca 3034  stdpc4 1763
[Mendelson] p. 69Axiom 5ra5 3039  stdpc5 1572
[Mendelson] p. 81Rule Cexlimiv 1586
[Mendelson] p. 95Axiom 6stdpc6 1691
[Mendelson] p. 95Axiom 7stdpc7 1758
[Mendelson] p. 231Exercise 4.10(k)inv1 3445
[Mendelson] p. 231Exercise 4.10(l)unv 3446
[Mendelson] p. 231Exercise 4.10(n)inssun 3362
[Mendelson] p. 231Exercise 4.10(o)df-nul 3410
[Mendelson] p. 231Exercise 4.10(q)inssddif 3363
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3253
[Mendelson] p. 231Definition of unionunssin 3361
[Mendelson] p. 235Exercise 4.12(c)univ 4454
[Mendelson] p. 235Exercise 4.12(d)pwv 3788
[Mendelson] p. 235Exercise 4.12(j)pwin 4260
[Mendelson] p. 235Exercise 4.12(k)pwunss 4261
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4262
[Mendelson] p. 235Exercise 4.12(n)uniin 3809
[Mendelson] p. 235Exercise 4.12(p)reli 4733
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5124
[Mendelson] p. 246Definition of successordf-suc 4349
[Mendelson] p. 254Proposition 4.22(b)xpen 6811
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6787  xpsneng 6788
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6793  xpcomeng 6794
[Mendelson] p. 254Proposition 4.22(e)xpassen 6796
[Mendelson] p. 255Exercise 4.39endisj 6790
[Mendelson] p. 255Exercise 4.41mapprc 6618
[Mendelson] p. 255Exercise 4.43mapsnen 6777
[Mendelson] p. 255Exercise 4.47xpmapen 6816
[Mendelson] p. 255Exercise 4.42(a)map0e 6652
[Mendelson] p. 255Exercise 4.42(b)map1 6778
[Mendelson] p. 258Exercise 4.56(c)djuassen 7173  djucomen 7172
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7171
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6435
[Monk1] p. 26Theorem 2.8(vii)ssin 3344
[Monk1] p. 33Theorem 3.2(i)ssrel 4692
[Monk1] p. 33Theorem 3.2(ii)eqrel 4693
[Monk1] p. 34Definition 3.3df-opab 4044
[Monk1] p. 36Theorem 3.7(i)coi1 5119  coi2 5120
[Monk1] p. 36Theorem 3.8(v)dm0 4818  rn0 4860
[Monk1] p. 36Theorem 3.7(ii)cnvi 5008
[Monk1] p. 37Theorem 3.13(i)relxp 4713
[Monk1] p. 37Theorem 3.13(x)dmxpm 4824  rnxpm 5033
[Monk1] p. 37Theorem 3.13(ii)0xp 4684  xp0 5023
[Monk1] p. 38Theorem 3.16(ii)ima0 4963
[Monk1] p. 38Theorem 3.16(viii)imai 4960
[Monk1] p. 39Theorem 3.17imaex 4959  imaexg 4958
[Monk1] p. 39Theorem 3.16(xi)imassrn 4957
[Monk1] p. 41Theorem 4.3(i)fnopfv 5615  funfvop 5597
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5530
[Monk1] p. 42Theorem 4.4(iii)fvelima 5538
[Monk1] p. 43Theorem 4.6funun 5232
[Monk1] p. 43Theorem 4.8(iv)dff13 5736  dff13f 5738
[Monk1] p. 46Theorem 4.15(v)funex 5708  funrnex 6082
[Monk1] p. 50Definition 5.4fniunfv 5730
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5087
[Monk1] p. 52Theorem 5.11(viii)ssint 3840
[Monk1] p. 52Definition 5.13 (i)1stval2 6123  df-1st 6108
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6124  df-2nd 6109
[Monk2] p. 105Axiom C4ax-5 1435
[Monk2] p. 105Axiom C7ax-8 1492
[Monk2] p. 105Axiom C8ax-11 1494  ax-11o 1811
[Monk2] p. 105Axiom (C8)ax11v 1815
[Monk2] p. 109Lemma 12ax-7 1436
[Monk2] p. 109Lemma 15equvin 1851  equvini 1746  eqvinop 4221
[Monk2] p. 113Axiom C5-1ax-17 1514
[Monk2] p. 113Axiom C5-2ax6b 1639
[Monk2] p. 113Axiom C5-3ax-7 1436
[Monk2] p. 114Lemma 22hba1 1528
[Monk2] p. 114Lemma 23hbia1 1540  nfia1 1568
[Monk2] p. 114Lemma 24hba2 1539  nfa2 1567
[Moschovakis] p. 2Chapter 2 df-stab 821  dftest 13951
[Munkres] p. 77Example 2distop 12725
[Munkres] p. 78Definition of basisdf-bases 12681  isbasis3g 12684
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12577  tgval2 12691
[Munkres] p. 79Remarktgcl 12704
[Munkres] p. 80Lemma 2.1tgval3 12698
[Munkres] p. 80Lemma 2.2tgss2 12719  tgss3 12718
[Munkres] p. 81Lemma 2.3basgen 12720  basgen2 12721
[Munkres] p. 89Definition of subspace topologyresttop 12810
[Munkres] p. 93Theorem 6.1(1)0cld 12752  topcld 12749
[Munkres] p. 93Theorem 6.1(3)uncld 12753
[Munkres] p. 94Definition of closureclsval 12751
[Munkres] p. 94Definition of interiorntrval 12750
[Munkres] p. 102Definition of continuous functiondf-cn 12828  iscn 12837  iscn2 12840
[Munkres] p. 107Theorem 7.2(g)cncnp 12870  cncnp2m 12871  cncnpi 12868  df-cnp 12829  iscnp 12839
[Munkres] p. 127Theorem 10.1metcn 13154
[Pierik], p. 8Section 2.2.1dfrex2fin 6869
[Pierik], p. 9Definition 2.4df-womni 7128
[Pierik], p. 9Definition 2.5df-markov 7116  omniwomnimkv 7131
[Pierik], p. 10Section 2.3dfdif3 3232
[Pierik], p. 14Definition 3.1df-omni 7099  exmidomniim 7105  finomni 7104
[Pierik], p. 15Section 3.1df-nninf 7085
[PradicBrown2022], p. 1Theorem 1exmidsbthr 13902
[PradicBrown2022], p. 2Remarkexmidpw 6874
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7157
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7158  exmidfodomrlemrALT 7159
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7113
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 13887  peano4nninf 13886
[PradicBrown2022], p. 5Lemma 3.5nninfall 13889
[PradicBrown2022], p. 5Theorem 3.6nninfsel 13897
[PradicBrown2022], p. 5Corollary 3.7nninfomni 13899
[PradicBrown2022], p. 5Definition 3.3nnsf 13885
[Quine] p. 16Definition 2.1df-clab 2152  rabid 2641
[Quine] p. 17Definition 2.1''dfsb7 1979
[Quine] p. 18Definition 2.7df-cleq 2158
[Quine] p. 19Definition 2.9df-v 2728
[Quine] p. 34Theorem 5.1abeq2 2275
[Quine] p. 35Theorem 5.2abid2 2287  abid2f 2334
[Quine] p. 40Theorem 6.1sb5 1875
[Quine] p. 40Theorem 6.2sb56 1873  sb6 1874
[Quine] p. 41Theorem 6.3df-clel 2161
[Quine] p. 41Theorem 6.4eqid 2165
[Quine] p. 41Theorem 6.5eqcom 2167
[Quine] p. 42Theorem 6.6df-sbc 2952
[Quine] p. 42Theorem 6.7dfsbcq 2953  dfsbcq2 2954
[Quine] p. 43Theorem 6.8vex 2729
[Quine] p. 43Theorem 6.9isset 2732
[Quine] p. 44Theorem 7.3spcgf 2808  spcgv 2813  spcimgf 2806
[Quine] p. 44Theorem 6.11spsbc 2962  spsbcd 2963
[Quine] p. 44Theorem 6.12elex 2737
[Quine] p. 44Theorem 6.13elab 2870  elabg 2872  elabgf 2868
[Quine] p. 44Theorem 6.14noel 3413
[Quine] p. 48Theorem 7.2snprc 3641
[Quine] p. 48Definition 7.1df-pr 3583  df-sn 3582
[Quine] p. 49Theorem 7.4snss 3702  snssg 3709
[Quine] p. 49Theorem 7.5prss 3729  prssg 3730
[Quine] p. 49Theorem 7.6prid1 3682  prid1g 3680  prid2 3683  prid2g 3681  snid 3607  snidg 3605
[Quine] p. 51Theorem 7.12snexg 4163  snexprc 4165
[Quine] p. 51Theorem 7.13prexg 4189
[Quine] p. 53Theorem 8.2unisn 3805  unisng 3806
[Quine] p. 53Theorem 8.3uniun 3808
[Quine] p. 54Theorem 8.6elssuni 3817
[Quine] p. 54Theorem 8.7uni0 3816
[Quine] p. 56Theorem 8.17uniabio 5163
[Quine] p. 56Definition 8.18dfiota2 5154
[Quine] p. 57Theorem 8.19iotaval 5164
[Quine] p. 57Theorem 8.22iotanul 5168
[Quine] p. 58Theorem 8.23euiotaex 5169
[Quine] p. 58Definition 9.1df-op 3585
[Quine] p. 61Theorem 9.5opabid 4235  opelopab 4249  opelopaba 4244  opelopabaf 4251  opelopabf 4252  opelopabg 4246  opelopabga 4241  oprabid 5874
[Quine] p. 64Definition 9.11df-xp 4610
[Quine] p. 64Definition 9.12df-cnv 4612
[Quine] p. 64Definition 9.15df-id 4271
[Quine] p. 65Theorem 10.3fun0 5246
[Quine] p. 65Theorem 10.4funi 5220
[Quine] p. 65Theorem 10.5funsn 5236  funsng 5234
[Quine] p. 65Definition 10.1df-fun 5190
[Quine] p. 65Definition 10.2args 4973  dffv4g 5483
[Quine] p. 68Definition 10.11df-fv 5196  fv2 5481
[Quine] p. 124Theorem 17.3nn0opth2 10637  nn0opth2d 10636  nn0opthd 10635
[Quine] p. 284Axiom 39(vi)funimaex 5273  funimaexg 5272
[Rudin] p. 164Equation 27efcan 11617
[Rudin] p. 164Equation 30efzval 11624
[Rudin] p. 167Equation 48absefi 11709
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1416
[Sanford] p. 39Rule 4mptxor 1414
[Sanford] p. 40Rule 1mptnan 1413
[Schechter] p. 51Definition of antisymmetryintasym 4988
[Schechter] p. 51Definition of irreflexivityintirr 4990
[Schechter] p. 51Definition of symmetrycnvsym 4987
[Schechter] p. 51Definition of transitivitycotr 4985
[Schechter] p. 428Definition 15.35bastop1 12723
[Stoll] p. 13Definition of symmetric differencesymdif1 3387
[Stoll] p. 16Exercise 4.40dif 3480  dif0 3479
[Stoll] p. 16Exercise 4.8difdifdirss 3493
[Stoll] p. 19Theorem 5.2(13)undm 3380
[Stoll] p. 19Theorem 5.2(13')indmss 3381
[Stoll] p. 20Remarkinvdif 3364
[Stoll] p. 25Definition of ordered tripledf-ot 3586
[Stoll] p. 43Definitionuniiun 3919
[Stoll] p. 44Definitionintiin 3920
[Stoll] p. 45Definitiondf-iin 3869
[Stoll] p. 45Definition indexed uniondf-iun 3868
[Stoll] p. 176Theorem 3.4(27)imandc 879  imanst 878
[Stoll] p. 262Example 4.1symdif1 3387
[Suppes] p. 22Theorem 2eq0 3427
[Suppes] p. 22Theorem 4eqss 3157  eqssd 3159  eqssi 3158
[Suppes] p. 23Theorem 5ss0 3449  ss0b 3448
[Suppes] p. 23Theorem 6sstr 3150
[Suppes] p. 25Theorem 12elin 3305  elun 3263
[Suppes] p. 26Theorem 15inidm 3331
[Suppes] p. 26Theorem 16in0 3443
[Suppes] p. 27Theorem 23unidm 3265
[Suppes] p. 27Theorem 24un0 3442
[Suppes] p. 27Theorem 25ssun1 3285
[Suppes] p. 27Theorem 26ssequn1 3292
[Suppes] p. 27Theorem 27unss 3296
[Suppes] p. 27Theorem 28indir 3371
[Suppes] p. 27Theorem 29undir 3372
[Suppes] p. 28Theorem 32difid 3477  difidALT 3478
[Suppes] p. 29Theorem 33difin 3359
[Suppes] p. 29Theorem 34indif 3365
[Suppes] p. 29Theorem 35undif1ss 3483
[Suppes] p. 29Theorem 36difun2 3488
[Suppes] p. 29Theorem 37difin0 3482
[Suppes] p. 29Theorem 38disjdif 3481
[Suppes] p. 29Theorem 39difundi 3374
[Suppes] p. 29Theorem 40difindiss 3376
[Suppes] p. 30Theorem 41nalset 4112
[Suppes] p. 39Theorem 61uniss 3810
[Suppes] p. 39Theorem 65uniop 4233
[Suppes] p. 41Theorem 70intsn 3859
[Suppes] p. 42Theorem 71intpr 3856  intprg 3857
[Suppes] p. 42Theorem 73op1stb 4456  op1stbg 4457
[Suppes] p. 42Theorem 78intun 3855
[Suppes] p. 44Definition 15(a)dfiun2 3900  dfiun2g 3898
[Suppes] p. 44Definition 15(b)dfiin2 3901
[Suppes] p. 47Theorem 86elpw 3565  elpw2 4136  elpw2g 4135  elpwg 3567
[Suppes] p. 47Theorem 87pwid 3574
[Suppes] p. 47Theorem 89pw0 3720
[Suppes] p. 48Theorem 90pwpw0ss 3784
[Suppes] p. 52Theorem 101xpss12 4711
[Suppes] p. 52Theorem 102xpindi 4739  xpindir 4740
[Suppes] p. 52Theorem 103xpundi 4660  xpundir 4661
[Suppes] p. 54Theorem 105elirrv 4525
[Suppes] p. 58Theorem 2relss 4691
[Suppes] p. 59Theorem 4eldm 4801  eldm2 4802  eldm2g 4800  eldmg 4799
[Suppes] p. 59Definition 3df-dm 4614
[Suppes] p. 60Theorem 6dmin 4812
[Suppes] p. 60Theorem 8rnun 5012
[Suppes] p. 60Theorem 9rnin 5013
[Suppes] p. 60Definition 4dfrn2 4792
[Suppes] p. 61Theorem 11brcnv 4787  brcnvg 4785
[Suppes] p. 62Equation 5elcnv 4781  elcnv2 4782
[Suppes] p. 62Theorem 12relcnv 4982
[Suppes] p. 62Theorem 15cnvin 5011
[Suppes] p. 62Theorem 16cnvun 5009
[Suppes] p. 63Theorem 20co02 5117
[Suppes] p. 63Theorem 21dmcoss 4873
[Suppes] p. 63Definition 7df-co 4613
[Suppes] p. 64Theorem 26cnvco 4789
[Suppes] p. 64Theorem 27coass 5122
[Suppes] p. 65Theorem 31resundi 4897
[Suppes] p. 65Theorem 34elima 4951  elima2 4952  elima3 4953  elimag 4950
[Suppes] p. 65Theorem 35imaundi 5016
[Suppes] p. 66Theorem 40dminss 5018
[Suppes] p. 66Theorem 41imainss 5019
[Suppes] p. 67Exercise 11cnvxp 5022
[Suppes] p. 81Definition 34dfec2 6504
[Suppes] p. 82Theorem 72elec 6540  elecg 6539
[Suppes] p. 82Theorem 73erth 6545  erth2 6546
[Suppes] p. 89Theorem 96map0b 6653
[Suppes] p. 89Theorem 97map0 6655  map0g 6654
[Suppes] p. 89Theorem 98mapsn 6656
[Suppes] p. 89Theorem 99mapss 6657
[Suppes] p. 92Theorem 1enref 6731  enrefg 6730
[Suppes] p. 92Theorem 2ensym 6747  ensymb 6746  ensymi 6748
[Suppes] p. 92Theorem 3entr 6750
[Suppes] p. 92Theorem 4unen 6782
[Suppes] p. 94Theorem 15endom 6729
[Suppes] p. 94Theorem 16ssdomg 6744
[Suppes] p. 94Theorem 17domtr 6751
[Suppes] p. 95Theorem 18isbth 6932
[Suppes] p. 98Exercise 4fundmen 6772  fundmeng 6773
[Suppes] p. 98Exercise 6xpdom3m 6800
[Suppes] p. 130Definition 3df-tr 4081
[Suppes] p. 132Theorem 9ssonuni 4465
[Suppes] p. 134Definition 6df-suc 4349
[Suppes] p. 136Theorem Schema 22findes 4580  finds 4577  finds1 4579  finds2 4578
[Suppes] p. 162Definition 5df-ltnqqs 7294  df-ltpq 7287
[Suppes] p. 228Theorem Schema 61onintss 4368
[TakeutiZaring] p. 8Axiom 1ax-ext 2147
[TakeutiZaring] p. 13Definition 4.5df-cleq 2158
[TakeutiZaring] p. 13Proposition 4.6df-clel 2161
[TakeutiZaring] p. 13Proposition 4.9cvjust 2160
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2183
[TakeutiZaring] p. 14Definition 4.16df-oprab 5846
[TakeutiZaring] p. 14Proposition 4.14ru 2950
[TakeutiZaring] p. 15Exercise 1elpr 3597  elpr2 3598  elprg 3596
[TakeutiZaring] p. 15Exercise 2elsn 3592  elsn2 3610  elsn2g 3609  elsng 3591  velsn 3593
[TakeutiZaring] p. 15Exercise 3elop 4209
[TakeutiZaring] p. 15Exercise 4sneq 3587  sneqr 3740
[TakeutiZaring] p. 15Definition 5.1dfpr2 3595  dfsn2 3590
[TakeutiZaring] p. 16Axiom 3uniex 4415
[TakeutiZaring] p. 16Exercise 6opth 4215
[TakeutiZaring] p. 16Exercise 8rext 4193
[TakeutiZaring] p. 16Corollary 5.8unex 4419  unexg 4421
[TakeutiZaring] p. 16Definition 5.3dftp2 3625
[TakeutiZaring] p. 16Definition 5.5df-uni 3790
[TakeutiZaring] p. 16Definition 5.6df-in 3122  df-un 3120
[TakeutiZaring] p. 16Proposition 5.7unipr 3803  uniprg 3804
[TakeutiZaring] p. 17Axiom 4vpwex 4158
[TakeutiZaring] p. 17Exercise 1eltp 3624
[TakeutiZaring] p. 17Exercise 5elsuc 4384  elsucg 4382  sstr2 3149
[TakeutiZaring] p. 17Exercise 6uncom 3266
[TakeutiZaring] p. 17Exercise 7incom 3314
[TakeutiZaring] p. 17Exercise 8unass 3279
[TakeutiZaring] p. 17Exercise 9inass 3332
[TakeutiZaring] p. 17Exercise 10indi 3369
[TakeutiZaring] p. 17Exercise 11undi 3370
[TakeutiZaring] p. 17Definition 5.9dfss2 3131
[TakeutiZaring] p. 17Definition 5.10df-pw 3561
[TakeutiZaring] p. 18Exercise 7unss2 3293
[TakeutiZaring] p. 18Exercise 9df-ss 3129  sseqin2 3341
[TakeutiZaring] p. 18Exercise 10ssid 3162
[TakeutiZaring] p. 18Exercise 12inss1 3342  inss2 3343
[TakeutiZaring] p. 18Exercise 13nssr 3202
[TakeutiZaring] p. 18Exercise 15unieq 3798
[TakeutiZaring] p. 18Exercise 18sspwb 4194
[TakeutiZaring] p. 18Exercise 19pweqb 4201
[TakeutiZaring] p. 20Definitiondf-rab 2453
[TakeutiZaring] p. 20Corollary 5.160ex 4109
[TakeutiZaring] p. 20Definition 5.12df-dif 3118
[TakeutiZaring] p. 20Definition 5.14dfnul2 3411
[TakeutiZaring] p. 20Proposition 5.15difid 3477  difidALT 3478
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3421
[TakeutiZaring] p. 21Theorem 5.22setind 4516
[TakeutiZaring] p. 21Definition 5.20df-v 2728
[TakeutiZaring] p. 21Proposition 5.21vprc 4114
[TakeutiZaring] p. 22Exercise 10ss 3447
[TakeutiZaring] p. 22Exercise 3ssex 4119  ssexg 4121
[TakeutiZaring] p. 22Exercise 4inex1 4116
[TakeutiZaring] p. 22Exercise 5ruv 4527
[TakeutiZaring] p. 22Exercise 6elirr 4518
[TakeutiZaring] p. 22Exercise 7ssdif0im 3473
[TakeutiZaring] p. 22Exercise 11difdif 3247
[TakeutiZaring] p. 22Exercise 13undif3ss 3383
[TakeutiZaring] p. 22Exercise 14difss 3248
[TakeutiZaring] p. 22Exercise 15sscon 3256
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2449
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2450
[TakeutiZaring] p. 23Proposition 6.2xpex 4719  xpexg 4718  xpexgALT 6101
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4611
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5252
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5404  fun11 5255
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5199  svrelfun 5253
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4791
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4793
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4616
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4617
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4613
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5058  dfrel2 5054
[TakeutiZaring] p. 25Exercise 3xpss 4712
[TakeutiZaring] p. 25Exercise 5relun 4721
[TakeutiZaring] p. 25Exercise 6reluni 4727
[TakeutiZaring] p. 25Exercise 9inxp 4738
[TakeutiZaring] p. 25Exercise 12relres 4912
[TakeutiZaring] p. 25Exercise 13opelres 4889  opelresg 4891
[TakeutiZaring] p. 25Exercise 14dmres 4905
[TakeutiZaring] p. 25Exercise 15resss 4908
[TakeutiZaring] p. 25Exercise 17resabs1 4913
[TakeutiZaring] p. 25Exercise 18funres 5229
[TakeutiZaring] p. 25Exercise 24relco 5102
[TakeutiZaring] p. 25Exercise 29funco 5228
[TakeutiZaring] p. 25Exercise 30f1co 5405
[TakeutiZaring] p. 26Definition 6.10eu2 2058
[TakeutiZaring] p. 26Definition 6.11df-fv 5196  fv3 5509
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5142  cnvexg 5141
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4870  dmexg 4868
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4871  rnexg 4869
[TakeutiZaring] p. 27Corollary 6.13funfvex 5503
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5513  tz6.12 5514  tz6.12c 5516
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5477
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5191
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5192
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5194  wfo 5186
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5193  wf1 5185
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5195  wf1o 5187
[TakeutiZaring] p. 28Exercise 4eqfnfv 5583  eqfnfv2 5584  eqfnfv2f 5587
[TakeutiZaring] p. 28Exercise 5fvco 5556
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5707  fnexALT 6079
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5706  resfunexgALT 6076
[TakeutiZaring] p. 29Exercise 9funimaex 5273  funimaexg 5272
[TakeutiZaring] p. 29Definition 6.18df-br 3983
[TakeutiZaring] p. 30Definition 6.21eliniseg 4974  iniseg 4976
[TakeutiZaring] p. 30Definition 6.22df-eprel 4267
[TakeutiZaring] p. 32Definition 6.28df-isom 5197
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5778
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5779
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5784
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5786
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5794
[TakeutiZaring] p. 35Notationwtr 4080
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4332
[TakeutiZaring] p. 35Definition 7.1dftr3 4084
[TakeutiZaring] p. 36Proposition 7.4ordwe 4553
[TakeutiZaring] p. 36Proposition 7.6ordelord 4359
[TakeutiZaring] p. 37Proposition 7.9ordin 4363
[TakeutiZaring] p. 38Corollary 7.15ordsson 4469
[TakeutiZaring] p. 38Definition 7.11df-on 4346
[TakeutiZaring] p. 38Proposition 7.12ordon 4463
[TakeutiZaring] p. 38Proposition 7.13onprc 4529
[TakeutiZaring] p. 39Theorem 7.17tfi 4559
[TakeutiZaring] p. 40Exercise 7dftr2 4082
[TakeutiZaring] p. 40Exercise 11unon 4488
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4464
[TakeutiZaring] p. 40Proposition 7.20elssuni 3817
[TakeutiZaring] p. 41Definition 7.22df-suc 4349
[TakeutiZaring] p. 41Proposition 7.23sssucid 4393  sucidg 4394
[TakeutiZaring] p. 41Proposition 7.24suceloni 4478
[TakeutiZaring] p. 42Exercise 1df-ilim 4347
[TakeutiZaring] p. 42Exercise 8onsucssi 4483  ordelsuc 4482
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4571
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4572
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4573
[TakeutiZaring] p. 43Axiom 7omex 4570
[TakeutiZaring] p. 43Theorem 7.32ordom 4584
[TakeutiZaring] p. 43Corollary 7.31find 4576
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4574
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4575
[TakeutiZaring] p. 44Exercise 2int0 3838
[TakeutiZaring] p. 44Exercise 3trintssm 4096
[TakeutiZaring] p. 44Exercise 4intss1 3839
[TakeutiZaring] p. 44Exercise 6onintonm 4494
[TakeutiZaring] p. 44Definition 7.35df-int 3825
[TakeutiZaring] p. 47Lemma 1tfrlem1 6276
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6333  tfri1d 6303
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6334  tfri2d 6304
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6335
[TakeutiZaring] p. 50Exercise 3smoiso 6270
[TakeutiZaring] p. 50Definition 7.46df-smo 6254
[TakeutiZaring] p. 56Definition 8.1oasuc 6432
[TakeutiZaring] p. 57Proposition 8.2oacl 6428
[TakeutiZaring] p. 57Proposition 8.3oa0 6425
[TakeutiZaring] p. 57Proposition 8.16omcl 6429
[TakeutiZaring] p. 58Proposition 8.4nnaord 6477  nnaordi 6476
[TakeutiZaring] p. 59Proposition 8.6iunss2 3911  uniss2 3820
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6438
[TakeutiZaring] p. 59Proposition 8.9nnacl 6448
[TakeutiZaring] p. 62Exercise 5oaword1 6439
[TakeutiZaring] p. 62Definition 8.15om0 6426  omsuc 6440
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6449
[TakeutiZaring] p. 63Proposition 8.19nnmord 6485  nnmordi 6484
[TakeutiZaring] p. 67Definition 8.30oei0 6427
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7143
[TakeutiZaring] p. 88Exercise 1en0 6761
[TakeutiZaring] p. 90Proposition 10.20nneneq 6823
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6824
[TakeutiZaring] p. 91Definition 10.29df-fin 6709  isfi 6727
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6797
[TakeutiZaring] p. 95Definition 10.42df-map 6616
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6814
[Tarski] p. 67Axiom B5ax-4 1498
[Tarski] p. 68Lemma 6equid 1689
[Tarski] p. 69Lemma 7equcomi 1692
[Tarski] p. 70Lemma 14spim 1726  spime 1729  spimeh 1727  spimh 1725
[Tarski] p. 70Lemma 16ax-11 1494  ax-11o 1811  ax11i 1702
[Tarski] p. 70Lemmas 16 and 17sb6 1874
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1514
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2138  ax-14 2139
[WhiteheadRussell] p. 96Axiom *1.3olc 701
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 717
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 746
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 755
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 779
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 606
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 633
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 827
[WhiteheadRussell] p. 101Theorem *2.06barbara 2112  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 727
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 826
[WhiteheadRussell] p. 101Theorem *2.12notnot 619
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 875
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 833
[WhiteheadRussell] p. 102Theorem *2.15con1dc 846
[WhiteheadRussell] p. 103Theorem *2.16con3 632
[WhiteheadRussell] p. 103Theorem *2.17condc 843
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 845
[WhiteheadRussell] p. 104Theorem *2.2orc 702
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 765
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 607
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 611
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 883
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 897
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 758
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 759
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 794
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 795
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 793
[WhiteheadRussell] p. 105Definition *2.33df-3or 969
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 768
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 766
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 767
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 728
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 729
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 857  pm2.5gdc 856
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 852
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 730
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 731
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 732
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 645
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 646
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 712
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 881
[WhiteheadRussell] p. 107Theorem *2.55orel1 715
[WhiteheadRussell] p. 107Theorem *2.56orel2 716
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 855
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 738
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 790
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 791
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 649
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 703  pm2.67 733
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 859  pm2.521gdc 858
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 737
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 800
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 884
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 905
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 796
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 797
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 799
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 798
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 801
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 802
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 895
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 100
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 744
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 138
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 947
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 948
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 949
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 743
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 262
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 263
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 683
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 345
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 259
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 260
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 108  simplimdc 850
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 109  simprimdc 849
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 343
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 344
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 679
[WhiteheadRussell] p. 113Fact)pm3.45 587
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 331
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 329
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 330
[WhiteheadRussell] p. 113Theorem *3.44jao 745  pm3.44 705
[WhiteheadRussell] p. 113Theorem *3.47anim12 342
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 592
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 775
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 861
[WhiteheadRussell] p. 117Theorem *4.2biid 170
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 862
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 880
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 684
[WhiteheadRussell] p. 117Theorem *4.21bicom 139
[WhiteheadRussell] p. 117Theorem *4.22biantr 942  bitr 464
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 393
[WhiteheadRussell] p. 117Theorem *4.25oridm 747  pm4.25 748
[WhiteheadRussell] p. 118Theorem *4.3ancom 264
[WhiteheadRussell] p. 118Theorem *4.4andi 808
[WhiteheadRussell] p. 118Theorem *4.31orcom 718
[WhiteheadRussell] p. 118Theorem *4.32anass 399
[WhiteheadRussell] p. 118Theorem *4.33orass 757
[WhiteheadRussell] p. 118Theorem *4.36anbi1 462
[WhiteheadRussell] p. 118Theorem *4.37orbi1 782
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 595
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 812
[WhiteheadRussell] p. 118Definition *4.34df-3an 970
[WhiteheadRussell] p. 119Theorem *4.41ordi 806
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 961
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 939
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 769
[WhiteheadRussell] p. 119Theorem *4.45orabs 804  pm4.45 774  pm4.45im 332
[WhiteheadRussell] p. 119Theorem *10.2219.26 1469
[WhiteheadRussell] p. 120Theorem *4.5anordc 946
[WhiteheadRussell] p. 120Theorem *4.6imordc 887  imorr 711
[WhiteheadRussell] p. 120Theorem *4.7anclb 317
[WhiteheadRussell] p. 120Theorem *4.51ianordc 889
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 740
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 741
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 892
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 928
[WhiteheadRussell] p. 120Theorem *4.56ioran 742  pm4.56 770
[WhiteheadRussell] p. 120Theorem *4.57orandc 929  oranim 771
[WhiteheadRussell] p. 120Theorem *4.61annimim 676
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 888
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 876
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 890
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 677
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 891
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 877
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 387  pm4.71d 391  pm4.71i 389  pm4.71r 388  pm4.71rd 392  pm4.71ri 390
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 817
[WhiteheadRussell] p. 121Theorem *4.73iba 298
[WhiteheadRussell] p. 121Theorem *4.74biorf 734
[WhiteheadRussell] p. 121Theorem *4.76jcab 593  pm4.76 594
[WhiteheadRussell] p. 121Theorem *4.77jaob 700  pm4.77 789
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 772
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 893
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 697
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 898
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 940
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 941
[WhiteheadRussell] p. 122Theorem *4.84imbi1 235
[WhiteheadRussell] p. 122Theorem *4.85imbi2 236
[WhiteheadRussell] p. 122Theorem *4.86bibi1 239
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 247  impexp 261  pm4.87 547
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 591
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 899
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 900
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 902
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 901
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1379
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 818
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 894
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1384  pm5.18dc 873
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 696
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 685
[WhiteheadRussell] p. 124Theorem *5.22xordc 1382
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1387
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1388
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 885
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 467
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 248
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 241
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 916  pm5.6r 917
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 944
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 346
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 449
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 599
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 907
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 600
[WhiteheadRussell] p. 125Theorem *5.41imdi 249  pm5.41 250
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 318
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 915
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 792
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 908
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 903
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 784
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 935
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 936
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 951
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 243
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 178
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 952
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1623
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1473
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1620
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1883
[WhiteheadRussell] p. 175Definition *14.02df-eu 2017
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2417
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2418
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2864
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3007
[WhiteheadRussell] p. 190Theorem *14.22iota4 5171
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5172
[WhiteheadRussell] p. 192Theorem *14.26eupick 2093  eupickbi 2096
[WhiteheadRussell] p. 235Definition *30.01df-fv 5196
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7146

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]