Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7181  fidcenum 7022
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7022
[AczelRathjen], p. 73Lemma 8.1.14enumct 7181
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12642
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6993
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6979
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12657
[AczelRathjen], p. 75Corollary 8.1.20unct 12659
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12648  znnen 12615
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12660
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12661
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10868
[AczelRathjen], p. 183Chapter 20ax-setind 4573
[AhoHopUll] p. 318Section 9.1df-word 10936  lencl 10939  wrd0 10960
[Apostol] p. 18Theorem I.1addcan 8206  addcan2d 8211  addcan2i 8209  addcand 8210  addcani 8208
[Apostol] p. 18Theorem I.2negeu 8217
[Apostol] p. 18Theorem I.3negsub 8274  negsubd 8343  negsubi 8304
[Apostol] p. 18Theorem I.4negneg 8276  negnegd 8328  negnegi 8296
[Apostol] p. 18Theorem I.5subdi 8411  subdid 8440  subdii 8433  subdir 8412  subdird 8441  subdiri 8434
[Apostol] p. 18Theorem I.6mul01 8415  mul01d 8419  mul01i 8417  mul02 8413  mul02d 8418  mul02i 8416
[Apostol] p. 18Theorem I.9divrecapd 8820
[Apostol] p. 18Theorem I.10recrecapi 8771
[Apostol] p. 18Theorem I.12mul2neg 8424  mul2negd 8439  mul2negi 8432  mulneg1 8421  mulneg1d 8437  mulneg1i 8430
[Apostol] p. 18Theorem I.14rdivmuldivd 13700
[Apostol] p. 18Theorem I.15divdivdivap 8740
[Apostol] p. 20Axiom 7rpaddcl 9752  rpaddcld 9787  rpmulcl 9753  rpmulcld 9788
[Apostol] p. 20Axiom 90nrp 9764
[Apostol] p. 20Theorem I.17lttri 8131
[Apostol] p. 20Theorem I.18ltadd1d 8565  ltadd1dd 8583  ltadd1i 8529
[Apostol] p. 20Theorem I.19ltmul1 8619  ltmul1a 8618  ltmul1i 8947  ltmul1ii 8955  ltmul2 8883  ltmul2d 9814  ltmul2dd 9828  ltmul2i 8950
[Apostol] p. 20Theorem I.210lt1 8153
[Apostol] p. 20Theorem I.23lt0neg1 8495  lt0neg1d 8542  ltneg 8489  ltnegd 8550  ltnegi 8520
[Apostol] p. 20Theorem I.25lt2add 8472  lt2addd 8594  lt2addi 8537
[Apostol] p. 20Definition of positive numbersdf-rp 9729
[Apostol] p. 21Exercise 4recgt0 8877  recgt0d 8961  recgt0i 8933  recgt0ii 8934
[Apostol] p. 22Definition of integersdf-z 9327
[Apostol] p. 22Definition of rationalsdf-q 9694
[Apostol] p. 24Theorem I.26supeuti 7060
[Apostol] p. 26Theorem I.29arch 9246
[Apostol] p. 28Exercise 2btwnz 9445
[Apostol] p. 28Exercise 3nnrecl 9247
[Apostol] p. 28Exercise 6qbtwnre 10346
[Apostol] p. 28Exercise 10(a)zeneo 12036  zneo 9427
[Apostol] p. 29Theorem I.35resqrtth 11196  sqrtthi 11284
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8993
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12203
[Apostol] p. 363Remarkabsgt0api 11311
[Apostol] p. 363Exampleabssubd 11358  abssubi 11315
[ApostolNT] p. 14Definitiondf-dvds 11953
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11969
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11993
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11989
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11983
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11985
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11970
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11971
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11976
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12010
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12012
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12014
[ApostolNT] p. 15Definitiondfgcd2 12181
[ApostolNT] p. 16Definitionisprm2 12285
[ApostolNT] p. 16Theorem 1.5coprmdvds 12260
[ApostolNT] p. 16Theorem 1.7prminf 12672
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12140
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12182
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12184
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12154
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12147
[ApostolNT] p. 17Theorem 1.8coprm 12312
[ApostolNT] p. 17Theorem 1.9euclemma 12314
[ApostolNT] p. 17Theorem 1.101arith2 12537
[ApostolNT] p. 19Theorem 1.14divalg 12089
[ApostolNT] p. 20Theorem 1.15eucalg 12227
[ApostolNT] p. 25Definitiondf-phi 12379
[ApostolNT] p. 26Theorem 2.2phisum 12409
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12390
[ApostolNT] p. 28Theorem 2.5(c)phimul 12394
[ApostolNT] p. 38Remarkdf-sgm 15218
[ApostolNT] p. 38Definitiondf-sgm 15218
[ApostolNT] p. 104Definitioncongr 12268
[ApostolNT] p. 106Remarkdvdsval3 11956
[ApostolNT] p. 106Definitionmoddvds 11964
[ApostolNT] p. 107Example 2mod2eq0even 12043
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12044
[ApostolNT] p. 107Example 4zmod1congr 10433
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10470
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10758
[ApostolNT] p. 108Theorem 5.3modmulconst 11988
[ApostolNT] p. 109Theorem 5.4cncongr1 12271
[ApostolNT] p. 109Theorem 5.6gcdmodi 12590
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12273
[ApostolNT] p. 113Theorem 5.17eulerth 12401
[ApostolNT] p. 113Theorem 5.18vfermltl 12420
[ApostolNT] p. 114Theorem 5.19fermltl 12402
[ApostolNT] p. 179Definitiondf-lgs 15239  lgsprme0 15283
[ApostolNT] p. 180Example 11lgs 15284
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15260
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15275
[ApostolNT] p. 181Theorem 9.4m1lgs 15326
[ApostolNT] p. 181Theorem 9.52lgs 15345  2lgsoddprm 15354
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15310
[ApostolNT] p. 185Theorem 9.8lgsquad 15321
[ApostolNT] p. 188Definitiondf-lgs 15239  lgs1 15285
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15276
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15278
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15286
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15287
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 660
[Bauer] p. 483Theorem 1.3acexmid 5921  onsucelsucexmidlem 4565
[Bauer], p. 481Section 1.1pwtrufal 15642
[Bauer], p. 483Definitionn0rf 3463
[Bauer], p. 483Theorem 1.22irrexpq 15212  2irrexpqap 15214
[Bauer], p. 485Theorem 2.1ssfiexmid 6937
[Bauer], p. 493Section 5.1ivthdich 14889
[Bauer], p. 494Theorem 5.5ivthinc 14879
[BauerHanson], p. 27Proposition 5.2cnstab 8672
[BauerSwan], p. 14Remark0ct 7173  ctm 7175
[BauerSwan], p. 14Proposition 2.6subctctexmid 15645
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7181
[BauerTaylor], p. 32Lemma 6.16prarloclem 7568
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7481
[BauerTaylor], p. 52Proposition 11.15prarloc 7570
[BauerTaylor], p. 53Lemma 11.16addclpr 7604  addlocpr 7603
[BauerTaylor], p. 55Proposition 12.7appdivnq 7630
[BauerTaylor], p. 56Lemma 12.8prmuloc 7633
[BauerTaylor], p. 56Lemma 12.9mullocpr 7638
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2048
[BellMachover] p. 460Notationdf-mo 2049
[BellMachover] p. 460Definitionmo3 2099  mo3h 2098
[BellMachover] p. 462Theorem 1.1bm1.1 2181
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4154
[BellMachover] p. 466Axiom Powaxpow3 4210
[BellMachover] p. 466Axiom Unionaxun2 4470
[BellMachover] p. 469Theorem 2.2(i)ordirr 4578
[BellMachover] p. 469Theorem 2.2(iii)onelon 4419
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4581
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4532
[BellMachover] p. 471Definition of Limdf-ilim 4404
[BellMachover] p. 472Axiom Infzfinf2 4625
[BellMachover] p. 473Theorem 2.8limom 4650
[Bobzien] p. 116Statement T3stoic3 1442
[Bobzien] p. 117Statement T2stoic2a 1440
[Bobzien] p. 117Statement T4stoic4a 1443
[Bobzien] p. 117Conclusion the contradictorystoic1a 1438
[BourbakiAlg1] p. 1Definition 1df-mgm 12999
[BourbakiAlg1] p. 4Definition 5df-sgrp 13045
[BourbakiAlg1] p. 12Definition 2df-mnd 13058
[BourbakiAlg1] p. 92Definition 1df-ring 13554
[BourbakiAlg1] p. 93Section I.8.1df-rng 13489
[BourbakiEns] p. Proposition 8fcof1 5830  fcofo 5831
[BourbakiTop1] p. Remarkxnegmnf 9904  xnegpnf 9903
[BourbakiTop1] p. Remark rexneg 9905
[BourbakiTop1] p. Propositionishmeo 14540
[BourbakiTop1] p. Property V_issnei2 14393
[BourbakiTop1] p. Property V_iiinnei 14399
[BourbakiTop1] p. Property V_ivneissex 14401
[BourbakiTop1] p. Proposition 1neipsm 14390  neiss 14386
[BourbakiTop1] p. Proposition 2cnptopco 14458
[BourbakiTop1] p. Proposition 4imasnopn 14535
[BourbakiTop1] p. Property V_iiielnei 14388
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14234
[Bruck] p. 1Section I.1df-mgm 12999
[Bruck] p. 23Section II.1df-sgrp 13045
[Bruck] p. 28Theorem 3.2dfgrp3m 13231
[ChoquetDD] p. 2Definition of mappingdf-mpt 4096
[Cohen] p. 301Remarkrelogoprlem 15104
[Cohen] p. 301Property 2relogmul 15105  relogmuld 15120
[Cohen] p. 301Property 3relogdiv 15106  relogdivd 15121
[Cohen] p. 301Property 4relogexp 15108
[Cohen] p. 301Property 1alog1 15102
[Cohen] p. 301Property 1bloge 15103
[Cohen4] p. 348Observationrelogbcxpbap 15201
[Cohen4] p. 352Definitionrpelogb 15185
[Cohen4] p. 361Property 2rprelogbmul 15191
[Cohen4] p. 361Property 3logbrec 15196  rprelogbdiv 15193
[Cohen4] p. 361Property 4rplogbreexp 15189
[Cohen4] p. 361Property 6relogbexpap 15194
[Cohen4] p. 361Property 1(a)rplogbid1 15183
[Cohen4] p. 361Property 1(b)rplogb1 15184
[Cohen4] p. 367Propertyrplogbchbase 15186
[Cohen4] p. 377Property 2logblt 15198
[Crosilla] p. Axiom 1ax-ext 2178
[Crosilla] p. Axiom 2ax-pr 4242
[Crosilla] p. Axiom 3ax-un 4468
[Crosilla] p. Axiom 4ax-nul 4159
[Crosilla] p. Axiom 5ax-iinf 4624
[Crosilla] p. Axiom 6ru 2988
[Crosilla] p. Axiom 8ax-pow 4207
[Crosilla] p. Axiom 9ax-setind 4573
[Crosilla], p. Axiom 6ax-sep 4151
[Crosilla], p. Axiom 7ax-coll 4148
[Crosilla], p. Axiom 7'repizf 4149
[Crosilla], p. Theorem is statedordtriexmid 4557
[Crosilla], p. Axiom of choice implies instancesacexmid 5921
[Crosilla], p. Definition of ordinaldf-iord 4401
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4571
[Eisenberg] p. 67Definition 5.3df-dif 3159
[Eisenberg] p. 82Definition 6.3df-iom 4627
[Eisenberg] p. 125Definition 8.21df-map 6709
[Enderton] p. 18Axiom of Empty Setaxnul 4158
[Enderton] p. 19Definitiondf-tp 3630
[Enderton] p. 26Exercise 5unissb 3869
[Enderton] p. 26Exercise 10pwel 4251
[Enderton] p. 28Exercise 7(b)pwunim 4321
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3986  iinin2m 3985  iunin1 3981  iunin2 3980
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3984  iundif2ss 3982
[Enderton] p. 33Exercise 23iinuniss 3999
[Enderton] p. 33Exercise 25iununir 4000
[Enderton] p. 33Exercise 24(a)iinpw 4007
[Enderton] p. 33Exercise 24(b)iunpw 4515  iunpwss 4008
[Enderton] p. 38Exercise 6(a)unipw 4250
[Enderton] p. 38Exercise 6(b)pwuni 4225
[Enderton] p. 41Lemma 3Dopeluu 4485  rnex 4933  rnexg 4931
[Enderton] p. 41Exercise 8dmuni 4876  rnuni 5081
[Enderton] p. 42Definition of a functiondffun7 5285  dffun8 5286
[Enderton] p. 43Definition of function valuefunfvdm2 5625
[Enderton] p. 43Definition of single-rootedfuncnv 5319
[Enderton] p. 44Definition (d)dfima2 5011  dfima3 5012
[Enderton] p. 47Theorem 3Hfvco2 5630
[Enderton] p. 49Axiom of Choice (first form)df-ac 7273
[Enderton] p. 50Theorem 3K(a)imauni 5808
[Enderton] p. 52Definitiondf-map 6709
[Enderton] p. 53Exercise 21coass 5188
[Enderton] p. 53Exercise 27dmco 5178
[Enderton] p. 53Exercise 14(a)funin 5329
[Enderton] p. 53Exercise 22(a)imass2 5045
[Enderton] p. 54Remarkixpf 6779  ixpssmap 6791
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6758
[Enderton] p. 56Theorem 3Merref 6612
[Enderton] p. 57Lemma 3Nerthi 6640
[Enderton] p. 57Definitiondf-ec 6594
[Enderton] p. 58Definitiondf-qs 6598
[Enderton] p. 60Theorem 3Qth3q 6699  th3qcor 6698  th3qlem1 6696  th3qlem2 6697
[Enderton] p. 61Exercise 35df-ec 6594
[Enderton] p. 65Exercise 56(a)dmun 4873
[Enderton] p. 68Definition of successordf-suc 4406
[Enderton] p. 71Definitiondf-tr 4132  dftr4 4136
[Enderton] p. 72Theorem 4Eunisuc 4448  unisucg 4449
[Enderton] p. 73Exercise 6unisuc 4448  unisucg 4449
[Enderton] p. 73Exercise 5(a)truni 4145
[Enderton] p. 73Exercise 5(b)trint 4146
[Enderton] p. 79Theorem 4I(A1)nna0 6532
[Enderton] p. 79Theorem 4I(A2)nnasuc 6534  onasuc 6524
[Enderton] p. 79Definition of operation valuedf-ov 5925
[Enderton] p. 80Theorem 4J(A1)nnm0 6533
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6535  onmsuc 6531
[Enderton] p. 81Theorem 4K(1)nnaass 6543
[Enderton] p. 81Theorem 4K(2)nna0r 6536  nnacom 6542
[Enderton] p. 81Theorem 4K(3)nndi 6544
[Enderton] p. 81Theorem 4K(4)nnmass 6545
[Enderton] p. 81Theorem 4K(5)nnmcom 6547
[Enderton] p. 82Exercise 16nnm0r 6537  nnmsucr 6546
[Enderton] p. 88Exercise 23nnaordex 6586
[Enderton] p. 129Definitiondf-en 6800
[Enderton] p. 132Theorem 6B(b)canth 5875
[Enderton] p. 133Exercise 1xpomen 12612
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6926
[Enderton] p. 136Corollary 6Enneneq 6918
[Enderton] p. 139Theorem 6H(c)mapen 6907
[Enderton] p. 142Theorem 6I(3)xpdjuen 7285
[Enderton] p. 143Theorem 6Jdju0en 7281  dju1en 7280
[Enderton] p. 144Corollary 6Kundif2ss 3526
[Enderton] p. 145Figure 38ffoss 5536
[Enderton] p. 145Definitiondf-dom 6801
[Enderton] p. 146Example 1domen 6810  domeng 6811
[Enderton] p. 146Example 3nndomo 6925
[Enderton] p. 149Theorem 6L(c)xpdom1 6894  xpdom1g 6892  xpdom2g 6891
[Enderton] p. 168Definitiondf-po 4331
[Enderton] p. 192Theorem 7M(a)oneli 4463
[Enderton] p. 192Theorem 7M(b)ontr1 4424
[Enderton] p. 192Theorem 7M(c)onirri 4579
[Enderton] p. 193Corollary 7N(b)0elon 4427
[Enderton] p. 193Corollary 7N(c)onsuci 4552
[Enderton] p. 193Corollary 7N(d)ssonunii 4525
[Enderton] p. 194Remarkonprc 4588
[Enderton] p. 194Exercise 16suc11 4594
[Enderton] p. 197Definitiondf-card 7247
[Enderton] p. 200Exercise 25tfis 4619
[Enderton] p. 206Theorem 7X(b)en2lp 4590
[Enderton] p. 207Exercise 34opthreg 4592
[Enderton] p. 208Exercise 35suc11g 4593
[Geuvers], p. 1Remarkexpap0 10661
[Geuvers], p. 6Lemma 2.13mulap0r 8642
[Geuvers], p. 6Lemma 2.15mulap0 8681
[Geuvers], p. 9Lemma 2.35msqge0 8643
[Geuvers], p. 9Definition 3.1(2)ax-arch 7998
[Geuvers], p. 10Lemma 3.9maxcom 11368
[Geuvers], p. 10Lemma 3.10maxle1 11376  maxle2 11377
[Geuvers], p. 10Lemma 3.11maxleast 11378
[Geuvers], p. 10Lemma 3.12maxleb 11381
[Geuvers], p. 11Definition 3.13dfabsmax 11382
[Geuvers], p. 17Definition 6.1df-ap 8609
[Gleason] p. 117Proposition 9-2.1df-enq 7414  enqer 7425
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7418  df-nqqs 7415
[Gleason] p. 117Proposition 9-2.3df-plpq 7411  df-plqqs 7416
[Gleason] p. 119Proposition 9-2.4df-mpq 7412  df-mqqs 7417
[Gleason] p. 119Proposition 9-2.5df-rq 7419
[Gleason] p. 119Proposition 9-2.6ltexnqq 7475
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7478  ltbtwnnq 7483  ltbtwnnqq 7482
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7467
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7468
[Gleason] p. 123Proposition 9-3.5addclpr 7604
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7646
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7645
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7664
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7680
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7686  ltaprlem 7685
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7683
[Gleason] p. 124Proposition 9-3.7mulclpr 7639
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7659
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7648
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7647
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7655
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7705
[Gleason] p. 126Proposition 9-4.1df-enr 7793  enrer 7802
[Gleason] p. 126Proposition 9-4.2df-0r 7798  df-1r 7799  df-nr 7794
[Gleason] p. 126Proposition 9-4.3df-mr 7796  df-plr 7795  negexsr 7839  recexsrlem 7841
[Gleason] p. 127Proposition 9-4.4df-ltr 7797
[Gleason] p. 130Proposition 10-1.3creui 8987  creur 8986  cru 8629
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7990  axcnre 7948
[Gleason] p. 132Definition 10-3.1crim 11023  crimd 11142  crimi 11102  crre 11022  crred 11141  crrei 11101
[Gleason] p. 132Definition 10-3.2remim 11025  remimd 11107
[Gleason] p. 133Definition 10.36absval2 11222  absval2d 11350  absval2i 11309
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11049  cjaddd 11130  cjaddi 11097
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11050  cjmuld 11131  cjmuli 11098
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11048  cjcjd 11108  cjcji 11080
[Gleason] p. 133Proposition 10-3.4(f)cjre 11047  cjreb 11031  cjrebd 11111  cjrebi 11083  cjred 11136  rere 11030  rereb 11028  rerebd 11110  rerebi 11082  rered 11134
[Gleason] p. 133Proposition 10-3.4(h)addcj 11056  addcjd 11122  addcji 11092
[Gleason] p. 133Proposition 10-3.7(a)absval 11166
[Gleason] p. 133Proposition 10-3.7(b)abscj 11217  abscjd 11355  abscji 11313
[Gleason] p. 133Proposition 10-3.7(c)abs00 11229  abs00d 11351  abs00i 11310  absne0d 11352
[Gleason] p. 133Proposition 10-3.7(d)releabs 11261  releabsd 11356  releabsi 11314
[Gleason] p. 133Proposition 10-3.7(f)absmul 11234  absmuld 11359  absmuli 11316
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11220  sqabsaddi 11317
[Gleason] p. 133Proposition 10-3.7(h)abstri 11269  abstrid 11361  abstrii 11320
[Gleason] p. 134Definition 10-4.1df-exp 10631  exp0 10635  expp1 10638  expp1d 10766
[Gleason] p. 135Proposition 10-4.2(a)expadd 10673  expaddd 10767
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15148  cxpmuld 15173  expmul 10676  expmuld 10768
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10670  mulexpd 10780  rpmulcxp 15145
[Gleason] p. 141Definition 11-2.1fzval 10085
[Gleason] p. 168Proposition 12-2.1(a)climadd 11491
[Gleason] p. 168Proposition 12-2.1(b)climsub 11493
[Gleason] p. 168Proposition 12-2.1(c)climmul 11492
[Gleason] p. 171Corollary 12-2.2climmulc2 11496
[Gleason] p. 172Corollary 12-2.5climrecl 11489
[Gleason] p. 172Proposition 12-2.4(c)climabs 11485  climcj 11486  climim 11488  climre 11487
[Gleason] p. 173Definition 12-3.1df-ltxr 8066  df-xr 8065  ltxr 9850
[Gleason] p. 180Theorem 12-5.3climcau 11512
[Gleason] p. 217Lemma 13-4.1btwnzge0 10390
[Gleason] p. 223Definition 14-1.1df-met 14101
[Gleason] p. 223Definition 14-1.1(a)met0 14600  xmet0 14599
[Gleason] p. 223Definition 14-1.1(c)metsym 14607
[Gleason] p. 223Definition 14-1.1(d)mettri 14609  mstri 14709  xmettri 14608  xmstri 14708
[Gleason] p. 230Proposition 14-2.6txlm 14515
[Gleason] p. 240Proposition 14-4.2metcnp3 14747
[Gleason] p. 243Proposition 14-4.16addcn2 11475  addcncntop 14798  mulcn2 11477  mulcncntop 14800  subcn2 11476  subcncntop 14799
[Gleason] p. 295Remarkbcval3 10843  bcval4 10844
[Gleason] p. 295Equation 2bcpasc 10858
[Gleason] p. 295Definition of binomial coefficientbcval 10841  df-bc 10840
[Gleason] p. 296Remarkbcn0 10847  bcnn 10849
[Gleason] p. 296Theorem 15-2.8binom 11649
[Gleason] p. 308Equation 2ef0 11837
[Gleason] p. 308Equation 3efcj 11838
[Gleason] p. 309Corollary 15-4.3efne0 11843
[Gleason] p. 309Corollary 15-4.4efexp 11847
[Gleason] p. 310Equation 14sinadd 11901
[Gleason] p. 310Equation 15cosadd 11902
[Gleason] p. 311Equation 17sincossq 11913
[Gleason] p. 311Equation 18cosbnd 11918  sinbnd 11917
[Gleason] p. 311Definition of ` `df-pi 11818
[Golan] p. 1Remarksrgisid 13542
[Golan] p. 1Definitiondf-srg 13520
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1463
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13143  mndideu 13067
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13170
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13199
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13210
[Herstein] p. 57Exercise 1dfgrp3me 13232
[Heyting] p. 127Axiom #1ax1hfs 15718
[Hitchcock] p. 5Rule A3mptnan 1434
[Hitchcock] p. 5Rule A4mptxor 1435
[Hitchcock] p. 5Rule A5mtpxor 1437
[HoTT], p. Lemma 10.4.1exmidontriim 7292
[HoTT], p. Theorem 7.2.6nndceq 6557
[HoTT], p. Exercise 11.10neapmkv 15712
[HoTT], p. Exercise 11.11mulap0bd 8684
[HoTT], p. Section 11.2.1df-iltp 7537  df-imp 7536  df-iplp 7535  df-reap 8602
[HoTT], p. Theorem 11.2.4recapb 8698  rerecapb 8870
[HoTT], p. Corollary 3.9.2uchoice 6195
[HoTT], p. Theorem 11.2.12cauappcvgpr 7729
[HoTT], p. Corollary 11.4.3conventions 15367
[HoTT], p. Exercise 11.6(i)dcapnconst 15705  dceqnconst 15704
[HoTT], p. Corollary 11.2.13axcaucvg 7967  caucvgpr 7749  caucvgprpr 7779  caucvgsr 7869
[HoTT], p. Definition 11.2.1df-inp 7533
[HoTT], p. Exercise 11.6(ii)nconstwlpo 15710
[HoTT], p. Proposition 11.2.3df-iso 4332  ltpopr 7662  ltsopr 7663
[HoTT], p. Definition 11.2.7(v)apsym 8633  reapcotr 8625  reapirr 8604
[HoTT], p. Definition 11.2.7(vi)0lt1 8153  gt0add 8600  leadd1 8457  lelttr 8115  lemul1a 8885  lenlt 8102  ltadd1 8456  ltletr 8116  ltmul1 8619  reaplt 8615
[Jech] p. 4Definition of classcv 1363  cvjust 2191
[Jech] p. 78Noteopthprc 4714
[KalishMontague] p. 81Note 1ax-i9 1544
[Kreyszig] p. 3Property M1metcl 14589  xmetcl 14588
[Kreyszig] p. 4Property M2meteq0 14596
[Kreyszig] p. 12Equation 5muleqadd 8695
[Kreyszig] p. 18Definition 1.3-2mopnval 14678
[Kreyszig] p. 19Remarkmopntopon 14679
[Kreyszig] p. 19Theorem T1mopn0 14724  mopnm 14684
[Kreyszig] p. 19Theorem T2unimopn 14722
[Kreyszig] p. 19Definition of neighborhoodneibl 14727
[Kreyszig] p. 20Definition 1.3-3metcnp2 14749
[Kreyszig] p. 25Definition 1.4-1lmbr 14449
[Kreyszig] p. 51Equation 2lmodvneg1 13886
[Kreyszig] p. 51Equation 1almod0vs 13877
[Kreyszig] p. 51Equation 1blmodvs0 13878
[Kunen] p. 10Axiom 0a9e 1710
[Kunen] p. 12Axiom 6zfrep6 4150
[Kunen] p. 24Definition 10.24mapval 6719  mapvalg 6717
[Kunen] p. 31Definition 10.24mapex 6713
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3926
[Lang] p. 3Statementlidrideqd 13024  mndbn0 13072
[Lang] p. 3Definitiondf-mnd 13058
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13041
[Lang] p. 5Equationgsumfzreidx 13467
[Lang] p. 6Definitionmulgnn0gsum 13258
[Lang] p. 7Definitiondfgrp2e 13160
[Levy] p. 338Axiomdf-clab 2183  df-clel 2192  df-cleq 2189
[Lopez-Astorga] p. 12Rule 1mptnan 1434
[Lopez-Astorga] p. 12Rule 2mptxor 1435
[Lopez-Astorga] p. 12Rule 3mtpxor 1437
[Margaris] p. 40Rule Cexlimiv 1612
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 854
[Margaris] p. 49Definitiondfbi2 388  dfordc 893  exalim 1516
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 652
[Margaris] p. 89Theorem 19.219.2 1652  r19.2m 3537
[Margaris] p. 89Theorem 19.319.3 1568  19.3h 1567  rr19.3v 2903
[Margaris] p. 89Theorem 19.5alcom 1492
[Margaris] p. 89Theorem 19.6alexdc 1633  alexim 1659
[Margaris] p. 89Theorem 19.7alnex 1513
[Margaris] p. 89Theorem 19.819.8a 1604  spsbe 1856
[Margaris] p. 89Theorem 19.919.9 1658  19.9h 1657  19.9v 1885  exlimd 1611
[Margaris] p. 89Theorem 19.11excom 1678  excomim 1677
[Margaris] p. 89Theorem 19.1219.12 1679  r19.12 2603
[Margaris] p. 90Theorem 19.14exnalim 1660
[Margaris] p. 90Theorem 19.15albi 1482  ralbi 2629
[Margaris] p. 90Theorem 19.1619.16 1569
[Margaris] p. 90Theorem 19.1719.17 1570
[Margaris] p. 90Theorem 19.18exbi 1618  rexbi 2630
[Margaris] p. 90Theorem 19.1919.19 1680
[Margaris] p. 90Theorem 19.20alim 1471  alimd 1535  alimdh 1481  alimdv 1893  ralimdaa 2563  ralimdv 2565  ralimdva 2564  ralimdvva 2566  sbcimdv 3055
[Margaris] p. 90Theorem 19.2119.21-2 1681  19.21 1597  19.21bi 1572  19.21h 1571  19.21ht 1595  19.21t 1596  19.21v 1887  alrimd 1624  alrimdd 1623  alrimdh 1493  alrimdv 1890  alrimi 1536  alrimih 1483  alrimiv 1888  alrimivv 1889  r19.21 2573  r19.21be 2588  r19.21bi 2585  r19.21t 2572  r19.21v 2574  ralrimd 2575  ralrimdv 2576  ralrimdva 2577  ralrimdvv 2581  ralrimdvva 2582  ralrimi 2568  ralrimiv 2569  ralrimiva 2570  ralrimivv 2578  ralrimivva 2579  ralrimivvva 2580  ralrimivw 2571  rexlimi 2607
[Margaris] p. 90Theorem 19.222alimdv 1895  2eximdv 1896  exim 1613  eximd 1626  eximdh 1625  eximdv 1894  rexim 2591  reximdai 2595  reximddv 2600  reximddv2 2602  reximdv 2598  reximdv2 2596  reximdva 2599  reximdvai 2597  reximi2 2593
[Margaris] p. 90Theorem 19.2319.23 1692  19.23bi 1606  19.23h 1512  19.23ht 1511  19.23t 1691  19.23v 1897  19.23vv 1898  exlimd2 1609  exlimdh 1610  exlimdv 1833  exlimdvv 1912  exlimi 1608  exlimih 1607  exlimiv 1612  exlimivv 1911  r19.23 2605  r19.23v 2606  rexlimd 2611  rexlimdv 2613  rexlimdv3a 2616  rexlimdva 2614  rexlimdva2 2617  rexlimdvaa 2615  rexlimdvv 2621  rexlimdvva 2622  rexlimdvw 2618  rexlimiv 2608  rexlimiva 2609  rexlimivv 2620
[Margaris] p. 90Theorem 19.24i19.24 1653
[Margaris] p. 90Theorem 19.2519.25 1640
[Margaris] p. 90Theorem 19.2619.26-2 1496  19.26-3an 1497  19.26 1495  r19.26-2 2626  r19.26-3 2627  r19.26 2623  r19.26m 2628
[Margaris] p. 90Theorem 19.2719.27 1575  19.27h 1574  19.27v 1914  r19.27av 2632  r19.27m 3546  r19.27mv 3547
[Margaris] p. 90Theorem 19.2819.28 1577  19.28h 1576  19.28v 1915  r19.28av 2633  r19.28m 3540  r19.28mv 3543  rr19.28v 2904
[Margaris] p. 90Theorem 19.2919.29 1634  19.29r 1635  19.29r2 1636  19.29x 1637  r19.29 2634  r19.29d2r 2641  r19.29r 2635
[Margaris] p. 90Theorem 19.3019.30dc 1641
[Margaris] p. 90Theorem 19.3119.31r 1695
[Margaris] p. 90Theorem 19.3219.32dc 1693  19.32r 1694  r19.32r 2643  r19.32vdc 2646  r19.32vr 2645
[Margaris] p. 90Theorem 19.3319.33 1498  19.33b2 1643  19.33bdc 1644
[Margaris] p. 90Theorem 19.3419.34 1698
[Margaris] p. 90Theorem 19.3519.35-1 1638  19.35i 1639
[Margaris] p. 90Theorem 19.3619.36-1 1687  19.36aiv 1916  19.36i 1686  r19.36av 2648
[Margaris] p. 90Theorem 19.3719.37-1 1688  19.37aiv 1689  r19.37 2649  r19.37av 2650
[Margaris] p. 90Theorem 19.3819.38 1690
[Margaris] p. 90Theorem 19.39i19.39 1654
[Margaris] p. 90Theorem 19.4019.40-2 1646  19.40 1645  r19.40 2651
[Margaris] p. 90Theorem 19.4119.41 1700  19.41h 1699  19.41v 1917  19.41vv 1918  19.41vvv 1919  19.41vvvv 1920  r19.41 2652  r19.41v 2653
[Margaris] p. 90Theorem 19.4219.42 1702  19.42h 1701  19.42v 1921  19.42vv 1926  19.42vvv 1927  19.42vvvv 1928  r19.42v 2654
[Margaris] p. 90Theorem 19.4319.43 1642  r19.43 2655
[Margaris] p. 90Theorem 19.4419.44 1696  r19.44av 2656  r19.44mv 3545
[Margaris] p. 90Theorem 19.4519.45 1697  r19.45av 2657  r19.45mv 3544
[Margaris] p. 110Exercise 2(b)eu1 2070
[Megill] p. 444Axiom C5ax-17 1540
[Megill] p. 445Lemma L12alequcom 1529  ax-10 1519
[Megill] p. 446Lemma L17equtrr 1724
[Megill] p. 446Lemma L19hbnae 1735
[Megill] p. 447Remark 9.1df-sb 1777  sbid 1788
[Megill] p. 448Scheme C5'ax-4 1524
[Megill] p. 448Scheme C6'ax-7 1462
[Megill] p. 448Scheme C8'ax-8 1518
[Megill] p. 448Scheme C9'ax-i12 1521
[Megill] p. 448Scheme C11'ax-10o 1730
[Megill] p. 448Scheme C12'ax-13 2169
[Megill] p. 448Scheme C13'ax-14 2170
[Megill] p. 448Scheme C15'ax-11o 1837
[Megill] p. 448Scheme C16'ax-16 1828
[Megill] p. 448Theorem 9.4dral1 1744  dral2 1745  drex1 1812  drex2 1746  drsb1 1813  drsb2 1855
[Megill] p. 449Theorem 9.7sbcom2 2006  sbequ 1854  sbid2v 2015
[Megill] p. 450Example in Appendixhba1 1554
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3072  rspsbca 3073  stdpc4 1789
[Mendelson] p. 69Axiom 5ra5 3078  stdpc5 1598
[Mendelson] p. 81Rule Cexlimiv 1612
[Mendelson] p. 95Axiom 6stdpc6 1717
[Mendelson] p. 95Axiom 7stdpc7 1784
[Mendelson] p. 231Exercise 4.10(k)inv1 3487
[Mendelson] p. 231Exercise 4.10(l)unv 3488
[Mendelson] p. 231Exercise 4.10(n)inssun 3403
[Mendelson] p. 231Exercise 4.10(o)df-nul 3451
[Mendelson] p. 231Exercise 4.10(q)inssddif 3404
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3294
[Mendelson] p. 231Definition of unionunssin 3402
[Mendelson] p. 235Exercise 4.12(c)univ 4511
[Mendelson] p. 235Exercise 4.12(d)pwv 3838
[Mendelson] p. 235Exercise 4.12(j)pwin 4317
[Mendelson] p. 235Exercise 4.12(k)pwunss 4318
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4319
[Mendelson] p. 235Exercise 4.12(n)uniin 3859
[Mendelson] p. 235Exercise 4.12(p)reli 4795
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5190
[Mendelson] p. 246Definition of successordf-suc 4406
[Mendelson] p. 254Proposition 4.22(b)xpen 6906
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6880  xpsneng 6881
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6886  xpcomeng 6887
[Mendelson] p. 254Proposition 4.22(e)xpassen 6889
[Mendelson] p. 255Exercise 4.39endisj 6883
[Mendelson] p. 255Exercise 4.41mapprc 6711
[Mendelson] p. 255Exercise 4.43mapsnen 6870
[Mendelson] p. 255Exercise 4.47xpmapen 6911
[Mendelson] p. 255Exercise 4.42(a)map0e 6745
[Mendelson] p. 255Exercise 4.42(b)map1 6871
[Mendelson] p. 258Exercise 4.56(c)djuassen 7284  djucomen 7283
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7282
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6525
[Monk1] p. 26Theorem 2.8(vii)ssin 3385
[Monk1] p. 33Theorem 3.2(i)ssrel 4751
[Monk1] p. 33Theorem 3.2(ii)eqrel 4752
[Monk1] p. 34Definition 3.3df-opab 4095
[Monk1] p. 36Theorem 3.7(i)coi1 5185  coi2 5186
[Monk1] p. 36Theorem 3.8(v)dm0 4880  rn0 4922
[Monk1] p. 36Theorem 3.7(ii)cnvi 5074
[Monk1] p. 37Theorem 3.13(i)relxp 4772
[Monk1] p. 37Theorem 3.13(x)dmxpm 4886  rnxpm 5099
[Monk1] p. 37Theorem 3.13(ii)0xp 4743  xp0 5089
[Monk1] p. 38Theorem 3.16(ii)ima0 5028
[Monk1] p. 38Theorem 3.16(viii)imai 5025
[Monk1] p. 39Theorem 3.17imaex 5024  imaexg 5023
[Monk1] p. 39Theorem 3.16(xi)imassrn 5020
[Monk1] p. 41Theorem 4.3(i)fnopfv 5692  funfvop 5674
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5604
[Monk1] p. 42Theorem 4.4(iii)fvelima 5612
[Monk1] p. 43Theorem 4.6funun 5302
[Monk1] p. 43Theorem 4.8(iv)dff13 5815  dff13f 5817
[Monk1] p. 46Theorem 4.15(v)funex 5785  funrnex 6171
[Monk1] p. 50Definition 5.4fniunfv 5809
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5153
[Monk1] p. 52Theorem 5.11(viii)ssint 3890
[Monk1] p. 52Definition 5.13 (i)1stval2 6213  df-1st 6198
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6214  df-2nd 6199
[Monk2] p. 105Axiom C4ax-5 1461
[Monk2] p. 105Axiom C7ax-8 1518
[Monk2] p. 105Axiom C8ax-11 1520  ax-11o 1837
[Monk2] p. 105Axiom (C8)ax11v 1841
[Monk2] p. 109Lemma 12ax-7 1462
[Monk2] p. 109Lemma 15equvin 1877  equvini 1772  eqvinop 4276
[Monk2] p. 113Axiom C5-1ax-17 1540
[Monk2] p. 113Axiom C5-2ax6b 1665
[Monk2] p. 113Axiom C5-3ax-7 1462
[Monk2] p. 114Lemma 22hba1 1554
[Monk2] p. 114Lemma 23hbia1 1566  nfia1 1594
[Monk2] p. 114Lemma 24hba2 1565  nfa2 1593
[Moschovakis] p. 2Chapter 2 df-stab 832  dftest 15719
[Munkres] p. 77Example 2distop 14321
[Munkres] p. 78Definition of basisdf-bases 14279  isbasis3g 14282
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12931  tgval2 14287
[Munkres] p. 79Remarktgcl 14300
[Munkres] p. 80Lemma 2.1tgval3 14294
[Munkres] p. 80Lemma 2.2tgss2 14315  tgss3 14314
[Munkres] p. 81Lemma 2.3basgen 14316  basgen2 14317
[Munkres] p. 89Definition of subspace topologyresttop 14406
[Munkres] p. 93Theorem 6.1(1)0cld 14348  topcld 14345
[Munkres] p. 93Theorem 6.1(3)uncld 14349
[Munkres] p. 94Definition of closureclsval 14347
[Munkres] p. 94Definition of interiorntrval 14346
[Munkres] p. 102Definition of continuous functiondf-cn 14424  iscn 14433  iscn2 14436
[Munkres] p. 107Theorem 7.2(g)cncnp 14466  cncnp2m 14467  cncnpi 14464  df-cnp 14425  iscnp 14435
[Munkres] p. 127Theorem 10.1metcn 14750
[Pierik], p. 8Section 2.2.1dfrex2fin 6964
[Pierik], p. 9Definition 2.4df-womni 7230
[Pierik], p. 9Definition 2.5df-markov 7218  omniwomnimkv 7233
[Pierik], p. 10Section 2.3dfdif3 3273
[Pierik], p. 14Definition 3.1df-omni 7201  exmidomniim 7207  finomni 7206
[Pierik], p. 15Section 3.1df-nninf 7186
[Pradic2025], p. 2Section 1.1nnnninfen 15665
[PradicBrown2022], p. 1Theorem 1exmidsbthr 15667
[PradicBrown2022], p. 2Remarkexmidpw 6969
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7268
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7269  exmidfodomrlemrALT 7270
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7215
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 15651  peano4nninf 15650
[PradicBrown2022], p. 5Lemma 3.5nninfall 15653
[PradicBrown2022], p. 5Theorem 3.6nninfsel 15661
[PradicBrown2022], p. 5Corollary 3.7nninfomni 15663
[PradicBrown2022], p. 5Definition 3.3nnsf 15649
[Quine] p. 16Definition 2.1df-clab 2183  rabid 2673
[Quine] p. 17Definition 2.1''dfsb7 2010
[Quine] p. 18Definition 2.7df-cleq 2189
[Quine] p. 19Definition 2.9df-v 2765
[Quine] p. 34Theorem 5.1abeq2 2305
[Quine] p. 35Theorem 5.2abid2 2317  abid2f 2365
[Quine] p. 40Theorem 6.1sb5 1902
[Quine] p. 40Theorem 6.2sb56 1900  sb6 1901
[Quine] p. 41Theorem 6.3df-clel 2192
[Quine] p. 41Theorem 6.4eqid 2196
[Quine] p. 41Theorem 6.5eqcom 2198
[Quine] p. 42Theorem 6.6df-sbc 2990
[Quine] p. 42Theorem 6.7dfsbcq 2991  dfsbcq2 2992
[Quine] p. 43Theorem 6.8vex 2766
[Quine] p. 43Theorem 6.9isset 2769
[Quine] p. 44Theorem 7.3spcgf 2846  spcgv 2851  spcimgf 2844
[Quine] p. 44Theorem 6.11spsbc 3001  spsbcd 3002
[Quine] p. 44Theorem 6.12elex 2774
[Quine] p. 44Theorem 6.13elab 2908  elabg 2910  elabgf 2906
[Quine] p. 44Theorem 6.14noel 3454
[Quine] p. 48Theorem 7.2snprc 3687
[Quine] p. 48Definition 7.1df-pr 3629  df-sn 3628
[Quine] p. 49Theorem 7.4snss 3757  snssg 3756
[Quine] p. 49Theorem 7.5prss 3778  prssg 3779
[Quine] p. 49Theorem 7.6prid1 3728  prid1g 3726  prid2 3729  prid2g 3727  snid 3653  snidg 3651
[Quine] p. 51Theorem 7.12snexg 4217  snexprc 4219
[Quine] p. 51Theorem 7.13prexg 4244
[Quine] p. 53Theorem 8.2unisn 3855  unisng 3856
[Quine] p. 53Theorem 8.3uniun 3858
[Quine] p. 54Theorem 8.6elssuni 3867
[Quine] p. 54Theorem 8.7uni0 3866
[Quine] p. 56Theorem 8.17uniabio 5229
[Quine] p. 56Definition 8.18dfiota2 5220
[Quine] p. 57Theorem 8.19iotaval 5230
[Quine] p. 57Theorem 8.22iotanul 5234
[Quine] p. 58Theorem 8.23euiotaex 5235
[Quine] p. 58Definition 9.1df-op 3631
[Quine] p. 61Theorem 9.5opabid 4290  opabidw 4291  opelopab 4306  opelopaba 4300  opelopabaf 4308  opelopabf 4309  opelopabg 4302  opelopabga 4297  opelopabgf 4304  oprabid 5954
[Quine] p. 64Definition 9.11df-xp 4669
[Quine] p. 64Definition 9.12df-cnv 4671
[Quine] p. 64Definition 9.15df-id 4328
[Quine] p. 65Theorem 10.3fun0 5316
[Quine] p. 65Theorem 10.4funi 5290
[Quine] p. 65Theorem 10.5funsn 5306  funsng 5304
[Quine] p. 65Definition 10.1df-fun 5260
[Quine] p. 65Definition 10.2args 5038  dffv4g 5555
[Quine] p. 68Definition 10.11df-fv 5266  fv2 5553
[Quine] p. 124Theorem 17.3nn0opth2 10816  nn0opth2d 10815  nn0opthd 10814
[Quine] p. 284Axiom 39(vi)funimaex 5343  funimaexg 5342
[Roman] p. 18Part Preliminariesdf-rng 13489
[Roman] p. 19Part Preliminariesdf-ring 13554
[Rudin] p. 164Equation 27efcan 11841
[Rudin] p. 164Equation 30efzval 11848
[Rudin] p. 167Equation 48absefi 11934
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1437
[Sanford] p. 39Rule 4mptxor 1435
[Sanford] p. 40Rule 1mptnan 1434
[Schechter] p. 51Definition of antisymmetryintasym 5054
[Schechter] p. 51Definition of irreflexivityintirr 5056
[Schechter] p. 51Definition of symmetrycnvsym 5053
[Schechter] p. 51Definition of transitivitycotr 5051
[Schechter] p. 187Definition of "ring with unit"isring 13556
[Schechter] p. 428Definition 15.35bastop1 14319
[Stoll] p. 13Definition of symmetric differencesymdif1 3428
[Stoll] p. 16Exercise 4.40dif 3522  dif0 3521
[Stoll] p. 16Exercise 4.8difdifdirss 3535
[Stoll] p. 19Theorem 5.2(13)undm 3421
[Stoll] p. 19Theorem 5.2(13')indmss 3422
[Stoll] p. 20Remarkinvdif 3405
[Stoll] p. 25Definition of ordered tripledf-ot 3632
[Stoll] p. 43Definitionuniiun 3970
[Stoll] p. 44Definitionintiin 3971
[Stoll] p. 45Definitiondf-iin 3919
[Stoll] p. 45Definition indexed uniondf-iun 3918
[Stoll] p. 176Theorem 3.4(27)imandc 890  imanst 889
[Stoll] p. 262Example 4.1symdif1 3428
[Suppes] p. 22Theorem 2eq0 3469
[Suppes] p. 22Theorem 4eqss 3198  eqssd 3200  eqssi 3199
[Suppes] p. 23Theorem 5ss0 3491  ss0b 3490
[Suppes] p. 23Theorem 6sstr 3191
[Suppes] p. 25Theorem 12elin 3346  elun 3304
[Suppes] p. 26Theorem 15inidm 3372
[Suppes] p. 26Theorem 16in0 3485
[Suppes] p. 27Theorem 23unidm 3306
[Suppes] p. 27Theorem 24un0 3484
[Suppes] p. 27Theorem 25ssun1 3326
[Suppes] p. 27Theorem 26ssequn1 3333
[Suppes] p. 27Theorem 27unss 3337
[Suppes] p. 27Theorem 28indir 3412
[Suppes] p. 27Theorem 29undir 3413
[Suppes] p. 28Theorem 32difid 3519  difidALT 3520
[Suppes] p. 29Theorem 33difin 3400
[Suppes] p. 29Theorem 34indif 3406
[Suppes] p. 29Theorem 35undif1ss 3525
[Suppes] p. 29Theorem 36difun2 3530
[Suppes] p. 29Theorem 37difin0 3524
[Suppes] p. 29Theorem 38disjdif 3523
[Suppes] p. 29Theorem 39difundi 3415
[Suppes] p. 29Theorem 40difindiss 3417
[Suppes] p. 30Theorem 41nalset 4163
[Suppes] p. 39Theorem 61uniss 3860
[Suppes] p. 39Theorem 65uniop 4288
[Suppes] p. 41Theorem 70intsn 3909
[Suppes] p. 42Theorem 71intpr 3906  intprg 3907
[Suppes] p. 42Theorem 73op1stb 4513  op1stbg 4514
[Suppes] p. 42Theorem 78intun 3905
[Suppes] p. 44Definition 15(a)dfiun2 3950  dfiun2g 3948
[Suppes] p. 44Definition 15(b)dfiin2 3951
[Suppes] p. 47Theorem 86elpw 3611  elpw2 4190  elpw2g 4189  elpwg 3613
[Suppes] p. 47Theorem 87pwid 3620
[Suppes] p. 47Theorem 89pw0 3769
[Suppes] p. 48Theorem 90pwpw0ss 3834
[Suppes] p. 52Theorem 101xpss12 4770
[Suppes] p. 52Theorem 102xpindi 4801  xpindir 4802
[Suppes] p. 52Theorem 103xpundi 4719  xpundir 4720
[Suppes] p. 54Theorem 105elirrv 4584
[Suppes] p. 58Theorem 2relss 4750
[Suppes] p. 59Theorem 4eldm 4863  eldm2 4864  eldm2g 4862  eldmg 4861
[Suppes] p. 59Definition 3df-dm 4673
[Suppes] p. 60Theorem 6dmin 4874
[Suppes] p. 60Theorem 8rnun 5078
[Suppes] p. 60Theorem 9rnin 5079
[Suppes] p. 60Definition 4dfrn2 4854
[Suppes] p. 61Theorem 11brcnv 4849  brcnvg 4847
[Suppes] p. 62Equation 5elcnv 4843  elcnv2 4844
[Suppes] p. 62Theorem 12relcnv 5047
[Suppes] p. 62Theorem 15cnvin 5077
[Suppes] p. 62Theorem 16cnvun 5075
[Suppes] p. 63Theorem 20co02 5183
[Suppes] p. 63Theorem 21dmcoss 4935
[Suppes] p. 63Definition 7df-co 4672
[Suppes] p. 64Theorem 26cnvco 4851
[Suppes] p. 64Theorem 27coass 5188
[Suppes] p. 65Theorem 31resundi 4959
[Suppes] p. 65Theorem 34elima 5014  elima2 5015  elima3 5016  elimag 5013
[Suppes] p. 65Theorem 35imaundi 5082
[Suppes] p. 66Theorem 40dminss 5084
[Suppes] p. 66Theorem 41imainss 5085
[Suppes] p. 67Exercise 11cnvxp 5088
[Suppes] p. 81Definition 34dfec2 6595
[Suppes] p. 82Theorem 72elec 6633  elecg 6632
[Suppes] p. 82Theorem 73erth 6638  erth2 6639
[Suppes] p. 89Theorem 96map0b 6746
[Suppes] p. 89Theorem 97map0 6748  map0g 6747
[Suppes] p. 89Theorem 98mapsn 6749
[Suppes] p. 89Theorem 99mapss 6750
[Suppes] p. 92Theorem 1enref 6824  enrefg 6823
[Suppes] p. 92Theorem 2ensym 6840  ensymb 6839  ensymi 6841
[Suppes] p. 92Theorem 3entr 6843
[Suppes] p. 92Theorem 4unen 6875
[Suppes] p. 94Theorem 15endom 6822
[Suppes] p. 94Theorem 16ssdomg 6837
[Suppes] p. 94Theorem 17domtr 6844
[Suppes] p. 95Theorem 18isbth 7033
[Suppes] p. 98Exercise 4fundmen 6865  fundmeng 6866
[Suppes] p. 98Exercise 6xpdom3m 6893
[Suppes] p. 130Definition 3df-tr 4132
[Suppes] p. 132Theorem 9ssonuni 4524
[Suppes] p. 134Definition 6df-suc 4406
[Suppes] p. 136Theorem Schema 22findes 4639  finds 4636  finds1 4638  finds2 4637
[Suppes] p. 162Definition 5df-ltnqqs 7420  df-ltpq 7413
[Suppes] p. 228Theorem Schema 61onintss 4425
[TakeutiZaring] p. 8Axiom 1ax-ext 2178
[TakeutiZaring] p. 13Definition 4.5df-cleq 2189
[TakeutiZaring] p. 13Proposition 4.6df-clel 2192
[TakeutiZaring] p. 13Proposition 4.9cvjust 2191
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2214
[TakeutiZaring] p. 14Definition 4.16df-oprab 5926
[TakeutiZaring] p. 14Proposition 4.14ru 2988
[TakeutiZaring] p. 15Exercise 1elpr 3643  elpr2 3644  elprg 3642
[TakeutiZaring] p. 15Exercise 2elsn 3638  elsn2 3656  elsn2g 3655  elsng 3637  velsn 3639
[TakeutiZaring] p. 15Exercise 3elop 4264
[TakeutiZaring] p. 15Exercise 4sneq 3633  sneqr 3790
[TakeutiZaring] p. 15Definition 5.1dfpr2 3641  dfsn2 3636
[TakeutiZaring] p. 16Axiom 3uniex 4472
[TakeutiZaring] p. 16Exercise 6opth 4270
[TakeutiZaring] p. 16Exercise 8rext 4248
[TakeutiZaring] p. 16Corollary 5.8unex 4476  unexg 4478
[TakeutiZaring] p. 16Definition 5.3dftp2 3671
[TakeutiZaring] p. 16Definition 5.5df-uni 3840
[TakeutiZaring] p. 16Definition 5.6df-in 3163  df-un 3161
[TakeutiZaring] p. 16Proposition 5.7unipr 3853  uniprg 3854
[TakeutiZaring] p. 17Axiom 4vpwex 4212
[TakeutiZaring] p. 17Exercise 1eltp 3670
[TakeutiZaring] p. 17Exercise 5elsuc 4441  elsucg 4439  sstr2 3190
[TakeutiZaring] p. 17Exercise 6uncom 3307
[TakeutiZaring] p. 17Exercise 7incom 3355
[TakeutiZaring] p. 17Exercise 8unass 3320
[TakeutiZaring] p. 17Exercise 9inass 3373
[TakeutiZaring] p. 17Exercise 10indi 3410
[TakeutiZaring] p. 17Exercise 11undi 3411
[TakeutiZaring] p. 17Definition 5.9dfss2 3172
[TakeutiZaring] p. 17Definition 5.10df-pw 3607
[TakeutiZaring] p. 18Exercise 7unss2 3334
[TakeutiZaring] p. 18Exercise 9df-ss 3170  sseqin2 3382
[TakeutiZaring] p. 18Exercise 10ssid 3203
[TakeutiZaring] p. 18Exercise 12inss1 3383  inss2 3384
[TakeutiZaring] p. 18Exercise 13nssr 3243
[TakeutiZaring] p. 18Exercise 15unieq 3848
[TakeutiZaring] p. 18Exercise 18sspwb 4249
[TakeutiZaring] p. 18Exercise 19pweqb 4256
[TakeutiZaring] p. 20Definitiondf-rab 2484
[TakeutiZaring] p. 20Corollary 5.160ex 4160
[TakeutiZaring] p. 20Definition 5.12df-dif 3159
[TakeutiZaring] p. 20Definition 5.14dfnul2 3452
[TakeutiZaring] p. 20Proposition 5.15difid 3519  difidALT 3520
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3463
[TakeutiZaring] p. 21Theorem 5.22setind 4575
[TakeutiZaring] p. 21Definition 5.20df-v 2765
[TakeutiZaring] p. 21Proposition 5.21vprc 4165
[TakeutiZaring] p. 22Exercise 10ss 3489
[TakeutiZaring] p. 22Exercise 3ssex 4170  ssexg 4172
[TakeutiZaring] p. 22Exercise 4inex1 4167
[TakeutiZaring] p. 22Exercise 5ruv 4586
[TakeutiZaring] p. 22Exercise 6elirr 4577
[TakeutiZaring] p. 22Exercise 7ssdif0im 3515
[TakeutiZaring] p. 22Exercise 11difdif 3288
[TakeutiZaring] p. 22Exercise 13undif3ss 3424
[TakeutiZaring] p. 22Exercise 14difss 3289
[TakeutiZaring] p. 22Exercise 15sscon 3297
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2480
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2481
[TakeutiZaring] p. 23Proposition 6.2xpex 4778  xpexg 4777  xpexgALT 6190
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4670
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5322
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5474  fun11 5325
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5269  svrelfun 5323
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4853
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4855
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4675
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4676
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4672
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5124  dfrel2 5120
[TakeutiZaring] p. 25Exercise 3xpss 4771
[TakeutiZaring] p. 25Exercise 5relun 4780
[TakeutiZaring] p. 25Exercise 6reluni 4786
[TakeutiZaring] p. 25Exercise 9inxp 4800
[TakeutiZaring] p. 25Exercise 12relres 4974
[TakeutiZaring] p. 25Exercise 13opelres 4951  opelresg 4953
[TakeutiZaring] p. 25Exercise 14dmres 4967
[TakeutiZaring] p. 25Exercise 15resss 4970
[TakeutiZaring] p. 25Exercise 17resabs1 4975
[TakeutiZaring] p. 25Exercise 18funres 5299
[TakeutiZaring] p. 25Exercise 24relco 5168
[TakeutiZaring] p. 25Exercise 29funco 5298
[TakeutiZaring] p. 25Exercise 30f1co 5475
[TakeutiZaring] p. 26Definition 6.10eu2 2089
[TakeutiZaring] p. 26Definition 6.11df-fv 5266  fv3 5581
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5208  cnvexg 5207
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4932  dmexg 4930
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4933  rnexg 4931
[TakeutiZaring] p. 27Corollary 6.13funfvex 5575
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5585  tz6.12 5586  tz6.12c 5588
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5549
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5261
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5262
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5264  wfo 5256
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5263  wf1 5255
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5265  wf1o 5257
[TakeutiZaring] p. 28Exercise 4eqfnfv 5659  eqfnfv2 5660  eqfnfv2f 5663
[TakeutiZaring] p. 28Exercise 5fvco 5631
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5784  fnexALT 6168
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5783  resfunexgALT 6165
[TakeutiZaring] p. 29Exercise 9funimaex 5343  funimaexg 5342
[TakeutiZaring] p. 29Definition 6.18df-br 4034
[TakeutiZaring] p. 30Definition 6.21eliniseg 5039  iniseg 5041
[TakeutiZaring] p. 30Definition 6.22df-eprel 4324
[TakeutiZaring] p. 32Definition 6.28df-isom 5267
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5857
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5858
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5863
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5865
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5873
[TakeutiZaring] p. 35Notationwtr 4131
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4389
[TakeutiZaring] p. 35Definition 7.1dftr3 4135
[TakeutiZaring] p. 36Proposition 7.4ordwe 4612
[TakeutiZaring] p. 36Proposition 7.6ordelord 4416
[TakeutiZaring] p. 37Proposition 7.9ordin 4420
[TakeutiZaring] p. 38Corollary 7.15ordsson 4528
[TakeutiZaring] p. 38Definition 7.11df-on 4403
[TakeutiZaring] p. 38Proposition 7.12ordon 4522
[TakeutiZaring] p. 38Proposition 7.13onprc 4588
[TakeutiZaring] p. 39Theorem 7.17tfi 4618
[TakeutiZaring] p. 40Exercise 7dftr2 4133
[TakeutiZaring] p. 40Exercise 11unon 4547
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4523
[TakeutiZaring] p. 40Proposition 7.20elssuni 3867
[TakeutiZaring] p. 41Definition 7.22df-suc 4406
[TakeutiZaring] p. 41Proposition 7.23sssucid 4450  sucidg 4451
[TakeutiZaring] p. 41Proposition 7.24onsuc 4537
[TakeutiZaring] p. 42Exercise 1df-ilim 4404
[TakeutiZaring] p. 42Exercise 8onsucssi 4542  ordelsuc 4541
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4630
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4631
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4632
[TakeutiZaring] p. 43Axiom 7omex 4629
[TakeutiZaring] p. 43Theorem 7.32ordom 4643
[TakeutiZaring] p. 43Corollary 7.31find 4635
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4633
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4634
[TakeutiZaring] p. 44Exercise 2int0 3888
[TakeutiZaring] p. 44Exercise 3trintssm 4147
[TakeutiZaring] p. 44Exercise 4intss1 3889
[TakeutiZaring] p. 44Exercise 6onintonm 4553
[TakeutiZaring] p. 44Definition 7.35df-int 3875
[TakeutiZaring] p. 47Lemma 1tfrlem1 6366
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6423  tfri1d 6393
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6424  tfri2d 6394
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6425
[TakeutiZaring] p. 50Exercise 3smoiso 6360
[TakeutiZaring] p. 50Definition 7.46df-smo 6344
[TakeutiZaring] p. 56Definition 8.1oasuc 6522
[TakeutiZaring] p. 57Proposition 8.2oacl 6518
[TakeutiZaring] p. 57Proposition 8.3oa0 6515
[TakeutiZaring] p. 57Proposition 8.16omcl 6519
[TakeutiZaring] p. 58Proposition 8.4nnaord 6567  nnaordi 6566
[TakeutiZaring] p. 59Proposition 8.6iunss2 3961  uniss2 3870
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6528
[TakeutiZaring] p. 59Proposition 8.9nnacl 6538
[TakeutiZaring] p. 62Exercise 5oaword1 6529
[TakeutiZaring] p. 62Definition 8.15om0 6516  omsuc 6530
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6539
[TakeutiZaring] p. 63Proposition 8.19nnmord 6575  nnmordi 6574
[TakeutiZaring] p. 67Definition 8.30oei0 6517
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7254
[TakeutiZaring] p. 88Exercise 1en0 6854
[TakeutiZaring] p. 90Proposition 10.20nneneq 6918
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6919
[TakeutiZaring] p. 91Definition 10.29df-fin 6802  isfi 6820
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6890
[TakeutiZaring] p. 95Definition 10.42df-map 6709
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6896
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6909
[Tarski] p. 67Axiom B5ax-4 1524
[Tarski] p. 68Lemma 6equid 1715
[Tarski] p. 69Lemma 7equcomi 1718
[Tarski] p. 70Lemma 14spim 1752  spime 1755  spimeh 1753  spimh 1751
[Tarski] p. 70Lemma 16ax-11 1520  ax-11o 1837  ax11i 1728
[Tarski] p. 70Lemmas 16 and 17sb6 1901
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1540
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2169  ax-14 2170
[WhiteheadRussell] p. 96Axiom *1.3olc 712
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 728
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 757
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 766
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 790
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 838
[WhiteheadRussell] p. 101Theorem *2.06barbara 2143  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 738
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 837
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 886
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 844
[WhiteheadRussell] p. 102Theorem *2.15con1dc 857
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 854
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 856
[WhiteheadRussell] p. 104Theorem *2.2orc 713
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 776
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 894
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 908
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 769
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 770
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 805
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 806
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 804
[WhiteheadRussell] p. 105Definition *2.33df-3or 981
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 779
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 777
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 778
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 739
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 740
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 868  pm2.5gdc 867
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 863
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 741
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 742
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 743
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 656
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 657
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 723
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 892
[WhiteheadRussell] p. 107Theorem *2.55orel1 726
[WhiteheadRussell] p. 107Theorem *2.56orel2 727
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 866
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 749
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 801
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 802
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 660
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 714  pm2.67 744
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 870  pm2.521gdc 869
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 748
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 811
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 895
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 916
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 807
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 808
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 810
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 809
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 812
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 813
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 906
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 755
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 959
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 960
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 961
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 754
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 694
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 861
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 860
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 690
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 756  pm3.44 716
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 786
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 872
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 873
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 891
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 695
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 954  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 758  pm4.25 759
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 819
[WhiteheadRussell] p. 118Theorem *4.31orcom 729
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 768
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 793
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 823
[WhiteheadRussell] p. 118Definition *4.34df-3an 982
[WhiteheadRussell] p. 119Theorem *4.41ordi 817
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 973
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 951
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 780
[WhiteheadRussell] p. 119Theorem *4.45orabs 815  pm4.45 785  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1495
[WhiteheadRussell] p. 120Theorem *4.5anordc 958
[WhiteheadRussell] p. 120Theorem *4.6imordc 898  imorr 722
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 900
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 751
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 752
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 903
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 940
[WhiteheadRussell] p. 120Theorem *4.56ioran 753  pm4.56 781
[WhiteheadRussell] p. 120Theorem *4.57orandc 941  oranim 782
[WhiteheadRussell] p. 120Theorem *4.61annimim 687
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 899
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 887
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 901
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 688
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 902
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 888
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 828
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 745
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 711  pm4.77 800
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 783
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 904
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 708
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 909
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 952
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 953
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 910
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 911
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 913
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 912
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1400
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 829
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 905
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1405  pm5.18dc 884
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 707
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 696
[WhiteheadRussell] p. 124Theorem *5.22xordc 1403
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1408
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1409
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 896
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 927  pm5.6r 928
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 956
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 918
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 926
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 803
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 919
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 914
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 795
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 947
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 948
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 963
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 964
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1649
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1499
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1646
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1910
[WhiteheadRussell] p. 175Definition *14.02df-eu 2048
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2448
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2449
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2902
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3046
[WhiteheadRussell] p. 190Theorem *14.22iota4 5238
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5239
[WhiteheadRussell] p. 192Theorem *14.26eupick 2124  eupickbi 2127
[WhiteheadRussell] p. 235Definition *30.01df-fv 5266
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7257

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]