Bibliographic Cross-Reference for the Intuitionistic Logic
    Explorer
| Bibliographic Reference | 
Description | Intuitionistic Logic Explorer Page(s)
 | 
|---|
| [AczelRathjen], p.
 71 | Definition 8.1.4 | enumct 7181  fidcenum 7022 | 
| [AczelRathjen], p.
 72 | Proposition 8.1.11 | fidcenum 7022 | 
| [AczelRathjen], p.
 73 | Lemma 8.1.14 | enumct 7181 | 
| [AczelRathjen], p.
 73 | Corollary 8.1.13 | ennnfone 12642 | 
| [AczelRathjen], p.
 74 | Lemma 8.1.16 | xpfi 6993 | 
| [AczelRathjen], p.
 74 | Remark 8.1.17 | unfiexmid 6979 | 
| [AczelRathjen], p.
 74 | Theorem 8.1.19 | ctiunct 12657 | 
| [AczelRathjen], p.
 75 | Corollary 8.1.20 | unct 12659 | 
| [AczelRathjen], p.
 75 | Corollary 8.1.23 | qnnen 12648  znnen 12615 | 
| [AczelRathjen], p.
 77 | Lemma 8.1.27 | omctfn 12660 | 
| [AczelRathjen], p.
 78 | Theorem 8.1.28 | omiunct 12661 | 
| [AczelRathjen], p.
 80 | Corollary 8.2.4 | df-ihash 10868 | 
| [AczelRathjen], p.
 183 | Chapter 20 | ax-setind 4573 | 
| [AhoHopUll] p.
 318 | Section 9.1 | df-word 10936  lencl 10939  wrd0 10960 | 
| [Apostol] p. 18 | Theorem
 I.1 | addcan 8206  addcan2d 8211  addcan2i 8209  addcand 8210  addcani 8208 | 
| [Apostol] p. 18 | Theorem
 I.2 | negeu 8217 | 
| [Apostol] p. 18 | Theorem
 I.3 | negsub 8274  negsubd 8343  negsubi 8304 | 
| [Apostol] p. 18 | Theorem
 I.4 | negneg 8276  negnegd 8328  negnegi 8296 | 
| [Apostol] p. 18 | Theorem
 I.5 | subdi 8411  subdid 8440  subdii 8433  subdir 8412  subdird 8441  subdiri 8434 | 
| [Apostol] p. 18 | Theorem
 I.6 | mul01 8415  mul01d 8419  mul01i 8417  mul02 8413  mul02d 8418  mul02i 8416 | 
| [Apostol] p. 18 | Theorem
 I.9 | divrecapd 8820 | 
| [Apostol] p. 18 | Theorem
 I.10 | recrecapi 8771 | 
| [Apostol] p. 18 | Theorem
 I.12 | mul2neg 8424  mul2negd 8439  mul2negi 8432  mulneg1 8421  mulneg1d 8437  mulneg1i 8430 | 
| [Apostol] p. 18 | Theorem
 I.14 | rdivmuldivd 13700 | 
| [Apostol] p. 18 | Theorem
 I.15 | divdivdivap 8740 | 
| [Apostol] p. 20 | Axiom
 7 | rpaddcl 9752  rpaddcld 9787  rpmulcl 9753  rpmulcld 9788 | 
| [Apostol] p. 20 | Axiom
 9 | 0nrp 9764 | 
| [Apostol] p. 20 | Theorem
 I.17 | lttri 8131 | 
| [Apostol] p. 20 | Theorem
 I.18 | ltadd1d 8565  ltadd1dd 8583  ltadd1i 8529 | 
| [Apostol] p. 20 | Theorem
 I.19 | ltmul1 8619  ltmul1a 8618  ltmul1i 8947  ltmul1ii 8955  ltmul2 8883  ltmul2d 9814  ltmul2dd 9828  ltmul2i 8950 | 
| [Apostol] p. 20 | Theorem
 I.21 | 0lt1 8153 | 
| [Apostol] p. 20 | Theorem
 I.23 | lt0neg1 8495  lt0neg1d 8542  ltneg 8489  ltnegd 8550  ltnegi 8520 | 
| [Apostol] p. 20 | Theorem
 I.25 | lt2add 8472  lt2addd 8594  lt2addi 8537 | 
| [Apostol] p.
 20 | Definition of positive numbers | df-rp 9729 | 
| [Apostol] p. 21 | Exercise
 4 | recgt0 8877  recgt0d 8961  recgt0i 8933  recgt0ii 8934 | 
| [Apostol] p.
 22 | Definition of integers | df-z 9327 | 
| [Apostol] p.
 22 | Definition of rationals | df-q 9694 | 
| [Apostol] p. 24 | Theorem
 I.26 | supeuti 7060 | 
| [Apostol] p. 26 | Theorem
 I.29 | arch 9246 | 
| [Apostol] p. 28 | Exercise
 2 | btwnz 9445 | 
| [Apostol] p. 28 | Exercise
 3 | nnrecl 9247 | 
| [Apostol] p. 28 | Exercise
 6 | qbtwnre 10346 | 
| [Apostol] p. 28 | Exercise
 10(a) | zeneo 12036  zneo 9427 | 
| [Apostol] p. 29 | Theorem
 I.35 | resqrtth 11196  sqrtthi 11284 | 
| [Apostol] p. 34 | Theorem
 I.36 (principle of mathematical induction) | peano5nni 8993 | 
| [Apostol] p. 34 | Theorem
 I.37 (well-ordering principle) | nnwodc 12203 | 
| [Apostol] p.
 363 | Remark | absgt0api 11311 | 
| [Apostol] p.
 363 | Example | abssubd 11358  abssubi 11315 | 
| [ApostolNT] p.
 14 | Definition | df-dvds 11953 | 
| [ApostolNT] p.
 14 | Theorem 1.1(a) | iddvds 11969 | 
| [ApostolNT] p.
 14 | Theorem 1.1(b) | dvdstr 11993 | 
| [ApostolNT] p.
 14 | Theorem 1.1(c) | dvds2ln 11989 | 
| [ApostolNT] p.
 14 | Theorem 1.1(d) | dvdscmul 11983 | 
| [ApostolNT] p.
 14 | Theorem 1.1(e) | dvdscmulr 11985 | 
| [ApostolNT] p.
 14 | Theorem 1.1(f) | 1dvds 11970 | 
| [ApostolNT] p.
 14 | Theorem 1.1(g) | dvds0 11971 | 
| [ApostolNT] p.
 14 | Theorem 1.1(h) | 0dvds 11976 | 
| [ApostolNT] p.
 14 | Theorem 1.1(i) | dvdsleabs 12010 | 
| [ApostolNT] p.
 14 | Theorem 1.1(j) | dvdsabseq 12012 | 
| [ApostolNT] p.
 14 | Theorem 1.1(k) | divconjdvds 12014 | 
| [ApostolNT] p.
 15 | Definition | dfgcd2 12181 | 
| [ApostolNT] p.
 16 | Definition | isprm2 12285 | 
| [ApostolNT] p.
 16 | Theorem 1.5 | coprmdvds 12260 | 
| [ApostolNT] p.
 16 | Theorem 1.7 | prminf 12672 | 
| [ApostolNT] p.
 16 | Theorem 1.4(a) | gcdcom 12140 | 
| [ApostolNT] p.
 16 | Theorem 1.4(b) | gcdass 12182 | 
| [ApostolNT] p.
 16 | Theorem 1.4(c) | absmulgcd 12184 | 
| [ApostolNT] p.
 16 | Theorem 1.4(d)1 | gcd1 12154 | 
| [ApostolNT] p.
 16 | Theorem 1.4(d)2 | gcdid0 12147 | 
| [ApostolNT] p.
 17 | Theorem 1.8 | coprm 12312 | 
| [ApostolNT] p.
 17 | Theorem 1.9 | euclemma 12314 | 
| [ApostolNT] p.
 17 | Theorem 1.10 | 1arith2 12537 | 
| [ApostolNT] p.
 19 | Theorem 1.14 | divalg 12089 | 
| [ApostolNT] p.
 20 | Theorem 1.15 | eucalg 12227 | 
| [ApostolNT] p.
 25 | Definition | df-phi 12379 | 
| [ApostolNT] p.
 26 | Theorem 2.2 | phisum 12409 | 
| [ApostolNT] p.
 28 | Theorem 2.5(a) | phiprmpw 12390 | 
| [ApostolNT] p.
 28 | Theorem 2.5(c) | phimul 12394 | 
| [ApostolNT] p.
 38 | Remark | df-sgm 15218 | 
| [ApostolNT] p.
 38 | Definition | df-sgm 15218 | 
| [ApostolNT] p.
 104 | Definition | congr 12268 | 
| [ApostolNT] p.
 106 | Remark | dvdsval3 11956 | 
| [ApostolNT] p.
 106 | Definition | moddvds 11964 | 
| [ApostolNT] p.
 107 | Example 2 | mod2eq0even 12043 | 
| [ApostolNT] p.
 107 | Example 3 | mod2eq1n2dvds 12044 | 
| [ApostolNT] p.
 107 | Example 4 | zmod1congr 10433 | 
| [ApostolNT] p.
 107 | Theorem 5.2(b) | modqmul12d 10470 | 
| [ApostolNT] p.
 107 | Theorem 5.2(c) | modqexp 10758 | 
| [ApostolNT] p.
 108 | Theorem 5.3 | modmulconst 11988 | 
| [ApostolNT] p.
 109 | Theorem 5.4 | cncongr1 12271 | 
| [ApostolNT] p.
 109 | Theorem 5.6 | gcdmodi 12590 | 
| [ApostolNT] p.
 109 | Theorem 5.4 "Cancellation law" | cncongr 12273 | 
| [ApostolNT] p.
 113 | Theorem 5.17 | eulerth 12401 | 
| [ApostolNT] p.
 113 | Theorem 5.18 | vfermltl 12420 | 
| [ApostolNT] p.
 114 | Theorem 5.19 | fermltl 12402 | 
| [ApostolNT] p.
 179 | Definition | df-lgs 15239  lgsprme0 15283 | 
| [ApostolNT] p.
 180 | Example 1 | 1lgs 15284 | 
| [ApostolNT] p.
 180 | Theorem 9.2 | lgsvalmod 15260 | 
| [ApostolNT] p.
 180 | Theorem 9.3 | lgsdirprm 15275 | 
| [ApostolNT] p.
 181 | Theorem 9.4 | m1lgs 15326 | 
| [ApostolNT] p.
 181 | Theorem 9.5 | 2lgs 15345  2lgsoddprm 15354 | 
| [ApostolNT] p.
 182 | Theorem 9.6 | gausslemma2d 15310 | 
| [ApostolNT] p.
 185 | Theorem 9.8 | lgsquad 15321 | 
| [ApostolNT] p.
 188 | Definition | df-lgs 15239  lgs1 15285 | 
| [ApostolNT] p.
 188 | Theorem 9.9(a) | lgsdir 15276 | 
| [ApostolNT] p.
 188 | Theorem 9.9(b) | lgsdi 15278 | 
| [ApostolNT] p.
 188 | Theorem 9.9(c) | lgsmodeq 15286 | 
| [ApostolNT] p.
 188 | Theorem 9.9(d) | lgsmulsqcoprm 15287 | 
| [Bauer] p. 482 | Section
 1.2 | pm2.01 617  pm2.65 660 | 
| [Bauer] p. 483 | Theorem
 1.3 | acexmid 5921  onsucelsucexmidlem 4565 | 
| [Bauer], p.
 481 | Section 1.1 | pwtrufal 15642 | 
| [Bauer], p.
 483 | Definition | n0rf 3463 | 
| [Bauer], p. 483 | Theorem
 1.2 | 2irrexpq 15212  2irrexpqap 15214 | 
| [Bauer], p. 485 | Theorem
 2.1 | ssfiexmid 6937 | 
| [Bauer], p. 493 | Section
 5.1 | ivthdich 14889 | 
| [Bauer], p. 494 | Theorem
 5.5 | ivthinc 14879 | 
| [BauerHanson], p.
 27 | Proposition 5.2 | cnstab 8672 | 
| [BauerSwan], p.
 14 | Remark | 0ct 7173  ctm 7175 | 
| [BauerSwan],
 p. 14 | Proposition 2.6 | subctctexmid 15645 | 
| [BauerSwan], p.
 14 | Table" is defined as ` ` per  | enumct 7181 | 
| [BauerTaylor], p.
 32 | Lemma 6.16 | prarloclem 7568 | 
| [BauerTaylor], p.
 50 | Lemma 11.4 | subhalfnqq 7481 | 
| [BauerTaylor], p.
 52 | Proposition 11.15 | prarloc 7570 | 
| [BauerTaylor], p.
 53 | Lemma 11.16 | addclpr 7604  addlocpr 7603 | 
| [BauerTaylor], p.
 55 | Proposition 12.7 | appdivnq 7630 | 
| [BauerTaylor], p.
 56 | Lemma 12.8 | prmuloc 7633 | 
| [BauerTaylor], p.
 56 | Lemma 12.9 | mullocpr 7638 | 
| [BellMachover] p.
 36 | Lemma 10.3 | idALT 20 | 
| [BellMachover] p.
 97 | Definition 10.1 | df-eu 2048 | 
| [BellMachover] p.
 460 | Notation | df-mo 2049 | 
| [BellMachover] p.
 460 | Definition | mo3 2099  mo3h 2098 | 
| [BellMachover] p.
 462 | Theorem 1.1 | bm1.1 2181 | 
| [BellMachover] p.
 463 | Theorem 1.3ii | bm1.3ii 4154 | 
| [BellMachover] p.
 466 | Axiom Pow | axpow3 4210 | 
| [BellMachover] p.
 466 | Axiom Union | axun2 4470 | 
| [BellMachover] p.
 469 | Theorem 2.2(i) | ordirr 4578 | 
| [BellMachover] p.
 469 | Theorem 2.2(iii) | onelon 4419 | 
| [BellMachover] p.
 469 | Theorem 2.2(vii) | ordn2lp 4581 | 
| [BellMachover] p.
 471 | Problem 2.5(ii) | bm2.5ii 4532 | 
| [BellMachover] p.
 471 | Definition of Lim | df-ilim 4404 | 
| [BellMachover] p.
 472 | Axiom Inf | zfinf2 4625 | 
| [BellMachover] p.
 473 | Theorem 2.8 | limom 4650 | 
| [Bobzien] p.
 116 | Statement T3 | stoic3 1442 | 
| [Bobzien] p.
 117 | Statement T2 | stoic2a 1440 | 
| [Bobzien] p.
 117 | Statement T4 | stoic4a 1443 | 
| [Bobzien] p.
 117 | Conclusion the contradictory | stoic1a 1438 | 
| [BourbakiAlg1] p.
 1 | Definition 1 | df-mgm 12999 | 
| [BourbakiAlg1] p.
 4 | Definition 5 | df-sgrp 13045 | 
| [BourbakiAlg1] p.
 12 | Definition 2 | df-mnd 13058 | 
| [BourbakiAlg1] p.
 92 | Definition 1 | df-ring 13554 | 
| [BourbakiAlg1] p.
 93 | Section I.8.1 | df-rng 13489 | 
| [BourbakiEns] p.
  | Proposition 8 | fcof1 5830  fcofo 5831 | 
| [BourbakiTop1] p.
  | Remark | xnegmnf 9904  xnegpnf 9903 | 
| [BourbakiTop1] p.
  | Remark  | rexneg 9905 | 
| [BourbakiTop1] p.
  | Proposition | ishmeo 14540 | 
| [BourbakiTop1] p.
  | Property V_i | ssnei2 14393 | 
| [BourbakiTop1] p.
  | Property V_ii | innei 14399 | 
| [BourbakiTop1] p.
  | Property V_iv | neissex 14401 | 
| [BourbakiTop1] p.
  | Proposition 1 | neipsm 14390  neiss 14386 | 
| [BourbakiTop1] p.
  | Proposition 2 | cnptopco 14458 | 
| [BourbakiTop1] p.
  | Proposition 4 | imasnopn 14535 | 
| [BourbakiTop1] p.
  | Property V_iii | elnei 14388 | 
| [BourbakiTop1] p.
  | Definition is due to Bourbaki (Def. 1 | df-top 14234 | 
| [Bruck] p. 1 | Section
 I.1 | df-mgm 12999 | 
| [Bruck] p. 23 | Section
 II.1 | df-sgrp 13045 | 
| [Bruck] p. 28 | Theorem
 3.2 | dfgrp3m 13231 | 
| [ChoquetDD] p.
 2 | Definition of mapping | df-mpt 4096 | 
| [Cohen] p.
 301 | Remark | relogoprlem 15104 | 
| [Cohen] p. 301 | Property
 2 | relogmul 15105  relogmuld 15120 | 
| [Cohen] p. 301 | Property
 3 | relogdiv 15106  relogdivd 15121 | 
| [Cohen] p. 301 | Property
 4 | relogexp 15108 | 
| [Cohen] p. 301 | Property
 1a | log1 15102 | 
| [Cohen] p. 301 | Property
 1b | loge 15103 | 
| [Cohen4] p.
 348 | Observation | relogbcxpbap 15201 | 
| [Cohen4] p.
 352 | Definition | rpelogb 15185 | 
| [Cohen4] p. 361 | Property
 2 | rprelogbmul 15191 | 
| [Cohen4] p. 361 | Property
 3 | logbrec 15196  rprelogbdiv 15193 | 
| [Cohen4] p. 361 | Property
 4 | rplogbreexp 15189 | 
| [Cohen4] p. 361 | Property
 6 | relogbexpap 15194 | 
| [Cohen4] p. 361 | Property
 1(a) | rplogbid1 15183 | 
| [Cohen4] p. 361 | Property
 1(b) | rplogb1 15184 | 
| [Cohen4] p.
 367 | Property | rplogbchbase 15186 | 
| [Cohen4] p. 377 | Property
 2 | logblt 15198 | 
| [Crosilla] p.  | Axiom
 1 | ax-ext 2178 | 
| [Crosilla] p.  | Axiom
 2 | ax-pr 4242 | 
| [Crosilla] p.  | Axiom
 3 | ax-un 4468 | 
| [Crosilla] p.  | Axiom
 4 | ax-nul 4159 | 
| [Crosilla] p.  | Axiom
 5 | ax-iinf 4624 | 
| [Crosilla] p.  | Axiom
 6 | ru 2988 | 
| [Crosilla] p.  | Axiom
 8 | ax-pow 4207 | 
| [Crosilla] p.  | Axiom
 9 | ax-setind 4573 | 
| [Crosilla], p.  | Axiom
 6 | ax-sep 4151 | 
| [Crosilla], p.  | Axiom
 7 | ax-coll 4148 | 
| [Crosilla], p.  | Axiom
 7' | repizf 4149 | 
| [Crosilla], p.  | Theorem
 is stated | ordtriexmid 4557 | 
| [Crosilla], p.  | Axiom
 of choice implies instances | acexmid 5921 | 
| [Crosilla], p.
  | Definition of ordinal | df-iord 4401 | 
| [Crosilla], p.  | Theorem
 "Foundation implies instances of EM" | regexmid 4571 | 
| [Eisenberg] p.
 67 | Definition 5.3 | df-dif 3159 | 
| [Eisenberg] p.
 82 | Definition 6.3 | df-iom 4627 | 
| [Eisenberg] p.
 125 | Definition 8.21 | df-map 6709 | 
| [Enderton] p. 18 | Axiom
 of Empty Set | axnul 4158 | 
| [Enderton] p.
 19 | Definition | df-tp 3630 | 
| [Enderton] p.
 26 | Exercise 5 | unissb 3869 | 
| [Enderton] p.
 26 | Exercise 10 | pwel 4251 | 
| [Enderton] p.
 28 | Exercise 7(b) | pwunim 4321 | 
| [Enderton] p.
 30 | Theorem "Distributive laws" | iinin1m 3986  iinin2m 3985  iunin1 3981  iunin2 3980 | 
| [Enderton] p.
 31 | Theorem "De Morgan's laws" | iindif2m 3984  iundif2ss 3982 | 
| [Enderton] p.
 33 | Exercise 23 | iinuniss 3999 | 
| [Enderton] p.
 33 | Exercise 25 | iununir 4000 | 
| [Enderton] p.
 33 | Exercise 24(a) | iinpw 4007 | 
| [Enderton] p.
 33 | Exercise 24(b) | iunpw 4515  iunpwss 4008 | 
| [Enderton] p.
 38 | Exercise 6(a) | unipw 4250 | 
| [Enderton] p.
 38 | Exercise 6(b) | pwuni 4225 | 
| [Enderton] p. 41 | Lemma
 3D | opeluu 4485  rnex 4933
  rnexg 4931 | 
| [Enderton] p.
 41 | Exercise 8 | dmuni 4876  rnuni 5081 | 
| [Enderton] p.
 42 | Definition of a function | dffun7 5285  dffun8 5286 | 
| [Enderton] p.
 43 | Definition of function value | funfvdm2 5625 | 
| [Enderton] p.
 43 | Definition of single-rooted | funcnv 5319 | 
| [Enderton] p.
 44 | Definition (d) | dfima2 5011  dfima3 5012 | 
| [Enderton] p.
 47 | Theorem 3H | fvco2 5630 | 
| [Enderton] p. 49 | Axiom
 of Choice (first form) | df-ac 7273 | 
| [Enderton] p.
 50 | Theorem 3K(a) | imauni 5808 | 
| [Enderton] p.
 52 | Definition | df-map 6709 | 
| [Enderton] p.
 53 | Exercise 21 | coass 5188 | 
| [Enderton] p.
 53 | Exercise 27 | dmco 5178 | 
| [Enderton] p.
 53 | Exercise 14(a) | funin 5329 | 
| [Enderton] p.
 53 | Exercise 22(a) | imass2 5045 | 
| [Enderton] p.
 54 | Remark | ixpf 6779  ixpssmap 6791 | 
| [Enderton] p.
 54 | Definition of infinite Cartesian product | df-ixp 6758 | 
| [Enderton] p.
 56 | Theorem 3M | erref 6612 | 
| [Enderton] p. 57 | Lemma
 3N | erthi 6640 | 
| [Enderton] p.
 57 | Definition | df-ec 6594 | 
| [Enderton] p.
 58 | Definition | df-qs 6598 | 
| [Enderton] p.
 60 | Theorem 3Q | th3q 6699  th3qcor 6698  th3qlem1 6696  th3qlem2 6697 | 
| [Enderton] p.
 61 | Exercise 35 | df-ec 6594 | 
| [Enderton] p.
 65 | Exercise 56(a) | dmun 4873 | 
| [Enderton] p.
 68 | Definition of successor | df-suc 4406 | 
| [Enderton] p.
 71 | Definition | df-tr 4132  dftr4 4136 | 
| [Enderton] p.
 72 | Theorem 4E | unisuc 4448  unisucg 4449 | 
| [Enderton] p.
 73 | Exercise 6 | unisuc 4448  unisucg 4449 | 
| [Enderton] p.
 73 | Exercise 5(a) | truni 4145 | 
| [Enderton] p.
 73 | Exercise 5(b) | trint 4146 | 
| [Enderton] p.
 79 | Theorem 4I(A1) | nna0 6532 | 
| [Enderton] p.
 79 | Theorem 4I(A2) | nnasuc 6534  onasuc 6524 | 
| [Enderton] p.
 79 | Definition of operation value | df-ov 5925 | 
| [Enderton] p.
 80 | Theorem 4J(A1) | nnm0 6533 | 
| [Enderton] p.
 80 | Theorem 4J(A2) | nnmsuc 6535  onmsuc 6531 | 
| [Enderton] p.
 81 | Theorem 4K(1) | nnaass 6543 | 
| [Enderton] p.
 81 | Theorem 4K(2) | nna0r 6536  nnacom 6542 | 
| [Enderton] p.
 81 | Theorem 4K(3) | nndi 6544 | 
| [Enderton] p.
 81 | Theorem 4K(4) | nnmass 6545 | 
| [Enderton] p.
 81 | Theorem 4K(5) | nnmcom 6547 | 
| [Enderton] p.
 82 | Exercise 16 | nnm0r 6537  nnmsucr 6546 | 
| [Enderton] p.
 88 | Exercise 23 | nnaordex 6586 | 
| [Enderton] p.
 129 | Definition | df-en 6800 | 
| [Enderton] p.
 132 | Theorem 6B(b) | canth 5875 | 
| [Enderton] p.
 133 | Exercise 1 | xpomen 12612 | 
| [Enderton] p.
 134 | Theorem (Pigeonhole Principle) | phpm 6926 | 
| [Enderton] p.
 136 | Corollary 6E | nneneq 6918 | 
| [Enderton] p.
 139 | Theorem 6H(c) | mapen 6907 | 
| [Enderton] p.
 142 | Theorem 6I(3) | xpdjuen 7285 | 
| [Enderton] p.
 143 | Theorem 6J | dju0en 7281  dju1en 7280 | 
| [Enderton] p.
 144 | Corollary 6K | undif2ss 3526 | 
| [Enderton] p.
 145 | Figure 38 | ffoss 5536 | 
| [Enderton] p.
 145 | Definition | df-dom 6801 | 
| [Enderton] p.
 146 | Example 1 | domen 6810  domeng 6811 | 
| [Enderton] p.
 146 | Example 3 | nndomo 6925 | 
| [Enderton] p.
 149 | Theorem 6L(c) | xpdom1 6894  xpdom1g 6892  xpdom2g 6891 | 
| [Enderton] p.
 168 | Definition | df-po 4331 | 
| [Enderton] p.
 192 | Theorem 7M(a) | oneli 4463 | 
| [Enderton] p.
 192 | Theorem 7M(b) | ontr1 4424 | 
| [Enderton] p.
 192 | Theorem 7M(c) | onirri 4579 | 
| [Enderton] p.
 193 | Corollary 7N(b) | 0elon 4427 | 
| [Enderton] p.
 193 | Corollary 7N(c) | onsuci 4552 | 
| [Enderton] p.
 193 | Corollary 7N(d) | ssonunii 4525 | 
| [Enderton] p.
 194 | Remark | onprc 4588 | 
| [Enderton] p.
 194 | Exercise 16 | suc11 4594 | 
| [Enderton] p.
 197 | Definition | df-card 7247 | 
| [Enderton] p.
 200 | Exercise 25 | tfis 4619 | 
| [Enderton] p.
 206 | Theorem 7X(b) | en2lp 4590 | 
| [Enderton] p.
 207 | Exercise 34 | opthreg 4592 | 
| [Enderton] p.
 208 | Exercise 35 | suc11g 4593 | 
| [Geuvers], p.
 1 | Remark | expap0 10661 | 
| [Geuvers], p. 6 | Lemma
 2.13 | mulap0r 8642 | 
| [Geuvers], p. 6 | Lemma
 2.15 | mulap0 8681 | 
| [Geuvers], p. 9 | Lemma
 2.35 | msqge0 8643 | 
| [Geuvers], p.
 9 | Definition 3.1(2) | ax-arch 7998 | 
| [Geuvers], p. 10 | Lemma
 3.9 | maxcom 11368 | 
| [Geuvers], p. 10 | Lemma
 3.10 | maxle1 11376  maxle2 11377 | 
| [Geuvers], p. 10 | Lemma
 3.11 | maxleast 11378 | 
| [Geuvers], p. 10 | Lemma
 3.12 | maxleb 11381 | 
| [Geuvers], p.
 11 | Definition 3.13 | dfabsmax 11382 | 
| [Geuvers], p.
 17 | Definition 6.1 | df-ap 8609 | 
| [Gleason] p.
 117 | Proposition 9-2.1 | df-enq 7414  enqer 7425 | 
| [Gleason] p.
 117 | Proposition 9-2.2 | df-1nqqs 7418  df-nqqs 7415 | 
| [Gleason] p.
 117 | Proposition 9-2.3 | df-plpq 7411  df-plqqs 7416 | 
| [Gleason] p.
 119 | Proposition 9-2.4 | df-mpq 7412  df-mqqs 7417 | 
| [Gleason] p.
 119 | Proposition 9-2.5 | df-rq 7419 | 
| [Gleason] p.
 119 | Proposition 9-2.6 | ltexnqq 7475 | 
| [Gleason] p.
 120 | Proposition 9-2.6(i) | halfnq 7478  ltbtwnnq 7483  ltbtwnnqq 7482 | 
| [Gleason] p.
 120 | Proposition 9-2.6(ii) | ltanqg 7467 | 
| [Gleason] p.
 120 | Proposition 9-2.6(iii) | ltmnqg 7468 | 
| [Gleason] p.
 123 | Proposition 9-3.5 | addclpr 7604 | 
| [Gleason] p.
 123 | Proposition 9-3.5(i) | addassprg 7646 | 
| [Gleason] p.
 123 | Proposition 9-3.5(ii) | addcomprg 7645 | 
| [Gleason] p.
 123 | Proposition 9-3.5(iii) | ltaddpr 7664 | 
| [Gleason] p.
 123 | Proposition 9-3.5(iv) | ltexpri 7680 | 
| [Gleason] p.
 123 | Proposition 9-3.5(v) | ltaprg 7686  ltaprlem 7685 | 
| [Gleason] p.
 123 | Proposition 9-3.5(vi) | addcanprg 7683 | 
| [Gleason] p.
 124 | Proposition 9-3.7 | mulclpr 7639 | 
| [Gleason] p. 124 | Theorem
 9-3.7(iv) | 1idpr 7659 | 
| [Gleason] p.
 124 | Proposition 9-3.7(i) | mulassprg 7648 | 
| [Gleason] p.
 124 | Proposition 9-3.7(ii) | mulcomprg 7647 | 
| [Gleason] p.
 124 | Proposition 9-3.7(iii) | distrprg 7655 | 
| [Gleason] p.
 124 | Proposition 9-3.7(v) | recexpr 7705 | 
| [Gleason] p.
 126 | Proposition 9-4.1 | df-enr 7793  enrer 7802 | 
| [Gleason] p.
 126 | Proposition 9-4.2 | df-0r 7798  df-1r 7799  df-nr 7794 | 
| [Gleason] p.
 126 | Proposition 9-4.3 | df-mr 7796  df-plr 7795  negexsr 7839  recexsrlem 7841 | 
| [Gleason] p.
 127 | Proposition 9-4.4 | df-ltr 7797 | 
| [Gleason] p.
 130 | Proposition 10-1.3 | creui 8987  creur 8986  cru 8629 | 
| [Gleason] p.
 130 | Definition 10-1.1(v) | ax-cnre 7990  axcnre 7948 | 
| [Gleason] p.
 132 | Definition 10-3.1 | crim 11023  crimd 11142  crimi 11102  crre 11022  crred 11141  crrei 11101 | 
| [Gleason] p.
 132 | Definition 10-3.2 | remim 11025  remimd 11107 | 
| [Gleason] p.
 133 | Definition 10.36 | absval2 11222  absval2d 11350  absval2i 11309 | 
| [Gleason] p.
 133 | Proposition 10-3.4(a) | cjadd 11049  cjaddd 11130  cjaddi 11097 | 
| [Gleason] p.
 133 | Proposition 10-3.4(c) | cjmul 11050  cjmuld 11131  cjmuli 11098 | 
| [Gleason] p.
 133 | Proposition 10-3.4(e) | cjcj 11048  cjcjd 11108  cjcji 11080 | 
| [Gleason] p.
 133 | Proposition 10-3.4(f) | cjre 11047  cjreb 11031  cjrebd 11111  cjrebi 11083  cjred 11136  rere 11030  rereb 11028  rerebd 11110  rerebi 11082  rered 11134 | 
| [Gleason] p.
 133 | Proposition 10-3.4(h) | addcj 11056  addcjd 11122  addcji 11092 | 
| [Gleason] p.
 133 | Proposition 10-3.7(a) | absval 11166 | 
| [Gleason] p.
 133 | Proposition 10-3.7(b) | abscj 11217  abscjd 11355  abscji 11313 | 
| [Gleason] p.
 133 | Proposition 10-3.7(c) | abs00 11229  abs00d 11351  abs00i 11310  absne0d 11352 | 
| [Gleason] p.
 133 | Proposition 10-3.7(d) | releabs 11261  releabsd 11356  releabsi 11314 | 
| [Gleason] p.
 133 | Proposition 10-3.7(f) | absmul 11234  absmuld 11359  absmuli 11316 | 
| [Gleason] p.
 133 | Proposition 10-3.7(g) | sqabsadd 11220  sqabsaddi 11317 | 
| [Gleason] p.
 133 | Proposition 10-3.7(h) | abstri 11269  abstrid 11361  abstrii 11320 | 
| [Gleason] p.
 134 | Definition 10-4.1 | df-exp 10631  exp0 10635  expp1 10638  expp1d 10766 | 
| [Gleason] p.
 135 | Proposition 10-4.2(a) | expadd 10673  expaddd 10767 | 
| [Gleason] p.
 135 | Proposition 10-4.2(b) | cxpmul 15148  cxpmuld 15173  expmul 10676  expmuld 10768 | 
| [Gleason] p.
 135 | Proposition 10-4.2(c) | mulexp 10670  mulexpd 10780  rpmulcxp 15145 | 
| [Gleason] p.
 141 | Definition 11-2.1 | fzval 10085 | 
| [Gleason] p.
 168 | Proposition 12-2.1(a) | climadd 11491 | 
| [Gleason] p.
 168 | Proposition 12-2.1(b) | climsub 11493 | 
| [Gleason] p.
 168 | Proposition 12-2.1(c) | climmul 11492 | 
| [Gleason] p.
 171 | Corollary 12-2.2 | climmulc2 11496 | 
| [Gleason] p.
 172 | Corollary 12-2.5 | climrecl 11489 | 
| [Gleason] p.
 172 | Proposition 12-2.4(c) | climabs 11485  climcj 11486  climim 11488  climre 11487 | 
| [Gleason] p.
 173 | Definition 12-3.1 | df-ltxr 8066  df-xr 8065  ltxr 9850 | 
| [Gleason] p. 180 | Theorem
 12-5.3 | climcau 11512 | 
| [Gleason] p. 217 | Lemma
 13-4.1 | btwnzge0 10390 | 
| [Gleason] p.
 223 | Definition 14-1.1 | df-met 14101 | 
| [Gleason] p.
 223 | Definition 14-1.1(a) | met0 14600  xmet0 14599 | 
| [Gleason] p.
 223 | Definition 14-1.1(c) | metsym 14607 | 
| [Gleason] p.
 223 | Definition 14-1.1(d) | mettri 14609  mstri 14709  xmettri 14608  xmstri 14708 | 
| [Gleason] p.
 230 | Proposition 14-2.6 | txlm 14515 | 
| [Gleason] p.
 240 | Proposition 14-4.2 | metcnp3 14747 | 
| [Gleason] p.
 243 | Proposition 14-4.16 | addcn2 11475  addcncntop 14798  mulcn2 11477  mulcncntop 14800  subcn2 11476  subcncntop 14799 | 
| [Gleason] p.
 295 | Remark | bcval3 10843  bcval4 10844 | 
| [Gleason] p.
 295 | Equation 2 | bcpasc 10858 | 
| [Gleason] p.
 295 | Definition of binomial coefficient | bcval 10841  df-bc 10840 | 
| [Gleason] p.
 296 | Remark | bcn0 10847  bcnn 10849 | 
| [Gleason] p. 296 | Theorem
 15-2.8 | binom 11649 | 
| [Gleason] p.
 308 | Equation 2 | ef0 11837 | 
| [Gleason] p.
 308 | Equation 3 | efcj 11838 | 
| [Gleason] p.
 309 | Corollary 15-4.3 | efne0 11843 | 
| [Gleason] p.
 309 | Corollary 15-4.4 | efexp 11847 | 
| [Gleason] p.
 310 | Equation 14 | sinadd 11901 | 
| [Gleason] p.
 310 | Equation 15 | cosadd 11902 | 
| [Gleason] p.
 311 | Equation 17 | sincossq 11913 | 
| [Gleason] p.
 311 | Equation 18 | cosbnd 11918  sinbnd 11917 | 
| [Gleason] p.
 311 | Definition of ` ` | df-pi 11818 | 
| [Golan] p.
 1 | Remark | srgisid 13542 | 
| [Golan] p.
 1 | Definition | df-srg 13520 | 
| [Hamilton] p.
 31 | Example 2.7(a) | idALT 20 | 
| [Hamilton] p. 73 | Rule
 1 | ax-mp 5 | 
| [Hamilton] p. 74 | Rule
 2 | ax-gen 1463 | 
| [Herstein] p. 55 | Lemma
 2.2.1(a) | grpideu 13143  mndideu 13067 | 
| [Herstein] p. 55 | Lemma
 2.2.1(b) | grpinveu 13170 | 
| [Herstein] p. 55 | Lemma
 2.2.1(c) | grpinvinv 13199 | 
| [Herstein] p. 55 | Lemma
 2.2.1(d) | grpinvadd 13210 | 
| [Herstein] p.
 57 | Exercise 1 | dfgrp3me 13232 | 
| [Heyting] p.
 127 | Axiom #1 | ax1hfs 15718 | 
| [Hitchcock] p. 5 | Rule
 A3 | mptnan 1434 | 
| [Hitchcock] p. 5 | Rule
 A4 | mptxor 1435 | 
| [Hitchcock] p. 5 | Rule
 A5 | mtpxor 1437 | 
| [HoTT], p.  | Lemma
 10.4.1 | exmidontriim 7292 | 
| [HoTT], p.  | Theorem
 7.2.6 | nndceq 6557 | 
| [HoTT], p.
  | Exercise 11.10 | neapmkv 15712 | 
| [HoTT], p.  | Exercise
 11.11 | mulap0bd 8684 | 
| [HoTT], p.  | Section
 11.2.1 | df-iltp 7537  df-imp 7536  df-iplp 7535  df-reap 8602 | 
| [HoTT], p.  | Theorem
 11.2.4 | recapb 8698  rerecapb 8870 | 
| [HoTT], p.  | Corollary
 3.9.2 | uchoice 6195 | 
| [HoTT], p.  | Theorem
 11.2.12 | cauappcvgpr 7729 | 
| [HoTT], p.  | Corollary
 11.4.3 | conventions 15367 | 
| [HoTT], p.
  | Exercise 11.6(i) | dcapnconst 15705  dceqnconst 15704 | 
| [HoTT], p.  | Corollary
 11.2.13 | axcaucvg 7967  caucvgpr 7749  caucvgprpr 7779  caucvgsr 7869 | 
| [HoTT], p.  | Definition
 11.2.1 | df-inp 7533 | 
| [HoTT], p.
  | Exercise 11.6(ii) | nconstwlpo 15710 | 
| [HoTT], p.  | Proposition
 11.2.3 | df-iso 4332  ltpopr 7662  ltsopr 7663 | 
| [HoTT], p.  | Definition
 11.2.7(v) | apsym 8633  reapcotr 8625  reapirr 8604 | 
| [HoTT], p.  | Definition
 11.2.7(vi) | 0lt1 8153  gt0add 8600  leadd1 8457  lelttr 8115  lemul1a 8885  lenlt 8102  ltadd1 8456  ltletr 8116  ltmul1 8619  reaplt 8615 | 
| [Jech] p. 4 | Definition of
 class | cv 1363  cvjust 2191 | 
| [Jech] p.
 78 | Note | opthprc 4714 | 
| [KalishMontague] p.
 81 | Note 1 | ax-i9 1544 | 
| [Kreyszig] p.
 3 | Property M1 | metcl 14589  xmetcl 14588 | 
| [Kreyszig] p.
 4 | Property M2 | meteq0 14596 | 
| [Kreyszig] p.
 12 | Equation 5 | muleqadd 8695 | 
| [Kreyszig] p.
 18 | Definition 1.3-2 | mopnval 14678 | 
| [Kreyszig] p.
 19 | Remark | mopntopon 14679 | 
| [Kreyszig] p.
 19 | Theorem T1 | mopn0 14724  mopnm 14684 | 
| [Kreyszig] p.
 19 | Theorem T2 | unimopn 14722 | 
| [Kreyszig] p.
 19 | Definition of neighborhood | neibl 14727 | 
| [Kreyszig] p.
 20 | Definition 1.3-3 | metcnp2 14749 | 
| [Kreyszig] p.
 25 | Definition 1.4-1 | lmbr 14449 | 
| [Kreyszig] p.
 51 | Equation 2 | lmodvneg1 13886 | 
| [Kreyszig] p.
 51 | Equation 1a | lmod0vs 13877 | 
| [Kreyszig] p.
 51 | Equation 1b | lmodvs0 13878 | 
| [Kunen] p. 10 | Axiom
 0 | a9e 1710 | 
| [Kunen] p. 12 | Axiom
 6 | zfrep6 4150 | 
| [Kunen] p. 24 | Definition
 10.24 | mapval 6719  mapvalg 6717 | 
| [Kunen] p. 31 | Definition
 10.24 | mapex 6713 | 
| [KuratowskiMostowski] p.
 109 | Section. Eq. 14 | iuniin 3926 | 
| [Lang] p.
 3 | Statement | lidrideqd 13024  mndbn0 13072 | 
| [Lang] p.
 3 | Definition | df-mnd 13058 | 
| [Lang] p. 4 | Definition of a
 (finite) product | gsumsplit1r 13041 | 
| [Lang] p.
 5 | Equation | gsumfzreidx 13467 | 
| [Lang] p.
 6 | Definition | mulgnn0gsum 13258 | 
| [Lang] p.
 7 | Definition | dfgrp2e 13160 | 
| [Levy] p.
 338 | Axiom | df-clab 2183  df-clel 2192  df-cleq 2189 | 
| [Lopez-Astorga] p.
 12 | Rule 1 | mptnan 1434 | 
| [Lopez-Astorga] p.
 12 | Rule 2 | mptxor 1435 | 
| [Lopez-Astorga] p.
 12 | Rule 3 | mtpxor 1437 | 
| [Margaris] p. 40 | Rule
 C | exlimiv 1612 | 
| [Margaris] p. 49 | Axiom
 A1 | ax-1 6 | 
| [Margaris] p. 49 | Axiom
 A2 | ax-2 7 | 
| [Margaris] p. 49 | Axiom
 A3 | condc 854 | 
| [Margaris] p.
 49 | Definition | dfbi2 388  dfordc 893  exalim 1516 | 
| [Margaris] p.
 51 | Theorem 1 | idALT 20 | 
| [Margaris] p.
 56 | Theorem 3 | syld 45 | 
| [Margaris] p.
 60 | Theorem 8 | jcn 652 | 
| [Margaris] p.
 89 | Theorem 19.2 | 19.2 1652  r19.2m 3537 | 
| [Margaris] p.
 89 | Theorem 19.3 | 19.3 1568  19.3h 1567  rr19.3v 2903 | 
| [Margaris] p.
 89 | Theorem 19.5 | alcom 1492 | 
| [Margaris] p.
 89 | Theorem 19.6 | alexdc 1633  alexim 1659 | 
| [Margaris] p.
 89 | Theorem 19.7 | alnex 1513 | 
| [Margaris] p.
 89 | Theorem 19.8 | 19.8a 1604  spsbe 1856 | 
| [Margaris] p.
 89 | Theorem 19.9 | 19.9 1658  19.9h 1657  19.9v 1885  exlimd 1611 | 
| [Margaris] p.
 89 | Theorem 19.11 | excom 1678  excomim 1677 | 
| [Margaris] p.
 89 | Theorem 19.12 | 19.12 1679  r19.12 2603 | 
| [Margaris] p.
 90 | Theorem 19.14 | exnalim 1660 | 
| [Margaris] p.
 90 | Theorem 19.15 | albi 1482  ralbi 2629 | 
| [Margaris] p.
 90 | Theorem 19.16 | 19.16 1569 | 
| [Margaris] p.
 90 | Theorem 19.17 | 19.17 1570 | 
| [Margaris] p.
 90 | Theorem 19.18 | exbi 1618  rexbi 2630 | 
| [Margaris] p.
 90 | Theorem 19.19 | 19.19 1680 | 
| [Margaris] p.
 90 | Theorem 19.20 | alim 1471  alimd 1535  alimdh 1481  alimdv 1893  ralimdaa 2563  ralimdv 2565  ralimdva 2564  ralimdvva 2566  sbcimdv 3055 | 
| [Margaris] p.
 90 | Theorem 19.21 | 19.21-2 1681  19.21 1597  19.21bi 1572  19.21h 1571  19.21ht 1595  19.21t 1596  19.21v 1887  alrimd 1624  alrimdd 1623  alrimdh 1493  alrimdv 1890  alrimi 1536  alrimih 1483  alrimiv 1888  alrimivv 1889  r19.21 2573  r19.21be 2588  r19.21bi 2585  r19.21t 2572  r19.21v 2574  ralrimd 2575  ralrimdv 2576  ralrimdva 2577  ralrimdvv 2581  ralrimdvva 2582  ralrimi 2568  ralrimiv 2569  ralrimiva 2570  ralrimivv 2578  ralrimivva 2579  ralrimivvva 2580  ralrimivw 2571  rexlimi 2607 | 
| [Margaris] p.
 90 | Theorem 19.22 | 2alimdv 1895  2eximdv 1896  exim 1613
  eximd 1626  eximdh 1625  eximdv 1894  rexim 2591  reximdai 2595  reximddv 2600  reximddv2 2602  reximdv 2598  reximdv2 2596  reximdva 2599  reximdvai 2597  reximi2 2593 | 
| [Margaris] p.
 90 | Theorem 19.23 | 19.23 1692  19.23bi 1606  19.23h 1512  19.23ht 1511  19.23t 1691  19.23v 1897  19.23vv 1898  exlimd2 1609  exlimdh 1610  exlimdv 1833  exlimdvv 1912  exlimi 1608  exlimih 1607  exlimiv 1612  exlimivv 1911  r19.23 2605  r19.23v 2606  rexlimd 2611  rexlimdv 2613  rexlimdv3a 2616  rexlimdva 2614  rexlimdva2 2617  rexlimdvaa 2615  rexlimdvv 2621  rexlimdvva 2622  rexlimdvw 2618  rexlimiv 2608  rexlimiva 2609  rexlimivv 2620 | 
| [Margaris] p.
 90 | Theorem 19.24 | i19.24 1653 | 
| [Margaris] p.
 90 | Theorem 19.25 | 19.25 1640 | 
| [Margaris] p.
 90 | Theorem 19.26 | 19.26-2 1496  19.26-3an 1497  19.26 1495  r19.26-2 2626  r19.26-3 2627  r19.26 2623  r19.26m 2628 | 
| [Margaris] p.
 90 | Theorem 19.27 | 19.27 1575  19.27h 1574  19.27v 1914  r19.27av 2632  r19.27m 3546  r19.27mv 3547 | 
| [Margaris] p.
 90 | Theorem 19.28 | 19.28 1577  19.28h 1576  19.28v 1915  r19.28av 2633  r19.28m 3540  r19.28mv 3543  rr19.28v 2904 | 
| [Margaris] p.
 90 | Theorem 19.29 | 19.29 1634  19.29r 1635  19.29r2 1636  19.29x 1637  r19.29 2634  r19.29d2r 2641  r19.29r 2635 | 
| [Margaris] p.
 90 | Theorem 19.30 | 19.30dc 1641 | 
| [Margaris] p.
 90 | Theorem 19.31 | 19.31r 1695 | 
| [Margaris] p.
 90 | Theorem 19.32 | 19.32dc 1693  19.32r 1694  r19.32r 2643  r19.32vdc 2646  r19.32vr 2645 | 
| [Margaris] p.
 90 | Theorem 19.33 | 19.33 1498  19.33b2 1643  19.33bdc 1644 | 
| [Margaris] p.
 90 | Theorem 19.34 | 19.34 1698 | 
| [Margaris] p.
 90 | Theorem 19.35 | 19.35-1 1638  19.35i 1639 | 
| [Margaris] p.
 90 | Theorem 19.36 | 19.36-1 1687  19.36aiv 1916  19.36i 1686  r19.36av 2648 | 
| [Margaris] p.
 90 | Theorem 19.37 | 19.37-1 1688  19.37aiv 1689  r19.37 2649  r19.37av 2650 | 
| [Margaris] p.
 90 | Theorem 19.38 | 19.38 1690 | 
| [Margaris] p.
 90 | Theorem 19.39 | i19.39 1654 | 
| [Margaris] p.
 90 | Theorem 19.40 | 19.40-2 1646  19.40 1645  r19.40 2651 | 
| [Margaris] p.
 90 | Theorem 19.41 | 19.41 1700  19.41h 1699  19.41v 1917  19.41vv 1918  19.41vvv 1919  19.41vvvv 1920  r19.41 2652  r19.41v 2653 | 
| [Margaris] p.
 90 | Theorem 19.42 | 19.42 1702  19.42h 1701  19.42v 1921  19.42vv 1926  19.42vvv 1927  19.42vvvv 1928  r19.42v 2654 | 
| [Margaris] p.
 90 | Theorem 19.43 | 19.43 1642  r19.43 2655 | 
| [Margaris] p.
 90 | Theorem 19.44 | 19.44 1696  r19.44av 2656  r19.44mv 3545 | 
| [Margaris] p.
 90 | Theorem 19.45 | 19.45 1697  r19.45av 2657  r19.45mv 3544 | 
| [Margaris] p.
 110 | Exercise 2(b) | eu1 2070 | 
| [Megill] p. 444 | Axiom
 C5 | ax-17 1540 | 
| [Megill] p. 445 | Lemma
 L12 | alequcom 1529  ax-10 1519 | 
| [Megill] p. 446 | Lemma
 L17 | equtrr 1724 | 
| [Megill] p. 446 | Lemma
 L19 | hbnae 1735 | 
| [Megill] p. 447 | Remark
 9.1 | df-sb 1777  sbid 1788 | 
| [Megill] p. 448 | Scheme
 C5' | ax-4 1524 | 
| [Megill] p. 448 | Scheme
 C6' | ax-7 1462 | 
| [Megill] p. 448 | Scheme
 C8' | ax-8 1518 | 
| [Megill] p. 448 | Scheme
 C9' | ax-i12 1521 | 
| [Megill] p. 448 | Scheme
 C11' | ax-10o 1730 | 
| [Megill] p. 448 | Scheme
 C12' | ax-13 2169 | 
| [Megill] p. 448 | Scheme
 C13' | ax-14 2170 | 
| [Megill] p. 448 | Scheme
 C15' | ax-11o 1837 | 
| [Megill] p. 448 | Scheme
 C16' | ax-16 1828 | 
| [Megill] p. 448 | Theorem
 9.4 | dral1 1744  dral2 1745  drex1 1812  drex2 1746  drsb1 1813  drsb2 1855 | 
| [Megill] p. 449 | Theorem
 9.7 | sbcom2 2006  sbequ 1854  sbid2v 2015 | 
| [Megill] p. 450 | Example
 in Appendix | hba1 1554 | 
| [Mendelson] p.
 36 | Lemma 1.8 | idALT 20 | 
| [Mendelson] p.
 69 | Axiom 4 | rspsbc 3072  rspsbca 3073  stdpc4 1789 | 
| [Mendelson] p.
 69 | Axiom 5 | ra5 3078  stdpc5 1598 | 
| [Mendelson] p. 81 | Rule
 C | exlimiv 1612 | 
| [Mendelson] p.
 95 | Axiom 6 | stdpc6 1717 | 
| [Mendelson] p.
 95 | Axiom 7 | stdpc7 1784 | 
| [Mendelson] p.
 231 | Exercise 4.10(k) | inv1 3487 | 
| [Mendelson] p.
 231 | Exercise 4.10(l) | unv 3488 | 
| [Mendelson] p.
 231 | Exercise 4.10(n) | inssun 3403 | 
| [Mendelson] p.
 231 | Exercise 4.10(o) | df-nul 3451 | 
| [Mendelson] p.
 231 | Exercise 4.10(q) | inssddif 3404 | 
| [Mendelson] p.
 231 | Exercise 4.10(s) | ddifnel 3294 | 
| [Mendelson] p.
 231 | Definition of union | unssin 3402 | 
| [Mendelson] p.
 235 | Exercise 4.12(c) | univ 4511 | 
| [Mendelson] p.
 235 | Exercise 4.12(d) | pwv 3838 | 
| [Mendelson] p.
 235 | Exercise 4.12(j) | pwin 4317 | 
| [Mendelson] p.
 235 | Exercise 4.12(k) | pwunss 4318 | 
| [Mendelson] p.
 235 | Exercise 4.12(l) | pwssunim 4319 | 
| [Mendelson] p.
 235 | Exercise 4.12(n) | uniin 3859 | 
| [Mendelson] p.
 235 | Exercise 4.12(p) | reli 4795 | 
| [Mendelson] p.
 235 | Exercise 4.12(t) | relssdmrn 5190 | 
| [Mendelson] p.
 246 | Definition of successor | df-suc 4406 | 
| [Mendelson] p.
 254 | Proposition 4.22(b) | xpen 6906 | 
| [Mendelson] p.
 254 | Proposition 4.22(c) | xpsnen 6880  xpsneng 6881 | 
| [Mendelson] p.
 254 | Proposition 4.22(d) | xpcomen 6886  xpcomeng 6887 | 
| [Mendelson] p.
 254 | Proposition 4.22(e) | xpassen 6889 | 
| [Mendelson] p.
 255 | Exercise 4.39 | endisj 6883 | 
| [Mendelson] p.
 255 | Exercise 4.41 | mapprc 6711 | 
| [Mendelson] p.
 255 | Exercise 4.43 | mapsnen 6870 | 
| [Mendelson] p.
 255 | Exercise 4.47 | xpmapen 6911 | 
| [Mendelson] p.
 255 | Exercise 4.42(a) | map0e 6745 | 
| [Mendelson] p.
 255 | Exercise 4.42(b) | map1 6871 | 
| [Mendelson] p.
 258 | Exercise 4.56(c) | djuassen 7284  djucomen 7283 | 
| [Mendelson] p.
 258 | Exercise 4.56(g) | xp2dju 7282 | 
| [Mendelson] p.
 266 | Proposition 4.34(a) | oa1suc 6525 | 
| [Monk1] p. 26 | Theorem
 2.8(vii) | ssin 3385 | 
| [Monk1] p. 33 | Theorem
 3.2(i) | ssrel 4751 | 
| [Monk1] p. 33 | Theorem
 3.2(ii) | eqrel 4752 | 
| [Monk1] p. 34 | Definition
 3.3 | df-opab 4095 | 
| [Monk1] p. 36 | Theorem
 3.7(i) | coi1 5185  coi2 5186 | 
| [Monk1] p. 36 | Theorem
 3.8(v) | dm0 4880  rn0 4922 | 
| [Monk1] p. 36 | Theorem
 3.7(ii) | cnvi 5074 | 
| [Monk1] p. 37 | Theorem
 3.13(i) | relxp 4772 | 
| [Monk1] p. 37 | Theorem
 3.13(x) | dmxpm 4886  rnxpm 5099 | 
| [Monk1] p. 37 | Theorem
 3.13(ii) | 0xp 4743  xp0 5089 | 
| [Monk1] p. 38 | Theorem
 3.16(ii) | ima0 5028 | 
| [Monk1] p. 38 | Theorem
 3.16(viii) | imai 5025 | 
| [Monk1] p. 39 | Theorem
 3.17 | imaex 5024  imaexg 5023 | 
| [Monk1] p. 39 | Theorem
 3.16(xi) | imassrn 5020 | 
| [Monk1] p. 41 | Theorem
 4.3(i) | fnopfv 5692  funfvop 5674 | 
| [Monk1] p. 42 | Theorem
 4.3(ii) | funopfvb 5604 | 
| [Monk1] p. 42 | Theorem
 4.4(iii) | fvelima 5612 | 
| [Monk1] p. 43 | Theorem
 4.6 | funun 5302 | 
| [Monk1] p. 43 | Theorem
 4.8(iv) | dff13 5815  dff13f 5817 | 
| [Monk1] p. 46 | Theorem
 4.15(v) | funex 5785  funrnex 6171 | 
| [Monk1] p. 50 | Definition
 5.4 | fniunfv 5809 | 
| [Monk1] p. 52 | Theorem
 5.12(ii) | op2ndb 5153 | 
| [Monk1] p. 52 | Theorem
 5.11(viii) | ssint 3890 | 
| [Monk1] p. 52 | Definition
 5.13 (i) | 1stval2 6213  df-1st 6198 | 
| [Monk1] p. 52 | Definition
 5.13 (ii) | 2ndval2 6214  df-2nd 6199 | 
| [Monk2] p. 105 | Axiom
 C4 | ax-5 1461 | 
| [Monk2] p. 105 | Axiom
 C7 | ax-8 1518 | 
| [Monk2] p. 105 | Axiom
 C8 | ax-11 1520  ax-11o 1837 | 
| [Monk2] p. 105 | Axiom
 (C8) | ax11v 1841 | 
| [Monk2] p. 109 | Lemma
 12 | ax-7 1462 | 
| [Monk2] p. 109 | Lemma
 15 | equvin 1877  equvini 1772  eqvinop 4276 | 
| [Monk2] p. 113 | Axiom
 C5-1 | ax-17 1540 | 
| [Monk2] p. 113 | Axiom
 C5-2 | ax6b 1665 | 
| [Monk2] p. 113 | Axiom
 C5-3 | ax-7 1462 | 
| [Monk2] p. 114 | Lemma
 22 | hba1 1554 | 
| [Monk2] p. 114 | Lemma
 23 | hbia1 1566  nfia1 1594 | 
| [Monk2] p. 114 | Lemma
 24 | hba2 1565  nfa2 1593 | 
| [Moschovakis] p.
 2 | Chapter 2  | df-stab 832  dftest 15719 | 
| [Munkres] p. 77 | Example
 2 | distop 14321 | 
| [Munkres] p.
 78 | Definition of basis | df-bases 14279  isbasis3g 14282 | 
| [Munkres] p.
 78 | Definition of a topology generated by a basis | df-topgen 12931  tgval2 14287 | 
| [Munkres] p.
 79 | Remark | tgcl 14300 | 
| [Munkres] p. 80 | Lemma
 2.1 | tgval3 14294 | 
| [Munkres] p. 80 | Lemma
 2.2 | tgss2 14315  tgss3 14314 | 
| [Munkres] p. 81 | Lemma
 2.3 | basgen 14316  basgen2 14317 | 
| [Munkres] p.
 89 | Definition of subspace topology | resttop 14406 | 
| [Munkres] p. 93 | Theorem
 6.1(1) | 0cld 14348  topcld 14345 | 
| [Munkres] p. 93 | Theorem
 6.1(3) | uncld 14349 | 
| [Munkres] p.
 94 | Definition of closure | clsval 14347 | 
| [Munkres] p.
 94 | Definition of interior | ntrval 14346 | 
| [Munkres] p.
 102 | Definition of continuous function | df-cn 14424  iscn 14433  iscn2 14436 | 
| [Munkres] p. 107 | Theorem
 7.2(g) | cncnp 14466  cncnp2m 14467  cncnpi 14464  df-cnp 14425  iscnp 14435 | 
| [Munkres] p. 127 | Theorem
 10.1 | metcn 14750 | 
| [Pierik], p. 8 | Section
 2.2.1 | dfrex2fin 6964 | 
| [Pierik], p. 9 | Definition
 2.4 | df-womni 7230 | 
| [Pierik], p. 9 | Definition
 2.5 | df-markov 7218  omniwomnimkv 7233 | 
| [Pierik], p. 10 | Section
 2.3 | dfdif3 3273 | 
| [Pierik], p.
 14 | Definition 3.1 | df-omni 7201  exmidomniim 7207  finomni 7206 | 
| [Pierik], p. 15 | Section
 3.1 | df-nninf 7186 | 
| [Pradic2025], p. 2 | Section
 1.1 | nnnninfen 15665 | 
| [PradicBrown2022], p. 1 | Theorem
 1 | exmidsbthr 15667 | 
| [PradicBrown2022], p.
 2 | Remark | exmidpw 6969 | 
| [PradicBrown2022], p.
 2 | Proposition 1.1 | exmidfodomrlemim 7268 | 
| [PradicBrown2022], p.
 2 | Proposition 1.2 | exmidfodomrlemr 7269  exmidfodomrlemrALT 7270 | 
| [PradicBrown2022], p.
 4 | Lemma 3.2 | fodjuomni 7215 | 
| [PradicBrown2022], p. 5 | Lemma
 3.4 | peano3nninf 15651  peano4nninf 15650 | 
| [PradicBrown2022], p. 5 | Lemma
 3.5 | nninfall 15653 | 
| [PradicBrown2022], p. 5 | Theorem
 3.6 | nninfsel 15661 | 
| [PradicBrown2022], p. 5 | Corollary
 3.7 | nninfomni 15663 | 
| [PradicBrown2022], p. 5 | Definition
 3.3 | nnsf 15649 | 
| [Quine] p. 16 | Definition
 2.1 | df-clab 2183  rabid 2673 | 
| [Quine] p. 17 | Definition
 2.1'' | dfsb7 2010 | 
| [Quine] p. 18 | Definition
 2.7 | df-cleq 2189 | 
| [Quine] p. 19 | Definition
 2.9 | df-v 2765 | 
| [Quine] p. 34 | Theorem
 5.1 | abeq2 2305 | 
| [Quine] p. 35 | Theorem
 5.2 | abid2 2317  abid2f 2365 | 
| [Quine] p. 40 | Theorem
 6.1 | sb5 1902 | 
| [Quine] p. 40 | Theorem
 6.2 | sb56 1900  sb6 1901 | 
| [Quine] p. 41 | Theorem
 6.3 | df-clel 2192 | 
| [Quine] p. 41 | Theorem
 6.4 | eqid 2196 | 
| [Quine] p. 41 | Theorem
 6.5 | eqcom 2198 | 
| [Quine] p. 42 | Theorem
 6.6 | df-sbc 2990 | 
| [Quine] p. 42 | Theorem
 6.7 | dfsbcq 2991  dfsbcq2 2992 | 
| [Quine] p. 43 | Theorem
 6.8 | vex 2766 | 
| [Quine] p. 43 | Theorem
 6.9 | isset 2769 | 
| [Quine] p. 44 | Theorem
 7.3 | spcgf 2846  spcgv 2851  spcimgf 2844 | 
| [Quine] p. 44 | Theorem
 6.11 | spsbc 3001  spsbcd 3002 | 
| [Quine] p. 44 | Theorem
 6.12 | elex 2774 | 
| [Quine] p. 44 | Theorem
 6.13 | elab 2908  elabg 2910  elabgf 2906 | 
| [Quine] p. 44 | Theorem
 6.14 | noel 3454 | 
| [Quine] p. 48 | Theorem
 7.2 | snprc 3687 | 
| [Quine] p. 48 | Definition
 7.1 | df-pr 3629  df-sn 3628 | 
| [Quine] p. 49 | Theorem
 7.4 | snss 3757  snssg 3756 | 
| [Quine] p. 49 | Theorem
 7.5 | prss 3778  prssg 3779 | 
| [Quine] p. 49 | Theorem
 7.6 | prid1 3728  prid1g 3726  prid2 3729  prid2g 3727  snid 3653
  snidg 3651 | 
| [Quine] p. 51 | Theorem
 7.12 | snexg 4217  snexprc 4219 | 
| [Quine] p. 51 | Theorem
 7.13 | prexg 4244 | 
| [Quine] p. 53 | Theorem
 8.2 | unisn 3855  unisng 3856 | 
| [Quine] p. 53 | Theorem
 8.3 | uniun 3858 | 
| [Quine] p. 54 | Theorem
 8.6 | elssuni 3867 | 
| [Quine] p. 54 | Theorem
 8.7 | uni0 3866 | 
| [Quine] p. 56 | Theorem
 8.17 | uniabio 5229 | 
| [Quine] p. 56 | Definition
 8.18 | dfiota2 5220 | 
| [Quine] p. 57 | Theorem
 8.19 | iotaval 5230 | 
| [Quine] p. 57 | Theorem
 8.22 | iotanul 5234 | 
| [Quine] p. 58 | Theorem
 8.23 | euiotaex 5235 | 
| [Quine] p. 58 | Definition
 9.1 | df-op 3631 | 
| [Quine] p. 61 | Theorem
 9.5 | opabid 4290  opabidw 4291  opelopab 4306  opelopaba 4300  opelopabaf 4308  opelopabf 4309  opelopabg 4302  opelopabga 4297  opelopabgf 4304  oprabid 5954 | 
| [Quine] p. 64 | Definition
 9.11 | df-xp 4669 | 
| [Quine] p. 64 | Definition
 9.12 | df-cnv 4671 | 
| [Quine] p. 64 | Definition
 9.15 | df-id 4328 | 
| [Quine] p. 65 | Theorem
 10.3 | fun0 5316 | 
| [Quine] p. 65 | Theorem
 10.4 | funi 5290 | 
| [Quine] p. 65 | Theorem
 10.5 | funsn 5306  funsng 5304 | 
| [Quine] p. 65 | Definition
 10.1 | df-fun 5260 | 
| [Quine] p. 65 | Definition
 10.2 | args 5038  dffv4g 5555 | 
| [Quine] p. 68 | Definition
 10.11 | df-fv 5266  fv2 5553 | 
| [Quine] p. 124 | Theorem
 17.3 | nn0opth2 10816  nn0opth2d 10815  nn0opthd 10814 | 
| [Quine] p. 284 | Axiom
 39(vi) | funimaex 5343  funimaexg 5342 | 
| [Roman] p. 18 | Part
 Preliminaries | df-rng 13489 | 
| [Roman] p. 19 | Part
 Preliminaries | df-ring 13554 | 
| [Rudin] p. 164 | Equation
 27 | efcan 11841 | 
| [Rudin] p. 164 | Equation
 30 | efzval 11848 | 
| [Rudin] p. 167 | Equation
 48 | absefi 11934 | 
| [Sanford] p.
 39 | Remark | ax-mp 5 | 
| [Sanford] p. 39 | Rule
 3 | mtpxor 1437 | 
| [Sanford] p. 39 | Rule
 4 | mptxor 1435 | 
| [Sanford] p. 40 | Rule
 1 | mptnan 1434 | 
| [Schechter] p.
 51 | Definition of antisymmetry | intasym 5054 | 
| [Schechter] p.
 51 | Definition of irreflexivity | intirr 5056 | 
| [Schechter] p.
 51 | Definition of symmetry | cnvsym 5053 | 
| [Schechter] p.
 51 | Definition of transitivity | cotr 5051 | 
| [Schechter] p.
 187 | Definition of "ring with unit" | isring 13556 | 
| [Schechter] p.
 428 | Definition 15.35 | bastop1 14319 | 
| [Stoll] p. 13 | Definition
 of symmetric difference | symdif1 3428 | 
| [Stoll] p. 16 | Exercise
 4.4 | 0dif 3522  dif0 3521 | 
| [Stoll] p. 16 | Exercise
 4.8 | difdifdirss 3535 | 
| [Stoll] p. 19 | Theorem
 5.2(13) | undm 3421 | 
| [Stoll] p. 19 | Theorem
 5.2(13') | indmss 3422 | 
| [Stoll] p.
 20 | Remark | invdif 3405 | 
| [Stoll] p. 25 | Definition
 of ordered triple | df-ot 3632 | 
| [Stoll] p.
 43 | Definition | uniiun 3970 | 
| [Stoll] p.
 44 | Definition | intiin 3971 | 
| [Stoll] p.
 45 | Definition | df-iin 3919 | 
| [Stoll] p. 45 | Definition
 indexed union | df-iun 3918 | 
| [Stoll] p. 176 | Theorem
 3.4(27) | imandc 890  imanst 889 | 
| [Stoll] p. 262 | Example
 4.1 | symdif1 3428 | 
| [Suppes] p. 22 | Theorem
 2 | eq0 3469 | 
| [Suppes] p. 22 | Theorem
 4 | eqss 3198  eqssd 3200  eqssi 3199 | 
| [Suppes] p. 23 | Theorem
 5 | ss0 3491  ss0b 3490 | 
| [Suppes] p. 23 | Theorem
 6 | sstr 3191 | 
| [Suppes] p. 25 | Theorem
 12 | elin 3346  elun 3304 | 
| [Suppes] p. 26 | Theorem
 15 | inidm 3372 | 
| [Suppes] p. 26 | Theorem
 16 | in0 3485 | 
| [Suppes] p. 27 | Theorem
 23 | unidm 3306 | 
| [Suppes] p. 27 | Theorem
 24 | un0 3484 | 
| [Suppes] p. 27 | Theorem
 25 | ssun1 3326 | 
| [Suppes] p. 27 | Theorem
 26 | ssequn1 3333 | 
| [Suppes] p. 27 | Theorem
 27 | unss 3337 | 
| [Suppes] p. 27 | Theorem
 28 | indir 3412 | 
| [Suppes] p. 27 | Theorem
 29 | undir 3413 | 
| [Suppes] p. 28 | Theorem
 32 | difid 3519  difidALT 3520 | 
| [Suppes] p. 29 | Theorem
 33 | difin 3400 | 
| [Suppes] p. 29 | Theorem
 34 | indif 3406 | 
| [Suppes] p. 29 | Theorem
 35 | undif1ss 3525 | 
| [Suppes] p. 29 | Theorem
 36 | difun2 3530 | 
| [Suppes] p. 29 | Theorem
 37 | difin0 3524 | 
| [Suppes] p. 29 | Theorem
 38 | disjdif 3523 | 
| [Suppes] p. 29 | Theorem
 39 | difundi 3415 | 
| [Suppes] p. 29 | Theorem
 40 | difindiss 3417 | 
| [Suppes] p. 30 | Theorem
 41 | nalset 4163 | 
| [Suppes] p. 39 | Theorem
 61 | uniss 3860 | 
| [Suppes] p. 39 | Theorem
 65 | uniop 4288 | 
| [Suppes] p. 41 | Theorem
 70 | intsn 3909 | 
| [Suppes] p. 42 | Theorem
 71 | intpr 3906  intprg 3907 | 
| [Suppes] p. 42 | Theorem
 73 | op1stb 4513  op1stbg 4514 | 
| [Suppes] p. 42 | Theorem
 78 | intun 3905 | 
| [Suppes] p. 44 | Definition
 15(a) | dfiun2 3950  dfiun2g 3948 | 
| [Suppes] p. 44 | Definition
 15(b) | dfiin2 3951 | 
| [Suppes] p. 47 | Theorem
 86 | elpw 3611  elpw2 4190  elpw2g 4189  elpwg 3613 | 
| [Suppes] p. 47 | Theorem
 87 | pwid 3620 | 
| [Suppes] p. 47 | Theorem
 89 | pw0 3769 | 
| [Suppes] p. 48 | Theorem
 90 | pwpw0ss 3834 | 
| [Suppes] p. 52 | Theorem
 101 | xpss12 4770 | 
| [Suppes] p. 52 | Theorem
 102 | xpindi 4801  xpindir 4802 | 
| [Suppes] p. 52 | Theorem
 103 | xpundi 4719  xpundir 4720 | 
| [Suppes] p. 54 | Theorem
 105 | elirrv 4584 | 
| [Suppes] p. 58 | Theorem
 2 | relss 4750 | 
| [Suppes] p. 59 | Theorem
 4 | eldm 4863  eldm2 4864  eldm2g 4862  eldmg 4861 | 
| [Suppes] p. 59 | Definition
 3 | df-dm 4673 | 
| [Suppes] p. 60 | Theorem
 6 | dmin 4874 | 
| [Suppes] p. 60 | Theorem
 8 | rnun 5078 | 
| [Suppes] p. 60 | Theorem
 9 | rnin 5079 | 
| [Suppes] p. 60 | Definition
 4 | dfrn2 4854 | 
| [Suppes] p. 61 | Theorem
 11 | brcnv 4849  brcnvg 4847 | 
| [Suppes] p. 62 | Equation
 5 | elcnv 4843  elcnv2 4844 | 
| [Suppes] p. 62 | Theorem
 12 | relcnv 5047 | 
| [Suppes] p. 62 | Theorem
 15 | cnvin 5077 | 
| [Suppes] p. 62 | Theorem
 16 | cnvun 5075 | 
| [Suppes] p. 63 | Theorem
 20 | co02 5183 | 
| [Suppes] p. 63 | Theorem
 21 | dmcoss 4935 | 
| [Suppes] p. 63 | Definition
 7 | df-co 4672 | 
| [Suppes] p. 64 | Theorem
 26 | cnvco 4851 | 
| [Suppes] p. 64 | Theorem
 27 | coass 5188 | 
| [Suppes] p. 65 | Theorem
 31 | resundi 4959 | 
| [Suppes] p. 65 | Theorem
 34 | elima 5014  elima2 5015  elima3 5016  elimag 5013 | 
| [Suppes] p. 65 | Theorem
 35 | imaundi 5082 | 
| [Suppes] p. 66 | Theorem
 40 | dminss 5084 | 
| [Suppes] p. 66 | Theorem
 41 | imainss 5085 | 
| [Suppes] p. 67 | Exercise
 11 | cnvxp 5088 | 
| [Suppes] p. 81 | Definition
 34 | dfec2 6595 | 
| [Suppes] p. 82 | Theorem
 72 | elec 6633  elecg 6632 | 
| [Suppes] p. 82 | Theorem
 73 | erth 6638  erth2 6639 | 
| [Suppes] p. 89 | Theorem
 96 | map0b 6746 | 
| [Suppes] p. 89 | Theorem
 97 | map0 6748  map0g 6747 | 
| [Suppes] p. 89 | Theorem
 98 | mapsn 6749 | 
| [Suppes] p. 89 | Theorem
 99 | mapss 6750 | 
| [Suppes] p. 92 | Theorem
 1 | enref 6824  enrefg 6823 | 
| [Suppes] p. 92 | Theorem
 2 | ensym 6840  ensymb 6839  ensymi 6841 | 
| [Suppes] p. 92 | Theorem
 3 | entr 6843 | 
| [Suppes] p. 92 | Theorem
 4 | unen 6875 | 
| [Suppes] p. 94 | Theorem
 15 | endom 6822 | 
| [Suppes] p. 94 | Theorem
 16 | ssdomg 6837 | 
| [Suppes] p. 94 | Theorem
 17 | domtr 6844 | 
| [Suppes] p. 95 | Theorem
 18 | isbth 7033 | 
| [Suppes] p. 98 | Exercise
 4 | fundmen 6865  fundmeng 6866 | 
| [Suppes] p. 98 | Exercise
 6 | xpdom3m 6893 | 
| [Suppes] p.
 130 | Definition 3 | df-tr 4132 | 
| [Suppes] p. 132 | Theorem
 9 | ssonuni 4524 | 
| [Suppes] p.
 134 | Definition 6 | df-suc 4406 | 
| [Suppes] p. 136 | Theorem
 Schema 22 | findes 4639  finds 4636  finds1 4638  finds2 4637 | 
| [Suppes] p.
 162 | Definition 5 | df-ltnqqs 7420  df-ltpq 7413 | 
| [Suppes] p. 228 | Theorem
 Schema 61 | onintss 4425 | 
| [TakeutiZaring] p.
 8 | Axiom 1 | ax-ext 2178 | 
| [TakeutiZaring] p.
 13 | Definition 4.5 | df-cleq 2189 | 
| [TakeutiZaring] p.
 13 | Proposition 4.6 | df-clel 2192 | 
| [TakeutiZaring] p.
 13 | Proposition 4.9 | cvjust 2191 | 
| [TakeutiZaring] p.
 13 | Proposition 4.7(3) | eqtr 2214 | 
| [TakeutiZaring] p.
 14 | Definition 4.16 | df-oprab 5926 | 
| [TakeutiZaring] p.
 14 | Proposition 4.14 | ru 2988 | 
| [TakeutiZaring] p.
 15 | Exercise 1 | elpr 3643  elpr2 3644  elprg 3642 | 
| [TakeutiZaring] p.
 15 | Exercise 2 | elsn 3638  elsn2 3656  elsn2g 3655  elsng 3637  velsn 3639 | 
| [TakeutiZaring] p.
 15 | Exercise 3 | elop 4264 | 
| [TakeutiZaring] p.
 15 | Exercise 4 | sneq 3633  sneqr 3790 | 
| [TakeutiZaring] p.
 15 | Definition 5.1 | dfpr2 3641  dfsn2 3636 | 
| [TakeutiZaring] p.
 16 | Axiom 3 | uniex 4472 | 
| [TakeutiZaring] p.
 16 | Exercise 6 | opth 4270 | 
| [TakeutiZaring] p.
 16 | Exercise 8 | rext 4248 | 
| [TakeutiZaring] p.
 16 | Corollary 5.8 | unex 4476  unexg 4478 | 
| [TakeutiZaring] p.
 16 | Definition 5.3 | dftp2 3671 | 
| [TakeutiZaring] p.
 16 | Definition 5.5 | df-uni 3840 | 
| [TakeutiZaring] p.
 16 | Definition 5.6 | df-in 3163  df-un 3161 | 
| [TakeutiZaring] p.
 16 | Proposition 5.7 | unipr 3853  uniprg 3854 | 
| [TakeutiZaring] p.
 17 | Axiom 4 | vpwex 4212 | 
| [TakeutiZaring] p.
 17 | Exercise 1 | eltp 3670 | 
| [TakeutiZaring] p.
 17 | Exercise 5 | elsuc 4441  elsucg 4439  sstr2 3190 | 
| [TakeutiZaring] p.
 17 | Exercise 6 | uncom 3307 | 
| [TakeutiZaring] p.
 17 | Exercise 7 | incom 3355 | 
| [TakeutiZaring] p.
 17 | Exercise 8 | unass 3320 | 
| [TakeutiZaring] p.
 17 | Exercise 9 | inass 3373 | 
| [TakeutiZaring] p.
 17 | Exercise 10 | indi 3410 | 
| [TakeutiZaring] p.
 17 | Exercise 11 | undi 3411 | 
| [TakeutiZaring] p.
 17 | Definition 5.9 | dfss2 3172 | 
| [TakeutiZaring] p.
 17 | Definition 5.10 | df-pw 3607 | 
| [TakeutiZaring] p.
 18 | Exercise 7 | unss2 3334 | 
| [TakeutiZaring] p.
 18 | Exercise 9 | df-ss 3170  sseqin2 3382 | 
| [TakeutiZaring] p.
 18 | Exercise 10 | ssid 3203 | 
| [TakeutiZaring] p.
 18 | Exercise 12 | inss1 3383  inss2 3384 | 
| [TakeutiZaring] p.
 18 | Exercise 13 | nssr 3243 | 
| [TakeutiZaring] p.
 18 | Exercise 15 | unieq 3848 | 
| [TakeutiZaring] p.
 18 | Exercise 18 | sspwb 4249 | 
| [TakeutiZaring] p.
 18 | Exercise 19 | pweqb 4256 | 
| [TakeutiZaring] p.
 20 | Definition | df-rab 2484 | 
| [TakeutiZaring] p.
 20 | Corollary 5.16 | 0ex 4160 | 
| [TakeutiZaring] p.
 20 | Definition 5.12 | df-dif 3159 | 
| [TakeutiZaring] p.
 20 | Definition 5.14 | dfnul2 3452 | 
| [TakeutiZaring] p.
 20 | Proposition 5.15 | difid 3519  difidALT 3520 | 
| [TakeutiZaring] p.
 20 | Proposition 5.17(1) | n0rf 3463 | 
| [TakeutiZaring] p.
 21 | Theorem 5.22 | setind 4575 | 
| [TakeutiZaring] p.
 21 | Definition 5.20 | df-v 2765 | 
| [TakeutiZaring] p.
 21 | Proposition 5.21 | vprc 4165 | 
| [TakeutiZaring] p.
 22 | Exercise 1 | 0ss 3489 | 
| [TakeutiZaring] p.
 22 | Exercise 3 | ssex 4170  ssexg 4172 | 
| [TakeutiZaring] p.
 22 | Exercise 4 | inex1 4167 | 
| [TakeutiZaring] p.
 22 | Exercise 5 | ruv 4586 | 
| [TakeutiZaring] p.
 22 | Exercise 6 | elirr 4577 | 
| [TakeutiZaring] p.
 22 | Exercise 7 | ssdif0im 3515 | 
| [TakeutiZaring] p.
 22 | Exercise 11 | difdif 3288 | 
| [TakeutiZaring] p.
 22 | Exercise 13 | undif3ss 3424 | 
| [TakeutiZaring] p.
 22 | Exercise 14 | difss 3289 | 
| [TakeutiZaring] p.
 22 | Exercise 15 | sscon 3297 | 
| [TakeutiZaring] p.
 22 | Definition 4.15(3) | df-ral 2480 | 
| [TakeutiZaring] p.
 22 | Definition 4.15(4) | df-rex 2481 | 
| [TakeutiZaring] p.
 23 | Proposition 6.2 | xpex 4778  xpexg 4777  xpexgALT 6190 | 
| [TakeutiZaring] p.
 23 | Definition 6.4(1) | df-rel 4670 | 
| [TakeutiZaring] p.
 23 | Definition 6.4(2) | fun2cnv 5322 | 
| [TakeutiZaring] p.
 24 | Definition 6.4(3) | f1cnvcnv 5474  fun11 5325 | 
| [TakeutiZaring] p.
 24 | Definition 6.4(4) | dffun4 5269  svrelfun 5323 | 
| [TakeutiZaring] p.
 24 | Definition 6.5(1) | dfdm3 4853 | 
| [TakeutiZaring] p.
 24 | Definition 6.5(2) | dfrn3 4855 | 
| [TakeutiZaring] p.
 24 | Definition 6.6(1) | df-res 4675 | 
| [TakeutiZaring] p.
 24 | Definition 6.6(2) | df-ima 4676 | 
| [TakeutiZaring] p.
 24 | Definition 6.6(3) | df-co 4672 | 
| [TakeutiZaring] p.
 25 | Exercise 2 | cnvcnvss 5124  dfrel2 5120 | 
| [TakeutiZaring] p.
 25 | Exercise 3 | xpss 4771 | 
| [TakeutiZaring] p.
 25 | Exercise 5 | relun 4780 | 
| [TakeutiZaring] p.
 25 | Exercise 6 | reluni 4786 | 
| [TakeutiZaring] p.
 25 | Exercise 9 | inxp 4800 | 
| [TakeutiZaring] p.
 25 | Exercise 12 | relres 4974 | 
| [TakeutiZaring] p.
 25 | Exercise 13 | opelres 4951  opelresg 4953 | 
| [TakeutiZaring] p.
 25 | Exercise 14 | dmres 4967 | 
| [TakeutiZaring] p.
 25 | Exercise 15 | resss 4970 | 
| [TakeutiZaring] p.
 25 | Exercise 17 | resabs1 4975 | 
| [TakeutiZaring] p.
 25 | Exercise 18 | funres 5299 | 
| [TakeutiZaring] p.
 25 | Exercise 24 | relco 5168 | 
| [TakeutiZaring] p.
 25 | Exercise 29 | funco 5298 | 
| [TakeutiZaring] p.
 25 | Exercise 30 | f1co 5475 | 
| [TakeutiZaring] p.
 26 | Definition 6.10 | eu2 2089 | 
| [TakeutiZaring] p.
 26 | Definition 6.11 | df-fv 5266  fv3 5581 | 
| [TakeutiZaring] p.
 26 | Corollary 6.8(1) | cnvex 5208  cnvexg 5207 | 
| [TakeutiZaring] p.
 26 | Corollary 6.8(2) | dmex 4932  dmexg 4930 | 
| [TakeutiZaring] p.
 26 | Corollary 6.8(3) | rnex 4933  rnexg 4931 | 
| [TakeutiZaring] p.
 27 | Corollary 6.13 | funfvex 5575 | 
| [TakeutiZaring] p.
 27 | Theorem 6.12(1) | tz6.12-1 5585  tz6.12 5586  tz6.12c 5588 | 
| [TakeutiZaring] p.
 27 | Theorem 6.12(2) | tz6.12-2 5549 | 
| [TakeutiZaring] p.
 27 | Definition 6.15(1) | df-fn 5261 | 
| [TakeutiZaring] p.
 27 | Definition 6.15(3) | df-f 5262 | 
| [TakeutiZaring] p.
 27 | Definition 6.15(4) | df-fo 5264  wfo 5256 | 
| [TakeutiZaring] p.
 27 | Definition 6.15(5) | df-f1 5263  wf1 5255 | 
| [TakeutiZaring] p.
 27 | Definition 6.15(6) | df-f1o 5265  wf1o 5257 | 
| [TakeutiZaring] p.
 28 | Exercise 4 | eqfnfv 5659  eqfnfv2 5660  eqfnfv2f 5663 | 
| [TakeutiZaring] p.
 28 | Exercise 5 | fvco 5631 | 
| [TakeutiZaring] p.
 28 | Theorem 6.16(1) | fnex 5784  fnexALT 6168 | 
| [TakeutiZaring] p.
 28 | Proposition 6.17 | resfunexg 5783  resfunexgALT 6165 | 
| [TakeutiZaring] p.
 29 | Exercise 9 | funimaex 5343  funimaexg 5342 | 
| [TakeutiZaring] p.
 29 | Definition 6.18 | df-br 4034 | 
| [TakeutiZaring] p.
 30 | Definition 6.21 | eliniseg 5039  iniseg 5041 | 
| [TakeutiZaring] p.
 30 | Definition 6.22 | df-eprel 4324 | 
| [TakeutiZaring] p.
 32 | Definition 6.28 | df-isom 5267 | 
| [TakeutiZaring] p.
 33 | Proposition 6.30(1) | isoid 5857 | 
| [TakeutiZaring] p.
 33 | Proposition 6.30(2) | isocnv 5858 | 
| [TakeutiZaring] p.
 33 | Proposition 6.30(3) | isotr 5863 | 
| [TakeutiZaring] p.
 33 | Proposition 6.31(2) | isoini 5865 | 
| [TakeutiZaring] p.
 34 | Proposition 6.33 | f1oiso 5873 | 
| [TakeutiZaring] p.
 35 | Notation | wtr 4131 | 
| [TakeutiZaring] p.
 35 | Theorem 7.2 | tz7.2 4389 | 
| [TakeutiZaring] p.
 35 | Definition 7.1 | dftr3 4135 | 
| [TakeutiZaring] p.
 36 | Proposition 7.4 | ordwe 4612 | 
| [TakeutiZaring] p.
 36 | Proposition 7.6 | ordelord 4416 | 
| [TakeutiZaring] p.
 37 | Proposition 7.9 | ordin 4420 | 
| [TakeutiZaring] p.
 38 | Corollary 7.15 | ordsson 4528 | 
| [TakeutiZaring] p.
 38 | Definition 7.11 | df-on 4403 | 
| [TakeutiZaring] p.
 38 | Proposition 7.12 | ordon 4522 | 
| [TakeutiZaring] p.
 38 | Proposition 7.13 | onprc 4588 | 
| [TakeutiZaring] p.
 39 | Theorem 7.17 | tfi 4618 | 
| [TakeutiZaring] p.
 40 | Exercise 7 | dftr2 4133 | 
| [TakeutiZaring] p.
 40 | Exercise 11 | unon 4547 | 
| [TakeutiZaring] p.
 40 | Proposition 7.19 | ssorduni 4523 | 
| [TakeutiZaring] p.
 40 | Proposition 7.20 | elssuni 3867 | 
| [TakeutiZaring] p.
 41 | Definition 7.22 | df-suc 4406 | 
| [TakeutiZaring] p.
 41 | Proposition 7.23 | sssucid 4450  sucidg 4451 | 
| [TakeutiZaring] p.
 41 | Proposition 7.24 | onsuc 4537 | 
| [TakeutiZaring] p.
 42 | Exercise 1 | df-ilim 4404 | 
| [TakeutiZaring] p.
 42 | Exercise 8 | onsucssi 4542  ordelsuc 4541 | 
| [TakeutiZaring] p.
 42 | Proposition 7.30(1) | peano1 4630 | 
| [TakeutiZaring] p.
 42 | Proposition 7.30(2) | peano2 4631 | 
| [TakeutiZaring] p.
 42 | Proposition 7.30(3) | peano3 4632 | 
| [TakeutiZaring] p.
 43 | Axiom 7 | omex 4629 | 
| [TakeutiZaring] p.
 43 | Theorem 7.32 | ordom 4643 | 
| [TakeutiZaring] p.
 43 | Corollary 7.31 | find 4635 | 
| [TakeutiZaring] p.
 43 | Proposition 7.30(4) | peano4 4633 | 
| [TakeutiZaring] p.
 43 | Proposition 7.30(5) | peano5 4634 | 
| [TakeutiZaring] p.
 44 | Exercise 2 | int0 3888 | 
| [TakeutiZaring] p.
 44 | Exercise 3 | trintssm 4147 | 
| [TakeutiZaring] p.
 44 | Exercise 4 | intss1 3889 | 
| [TakeutiZaring] p.
 44 | Exercise 6 | onintonm 4553 | 
| [TakeutiZaring] p.
 44 | Definition 7.35 | df-int 3875 | 
| [TakeutiZaring] p.
 47 | Lemma 1 | tfrlem1 6366 | 
| [TakeutiZaring] p.
 47 | Theorem 7.41(1) | tfri1 6423  tfri1d 6393 | 
| [TakeutiZaring] p.
 47 | Theorem 7.41(2) | tfri2 6424  tfri2d 6394 | 
| [TakeutiZaring] p.
 47 | Theorem 7.41(3) | tfri3 6425 | 
| [TakeutiZaring] p.
 50 | Exercise 3 | smoiso 6360 | 
| [TakeutiZaring] p.
 50 | Definition 7.46 | df-smo 6344 | 
| [TakeutiZaring] p.
 56 | Definition 8.1 | oasuc 6522 | 
| [TakeutiZaring] p.
 57 | Proposition 8.2 | oacl 6518 | 
| [TakeutiZaring] p.
 57 | Proposition 8.3 | oa0 6515 | 
| [TakeutiZaring] p.
 57 | Proposition 8.16 | omcl 6519 | 
| [TakeutiZaring] p.
 58 | Proposition 8.4 | nnaord 6567  nnaordi 6566 | 
| [TakeutiZaring] p.
 59 | Proposition 8.6 | iunss2 3961  uniss2 3870 | 
| [TakeutiZaring] p.
 59 | Proposition 8.7 | oawordriexmid 6528 | 
| [TakeutiZaring] p.
 59 | Proposition 8.9 | nnacl 6538 | 
| [TakeutiZaring] p.
 62 | Exercise 5 | oaword1 6529 | 
| [TakeutiZaring] p.
 62 | Definition 8.15 | om0 6516  omsuc 6530 | 
| [TakeutiZaring] p.
 63 | Proposition 8.17 | nnmcl 6539 | 
| [TakeutiZaring] p.
 63 | Proposition 8.19 | nnmord 6575  nnmordi 6574 | 
| [TakeutiZaring] p.
 67 | Definition 8.30 | oei0 6517 | 
| [TakeutiZaring] p.
 85 | Proposition 10.6(3) | cardonle 7254 | 
| [TakeutiZaring] p.
 88 | Exercise 1 | en0 6854 | 
| [TakeutiZaring] p.
 90 | Proposition 10.20 | nneneq 6918 | 
| [TakeutiZaring] p.
 90 | Corollary 10.21(1) | php5 6919 | 
| [TakeutiZaring] p.
 91 | Definition 10.29 | df-fin 6802  isfi 6820 | 
| [TakeutiZaring] p.
 92 | Proposition 10.33(2) | xpdom2 6890 | 
| [TakeutiZaring] p.
 95 | Definition 10.42 | df-map 6709 | 
| [TakeutiZaring] p.
 96 | Proposition 10.44 | pw2f1odc 6896 | 
| [TakeutiZaring] p.
 96 | Proposition 10.45 | mapxpen 6909 | 
| [Tarski] p. 67 | Axiom
 B5 | ax-4 1524 | 
| [Tarski] p. 68 | Lemma
 6 | equid 1715 | 
| [Tarski] p. 69 | Lemma
 7 | equcomi 1718 | 
| [Tarski] p. 70 | Lemma
 14 | spim 1752  spime 1755  spimeh 1753  spimh 1751 | 
| [Tarski] p. 70 | Lemma
 16 | ax-11 1520  ax-11o 1837  ax11i 1728 | 
| [Tarski] p. 70 | Lemmas 16
 and 17 | sb6 1901 | 
| [Tarski] p. 77 | Axiom B6
 (p. 75) of system S2 | ax-17 1540 | 
| [Tarski] p. 77 | Axiom B8
 (p. 75) of system S2 | ax-13 2169  ax-14 2170 | 
| [WhiteheadRussell] p.
 96 | Axiom *1.3 | olc 712 | 
| [WhiteheadRussell] p.
 96 | Axiom *1.4 | pm1.4 728 | 
| [WhiteheadRussell] p.
 96 | Axiom *1.2 (Taut) | pm1.2 757 | 
| [WhiteheadRussell] p.
 96 | Axiom *1.5 (Assoc) | pm1.5 766 | 
| [WhiteheadRussell] p.
 97 | Axiom *1.6 (Sum) | orim2 790 | 
| [WhiteheadRussell] p.
 100 | Theorem *2.01 | pm2.01 617 | 
| [WhiteheadRussell] p.
 100 | Theorem *2.02 | ax-1 6 | 
| [WhiteheadRussell] p.
 100 | Theorem *2.03 | con2 644 | 
| [WhiteheadRussell] p.
 100 | Theorem *2.04 | pm2.04 82 | 
| [WhiteheadRussell] p.
 100 | Theorem *2.05 | imim2 55 | 
| [WhiteheadRussell] p.
 100 | Theorem *2.06 | imim1 76 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.1 | pm2.1dc 838 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.06 | barbara 2143  syl 14 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.07 | pm2.07 738 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.08 | id 19  idALT 20 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.11 | exmiddc 837 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.12 | notnot 630 | 
| [WhiteheadRussell] p.
 101 | Theorem *2.13 | pm2.13dc 886 | 
| [WhiteheadRussell] p.
 102 | Theorem *2.14 | notnotrdc 844 | 
| [WhiteheadRussell] p.
 102 | Theorem *2.15 | con1dc 857 | 
| [WhiteheadRussell] p.
 103 | Theorem *2.16 | con3 643 | 
| [WhiteheadRussell] p.
 103 | Theorem *2.17 | condc 854 | 
| [WhiteheadRussell] p.
 103 | Theorem *2.18 | pm2.18dc 856 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.2 | orc 713 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.3 | pm2.3 776 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.21 | pm2.21 618 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.24 | pm2.24 622 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.25 | pm2.25dc 894 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.26 | pm2.26dc 908 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.27 | pm2.27 40 | 
| [WhiteheadRussell] p.
 104 | Theorem *2.31 | pm2.31 769 | 
| [WhiteheadRussell] p.
 105 | Theorem *2.32 | pm2.32 770 | 
| [WhiteheadRussell] p.
 105 | Theorem *2.36 | pm2.36 805 | 
| [WhiteheadRussell] p.
 105 | Theorem *2.37 | pm2.37 806 | 
| [WhiteheadRussell] p.
 105 | Theorem *2.38 | pm2.38 804 | 
| [WhiteheadRussell] p.
 105 | Definition *2.33 | df-3or 981 | 
| [WhiteheadRussell] p.
 106 | Theorem *2.4 | pm2.4 779 | 
| [WhiteheadRussell] p.
 106 | Theorem *2.41 | pm2.41 777 | 
| [WhiteheadRussell] p.
 106 | Theorem *2.42 | pm2.42 778 | 
| [WhiteheadRussell] p.
 106 | Theorem *2.43 | pm2.43 53 | 
| [WhiteheadRussell] p.
 106 | Theorem *2.45 | pm2.45 739 | 
| [WhiteheadRussell] p.
 106 | Theorem *2.46 | pm2.46 740 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.5 | pm2.5dc 868  pm2.5gdc 867 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.6 | pm2.6dc 863 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.47 | pm2.47 741 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.48 | pm2.48 742 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.49 | pm2.49 743 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.51 | pm2.51 656 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.52 | pm2.52 657 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.53 | pm2.53 723 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.54 | pm2.54dc 892 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.55 | orel1 726 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.56 | orel2 727 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.61 | pm2.61dc 866 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.62 | pm2.62 749 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.63 | pm2.63 801 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.64 | pm2.64 802 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.65 | pm2.65 660 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.67 | pm2.67-2 714  pm2.67 744 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.521 | pm2.521dc 870  pm2.521gdc 869 | 
| [WhiteheadRussell] p.
 107 | Theorem *2.621 | pm2.621 748 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.8 | pm2.8 811 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.68 | pm2.68dc 895 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.69 | looinvdc 916 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.73 | pm2.73 807 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.74 | pm2.74 808 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.75 | pm2.75 810 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.76 | pm2.76 809 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.77 | ax-2 7 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.81 | pm2.81 812 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.82 | pm2.82 813 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.83 | pm2.83 77 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.85 | pm2.85dc 906 | 
| [WhiteheadRussell] p.
 108 | Theorem *2.86 | pm2.86 101 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.1 | pm3.1 755 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.2 | pm3.2 139 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.11 | pm3.11dc 959 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.12 | pm3.12dc 960 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.13 | pm3.13dc 961 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.14 | pm3.14 754 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.21 | pm3.21 264 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.22 | pm3.22 265 | 
| [WhiteheadRussell] p.
 111 | Theorem *3.24 | pm3.24 694 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.35 | pm3.35 347 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.3 (Exp) | pm3.3 261 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.31 (Imp) | pm3.31 262 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.26 (Simp) | simpl 109  simplimdc 861 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.27 (Simp) | simpr 110  simprimdc 860 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.33 (Syll) | pm3.33 345 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.34 (Syll) | pm3.34 346 | 
| [WhiteheadRussell] p.
 112 | Theorem *3.37 (Transp) | pm3.37 690 | 
| [WhiteheadRussell] p.
 113 | Fact) | pm3.45 597 | 
| [WhiteheadRussell] p.
 113 | Theorem *3.4 | pm3.4 333 | 
| [WhiteheadRussell] p.
 113 | Theorem *3.41 | pm3.41 331 | 
| [WhiteheadRussell] p.
 113 | Theorem *3.42 | pm3.42 332 | 
| [WhiteheadRussell] p.
 113 | Theorem *3.44 | jao 756  pm3.44 716 | 
| [WhiteheadRussell] p.
 113 | Theorem *3.47 | anim12 344 | 
| [WhiteheadRussell] p.
 113 | Theorem *3.43 (Comp) | pm3.43 602 | 
| [WhiteheadRussell] p.
 114 | Theorem *3.48 | pm3.48 786 | 
| [WhiteheadRussell] p.
 116 | Theorem *4.1 | con34bdc 872 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.2 | biid 171 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.13 | notnotbdc 873 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.14 | pm4.14dc 891 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.15 | pm4.15 695 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.21 | bicom 140 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.22 | biantr 954  bitr 472 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.24 | pm4.24 395 | 
| [WhiteheadRussell] p.
 117 | Theorem *4.25 | oridm 758  pm4.25 759 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.3 | ancom 266 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.4 | andi 819 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.31 | orcom 729 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.32 | anass 401 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.33 | orass 768 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.36 | anbi1 466 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.37 | orbi1 793 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.38 | pm4.38 605 | 
| [WhiteheadRussell] p.
 118 | Theorem *4.39 | pm4.39 823 | 
| [WhiteheadRussell] p.
 118 | Definition *4.34 | df-3an 982 | 
| [WhiteheadRussell] p.
 119 | Theorem *4.41 | ordi 817 | 
| [WhiteheadRussell] p.
 119 | Theorem *4.42 | pm4.42r 973 | 
| [WhiteheadRussell] p.
 119 | Theorem *4.43 | pm4.43 951 | 
| [WhiteheadRussell] p.
 119 | Theorem *4.44 | pm4.44 780 | 
| [WhiteheadRussell] p.
 119 | Theorem *4.45 | orabs 815  pm4.45 785  pm4.45im 334 | 
| [WhiteheadRussell] p.
 119 | Theorem *10.22 | 19.26 1495 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.5 | anordc 958 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.6 | imordc 898  imorr 722 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.7 | anclb 319 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.51 | ianordc 900 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.52 | pm4.52im 751 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.53 | pm4.53r 752 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.54 | pm4.54dc 903 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.55 | pm4.55dc 940 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.56 | ioran 753  pm4.56 781 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.57 | orandc 941  oranim 782 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.61 | annimim 687 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.62 | pm4.62dc 899 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.63 | pm4.63dc 887 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.64 | pm4.64dc 901 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.65 | pm4.65r 688 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.66 | pm4.66dc 902 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.67 | pm4.67dc 888 | 
| [WhiteheadRussell] p.
 120 | Theorem *4.71 | pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.72 | pm4.72 828 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.73 | iba 300 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.74 | biorf 745 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.76 | jcab 603  pm4.76 604 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.77 | jaob 711  pm4.77 800 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.78 | pm4.78i 783 | 
| [WhiteheadRussell] p.
 121 | Theorem *4.79 | pm4.79dc 904 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.8 | pm4.8 708 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.81 | pm4.81dc 909 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.82 | pm4.82 952 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.83 | pm4.83dc 953 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.84 | imbi1 236 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.85 | imbi2 237 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.86 | bibi1 240 | 
| [WhiteheadRussell] p.
 122 | Theorem *4.87 | bi2.04 248  impexp 263  pm4.87 557 | 
| [WhiteheadRussell] p.
 123 | Theorem *5.1 | pm5.1 601 | 
| [WhiteheadRussell] p.
 123 | Theorem *5.11 | pm5.11dc 910 | 
| [WhiteheadRussell] p.
 123 | Theorem *5.12 | pm5.12dc 911 | 
| [WhiteheadRussell] p.
 123 | Theorem *5.13 | pm5.13dc 913 | 
| [WhiteheadRussell] p.
 123 | Theorem *5.14 | pm5.14dc 912 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.15 | pm5.15dc 1400 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.16 | pm5.16 829 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.17 | pm5.17dc 905 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.18 | nbbndc 1405  pm5.18dc 884 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.19 | pm5.19 707 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.21 | pm5.21 696 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.22 | xordc 1403 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.23 | dfbi3dc 1408 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.24 | pm5.24dc 1409 | 
| [WhiteheadRussell] p.
 124 | Theorem *5.25 | dfor2dc 896 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.3 | pm5.3 475 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.4 | pm5.4 249 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.5 | pm5.5 242 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.6 | pm5.6dc 927  pm5.6r 928 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.7 | pm5.7dc 956 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.31 | pm5.31 348 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.32 | pm5.32 453 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.33 | pm5.33 609 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.35 | pm5.35 918 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.36 | pm5.36 610 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.41 | imdi 250  pm5.41 251 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.42 | pm5.42 320 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.44 | pm5.44 926 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.53 | pm5.53 803 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.54 | pm5.54dc 919 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.55 | pm5.55dc 914 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.61 | pm5.61 795 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.62 | pm5.62dc 947 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.63 | pm5.63dc 948 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.71 | pm5.71dc 963 | 
| [WhiteheadRussell] p.
 125 | Theorem *5.501 | pm5.501 244 | 
| [WhiteheadRussell] p.
 126 | Theorem *5.74 | pm5.74 179 | 
| [WhiteheadRussell] p.
 126 | Theorem *5.75 | pm5.75 964 | 
| [WhiteheadRussell] p.
 150 | Theorem *10.3 | alsyl 1649 | 
| [WhiteheadRussell] p.
 160 | Theorem *11.21 | alrot3 1499 | 
| [WhiteheadRussell] p.
 163 | Theorem *11.42 | 19.40-2 1646 | 
| [WhiteheadRussell] p.
 164 | Theorem *11.53 | pm11.53 1910 | 
| [WhiteheadRussell] p.
 175 | Definition *14.02 | df-eu 2048 | 
| [WhiteheadRussell] p.
 178 | Theorem *13.18 | pm13.18 2448 | 
| [WhiteheadRussell] p.
 178 | Theorem *13.181 | pm13.181 2449 | 
| [WhiteheadRussell] p.
 178 | Theorem *13.183 | pm13.183 2902 | 
| [WhiteheadRussell] p.
 185 | Theorem *14.121 | sbeqalb 3046 | 
| [WhiteheadRussell] p.
 190 | Theorem *14.22 | iota4 5238 | 
| [WhiteheadRussell] p.
 191 | Theorem *14.23 | iota4an 5239 | 
| [WhiteheadRussell] p.
 192 | Theorem *14.26 | eupick 2124  eupickbi 2127 | 
| [WhiteheadRussell] p.
 235 | Definition *30.01 | df-fv 5266 | 
| [WhiteheadRussell] p.
 360 | Theorem *54.43 | pm54.43 7257 |