Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7116  fidcenum 6957
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 6957
[AczelRathjen], p. 73Lemma 8.1.14enumct 7116
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12428
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6931
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6919
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12443
[AczelRathjen], p. 75Corollary 8.1.20unct 12445
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12434  znnen 12401
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12446
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12447
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10758
[AczelRathjen], p. 183Chapter 20ax-setind 4538
[Apostol] p. 18Theorem I.1addcan 8139  addcan2d 8144  addcan2i 8142  addcand 8143  addcani 8141
[Apostol] p. 18Theorem I.2negeu 8150
[Apostol] p. 18Theorem I.3negsub 8207  negsubd 8276  negsubi 8237
[Apostol] p. 18Theorem I.4negneg 8209  negnegd 8261  negnegi 8229
[Apostol] p. 18Theorem I.5subdi 8344  subdid 8373  subdii 8366  subdir 8345  subdird 8374  subdiri 8367
[Apostol] p. 18Theorem I.6mul01 8348  mul01d 8352  mul01i 8350  mul02 8346  mul02d 8351  mul02i 8349
[Apostol] p. 18Theorem I.9divrecapd 8752
[Apostol] p. 18Theorem I.10recrecapi 8703
[Apostol] p. 18Theorem I.12mul2neg 8357  mul2negd 8372  mul2negi 8365  mulneg1 8354  mulneg1d 8370  mulneg1i 8363
[Apostol] p. 18Theorem I.14rdivmuldivd 13318
[Apostol] p. 18Theorem I.15divdivdivap 8672
[Apostol] p. 20Axiom 7rpaddcl 9679  rpaddcld 9714  rpmulcl 9680  rpmulcld 9715
[Apostol] p. 20Axiom 90nrp 9691
[Apostol] p. 20Theorem I.17lttri 8064
[Apostol] p. 20Theorem I.18ltadd1d 8497  ltadd1dd 8515  ltadd1i 8461
[Apostol] p. 20Theorem I.19ltmul1 8551  ltmul1a 8550  ltmul1i 8879  ltmul1ii 8887  ltmul2 8815  ltmul2d 9741  ltmul2dd 9755  ltmul2i 8882
[Apostol] p. 20Theorem I.210lt1 8086
[Apostol] p. 20Theorem I.23lt0neg1 8427  lt0neg1d 8474  ltneg 8421  ltnegd 8482  ltnegi 8452
[Apostol] p. 20Theorem I.25lt2add 8404  lt2addd 8526  lt2addi 8469
[Apostol] p. 20Definition of positive numbersdf-rp 9656
[Apostol] p. 21Exercise 4recgt0 8809  recgt0d 8893  recgt0i 8865  recgt0ii 8866
[Apostol] p. 22Definition of integersdf-z 9256
[Apostol] p. 22Definition of rationalsdf-q 9622
[Apostol] p. 24Theorem I.26supeuti 6995
[Apostol] p. 26Theorem I.29arch 9175
[Apostol] p. 28Exercise 2btwnz 9374
[Apostol] p. 28Exercise 3nnrecl 9176
[Apostol] p. 28Exercise 6qbtwnre 10259
[Apostol] p. 28Exercise 10(a)zeneo 11878  zneo 9356
[Apostol] p. 29Theorem I.35resqrtth 11042  sqrtthi 11130
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8924
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12039
[Apostol] p. 363Remarkabsgt0api 11157
[Apostol] p. 363Exampleabssubd 11204  abssubi 11161
[ApostolNT] p. 14Definitiondf-dvds 11797
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11813
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11837
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11833
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11827
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11829
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11814
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11815
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11820
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11853
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11855
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11857
[ApostolNT] p. 15Definitiondfgcd2 12017
[ApostolNT] p. 16Definitionisprm2 12119
[ApostolNT] p. 16Theorem 1.5coprmdvds 12094
[ApostolNT] p. 16Theorem 1.7prminf 12458
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 11976
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12018
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12020
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 11990
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 11983
[ApostolNT] p. 17Theorem 1.8coprm 12146
[ApostolNT] p. 17Theorem 1.9euclemma 12148
[ApostolNT] p. 17Theorem 1.101arith2 12368
[ApostolNT] p. 19Theorem 1.14divalg 11931
[ApostolNT] p. 20Theorem 1.15eucalg 12061
[ApostolNT] p. 25Definitiondf-phi 12213
[ApostolNT] p. 26Theorem 2.2phisum 12242
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12224
[ApostolNT] p. 28Theorem 2.5(c)phimul 12228
[ApostolNT] p. 104Definitioncongr 12102
[ApostolNT] p. 106Remarkdvdsval3 11800
[ApostolNT] p. 106Definitionmoddvds 11808
[ApostolNT] p. 107Example 2mod2eq0even 11885
[ApostolNT] p. 107Example 3mod2eq1n2dvds 11886
[ApostolNT] p. 107Example 4zmod1congr 10343
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10380
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10649
[ApostolNT] p. 108Theorem 5.3modmulconst 11832
[ApostolNT] p. 109Theorem 5.4cncongr1 12105
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12107
[ApostolNT] p. 113Theorem 5.17eulerth 12235
[ApostolNT] p. 113Theorem 5.18vfermltl 12253
[ApostolNT] p. 114Theorem 5.19fermltl 12236
[ApostolNT] p. 179Definitiondf-lgs 14438  lgsprme0 14482
[ApostolNT] p. 180Example 11lgs 14483
[ApostolNT] p. 180Theorem 9.2lgsvalmod 14459
[ApostolNT] p. 180Theorem 9.3lgsdirprm 14474
[ApostolNT] p. 181Theorem 9.4m1lgs 14491
[ApostolNT] p. 188Definitiondf-lgs 14438  lgs1 14484
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 14475
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 14477
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 14485
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 14486
[Bauer] p. 482Section 1.2pm2.01 616  pm2.65 659
[Bauer] p. 483Theorem 1.3acexmid 5876  onsucelsucexmidlem 4530
[Bauer], p. 481Section 1.1pwtrufal 14786
[Bauer], p. 483Definitionn0rf 3437
[Bauer], p. 483Theorem 1.22irrexpq 14433  2irrexpqap 14435
[Bauer], p. 485Theorem 2.1ssfiexmid 6878
[Bauer], p. 494Theorem 5.5ivthinc 14160
[BauerHanson], p. 27Proposition 5.2cnstab 8604
[BauerSwan], p. 14Remark0ct 7108  ctm 7110
[BauerSwan], p. 14Proposition 2.6subctctexmid 14789
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7116
[BauerTaylor], p. 32Lemma 6.16prarloclem 7502
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7415
[BauerTaylor], p. 52Proposition 11.15prarloc 7504
[BauerTaylor], p. 53Lemma 11.16addclpr 7538  addlocpr 7537
[BauerTaylor], p. 55Proposition 12.7appdivnq 7564
[BauerTaylor], p. 56Lemma 12.8prmuloc 7567
[BauerTaylor], p. 56Lemma 12.9mullocpr 7572
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2029
[BellMachover] p. 460Notationdf-mo 2030
[BellMachover] p. 460Definitionmo3 2080  mo3h 2079
[BellMachover] p. 462Theorem 1.1bm1.1 2162
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4126
[BellMachover] p. 466Axiom Powaxpow3 4179
[BellMachover] p. 466Axiom Unionaxun2 4437
[BellMachover] p. 469Theorem 2.2(i)ordirr 4543
[BellMachover] p. 469Theorem 2.2(iii)onelon 4386
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4546
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4497
[BellMachover] p. 471Definition of Limdf-ilim 4371
[BellMachover] p. 472Axiom Infzfinf2 4590
[BellMachover] p. 473Theorem 2.8limom 4615
[Bobzien] p. 116Statement T3stoic3 1431
[Bobzien] p. 117Statement T2stoic2a 1429
[Bobzien] p. 117Statement T4stoic4a 1432
[Bobzien] p. 117Conclusion the contradictorystoic1a 1427
[BourbakiAlg1] p. 1Definition 1df-mgm 12780
[BourbakiAlg1] p. 4Definition 5df-sgrp 12813
[BourbakiAlg1] p. 12Definition 2df-mnd 12823
[BourbakiAlg1] p. 92Definition 1df-ring 13186
[BourbakiEns] p. Proposition 8fcof1 5786  fcofo 5787
[BourbakiTop1] p. Remarkxnegmnf 9831  xnegpnf 9830
[BourbakiTop1] p. Remark rexneg 9832
[BourbakiTop1] p. Propositionishmeo 13843
[BourbakiTop1] p. Property V_issnei2 13696
[BourbakiTop1] p. Property V_iiinnei 13702
[BourbakiTop1] p. Property V_ivneissex 13704
[BourbakiTop1] p. Proposition 1neipsm 13693  neiss 13689
[BourbakiTop1] p. Proposition 2cnptopco 13761
[BourbakiTop1] p. Proposition 4imasnopn 13838
[BourbakiTop1] p. Property V_iiielnei 13691
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 13537
[Bruck] p. 1Section I.1df-mgm 12780
[Bruck] p. 23Section II.1df-sgrp 12813
[Bruck] p. 28Theorem 3.2dfgrp3m 12974
[ChoquetDD] p. 2Definition of mappingdf-mpt 4068
[Cohen] p. 301Remarkrelogoprlem 14328
[Cohen] p. 301Property 2relogmul 14329  relogmuld 14344
[Cohen] p. 301Property 3relogdiv 14330  relogdivd 14345
[Cohen] p. 301Property 4relogexp 14332
[Cohen] p. 301Property 1alog1 14326
[Cohen] p. 301Property 1bloge 14327
[Cohen4] p. 348Observationrelogbcxpbap 14422
[Cohen4] p. 352Definitionrpelogb 14406
[Cohen4] p. 361Property 2rprelogbmul 14412
[Cohen4] p. 361Property 3logbrec 14417  rprelogbdiv 14414
[Cohen4] p. 361Property 4rplogbreexp 14410
[Cohen4] p. 361Property 6relogbexpap 14415
[Cohen4] p. 361Property 1(a)rplogbid1 14404
[Cohen4] p. 361Property 1(b)rplogb1 14405
[Cohen4] p. 367Propertyrplogbchbase 14407
[Cohen4] p. 377Property 2logblt 14419
[Crosilla] p. Axiom 1ax-ext 2159
[Crosilla] p. Axiom 2ax-pr 4211
[Crosilla] p. Axiom 3ax-un 4435
[Crosilla] p. Axiom 4ax-nul 4131
[Crosilla] p. Axiom 5ax-iinf 4589
[Crosilla] p. Axiom 6ru 2963
[Crosilla] p. Axiom 8ax-pow 4176
[Crosilla] p. Axiom 9ax-setind 4538
[Crosilla], p. Axiom 6ax-sep 4123
[Crosilla], p. Axiom 7ax-coll 4120
[Crosilla], p. Axiom 7'repizf 4121
[Crosilla], p. Theorem is statedordtriexmid 4522
[Crosilla], p. Axiom of choice implies instancesacexmid 5876
[Crosilla], p. Definition of ordinaldf-iord 4368
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4536
[Eisenberg] p. 67Definition 5.3df-dif 3133
[Eisenberg] p. 82Definition 6.3df-iom 4592
[Eisenberg] p. 125Definition 8.21df-map 6652
[Enderton] p. 18Axiom of Empty Setaxnul 4130
[Enderton] p. 19Definitiondf-tp 3602
[Enderton] p. 26Exercise 5unissb 3841
[Enderton] p. 26Exercise 10pwel 4220
[Enderton] p. 28Exercise 7(b)pwunim 4288
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3958  iinin2m 3957  iunin1 3953  iunin2 3952
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3956  iundif2ss 3954
[Enderton] p. 33Exercise 23iinuniss 3971
[Enderton] p. 33Exercise 25iununir 3972
[Enderton] p. 33Exercise 24(a)iinpw 3979
[Enderton] p. 33Exercise 24(b)iunpw 4482  iunpwss 3980
[Enderton] p. 38Exercise 6(a)unipw 4219
[Enderton] p. 38Exercise 6(b)pwuni 4194
[Enderton] p. 41Lemma 3Dopeluu 4452  rnex 4896  rnexg 4894
[Enderton] p. 41Exercise 8dmuni 4839  rnuni 5042
[Enderton] p. 42Definition of a functiondffun7 5245  dffun8 5246
[Enderton] p. 43Definition of function valuefunfvdm2 5582
[Enderton] p. 43Definition of single-rootedfuncnv 5279
[Enderton] p. 44Definition (d)dfima2 4974  dfima3 4975
[Enderton] p. 47Theorem 3Hfvco2 5587
[Enderton] p. 49Axiom of Choice (first form)df-ac 7207
[Enderton] p. 50Theorem 3K(a)imauni 5764
[Enderton] p. 52Definitiondf-map 6652
[Enderton] p. 53Exercise 21coass 5149
[Enderton] p. 53Exercise 27dmco 5139
[Enderton] p. 53Exercise 14(a)funin 5289
[Enderton] p. 53Exercise 22(a)imass2 5006
[Enderton] p. 54Remarkixpf 6722  ixpssmap 6734
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6701
[Enderton] p. 56Theorem 3Merref 6557
[Enderton] p. 57Lemma 3Nerthi 6583
[Enderton] p. 57Definitiondf-ec 6539
[Enderton] p. 58Definitiondf-qs 6543
[Enderton] p. 60Theorem 3Qth3q 6642  th3qcor 6641  th3qlem1 6639  th3qlem2 6640
[Enderton] p. 61Exercise 35df-ec 6539
[Enderton] p. 65Exercise 56(a)dmun 4836
[Enderton] p. 68Definition of successordf-suc 4373
[Enderton] p. 71Definitiondf-tr 4104  dftr4 4108
[Enderton] p. 72Theorem 4Eunisuc 4415  unisucg 4416
[Enderton] p. 73Exercise 6unisuc 4415  unisucg 4416
[Enderton] p. 73Exercise 5(a)truni 4117
[Enderton] p. 73Exercise 5(b)trint 4118
[Enderton] p. 79Theorem 4I(A1)nna0 6477
[Enderton] p. 79Theorem 4I(A2)nnasuc 6479  onasuc 6469
[Enderton] p. 79Definition of operation valuedf-ov 5880
[Enderton] p. 80Theorem 4J(A1)nnm0 6478
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6480  onmsuc 6476
[Enderton] p. 81Theorem 4K(1)nnaass 6488
[Enderton] p. 81Theorem 4K(2)nna0r 6481  nnacom 6487
[Enderton] p. 81Theorem 4K(3)nndi 6489
[Enderton] p. 81Theorem 4K(4)nnmass 6490
[Enderton] p. 81Theorem 4K(5)nnmcom 6492
[Enderton] p. 82Exercise 16nnm0r 6482  nnmsucr 6491
[Enderton] p. 88Exercise 23nnaordex 6531
[Enderton] p. 129Definitiondf-en 6743
[Enderton] p. 132Theorem 6B(b)canth 5831
[Enderton] p. 133Exercise 1xpomen 12398
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6867
[Enderton] p. 136Corollary 6Enneneq 6859
[Enderton] p. 139Theorem 6H(c)mapen 6848
[Enderton] p. 142Theorem 6I(3)xpdjuen 7219
[Enderton] p. 143Theorem 6Jdju0en 7215  dju1en 7214
[Enderton] p. 144Corollary 6Kundif2ss 3500
[Enderton] p. 145Figure 38ffoss 5495
[Enderton] p. 145Definitiondf-dom 6744
[Enderton] p. 146Example 1domen 6753  domeng 6754
[Enderton] p. 146Example 3nndomo 6866
[Enderton] p. 149Theorem 6L(c)xpdom1 6837  xpdom1g 6835  xpdom2g 6834
[Enderton] p. 168Definitiondf-po 4298
[Enderton] p. 192Theorem 7M(a)oneli 4430
[Enderton] p. 192Theorem 7M(b)ontr1 4391
[Enderton] p. 192Theorem 7M(c)onirri 4544
[Enderton] p. 193Corollary 7N(b)0elon 4394
[Enderton] p. 193Corollary 7N(c)onsuci 4517
[Enderton] p. 193Corollary 7N(d)ssonunii 4490
[Enderton] p. 194Remarkonprc 4553
[Enderton] p. 194Exercise 16suc11 4559
[Enderton] p. 197Definitiondf-card 7181
[Enderton] p. 200Exercise 25tfis 4584
[Enderton] p. 206Theorem 7X(b)en2lp 4555
[Enderton] p. 207Exercise 34opthreg 4557
[Enderton] p. 208Exercise 35suc11g 4558
[Geuvers], p. 1Remarkexpap0 10552
[Geuvers], p. 6Lemma 2.13mulap0r 8574
[Geuvers], p. 6Lemma 2.15mulap0 8613
[Geuvers], p. 9Lemma 2.35msqge0 8575
[Geuvers], p. 9Definition 3.1(2)ax-arch 7932
[Geuvers], p. 10Lemma 3.9maxcom 11214
[Geuvers], p. 10Lemma 3.10maxle1 11222  maxle2 11223
[Geuvers], p. 10Lemma 3.11maxleast 11224
[Geuvers], p. 10Lemma 3.12maxleb 11227
[Geuvers], p. 11Definition 3.13dfabsmax 11228
[Geuvers], p. 17Definition 6.1df-ap 8541
[Gleason] p. 117Proposition 9-2.1df-enq 7348  enqer 7359
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7352  df-nqqs 7349
[Gleason] p. 117Proposition 9-2.3df-plpq 7345  df-plqqs 7350
[Gleason] p. 119Proposition 9-2.4df-mpq 7346  df-mqqs 7351
[Gleason] p. 119Proposition 9-2.5df-rq 7353
[Gleason] p. 119Proposition 9-2.6ltexnqq 7409
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7412  ltbtwnnq 7417  ltbtwnnqq 7416
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7401
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7402
[Gleason] p. 123Proposition 9-3.5addclpr 7538
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7580
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7579
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7598
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7614
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7620  ltaprlem 7619
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7617
[Gleason] p. 124Proposition 9-3.7mulclpr 7573
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7593
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7582
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7581
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7589
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7639
[Gleason] p. 126Proposition 9-4.1df-enr 7727  enrer 7736
[Gleason] p. 126Proposition 9-4.2df-0r 7732  df-1r 7733  df-nr 7728
[Gleason] p. 126Proposition 9-4.3df-mr 7730  df-plr 7729  negexsr 7773  recexsrlem 7775
[Gleason] p. 127Proposition 9-4.4df-ltr 7731
[Gleason] p. 130Proposition 10-1.3creui 8919  creur 8918  cru 8561
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7924  axcnre 7882
[Gleason] p. 132Definition 10-3.1crim 10869  crimd 10988  crimi 10948  crre 10868  crred 10987  crrei 10947
[Gleason] p. 132Definition 10-3.2remim 10871  remimd 10953
[Gleason] p. 133Definition 10.36absval2 11068  absval2d 11196  absval2i 11155
[Gleason] p. 133Proposition 10-3.4(a)cjadd 10895  cjaddd 10976  cjaddi 10943
[Gleason] p. 133Proposition 10-3.4(c)cjmul 10896  cjmuld 10977  cjmuli 10944
[Gleason] p. 133Proposition 10-3.4(e)cjcj 10894  cjcjd 10954  cjcji 10926
[Gleason] p. 133Proposition 10-3.4(f)cjre 10893  cjreb 10877  cjrebd 10957  cjrebi 10929  cjred 10982  rere 10876  rereb 10874  rerebd 10956  rerebi 10928  rered 10980
[Gleason] p. 133Proposition 10-3.4(h)addcj 10902  addcjd 10968  addcji 10938
[Gleason] p. 133Proposition 10-3.7(a)absval 11012
[Gleason] p. 133Proposition 10-3.7(b)abscj 11063  abscjd 11201  abscji 11159
[Gleason] p. 133Proposition 10-3.7(c)abs00 11075  abs00d 11197  abs00i 11156  absne0d 11198
[Gleason] p. 133Proposition 10-3.7(d)releabs 11107  releabsd 11202  releabsi 11160
[Gleason] p. 133Proposition 10-3.7(f)absmul 11080  absmuld 11205  absmuli 11162
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11066  sqabsaddi 11163
[Gleason] p. 133Proposition 10-3.7(h)abstri 11115  abstrid 11207  abstrii 11166
[Gleason] p. 134Definition 10-4.1df-exp 10522  exp0 10526  expp1 10529  expp1d 10657
[Gleason] p. 135Proposition 10-4.2(a)expadd 10564  expaddd 10658
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 14372  cxpmuld 14395  expmul 10567  expmuld 10659
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10561  mulexpd 10671  rpmulcxp 14369
[Gleason] p. 141Definition 11-2.1fzval 10012
[Gleason] p. 168Proposition 12-2.1(a)climadd 11336
[Gleason] p. 168Proposition 12-2.1(b)climsub 11338
[Gleason] p. 168Proposition 12-2.1(c)climmul 11337
[Gleason] p. 171Corollary 12-2.2climmulc2 11341
[Gleason] p. 172Corollary 12-2.5climrecl 11334
[Gleason] p. 172Proposition 12-2.4(c)climabs 11330  climcj 11331  climim 11333  climre 11332
[Gleason] p. 173Definition 12-3.1df-ltxr 7999  df-xr 7998  ltxr 9777
[Gleason] p. 180Theorem 12-5.3climcau 11357
[Gleason] p. 217Lemma 13-4.1btwnzge0 10302
[Gleason] p. 223Definition 14-1.1df-met 13488
[Gleason] p. 223Definition 14-1.1(a)met0 13903  xmet0 13902
[Gleason] p. 223Definition 14-1.1(c)metsym 13910
[Gleason] p. 223Definition 14-1.1(d)mettri 13912  mstri 14012  xmettri 13911  xmstri 14011
[Gleason] p. 230Proposition 14-2.6txlm 13818
[Gleason] p. 240Proposition 14-4.2metcnp3 14050
[Gleason] p. 243Proposition 14-4.16addcn2 11320  addcncntop 14091  mulcn2 11322  mulcncntop 14093  subcn2 11321  subcncntop 14092
[Gleason] p. 295Remarkbcval3 10733  bcval4 10734
[Gleason] p. 295Equation 2bcpasc 10748
[Gleason] p. 295Definition of binomial coefficientbcval 10731  df-bc 10730
[Gleason] p. 296Remarkbcn0 10737  bcnn 10739
[Gleason] p. 296Theorem 15-2.8binom 11494
[Gleason] p. 308Equation 2ef0 11682
[Gleason] p. 308Equation 3efcj 11683
[Gleason] p. 309Corollary 15-4.3efne0 11688
[Gleason] p. 309Corollary 15-4.4efexp 11692
[Gleason] p. 310Equation 14sinadd 11746
[Gleason] p. 310Equation 15cosadd 11747
[Gleason] p. 311Equation 17sincossq 11758
[Gleason] p. 311Equation 18cosbnd 11763  sinbnd 11762
[Gleason] p. 311Definition of ` `df-pi 11663
[Golan] p. 1Remarksrgisid 13174
[Golan] p. 1Definitiondf-srg 13152
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1449
[Herstein] p. 55Lemma 2.2.1(a)grpideu 12893  mndideu 12832
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 12916
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 12942
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 12953
[Herstein] p. 57Exercise 1dfgrp3me 12975
[Heyting] p. 127Axiom #1ax1hfs 14861
[Hitchcock] p. 5Rule A3mptnan 1423
[Hitchcock] p. 5Rule A4mptxor 1424
[Hitchcock] p. 5Rule A5mtpxor 1426
[HoTT], p. Lemma 10.4.1exmidontriim 7226
[HoTT], p. Theorem 7.2.6nndceq 6502
[HoTT], p. Exercise 11.10neapmkv 14855
[HoTT], p. Exercise 11.11mulap0bd 8616
[HoTT], p. Section 11.2.1df-iltp 7471  df-imp 7470  df-iplp 7469  df-reap 8534
[HoTT], p. Theorem 11.2.4recapb 8630  rerecapb 8802
[HoTT], p. Theorem 11.2.12cauappcvgpr 7663
[HoTT], p. Corollary 11.4.3conventions 14512
[HoTT], p. Exercise 11.6(i)dcapnconst 14848  dceqnconst 14847
[HoTT], p. Corollary 11.2.13axcaucvg 7901  caucvgpr 7683  caucvgprpr 7713  caucvgsr 7803
[HoTT], p. Definition 11.2.1df-inp 7467
[HoTT], p. Exercise 11.6(ii)nconstwlpo 14853
[HoTT], p. Proposition 11.2.3df-iso 4299  ltpopr 7596  ltsopr 7597
[HoTT], p. Definition 11.2.7(v)apsym 8565  reapcotr 8557  reapirr 8536
[HoTT], p. Definition 11.2.7(vi)0lt1 8086  gt0add 8532  leadd1 8389  lelttr 8048  lemul1a 8817  lenlt 8035  ltadd1 8388  ltletr 8049  ltmul1 8551  reaplt 8547
[Jech] p. 4Definition of classcv 1352  cvjust 2172
[Jech] p. 78Noteopthprc 4679
[KalishMontague] p. 81Note 1ax-i9 1530
[Kreyszig] p. 3Property M1metcl 13892  xmetcl 13891
[Kreyszig] p. 4Property M2meteq0 13899
[Kreyszig] p. 12Equation 5muleqadd 8627
[Kreyszig] p. 18Definition 1.3-2mopnval 13981
[Kreyszig] p. 19Remarkmopntopon 13982
[Kreyszig] p. 19Theorem T1mopn0 14027  mopnm 13987
[Kreyszig] p. 19Theorem T2unimopn 14025
[Kreyszig] p. 19Definition of neighborhoodneibl 14030
[Kreyszig] p. 20Definition 1.3-3metcnp2 14052
[Kreyszig] p. 25Definition 1.4-1lmbr 13752
[Kreyszig] p. 51Equation 2lmodvneg1 13425
[Kreyszig] p. 51Equation 1almod0vs 13416
[Kreyszig] p. 51Equation 1blmodvs0 13417
[Kunen] p. 10Axiom 0a9e 1696
[Kunen] p. 12Axiom 6zfrep6 4122
[Kunen] p. 24Definition 10.24mapval 6662  mapvalg 6660
[Kunen] p. 31Definition 10.24mapex 6656
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3898
[Lang] p. 3Statementlidrideqd 12805  mndbn0 12837
[Lang] p. 3Definitiondf-mnd 12823
[Lang] p. 7Definitiondfgrp2e 12908
[Levy] p. 338Axiomdf-clab 2164  df-clel 2173  df-cleq 2170
[Lopez-Astorga] p. 12Rule 1mptnan 1423
[Lopez-Astorga] p. 12Rule 2mptxor 1424
[Lopez-Astorga] p. 12Rule 3mtpxor 1426
[Margaris] p. 40Rule Cexlimiv 1598
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 853
[Margaris] p. 49Definitiondfbi2 388  dfordc 892  exalim 1502
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 651
[Margaris] p. 89Theorem 19.219.2 1638  r19.2m 3511
[Margaris] p. 89Theorem 19.319.3 1554  19.3h 1553  rr19.3v 2878
[Margaris] p. 89Theorem 19.5alcom 1478
[Margaris] p. 89Theorem 19.6alexdc 1619  alexim 1645
[Margaris] p. 89Theorem 19.7alnex 1499
[Margaris] p. 89Theorem 19.819.8a 1590  spsbe 1842
[Margaris] p. 89Theorem 19.919.9 1644  19.9h 1643  19.9v 1871  exlimd 1597
[Margaris] p. 89Theorem 19.11excom 1664  excomim 1663
[Margaris] p. 89Theorem 19.1219.12 1665  r19.12 2583
[Margaris] p. 90Theorem 19.14exnalim 1646
[Margaris] p. 90Theorem 19.15albi 1468  ralbi 2609
[Margaris] p. 90Theorem 19.1619.16 1555
[Margaris] p. 90Theorem 19.1719.17 1556
[Margaris] p. 90Theorem 19.18exbi 1604  rexbi 2610
[Margaris] p. 90Theorem 19.1919.19 1666
[Margaris] p. 90Theorem 19.20alim 1457  alimd 1521  alimdh 1467  alimdv 1879  ralimdaa 2543  ralimdv 2545  ralimdva 2544  ralimdvva 2546  sbcimdv 3030
[Margaris] p. 90Theorem 19.2119.21-2 1667  19.21 1583  19.21bi 1558  19.21h 1557  19.21ht 1581  19.21t 1582  19.21v 1873  alrimd 1610  alrimdd 1609  alrimdh 1479  alrimdv 1876  alrimi 1522  alrimih 1469  alrimiv 1874  alrimivv 1875  r19.21 2553  r19.21be 2568  r19.21bi 2565  r19.21t 2552  r19.21v 2554  ralrimd 2555  ralrimdv 2556  ralrimdva 2557  ralrimdvv 2561  ralrimdvva 2562  ralrimi 2548  ralrimiv 2549  ralrimiva 2550  ralrimivv 2558  ralrimivva 2559  ralrimivvva 2560  ralrimivw 2551  rexlimi 2587
[Margaris] p. 90Theorem 19.222alimdv 1881  2eximdv 1882  exim 1599  eximd 1612  eximdh 1611  eximdv 1880  rexim 2571  reximdai 2575  reximddv 2580  reximddv2 2582  reximdv 2578  reximdv2 2576  reximdva 2579  reximdvai 2577  reximi2 2573
[Margaris] p. 90Theorem 19.2319.23 1678  19.23bi 1592  19.23h 1498  19.23ht 1497  19.23t 1677  19.23v 1883  19.23vv 1884  exlimd2 1595  exlimdh 1596  exlimdv 1819  exlimdvv 1897  exlimi 1594  exlimih 1593  exlimiv 1598  exlimivv 1896  r19.23 2585  r19.23v 2586  rexlimd 2591  rexlimdv 2593  rexlimdv3a 2596  rexlimdva 2594  rexlimdva2 2597  rexlimdvaa 2595  rexlimdvv 2601  rexlimdvva 2602  rexlimdvw 2598  rexlimiv 2588  rexlimiva 2589  rexlimivv 2600
[Margaris] p. 90Theorem 19.24i19.24 1639
[Margaris] p. 90Theorem 19.2519.25 1626
[Margaris] p. 90Theorem 19.2619.26-2 1482  19.26-3an 1483  19.26 1481  r19.26-2 2606  r19.26-3 2607  r19.26 2603  r19.26m 2608
[Margaris] p. 90Theorem 19.2719.27 1561  19.27h 1560  19.27v 1899  r19.27av 2612  r19.27m 3520  r19.27mv 3521
[Margaris] p. 90Theorem 19.2819.28 1563  19.28h 1562  19.28v 1900  r19.28av 2613  r19.28m 3514  r19.28mv 3517  rr19.28v 2879
[Margaris] p. 90Theorem 19.2919.29 1620  19.29r 1621  19.29r2 1622  19.29x 1623  r19.29 2614  r19.29d2r 2621  r19.29r 2615
[Margaris] p. 90Theorem 19.3019.30dc 1627
[Margaris] p. 90Theorem 19.3119.31r 1681
[Margaris] p. 90Theorem 19.3219.32dc 1679  19.32r 1680  r19.32r 2623  r19.32vdc 2626  r19.32vr 2625
[Margaris] p. 90Theorem 19.3319.33 1484  19.33b2 1629  19.33bdc 1630
[Margaris] p. 90Theorem 19.3419.34 1684
[Margaris] p. 90Theorem 19.3519.35-1 1624  19.35i 1625
[Margaris] p. 90Theorem 19.3619.36-1 1673  19.36aiv 1901  19.36i 1672  r19.36av 2628
[Margaris] p. 90Theorem 19.3719.37-1 1674  19.37aiv 1675  r19.37 2629  r19.37av 2630
[Margaris] p. 90Theorem 19.3819.38 1676
[Margaris] p. 90Theorem 19.39i19.39 1640
[Margaris] p. 90Theorem 19.4019.40-2 1632  19.40 1631  r19.40 2631
[Margaris] p. 90Theorem 19.4119.41 1686  19.41h 1685  19.41v 1902  19.41vv 1903  19.41vvv 1904  19.41vvvv 1905  r19.41 2632  r19.41v 2633
[Margaris] p. 90Theorem 19.4219.42 1688  19.42h 1687  19.42v 1906  19.42vv 1911  19.42vvv 1912  19.42vvvv 1913  r19.42v 2634
[Margaris] p. 90Theorem 19.4319.43 1628  r19.43 2635
[Margaris] p. 90Theorem 19.4419.44 1682  r19.44av 2636  r19.44mv 3519
[Margaris] p. 90Theorem 19.4519.45 1683  r19.45av 2637  r19.45mv 3518
[Margaris] p. 110Exercise 2(b)eu1 2051
[Megill] p. 444Axiom C5ax-17 1526
[Megill] p. 445Lemma L12alequcom 1515  ax-10 1505
[Megill] p. 446Lemma L17equtrr 1710
[Megill] p. 446Lemma L19hbnae 1721
[Megill] p. 447Remark 9.1df-sb 1763  sbid 1774
[Megill] p. 448Scheme C5'ax-4 1510
[Megill] p. 448Scheme C6'ax-7 1448
[Megill] p. 448Scheme C8'ax-8 1504
[Megill] p. 448Scheme C9'ax-i12 1507
[Megill] p. 448Scheme C11'ax-10o 1716
[Megill] p. 448Scheme C12'ax-13 2150
[Megill] p. 448Scheme C13'ax-14 2151
[Megill] p. 448Scheme C15'ax-11o 1823
[Megill] p. 448Scheme C16'ax-16 1814
[Megill] p. 448Theorem 9.4dral1 1730  dral2 1731  drex1 1798  drex2 1732  drsb1 1799  drsb2 1841
[Megill] p. 449Theorem 9.7sbcom2 1987  sbequ 1840  sbid2v 1996
[Megill] p. 450Example in Appendixhba1 1540
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3047  rspsbca 3048  stdpc4 1775
[Mendelson] p. 69Axiom 5ra5 3053  stdpc5 1584
[Mendelson] p. 81Rule Cexlimiv 1598
[Mendelson] p. 95Axiom 6stdpc6 1703
[Mendelson] p. 95Axiom 7stdpc7 1770
[Mendelson] p. 231Exercise 4.10(k)inv1 3461
[Mendelson] p. 231Exercise 4.10(l)unv 3462
[Mendelson] p. 231Exercise 4.10(n)inssun 3377
[Mendelson] p. 231Exercise 4.10(o)df-nul 3425
[Mendelson] p. 231Exercise 4.10(q)inssddif 3378
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3268
[Mendelson] p. 231Definition of unionunssin 3376
[Mendelson] p. 235Exercise 4.12(c)univ 4478
[Mendelson] p. 235Exercise 4.12(d)pwv 3810
[Mendelson] p. 235Exercise 4.12(j)pwin 4284
[Mendelson] p. 235Exercise 4.12(k)pwunss 4285
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4286
[Mendelson] p. 235Exercise 4.12(n)uniin 3831
[Mendelson] p. 235Exercise 4.12(p)reli 4758
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5151
[Mendelson] p. 246Definition of successordf-suc 4373
[Mendelson] p. 254Proposition 4.22(b)xpen 6847
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6823  xpsneng 6824
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6829  xpcomeng 6830
[Mendelson] p. 254Proposition 4.22(e)xpassen 6832
[Mendelson] p. 255Exercise 4.39endisj 6826
[Mendelson] p. 255Exercise 4.41mapprc 6654
[Mendelson] p. 255Exercise 4.43mapsnen 6813
[Mendelson] p. 255Exercise 4.47xpmapen 6852
[Mendelson] p. 255Exercise 4.42(a)map0e 6688
[Mendelson] p. 255Exercise 4.42(b)map1 6814
[Mendelson] p. 258Exercise 4.56(c)djuassen 7218  djucomen 7217
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7216
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6470
[Monk1] p. 26Theorem 2.8(vii)ssin 3359
[Monk1] p. 33Theorem 3.2(i)ssrel 4716
[Monk1] p. 33Theorem 3.2(ii)eqrel 4717
[Monk1] p. 34Definition 3.3df-opab 4067
[Monk1] p. 36Theorem 3.7(i)coi1 5146  coi2 5147
[Monk1] p. 36Theorem 3.8(v)dm0 4843  rn0 4885
[Monk1] p. 36Theorem 3.7(ii)cnvi 5035
[Monk1] p. 37Theorem 3.13(i)relxp 4737
[Monk1] p. 37Theorem 3.13(x)dmxpm 4849  rnxpm 5060
[Monk1] p. 37Theorem 3.13(ii)0xp 4708  xp0 5050
[Monk1] p. 38Theorem 3.16(ii)ima0 4989
[Monk1] p. 38Theorem 3.16(viii)imai 4986
[Monk1] p. 39Theorem 3.17imaex 4985  imaexg 4984
[Monk1] p. 39Theorem 3.16(xi)imassrn 4983
[Monk1] p. 41Theorem 4.3(i)fnopfv 5648  funfvop 5630
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5561
[Monk1] p. 42Theorem 4.4(iii)fvelima 5569
[Monk1] p. 43Theorem 4.6funun 5262
[Monk1] p. 43Theorem 4.8(iv)dff13 5771  dff13f 5773
[Monk1] p. 46Theorem 4.15(v)funex 5741  funrnex 6117
[Monk1] p. 50Definition 5.4fniunfv 5765
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5114
[Monk1] p. 52Theorem 5.11(viii)ssint 3862
[Monk1] p. 52Definition 5.13 (i)1stval2 6158  df-1st 6143
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6159  df-2nd 6144
[Monk2] p. 105Axiom C4ax-5 1447
[Monk2] p. 105Axiom C7ax-8 1504
[Monk2] p. 105Axiom C8ax-11 1506  ax-11o 1823
[Monk2] p. 105Axiom (C8)ax11v 1827
[Monk2] p. 109Lemma 12ax-7 1448
[Monk2] p. 109Lemma 15equvin 1863  equvini 1758  eqvinop 4245
[Monk2] p. 113Axiom C5-1ax-17 1526
[Monk2] p. 113Axiom C5-2ax6b 1651
[Monk2] p. 113Axiom C5-3ax-7 1448
[Monk2] p. 114Lemma 22hba1 1540
[Monk2] p. 114Lemma 23hbia1 1552  nfia1 1580
[Monk2] p. 114Lemma 24hba2 1551  nfa2 1579
[Moschovakis] p. 2Chapter 2 df-stab 831  dftest 14862
[Munkres] p. 77Example 2distop 13624
[Munkres] p. 78Definition of basisdf-bases 13582  isbasis3g 13585
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12714  tgval2 13590
[Munkres] p. 79Remarktgcl 13603
[Munkres] p. 80Lemma 2.1tgval3 13597
[Munkres] p. 80Lemma 2.2tgss2 13618  tgss3 13617
[Munkres] p. 81Lemma 2.3basgen 13619  basgen2 13620
[Munkres] p. 89Definition of subspace topologyresttop 13709
[Munkres] p. 93Theorem 6.1(1)0cld 13651  topcld 13648
[Munkres] p. 93Theorem 6.1(3)uncld 13652
[Munkres] p. 94Definition of closureclsval 13650
[Munkres] p. 94Definition of interiorntrval 13649
[Munkres] p. 102Definition of continuous functiondf-cn 13727  iscn 13736  iscn2 13739
[Munkres] p. 107Theorem 7.2(g)cncnp 13769  cncnp2m 13770  cncnpi 13767  df-cnp 13728  iscnp 13738
[Munkres] p. 127Theorem 10.1metcn 14053
[Pierik], p. 8Section 2.2.1dfrex2fin 6905
[Pierik], p. 9Definition 2.4df-womni 7164
[Pierik], p. 9Definition 2.5df-markov 7152  omniwomnimkv 7167
[Pierik], p. 10Section 2.3dfdif3 3247
[Pierik], p. 14Definition 3.1df-omni 7135  exmidomniim 7141  finomni 7140
[Pierik], p. 15Section 3.1df-nninf 7121
[PradicBrown2022], p. 1Theorem 1exmidsbthr 14810
[PradicBrown2022], p. 2Remarkexmidpw 6910
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7202
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7203  exmidfodomrlemrALT 7204
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7149
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 14795  peano4nninf 14794
[PradicBrown2022], p. 5Lemma 3.5nninfall 14797
[PradicBrown2022], p. 5Theorem 3.6nninfsel 14805
[PradicBrown2022], p. 5Corollary 3.7nninfomni 14807
[PradicBrown2022], p. 5Definition 3.3nnsf 14793
[Quine] p. 16Definition 2.1df-clab 2164  rabid 2653
[Quine] p. 17Definition 2.1''dfsb7 1991
[Quine] p. 18Definition 2.7df-cleq 2170
[Quine] p. 19Definition 2.9df-v 2741
[Quine] p. 34Theorem 5.1abeq2 2286
[Quine] p. 35Theorem 5.2abid2 2298  abid2f 2345
[Quine] p. 40Theorem 6.1sb5 1887
[Quine] p. 40Theorem 6.2sb56 1885  sb6 1886
[Quine] p. 41Theorem 6.3df-clel 2173
[Quine] p. 41Theorem 6.4eqid 2177
[Quine] p. 41Theorem 6.5eqcom 2179
[Quine] p. 42Theorem 6.6df-sbc 2965
[Quine] p. 42Theorem 6.7dfsbcq 2966  dfsbcq2 2967
[Quine] p. 43Theorem 6.8vex 2742
[Quine] p. 43Theorem 6.9isset 2745
[Quine] p. 44Theorem 7.3spcgf 2821  spcgv 2826  spcimgf 2819
[Quine] p. 44Theorem 6.11spsbc 2976  spsbcd 2977
[Quine] p. 44Theorem 6.12elex 2750
[Quine] p. 44Theorem 6.13elab 2883  elabg 2885  elabgf 2881
[Quine] p. 44Theorem 6.14noel 3428
[Quine] p. 48Theorem 7.2snprc 3659
[Quine] p. 48Definition 7.1df-pr 3601  df-sn 3600
[Quine] p. 49Theorem 7.4snss 3729  snssg 3728
[Quine] p. 49Theorem 7.5prss 3750  prssg 3751
[Quine] p. 49Theorem 7.6prid1 3700  prid1g 3698  prid2 3701  prid2g 3699  snid 3625  snidg 3623
[Quine] p. 51Theorem 7.12snexg 4186  snexprc 4188
[Quine] p. 51Theorem 7.13prexg 4213
[Quine] p. 53Theorem 8.2unisn 3827  unisng 3828
[Quine] p. 53Theorem 8.3uniun 3830
[Quine] p. 54Theorem 8.6elssuni 3839
[Quine] p. 54Theorem 8.7uni0 3838
[Quine] p. 56Theorem 8.17uniabio 5190
[Quine] p. 56Definition 8.18dfiota2 5181
[Quine] p. 57Theorem 8.19iotaval 5191
[Quine] p. 57Theorem 8.22iotanul 5195
[Quine] p. 58Theorem 8.23euiotaex 5196
[Quine] p. 58Definition 9.1df-op 3603
[Quine] p. 61Theorem 9.5opabid 4259  opelopab 4273  opelopaba 4268  opelopabaf 4275  opelopabf 4276  opelopabg 4270  opelopabga 4265  oprabid 5909
[Quine] p. 64Definition 9.11df-xp 4634
[Quine] p. 64Definition 9.12df-cnv 4636
[Quine] p. 64Definition 9.15df-id 4295
[Quine] p. 65Theorem 10.3fun0 5276
[Quine] p. 65Theorem 10.4funi 5250
[Quine] p. 65Theorem 10.5funsn 5266  funsng 5264
[Quine] p. 65Definition 10.1df-fun 5220
[Quine] p. 65Definition 10.2args 4999  dffv4g 5514
[Quine] p. 68Definition 10.11df-fv 5226  fv2 5512
[Quine] p. 124Theorem 17.3nn0opth2 10706  nn0opth2d 10705  nn0opthd 10704
[Quine] p. 284Axiom 39(vi)funimaex 5303  funimaexg 5302
[Roman] p. 19Part Preliminariesdf-ring 13186
[Rudin] p. 164Equation 27efcan 11686
[Rudin] p. 164Equation 30efzval 11693
[Rudin] p. 167Equation 48absefi 11778
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1426
[Sanford] p. 39Rule 4mptxor 1424
[Sanford] p. 40Rule 1mptnan 1423
[Schechter] p. 51Definition of antisymmetryintasym 5015
[Schechter] p. 51Definition of irreflexivityintirr 5017
[Schechter] p. 51Definition of symmetrycnvsym 5014
[Schechter] p. 51Definition of transitivitycotr 5012
[Schechter] p. 187Definition of "ring with unit"isring 13188
[Schechter] p. 428Definition 15.35bastop1 13622
[Stoll] p. 13Definition of symmetric differencesymdif1 3402
[Stoll] p. 16Exercise 4.40dif 3496  dif0 3495
[Stoll] p. 16Exercise 4.8difdifdirss 3509
[Stoll] p. 19Theorem 5.2(13)undm 3395
[Stoll] p. 19Theorem 5.2(13')indmss 3396
[Stoll] p. 20Remarkinvdif 3379
[Stoll] p. 25Definition of ordered tripledf-ot 3604
[Stoll] p. 43Definitionuniiun 3942
[Stoll] p. 44Definitionintiin 3943
[Stoll] p. 45Definitiondf-iin 3891
[Stoll] p. 45Definition indexed uniondf-iun 3890
[Stoll] p. 176Theorem 3.4(27)imandc 889  imanst 888
[Stoll] p. 262Example 4.1symdif1 3402
[Suppes] p. 22Theorem 2eq0 3443
[Suppes] p. 22Theorem 4eqss 3172  eqssd 3174  eqssi 3173
[Suppes] p. 23Theorem 5ss0 3465  ss0b 3464
[Suppes] p. 23Theorem 6sstr 3165
[Suppes] p. 25Theorem 12elin 3320  elun 3278
[Suppes] p. 26Theorem 15inidm 3346
[Suppes] p. 26Theorem 16in0 3459
[Suppes] p. 27Theorem 23unidm 3280
[Suppes] p. 27Theorem 24un0 3458
[Suppes] p. 27Theorem 25ssun1 3300
[Suppes] p. 27Theorem 26ssequn1 3307
[Suppes] p. 27Theorem 27unss 3311
[Suppes] p. 27Theorem 28indir 3386
[Suppes] p. 27Theorem 29undir 3387
[Suppes] p. 28Theorem 32difid 3493  difidALT 3494
[Suppes] p. 29Theorem 33difin 3374
[Suppes] p. 29Theorem 34indif 3380
[Suppes] p. 29Theorem 35undif1ss 3499
[Suppes] p. 29Theorem 36difun2 3504
[Suppes] p. 29Theorem 37difin0 3498
[Suppes] p. 29Theorem 38disjdif 3497
[Suppes] p. 29Theorem 39difundi 3389
[Suppes] p. 29Theorem 40difindiss 3391
[Suppes] p. 30Theorem 41nalset 4135
[Suppes] p. 39Theorem 61uniss 3832
[Suppes] p. 39Theorem 65uniop 4257
[Suppes] p. 41Theorem 70intsn 3881
[Suppes] p. 42Theorem 71intpr 3878  intprg 3879
[Suppes] p. 42Theorem 73op1stb 4480  op1stbg 4481
[Suppes] p. 42Theorem 78intun 3877
[Suppes] p. 44Definition 15(a)dfiun2 3922  dfiun2g 3920
[Suppes] p. 44Definition 15(b)dfiin2 3923
[Suppes] p. 47Theorem 86elpw 3583  elpw2 4159  elpw2g 4158  elpwg 3585
[Suppes] p. 47Theorem 87pwid 3592
[Suppes] p. 47Theorem 89pw0 3741
[Suppes] p. 48Theorem 90pwpw0ss 3806
[Suppes] p. 52Theorem 101xpss12 4735
[Suppes] p. 52Theorem 102xpindi 4764  xpindir 4765
[Suppes] p. 52Theorem 103xpundi 4684  xpundir 4685
[Suppes] p. 54Theorem 105elirrv 4549
[Suppes] p. 58Theorem 2relss 4715
[Suppes] p. 59Theorem 4eldm 4826  eldm2 4827  eldm2g 4825  eldmg 4824
[Suppes] p. 59Definition 3df-dm 4638
[Suppes] p. 60Theorem 6dmin 4837
[Suppes] p. 60Theorem 8rnun 5039
[Suppes] p. 60Theorem 9rnin 5040
[Suppes] p. 60Definition 4dfrn2 4817
[Suppes] p. 61Theorem 11brcnv 4812  brcnvg 4810
[Suppes] p. 62Equation 5elcnv 4806  elcnv2 4807
[Suppes] p. 62Theorem 12relcnv 5008
[Suppes] p. 62Theorem 15cnvin 5038
[Suppes] p. 62Theorem 16cnvun 5036
[Suppes] p. 63Theorem 20co02 5144
[Suppes] p. 63Theorem 21dmcoss 4898
[Suppes] p. 63Definition 7df-co 4637
[Suppes] p. 64Theorem 26cnvco 4814
[Suppes] p. 64Theorem 27coass 5149
[Suppes] p. 65Theorem 31resundi 4922
[Suppes] p. 65Theorem 34elima 4977  elima2 4978  elima3 4979  elimag 4976
[Suppes] p. 65Theorem 35imaundi 5043
[Suppes] p. 66Theorem 40dminss 5045
[Suppes] p. 66Theorem 41imainss 5046
[Suppes] p. 67Exercise 11cnvxp 5049
[Suppes] p. 81Definition 34dfec2 6540
[Suppes] p. 82Theorem 72elec 6576  elecg 6575
[Suppes] p. 82Theorem 73erth 6581  erth2 6582
[Suppes] p. 89Theorem 96map0b 6689
[Suppes] p. 89Theorem 97map0 6691  map0g 6690
[Suppes] p. 89Theorem 98mapsn 6692
[Suppes] p. 89Theorem 99mapss 6693
[Suppes] p. 92Theorem 1enref 6767  enrefg 6766
[Suppes] p. 92Theorem 2ensym 6783  ensymb 6782  ensymi 6784
[Suppes] p. 92Theorem 3entr 6786
[Suppes] p. 92Theorem 4unen 6818
[Suppes] p. 94Theorem 15endom 6765
[Suppes] p. 94Theorem 16ssdomg 6780
[Suppes] p. 94Theorem 17domtr 6787
[Suppes] p. 95Theorem 18isbth 6968
[Suppes] p. 98Exercise 4fundmen 6808  fundmeng 6809
[Suppes] p. 98Exercise 6xpdom3m 6836
[Suppes] p. 130Definition 3df-tr 4104
[Suppes] p. 132Theorem 9ssonuni 4489
[Suppes] p. 134Definition 6df-suc 4373
[Suppes] p. 136Theorem Schema 22findes 4604  finds 4601  finds1 4603  finds2 4602
[Suppes] p. 162Definition 5df-ltnqqs 7354  df-ltpq 7347
[Suppes] p. 228Theorem Schema 61onintss 4392
[TakeutiZaring] p. 8Axiom 1ax-ext 2159
[TakeutiZaring] p. 13Definition 4.5df-cleq 2170
[TakeutiZaring] p. 13Proposition 4.6df-clel 2173
[TakeutiZaring] p. 13Proposition 4.9cvjust 2172
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2195
[TakeutiZaring] p. 14Definition 4.16df-oprab 5881
[TakeutiZaring] p. 14Proposition 4.14ru 2963
[TakeutiZaring] p. 15Exercise 1elpr 3615  elpr2 3616  elprg 3614
[TakeutiZaring] p. 15Exercise 2elsn 3610  elsn2 3628  elsn2g 3627  elsng 3609  velsn 3611
[TakeutiZaring] p. 15Exercise 3elop 4233
[TakeutiZaring] p. 15Exercise 4sneq 3605  sneqr 3762
[TakeutiZaring] p. 15Definition 5.1dfpr2 3613  dfsn2 3608
[TakeutiZaring] p. 16Axiom 3uniex 4439
[TakeutiZaring] p. 16Exercise 6opth 4239
[TakeutiZaring] p. 16Exercise 8rext 4217
[TakeutiZaring] p. 16Corollary 5.8unex 4443  unexg 4445
[TakeutiZaring] p. 16Definition 5.3dftp2 3643
[TakeutiZaring] p. 16Definition 5.5df-uni 3812
[TakeutiZaring] p. 16Definition 5.6df-in 3137  df-un 3135
[TakeutiZaring] p. 16Proposition 5.7unipr 3825  uniprg 3826
[TakeutiZaring] p. 17Axiom 4vpwex 4181
[TakeutiZaring] p. 17Exercise 1eltp 3642
[TakeutiZaring] p. 17Exercise 5elsuc 4408  elsucg 4406  sstr2 3164
[TakeutiZaring] p. 17Exercise 6uncom 3281
[TakeutiZaring] p. 17Exercise 7incom 3329
[TakeutiZaring] p. 17Exercise 8unass 3294
[TakeutiZaring] p. 17Exercise 9inass 3347
[TakeutiZaring] p. 17Exercise 10indi 3384
[TakeutiZaring] p. 17Exercise 11undi 3385
[TakeutiZaring] p. 17Definition 5.9dfss2 3146
[TakeutiZaring] p. 17Definition 5.10df-pw 3579
[TakeutiZaring] p. 18Exercise 7unss2 3308
[TakeutiZaring] p. 18Exercise 9df-ss 3144  sseqin2 3356
[TakeutiZaring] p. 18Exercise 10ssid 3177
[TakeutiZaring] p. 18Exercise 12inss1 3357  inss2 3358
[TakeutiZaring] p. 18Exercise 13nssr 3217
[TakeutiZaring] p. 18Exercise 15unieq 3820
[TakeutiZaring] p. 18Exercise 18sspwb 4218
[TakeutiZaring] p. 18Exercise 19pweqb 4225
[TakeutiZaring] p. 20Definitiondf-rab 2464
[TakeutiZaring] p. 20Corollary 5.160ex 4132
[TakeutiZaring] p. 20Definition 5.12df-dif 3133
[TakeutiZaring] p. 20Definition 5.14dfnul2 3426
[TakeutiZaring] p. 20Proposition 5.15difid 3493  difidALT 3494
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3437
[TakeutiZaring] p. 21Theorem 5.22setind 4540
[TakeutiZaring] p. 21Definition 5.20df-v 2741
[TakeutiZaring] p. 21Proposition 5.21vprc 4137
[TakeutiZaring] p. 22Exercise 10ss 3463
[TakeutiZaring] p. 22Exercise 3ssex 4142  ssexg 4144
[TakeutiZaring] p. 22Exercise 4inex1 4139
[TakeutiZaring] p. 22Exercise 5ruv 4551
[TakeutiZaring] p. 22Exercise 6elirr 4542
[TakeutiZaring] p. 22Exercise 7ssdif0im 3489
[TakeutiZaring] p. 22Exercise 11difdif 3262
[TakeutiZaring] p. 22Exercise 13undif3ss 3398
[TakeutiZaring] p. 22Exercise 14difss 3263
[TakeutiZaring] p. 22Exercise 15sscon 3271
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2460
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2461
[TakeutiZaring] p. 23Proposition 6.2xpex 4743  xpexg 4742  xpexgALT 6136
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4635
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5282
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5434  fun11 5285
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5229  svrelfun 5283
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4816
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4818
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4640
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4641
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4637
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5085  dfrel2 5081
[TakeutiZaring] p. 25Exercise 3xpss 4736
[TakeutiZaring] p. 25Exercise 5relun 4745
[TakeutiZaring] p. 25Exercise 6reluni 4751
[TakeutiZaring] p. 25Exercise 9inxp 4763
[TakeutiZaring] p. 25Exercise 12relres 4937
[TakeutiZaring] p. 25Exercise 13opelres 4914  opelresg 4916
[TakeutiZaring] p. 25Exercise 14dmres 4930
[TakeutiZaring] p. 25Exercise 15resss 4933
[TakeutiZaring] p. 25Exercise 17resabs1 4938
[TakeutiZaring] p. 25Exercise 18funres 5259
[TakeutiZaring] p. 25Exercise 24relco 5129
[TakeutiZaring] p. 25Exercise 29funco 5258
[TakeutiZaring] p. 25Exercise 30f1co 5435
[TakeutiZaring] p. 26Definition 6.10eu2 2070
[TakeutiZaring] p. 26Definition 6.11df-fv 5226  fv3 5540
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5169  cnvexg 5168
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4895  dmexg 4893
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4896  rnexg 4894
[TakeutiZaring] p. 27Corollary 6.13funfvex 5534
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5544  tz6.12 5545  tz6.12c 5547
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5508
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5221
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5222
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5224  wfo 5216
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5223  wf1 5215
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5225  wf1o 5217
[TakeutiZaring] p. 28Exercise 4eqfnfv 5615  eqfnfv2 5616  eqfnfv2f 5619
[TakeutiZaring] p. 28Exercise 5fvco 5588
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5740  fnexALT 6114
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5739  resfunexgALT 6111
[TakeutiZaring] p. 29Exercise 9funimaex 5303  funimaexg 5302
[TakeutiZaring] p. 29Definition 6.18df-br 4006
[TakeutiZaring] p. 30Definition 6.21eliniseg 5000  iniseg 5002
[TakeutiZaring] p. 30Definition 6.22df-eprel 4291
[TakeutiZaring] p. 32Definition 6.28df-isom 5227
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5813
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5814
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5819
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5821
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5829
[TakeutiZaring] p. 35Notationwtr 4103
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4356
[TakeutiZaring] p. 35Definition 7.1dftr3 4107
[TakeutiZaring] p. 36Proposition 7.4ordwe 4577
[TakeutiZaring] p. 36Proposition 7.6ordelord 4383
[TakeutiZaring] p. 37Proposition 7.9ordin 4387
[TakeutiZaring] p. 38Corollary 7.15ordsson 4493
[TakeutiZaring] p. 38Definition 7.11df-on 4370
[TakeutiZaring] p. 38Proposition 7.12ordon 4487
[TakeutiZaring] p. 38Proposition 7.13onprc 4553
[TakeutiZaring] p. 39Theorem 7.17tfi 4583
[TakeutiZaring] p. 40Exercise 7dftr2 4105
[TakeutiZaring] p. 40Exercise 11unon 4512
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4488
[TakeutiZaring] p. 40Proposition 7.20elssuni 3839
[TakeutiZaring] p. 41Definition 7.22df-suc 4373
[TakeutiZaring] p. 41Proposition 7.23sssucid 4417  sucidg 4418
[TakeutiZaring] p. 41Proposition 7.24onsuc 4502
[TakeutiZaring] p. 42Exercise 1df-ilim 4371
[TakeutiZaring] p. 42Exercise 8onsucssi 4507  ordelsuc 4506
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4595
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4596
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4597
[TakeutiZaring] p. 43Axiom 7omex 4594
[TakeutiZaring] p. 43Theorem 7.32ordom 4608
[TakeutiZaring] p. 43Corollary 7.31find 4600
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4598
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4599
[TakeutiZaring] p. 44Exercise 2int0 3860
[TakeutiZaring] p. 44Exercise 3trintssm 4119
[TakeutiZaring] p. 44Exercise 4intss1 3861
[TakeutiZaring] p. 44Exercise 6onintonm 4518
[TakeutiZaring] p. 44Definition 7.35df-int 3847
[TakeutiZaring] p. 47Lemma 1tfrlem1 6311
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6368  tfri1d 6338
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6369  tfri2d 6339
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6370
[TakeutiZaring] p. 50Exercise 3smoiso 6305
[TakeutiZaring] p. 50Definition 7.46df-smo 6289
[TakeutiZaring] p. 56Definition 8.1oasuc 6467
[TakeutiZaring] p. 57Proposition 8.2oacl 6463
[TakeutiZaring] p. 57Proposition 8.3oa0 6460
[TakeutiZaring] p. 57Proposition 8.16omcl 6464
[TakeutiZaring] p. 58Proposition 8.4nnaord 6512  nnaordi 6511
[TakeutiZaring] p. 59Proposition 8.6iunss2 3933  uniss2 3842
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6473
[TakeutiZaring] p. 59Proposition 8.9nnacl 6483
[TakeutiZaring] p. 62Exercise 5oaword1 6474
[TakeutiZaring] p. 62Definition 8.15om0 6461  omsuc 6475
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6484
[TakeutiZaring] p. 63Proposition 8.19nnmord 6520  nnmordi 6519
[TakeutiZaring] p. 67Definition 8.30oei0 6462
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7188
[TakeutiZaring] p. 88Exercise 1en0 6797
[TakeutiZaring] p. 90Proposition 10.20nneneq 6859
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6860
[TakeutiZaring] p. 91Definition 10.29df-fin 6745  isfi 6763
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6833
[TakeutiZaring] p. 95Definition 10.42df-map 6652
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6850
[Tarski] p. 67Axiom B5ax-4 1510
[Tarski] p. 68Lemma 6equid 1701
[Tarski] p. 69Lemma 7equcomi 1704
[Tarski] p. 70Lemma 14spim 1738  spime 1741  spimeh 1739  spimh 1737
[Tarski] p. 70Lemma 16ax-11 1506  ax-11o 1823  ax11i 1714
[Tarski] p. 70Lemmas 16 and 17sb6 1886
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1526
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2150  ax-14 2151
[WhiteheadRussell] p. 96Axiom *1.3olc 711
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 727
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 756
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 765
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 789
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 616
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 643
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 837
[WhiteheadRussell] p. 101Theorem *2.06barbara 2124  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 737
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 836
[WhiteheadRussell] p. 101Theorem *2.12notnot 629
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 885
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 843
[WhiteheadRussell] p. 102Theorem *2.15con1dc 856
[WhiteheadRussell] p. 103Theorem *2.16con3 642
[WhiteheadRussell] p. 103Theorem *2.17condc 853
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 855
[WhiteheadRussell] p. 104Theorem *2.2orc 712
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 775
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 617
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 621
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 893
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 907
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 768
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 769
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 804
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 805
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 803
[WhiteheadRussell] p. 105Definition *2.33df-3or 979
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 778
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 776
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 777
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 738
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 739
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 867  pm2.5gdc 866
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 862
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 740
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 741
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 742
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 655
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 656
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 722
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 891
[WhiteheadRussell] p. 107Theorem *2.55orel1 725
[WhiteheadRussell] p. 107Theorem *2.56orel2 726
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 865
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 748
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 800
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 801
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 659
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 713  pm2.67 743
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 869  pm2.521gdc 868
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 747
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 810
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 894
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 915
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 806
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 807
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 809
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 808
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 811
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 812
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 905
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 754
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 957
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 958
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 959
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 753
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 693
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 860
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 859
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 689
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 755  pm3.44 715
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 785
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 871
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 872
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 890
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 694
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 952  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 757  pm4.25 758
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 818
[WhiteheadRussell] p. 118Theorem *4.31orcom 728
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 767
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 792
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 822
[WhiteheadRussell] p. 118Definition *4.34df-3an 980
[WhiteheadRussell] p. 119Theorem *4.41ordi 816
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 971
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 949
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 779
[WhiteheadRussell] p. 119Theorem *4.45orabs 814  pm4.45 784  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1481
[WhiteheadRussell] p. 120Theorem *4.5anordc 956
[WhiteheadRussell] p. 120Theorem *4.6imordc 897  imorr 721
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 899
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 750
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 751
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 902
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 938
[WhiteheadRussell] p. 120Theorem *4.56ioran 752  pm4.56 780
[WhiteheadRussell] p. 120Theorem *4.57orandc 939  oranim 781
[WhiteheadRussell] p. 120Theorem *4.61annimim 686
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 898
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 886
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 900
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 687
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 901
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 887
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 827
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 744
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 710  pm4.77 799
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 782
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 903
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 707
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 908
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 950
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 951
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 909
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 910
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 912
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 911
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1389
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 828
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 904
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1394  pm5.18dc 883
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 706
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 695
[WhiteheadRussell] p. 124Theorem *5.22xordc 1392
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1397
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1398
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 895
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 926  pm5.6r 927
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 954
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 917
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 925
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 802
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 918
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 913
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 794
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 945
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 946
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 961
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 962
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1635
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1485
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1632
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1895
[WhiteheadRussell] p. 175Definition *14.02df-eu 2029
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2428
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2429
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2877
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3021
[WhiteheadRussell] p. 190Theorem *14.22iota4 5198
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5199
[WhiteheadRussell] p. 192Theorem *14.26eupick 2105  eupickbi 2108
[WhiteheadRussell] p. 235Definition *30.01df-fv 5226
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7191

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]