Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
| Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
|---|
| [AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7245 fidcenum 7086 |
| [AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 7086 |
| [AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7245 |
| [AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12957 |
| [AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 7057 |
| [AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 7043 |
| [AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12972 |
| [AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12974 |
| [AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12963 znnen 12930 |
| [AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12975 |
| [AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12976 |
| [AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10960 |
| [AczelRathjen], p.
183 | Chapter 20 | ax-setind 4604 |
| [AhoHopUll] p.
318 | Section 9.1 | df-concat 11087 df-pfx 11166 df-substr 11139 df-word 11034 lencl 11037 wrd0 11058 |
| [Apostol] p. 18 | Theorem
I.1 | addcan 8289 addcan2d 8294 addcan2i 8292 addcand 8293 addcani 8291 |
| [Apostol] p. 18 | Theorem
I.2 | negeu 8300 |
| [Apostol] p. 18 | Theorem
I.3 | negsub 8357 negsubd 8426 negsubi 8387 |
| [Apostol] p. 18 | Theorem
I.4 | negneg 8359 negnegd 8411 negnegi 8379 |
| [Apostol] p. 18 | Theorem
I.5 | subdi 8494 subdid 8523 subdii 8516 subdir 8495 subdird 8524 subdiri 8517 |
| [Apostol] p. 18 | Theorem
I.6 | mul01 8498 mul01d 8502 mul01i 8500 mul02 8496 mul02d 8501 mul02i 8499 |
| [Apostol] p. 18 | Theorem
I.9 | divrecapd 8903 |
| [Apostol] p. 18 | Theorem
I.10 | recrecapi 8854 |
| [Apostol] p. 18 | Theorem
I.12 | mul2neg 8507 mul2negd 8522 mul2negi 8515 mulneg1 8504 mulneg1d 8520 mulneg1i 8513 |
| [Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 14067 |
| [Apostol] p. 18 | Theorem
I.15 | divdivdivap 8823 |
| [Apostol] p. 20 | Axiom
7 | rpaddcl 9836 rpaddcld 9871 rpmulcl 9837 rpmulcld 9872 |
| [Apostol] p. 20 | Axiom
9 | 0nrp 9848 |
| [Apostol] p. 20 | Theorem
I.17 | lttri 8214 |
| [Apostol] p. 20 | Theorem
I.18 | ltadd1d 8648 ltadd1dd 8666 ltadd1i 8612 |
| [Apostol] p. 20 | Theorem
I.19 | ltmul1 8702 ltmul1a 8701 ltmul1i 9030 ltmul1ii 9038 ltmul2 8966 ltmul2d 9898 ltmul2dd 9912 ltmul2i 9033 |
| [Apostol] p. 20 | Theorem
I.21 | 0lt1 8236 |
| [Apostol] p. 20 | Theorem
I.23 | lt0neg1 8578 lt0neg1d 8625 ltneg 8572 ltnegd 8633 ltnegi 8603 |
| [Apostol] p. 20 | Theorem
I.25 | lt2add 8555 lt2addd 8677 lt2addi 8620 |
| [Apostol] p.
20 | Definition of positive numbers | df-rp 9813 |
| [Apostol] p. 21 | Exercise
4 | recgt0 8960 recgt0d 9044 recgt0i 9016 recgt0ii 9017 |
| [Apostol] p.
22 | Definition of integers | df-z 9410 |
| [Apostol] p.
22 | Definition of rationals | df-q 9778 |
| [Apostol] p. 24 | Theorem
I.26 | supeuti 7124 |
| [Apostol] p. 26 | Theorem
I.29 | arch 9329 |
| [Apostol] p. 28 | Exercise
2 | btwnz 9529 |
| [Apostol] p. 28 | Exercise
3 | nnrecl 9330 |
| [Apostol] p. 28 | Exercise
6 | qbtwnre 10438 |
| [Apostol] p. 28 | Exercise
10(a) | zeneo 12343 zneo 9511 |
| [Apostol] p. 29 | Theorem
I.35 | resqrtth 11503 sqrtthi 11591 |
| [Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 9076 |
| [Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12518 |
| [Apostol] p.
363 | Remark | absgt0api 11618 |
| [Apostol] p.
363 | Example | abssubd 11665 abssubi 11622 |
| [ApostolNT] p.
14 | Definition | df-dvds 12260 |
| [ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 12276 |
| [ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 12300 |
| [ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 12296 |
| [ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 12290 |
| [ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 12292 |
| [ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 12277 |
| [ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 12278 |
| [ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 12283 |
| [ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 12317 |
| [ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 12319 |
| [ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 12321 |
| [ApostolNT] p.
15 | Definition | dfgcd2 12496 |
| [ApostolNT] p.
16 | Definition | isprm2 12600 |
| [ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12575 |
| [ApostolNT] p.
16 | Theorem 1.7 | prminf 12987 |
| [ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 12455 |
| [ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12497 |
| [ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12499 |
| [ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 12469 |
| [ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 12462 |
| [ApostolNT] p.
17 | Theorem 1.8 | coprm 12627 |
| [ApostolNT] p.
17 | Theorem 1.9 | euclemma 12629 |
| [ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12852 |
| [ApostolNT] p.
19 | Theorem 1.14 | divalg 12396 |
| [ApostolNT] p.
20 | Theorem 1.15 | eucalg 12542 |
| [ApostolNT] p.
25 | Definition | df-phi 12694 |
| [ApostolNT] p.
26 | Theorem 2.2 | phisum 12724 |
| [ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12705 |
| [ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12709 |
| [ApostolNT] p.
38 | Remark | df-sgm 15615 |
| [ApostolNT] p.
38 | Definition | df-sgm 15615 |
| [ApostolNT] p.
104 | Definition | congr 12583 |
| [ApostolNT] p.
106 | Remark | dvdsval3 12263 |
| [ApostolNT] p.
106 | Definition | moddvds 12271 |
| [ApostolNT] p.
107 | Example 2 | mod2eq0even 12350 |
| [ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 12351 |
| [ApostolNT] p.
107 | Example 4 | zmod1congr 10525 |
| [ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10562 |
| [ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10850 |
| [ApostolNT] p.
108 | Theorem 5.3 | modmulconst 12295 |
| [ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12586 |
| [ApostolNT] p.
109 | Theorem 5.6 | gcdmodi 12905 |
| [ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12588 |
| [ApostolNT] p.
113 | Theorem 5.17 | eulerth 12716 |
| [ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12735 |
| [ApostolNT] p.
114 | Theorem 5.19 | fermltl 12717 |
| [ApostolNT] p.
179 | Definition | df-lgs 15636 lgsprme0 15680 |
| [ApostolNT] p.
180 | Example 1 | 1lgs 15681 |
| [ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 15657 |
| [ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 15672 |
| [ApostolNT] p.
181 | Theorem 9.4 | m1lgs 15723 |
| [ApostolNT] p.
181 | Theorem 9.5 | 2lgs 15742 2lgsoddprm 15751 |
| [ApostolNT] p.
182 | Theorem 9.6 | gausslemma2d 15707 |
| [ApostolNT] p.
185 | Theorem 9.8 | lgsquad 15718 |
| [ApostolNT] p.
188 | Definition | df-lgs 15636 lgs1 15682 |
| [ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 15673 |
| [ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 15675 |
| [ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 15683 |
| [ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 15684 |
| [Bauer] p. 482 | Section
1.2 | pm2.01 617 pm2.65 661 |
| [Bauer] p. 483 | Theorem
1.3 | acexmid 5968 onsucelsucexmidlem 4596 |
| [Bauer], p.
481 | Section 1.1 | pwtrufal 16244 |
| [Bauer], p.
483 | Definition | n0rf 3482 |
| [Bauer], p. 483 | Theorem
1.2 | 2irrexpq 15609 2irrexpqap 15611 |
| [Bauer], p. 485 | Theorem
2.1 | ssfiexmid 7001 |
| [Bauer], p. 493 | Section
5.1 | ivthdich 15286 |
| [Bauer], p. 494 | Theorem
5.5 | ivthinc 15276 |
| [BauerHanson], p.
27 | Proposition 5.2 | cnstab 8755 |
| [BauerSwan], p.
14 | Remark | 0ct 7237 ctm 7239 |
| [BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 16247 |
| [BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7245 |
| [BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7651 |
| [BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7564 |
| [BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7653 |
| [BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7687 addlocpr 7686 |
| [BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7713 |
| [BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7716 |
| [BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7721 |
| [BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
| [BellMachover] p.
97 | Definition 10.1 | df-eu 2058 |
| [BellMachover] p.
460 | Notation | df-mo 2059 |
| [BellMachover] p.
460 | Definition | mo3 2110 mo3h 2109 |
| [BellMachover] p.
462 | Theorem 1.1 | bm1.1 2192 |
| [BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4182 |
| [BellMachover] p.
466 | Axiom Pow | axpow3 4238 |
| [BellMachover] p.
466 | Axiom Union | axun2 4501 |
| [BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4609 |
| [BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4450 |
| [BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4612 |
| [BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4563 |
| [BellMachover] p.
471 | Definition of Lim | df-ilim 4435 |
| [BellMachover] p.
472 | Axiom Inf | zfinf2 4656 |
| [BellMachover] p.
473 | Theorem 2.8 | limom 4681 |
| [Bobzien] p.
116 | Statement T3 | stoic3 1451 |
| [Bobzien] p.
117 | Statement T2 | stoic2a 1449 |
| [Bobzien] p.
117 | Statement T4 | stoic4a 1452 |
| [Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1447 |
| [Bollobas] p. 1 | Section
I.1 | df-edg 15816 isuhgropm 15838 isusgropen 15920 isuspgropen 15919 |
| [Bollobas] p. 7 | Section
I.1 | df-ushgrm 15827 |
| [BourbakiAlg1] p.
1 | Definition 1 | df-mgm 13349 |
| [BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 13395 |
| [BourbakiAlg1] p.
12 | Definition 2 | df-mnd 13410 |
| [BourbakiAlg1] p.
92 | Definition 1 | df-ring 13921 |
| [BourbakiAlg1] p.
93 | Section I.8.1 | df-rng 13856 |
| [BourbakiEns] p.
| Proposition 8 | fcof1 5877 fcofo 5878 |
| [BourbakiTop1] p.
| Remark | xnegmnf 9988 xnegpnf 9987 |
| [BourbakiTop1] p.
| Remark | rexneg 9989 |
| [BourbakiTop1] p.
| Proposition | ishmeo 14937 |
| [BourbakiTop1] p.
| Property V_i | ssnei2 14790 |
| [BourbakiTop1] p.
| Property V_ii | innei 14796 |
| [BourbakiTop1] p.
| Property V_iv | neissex 14798 |
| [BourbakiTop1] p.
| Proposition 1 | neipsm 14787 neiss 14783 |
| [BourbakiTop1] p.
| Proposition 2 | cnptopco 14855 |
| [BourbakiTop1] p.
| Proposition 4 | imasnopn 14932 |
| [BourbakiTop1] p.
| Property V_iii | elnei 14785 |
| [BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 14631 |
| [Bruck] p. 1 | Section
I.1 | df-mgm 13349 |
| [Bruck] p. 23 | Section
II.1 | df-sgrp 13395 |
| [Bruck] p. 28 | Theorem
3.2 | dfgrp3m 13592 |
| [ChoquetDD] p.
2 | Definition of mapping | df-mpt 4124 |
| [Cohen] p.
301 | Remark | relogoprlem 15501 |
| [Cohen] p. 301 | Property
2 | relogmul 15502 relogmuld 15517 |
| [Cohen] p. 301 | Property
3 | relogdiv 15503 relogdivd 15518 |
| [Cohen] p. 301 | Property
4 | relogexp 15505 |
| [Cohen] p. 301 | Property
1a | log1 15499 |
| [Cohen] p. 301 | Property
1b | loge 15500 |
| [Cohen4] p.
348 | Observation | relogbcxpbap 15598 |
| [Cohen4] p.
352 | Definition | rpelogb 15582 |
| [Cohen4] p. 361 | Property
2 | rprelogbmul 15588 |
| [Cohen4] p. 361 | Property
3 | logbrec 15593 rprelogbdiv 15590 |
| [Cohen4] p. 361 | Property
4 | rplogbreexp 15586 |
| [Cohen4] p. 361 | Property
6 | relogbexpap 15591 |
| [Cohen4] p. 361 | Property
1(a) | rplogbid1 15580 |
| [Cohen4] p. 361 | Property
1(b) | rplogb1 15581 |
| [Cohen4] p.
367 | Property | rplogbchbase 15583 |
| [Cohen4] p. 377 | Property
2 | logblt 15595 |
| [Crosilla] p. | Axiom
1 | ax-ext 2189 |
| [Crosilla] p. | Axiom
2 | ax-pr 4270 |
| [Crosilla] p. | Axiom
3 | ax-un 4499 |
| [Crosilla] p. | Axiom
4 | ax-nul 4187 |
| [Crosilla] p. | Axiom
5 | ax-iinf 4655 |
| [Crosilla] p. | Axiom
6 | ru 3005 |
| [Crosilla] p. | Axiom
8 | ax-pow 4235 |
| [Crosilla] p. | Axiom
9 | ax-setind 4604 |
| [Crosilla], p. | Axiom
6 | ax-sep 4179 |
| [Crosilla], p. | Axiom
7 | ax-coll 4176 |
| [Crosilla], p. | Axiom
7' | repizf 4177 |
| [Crosilla], p. | Theorem
is stated | ordtriexmid 4588 |
| [Crosilla], p. | Axiom
of choice implies instances | acexmid 5968 |
| [Crosilla], p.
| Definition of ordinal | df-iord 4432 |
| [Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4602 |
| [Diestel] p. 27 | Section
1.10 | df-ushgrm 15827 |
| [Eisenberg] p.
67 | Definition 5.3 | df-dif 3177 |
| [Eisenberg] p.
82 | Definition 6.3 | df-iom 4658 |
| [Eisenberg] p.
125 | Definition 8.21 | df-map 6762 |
| [Enderton] p. 18 | Axiom
of Empty Set | axnul 4186 |
| [Enderton] p.
19 | Definition | df-tp 3652 |
| [Enderton] p.
26 | Exercise 5 | unissb 3895 |
| [Enderton] p.
26 | Exercise 10 | pwel 4281 |
| [Enderton] p.
28 | Exercise 7(b) | pwunim 4352 |
| [Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 4012 iinin2m 4011 iunin1 4007 iunin2 4006 |
| [Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 4010 iundif2ss 4008 |
| [Enderton] p.
33 | Exercise 23 | iinuniss 4025 |
| [Enderton] p.
33 | Exercise 25 | iununir 4026 |
| [Enderton] p.
33 | Exercise 24(a) | iinpw 4033 |
| [Enderton] p.
33 | Exercise 24(b) | iunpw 4546 iunpwss 4034 |
| [Enderton] p.
38 | Exercise 6(a) | unipw 4280 |
| [Enderton] p.
38 | Exercise 6(b) | pwuni 4253 |
| [Enderton] p. 41 | Lemma
3D | opeluu 4516 rnex 4966
rnexg 4963 |
| [Enderton] p.
41 | Exercise 8 | dmuni 4908 rnuni 5114 |
| [Enderton] p.
42 | Definition of a function | dffun7 5318 dffun8 5319 |
| [Enderton] p.
43 | Definition of function value | funfvdm2 5668 |
| [Enderton] p.
43 | Definition of single-rooted | funcnv 5355 |
| [Enderton] p.
44 | Definition (d) | dfima2 5044 dfima3 5045 |
| [Enderton] p.
47 | Theorem 3H | fvco2 5673 |
| [Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7351 |
| [Enderton] p.
50 | Theorem 3K(a) | imauni 5855 |
| [Enderton] p.
52 | Definition | df-map 6762 |
| [Enderton] p.
53 | Exercise 21 | coass 5221 |
| [Enderton] p.
53 | Exercise 27 | dmco 5211 |
| [Enderton] p.
53 | Exercise 14(a) | funin 5365 |
| [Enderton] p.
53 | Exercise 22(a) | imass2 5078 |
| [Enderton] p.
54 | Remark | ixpf 6832 ixpssmap 6844 |
| [Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6811 |
| [Enderton] p.
56 | Theorem 3M | erref 6665 |
| [Enderton] p. 57 | Lemma
3N | erthi 6693 |
| [Enderton] p.
57 | Definition | df-ec 6647 |
| [Enderton] p.
58 | Definition | df-qs 6651 |
| [Enderton] p.
60 | Theorem 3Q | th3q 6752 th3qcor 6751 th3qlem1 6749 th3qlem2 6750 |
| [Enderton] p.
61 | Exercise 35 | df-ec 6647 |
| [Enderton] p.
65 | Exercise 56(a) | dmun 4905 |
| [Enderton] p.
68 | Definition of successor | df-suc 4437 |
| [Enderton] p.
71 | Definition | df-tr 4160 dftr4 4164 |
| [Enderton] p.
72 | Theorem 4E | unisuc 4479 unisucg 4480 |
| [Enderton] p.
73 | Exercise 6 | unisuc 4479 unisucg 4480 |
| [Enderton] p.
73 | Exercise 5(a) | truni 4173 |
| [Enderton] p.
73 | Exercise 5(b) | trint 4174 |
| [Enderton] p.
79 | Theorem 4I(A1) | nna0 6585 |
| [Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6587 onasuc 6577 |
| [Enderton] p.
79 | Definition of operation value | df-ov 5972 |
| [Enderton] p.
80 | Theorem 4J(A1) | nnm0 6586 |
| [Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6588 onmsuc 6584 |
| [Enderton] p.
81 | Theorem 4K(1) | nnaass 6596 |
| [Enderton] p.
81 | Theorem 4K(2) | nna0r 6589 nnacom 6595 |
| [Enderton] p.
81 | Theorem 4K(3) | nndi 6597 |
| [Enderton] p.
81 | Theorem 4K(4) | nnmass 6598 |
| [Enderton] p.
81 | Theorem 4K(5) | nnmcom 6600 |
| [Enderton] p.
82 | Exercise 16 | nnm0r 6590 nnmsucr 6599 |
| [Enderton] p.
88 | Exercise 23 | nnaordex 6639 |
| [Enderton] p.
129 | Definition | df-en 6853 |
| [Enderton] p.
132 | Theorem 6B(b) | canth 5922 |
| [Enderton] p.
133 | Exercise 1 | xpomen 12927 |
| [Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6990 |
| [Enderton] p.
136 | Corollary 6E | nneneq 6981 |
| [Enderton] p.
139 | Theorem 6H(c) | mapen 6970 |
| [Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7363 |
| [Enderton] p.
143 | Theorem 6J | dju0en 7359 dju1en 7358 |
| [Enderton] p.
144 | Corollary 6K | undif2ss 3545 |
| [Enderton] p.
145 | Figure 38 | ffoss 5577 |
| [Enderton] p.
145 | Definition | df-dom 6854 |
| [Enderton] p.
146 | Example 1 | domen 6865 domeng 6866 |
| [Enderton] p.
146 | Example 3 | nndomo 6988 |
| [Enderton] p.
149 | Theorem 6L(c) | xpdom1 6957 xpdom1g 6955 xpdom2g 6954 |
| [Enderton] p.
168 | Definition | df-po 4362 |
| [Enderton] p.
192 | Theorem 7M(a) | oneli 4494 |
| [Enderton] p.
192 | Theorem 7M(b) | ontr1 4455 |
| [Enderton] p.
192 | Theorem 7M(c) | onirri 4610 |
| [Enderton] p.
193 | Corollary 7N(b) | 0elon 4458 |
| [Enderton] p.
193 | Corollary 7N(c) | onsuci 4583 |
| [Enderton] p.
193 | Corollary 7N(d) | ssonunii 4556 |
| [Enderton] p.
194 | Remark | onprc 4619 |
| [Enderton] p.
194 | Exercise 16 | suc11 4625 |
| [Enderton] p.
197 | Definition | df-card 7314 |
| [Enderton] p.
200 | Exercise 25 | tfis 4650 |
| [Enderton] p.
206 | Theorem 7X(b) | en2lp 4621 |
| [Enderton] p.
207 | Exercise 34 | opthreg 4623 |
| [Enderton] p.
208 | Exercise 35 | suc11g 4624 |
| [Geuvers], p.
1 | Remark | expap0 10753 |
| [Geuvers], p. 6 | Lemma
2.13 | mulap0r 8725 |
| [Geuvers], p. 6 | Lemma
2.15 | mulap0 8764 |
| [Geuvers], p. 9 | Lemma
2.35 | msqge0 8726 |
| [Geuvers], p.
9 | Definition 3.1(2) | ax-arch 8081 |
| [Geuvers], p. 10 | Lemma
3.9 | maxcom 11675 |
| [Geuvers], p. 10 | Lemma
3.10 | maxle1 11683 maxle2 11684 |
| [Geuvers], p. 10 | Lemma
3.11 | maxleast 11685 |
| [Geuvers], p. 10 | Lemma
3.12 | maxleb 11688 |
| [Geuvers], p.
11 | Definition 3.13 | dfabsmax 11689 |
| [Geuvers], p.
17 | Definition 6.1 | df-ap 8692 |
| [Gleason] p.
117 | Proposition 9-2.1 | df-enq 7497 enqer 7508 |
| [Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7501 df-nqqs 7498 |
| [Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7494 df-plqqs 7499 |
| [Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7495 df-mqqs 7500 |
| [Gleason] p.
119 | Proposition 9-2.5 | df-rq 7502 |
| [Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7558 |
| [Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7561 ltbtwnnq 7566 ltbtwnnqq 7565 |
| [Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7550 |
| [Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7551 |
| [Gleason] p.
123 | Proposition 9-3.5 | addclpr 7687 |
| [Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7729 |
| [Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7728 |
| [Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7747 |
| [Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7763 |
| [Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7769 ltaprlem 7768 |
| [Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7766 |
| [Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7722 |
| [Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7742 |
| [Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7731 |
| [Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7730 |
| [Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7738 |
| [Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7788 |
| [Gleason] p.
126 | Proposition 9-4.1 | df-enr 7876 enrer 7885 |
| [Gleason] p.
126 | Proposition 9-4.2 | df-0r 7881 df-1r 7882 df-nr 7877 |
| [Gleason] p.
126 | Proposition 9-4.3 | df-mr 7879 df-plr 7878 negexsr 7922 recexsrlem 7924 |
| [Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7880 |
| [Gleason] p.
130 | Proposition 10-1.3 | creui 9070 creur 9069 cru 8712 |
| [Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 8073 axcnre 8031 |
| [Gleason] p.
132 | Definition 10-3.1 | crim 11330 crimd 11449 crimi 11409 crre 11329 crred 11448 crrei 11408 |
| [Gleason] p.
132 | Definition 10-3.2 | remim 11332 remimd 11414 |
| [Gleason] p.
133 | Definition 10.36 | absval2 11529 absval2d 11657 absval2i 11616 |
| [Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 11356 cjaddd 11437 cjaddi 11404 |
| [Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 11357 cjmuld 11438 cjmuli 11405 |
| [Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 11355 cjcjd 11415 cjcji 11387 |
| [Gleason] p.
133 | Proposition 10-3.4(f) | cjre 11354 cjreb 11338 cjrebd 11418 cjrebi 11390 cjred 11443 rere 11337 rereb 11335 rerebd 11417 rerebi 11389 rered 11441 |
| [Gleason] p.
133 | Proposition 10-3.4(h) | addcj 11363 addcjd 11429 addcji 11399 |
| [Gleason] p.
133 | Proposition 10-3.7(a) | absval 11473 |
| [Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11524 abscjd 11662 abscji 11620 |
| [Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11536 abs00d 11658 abs00i 11617 absne0d 11659 |
| [Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11568 releabsd 11663 releabsi 11621 |
| [Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11541 absmuld 11666 absmuli 11623 |
| [Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11527 sqabsaddi 11624 |
| [Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11576 abstrid 11668 abstrii 11627 |
| [Gleason] p.
134 | Definition 10-4.1 | df-exp 10723 exp0 10727 expp1 10730 expp1d 10858 |
| [Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10765 expaddd 10859 |
| [Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 15545 cxpmuld 15570 expmul 10768 expmuld 10860 |
| [Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10762 mulexpd 10872 rpmulcxp 15542 |
| [Gleason] p.
141 | Definition 11-2.1 | fzval 10169 |
| [Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11798 |
| [Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11800 |
| [Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11799 |
| [Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11803 |
| [Gleason] p.
172 | Corollary 12-2.5 | climrecl 11796 |
| [Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11792 climcj 11793 climim 11795 climre 11794 |
| [Gleason] p.
173 | Definition 12-3.1 | df-ltxr 8149 df-xr 8148 ltxr 9934 |
| [Gleason] p. 180 | Theorem
12-5.3 | climcau 11819 |
| [Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10482 |
| [Gleason] p.
223 | Definition 14-1.1 | df-met 14468 |
| [Gleason] p.
223 | Definition 14-1.1(a) | met0 14997 xmet0 14996 |
| [Gleason] p.
223 | Definition 14-1.1(c) | metsym 15004 |
| [Gleason] p.
223 | Definition 14-1.1(d) | mettri 15006 mstri 15106 xmettri 15005 xmstri 15105 |
| [Gleason] p.
230 | Proposition 14-2.6 | txlm 14912 |
| [Gleason] p.
240 | Proposition 14-4.2 | metcnp3 15144 |
| [Gleason] p.
243 | Proposition 14-4.16 | addcn2 11782 addcncntop 15195 mulcn2 11784 mulcncntop 15197 subcn2 11783 subcncntop 15196 |
| [Gleason] p.
295 | Remark | bcval3 10935 bcval4 10936 |
| [Gleason] p.
295 | Equation 2 | bcpasc 10950 |
| [Gleason] p.
295 | Definition of binomial coefficient | bcval 10933 df-bc 10932 |
| [Gleason] p.
296 | Remark | bcn0 10939 bcnn 10941 |
| [Gleason] p. 296 | Theorem
15-2.8 | binom 11956 |
| [Gleason] p.
308 | Equation 2 | ef0 12144 |
| [Gleason] p.
308 | Equation 3 | efcj 12145 |
| [Gleason] p.
309 | Corollary 15-4.3 | efne0 12150 |
| [Gleason] p.
309 | Corollary 15-4.4 | efexp 12154 |
| [Gleason] p.
310 | Equation 14 | sinadd 12208 |
| [Gleason] p.
310 | Equation 15 | cosadd 12209 |
| [Gleason] p.
311 | Equation 17 | sincossq 12220 |
| [Gleason] p.
311 | Equation 18 | cosbnd 12225 sinbnd 12224 |
| [Gleason] p.
311 | Definition of ` ` | df-pi 12125 |
| [Golan] p.
1 | Remark | srgisid 13909 |
| [Golan] p.
1 | Definition | df-srg 13887 |
| [Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
| [Hamilton] p. 73 | Rule
1 | ax-mp 5 |
| [Hamilton] p. 74 | Rule
2 | ax-gen 1473 |
| [Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 13504 mndideu 13419 |
| [Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 13531 |
| [Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 13560 |
| [Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 13571 |
| [Herstein] p.
57 | Exercise 1 | dfgrp3me 13593 |
| [Heyting] p.
127 | Axiom #1 | ax1hfs 16323 |
| [Hitchcock] p. 5 | Rule
A3 | mptnan 1443 |
| [Hitchcock] p. 5 | Rule
A4 | mptxor 1444 |
| [Hitchcock] p. 5 | Rule
A5 | mtpxor 1446 |
| [HoTT], p. | Lemma
10.4.1 | exmidontriim 7370 |
| [HoTT], p. | Theorem
7.2.6 | nndceq 6610 |
| [HoTT], p.
| Exercise 11.10 | neapmkv 16317 |
| [HoTT], p. | Exercise
11.11 | mulap0bd 8767 |
| [HoTT], p. | Section
11.2.1 | df-iltp 7620 df-imp 7619 df-iplp 7618 df-reap 8685 |
| [HoTT], p. | Theorem
11.2.4 | recapb 8781 rerecapb 8953 |
| [HoTT], p. | Corollary
3.9.2 | uchoice 6248 |
| [HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7812 |
| [HoTT], p. | Corollary
11.4.3 | conventions 15965 |
| [HoTT], p.
| Exercise 11.6(i) | dcapnconst 16310 dceqnconst 16309 |
| [HoTT], p. | Corollary
11.2.13 | axcaucvg 8050 caucvgpr 7832 caucvgprpr 7862 caucvgsr 7952 |
| [HoTT], p. | Definition
11.2.1 | df-inp 7616 |
| [HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 16315 |
| [HoTT], p. | Proposition
11.2.3 | df-iso 4363 ltpopr 7745 ltsopr 7746 |
| [HoTT], p. | Definition
11.2.7(v) | apsym 8716 reapcotr 8708 reapirr 8687 |
| [HoTT], p. | Definition
11.2.7(vi) | 0lt1 8236 gt0add 8683 leadd1 8540 lelttr 8198 lemul1a 8968 lenlt 8185 ltadd1 8539 ltletr 8199 ltmul1 8702 reaplt 8698 |
| [Jech] p. 4 | Definition of
class | cv 1372 cvjust 2202 |
| [Jech] p.
78 | Note | opthprc 4745 |
| [KalishMontague] p.
81 | Note 1 | ax-i9 1554 |
| [Kreyszig] p.
3 | Property M1 | metcl 14986 xmetcl 14985 |
| [Kreyszig] p.
4 | Property M2 | meteq0 14993 |
| [Kreyszig] p.
12 | Equation 5 | muleqadd 8778 |
| [Kreyszig] p.
18 | Definition 1.3-2 | mopnval 15075 |
| [Kreyszig] p.
19 | Remark | mopntopon 15076 |
| [Kreyszig] p.
19 | Theorem T1 | mopn0 15121 mopnm 15081 |
| [Kreyszig] p.
19 | Theorem T2 | unimopn 15119 |
| [Kreyszig] p.
19 | Definition of neighborhood | neibl 15124 |
| [Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 15146 |
| [Kreyszig] p.
25 | Definition 1.4-1 | lmbr 14846 |
| [Kreyszig] p.
51 | Equation 2 | lmodvneg1 14253 |
| [Kreyszig] p.
51 | Equation 1a | lmod0vs 14244 |
| [Kreyszig] p.
51 | Equation 1b | lmodvs0 14245 |
| [Kunen] p. 10 | Axiom
0 | a9e 1720 |
| [Kunen] p. 12 | Axiom
6 | zfrep6 4178 |
| [Kunen] p. 24 | Definition
10.24 | mapval 6772 mapvalg 6770 |
| [Kunen] p. 31 | Definition
10.24 | mapex 6766 |
| [KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3952 |
| [Lang] p.
3 | Statement | lidrideqd 13374 mndbn0 13424 |
| [Lang] p.
3 | Definition | df-mnd 13410 |
| [Lang] p. 4 | Definition of a
(finite) product | gsumsplit1r 13391 |
| [Lang] p.
5 | Equation | gsumfzreidx 13834 |
| [Lang] p.
6 | Definition | mulgnn0gsum 13625 |
| [Lang] p.
7 | Definition | dfgrp2e 13521 |
| [Levy] p.
338 | Axiom | df-clab 2194 df-clel 2203 df-cleq 2200 |
| [Lopez-Astorga] p.
12 | Rule 1 | mptnan 1443 |
| [Lopez-Astorga] p.
12 | Rule 2 | mptxor 1444 |
| [Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1446 |
| [Margaris] p. 40 | Rule
C | exlimiv 1622 |
| [Margaris] p. 49 | Axiom
A1 | ax-1 6 |
| [Margaris] p. 49 | Axiom
A2 | ax-2 7 |
| [Margaris] p. 49 | Axiom
A3 | condc 855 |
| [Margaris] p.
49 | Definition | dfbi2 388 dfordc 894 exalim 1526 |
| [Margaris] p.
51 | Theorem 1 | idALT 20 |
| [Margaris] p.
56 | Theorem 3 | syld 45 |
| [Margaris] p.
60 | Theorem 8 | jcn 653 |
| [Margaris] p.
89 | Theorem 19.2 | 19.2 1662 r19.2m 3556 |
| [Margaris] p.
89 | Theorem 19.3 | 19.3 1578 19.3h 1577 rr19.3v 2920 |
| [Margaris] p.
89 | Theorem 19.5 | alcom 1502 |
| [Margaris] p.
89 | Theorem 19.6 | alexdc 1643 alexim 1669 |
| [Margaris] p.
89 | Theorem 19.7 | alnex 1523 |
| [Margaris] p.
89 | Theorem 19.8 | 19.8a 1614 spsbe 1866 |
| [Margaris] p.
89 | Theorem 19.9 | 19.9 1668 19.9h 1667 19.9v 1895 exlimd 1621 |
| [Margaris] p.
89 | Theorem 19.11 | excom 1688 excomim 1687 |
| [Margaris] p.
89 | Theorem 19.12 | 19.12 1689 r19.12 2615 |
| [Margaris] p.
90 | Theorem 19.14 | exnalim 1670 |
| [Margaris] p.
90 | Theorem 19.15 | albi 1492 ralbi 2641 |
| [Margaris] p.
90 | Theorem 19.16 | 19.16 1579 |
| [Margaris] p.
90 | Theorem 19.17 | 19.17 1580 |
| [Margaris] p.
90 | Theorem 19.18 | exbi 1628 rexbi 2642 |
| [Margaris] p.
90 | Theorem 19.19 | 19.19 1690 |
| [Margaris] p.
90 | Theorem 19.20 | alim 1481 alimd 1545 alimdh 1491 alimdv 1903 ralimdaa 2574 ralimdv 2576 ralimdva 2575 ralimdvva 2577 sbcimdv 3072 |
| [Margaris] p.
90 | Theorem 19.21 | 19.21-2 1691 19.21 1607 19.21bi 1582 19.21h 1581 19.21ht 1605 19.21t 1606 19.21v 1897 alrimd 1634 alrimdd 1633 alrimdh 1503 alrimdv 1900 alrimi 1546 alrimih 1493 alrimiv 1898 alrimivv 1899 r19.21 2584 r19.21be 2599 r19.21bi 2596 r19.21t 2583 r19.21v 2585 ralrimd 2586 ralrimdv 2587 ralrimdva 2588 ralrimdvv 2592 ralrimdvva 2593 ralrimi 2579 ralrimiv 2580 ralrimiva 2581 ralrimivv 2589 ralrimivva 2590 ralrimivvva 2591 ralrimivw 2582 rexlimi 2619 |
| [Margaris] p.
90 | Theorem 19.22 | 2alimdv 1905 2eximdv 1906 exim 1623
eximd 1636 eximdh 1635 eximdv 1904 rexim 2602 reximdai 2606 reximddv 2611 reximddv2 2613 reximdv 2609 reximdv2 2607 reximdva 2610 reximdvai 2608 reximi2 2604 |
| [Margaris] p.
90 | Theorem 19.23 | 19.23 1702 19.23bi 1616 19.23h 1522 19.23ht 1521 19.23t 1701 19.23v 1907 19.23vv 1908 exlimd2 1619 exlimdh 1620 exlimdv 1843 exlimdvv 1922 exlimi 1618 exlimih 1617 exlimiv 1622 exlimivv 1921 r19.23 2617 r19.23v 2618 rexlimd 2623 rexlimdv 2625 rexlimdv3a 2628 rexlimdva 2626 rexlimdva2 2629 rexlimdvaa 2627 rexlimdvv 2633 rexlimdvva 2634 rexlimdvw 2630 rexlimiv 2620 rexlimiva 2621 rexlimivv 2632 |
| [Margaris] p.
90 | Theorem 19.24 | i19.24 1663 |
| [Margaris] p.
90 | Theorem 19.25 | 19.25 1650 |
| [Margaris] p.
90 | Theorem 19.26 | 19.26-2 1506 19.26-3an 1507 19.26 1505 r19.26-2 2638 r19.26-3 2639 r19.26 2635 r19.26m 2640 |
| [Margaris] p.
90 | Theorem 19.27 | 19.27 1585 19.27h 1584 19.27v 1924 r19.27av 2644 r19.27m 3565 r19.27mv 3566 |
| [Margaris] p.
90 | Theorem 19.28 | 19.28 1587 19.28h 1586 19.28v 1925 r19.28av 2645 r19.28m 3559 r19.28mv 3562 rr19.28v 2921 |
| [Margaris] p.
90 | Theorem 19.29 | 19.29 1644 19.29r 1645 19.29r2 1646 19.29x 1647 r19.29 2646 r19.29d2r 2653 r19.29r 2647 |
| [Margaris] p.
90 | Theorem 19.30 | 19.30dc 1651 |
| [Margaris] p.
90 | Theorem 19.31 | 19.31r 1705 |
| [Margaris] p.
90 | Theorem 19.32 | 19.32dc 1703 19.32r 1704 r19.32r 2655 r19.32vdc 2658 r19.32vr 2657 |
| [Margaris] p.
90 | Theorem 19.33 | 19.33 1508 19.33b2 1653 19.33bdc 1654 |
| [Margaris] p.
90 | Theorem 19.34 | 19.34 1708 |
| [Margaris] p.
90 | Theorem 19.35 | 19.35-1 1648 19.35i 1649 |
| [Margaris] p.
90 | Theorem 19.36 | 19.36-1 1697 19.36aiv 1926 19.36i 1696 r19.36av 2660 |
| [Margaris] p.
90 | Theorem 19.37 | 19.37-1 1698 19.37aiv 1699 r19.37 2661 r19.37av 2662 |
| [Margaris] p.
90 | Theorem 19.38 | 19.38 1700 |
| [Margaris] p.
90 | Theorem 19.39 | i19.39 1664 |
| [Margaris] p.
90 | Theorem 19.40 | 19.40-2 1656 19.40 1655 r19.40 2663 |
| [Margaris] p.
90 | Theorem 19.41 | 19.41 1710 19.41h 1709 19.41v 1927 19.41vv 1928 19.41vvv 1929 19.41vvvv 1930 r19.41 2664 r19.41v 2665 |
| [Margaris] p.
90 | Theorem 19.42 | 19.42 1712 19.42h 1711 19.42v 1931 19.42vv 1936 19.42vvv 1937 19.42vvvv 1938 r19.42v 2666 |
| [Margaris] p.
90 | Theorem 19.43 | 19.43 1652 r19.43 2667 |
| [Margaris] p.
90 | Theorem 19.44 | 19.44 1706 r19.44av 2668 r19.44mv 3564 |
| [Margaris] p.
90 | Theorem 19.45 | 19.45 1707 r19.45av 2669 r19.45mv 3563 |
| [Margaris] p.
110 | Exercise 2(b) | eu1 2080 |
| [Megill] p. 444 | Axiom
C5 | ax-17 1550 |
| [Megill] p. 445 | Lemma
L12 | alequcom 1539 ax-10 1529 |
| [Megill] p. 446 | Lemma
L17 | equtrr 1734 |
| [Megill] p. 446 | Lemma
L19 | hbnae 1745 |
| [Megill] p. 447 | Remark
9.1 | df-sb 1787 sbid 1798 |
| [Megill] p. 448 | Scheme
C5' | ax-4 1534 |
| [Megill] p. 448 | Scheme
C6' | ax-7 1472 |
| [Megill] p. 448 | Scheme
C8' | ax-8 1528 |
| [Megill] p. 448 | Scheme
C9' | ax-i12 1531 |
| [Megill] p. 448 | Scheme
C11' | ax-10o 1740 |
| [Megill] p. 448 | Scheme
C12' | ax-13 2180 |
| [Megill] p. 448 | Scheme
C13' | ax-14 2181 |
| [Megill] p. 448 | Scheme
C15' | ax-11o 1847 |
| [Megill] p. 448 | Scheme
C16' | ax-16 1838 |
| [Megill] p. 448 | Theorem
9.4 | dral1 1754 dral2 1755 drex1 1822 drex2 1756 drsb1 1823 drsb2 1865 |
| [Megill] p. 449 | Theorem
9.7 | sbcom2 2016 sbequ 1864 sbid2v 2025 |
| [Megill] p. 450 | Example
in Appendix | hba1 1564 |
| [Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
| [Mendelson] p.
69 | Axiom 4 | rspsbc 3090 rspsbca 3091 stdpc4 1799 |
| [Mendelson] p.
69 | Axiom 5 | ra5 3096 stdpc5 1608 |
| [Mendelson] p. 81 | Rule
C | exlimiv 1622 |
| [Mendelson] p.
95 | Axiom 6 | stdpc6 1727 |
| [Mendelson] p.
95 | Axiom 7 | stdpc7 1794 |
| [Mendelson] p.
231 | Exercise 4.10(k) | inv1 3506 |
| [Mendelson] p.
231 | Exercise 4.10(l) | unv 3507 |
| [Mendelson] p.
231 | Exercise 4.10(n) | inssun 3422 |
| [Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3470 |
| [Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3423 |
| [Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3313 |
| [Mendelson] p.
231 | Definition of union | unssin 3421 |
| [Mendelson] p.
235 | Exercise 4.12(c) | univ 4542 |
| [Mendelson] p.
235 | Exercise 4.12(d) | pwv 3864 |
| [Mendelson] p.
235 | Exercise 4.12(j) | pwin 4348 |
| [Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4349 |
| [Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4350 |
| [Mendelson] p.
235 | Exercise 4.12(n) | uniin 3885 |
| [Mendelson] p.
235 | Exercise 4.12(p) | reli 4826 |
| [Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5223 |
| [Mendelson] p.
246 | Definition of successor | df-suc 4437 |
| [Mendelson] p.
254 | Proposition 4.22(b) | xpen 6969 |
| [Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6943 xpsneng 6944 |
| [Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6949 xpcomeng 6950 |
| [Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6952 |
| [Mendelson] p.
255 | Exercise 4.39 | endisj 6946 |
| [Mendelson] p.
255 | Exercise 4.41 | mapprc 6764 |
| [Mendelson] p.
255 | Exercise 4.43 | mapsnen 6929 |
| [Mendelson] p.
255 | Exercise 4.47 | xpmapen 6974 |
| [Mendelson] p.
255 | Exercise 4.42(a) | map0e 6798 |
| [Mendelson] p.
255 | Exercise 4.42(b) | map1 6930 |
| [Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7362 djucomen 7361 |
| [Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7360 |
| [Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6578 |
| [Monk1] p. 26 | Theorem
2.8(vii) | ssin 3404 |
| [Monk1] p. 33 | Theorem
3.2(i) | ssrel 4782 |
| [Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4783 |
| [Monk1] p. 34 | Definition
3.3 | df-opab 4123 |
| [Monk1] p. 36 | Theorem
3.7(i) | coi1 5218 coi2 5219 |
| [Monk1] p. 36 | Theorem
3.8(v) | dm0 4912 rn0 4954 |
| [Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5107 |
| [Monk1] p. 37 | Theorem
3.13(i) | relxp 4803 |
| [Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4918 rnxpm 5132 |
| [Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4774 xp0 5122 |
| [Monk1] p. 38 | Theorem
3.16(ii) | ima0 5061 |
| [Monk1] p. 38 | Theorem
3.16(viii) | imai 5058 |
| [Monk1] p. 39 | Theorem
3.17 | imaex 5057 imaexg 5056 |
| [Monk1] p. 39 | Theorem
3.16(xi) | imassrn 5053 |
| [Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5735 funfvop 5717 |
| [Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5646 |
| [Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5655 |
| [Monk1] p. 43 | Theorem
4.6 | funun 5335 |
| [Monk1] p. 43 | Theorem
4.8(iv) | dff13 5862 dff13f 5864 |
| [Monk1] p. 46 | Theorem
4.15(v) | funex 5832 funrnex 6224 |
| [Monk1] p. 50 | Definition
5.4 | fniunfv 5856 |
| [Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5186 |
| [Monk1] p. 52 | Theorem
5.11(viii) | ssint 3916 |
| [Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6266 df-1st 6251 |
| [Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6267 df-2nd 6252 |
| [Monk2] p. 105 | Axiom
C4 | ax-5 1471 |
| [Monk2] p. 105 | Axiom
C7 | ax-8 1528 |
| [Monk2] p. 105 | Axiom
C8 | ax-11 1530 ax-11o 1847 |
| [Monk2] p. 105 | Axiom
(C8) | ax11v 1851 |
| [Monk2] p. 109 | Lemma
12 | ax-7 1472 |
| [Monk2] p. 109 | Lemma
15 | equvin 1887 equvini 1782 eqvinop 4306 |
| [Monk2] p. 113 | Axiom
C5-1 | ax-17 1550 |
| [Monk2] p. 113 | Axiom
C5-2 | ax6b 1675 |
| [Monk2] p. 113 | Axiom
C5-3 | ax-7 1472 |
| [Monk2] p. 114 | Lemma
22 | hba1 1564 |
| [Monk2] p. 114 | Lemma
23 | hbia1 1576 nfia1 1604 |
| [Monk2] p. 114 | Lemma
24 | hba2 1575 nfa2 1603 |
| [Moschovakis] p.
2 | Chapter 2 | df-stab 833 dftest 16324 |
| [Munkres] p. 77 | Example
2 | distop 14718 |
| [Munkres] p.
78 | Definition of basis | df-bases 14676 isbasis3g 14679 |
| [Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 13253 tgval2 14684 |
| [Munkres] p.
79 | Remark | tgcl 14697 |
| [Munkres] p. 80 | Lemma
2.1 | tgval3 14691 |
| [Munkres] p. 80 | Lemma
2.2 | tgss2 14712 tgss3 14711 |
| [Munkres] p. 81 | Lemma
2.3 | basgen 14713 basgen2 14714 |
| [Munkres] p.
89 | Definition of subspace topology | resttop 14803 |
| [Munkres] p. 93 | Theorem
6.1(1) | 0cld 14745 topcld 14742 |
| [Munkres] p. 93 | Theorem
6.1(3) | uncld 14746 |
| [Munkres] p.
94 | Definition of closure | clsval 14744 |
| [Munkres] p.
94 | Definition of interior | ntrval 14743 |
| [Munkres] p.
102 | Definition of continuous function | df-cn 14821 iscn 14830 iscn2 14833 |
| [Munkres] p. 107 | Theorem
7.2(g) | cncnp 14863 cncnp2m 14864 cncnpi 14861 df-cnp 14822 iscnp 14832 |
| [Munkres] p. 127 | Theorem
10.1 | metcn 15147 |
| [Pierik], p. 8 | Section
2.2.1 | dfrex2fin 7028 |
| [Pierik], p. 9 | Definition
2.4 | df-womni 7294 |
| [Pierik], p. 9 | Definition
2.5 | df-markov 7282 omniwomnimkv 7297 |
| [Pierik], p. 10 | Section
2.3 | dfdif3 3292 |
| [Pierik], p.
14 | Definition 3.1 | df-omni 7265 exmidomniim 7271 finomni 7270 |
| [Pierik], p. 15 | Section
3.1 | df-nninf 7250 |
| [Pradic2025], p. 2 | Section
1.1 | nnnninfen 16268 |
| [PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 16272 |
| [PradicBrown2022], p.
2 | Remark | exmidpw 7033 |
| [PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7342 |
| [PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7343 exmidfodomrlemrALT 7344 |
| [PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7279 |
| [PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 16254 peano4nninf 16253 |
| [PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 16256 |
| [PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 16264 |
| [PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 16266 |
| [PradicBrown2022], p. 5 | Definition
3.3 | nnsf 16252 |
| [Quine] p. 16 | Definition
2.1 | df-clab 2194 rabid 2685 |
| [Quine] p. 17 | Definition
2.1'' | dfsb7 2020 |
| [Quine] p. 18 | Definition
2.7 | df-cleq 2200 |
| [Quine] p. 19 | Definition
2.9 | df-v 2779 |
| [Quine] p. 34 | Theorem
5.1 | abeq2 2316 |
| [Quine] p. 35 | Theorem
5.2 | abid2 2328 abid2f 2376 |
| [Quine] p. 40 | Theorem
6.1 | sb5 1912 |
| [Quine] p. 40 | Theorem
6.2 | sb56 1910 sb6 1911 |
| [Quine] p. 41 | Theorem
6.3 | df-clel 2203 |
| [Quine] p. 41 | Theorem
6.4 | eqid 2207 |
| [Quine] p. 41 | Theorem
6.5 | eqcom 2209 |
| [Quine] p. 42 | Theorem
6.6 | df-sbc 3007 |
| [Quine] p. 42 | Theorem
6.7 | dfsbcq 3008 dfsbcq2 3009 |
| [Quine] p. 43 | Theorem
6.8 | vex 2780 |
| [Quine] p. 43 | Theorem
6.9 | isset 2784 |
| [Quine] p. 44 | Theorem
7.3 | spcgf 2863 spcgv 2868 spcimgf 2861 |
| [Quine] p. 44 | Theorem
6.11 | spsbc 3018 spsbcd 3019 |
| [Quine] p. 44 | Theorem
6.12 | elex 2789 |
| [Quine] p. 44 | Theorem
6.13 | elab 2925 elabg 2927 elabgf 2923 |
| [Quine] p. 44 | Theorem
6.14 | noel 3473 |
| [Quine] p. 48 | Theorem
7.2 | snprc 3709 |
| [Quine] p. 48 | Definition
7.1 | df-pr 3651 df-sn 3650 |
| [Quine] p. 49 | Theorem
7.4 | snss 3780 snssg 3779 |
| [Quine] p. 49 | Theorem
7.5 | prss 3801 prssg 3802 |
| [Quine] p. 49 | Theorem
7.6 | prid1 3750 prid1g 3748 prid2 3751 prid2g 3749 snid 3675
snidg 3673 |
| [Quine] p. 51 | Theorem
7.12 | snexg 4245 snexprc 4247 |
| [Quine] p. 51 | Theorem
7.13 | prexg 4272 |
| [Quine] p. 53 | Theorem
8.2 | unisn 3881 unisng 3882 |
| [Quine] p. 53 | Theorem
8.3 | uniun 3884 |
| [Quine] p. 54 | Theorem
8.6 | elssuni 3893 |
| [Quine] p. 54 | Theorem
8.7 | uni0 3892 |
| [Quine] p. 56 | Theorem
8.17 | uniabio 5262 |
| [Quine] p. 56 | Definition
8.18 | dfiota2 5253 |
| [Quine] p. 57 | Theorem
8.19 | iotaval 5263 |
| [Quine] p. 57 | Theorem
8.22 | iotanul 5267 |
| [Quine] p. 58 | Theorem
8.23 | euiotaex 5268 |
| [Quine] p. 58 | Definition
9.1 | df-op 3653 |
| [Quine] p. 61 | Theorem
9.5 | opabid 4321 opabidw 4322 opelopab 4337 opelopaba 4331 opelopabaf 4339 opelopabf 4340 opelopabg 4333 opelopabga 4328 opelopabgf 4335 oprabid 6001 |
| [Quine] p. 64 | Definition
9.11 | df-xp 4700 |
| [Quine] p. 64 | Definition
9.12 | df-cnv 4702 |
| [Quine] p. 64 | Definition
9.15 | df-id 4359 |
| [Quine] p. 65 | Theorem
10.3 | fun0 5352 |
| [Quine] p. 65 | Theorem
10.4 | funi 5323 |
| [Quine] p. 65 | Theorem
10.5 | funsn 5342 funsng 5340 |
| [Quine] p. 65 | Definition
10.1 | df-fun 5293 |
| [Quine] p. 65 | Definition
10.2 | args 5071 dffv4g 5597 |
| [Quine] p. 68 | Definition
10.11 | df-fv 5299 fv2 5595 |
| [Quine] p. 124 | Theorem
17.3 | nn0opth2 10908 nn0opth2d 10907 nn0opthd 10906 |
| [Quine] p. 284 | Axiom
39(vi) | funimaex 5379 funimaexg 5378 |
| [Roman] p. 18 | Part
Preliminaries | df-rng 13856 |
| [Roman] p. 19 | Part
Preliminaries | df-ring 13921 |
| [Rudin] p. 164 | Equation
27 | efcan 12148 |
| [Rudin] p. 164 | Equation
30 | efzval 12155 |
| [Rudin] p. 167 | Equation
48 | absefi 12241 |
| [Sanford] p.
39 | Remark | ax-mp 5 |
| [Sanford] p. 39 | Rule
3 | mtpxor 1446 |
| [Sanford] p. 39 | Rule
4 | mptxor 1444 |
| [Sanford] p. 40 | Rule
1 | mptnan 1443 |
| [Schechter] p.
51 | Definition of antisymmetry | intasym 5087 |
| [Schechter] p.
51 | Definition of irreflexivity | intirr 5089 |
| [Schechter] p.
51 | Definition of symmetry | cnvsym 5086 |
| [Schechter] p.
51 | Definition of transitivity | cotr 5084 |
| [Schechter] p.
187 | Definition of "ring with unit" | isring 13923 |
| [Schechter] p.
428 | Definition 15.35 | bastop1 14716 |
| [Stoll] p. 13 | Definition
of symmetric difference | symdif1 3447 |
| [Stoll] p. 16 | Exercise
4.4 | 0dif 3541 dif0 3540 |
| [Stoll] p. 16 | Exercise
4.8 | difdifdirss 3554 |
| [Stoll] p. 19 | Theorem
5.2(13) | undm 3440 |
| [Stoll] p. 19 | Theorem
5.2(13') | indmss 3441 |
| [Stoll] p.
20 | Remark | invdif 3424 |
| [Stoll] p. 25 | Definition
of ordered triple | df-ot 3654 |
| [Stoll] p.
43 | Definition | uniiun 3996 |
| [Stoll] p.
44 | Definition | intiin 3997 |
| [Stoll] p.
45 | Definition | df-iin 3945 |
| [Stoll] p. 45 | Definition
indexed union | df-iun 3944 |
| [Stoll] p. 176 | Theorem
3.4(27) | imandc 891 imanst 890 |
| [Stoll] p. 262 | Example
4.1 | symdif1 3447 |
| [Suppes] p. 22 | Theorem
2 | eq0 3488 |
| [Suppes] p. 22 | Theorem
4 | eqss 3217 eqssd 3219 eqssi 3218 |
| [Suppes] p. 23 | Theorem
5 | ss0 3510 ss0b 3509 |
| [Suppes] p. 23 | Theorem
6 | sstr 3210 |
| [Suppes] p. 25 | Theorem
12 | elin 3365 elun 3323 |
| [Suppes] p. 26 | Theorem
15 | inidm 3391 |
| [Suppes] p. 26 | Theorem
16 | in0 3504 |
| [Suppes] p. 27 | Theorem
23 | unidm 3325 |
| [Suppes] p. 27 | Theorem
24 | un0 3503 |
| [Suppes] p. 27 | Theorem
25 | ssun1 3345 |
| [Suppes] p. 27 | Theorem
26 | ssequn1 3352 |
| [Suppes] p. 27 | Theorem
27 | unss 3356 |
| [Suppes] p. 27 | Theorem
28 | indir 3431 |
| [Suppes] p. 27 | Theorem
29 | undir 3432 |
| [Suppes] p. 28 | Theorem
32 | difid 3538 difidALT 3539 |
| [Suppes] p. 29 | Theorem
33 | difin 3419 |
| [Suppes] p. 29 | Theorem
34 | indif 3425 |
| [Suppes] p. 29 | Theorem
35 | undif1ss 3544 |
| [Suppes] p. 29 | Theorem
36 | difun2 3549 |
| [Suppes] p. 29 | Theorem
37 | difin0 3543 |
| [Suppes] p. 29 | Theorem
38 | disjdif 3542 |
| [Suppes] p. 29 | Theorem
39 | difundi 3434 |
| [Suppes] p. 29 | Theorem
40 | difindiss 3436 |
| [Suppes] p. 30 | Theorem
41 | nalset 4191 |
| [Suppes] p. 39 | Theorem
61 | uniss 3886 |
| [Suppes] p. 39 | Theorem
65 | uniop 4319 |
| [Suppes] p. 41 | Theorem
70 | intsn 3935 |
| [Suppes] p. 42 | Theorem
71 | intpr 3932 intprg 3933 |
| [Suppes] p. 42 | Theorem
73 | op1stb 4544 op1stbg 4545 |
| [Suppes] p. 42 | Theorem
78 | intun 3931 |
| [Suppes] p. 44 | Definition
15(a) | dfiun2 3976 dfiun2g 3974 |
| [Suppes] p. 44 | Definition
15(b) | dfiin2 3977 |
| [Suppes] p. 47 | Theorem
86 | elpw 3633 elpw2 4218 elpw2g 4217 elpwg 3635 |
| [Suppes] p. 47 | Theorem
87 | pwid 3642 |
| [Suppes] p. 47 | Theorem
89 | pw0 3792 |
| [Suppes] p. 48 | Theorem
90 | pwpw0ss 3860 |
| [Suppes] p. 52 | Theorem
101 | xpss12 4801 |
| [Suppes] p. 52 | Theorem
102 | xpindi 4832 xpindir 4833 |
| [Suppes] p. 52 | Theorem
103 | xpundi 4750 xpundir 4751 |
| [Suppes] p. 54 | Theorem
105 | elirrv 4615 |
| [Suppes] p. 58 | Theorem
2 | relss 4781 |
| [Suppes] p. 59 | Theorem
4 | eldm 4895 eldm2 4896 eldm2g 4894 eldmg 4893 |
| [Suppes] p. 59 | Definition
3 | df-dm 4704 |
| [Suppes] p. 60 | Theorem
6 | dmin 4906 |
| [Suppes] p. 60 | Theorem
8 | rnun 5111 |
| [Suppes] p. 60 | Theorem
9 | rnin 5112 |
| [Suppes] p. 60 | Definition
4 | dfrn2 4885 |
| [Suppes] p. 61 | Theorem
11 | brcnv 4880 brcnvg 4878 |
| [Suppes] p. 62 | Equation
5 | elcnv 4874 elcnv2 4875 |
| [Suppes] p. 62 | Theorem
12 | relcnv 5080 |
| [Suppes] p. 62 | Theorem
15 | cnvin 5110 |
| [Suppes] p. 62 | Theorem
16 | cnvun 5108 |
| [Suppes] p. 63 | Theorem
20 | co02 5216 |
| [Suppes] p. 63 | Theorem
21 | dmcoss 4968 |
| [Suppes] p. 63 | Definition
7 | df-co 4703 |
| [Suppes] p. 64 | Theorem
26 | cnvco 4882 |
| [Suppes] p. 64 | Theorem
27 | coass 5221 |
| [Suppes] p. 65 | Theorem
31 | resundi 4992 |
| [Suppes] p. 65 | Theorem
34 | elima 5047 elima2 5048 elima3 5049 elimag 5046 |
| [Suppes] p. 65 | Theorem
35 | imaundi 5115 |
| [Suppes] p. 66 | Theorem
40 | dminss 5117 |
| [Suppes] p. 66 | Theorem
41 | imainss 5118 |
| [Suppes] p. 67 | Exercise
11 | cnvxp 5121 |
| [Suppes] p. 81 | Definition
34 | dfec2 6648 |
| [Suppes] p. 82 | Theorem
72 | elec 6686 elecg 6685 |
| [Suppes] p. 82 | Theorem
73 | erth 6691 erth2 6692 |
| [Suppes] p. 89 | Theorem
96 | map0b 6799 |
| [Suppes] p. 89 | Theorem
97 | map0 6801 map0g 6800 |
| [Suppes] p. 89 | Theorem
98 | mapsn 6802 |
| [Suppes] p. 89 | Theorem
99 | mapss 6803 |
| [Suppes] p. 92 | Theorem
1 | enref 6881 enrefg 6880 |
| [Suppes] p. 92 | Theorem
2 | ensym 6898 ensymb 6897 ensymi 6899 |
| [Suppes] p. 92 | Theorem
3 | entr 6901 |
| [Suppes] p. 92 | Theorem
4 | unen 6934 |
| [Suppes] p. 94 | Theorem
15 | endom 6879 |
| [Suppes] p. 94 | Theorem
16 | ssdomg 6895 |
| [Suppes] p. 94 | Theorem
17 | domtr 6902 |
| [Suppes] p. 95 | Theorem
18 | isbth 7097 |
| [Suppes] p. 98 | Exercise
4 | fundmen 6924 fundmeng 6925 |
| [Suppes] p. 98 | Exercise
6 | xpdom3m 6956 |
| [Suppes] p.
130 | Definition 3 | df-tr 4160 |
| [Suppes] p. 132 | Theorem
9 | ssonuni 4555 |
| [Suppes] p.
134 | Definition 6 | df-suc 4437 |
| [Suppes] p. 136 | Theorem
Schema 22 | findes 4670 finds 4667 finds1 4669 finds2 4668 |
| [Suppes] p.
162 | Definition 5 | df-ltnqqs 7503 df-ltpq 7496 |
| [Suppes] p. 228 | Theorem
Schema 61 | onintss 4456 |
| [TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2189 |
| [TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2200 |
| [TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2203 |
| [TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2202 |
| [TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2225 |
| [TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5973 |
| [TakeutiZaring] p.
14 | Proposition 4.14 | ru 3005 |
| [TakeutiZaring] p.
15 | Exercise 1 | elpr 3665 elpr2 3666 elprg 3664 |
| [TakeutiZaring] p.
15 | Exercise 2 | elsn 3660 elsn2 3678 elsn2g 3677 elsng 3659 velsn 3661 |
| [TakeutiZaring] p.
15 | Exercise 3 | elop 4294 |
| [TakeutiZaring] p.
15 | Exercise 4 | sneq 3655 sneqr 3815 |
| [TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3663 dfsn2 3658 |
| [TakeutiZaring] p.
16 | Axiom 3 | uniex 4503 |
| [TakeutiZaring] p.
16 | Exercise 6 | opth 4300 |
| [TakeutiZaring] p.
16 | Exercise 8 | rext 4278 |
| [TakeutiZaring] p.
16 | Corollary 5.8 | unex 4507 unexg 4509 |
| [TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3693 |
| [TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3866 |
| [TakeutiZaring] p.
16 | Definition 5.6 | df-in 3181 df-un 3179 |
| [TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3879 uniprg 3880 |
| [TakeutiZaring] p.
17 | Axiom 4 | vpwex 4240 |
| [TakeutiZaring] p.
17 | Exercise 1 | eltp 3692 |
| [TakeutiZaring] p.
17 | Exercise 5 | elsuc 4472 elsucg 4470 sstr2 3209 |
| [TakeutiZaring] p.
17 | Exercise 6 | uncom 3326 |
| [TakeutiZaring] p.
17 | Exercise 7 | incom 3374 |
| [TakeutiZaring] p.
17 | Exercise 8 | unass 3339 |
| [TakeutiZaring] p.
17 | Exercise 9 | inass 3392 |
| [TakeutiZaring] p.
17 | Exercise 10 | indi 3429 |
| [TakeutiZaring] p.
17 | Exercise 11 | undi 3430 |
| [TakeutiZaring] p.
17 | Definition 5.9 | ssalel 3190 |
| [TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3629 |
| [TakeutiZaring] p.
18 | Exercise 7 | unss2 3353 |
| [TakeutiZaring] p.
18 | Exercise 9 | df-ss 3188 dfss2 3192 sseqin2 3401 |
| [TakeutiZaring] p.
18 | Exercise 10 | ssid 3222 |
| [TakeutiZaring] p.
18 | Exercise 12 | inss1 3402 inss2 3403 |
| [TakeutiZaring] p.
18 | Exercise 13 | nssr 3262 |
| [TakeutiZaring] p.
18 | Exercise 15 | unieq 3874 |
| [TakeutiZaring] p.
18 | Exercise 18 | sspwb 4279 |
| [TakeutiZaring] p.
18 | Exercise 19 | pweqb 4286 |
| [TakeutiZaring] p.
20 | Definition | df-rab 2495 |
| [TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4188 |
| [TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3177 |
| [TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3471 |
| [TakeutiZaring] p.
20 | Proposition 5.15 | difid 3538 difidALT 3539 |
| [TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3482 |
| [TakeutiZaring] p.
21 | Theorem 5.22 | setind 4606 |
| [TakeutiZaring] p.
21 | Definition 5.20 | df-v 2779 |
| [TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4193 |
| [TakeutiZaring] p.
22 | Exercise 1 | 0ss 3508 |
| [TakeutiZaring] p.
22 | Exercise 3 | ssex 4198 ssexg 4200 |
| [TakeutiZaring] p.
22 | Exercise 4 | inex1 4195 |
| [TakeutiZaring] p.
22 | Exercise 5 | ruv 4617 |
| [TakeutiZaring] p.
22 | Exercise 6 | elirr 4608 |
| [TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3534 |
| [TakeutiZaring] p.
22 | Exercise 11 | difdif 3307 |
| [TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3443 |
| [TakeutiZaring] p.
22 | Exercise 14 | difss 3308 |
| [TakeutiZaring] p.
22 | Exercise 15 | sscon 3316 |
| [TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2491 |
| [TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2492 |
| [TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4809 xpexg 4808 xpexgALT 6243 |
| [TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4701 |
| [TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5358 |
| [TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5515 fun11 5361 |
| [TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5302 svrelfun 5359 |
| [TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4884 |
| [TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4886 |
| [TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4706 |
| [TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4707 |
| [TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4703 |
| [TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5157 dfrel2 5153 |
| [TakeutiZaring] p.
25 | Exercise 3 | xpss 4802 |
| [TakeutiZaring] p.
25 | Exercise 5 | relun 4811 |
| [TakeutiZaring] p.
25 | Exercise 6 | reluni 4817 |
| [TakeutiZaring] p.
25 | Exercise 9 | inxp 4831 |
| [TakeutiZaring] p.
25 | Exercise 12 | relres 5007 |
| [TakeutiZaring] p.
25 | Exercise 13 | opelres 4984 opelresg 4986 |
| [TakeutiZaring] p.
25 | Exercise 14 | dmres 5000 |
| [TakeutiZaring] p.
25 | Exercise 15 | resss 5003 |
| [TakeutiZaring] p.
25 | Exercise 17 | resabs1 5008 |
| [TakeutiZaring] p.
25 | Exercise 18 | funres 5332 |
| [TakeutiZaring] p.
25 | Exercise 24 | relco 5201 |
| [TakeutiZaring] p.
25 | Exercise 29 | funco 5331 |
| [TakeutiZaring] p.
25 | Exercise 30 | f1co 5516 |
| [TakeutiZaring] p.
26 | Definition 6.10 | eu2 2100 |
| [TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5299 fv3 5623 |
| [TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5241 cnvexg 5240 |
| [TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4965 dmexg 4962 |
| [TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4966 rnexg 4963 |
| [TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5617 |
| [TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5627 tz6.12 5628 tz6.12c 5630 |
| [TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5591 |
| [TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5294 |
| [TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5295 |
| [TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5297 wfo 5289 |
| [TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5296 wf1 5288 |
| [TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5298 wf1o 5290 |
| [TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5702 eqfnfv2 5703 eqfnfv2f 5706 |
| [TakeutiZaring] p.
28 | Exercise 5 | fvco 5674 |
| [TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5831 fnexALT 6221 |
| [TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5830 resfunexgALT 6218 |
| [TakeutiZaring] p.
29 | Exercise 9 | funimaex 5379 funimaexg 5378 |
| [TakeutiZaring] p.
29 | Definition 6.18 | df-br 4061 |
| [TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 5072 iniseg 5074 |
| [TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4355 |
| [TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5300 |
| [TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5904 |
| [TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5905 |
| [TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5910 |
| [TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5912 |
| [TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5920 |
| [TakeutiZaring] p.
35 | Notation | wtr 4159 |
| [TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4420 |
| [TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4163 |
| [TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4643 |
| [TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4447 |
| [TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4451 |
| [TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4559 |
| [TakeutiZaring] p.
38 | Definition 7.11 | df-on 4434 |
| [TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4553 |
| [TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4619 |
| [TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4649 |
| [TakeutiZaring] p.
40 | Exercise 7 | dftr2 4161 |
| [TakeutiZaring] p.
40 | Exercise 11 | unon 4578 |
| [TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4554 |
| [TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3893 |
| [TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4437 |
| [TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4481 sucidg 4482 |
| [TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4568 |
| [TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4435 |
| [TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4573 ordelsuc 4572 |
| [TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4661 |
| [TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4662 |
| [TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4663 |
| [TakeutiZaring] p.
43 | Axiom 7 | omex 4660 |
| [TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4674 |
| [TakeutiZaring] p.
43 | Corollary 7.31 | find 4666 |
| [TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4664 |
| [TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4665 |
| [TakeutiZaring] p.
44 | Exercise 2 | int0 3914 |
| [TakeutiZaring] p.
44 | Exercise 3 | trintssm 4175 |
| [TakeutiZaring] p.
44 | Exercise 4 | intss1 3915 |
| [TakeutiZaring] p.
44 | Exercise 6 | onintonm 4584 |
| [TakeutiZaring] p.
44 | Definition 7.35 | df-int 3901 |
| [TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6419 |
| [TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6476 tfri1d 6446 |
| [TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6477 tfri2d 6447 |
| [TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6478 |
| [TakeutiZaring] p.
50 | Exercise 3 | smoiso 6413 |
| [TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6397 |
| [TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6575 |
| [TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6571 |
| [TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6568 |
| [TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6572 |
| [TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6620 nnaordi 6619 |
| [TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3987 uniss2 3896 |
| [TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6581 |
| [TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6591 |
| [TakeutiZaring] p.
62 | Exercise 5 | oaword1 6582 |
| [TakeutiZaring] p.
62 | Definition 8.15 | om0 6569 omsuc 6583 |
| [TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6592 |
| [TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6628 nnmordi 6627 |
| [TakeutiZaring] p.
67 | Definition 8.30 | oei0 6570 |
| [TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7322 |
| [TakeutiZaring] p.
88 | Exercise 1 | en0 6912 |
| [TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6981 |
| [TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6982 |
| [TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6855 isfi 6877 |
| [TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6953 |
| [TakeutiZaring] p.
95 | Definition 10.42 | df-map 6762 |
| [TakeutiZaring] p.
96 | Proposition 10.44 | pw2f1odc 6959 |
| [TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6972 |
| [Tarski] p. 67 | Axiom
B5 | ax-4 1534 |
| [Tarski] p. 68 | Lemma
6 | equid 1725 |
| [Tarski] p. 69 | Lemma
7 | equcomi 1728 |
| [Tarski] p. 70 | Lemma
14 | spim 1762 spime 1765 spimeh 1763 spimh 1761 |
| [Tarski] p. 70 | Lemma
16 | ax-11 1530 ax-11o 1847 ax11i 1738 |
| [Tarski] p. 70 | Lemmas 16
and 17 | sb6 1911 |
| [Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1550 |
| [Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2180 ax-14 2181 |
| [WhiteheadRussell] p.
96 | Axiom *1.3 | olc 713 |
| [WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 729 |
| [WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 758 |
| [WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 767 |
| [WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 791 |
| [WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 617 |
| [WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
| [WhiteheadRussell] p.
100 | Theorem *2.03 | con2 644 |
| [WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
| [WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
| [WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
| [WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 839 |
| [WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2154 syl 14 |
| [WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 739 |
| [WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
| [WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 838 |
| [WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 630 |
| [WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 887 |
| [WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 845 |
| [WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 858 |
| [WhiteheadRussell] p.
103 | Theorem *2.16 | con3 643 |
| [WhiteheadRussell] p.
103 | Theorem *2.17 | condc 855 |
| [WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 857 |
| [WhiteheadRussell] p.
104 | Theorem *2.2 | orc 714 |
| [WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 777 |
| [WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 618 |
| [WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 622 |
| [WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 895 |
| [WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 909 |
| [WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
| [WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 770 |
| [WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 771 |
| [WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 806 |
| [WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 807 |
| [WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 805 |
| [WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 982 |
| [WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 780 |
| [WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 778 |
| [WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 779 |
| [WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
| [WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 740 |
| [WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 741 |
| [WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 869 pm2.5gdc 868 |
| [WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 864 |
| [WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 742 |
| [WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 743 |
| [WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 744 |
| [WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 657 |
| [WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 658 |
| [WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 724 |
| [WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 893 |
| [WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 727 |
| [WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 728 |
| [WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 867 |
| [WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 750 |
| [WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 802 |
| [WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 803 |
| [WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 661 |
| [WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 715 pm2.67 745 |
| [WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 871 pm2.521gdc 870 |
| [WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 749 |
| [WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 812 |
| [WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 896 |
| [WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 917 |
| [WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 808 |
| [WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 809 |
| [WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 811 |
| [WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 810 |
| [WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
| [WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 813 |
| [WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 814 |
| [WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
| [WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 907 |
| [WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
| [WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 756 |
| [WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
| [WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 960 |
| [WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 961 |
| [WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 962 |
| [WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 755 |
| [WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
| [WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
| [WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 695 |
| [WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
| [WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
| [WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
| [WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 862 |
| [WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 861 |
| [WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
| [WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
| [WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 691 |
| [WhiteheadRussell] p.
113 | Fact) | pm3.45 597 |
| [WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
| [WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
| [WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
| [WhiteheadRussell] p.
113 | Theorem *3.44 | jao 757 pm3.44 717 |
| [WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
| [WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 602 |
| [WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 787 |
| [WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 873 |
| [WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
| [WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 874 |
| [WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 892 |
| [WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 696 |
| [WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
| [WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 955 bitr 472 |
| [WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
| [WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 759 pm4.25 760 |
| [WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
| [WhiteheadRussell] p.
118 | Theorem *4.4 | andi 820 |
| [WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 730 |
| [WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
| [WhiteheadRussell] p.
118 | Theorem *4.33 | orass 769 |
| [WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
| [WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 794 |
| [WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 605 |
| [WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 824 |
| [WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 983 |
| [WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 818 |
| [WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 974 |
| [WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 952 |
| [WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 781 |
| [WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 816 pm4.45 786 pm4.45im 334 |
| [WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1505 |
| [WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 959 |
| [WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 899 imorr 723 |
| [WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
| [WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 901 |
| [WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 752 |
| [WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 753 |
| [WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 904 |
| [WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 941 |
| [WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 754 pm4.56 782 |
| [WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 942 oranim 783 |
| [WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 688 |
| [WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 900 |
| [WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 888 |
| [WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 902 |
| [WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 689 |
| [WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 903 |
| [WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 889 |
| [WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
| [WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 829 |
| [WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
| [WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 746 |
| [WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 603 pm4.76 604 |
| [WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 712 pm4.77 801 |
| [WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 784 |
| [WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 905 |
| [WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 709 |
| [WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 910 |
| [WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 953 |
| [WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 954 |
| [WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
| [WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
| [WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
| [WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
| [WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 601 |
| [WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 911 |
| [WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 912 |
| [WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 914 |
| [WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 913 |
| [WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1409 |
| [WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 830 |
| [WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 906 |
| [WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1414 pm5.18dc 885 |
| [WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 708 |
| [WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 697 |
| [WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1412 |
| [WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1417 |
| [WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1418 |
| [WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 897 |
| [WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
| [WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
| [WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
| [WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 928 pm5.6r 929 |
| [WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 957 |
| [WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
| [WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
| [WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 609 |
| [WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 919 |
| [WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 610 |
| [WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
| [WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
| [WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 927 |
| [WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 804 |
| [WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 920 |
| [WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 915 |
| [WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 796 |
| [WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 948 |
| [WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 949 |
| [WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 964 |
| [WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
| [WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
| [WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 965 |
| [WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1659 |
| [WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1509 |
| [WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1656 |
| [WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1920 |
| [WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2058 |
| [WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2459 |
| [WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2460 |
| [WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2919 |
| [WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3063 |
| [WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5271 |
| [WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5272 |
| [WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2135 eupickbi 2138 |
| [WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5299 |
| [WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7326 |