Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
| Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
|---|
| [AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7217 fidcenum 7058 |
| [AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 7058 |
| [AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7217 |
| [AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12796 |
| [AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 7029 |
| [AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 7015 |
| [AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12811 |
| [AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12813 |
| [AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12802 znnen 12769 |
| [AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12814 |
| [AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12815 |
| [AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10921 |
| [AczelRathjen], p.
183 | Chapter 20 | ax-setind 4585 |
| [AhoHopUll] p.
318 | Section 9.1 | df-concat 11047 df-substr 11099 df-word 10995 lencl 10998 wrd0 11019 |
| [Apostol] p. 18 | Theorem
I.1 | addcan 8252 addcan2d 8257 addcan2i 8255 addcand 8256 addcani 8254 |
| [Apostol] p. 18 | Theorem
I.2 | negeu 8263 |
| [Apostol] p. 18 | Theorem
I.3 | negsub 8320 negsubd 8389 negsubi 8350 |
| [Apostol] p. 18 | Theorem
I.4 | negneg 8322 negnegd 8374 negnegi 8342 |
| [Apostol] p. 18 | Theorem
I.5 | subdi 8457 subdid 8486 subdii 8479 subdir 8458 subdird 8487 subdiri 8480 |
| [Apostol] p. 18 | Theorem
I.6 | mul01 8461 mul01d 8465 mul01i 8463 mul02 8459 mul02d 8464 mul02i 8462 |
| [Apostol] p. 18 | Theorem
I.9 | divrecapd 8866 |
| [Apostol] p. 18 | Theorem
I.10 | recrecapi 8817 |
| [Apostol] p. 18 | Theorem
I.12 | mul2neg 8470 mul2negd 8485 mul2negi 8478 mulneg1 8467 mulneg1d 8483 mulneg1i 8476 |
| [Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 13906 |
| [Apostol] p. 18 | Theorem
I.15 | divdivdivap 8786 |
| [Apostol] p. 20 | Axiom
7 | rpaddcl 9799 rpaddcld 9834 rpmulcl 9800 rpmulcld 9835 |
| [Apostol] p. 20 | Axiom
9 | 0nrp 9811 |
| [Apostol] p. 20 | Theorem
I.17 | lttri 8177 |
| [Apostol] p. 20 | Theorem
I.18 | ltadd1d 8611 ltadd1dd 8629 ltadd1i 8575 |
| [Apostol] p. 20 | Theorem
I.19 | ltmul1 8665 ltmul1a 8664 ltmul1i 8993 ltmul1ii 9001 ltmul2 8929 ltmul2d 9861 ltmul2dd 9875 ltmul2i 8996 |
| [Apostol] p. 20 | Theorem
I.21 | 0lt1 8199 |
| [Apostol] p. 20 | Theorem
I.23 | lt0neg1 8541 lt0neg1d 8588 ltneg 8535 ltnegd 8596 ltnegi 8566 |
| [Apostol] p. 20 | Theorem
I.25 | lt2add 8518 lt2addd 8640 lt2addi 8583 |
| [Apostol] p.
20 | Definition of positive numbers | df-rp 9776 |
| [Apostol] p. 21 | Exercise
4 | recgt0 8923 recgt0d 9007 recgt0i 8979 recgt0ii 8980 |
| [Apostol] p.
22 | Definition of integers | df-z 9373 |
| [Apostol] p.
22 | Definition of rationals | df-q 9741 |
| [Apostol] p. 24 | Theorem
I.26 | supeuti 7096 |
| [Apostol] p. 26 | Theorem
I.29 | arch 9292 |
| [Apostol] p. 28 | Exercise
2 | btwnz 9492 |
| [Apostol] p. 28 | Exercise
3 | nnrecl 9293 |
| [Apostol] p. 28 | Exercise
6 | qbtwnre 10399 |
| [Apostol] p. 28 | Exercise
10(a) | zeneo 12182 zneo 9474 |
| [Apostol] p. 29 | Theorem
I.35 | resqrtth 11342 sqrtthi 11430 |
| [Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 9039 |
| [Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12357 |
| [Apostol] p.
363 | Remark | absgt0api 11457 |
| [Apostol] p.
363 | Example | abssubd 11504 abssubi 11461 |
| [ApostolNT] p.
14 | Definition | df-dvds 12099 |
| [ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 12115 |
| [ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 12139 |
| [ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 12135 |
| [ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 12129 |
| [ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 12131 |
| [ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 12116 |
| [ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 12117 |
| [ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 12122 |
| [ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 12156 |
| [ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 12158 |
| [ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 12160 |
| [ApostolNT] p.
15 | Definition | dfgcd2 12335 |
| [ApostolNT] p.
16 | Definition | isprm2 12439 |
| [ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12414 |
| [ApostolNT] p.
16 | Theorem 1.7 | prminf 12826 |
| [ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 12294 |
| [ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12336 |
| [ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12338 |
| [ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 12308 |
| [ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 12301 |
| [ApostolNT] p.
17 | Theorem 1.8 | coprm 12466 |
| [ApostolNT] p.
17 | Theorem 1.9 | euclemma 12468 |
| [ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12691 |
| [ApostolNT] p.
19 | Theorem 1.14 | divalg 12235 |
| [ApostolNT] p.
20 | Theorem 1.15 | eucalg 12381 |
| [ApostolNT] p.
25 | Definition | df-phi 12533 |
| [ApostolNT] p.
26 | Theorem 2.2 | phisum 12563 |
| [ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12544 |
| [ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12548 |
| [ApostolNT] p.
38 | Remark | df-sgm 15454 |
| [ApostolNT] p.
38 | Definition | df-sgm 15454 |
| [ApostolNT] p.
104 | Definition | congr 12422 |
| [ApostolNT] p.
106 | Remark | dvdsval3 12102 |
| [ApostolNT] p.
106 | Definition | moddvds 12110 |
| [ApostolNT] p.
107 | Example 2 | mod2eq0even 12189 |
| [ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 12190 |
| [ApostolNT] p.
107 | Example 4 | zmod1congr 10486 |
| [ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10523 |
| [ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10811 |
| [ApostolNT] p.
108 | Theorem 5.3 | modmulconst 12134 |
| [ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12425 |
| [ApostolNT] p.
109 | Theorem 5.6 | gcdmodi 12744 |
| [ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12427 |
| [ApostolNT] p.
113 | Theorem 5.17 | eulerth 12555 |
| [ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12574 |
| [ApostolNT] p.
114 | Theorem 5.19 | fermltl 12556 |
| [ApostolNT] p.
179 | Definition | df-lgs 15475 lgsprme0 15519 |
| [ApostolNT] p.
180 | Example 1 | 1lgs 15520 |
| [ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 15496 |
| [ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 15511 |
| [ApostolNT] p.
181 | Theorem 9.4 | m1lgs 15562 |
| [ApostolNT] p.
181 | Theorem 9.5 | 2lgs 15581 2lgsoddprm 15590 |
| [ApostolNT] p.
182 | Theorem 9.6 | gausslemma2d 15546 |
| [ApostolNT] p.
185 | Theorem 9.8 | lgsquad 15557 |
| [ApostolNT] p.
188 | Definition | df-lgs 15475 lgs1 15521 |
| [ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 15512 |
| [ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 15514 |
| [ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 15522 |
| [ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 15523 |
| [Bauer] p. 482 | Section
1.2 | pm2.01 617 pm2.65 661 |
| [Bauer] p. 483 | Theorem
1.3 | acexmid 5943 onsucelsucexmidlem 4577 |
| [Bauer], p.
481 | Section 1.1 | pwtrufal 15934 |
| [Bauer], p.
483 | Definition | n0rf 3473 |
| [Bauer], p. 483 | Theorem
1.2 | 2irrexpq 15448 2irrexpqap 15450 |
| [Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6973 |
| [Bauer], p. 493 | Section
5.1 | ivthdich 15125 |
| [Bauer], p. 494 | Theorem
5.5 | ivthinc 15115 |
| [BauerHanson], p.
27 | Proposition 5.2 | cnstab 8718 |
| [BauerSwan], p.
14 | Remark | 0ct 7209 ctm 7211 |
| [BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 15937 |
| [BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7217 |
| [BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7614 |
| [BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7527 |
| [BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7616 |
| [BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7650 addlocpr 7649 |
| [BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7676 |
| [BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7679 |
| [BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7684 |
| [BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
| [BellMachover] p.
97 | Definition 10.1 | df-eu 2057 |
| [BellMachover] p.
460 | Notation | df-mo 2058 |
| [BellMachover] p.
460 | Definition | mo3 2108 mo3h 2107 |
| [BellMachover] p.
462 | Theorem 1.1 | bm1.1 2190 |
| [BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4165 |
| [BellMachover] p.
466 | Axiom Pow | axpow3 4221 |
| [BellMachover] p.
466 | Axiom Union | axun2 4482 |
| [BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4590 |
| [BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4431 |
| [BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4593 |
| [BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4544 |
| [BellMachover] p.
471 | Definition of Lim | df-ilim 4416 |
| [BellMachover] p.
472 | Axiom Inf | zfinf2 4637 |
| [BellMachover] p.
473 | Theorem 2.8 | limom 4662 |
| [Bobzien] p.
116 | Statement T3 | stoic3 1451 |
| [Bobzien] p.
117 | Statement T2 | stoic2a 1449 |
| [Bobzien] p.
117 | Statement T4 | stoic4a 1452 |
| [Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1447 |
| [Bollobas] p. 1 | Section
I.1 | df-edg 15653 |
| [BourbakiAlg1] p.
1 | Definition 1 | df-mgm 13188 |
| [BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 13234 |
| [BourbakiAlg1] p.
12 | Definition 2 | df-mnd 13249 |
| [BourbakiAlg1] p.
92 | Definition 1 | df-ring 13760 |
| [BourbakiAlg1] p.
93 | Section I.8.1 | df-rng 13695 |
| [BourbakiEns] p.
| Proposition 8 | fcof1 5852 fcofo 5853 |
| [BourbakiTop1] p.
| Remark | xnegmnf 9951 xnegpnf 9950 |
| [BourbakiTop1] p.
| Remark | rexneg 9952 |
| [BourbakiTop1] p.
| Proposition | ishmeo 14776 |
| [BourbakiTop1] p.
| Property V_i | ssnei2 14629 |
| [BourbakiTop1] p.
| Property V_ii | innei 14635 |
| [BourbakiTop1] p.
| Property V_iv | neissex 14637 |
| [BourbakiTop1] p.
| Proposition 1 | neipsm 14626 neiss 14622 |
| [BourbakiTop1] p.
| Proposition 2 | cnptopco 14694 |
| [BourbakiTop1] p.
| Proposition 4 | imasnopn 14771 |
| [BourbakiTop1] p.
| Property V_iii | elnei 14624 |
| [BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 14470 |
| [Bruck] p. 1 | Section
I.1 | df-mgm 13188 |
| [Bruck] p. 23 | Section
II.1 | df-sgrp 13234 |
| [Bruck] p. 28 | Theorem
3.2 | dfgrp3m 13431 |
| [ChoquetDD] p.
2 | Definition of mapping | df-mpt 4107 |
| [Cohen] p.
301 | Remark | relogoprlem 15340 |
| [Cohen] p. 301 | Property
2 | relogmul 15341 relogmuld 15356 |
| [Cohen] p. 301 | Property
3 | relogdiv 15342 relogdivd 15357 |
| [Cohen] p. 301 | Property
4 | relogexp 15344 |
| [Cohen] p. 301 | Property
1a | log1 15338 |
| [Cohen] p. 301 | Property
1b | loge 15339 |
| [Cohen4] p.
348 | Observation | relogbcxpbap 15437 |
| [Cohen4] p.
352 | Definition | rpelogb 15421 |
| [Cohen4] p. 361 | Property
2 | rprelogbmul 15427 |
| [Cohen4] p. 361 | Property
3 | logbrec 15432 rprelogbdiv 15429 |
| [Cohen4] p. 361 | Property
4 | rplogbreexp 15425 |
| [Cohen4] p. 361 | Property
6 | relogbexpap 15430 |
| [Cohen4] p. 361 | Property
1(a) | rplogbid1 15419 |
| [Cohen4] p. 361 | Property
1(b) | rplogb1 15420 |
| [Cohen4] p.
367 | Property | rplogbchbase 15422 |
| [Cohen4] p. 377 | Property
2 | logblt 15434 |
| [Crosilla] p. | Axiom
1 | ax-ext 2187 |
| [Crosilla] p. | Axiom
2 | ax-pr 4253 |
| [Crosilla] p. | Axiom
3 | ax-un 4480 |
| [Crosilla] p. | Axiom
4 | ax-nul 4170 |
| [Crosilla] p. | Axiom
5 | ax-iinf 4636 |
| [Crosilla] p. | Axiom
6 | ru 2997 |
| [Crosilla] p. | Axiom
8 | ax-pow 4218 |
| [Crosilla] p. | Axiom
9 | ax-setind 4585 |
| [Crosilla], p. | Axiom
6 | ax-sep 4162 |
| [Crosilla], p. | Axiom
7 | ax-coll 4159 |
| [Crosilla], p. | Axiom
7' | repizf 4160 |
| [Crosilla], p. | Theorem
is stated | ordtriexmid 4569 |
| [Crosilla], p. | Axiom
of choice implies instances | acexmid 5943 |
| [Crosilla], p.
| Definition of ordinal | df-iord 4413 |
| [Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4583 |
| [Eisenberg] p.
67 | Definition 5.3 | df-dif 3168 |
| [Eisenberg] p.
82 | Definition 6.3 | df-iom 4639 |
| [Eisenberg] p.
125 | Definition 8.21 | df-map 6737 |
| [Enderton] p. 18 | Axiom
of Empty Set | axnul 4169 |
| [Enderton] p.
19 | Definition | df-tp 3641 |
| [Enderton] p.
26 | Exercise 5 | unissb 3880 |
| [Enderton] p.
26 | Exercise 10 | pwel 4262 |
| [Enderton] p.
28 | Exercise 7(b) | pwunim 4333 |
| [Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3997 iinin2m 3996 iunin1 3992 iunin2 3991 |
| [Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3995 iundif2ss 3993 |
| [Enderton] p.
33 | Exercise 23 | iinuniss 4010 |
| [Enderton] p.
33 | Exercise 25 | iununir 4011 |
| [Enderton] p.
33 | Exercise 24(a) | iinpw 4018 |
| [Enderton] p.
33 | Exercise 24(b) | iunpw 4527 iunpwss 4019 |
| [Enderton] p.
38 | Exercise 6(a) | unipw 4261 |
| [Enderton] p.
38 | Exercise 6(b) | pwuni 4236 |
| [Enderton] p. 41 | Lemma
3D | opeluu 4497 rnex 4946
rnexg 4943 |
| [Enderton] p.
41 | Exercise 8 | dmuni 4888 rnuni 5094 |
| [Enderton] p.
42 | Definition of a function | dffun7 5298 dffun8 5299 |
| [Enderton] p.
43 | Definition of function value | funfvdm2 5643 |
| [Enderton] p.
43 | Definition of single-rooted | funcnv 5335 |
| [Enderton] p.
44 | Definition (d) | dfima2 5024 dfima3 5025 |
| [Enderton] p.
47 | Theorem 3H | fvco2 5648 |
| [Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7318 |
| [Enderton] p.
50 | Theorem 3K(a) | imauni 5830 |
| [Enderton] p.
52 | Definition | df-map 6737 |
| [Enderton] p.
53 | Exercise 21 | coass 5201 |
| [Enderton] p.
53 | Exercise 27 | dmco 5191 |
| [Enderton] p.
53 | Exercise 14(a) | funin 5345 |
| [Enderton] p.
53 | Exercise 22(a) | imass2 5058 |
| [Enderton] p.
54 | Remark | ixpf 6807 ixpssmap 6819 |
| [Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6786 |
| [Enderton] p.
56 | Theorem 3M | erref 6640 |
| [Enderton] p. 57 | Lemma
3N | erthi 6668 |
| [Enderton] p.
57 | Definition | df-ec 6622 |
| [Enderton] p.
58 | Definition | df-qs 6626 |
| [Enderton] p.
60 | Theorem 3Q | th3q 6727 th3qcor 6726 th3qlem1 6724 th3qlem2 6725 |
| [Enderton] p.
61 | Exercise 35 | df-ec 6622 |
| [Enderton] p.
65 | Exercise 56(a) | dmun 4885 |
| [Enderton] p.
68 | Definition of successor | df-suc 4418 |
| [Enderton] p.
71 | Definition | df-tr 4143 dftr4 4147 |
| [Enderton] p.
72 | Theorem 4E | unisuc 4460 unisucg 4461 |
| [Enderton] p.
73 | Exercise 6 | unisuc 4460 unisucg 4461 |
| [Enderton] p.
73 | Exercise 5(a) | truni 4156 |
| [Enderton] p.
73 | Exercise 5(b) | trint 4157 |
| [Enderton] p.
79 | Theorem 4I(A1) | nna0 6560 |
| [Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6562 onasuc 6552 |
| [Enderton] p.
79 | Definition of operation value | df-ov 5947 |
| [Enderton] p.
80 | Theorem 4J(A1) | nnm0 6561 |
| [Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6563 onmsuc 6559 |
| [Enderton] p.
81 | Theorem 4K(1) | nnaass 6571 |
| [Enderton] p.
81 | Theorem 4K(2) | nna0r 6564 nnacom 6570 |
| [Enderton] p.
81 | Theorem 4K(3) | nndi 6572 |
| [Enderton] p.
81 | Theorem 4K(4) | nnmass 6573 |
| [Enderton] p.
81 | Theorem 4K(5) | nnmcom 6575 |
| [Enderton] p.
82 | Exercise 16 | nnm0r 6565 nnmsucr 6574 |
| [Enderton] p.
88 | Exercise 23 | nnaordex 6614 |
| [Enderton] p.
129 | Definition | df-en 6828 |
| [Enderton] p.
132 | Theorem 6B(b) | canth 5897 |
| [Enderton] p.
133 | Exercise 1 | xpomen 12766 |
| [Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6962 |
| [Enderton] p.
136 | Corollary 6E | nneneq 6954 |
| [Enderton] p.
139 | Theorem 6H(c) | mapen 6943 |
| [Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7330 |
| [Enderton] p.
143 | Theorem 6J | dju0en 7326 dju1en 7325 |
| [Enderton] p.
144 | Corollary 6K | undif2ss 3536 |
| [Enderton] p.
145 | Figure 38 | ffoss 5554 |
| [Enderton] p.
145 | Definition | df-dom 6829 |
| [Enderton] p.
146 | Example 1 | domen 6840 domeng 6841 |
| [Enderton] p.
146 | Example 3 | nndomo 6961 |
| [Enderton] p.
149 | Theorem 6L(c) | xpdom1 6930 xpdom1g 6928 xpdom2g 6927 |
| [Enderton] p.
168 | Definition | df-po 4343 |
| [Enderton] p.
192 | Theorem 7M(a) | oneli 4475 |
| [Enderton] p.
192 | Theorem 7M(b) | ontr1 4436 |
| [Enderton] p.
192 | Theorem 7M(c) | onirri 4591 |
| [Enderton] p.
193 | Corollary 7N(b) | 0elon 4439 |
| [Enderton] p.
193 | Corollary 7N(c) | onsuci 4564 |
| [Enderton] p.
193 | Corollary 7N(d) | ssonunii 4537 |
| [Enderton] p.
194 | Remark | onprc 4600 |
| [Enderton] p.
194 | Exercise 16 | suc11 4606 |
| [Enderton] p.
197 | Definition | df-card 7286 |
| [Enderton] p.
200 | Exercise 25 | tfis 4631 |
| [Enderton] p.
206 | Theorem 7X(b) | en2lp 4602 |
| [Enderton] p.
207 | Exercise 34 | opthreg 4604 |
| [Enderton] p.
208 | Exercise 35 | suc11g 4605 |
| [Geuvers], p.
1 | Remark | expap0 10714 |
| [Geuvers], p. 6 | Lemma
2.13 | mulap0r 8688 |
| [Geuvers], p. 6 | Lemma
2.15 | mulap0 8727 |
| [Geuvers], p. 9 | Lemma
2.35 | msqge0 8689 |
| [Geuvers], p.
9 | Definition 3.1(2) | ax-arch 8044 |
| [Geuvers], p. 10 | Lemma
3.9 | maxcom 11514 |
| [Geuvers], p. 10 | Lemma
3.10 | maxle1 11522 maxle2 11523 |
| [Geuvers], p. 10 | Lemma
3.11 | maxleast 11524 |
| [Geuvers], p. 10 | Lemma
3.12 | maxleb 11527 |
| [Geuvers], p.
11 | Definition 3.13 | dfabsmax 11528 |
| [Geuvers], p.
17 | Definition 6.1 | df-ap 8655 |
| [Gleason] p.
117 | Proposition 9-2.1 | df-enq 7460 enqer 7471 |
| [Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7464 df-nqqs 7461 |
| [Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7457 df-plqqs 7462 |
| [Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7458 df-mqqs 7463 |
| [Gleason] p.
119 | Proposition 9-2.5 | df-rq 7465 |
| [Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7521 |
| [Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7524 ltbtwnnq 7529 ltbtwnnqq 7528 |
| [Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7513 |
| [Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7514 |
| [Gleason] p.
123 | Proposition 9-3.5 | addclpr 7650 |
| [Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7692 |
| [Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7691 |
| [Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7710 |
| [Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7726 |
| [Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7732 ltaprlem 7731 |
| [Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7729 |
| [Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7685 |
| [Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7705 |
| [Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7694 |
| [Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7693 |
| [Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7701 |
| [Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7751 |
| [Gleason] p.
126 | Proposition 9-4.1 | df-enr 7839 enrer 7848 |
| [Gleason] p.
126 | Proposition 9-4.2 | df-0r 7844 df-1r 7845 df-nr 7840 |
| [Gleason] p.
126 | Proposition 9-4.3 | df-mr 7842 df-plr 7841 negexsr 7885 recexsrlem 7887 |
| [Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7843 |
| [Gleason] p.
130 | Proposition 10-1.3 | creui 9033 creur 9032 cru 8675 |
| [Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 8036 axcnre 7994 |
| [Gleason] p.
132 | Definition 10-3.1 | crim 11169 crimd 11288 crimi 11248 crre 11168 crred 11287 crrei 11247 |
| [Gleason] p.
132 | Definition 10-3.2 | remim 11171 remimd 11253 |
| [Gleason] p.
133 | Definition 10.36 | absval2 11368 absval2d 11496 absval2i 11455 |
| [Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 11195 cjaddd 11276 cjaddi 11243 |
| [Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 11196 cjmuld 11277 cjmuli 11244 |
| [Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 11194 cjcjd 11254 cjcji 11226 |
| [Gleason] p.
133 | Proposition 10-3.4(f) | cjre 11193 cjreb 11177 cjrebd 11257 cjrebi 11229 cjred 11282 rere 11176 rereb 11174 rerebd 11256 rerebi 11228 rered 11280 |
| [Gleason] p.
133 | Proposition 10-3.4(h) | addcj 11202 addcjd 11268 addcji 11238 |
| [Gleason] p.
133 | Proposition 10-3.7(a) | absval 11312 |
| [Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11363 abscjd 11501 abscji 11459 |
| [Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11375 abs00d 11497 abs00i 11456 absne0d 11498 |
| [Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11407 releabsd 11502 releabsi 11460 |
| [Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11380 absmuld 11505 absmuli 11462 |
| [Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11366 sqabsaddi 11463 |
| [Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11415 abstrid 11507 abstrii 11466 |
| [Gleason] p.
134 | Definition 10-4.1 | df-exp 10684 exp0 10688 expp1 10691 expp1d 10819 |
| [Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10726 expaddd 10820 |
| [Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 15384 cxpmuld 15409 expmul 10729 expmuld 10821 |
| [Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10723 mulexpd 10833 rpmulcxp 15381 |
| [Gleason] p.
141 | Definition 11-2.1 | fzval 10132 |
| [Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11637 |
| [Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11639 |
| [Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11638 |
| [Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11642 |
| [Gleason] p.
172 | Corollary 12-2.5 | climrecl 11635 |
| [Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11631 climcj 11632 climim 11634 climre 11633 |
| [Gleason] p.
173 | Definition 12-3.1 | df-ltxr 8112 df-xr 8111 ltxr 9897 |
| [Gleason] p. 180 | Theorem
12-5.3 | climcau 11658 |
| [Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10443 |
| [Gleason] p.
223 | Definition 14-1.1 | df-met 14307 |
| [Gleason] p.
223 | Definition 14-1.1(a) | met0 14836 xmet0 14835 |
| [Gleason] p.
223 | Definition 14-1.1(c) | metsym 14843 |
| [Gleason] p.
223 | Definition 14-1.1(d) | mettri 14845 mstri 14945 xmettri 14844 xmstri 14944 |
| [Gleason] p.
230 | Proposition 14-2.6 | txlm 14751 |
| [Gleason] p.
240 | Proposition 14-4.2 | metcnp3 14983 |
| [Gleason] p.
243 | Proposition 14-4.16 | addcn2 11621 addcncntop 15034 mulcn2 11623 mulcncntop 15036 subcn2 11622 subcncntop 15035 |
| [Gleason] p.
295 | Remark | bcval3 10896 bcval4 10897 |
| [Gleason] p.
295 | Equation 2 | bcpasc 10911 |
| [Gleason] p.
295 | Definition of binomial coefficient | bcval 10894 df-bc 10893 |
| [Gleason] p.
296 | Remark | bcn0 10900 bcnn 10902 |
| [Gleason] p. 296 | Theorem
15-2.8 | binom 11795 |
| [Gleason] p.
308 | Equation 2 | ef0 11983 |
| [Gleason] p.
308 | Equation 3 | efcj 11984 |
| [Gleason] p.
309 | Corollary 15-4.3 | efne0 11989 |
| [Gleason] p.
309 | Corollary 15-4.4 | efexp 11993 |
| [Gleason] p.
310 | Equation 14 | sinadd 12047 |
| [Gleason] p.
310 | Equation 15 | cosadd 12048 |
| [Gleason] p.
311 | Equation 17 | sincossq 12059 |
| [Gleason] p.
311 | Equation 18 | cosbnd 12064 sinbnd 12063 |
| [Gleason] p.
311 | Definition of ` ` | df-pi 11964 |
| [Golan] p.
1 | Remark | srgisid 13748 |
| [Golan] p.
1 | Definition | df-srg 13726 |
| [Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
| [Hamilton] p. 73 | Rule
1 | ax-mp 5 |
| [Hamilton] p. 74 | Rule
2 | ax-gen 1472 |
| [Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 13343 mndideu 13258 |
| [Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 13370 |
| [Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 13399 |
| [Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 13410 |
| [Herstein] p.
57 | Exercise 1 | dfgrp3me 13432 |
| [Heyting] p.
127 | Axiom #1 | ax1hfs 16013 |
| [Hitchcock] p. 5 | Rule
A3 | mptnan 1443 |
| [Hitchcock] p. 5 | Rule
A4 | mptxor 1444 |
| [Hitchcock] p. 5 | Rule
A5 | mtpxor 1446 |
| [HoTT], p. | Lemma
10.4.1 | exmidontriim 7337 |
| [HoTT], p. | Theorem
7.2.6 | nndceq 6585 |
| [HoTT], p.
| Exercise 11.10 | neapmkv 16007 |
| [HoTT], p. | Exercise
11.11 | mulap0bd 8730 |
| [HoTT], p. | Section
11.2.1 | df-iltp 7583 df-imp 7582 df-iplp 7581 df-reap 8648 |
| [HoTT], p. | Theorem
11.2.4 | recapb 8744 rerecapb 8916 |
| [HoTT], p. | Corollary
3.9.2 | uchoice 6223 |
| [HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7775 |
| [HoTT], p. | Corollary
11.4.3 | conventions 15657 |
| [HoTT], p.
| Exercise 11.6(i) | dcapnconst 16000 dceqnconst 15999 |
| [HoTT], p. | Corollary
11.2.13 | axcaucvg 8013 caucvgpr 7795 caucvgprpr 7825 caucvgsr 7915 |
| [HoTT], p. | Definition
11.2.1 | df-inp 7579 |
| [HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 16005 |
| [HoTT], p. | Proposition
11.2.3 | df-iso 4344 ltpopr 7708 ltsopr 7709 |
| [HoTT], p. | Definition
11.2.7(v) | apsym 8679 reapcotr 8671 reapirr 8650 |
| [HoTT], p. | Definition
11.2.7(vi) | 0lt1 8199 gt0add 8646 leadd1 8503 lelttr 8161 lemul1a 8931 lenlt 8148 ltadd1 8502 ltletr 8162 ltmul1 8665 reaplt 8661 |
| [Jech] p. 4 | Definition of
class | cv 1372 cvjust 2200 |
| [Jech] p.
78 | Note | opthprc 4726 |
| [KalishMontague] p.
81 | Note 1 | ax-i9 1553 |
| [Kreyszig] p.
3 | Property M1 | metcl 14825 xmetcl 14824 |
| [Kreyszig] p.
4 | Property M2 | meteq0 14832 |
| [Kreyszig] p.
12 | Equation 5 | muleqadd 8741 |
| [Kreyszig] p.
18 | Definition 1.3-2 | mopnval 14914 |
| [Kreyszig] p.
19 | Remark | mopntopon 14915 |
| [Kreyszig] p.
19 | Theorem T1 | mopn0 14960 mopnm 14920 |
| [Kreyszig] p.
19 | Theorem T2 | unimopn 14958 |
| [Kreyszig] p.
19 | Definition of neighborhood | neibl 14963 |
| [Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 14985 |
| [Kreyszig] p.
25 | Definition 1.4-1 | lmbr 14685 |
| [Kreyszig] p.
51 | Equation 2 | lmodvneg1 14092 |
| [Kreyszig] p.
51 | Equation 1a | lmod0vs 14083 |
| [Kreyszig] p.
51 | Equation 1b | lmodvs0 14084 |
| [Kunen] p. 10 | Axiom
0 | a9e 1719 |
| [Kunen] p. 12 | Axiom
6 | zfrep6 4161 |
| [Kunen] p. 24 | Definition
10.24 | mapval 6747 mapvalg 6745 |
| [Kunen] p. 31 | Definition
10.24 | mapex 6741 |
| [KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3937 |
| [Lang] p.
3 | Statement | lidrideqd 13213 mndbn0 13263 |
| [Lang] p.
3 | Definition | df-mnd 13249 |
| [Lang] p. 4 | Definition of a
(finite) product | gsumsplit1r 13230 |
| [Lang] p.
5 | Equation | gsumfzreidx 13673 |
| [Lang] p.
6 | Definition | mulgnn0gsum 13464 |
| [Lang] p.
7 | Definition | dfgrp2e 13360 |
| [Levy] p.
338 | Axiom | df-clab 2192 df-clel 2201 df-cleq 2198 |
| [Lopez-Astorga] p.
12 | Rule 1 | mptnan 1443 |
| [Lopez-Astorga] p.
12 | Rule 2 | mptxor 1444 |
| [Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1446 |
| [Margaris] p. 40 | Rule
C | exlimiv 1621 |
| [Margaris] p. 49 | Axiom
A1 | ax-1 6 |
| [Margaris] p. 49 | Axiom
A2 | ax-2 7 |
| [Margaris] p. 49 | Axiom
A3 | condc 855 |
| [Margaris] p.
49 | Definition | dfbi2 388 dfordc 894 exalim 1525 |
| [Margaris] p.
51 | Theorem 1 | idALT 20 |
| [Margaris] p.
56 | Theorem 3 | syld 45 |
| [Margaris] p.
60 | Theorem 8 | jcn 653 |
| [Margaris] p.
89 | Theorem 19.2 | 19.2 1661 r19.2m 3547 |
| [Margaris] p.
89 | Theorem 19.3 | 19.3 1577 19.3h 1576 rr19.3v 2912 |
| [Margaris] p.
89 | Theorem 19.5 | alcom 1501 |
| [Margaris] p.
89 | Theorem 19.6 | alexdc 1642 alexim 1668 |
| [Margaris] p.
89 | Theorem 19.7 | alnex 1522 |
| [Margaris] p.
89 | Theorem 19.8 | 19.8a 1613 spsbe 1865 |
| [Margaris] p.
89 | Theorem 19.9 | 19.9 1667 19.9h 1666 19.9v 1894 exlimd 1620 |
| [Margaris] p.
89 | Theorem 19.11 | excom 1687 excomim 1686 |
| [Margaris] p.
89 | Theorem 19.12 | 19.12 1688 r19.12 2612 |
| [Margaris] p.
90 | Theorem 19.14 | exnalim 1669 |
| [Margaris] p.
90 | Theorem 19.15 | albi 1491 ralbi 2638 |
| [Margaris] p.
90 | Theorem 19.16 | 19.16 1578 |
| [Margaris] p.
90 | Theorem 19.17 | 19.17 1579 |
| [Margaris] p.
90 | Theorem 19.18 | exbi 1627 rexbi 2639 |
| [Margaris] p.
90 | Theorem 19.19 | 19.19 1689 |
| [Margaris] p.
90 | Theorem 19.20 | alim 1480 alimd 1544 alimdh 1490 alimdv 1902 ralimdaa 2572 ralimdv 2574 ralimdva 2573 ralimdvva 2575 sbcimdv 3064 |
| [Margaris] p.
90 | Theorem 19.21 | 19.21-2 1690 19.21 1606 19.21bi 1581 19.21h 1580 19.21ht 1604 19.21t 1605 19.21v 1896 alrimd 1633 alrimdd 1632 alrimdh 1502 alrimdv 1899 alrimi 1545 alrimih 1492 alrimiv 1897 alrimivv 1898 r19.21 2582 r19.21be 2597 r19.21bi 2594 r19.21t 2581 r19.21v 2583 ralrimd 2584 ralrimdv 2585 ralrimdva 2586 ralrimdvv 2590 ralrimdvva 2591 ralrimi 2577 ralrimiv 2578 ralrimiva 2579 ralrimivv 2587 ralrimivva 2588 ralrimivvva 2589 ralrimivw 2580 rexlimi 2616 |
| [Margaris] p.
90 | Theorem 19.22 | 2alimdv 1904 2eximdv 1905 exim 1622
eximd 1635 eximdh 1634 eximdv 1903 rexim 2600 reximdai 2604 reximddv 2609 reximddv2 2611 reximdv 2607 reximdv2 2605 reximdva 2608 reximdvai 2606 reximi2 2602 |
| [Margaris] p.
90 | Theorem 19.23 | 19.23 1701 19.23bi 1615 19.23h 1521 19.23ht 1520 19.23t 1700 19.23v 1906 19.23vv 1907 exlimd2 1618 exlimdh 1619 exlimdv 1842 exlimdvv 1921 exlimi 1617 exlimih 1616 exlimiv 1621 exlimivv 1920 r19.23 2614 r19.23v 2615 rexlimd 2620 rexlimdv 2622 rexlimdv3a 2625 rexlimdva 2623 rexlimdva2 2626 rexlimdvaa 2624 rexlimdvv 2630 rexlimdvva 2631 rexlimdvw 2627 rexlimiv 2617 rexlimiva 2618 rexlimivv 2629 |
| [Margaris] p.
90 | Theorem 19.24 | i19.24 1662 |
| [Margaris] p.
90 | Theorem 19.25 | 19.25 1649 |
| [Margaris] p.
90 | Theorem 19.26 | 19.26-2 1505 19.26-3an 1506 19.26 1504 r19.26-2 2635 r19.26-3 2636 r19.26 2632 r19.26m 2637 |
| [Margaris] p.
90 | Theorem 19.27 | 19.27 1584 19.27h 1583 19.27v 1923 r19.27av 2641 r19.27m 3556 r19.27mv 3557 |
| [Margaris] p.
90 | Theorem 19.28 | 19.28 1586 19.28h 1585 19.28v 1924 r19.28av 2642 r19.28m 3550 r19.28mv 3553 rr19.28v 2913 |
| [Margaris] p.
90 | Theorem 19.29 | 19.29 1643 19.29r 1644 19.29r2 1645 19.29x 1646 r19.29 2643 r19.29d2r 2650 r19.29r 2644 |
| [Margaris] p.
90 | Theorem 19.30 | 19.30dc 1650 |
| [Margaris] p.
90 | Theorem 19.31 | 19.31r 1704 |
| [Margaris] p.
90 | Theorem 19.32 | 19.32dc 1702 19.32r 1703 r19.32r 2652 r19.32vdc 2655 r19.32vr 2654 |
| [Margaris] p.
90 | Theorem 19.33 | 19.33 1507 19.33b2 1652 19.33bdc 1653 |
| [Margaris] p.
90 | Theorem 19.34 | 19.34 1707 |
| [Margaris] p.
90 | Theorem 19.35 | 19.35-1 1647 19.35i 1648 |
| [Margaris] p.
90 | Theorem 19.36 | 19.36-1 1696 19.36aiv 1925 19.36i 1695 r19.36av 2657 |
| [Margaris] p.
90 | Theorem 19.37 | 19.37-1 1697 19.37aiv 1698 r19.37 2658 r19.37av 2659 |
| [Margaris] p.
90 | Theorem 19.38 | 19.38 1699 |
| [Margaris] p.
90 | Theorem 19.39 | i19.39 1663 |
| [Margaris] p.
90 | Theorem 19.40 | 19.40-2 1655 19.40 1654 r19.40 2660 |
| [Margaris] p.
90 | Theorem 19.41 | 19.41 1709 19.41h 1708 19.41v 1926 19.41vv 1927 19.41vvv 1928 19.41vvvv 1929 r19.41 2661 r19.41v 2662 |
| [Margaris] p.
90 | Theorem 19.42 | 19.42 1711 19.42h 1710 19.42v 1930 19.42vv 1935 19.42vvv 1936 19.42vvvv 1937 r19.42v 2663 |
| [Margaris] p.
90 | Theorem 19.43 | 19.43 1651 r19.43 2664 |
| [Margaris] p.
90 | Theorem 19.44 | 19.44 1705 r19.44av 2665 r19.44mv 3555 |
| [Margaris] p.
90 | Theorem 19.45 | 19.45 1706 r19.45av 2666 r19.45mv 3554 |
| [Margaris] p.
110 | Exercise 2(b) | eu1 2079 |
| [Megill] p. 444 | Axiom
C5 | ax-17 1549 |
| [Megill] p. 445 | Lemma
L12 | alequcom 1538 ax-10 1528 |
| [Megill] p. 446 | Lemma
L17 | equtrr 1733 |
| [Megill] p. 446 | Lemma
L19 | hbnae 1744 |
| [Megill] p. 447 | Remark
9.1 | df-sb 1786 sbid 1797 |
| [Megill] p. 448 | Scheme
C5' | ax-4 1533 |
| [Megill] p. 448 | Scheme
C6' | ax-7 1471 |
| [Megill] p. 448 | Scheme
C8' | ax-8 1527 |
| [Megill] p. 448 | Scheme
C9' | ax-i12 1530 |
| [Megill] p. 448 | Scheme
C11' | ax-10o 1739 |
| [Megill] p. 448 | Scheme
C12' | ax-13 2178 |
| [Megill] p. 448 | Scheme
C13' | ax-14 2179 |
| [Megill] p. 448 | Scheme
C15' | ax-11o 1846 |
| [Megill] p. 448 | Scheme
C16' | ax-16 1837 |
| [Megill] p. 448 | Theorem
9.4 | dral1 1753 dral2 1754 drex1 1821 drex2 1755 drsb1 1822 drsb2 1864 |
| [Megill] p. 449 | Theorem
9.7 | sbcom2 2015 sbequ 1863 sbid2v 2024 |
| [Megill] p. 450 | Example
in Appendix | hba1 1563 |
| [Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
| [Mendelson] p.
69 | Axiom 4 | rspsbc 3081 rspsbca 3082 stdpc4 1798 |
| [Mendelson] p.
69 | Axiom 5 | ra5 3087 stdpc5 1607 |
| [Mendelson] p. 81 | Rule
C | exlimiv 1621 |
| [Mendelson] p.
95 | Axiom 6 | stdpc6 1726 |
| [Mendelson] p.
95 | Axiom 7 | stdpc7 1793 |
| [Mendelson] p.
231 | Exercise 4.10(k) | inv1 3497 |
| [Mendelson] p.
231 | Exercise 4.10(l) | unv 3498 |
| [Mendelson] p.
231 | Exercise 4.10(n) | inssun 3413 |
| [Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3461 |
| [Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3414 |
| [Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3304 |
| [Mendelson] p.
231 | Definition of union | unssin 3412 |
| [Mendelson] p.
235 | Exercise 4.12(c) | univ 4523 |
| [Mendelson] p.
235 | Exercise 4.12(d) | pwv 3849 |
| [Mendelson] p.
235 | Exercise 4.12(j) | pwin 4329 |
| [Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4330 |
| [Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4331 |
| [Mendelson] p.
235 | Exercise 4.12(n) | uniin 3870 |
| [Mendelson] p.
235 | Exercise 4.12(p) | reli 4807 |
| [Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5203 |
| [Mendelson] p.
246 | Definition of successor | df-suc 4418 |
| [Mendelson] p.
254 | Proposition 4.22(b) | xpen 6942 |
| [Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6916 xpsneng 6917 |
| [Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6922 xpcomeng 6923 |
| [Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6925 |
| [Mendelson] p.
255 | Exercise 4.39 | endisj 6919 |
| [Mendelson] p.
255 | Exercise 4.41 | mapprc 6739 |
| [Mendelson] p.
255 | Exercise 4.43 | mapsnen 6903 |
| [Mendelson] p.
255 | Exercise 4.47 | xpmapen 6947 |
| [Mendelson] p.
255 | Exercise 4.42(a) | map0e 6773 |
| [Mendelson] p.
255 | Exercise 4.42(b) | map1 6904 |
| [Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7329 djucomen 7328 |
| [Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7327 |
| [Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6553 |
| [Monk1] p. 26 | Theorem
2.8(vii) | ssin 3395 |
| [Monk1] p. 33 | Theorem
3.2(i) | ssrel 4763 |
| [Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4764 |
| [Monk1] p. 34 | Definition
3.3 | df-opab 4106 |
| [Monk1] p. 36 | Theorem
3.7(i) | coi1 5198 coi2 5199 |
| [Monk1] p. 36 | Theorem
3.8(v) | dm0 4892 rn0 4934 |
| [Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5087 |
| [Monk1] p. 37 | Theorem
3.13(i) | relxp 4784 |
| [Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4898 rnxpm 5112 |
| [Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4755 xp0 5102 |
| [Monk1] p. 38 | Theorem
3.16(ii) | ima0 5041 |
| [Monk1] p. 38 | Theorem
3.16(viii) | imai 5038 |
| [Monk1] p. 39 | Theorem
3.17 | imaex 5037 imaexg 5036 |
| [Monk1] p. 39 | Theorem
3.16(xi) | imassrn 5033 |
| [Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5710 funfvop 5692 |
| [Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5622 |
| [Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5630 |
| [Monk1] p. 43 | Theorem
4.6 | funun 5315 |
| [Monk1] p. 43 | Theorem
4.8(iv) | dff13 5837 dff13f 5839 |
| [Monk1] p. 46 | Theorem
4.15(v) | funex 5807 funrnex 6199 |
| [Monk1] p. 50 | Definition
5.4 | fniunfv 5831 |
| [Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5166 |
| [Monk1] p. 52 | Theorem
5.11(viii) | ssint 3901 |
| [Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6241 df-1st 6226 |
| [Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6242 df-2nd 6227 |
| [Monk2] p. 105 | Axiom
C4 | ax-5 1470 |
| [Monk2] p. 105 | Axiom
C7 | ax-8 1527 |
| [Monk2] p. 105 | Axiom
C8 | ax-11 1529 ax-11o 1846 |
| [Monk2] p. 105 | Axiom
(C8) | ax11v 1850 |
| [Monk2] p. 109 | Lemma
12 | ax-7 1471 |
| [Monk2] p. 109 | Lemma
15 | equvin 1886 equvini 1781 eqvinop 4287 |
| [Monk2] p. 113 | Axiom
C5-1 | ax-17 1549 |
| [Monk2] p. 113 | Axiom
C5-2 | ax6b 1674 |
| [Monk2] p. 113 | Axiom
C5-3 | ax-7 1471 |
| [Monk2] p. 114 | Lemma
22 | hba1 1563 |
| [Monk2] p. 114 | Lemma
23 | hbia1 1575 nfia1 1603 |
| [Monk2] p. 114 | Lemma
24 | hba2 1574 nfa2 1602 |
| [Moschovakis] p.
2 | Chapter 2 | df-stab 833 dftest 16014 |
| [Munkres] p. 77 | Example
2 | distop 14557 |
| [Munkres] p.
78 | Definition of basis | df-bases 14515 isbasis3g 14518 |
| [Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 13092 tgval2 14523 |
| [Munkres] p.
79 | Remark | tgcl 14536 |
| [Munkres] p. 80 | Lemma
2.1 | tgval3 14530 |
| [Munkres] p. 80 | Lemma
2.2 | tgss2 14551 tgss3 14550 |
| [Munkres] p. 81 | Lemma
2.3 | basgen 14552 basgen2 14553 |
| [Munkres] p.
89 | Definition of subspace topology | resttop 14642 |
| [Munkres] p. 93 | Theorem
6.1(1) | 0cld 14584 topcld 14581 |
| [Munkres] p. 93 | Theorem
6.1(3) | uncld 14585 |
| [Munkres] p.
94 | Definition of closure | clsval 14583 |
| [Munkres] p.
94 | Definition of interior | ntrval 14582 |
| [Munkres] p.
102 | Definition of continuous function | df-cn 14660 iscn 14669 iscn2 14672 |
| [Munkres] p. 107 | Theorem
7.2(g) | cncnp 14702 cncnp2m 14703 cncnpi 14700 df-cnp 14661 iscnp 14671 |
| [Munkres] p. 127 | Theorem
10.1 | metcn 14986 |
| [Pierik], p. 8 | Section
2.2.1 | dfrex2fin 7000 |
| [Pierik], p. 9 | Definition
2.4 | df-womni 7266 |
| [Pierik], p. 9 | Definition
2.5 | df-markov 7254 omniwomnimkv 7269 |
| [Pierik], p. 10 | Section
2.3 | dfdif3 3283 |
| [Pierik], p.
14 | Definition 3.1 | df-omni 7237 exmidomniim 7243 finomni 7242 |
| [Pierik], p. 15 | Section
3.1 | df-nninf 7222 |
| [Pradic2025], p. 2 | Section
1.1 | nnnninfen 15958 |
| [PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 15962 |
| [PradicBrown2022], p.
2 | Remark | exmidpw 7005 |
| [PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7309 |
| [PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 |
| [PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7251 |
| [PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 15944 peano4nninf 15943 |
| [PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 15946 |
| [PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 15954 |
| [PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 15956 |
| [PradicBrown2022], p. 5 | Definition
3.3 | nnsf 15942 |
| [Quine] p. 16 | Definition
2.1 | df-clab 2192 rabid 2682 |
| [Quine] p. 17 | Definition
2.1'' | dfsb7 2019 |
| [Quine] p. 18 | Definition
2.7 | df-cleq 2198 |
| [Quine] p. 19 | Definition
2.9 | df-v 2774 |
| [Quine] p. 34 | Theorem
5.1 | abeq2 2314 |
| [Quine] p. 35 | Theorem
5.2 | abid2 2326 abid2f 2374 |
| [Quine] p. 40 | Theorem
6.1 | sb5 1911 |
| [Quine] p. 40 | Theorem
6.2 | sb56 1909 sb6 1910 |
| [Quine] p. 41 | Theorem
6.3 | df-clel 2201 |
| [Quine] p. 41 | Theorem
6.4 | eqid 2205 |
| [Quine] p. 41 | Theorem
6.5 | eqcom 2207 |
| [Quine] p. 42 | Theorem
6.6 | df-sbc 2999 |
| [Quine] p. 42 | Theorem
6.7 | dfsbcq 3000 dfsbcq2 3001 |
| [Quine] p. 43 | Theorem
6.8 | vex 2775 |
| [Quine] p. 43 | Theorem
6.9 | isset 2778 |
| [Quine] p. 44 | Theorem
7.3 | spcgf 2855 spcgv 2860 spcimgf 2853 |
| [Quine] p. 44 | Theorem
6.11 | spsbc 3010 spsbcd 3011 |
| [Quine] p. 44 | Theorem
6.12 | elex 2783 |
| [Quine] p. 44 | Theorem
6.13 | elab 2917 elabg 2919 elabgf 2915 |
| [Quine] p. 44 | Theorem
6.14 | noel 3464 |
| [Quine] p. 48 | Theorem
7.2 | snprc 3698 |
| [Quine] p. 48 | Definition
7.1 | df-pr 3640 df-sn 3639 |
| [Quine] p. 49 | Theorem
7.4 | snss 3768 snssg 3767 |
| [Quine] p. 49 | Theorem
7.5 | prss 3789 prssg 3790 |
| [Quine] p. 49 | Theorem
7.6 | prid1 3739 prid1g 3737 prid2 3740 prid2g 3738 snid 3664
snidg 3662 |
| [Quine] p. 51 | Theorem
7.12 | snexg 4228 snexprc 4230 |
| [Quine] p. 51 | Theorem
7.13 | prexg 4255 |
| [Quine] p. 53 | Theorem
8.2 | unisn 3866 unisng 3867 |
| [Quine] p. 53 | Theorem
8.3 | uniun 3869 |
| [Quine] p. 54 | Theorem
8.6 | elssuni 3878 |
| [Quine] p. 54 | Theorem
8.7 | uni0 3877 |
| [Quine] p. 56 | Theorem
8.17 | uniabio 5242 |
| [Quine] p. 56 | Definition
8.18 | dfiota2 5233 |
| [Quine] p. 57 | Theorem
8.19 | iotaval 5243 |
| [Quine] p. 57 | Theorem
8.22 | iotanul 5247 |
| [Quine] p. 58 | Theorem
8.23 | euiotaex 5248 |
| [Quine] p. 58 | Definition
9.1 | df-op 3642 |
| [Quine] p. 61 | Theorem
9.5 | opabid 4302 opabidw 4303 opelopab 4318 opelopaba 4312 opelopabaf 4320 opelopabf 4321 opelopabg 4314 opelopabga 4309 opelopabgf 4316 oprabid 5976 |
| [Quine] p. 64 | Definition
9.11 | df-xp 4681 |
| [Quine] p. 64 | Definition
9.12 | df-cnv 4683 |
| [Quine] p. 64 | Definition
9.15 | df-id 4340 |
| [Quine] p. 65 | Theorem
10.3 | fun0 5332 |
| [Quine] p. 65 | Theorem
10.4 | funi 5303 |
| [Quine] p. 65 | Theorem
10.5 | funsn 5322 funsng 5320 |
| [Quine] p. 65 | Definition
10.1 | df-fun 5273 |
| [Quine] p. 65 | Definition
10.2 | args 5051 dffv4g 5573 |
| [Quine] p. 68 | Definition
10.11 | df-fv 5279 fv2 5571 |
| [Quine] p. 124 | Theorem
17.3 | nn0opth2 10869 nn0opth2d 10868 nn0opthd 10867 |
| [Quine] p. 284 | Axiom
39(vi) | funimaex 5359 funimaexg 5358 |
| [Roman] p. 18 | Part
Preliminaries | df-rng 13695 |
| [Roman] p. 19 | Part
Preliminaries | df-ring 13760 |
| [Rudin] p. 164 | Equation
27 | efcan 11987 |
| [Rudin] p. 164 | Equation
30 | efzval 11994 |
| [Rudin] p. 167 | Equation
48 | absefi 12080 |
| [Sanford] p.
39 | Remark | ax-mp 5 |
| [Sanford] p. 39 | Rule
3 | mtpxor 1446 |
| [Sanford] p. 39 | Rule
4 | mptxor 1444 |
| [Sanford] p. 40 | Rule
1 | mptnan 1443 |
| [Schechter] p.
51 | Definition of antisymmetry | intasym 5067 |
| [Schechter] p.
51 | Definition of irreflexivity | intirr 5069 |
| [Schechter] p.
51 | Definition of symmetry | cnvsym 5066 |
| [Schechter] p.
51 | Definition of transitivity | cotr 5064 |
| [Schechter] p.
187 | Definition of "ring with unit" | isring 13762 |
| [Schechter] p.
428 | Definition 15.35 | bastop1 14555 |
| [Stoll] p. 13 | Definition
of symmetric difference | symdif1 3438 |
| [Stoll] p. 16 | Exercise
4.4 | 0dif 3532 dif0 3531 |
| [Stoll] p. 16 | Exercise
4.8 | difdifdirss 3545 |
| [Stoll] p. 19 | Theorem
5.2(13) | undm 3431 |
| [Stoll] p. 19 | Theorem
5.2(13') | indmss 3432 |
| [Stoll] p.
20 | Remark | invdif 3415 |
| [Stoll] p. 25 | Definition
of ordered triple | df-ot 3643 |
| [Stoll] p.
43 | Definition | uniiun 3981 |
| [Stoll] p.
44 | Definition | intiin 3982 |
| [Stoll] p.
45 | Definition | df-iin 3930 |
| [Stoll] p. 45 | Definition
indexed union | df-iun 3929 |
| [Stoll] p. 176 | Theorem
3.4(27) | imandc 891 imanst 890 |
| [Stoll] p. 262 | Example
4.1 | symdif1 3438 |
| [Suppes] p. 22 | Theorem
2 | eq0 3479 |
| [Suppes] p. 22 | Theorem
4 | eqss 3208 eqssd 3210 eqssi 3209 |
| [Suppes] p. 23 | Theorem
5 | ss0 3501 ss0b 3500 |
| [Suppes] p. 23 | Theorem
6 | sstr 3201 |
| [Suppes] p. 25 | Theorem
12 | elin 3356 elun 3314 |
| [Suppes] p. 26 | Theorem
15 | inidm 3382 |
| [Suppes] p. 26 | Theorem
16 | in0 3495 |
| [Suppes] p. 27 | Theorem
23 | unidm 3316 |
| [Suppes] p. 27 | Theorem
24 | un0 3494 |
| [Suppes] p. 27 | Theorem
25 | ssun1 3336 |
| [Suppes] p. 27 | Theorem
26 | ssequn1 3343 |
| [Suppes] p. 27 | Theorem
27 | unss 3347 |
| [Suppes] p. 27 | Theorem
28 | indir 3422 |
| [Suppes] p. 27 | Theorem
29 | undir 3423 |
| [Suppes] p. 28 | Theorem
32 | difid 3529 difidALT 3530 |
| [Suppes] p. 29 | Theorem
33 | difin 3410 |
| [Suppes] p. 29 | Theorem
34 | indif 3416 |
| [Suppes] p. 29 | Theorem
35 | undif1ss 3535 |
| [Suppes] p. 29 | Theorem
36 | difun2 3540 |
| [Suppes] p. 29 | Theorem
37 | difin0 3534 |
| [Suppes] p. 29 | Theorem
38 | disjdif 3533 |
| [Suppes] p. 29 | Theorem
39 | difundi 3425 |
| [Suppes] p. 29 | Theorem
40 | difindiss 3427 |
| [Suppes] p. 30 | Theorem
41 | nalset 4174 |
| [Suppes] p. 39 | Theorem
61 | uniss 3871 |
| [Suppes] p. 39 | Theorem
65 | uniop 4300 |
| [Suppes] p. 41 | Theorem
70 | intsn 3920 |
| [Suppes] p. 42 | Theorem
71 | intpr 3917 intprg 3918 |
| [Suppes] p. 42 | Theorem
73 | op1stb 4525 op1stbg 4526 |
| [Suppes] p. 42 | Theorem
78 | intun 3916 |
| [Suppes] p. 44 | Definition
15(a) | dfiun2 3961 dfiun2g 3959 |
| [Suppes] p. 44 | Definition
15(b) | dfiin2 3962 |
| [Suppes] p. 47 | Theorem
86 | elpw 3622 elpw2 4201 elpw2g 4200 elpwg 3624 |
| [Suppes] p. 47 | Theorem
87 | pwid 3631 |
| [Suppes] p. 47 | Theorem
89 | pw0 3780 |
| [Suppes] p. 48 | Theorem
90 | pwpw0ss 3845 |
| [Suppes] p. 52 | Theorem
101 | xpss12 4782 |
| [Suppes] p. 52 | Theorem
102 | xpindi 4813 xpindir 4814 |
| [Suppes] p. 52 | Theorem
103 | xpundi 4731 xpundir 4732 |
| [Suppes] p. 54 | Theorem
105 | elirrv 4596 |
| [Suppes] p. 58 | Theorem
2 | relss 4762 |
| [Suppes] p. 59 | Theorem
4 | eldm 4875 eldm2 4876 eldm2g 4874 eldmg 4873 |
| [Suppes] p. 59 | Definition
3 | df-dm 4685 |
| [Suppes] p. 60 | Theorem
6 | dmin 4886 |
| [Suppes] p. 60 | Theorem
8 | rnun 5091 |
| [Suppes] p. 60 | Theorem
9 | rnin 5092 |
| [Suppes] p. 60 | Definition
4 | dfrn2 4866 |
| [Suppes] p. 61 | Theorem
11 | brcnv 4861 brcnvg 4859 |
| [Suppes] p. 62 | Equation
5 | elcnv 4855 elcnv2 4856 |
| [Suppes] p. 62 | Theorem
12 | relcnv 5060 |
| [Suppes] p. 62 | Theorem
15 | cnvin 5090 |
| [Suppes] p. 62 | Theorem
16 | cnvun 5088 |
| [Suppes] p. 63 | Theorem
20 | co02 5196 |
| [Suppes] p. 63 | Theorem
21 | dmcoss 4948 |
| [Suppes] p. 63 | Definition
7 | df-co 4684 |
| [Suppes] p. 64 | Theorem
26 | cnvco 4863 |
| [Suppes] p. 64 | Theorem
27 | coass 5201 |
| [Suppes] p. 65 | Theorem
31 | resundi 4972 |
| [Suppes] p. 65 | Theorem
34 | elima 5027 elima2 5028 elima3 5029 elimag 5026 |
| [Suppes] p. 65 | Theorem
35 | imaundi 5095 |
| [Suppes] p. 66 | Theorem
40 | dminss 5097 |
| [Suppes] p. 66 | Theorem
41 | imainss 5098 |
| [Suppes] p. 67 | Exercise
11 | cnvxp 5101 |
| [Suppes] p. 81 | Definition
34 | dfec2 6623 |
| [Suppes] p. 82 | Theorem
72 | elec 6661 elecg 6660 |
| [Suppes] p. 82 | Theorem
73 | erth 6666 erth2 6667 |
| [Suppes] p. 89 | Theorem
96 | map0b 6774 |
| [Suppes] p. 89 | Theorem
97 | map0 6776 map0g 6775 |
| [Suppes] p. 89 | Theorem
98 | mapsn 6777 |
| [Suppes] p. 89 | Theorem
99 | mapss 6778 |
| [Suppes] p. 92 | Theorem
1 | enref 6856 enrefg 6855 |
| [Suppes] p. 92 | Theorem
2 | ensym 6873 ensymb 6872 ensymi 6874 |
| [Suppes] p. 92 | Theorem
3 | entr 6876 |
| [Suppes] p. 92 | Theorem
4 | unen 6908 |
| [Suppes] p. 94 | Theorem
15 | endom 6854 |
| [Suppes] p. 94 | Theorem
16 | ssdomg 6870 |
| [Suppes] p. 94 | Theorem
17 | domtr 6877 |
| [Suppes] p. 95 | Theorem
18 | isbth 7069 |
| [Suppes] p. 98 | Exercise
4 | fundmen 6898 fundmeng 6899 |
| [Suppes] p. 98 | Exercise
6 | xpdom3m 6929 |
| [Suppes] p.
130 | Definition 3 | df-tr 4143 |
| [Suppes] p. 132 | Theorem
9 | ssonuni 4536 |
| [Suppes] p.
134 | Definition 6 | df-suc 4418 |
| [Suppes] p. 136 | Theorem
Schema 22 | findes 4651 finds 4648 finds1 4650 finds2 4649 |
| [Suppes] p.
162 | Definition 5 | df-ltnqqs 7466 df-ltpq 7459 |
| [Suppes] p. 228 | Theorem
Schema 61 | onintss 4437 |
| [TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2187 |
| [TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2198 |
| [TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2201 |
| [TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2200 |
| [TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2223 |
| [TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5948 |
| [TakeutiZaring] p.
14 | Proposition 4.14 | ru 2997 |
| [TakeutiZaring] p.
15 | Exercise 1 | elpr 3654 elpr2 3655 elprg 3653 |
| [TakeutiZaring] p.
15 | Exercise 2 | elsn 3649 elsn2 3667 elsn2g 3666 elsng 3648 velsn 3650 |
| [TakeutiZaring] p.
15 | Exercise 3 | elop 4275 |
| [TakeutiZaring] p.
15 | Exercise 4 | sneq 3644 sneqr 3801 |
| [TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3652 dfsn2 3647 |
| [TakeutiZaring] p.
16 | Axiom 3 | uniex 4484 |
| [TakeutiZaring] p.
16 | Exercise 6 | opth 4281 |
| [TakeutiZaring] p.
16 | Exercise 8 | rext 4259 |
| [TakeutiZaring] p.
16 | Corollary 5.8 | unex 4488 unexg 4490 |
| [TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3682 |
| [TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3851 |
| [TakeutiZaring] p.
16 | Definition 5.6 | df-in 3172 df-un 3170 |
| [TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3864 uniprg 3865 |
| [TakeutiZaring] p.
17 | Axiom 4 | vpwex 4223 |
| [TakeutiZaring] p.
17 | Exercise 1 | eltp 3681 |
| [TakeutiZaring] p.
17 | Exercise 5 | elsuc 4453 elsucg 4451 sstr2 3200 |
| [TakeutiZaring] p.
17 | Exercise 6 | uncom 3317 |
| [TakeutiZaring] p.
17 | Exercise 7 | incom 3365 |
| [TakeutiZaring] p.
17 | Exercise 8 | unass 3330 |
| [TakeutiZaring] p.
17 | Exercise 9 | inass 3383 |
| [TakeutiZaring] p.
17 | Exercise 10 | indi 3420 |
| [TakeutiZaring] p.
17 | Exercise 11 | undi 3421 |
| [TakeutiZaring] p.
17 | Definition 5.9 | ssalel 3181 |
| [TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3618 |
| [TakeutiZaring] p.
18 | Exercise 7 | unss2 3344 |
| [TakeutiZaring] p.
18 | Exercise 9 | df-ss 3179 dfss2 3183 sseqin2 3392 |
| [TakeutiZaring] p.
18 | Exercise 10 | ssid 3213 |
| [TakeutiZaring] p.
18 | Exercise 12 | inss1 3393 inss2 3394 |
| [TakeutiZaring] p.
18 | Exercise 13 | nssr 3253 |
| [TakeutiZaring] p.
18 | Exercise 15 | unieq 3859 |
| [TakeutiZaring] p.
18 | Exercise 18 | sspwb 4260 |
| [TakeutiZaring] p.
18 | Exercise 19 | pweqb 4267 |
| [TakeutiZaring] p.
20 | Definition | df-rab 2493 |
| [TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4171 |
| [TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3168 |
| [TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3462 |
| [TakeutiZaring] p.
20 | Proposition 5.15 | difid 3529 difidALT 3530 |
| [TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3473 |
| [TakeutiZaring] p.
21 | Theorem 5.22 | setind 4587 |
| [TakeutiZaring] p.
21 | Definition 5.20 | df-v 2774 |
| [TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4176 |
| [TakeutiZaring] p.
22 | Exercise 1 | 0ss 3499 |
| [TakeutiZaring] p.
22 | Exercise 3 | ssex 4181 ssexg 4183 |
| [TakeutiZaring] p.
22 | Exercise 4 | inex1 4178 |
| [TakeutiZaring] p.
22 | Exercise 5 | ruv 4598 |
| [TakeutiZaring] p.
22 | Exercise 6 | elirr 4589 |
| [TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3525 |
| [TakeutiZaring] p.
22 | Exercise 11 | difdif 3298 |
| [TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3434 |
| [TakeutiZaring] p.
22 | Exercise 14 | difss 3299 |
| [TakeutiZaring] p.
22 | Exercise 15 | sscon 3307 |
| [TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2489 |
| [TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2490 |
| [TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4790 xpexg 4789 xpexgALT 6218 |
| [TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4682 |
| [TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5338 |
| [TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5492 fun11 5341 |
| [TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5282 svrelfun 5339 |
| [TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4865 |
| [TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4867 |
| [TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4687 |
| [TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4688 |
| [TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4684 |
| [TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5137 dfrel2 5133 |
| [TakeutiZaring] p.
25 | Exercise 3 | xpss 4783 |
| [TakeutiZaring] p.
25 | Exercise 5 | relun 4792 |
| [TakeutiZaring] p.
25 | Exercise 6 | reluni 4798 |
| [TakeutiZaring] p.
25 | Exercise 9 | inxp 4812 |
| [TakeutiZaring] p.
25 | Exercise 12 | relres 4987 |
| [TakeutiZaring] p.
25 | Exercise 13 | opelres 4964 opelresg 4966 |
| [TakeutiZaring] p.
25 | Exercise 14 | dmres 4980 |
| [TakeutiZaring] p.
25 | Exercise 15 | resss 4983 |
| [TakeutiZaring] p.
25 | Exercise 17 | resabs1 4988 |
| [TakeutiZaring] p.
25 | Exercise 18 | funres 5312 |
| [TakeutiZaring] p.
25 | Exercise 24 | relco 5181 |
| [TakeutiZaring] p.
25 | Exercise 29 | funco 5311 |
| [TakeutiZaring] p.
25 | Exercise 30 | f1co 5493 |
| [TakeutiZaring] p.
26 | Definition 6.10 | eu2 2098 |
| [TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5279 fv3 5599 |
| [TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5221 cnvexg 5220 |
| [TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4945 dmexg 4942 |
| [TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4946 rnexg 4943 |
| [TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5593 |
| [TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5603 tz6.12 5604 tz6.12c 5606 |
| [TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5567 |
| [TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5274 |
| [TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5275 |
| [TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5277 wfo 5269 |
| [TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5276 wf1 5268 |
| [TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5278 wf1o 5270 |
| [TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5677 eqfnfv2 5678 eqfnfv2f 5681 |
| [TakeutiZaring] p.
28 | Exercise 5 | fvco 5649 |
| [TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5806 fnexALT 6196 |
| [TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5805 resfunexgALT 6193 |
| [TakeutiZaring] p.
29 | Exercise 9 | funimaex 5359 funimaexg 5358 |
| [TakeutiZaring] p.
29 | Definition 6.18 | df-br 4045 |
| [TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 5052 iniseg 5054 |
| [TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4336 |
| [TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5280 |
| [TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5879 |
| [TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5880 |
| [TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5885 |
| [TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5887 |
| [TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5895 |
| [TakeutiZaring] p.
35 | Notation | wtr 4142 |
| [TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4401 |
| [TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4146 |
| [TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4624 |
| [TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4428 |
| [TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4432 |
| [TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4540 |
| [TakeutiZaring] p.
38 | Definition 7.11 | df-on 4415 |
| [TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4534 |
| [TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4600 |
| [TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4630 |
| [TakeutiZaring] p.
40 | Exercise 7 | dftr2 4144 |
| [TakeutiZaring] p.
40 | Exercise 11 | unon 4559 |
| [TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4535 |
| [TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3878 |
| [TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4418 |
| [TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4462 sucidg 4463 |
| [TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4549 |
| [TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4416 |
| [TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4554 ordelsuc 4553 |
| [TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4642 |
| [TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4643 |
| [TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4644 |
| [TakeutiZaring] p.
43 | Axiom 7 | omex 4641 |
| [TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4655 |
| [TakeutiZaring] p.
43 | Corollary 7.31 | find 4647 |
| [TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4645 |
| [TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4646 |
| [TakeutiZaring] p.
44 | Exercise 2 | int0 3899 |
| [TakeutiZaring] p.
44 | Exercise 3 | trintssm 4158 |
| [TakeutiZaring] p.
44 | Exercise 4 | intss1 3900 |
| [TakeutiZaring] p.
44 | Exercise 6 | onintonm 4565 |
| [TakeutiZaring] p.
44 | Definition 7.35 | df-int 3886 |
| [TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6394 |
| [TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6451 tfri1d 6421 |
| [TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6452 tfri2d 6422 |
| [TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6453 |
| [TakeutiZaring] p.
50 | Exercise 3 | smoiso 6388 |
| [TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6372 |
| [TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6550 |
| [TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6546 |
| [TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6543 |
| [TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6547 |
| [TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6595 nnaordi 6594 |
| [TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3972 uniss2 3881 |
| [TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6556 |
| [TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6566 |
| [TakeutiZaring] p.
62 | Exercise 5 | oaword1 6557 |
| [TakeutiZaring] p.
62 | Definition 8.15 | om0 6544 omsuc 6558 |
| [TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6567 |
| [TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6603 nnmordi 6602 |
| [TakeutiZaring] p.
67 | Definition 8.30 | oei0 6545 |
| [TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7294 |
| [TakeutiZaring] p.
88 | Exercise 1 | en0 6887 |
| [TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6954 |
| [TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6955 |
| [TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6830 isfi 6852 |
| [TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6926 |
| [TakeutiZaring] p.
95 | Definition 10.42 | df-map 6737 |
| [TakeutiZaring] p.
96 | Proposition 10.44 | pw2f1odc 6932 |
| [TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6945 |
| [Tarski] p. 67 | Axiom
B5 | ax-4 1533 |
| [Tarski] p. 68 | Lemma
6 | equid 1724 |
| [Tarski] p. 69 | Lemma
7 | equcomi 1727 |
| [Tarski] p. 70 | Lemma
14 | spim 1761 spime 1764 spimeh 1762 spimh 1760 |
| [Tarski] p. 70 | Lemma
16 | ax-11 1529 ax-11o 1846 ax11i 1737 |
| [Tarski] p. 70 | Lemmas 16
and 17 | sb6 1910 |
| [Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1549 |
| [Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2178 ax-14 2179 |
| [WhiteheadRussell] p.
96 | Axiom *1.3 | olc 713 |
| [WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 729 |
| [WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 758 |
| [WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 767 |
| [WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 791 |
| [WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 617 |
| [WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
| [WhiteheadRussell] p.
100 | Theorem *2.03 | con2 644 |
| [WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
| [WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
| [WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
| [WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 839 |
| [WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2152 syl 14 |
| [WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 739 |
| [WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
| [WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 838 |
| [WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 630 |
| [WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 887 |
| [WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 845 |
| [WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 858 |
| [WhiteheadRussell] p.
103 | Theorem *2.16 | con3 643 |
| [WhiteheadRussell] p.
103 | Theorem *2.17 | condc 855 |
| [WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 857 |
| [WhiteheadRussell] p.
104 | Theorem *2.2 | orc 714 |
| [WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 777 |
| [WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 618 |
| [WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 622 |
| [WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 895 |
| [WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 909 |
| [WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
| [WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 770 |
| [WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 771 |
| [WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 806 |
| [WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 807 |
| [WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 805 |
| [WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 982 |
| [WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 780 |
| [WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 778 |
| [WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 779 |
| [WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
| [WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 740 |
| [WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 741 |
| [WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 869 pm2.5gdc 868 |
| [WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 864 |
| [WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 742 |
| [WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 743 |
| [WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 744 |
| [WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 657 |
| [WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 658 |
| [WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 724 |
| [WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 893 |
| [WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 727 |
| [WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 728 |
| [WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 867 |
| [WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 750 |
| [WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 802 |
| [WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 803 |
| [WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 661 |
| [WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 715 pm2.67 745 |
| [WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 871 pm2.521gdc 870 |
| [WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 749 |
| [WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 812 |
| [WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 896 |
| [WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 917 |
| [WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 808 |
| [WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 809 |
| [WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 811 |
| [WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 810 |
| [WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
| [WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 813 |
| [WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 814 |
| [WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
| [WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 907 |
| [WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
| [WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 756 |
| [WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
| [WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 960 |
| [WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 961 |
| [WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 962 |
| [WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 755 |
| [WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
| [WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
| [WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 695 |
| [WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
| [WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
| [WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
| [WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 862 |
| [WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 861 |
| [WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
| [WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
| [WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 691 |
| [WhiteheadRussell] p.
113 | Fact) | pm3.45 597 |
| [WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
| [WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
| [WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
| [WhiteheadRussell] p.
113 | Theorem *3.44 | jao 757 pm3.44 717 |
| [WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
| [WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 602 |
| [WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 787 |
| [WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 873 |
| [WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
| [WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 874 |
| [WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 892 |
| [WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 696 |
| [WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
| [WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 955 bitr 472 |
| [WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
| [WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 759 pm4.25 760 |
| [WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
| [WhiteheadRussell] p.
118 | Theorem *4.4 | andi 820 |
| [WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 730 |
| [WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
| [WhiteheadRussell] p.
118 | Theorem *4.33 | orass 769 |
| [WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
| [WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 794 |
| [WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 605 |
| [WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 824 |
| [WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 983 |
| [WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 818 |
| [WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 974 |
| [WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 952 |
| [WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 781 |
| [WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 816 pm4.45 786 pm4.45im 334 |
| [WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1504 |
| [WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 959 |
| [WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 899 imorr 723 |
| [WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
| [WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 901 |
| [WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 752 |
| [WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 753 |
| [WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 904 |
| [WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 941 |
| [WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 754 pm4.56 782 |
| [WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 942 oranim 783 |
| [WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 688 |
| [WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 900 |
| [WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 888 |
| [WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 902 |
| [WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 689 |
| [WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 903 |
| [WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 889 |
| [WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
| [WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 829 |
| [WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
| [WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 746 |
| [WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 603 pm4.76 604 |
| [WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 712 pm4.77 801 |
| [WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 784 |
| [WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 905 |
| [WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 709 |
| [WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 910 |
| [WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 953 |
| [WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 954 |
| [WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
| [WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
| [WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
| [WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
| [WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 601 |
| [WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 911 |
| [WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 912 |
| [WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 914 |
| [WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 913 |
| [WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1409 |
| [WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 830 |
| [WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 906 |
| [WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1414 pm5.18dc 885 |
| [WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 708 |
| [WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 697 |
| [WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1412 |
| [WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1417 |
| [WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1418 |
| [WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 897 |
| [WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
| [WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
| [WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
| [WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 928 pm5.6r 929 |
| [WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 957 |
| [WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
| [WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
| [WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 609 |
| [WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 919 |
| [WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 610 |
| [WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
| [WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
| [WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 927 |
| [WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 804 |
| [WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 920 |
| [WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 915 |
| [WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 796 |
| [WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 948 |
| [WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 949 |
| [WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 964 |
| [WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
| [WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
| [WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 965 |
| [WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1658 |
| [WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1508 |
| [WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1655 |
| [WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1919 |
| [WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2057 |
| [WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2457 |
| [WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2458 |
| [WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2911 |
| [WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3055 |
| [WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5251 |
| [WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5252 |
| [WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2133 eupickbi 2136 |
| [WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5279 |
| [WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7298 |