Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7113  fidcenum 6954
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 6954
[AczelRathjen], p. 73Lemma 8.1.14enumct 7113
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12425
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6928
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6916
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12440
[AczelRathjen], p. 75Corollary 8.1.20unct 12442
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12431  znnen 12398
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12443
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12444
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10755
[AczelRathjen], p. 183Chapter 20ax-setind 4536
[Apostol] p. 18Theorem I.1addcan 8136  addcan2d 8141  addcan2i 8139  addcand 8140  addcani 8138
[Apostol] p. 18Theorem I.2negeu 8147
[Apostol] p. 18Theorem I.3negsub 8204  negsubd 8273  negsubi 8234
[Apostol] p. 18Theorem I.4negneg 8206  negnegd 8258  negnegi 8226
[Apostol] p. 18Theorem I.5subdi 8341  subdid 8370  subdii 8363  subdir 8342  subdird 8371  subdiri 8364
[Apostol] p. 18Theorem I.6mul01 8345  mul01d 8349  mul01i 8347  mul02 8343  mul02d 8348  mul02i 8346
[Apostol] p. 18Theorem I.9divrecapd 8749
[Apostol] p. 18Theorem I.10recrecapi 8700
[Apostol] p. 18Theorem I.12mul2neg 8354  mul2negd 8369  mul2negi 8362  mulneg1 8351  mulneg1d 8367  mulneg1i 8360
[Apostol] p. 18Theorem I.14rdivmuldivd 13311
[Apostol] p. 18Theorem I.15divdivdivap 8669
[Apostol] p. 20Axiom 7rpaddcl 9676  rpaddcld 9711  rpmulcl 9677  rpmulcld 9712
[Apostol] p. 20Axiom 90nrp 9688
[Apostol] p. 20Theorem I.17lttri 8061
[Apostol] p. 20Theorem I.18ltadd1d 8494  ltadd1dd 8512  ltadd1i 8458
[Apostol] p. 20Theorem I.19ltmul1 8548  ltmul1a 8547  ltmul1i 8876  ltmul1ii 8884  ltmul2 8812  ltmul2d 9738  ltmul2dd 9752  ltmul2i 8879
[Apostol] p. 20Theorem I.210lt1 8083
[Apostol] p. 20Theorem I.23lt0neg1 8424  lt0neg1d 8471  ltneg 8418  ltnegd 8479  ltnegi 8449
[Apostol] p. 20Theorem I.25lt2add 8401  lt2addd 8523  lt2addi 8466
[Apostol] p. 20Definition of positive numbersdf-rp 9653
[Apostol] p. 21Exercise 4recgt0 8806  recgt0d 8890  recgt0i 8862  recgt0ii 8863
[Apostol] p. 22Definition of integersdf-z 9253
[Apostol] p. 22Definition of rationalsdf-q 9619
[Apostol] p. 24Theorem I.26supeuti 6992
[Apostol] p. 26Theorem I.29arch 9172
[Apostol] p. 28Exercise 2btwnz 9371
[Apostol] p. 28Exercise 3nnrecl 9173
[Apostol] p. 28Exercise 6qbtwnre 10256
[Apostol] p. 28Exercise 10(a)zeneo 11875  zneo 9353
[Apostol] p. 29Theorem I.35resqrtth 11039  sqrtthi 11127
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8921
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12036
[Apostol] p. 363Remarkabsgt0api 11154
[Apostol] p. 363Exampleabssubd 11201  abssubi 11158
[ApostolNT] p. 14Definitiondf-dvds 11794
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11810
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11834
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11830
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11824
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11826
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11811
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11812
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11817
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11850
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11852
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11854
[ApostolNT] p. 15Definitiondfgcd2 12014
[ApostolNT] p. 16Definitionisprm2 12116
[ApostolNT] p. 16Theorem 1.5coprmdvds 12091
[ApostolNT] p. 16Theorem 1.7prminf 12455
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 11973
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12015
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12017
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 11987
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 11980
[ApostolNT] p. 17Theorem 1.8coprm 12143
[ApostolNT] p. 17Theorem 1.9euclemma 12145
[ApostolNT] p. 17Theorem 1.101arith2 12365
[ApostolNT] p. 19Theorem 1.14divalg 11928
[ApostolNT] p. 20Theorem 1.15eucalg 12058
[ApostolNT] p. 25Definitiondf-phi 12210
[ApostolNT] p. 26Theorem 2.2phisum 12239
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12221
[ApostolNT] p. 28Theorem 2.5(c)phimul 12225
[ApostolNT] p. 104Definitioncongr 12099
[ApostolNT] p. 106Remarkdvdsval3 11797
[ApostolNT] p. 106Definitionmoddvds 11805
[ApostolNT] p. 107Example 2mod2eq0even 11882
[ApostolNT] p. 107Example 3mod2eq1n2dvds 11883
[ApostolNT] p. 107Example 4zmod1congr 10340
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10377
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10646
[ApostolNT] p. 108Theorem 5.3modmulconst 11829
[ApostolNT] p. 109Theorem 5.4cncongr1 12102
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12104
[ApostolNT] p. 113Theorem 5.17eulerth 12232
[ApostolNT] p. 113Theorem 5.18vfermltl 12250
[ApostolNT] p. 114Theorem 5.19fermltl 12233
[ApostolNT] p. 179Definitiondf-lgs 14335  lgsprme0 14379
[ApostolNT] p. 180Example 11lgs 14380
[ApostolNT] p. 180Theorem 9.2lgsvalmod 14356
[ApostolNT] p. 180Theorem 9.3lgsdirprm 14371
[ApostolNT] p. 181Theorem 9.4m1lgs 14388
[ApostolNT] p. 188Definitiondf-lgs 14335  lgs1 14381
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 14372
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 14374
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 14382
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 14383
[Bauer] p. 482Section 1.2pm2.01 616  pm2.65 659
[Bauer] p. 483Theorem 1.3acexmid 5873  onsucelsucexmidlem 4528
[Bauer], p. 481Section 1.1pwtrufal 14683
[Bauer], p. 483Definitionn0rf 3435
[Bauer], p. 483Theorem 1.22irrexpq 14330  2irrexpqap 14332
[Bauer], p. 485Theorem 2.1ssfiexmid 6875
[Bauer], p. 494Theorem 5.5ivthinc 14057
[BauerHanson], p. 27Proposition 5.2cnstab 8601
[BauerSwan], p. 14Remark0ct 7105  ctm 7107
[BauerSwan], p. 14Proposition 2.6subctctexmid 14686
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7113
[BauerTaylor], p. 32Lemma 6.16prarloclem 7499
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7412
[BauerTaylor], p. 52Proposition 11.15prarloc 7501
[BauerTaylor], p. 53Lemma 11.16addclpr 7535  addlocpr 7534
[BauerTaylor], p. 55Proposition 12.7appdivnq 7561
[BauerTaylor], p. 56Lemma 12.8prmuloc 7564
[BauerTaylor], p. 56Lemma 12.9mullocpr 7569
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2029
[BellMachover] p. 460Notationdf-mo 2030
[BellMachover] p. 460Definitionmo3 2080  mo3h 2079
[BellMachover] p. 462Theorem 1.1bm1.1 2162
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4124
[BellMachover] p. 466Axiom Powaxpow3 4177
[BellMachover] p. 466Axiom Unionaxun2 4435
[BellMachover] p. 469Theorem 2.2(i)ordirr 4541
[BellMachover] p. 469Theorem 2.2(iii)onelon 4384
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4544
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4495
[BellMachover] p. 471Definition of Limdf-ilim 4369
[BellMachover] p. 472Axiom Infzfinf2 4588
[BellMachover] p. 473Theorem 2.8limom 4613
[Bobzien] p. 116Statement T3stoic3 1431
[Bobzien] p. 117Statement T2stoic2a 1429
[Bobzien] p. 117Statement T4stoic4a 1432
[Bobzien] p. 117Conclusion the contradictorystoic1a 1427
[BourbakiAlg1] p. 1Definition 1df-mgm 12774
[BourbakiAlg1] p. 4Definition 5df-sgrp 12807
[BourbakiAlg1] p. 12Definition 2df-mnd 12817
[BourbakiAlg1] p. 92Definition 1df-ring 13179
[BourbakiEns] p. Proposition 8fcof1 5783  fcofo 5784
[BourbakiTop1] p. Remarkxnegmnf 9828  xnegpnf 9827
[BourbakiTop1] p. Remark rexneg 9829
[BourbakiTop1] p. Propositionishmeo 13740
[BourbakiTop1] p. Property V_issnei2 13593
[BourbakiTop1] p. Property V_iiinnei 13599
[BourbakiTop1] p. Property V_ivneissex 13601
[BourbakiTop1] p. Proposition 1neipsm 13590  neiss 13586
[BourbakiTop1] p. Proposition 2cnptopco 13658
[BourbakiTop1] p. Proposition 4imasnopn 13735
[BourbakiTop1] p. Property V_iiielnei 13588
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 13434
[Bruck] p. 1Section I.1df-mgm 12774
[Bruck] p. 23Section II.1df-sgrp 12807
[Bruck] p. 28Theorem 3.2dfgrp3m 12968
[ChoquetDD] p. 2Definition of mappingdf-mpt 4066
[Cohen] p. 301Remarkrelogoprlem 14225
[Cohen] p. 301Property 2relogmul 14226  relogmuld 14241
[Cohen] p. 301Property 3relogdiv 14227  relogdivd 14242
[Cohen] p. 301Property 4relogexp 14229
[Cohen] p. 301Property 1alog1 14223
[Cohen] p. 301Property 1bloge 14224
[Cohen4] p. 348Observationrelogbcxpbap 14319
[Cohen4] p. 352Definitionrpelogb 14303
[Cohen4] p. 361Property 2rprelogbmul 14309
[Cohen4] p. 361Property 3logbrec 14314  rprelogbdiv 14311
[Cohen4] p. 361Property 4rplogbreexp 14307
[Cohen4] p. 361Property 6relogbexpap 14312
[Cohen4] p. 361Property 1(a)rplogbid1 14301
[Cohen4] p. 361Property 1(b)rplogb1 14302
[Cohen4] p. 367Propertyrplogbchbase 14304
[Cohen4] p. 377Property 2logblt 14316
[Crosilla] p. Axiom 1ax-ext 2159
[Crosilla] p. Axiom 2ax-pr 4209
[Crosilla] p. Axiom 3ax-un 4433
[Crosilla] p. Axiom 4ax-nul 4129
[Crosilla] p. Axiom 5ax-iinf 4587
[Crosilla] p. Axiom 6ru 2961
[Crosilla] p. Axiom 8ax-pow 4174
[Crosilla] p. Axiom 9ax-setind 4536
[Crosilla], p. Axiom 6ax-sep 4121
[Crosilla], p. Axiom 7ax-coll 4118
[Crosilla], p. Axiom 7'repizf 4119
[Crosilla], p. Theorem is statedordtriexmid 4520
[Crosilla], p. Axiom of choice implies instancesacexmid 5873
[Crosilla], p. Definition of ordinaldf-iord 4366
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4534
[Eisenberg] p. 67Definition 5.3df-dif 3131
[Eisenberg] p. 82Definition 6.3df-iom 4590
[Eisenberg] p. 125Definition 8.21df-map 6649
[Enderton] p. 18Axiom of Empty Setaxnul 4128
[Enderton] p. 19Definitiondf-tp 3600
[Enderton] p. 26Exercise 5unissb 3839
[Enderton] p. 26Exercise 10pwel 4218
[Enderton] p. 28Exercise 7(b)pwunim 4286
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3956  iinin2m 3955  iunin1 3951  iunin2 3950
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3954  iundif2ss 3952
[Enderton] p. 33Exercise 23iinuniss 3969
[Enderton] p. 33Exercise 25iununir 3970
[Enderton] p. 33Exercise 24(a)iinpw 3977
[Enderton] p. 33Exercise 24(b)iunpw 4480  iunpwss 3978
[Enderton] p. 38Exercise 6(a)unipw 4217
[Enderton] p. 38Exercise 6(b)pwuni 4192
[Enderton] p. 41Lemma 3Dopeluu 4450  rnex 4894  rnexg 4892
[Enderton] p. 41Exercise 8dmuni 4837  rnuni 5040
[Enderton] p. 42Definition of a functiondffun7 5243  dffun8 5244
[Enderton] p. 43Definition of function valuefunfvdm2 5580
[Enderton] p. 43Definition of single-rootedfuncnv 5277
[Enderton] p. 44Definition (d)dfima2 4972  dfima3 4973
[Enderton] p. 47Theorem 3Hfvco2 5585
[Enderton] p. 49Axiom of Choice (first form)df-ac 7204
[Enderton] p. 50Theorem 3K(a)imauni 5761
[Enderton] p. 52Definitiondf-map 6649
[Enderton] p. 53Exercise 21coass 5147
[Enderton] p. 53Exercise 27dmco 5137
[Enderton] p. 53Exercise 14(a)funin 5287
[Enderton] p. 53Exercise 22(a)imass2 5004
[Enderton] p. 54Remarkixpf 6719  ixpssmap 6731
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6698
[Enderton] p. 56Theorem 3Merref 6554
[Enderton] p. 57Lemma 3Nerthi 6580
[Enderton] p. 57Definitiondf-ec 6536
[Enderton] p. 58Definitiondf-qs 6540
[Enderton] p. 60Theorem 3Qth3q 6639  th3qcor 6638  th3qlem1 6636  th3qlem2 6637
[Enderton] p. 61Exercise 35df-ec 6536
[Enderton] p. 65Exercise 56(a)dmun 4834
[Enderton] p. 68Definition of successordf-suc 4371
[Enderton] p. 71Definitiondf-tr 4102  dftr4 4106
[Enderton] p. 72Theorem 4Eunisuc 4413  unisucg 4414
[Enderton] p. 73Exercise 6unisuc 4413  unisucg 4414
[Enderton] p. 73Exercise 5(a)truni 4115
[Enderton] p. 73Exercise 5(b)trint 4116
[Enderton] p. 79Theorem 4I(A1)nna0 6474
[Enderton] p. 79Theorem 4I(A2)nnasuc 6476  onasuc 6466
[Enderton] p. 79Definition of operation valuedf-ov 5877
[Enderton] p. 80Theorem 4J(A1)nnm0 6475
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6477  onmsuc 6473
[Enderton] p. 81Theorem 4K(1)nnaass 6485
[Enderton] p. 81Theorem 4K(2)nna0r 6478  nnacom 6484
[Enderton] p. 81Theorem 4K(3)nndi 6486
[Enderton] p. 81Theorem 4K(4)nnmass 6487
[Enderton] p. 81Theorem 4K(5)nnmcom 6489
[Enderton] p. 82Exercise 16nnm0r 6479  nnmsucr 6488
[Enderton] p. 88Exercise 23nnaordex 6528
[Enderton] p. 129Definitiondf-en 6740
[Enderton] p. 132Theorem 6B(b)canth 5828
[Enderton] p. 133Exercise 1xpomen 12395
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6864
[Enderton] p. 136Corollary 6Enneneq 6856
[Enderton] p. 139Theorem 6H(c)mapen 6845
[Enderton] p. 142Theorem 6I(3)xpdjuen 7216
[Enderton] p. 143Theorem 6Jdju0en 7212  dju1en 7211
[Enderton] p. 144Corollary 6Kundif2ss 3498
[Enderton] p. 145Figure 38ffoss 5493
[Enderton] p. 145Definitiondf-dom 6741
[Enderton] p. 146Example 1domen 6750  domeng 6751
[Enderton] p. 146Example 3nndomo 6863
[Enderton] p. 149Theorem 6L(c)xpdom1 6834  xpdom1g 6832  xpdom2g 6831
[Enderton] p. 168Definitiondf-po 4296
[Enderton] p. 192Theorem 7M(a)oneli 4428
[Enderton] p. 192Theorem 7M(b)ontr1 4389
[Enderton] p. 192Theorem 7M(c)onirri 4542
[Enderton] p. 193Corollary 7N(b)0elon 4392
[Enderton] p. 193Corollary 7N(c)onsuci 4515
[Enderton] p. 193Corollary 7N(d)ssonunii 4488
[Enderton] p. 194Remarkonprc 4551
[Enderton] p. 194Exercise 16suc11 4557
[Enderton] p. 197Definitiondf-card 7178
[Enderton] p. 200Exercise 25tfis 4582
[Enderton] p. 206Theorem 7X(b)en2lp 4553
[Enderton] p. 207Exercise 34opthreg 4555
[Enderton] p. 208Exercise 35suc11g 4556
[Geuvers], p. 1Remarkexpap0 10549
[Geuvers], p. 6Lemma 2.13mulap0r 8571
[Geuvers], p. 6Lemma 2.15mulap0 8610
[Geuvers], p. 9Lemma 2.35msqge0 8572
[Geuvers], p. 9Definition 3.1(2)ax-arch 7929
[Geuvers], p. 10Lemma 3.9maxcom 11211
[Geuvers], p. 10Lemma 3.10maxle1 11219  maxle2 11220
[Geuvers], p. 10Lemma 3.11maxleast 11221
[Geuvers], p. 10Lemma 3.12maxleb 11224
[Geuvers], p. 11Definition 3.13dfabsmax 11225
[Geuvers], p. 17Definition 6.1df-ap 8538
[Gleason] p. 117Proposition 9-2.1df-enq 7345  enqer 7356
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7349  df-nqqs 7346
[Gleason] p. 117Proposition 9-2.3df-plpq 7342  df-plqqs 7347
[Gleason] p. 119Proposition 9-2.4df-mpq 7343  df-mqqs 7348
[Gleason] p. 119Proposition 9-2.5df-rq 7350
[Gleason] p. 119Proposition 9-2.6ltexnqq 7406
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7409  ltbtwnnq 7414  ltbtwnnqq 7413
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7398
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7399
[Gleason] p. 123Proposition 9-3.5addclpr 7535
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7577
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7576
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7595
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7611
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7617  ltaprlem 7616
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7614
[Gleason] p. 124Proposition 9-3.7mulclpr 7570
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7590
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7579
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7578
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7586
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7636
[Gleason] p. 126Proposition 9-4.1df-enr 7724  enrer 7733
[Gleason] p. 126Proposition 9-4.2df-0r 7729  df-1r 7730  df-nr 7725
[Gleason] p. 126Proposition 9-4.3df-mr 7727  df-plr 7726  negexsr 7770  recexsrlem 7772
[Gleason] p. 127Proposition 9-4.4df-ltr 7728
[Gleason] p. 130Proposition 10-1.3creui 8916  creur 8915  cru 8558
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7921  axcnre 7879
[Gleason] p. 132Definition 10-3.1crim 10866  crimd 10985  crimi 10945  crre 10865  crred 10984  crrei 10944
[Gleason] p. 132Definition 10-3.2remim 10868  remimd 10950
[Gleason] p. 133Definition 10.36absval2 11065  absval2d 11193  absval2i 11152
[Gleason] p. 133Proposition 10-3.4(a)cjadd 10892  cjaddd 10973  cjaddi 10940
[Gleason] p. 133Proposition 10-3.4(c)cjmul 10893  cjmuld 10974  cjmuli 10941
[Gleason] p. 133Proposition 10-3.4(e)cjcj 10891  cjcjd 10951  cjcji 10923
[Gleason] p. 133Proposition 10-3.4(f)cjre 10890  cjreb 10874  cjrebd 10954  cjrebi 10926  cjred 10979  rere 10873  rereb 10871  rerebd 10953  rerebi 10925  rered 10977
[Gleason] p. 133Proposition 10-3.4(h)addcj 10899  addcjd 10965  addcji 10935
[Gleason] p. 133Proposition 10-3.7(a)absval 11009
[Gleason] p. 133Proposition 10-3.7(b)abscj 11060  abscjd 11198  abscji 11156
[Gleason] p. 133Proposition 10-3.7(c)abs00 11072  abs00d 11194  abs00i 11153  absne0d 11195
[Gleason] p. 133Proposition 10-3.7(d)releabs 11104  releabsd 11199  releabsi 11157
[Gleason] p. 133Proposition 10-3.7(f)absmul 11077  absmuld 11202  absmuli 11159
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11063  sqabsaddi 11160
[Gleason] p. 133Proposition 10-3.7(h)abstri 11112  abstrid 11204  abstrii 11163
[Gleason] p. 134Definition 10-4.1df-exp 10519  exp0 10523  expp1 10526  expp1d 10654
[Gleason] p. 135Proposition 10-4.2(a)expadd 10561  expaddd 10655
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 14269  cxpmuld 14292  expmul 10564  expmuld 10656
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10558  mulexpd 10668  rpmulcxp 14266
[Gleason] p. 141Definition 11-2.1fzval 10009
[Gleason] p. 168Proposition 12-2.1(a)climadd 11333
[Gleason] p. 168Proposition 12-2.1(b)climsub 11335
[Gleason] p. 168Proposition 12-2.1(c)climmul 11334
[Gleason] p. 171Corollary 12-2.2climmulc2 11338
[Gleason] p. 172Corollary 12-2.5climrecl 11331
[Gleason] p. 172Proposition 12-2.4(c)climabs 11327  climcj 11328  climim 11330  climre 11329
[Gleason] p. 173Definition 12-3.1df-ltxr 7996  df-xr 7995  ltxr 9774
[Gleason] p. 180Theorem 12-5.3climcau 11354
[Gleason] p. 217Lemma 13-4.1btwnzge0 10299
[Gleason] p. 223Definition 14-1.1df-met 13385
[Gleason] p. 223Definition 14-1.1(a)met0 13800  xmet0 13799
[Gleason] p. 223Definition 14-1.1(c)metsym 13807
[Gleason] p. 223Definition 14-1.1(d)mettri 13809  mstri 13909  xmettri 13808  xmstri 13908
[Gleason] p. 230Proposition 14-2.6txlm 13715
[Gleason] p. 240Proposition 14-4.2metcnp3 13947
[Gleason] p. 243Proposition 14-4.16addcn2 11317  addcncntop 13988  mulcn2 11319  mulcncntop 13990  subcn2 11318  subcncntop 13989
[Gleason] p. 295Remarkbcval3 10730  bcval4 10731
[Gleason] p. 295Equation 2bcpasc 10745
[Gleason] p. 295Definition of binomial coefficientbcval 10728  df-bc 10727
[Gleason] p. 296Remarkbcn0 10734  bcnn 10736
[Gleason] p. 296Theorem 15-2.8binom 11491
[Gleason] p. 308Equation 2ef0 11679
[Gleason] p. 308Equation 3efcj 11680
[Gleason] p. 309Corollary 15-4.3efne0 11685
[Gleason] p. 309Corollary 15-4.4efexp 11689
[Gleason] p. 310Equation 14sinadd 11743
[Gleason] p. 310Equation 15cosadd 11744
[Gleason] p. 311Equation 17sincossq 11755
[Gleason] p. 311Equation 18cosbnd 11760  sinbnd 11759
[Gleason] p. 311Definition of ` `df-pi 11660
[Golan] p. 1Remarksrgisid 13167
[Golan] p. 1Definitiondf-srg 13145
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1449
[Herstein] p. 55Lemma 2.2.1(a)grpideu 12887  mndideu 12826
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 12910
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 12936
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 12947
[Herstein] p. 57Exercise 1dfgrp3me 12969
[Heyting] p. 127Axiom #1ax1hfs 14757
[Hitchcock] p. 5Rule A3mptnan 1423
[Hitchcock] p. 5Rule A4mptxor 1424
[Hitchcock] p. 5Rule A5mtpxor 1426
[HoTT], p. Lemma 10.4.1exmidontriim 7223
[HoTT], p. Theorem 7.2.6nndceq 6499
[HoTT], p. Exercise 11.10neapmkv 14751
[HoTT], p. Exercise 11.11mulap0bd 8613
[HoTT], p. Section 11.2.1df-iltp 7468  df-imp 7467  df-iplp 7466  df-reap 8531
[HoTT], p. Theorem 11.2.4recapb 8627  rerecapb 8799
[HoTT], p. Theorem 11.2.12cauappcvgpr 7660
[HoTT], p. Corollary 11.4.3conventions 14409
[HoTT], p. Exercise 11.6(i)dcapnconst 14744  dceqnconst 14743
[HoTT], p. Corollary 11.2.13axcaucvg 7898  caucvgpr 7680  caucvgprpr 7710  caucvgsr 7800
[HoTT], p. Definition 11.2.1df-inp 7464
[HoTT], p. Exercise 11.6(ii)nconstwlpo 14749
[HoTT], p. Proposition 11.2.3df-iso 4297  ltpopr 7593  ltsopr 7594
[HoTT], p. Definition 11.2.7(v)apsym 8562  reapcotr 8554  reapirr 8533
[HoTT], p. Definition 11.2.7(vi)0lt1 8083  gt0add 8529  leadd1 8386  lelttr 8045  lemul1a 8814  lenlt 8032  ltadd1 8385  ltletr 8046  ltmul1 8548  reaplt 8544
[Jech] p. 4Definition of classcv 1352  cvjust 2172
[Jech] p. 78Noteopthprc 4677
[KalishMontague] p. 81Note 1ax-i9 1530
[Kreyszig] p. 3Property M1metcl 13789  xmetcl 13788
[Kreyszig] p. 4Property M2meteq0 13796
[Kreyszig] p. 12Equation 5muleqadd 8624
[Kreyszig] p. 18Definition 1.3-2mopnval 13878
[Kreyszig] p. 19Remarkmopntopon 13879
[Kreyszig] p. 19Theorem T1mopn0 13924  mopnm 13884
[Kreyszig] p. 19Theorem T2unimopn 13922
[Kreyszig] p. 19Definition of neighborhoodneibl 13927
[Kreyszig] p. 20Definition 1.3-3metcnp2 13949
[Kreyszig] p. 25Definition 1.4-1lmbr 13649
[Kunen] p. 10Axiom 0a9e 1696
[Kunen] p. 12Axiom 6zfrep6 4120
[Kunen] p. 24Definition 10.24mapval 6659  mapvalg 6657
[Kunen] p. 31Definition 10.24mapex 6653
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3896
[Lang] p. 3Statementlidrideqd 12799  mndbn0 12831
[Lang] p. 3Definitiondf-mnd 12817
[Lang] p. 7Definitiondfgrp2e 12902
[Levy] p. 338Axiomdf-clab 2164  df-clel 2173  df-cleq 2170
[Lopez-Astorga] p. 12Rule 1mptnan 1423
[Lopez-Astorga] p. 12Rule 2mptxor 1424
[Lopez-Astorga] p. 12Rule 3mtpxor 1426
[Margaris] p. 40Rule Cexlimiv 1598
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 853
[Margaris] p. 49Definitiondfbi2 388  dfordc 892  exalim 1502
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 651
[Margaris] p. 89Theorem 19.219.2 1638  r19.2m 3509
[Margaris] p. 89Theorem 19.319.3 1554  19.3h 1553  rr19.3v 2876
[Margaris] p. 89Theorem 19.5alcom 1478
[Margaris] p. 89Theorem 19.6alexdc 1619  alexim 1645
[Margaris] p. 89Theorem 19.7alnex 1499
[Margaris] p. 89Theorem 19.819.8a 1590  spsbe 1842
[Margaris] p. 89Theorem 19.919.9 1644  19.9h 1643  19.9v 1871  exlimd 1597
[Margaris] p. 89Theorem 19.11excom 1664  excomim 1663
[Margaris] p. 89Theorem 19.1219.12 1665  r19.12 2583
[Margaris] p. 90Theorem 19.14exnalim 1646
[Margaris] p. 90Theorem 19.15albi 1468  ralbi 2609
[Margaris] p. 90Theorem 19.1619.16 1555
[Margaris] p. 90Theorem 19.1719.17 1556
[Margaris] p. 90Theorem 19.18exbi 1604  rexbi 2610
[Margaris] p. 90Theorem 19.1919.19 1666
[Margaris] p. 90Theorem 19.20alim 1457  alimd 1521  alimdh 1467  alimdv 1879  ralimdaa 2543  ralimdv 2545  ralimdva 2544  ralimdvva 2546  sbcimdv 3028
[Margaris] p. 90Theorem 19.2119.21-2 1667  19.21 1583  19.21bi 1558  19.21h 1557  19.21ht 1581  19.21t 1582  19.21v 1873  alrimd 1610  alrimdd 1609  alrimdh 1479  alrimdv 1876  alrimi 1522  alrimih 1469  alrimiv 1874  alrimivv 1875  r19.21 2553  r19.21be 2568  r19.21bi 2565  r19.21t 2552  r19.21v 2554  ralrimd 2555  ralrimdv 2556  ralrimdva 2557  ralrimdvv 2561  ralrimdvva 2562  ralrimi 2548  ralrimiv 2549  ralrimiva 2550  ralrimivv 2558  ralrimivva 2559  ralrimivvva 2560  ralrimivw 2551  rexlimi 2587
[Margaris] p. 90Theorem 19.222alimdv 1881  2eximdv 1882  exim 1599  eximd 1612  eximdh 1611  eximdv 1880  rexim 2571  reximdai 2575  reximddv 2580  reximddv2 2582  reximdv 2578  reximdv2 2576  reximdva 2579  reximdvai 2577  reximi2 2573
[Margaris] p. 90Theorem 19.2319.23 1678  19.23bi 1592  19.23h 1498  19.23ht 1497  19.23t 1677  19.23v 1883  19.23vv 1884  exlimd2 1595  exlimdh 1596  exlimdv 1819  exlimdvv 1897  exlimi 1594  exlimih 1593  exlimiv 1598  exlimivv 1896  r19.23 2585  r19.23v 2586  rexlimd 2591  rexlimdv 2593  rexlimdv3a 2596  rexlimdva 2594  rexlimdva2 2597  rexlimdvaa 2595  rexlimdvv 2601  rexlimdvva 2602  rexlimdvw 2598  rexlimiv 2588  rexlimiva 2589  rexlimivv 2600
[Margaris] p. 90Theorem 19.24i19.24 1639
[Margaris] p. 90Theorem 19.2519.25 1626
[Margaris] p. 90Theorem 19.2619.26-2 1482  19.26-3an 1483  19.26 1481  r19.26-2 2606  r19.26-3 2607  r19.26 2603  r19.26m 2608
[Margaris] p. 90Theorem 19.2719.27 1561  19.27h 1560  19.27v 1899  r19.27av 2612  r19.27m 3518  r19.27mv 3519
[Margaris] p. 90Theorem 19.2819.28 1563  19.28h 1562  19.28v 1900  r19.28av 2613  r19.28m 3512  r19.28mv 3515  rr19.28v 2877
[Margaris] p. 90Theorem 19.2919.29 1620  19.29r 1621  19.29r2 1622  19.29x 1623  r19.29 2614  r19.29d2r 2621  r19.29r 2615
[Margaris] p. 90Theorem 19.3019.30dc 1627
[Margaris] p. 90Theorem 19.3119.31r 1681
[Margaris] p. 90Theorem 19.3219.32dc 1679  19.32r 1680  r19.32r 2623  r19.32vdc 2626  r19.32vr 2625
[Margaris] p. 90Theorem 19.3319.33 1484  19.33b2 1629  19.33bdc 1630
[Margaris] p. 90Theorem 19.3419.34 1684
[Margaris] p. 90Theorem 19.3519.35-1 1624  19.35i 1625
[Margaris] p. 90Theorem 19.3619.36-1 1673  19.36aiv 1901  19.36i 1672  r19.36av 2628
[Margaris] p. 90Theorem 19.3719.37-1 1674  19.37aiv 1675  r19.37 2629  r19.37av 2630
[Margaris] p. 90Theorem 19.3819.38 1676
[Margaris] p. 90Theorem 19.39i19.39 1640
[Margaris] p. 90Theorem 19.4019.40-2 1632  19.40 1631  r19.40 2631
[Margaris] p. 90Theorem 19.4119.41 1686  19.41h 1685  19.41v 1902  19.41vv 1903  19.41vvv 1904  19.41vvvv 1905  r19.41 2632  r19.41v 2633
[Margaris] p. 90Theorem 19.4219.42 1688  19.42h 1687  19.42v 1906  19.42vv 1911  19.42vvv 1912  19.42vvvv 1913  r19.42v 2634
[Margaris] p. 90Theorem 19.4319.43 1628  r19.43 2635
[Margaris] p. 90Theorem 19.4419.44 1682  r19.44av 2636  r19.44mv 3517
[Margaris] p. 90Theorem 19.4519.45 1683  r19.45av 2637  r19.45mv 3516
[Margaris] p. 110Exercise 2(b)eu1 2051
[Megill] p. 444Axiom C5ax-17 1526
[Megill] p. 445Lemma L12alequcom 1515  ax-10 1505
[Megill] p. 446Lemma L17equtrr 1710
[Megill] p. 446Lemma L19hbnae 1721
[Megill] p. 447Remark 9.1df-sb 1763  sbid 1774
[Megill] p. 448Scheme C5'ax-4 1510
[Megill] p. 448Scheme C6'ax-7 1448
[Megill] p. 448Scheme C8'ax-8 1504
[Megill] p. 448Scheme C9'ax-i12 1507
[Megill] p. 448Scheme C11'ax-10o 1716
[Megill] p. 448Scheme C12'ax-13 2150
[Megill] p. 448Scheme C13'ax-14 2151
[Megill] p. 448Scheme C15'ax-11o 1823
[Megill] p. 448Scheme C16'ax-16 1814
[Megill] p. 448Theorem 9.4dral1 1730  dral2 1731  drex1 1798  drex2 1732  drsb1 1799  drsb2 1841
[Megill] p. 449Theorem 9.7sbcom2 1987  sbequ 1840  sbid2v 1996
[Megill] p. 450Example in Appendixhba1 1540
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3045  rspsbca 3046  stdpc4 1775
[Mendelson] p. 69Axiom 5ra5 3051  stdpc5 1584
[Mendelson] p. 81Rule Cexlimiv 1598
[Mendelson] p. 95Axiom 6stdpc6 1703
[Mendelson] p. 95Axiom 7stdpc7 1770
[Mendelson] p. 231Exercise 4.10(k)inv1 3459
[Mendelson] p. 231Exercise 4.10(l)unv 3460
[Mendelson] p. 231Exercise 4.10(n)inssun 3375
[Mendelson] p. 231Exercise 4.10(o)df-nul 3423
[Mendelson] p. 231Exercise 4.10(q)inssddif 3376
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3266
[Mendelson] p. 231Definition of unionunssin 3374
[Mendelson] p. 235Exercise 4.12(c)univ 4476
[Mendelson] p. 235Exercise 4.12(d)pwv 3808
[Mendelson] p. 235Exercise 4.12(j)pwin 4282
[Mendelson] p. 235Exercise 4.12(k)pwunss 4283
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4284
[Mendelson] p. 235Exercise 4.12(n)uniin 3829
[Mendelson] p. 235Exercise 4.12(p)reli 4756
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5149
[Mendelson] p. 246Definition of successordf-suc 4371
[Mendelson] p. 254Proposition 4.22(b)xpen 6844
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6820  xpsneng 6821
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6826  xpcomeng 6827
[Mendelson] p. 254Proposition 4.22(e)xpassen 6829
[Mendelson] p. 255Exercise 4.39endisj 6823
[Mendelson] p. 255Exercise 4.41mapprc 6651
[Mendelson] p. 255Exercise 4.43mapsnen 6810
[Mendelson] p. 255Exercise 4.47xpmapen 6849
[Mendelson] p. 255Exercise 4.42(a)map0e 6685
[Mendelson] p. 255Exercise 4.42(b)map1 6811
[Mendelson] p. 258Exercise 4.56(c)djuassen 7215  djucomen 7214
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7213
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6467
[Monk1] p. 26Theorem 2.8(vii)ssin 3357
[Monk1] p. 33Theorem 3.2(i)ssrel 4714
[Monk1] p. 33Theorem 3.2(ii)eqrel 4715
[Monk1] p. 34Definition 3.3df-opab 4065
[Monk1] p. 36Theorem 3.7(i)coi1 5144  coi2 5145
[Monk1] p. 36Theorem 3.8(v)dm0 4841  rn0 4883
[Monk1] p. 36Theorem 3.7(ii)cnvi 5033
[Monk1] p. 37Theorem 3.13(i)relxp 4735
[Monk1] p. 37Theorem 3.13(x)dmxpm 4847  rnxpm 5058
[Monk1] p. 37Theorem 3.13(ii)0xp 4706  xp0 5048
[Monk1] p. 38Theorem 3.16(ii)ima0 4987
[Monk1] p. 38Theorem 3.16(viii)imai 4984
[Monk1] p. 39Theorem 3.17imaex 4983  imaexg 4982
[Monk1] p. 39Theorem 3.16(xi)imassrn 4981
[Monk1] p. 41Theorem 4.3(i)fnopfv 5646  funfvop 5628
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5559
[Monk1] p. 42Theorem 4.4(iii)fvelima 5567
[Monk1] p. 43Theorem 4.6funun 5260
[Monk1] p. 43Theorem 4.8(iv)dff13 5768  dff13f 5770
[Monk1] p. 46Theorem 4.15(v)funex 5739  funrnex 6114
[Monk1] p. 50Definition 5.4fniunfv 5762
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5112
[Monk1] p. 52Theorem 5.11(viii)ssint 3860
[Monk1] p. 52Definition 5.13 (i)1stval2 6155  df-1st 6140
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6156  df-2nd 6141
[Monk2] p. 105Axiom C4ax-5 1447
[Monk2] p. 105Axiom C7ax-8 1504
[Monk2] p. 105Axiom C8ax-11 1506  ax-11o 1823
[Monk2] p. 105Axiom (C8)ax11v 1827
[Monk2] p. 109Lemma 12ax-7 1448
[Monk2] p. 109Lemma 15equvin 1863  equvini 1758  eqvinop 4243
[Monk2] p. 113Axiom C5-1ax-17 1526
[Monk2] p. 113Axiom C5-2ax6b 1651
[Monk2] p. 113Axiom C5-3ax-7 1448
[Monk2] p. 114Lemma 22hba1 1540
[Monk2] p. 114Lemma 23hbia1 1552  nfia1 1580
[Monk2] p. 114Lemma 24hba2 1551  nfa2 1579
[Moschovakis] p. 2Chapter 2 df-stab 831  dftest 14758
[Munkres] p. 77Example 2distop 13521
[Munkres] p. 78Definition of basisdf-bases 13479  isbasis3g 13482
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12708  tgval2 13487
[Munkres] p. 79Remarktgcl 13500
[Munkres] p. 80Lemma 2.1tgval3 13494
[Munkres] p. 80Lemma 2.2tgss2 13515  tgss3 13514
[Munkres] p. 81Lemma 2.3basgen 13516  basgen2 13517
[Munkres] p. 89Definition of subspace topologyresttop 13606
[Munkres] p. 93Theorem 6.1(1)0cld 13548  topcld 13545
[Munkres] p. 93Theorem 6.1(3)uncld 13549
[Munkres] p. 94Definition of closureclsval 13547
[Munkres] p. 94Definition of interiorntrval 13546
[Munkres] p. 102Definition of continuous functiondf-cn 13624  iscn 13633  iscn2 13636
[Munkres] p. 107Theorem 7.2(g)cncnp 13666  cncnp2m 13667  cncnpi 13664  df-cnp 13625  iscnp 13635
[Munkres] p. 127Theorem 10.1metcn 13950
[Pierik], p. 8Section 2.2.1dfrex2fin 6902
[Pierik], p. 9Definition 2.4df-womni 7161
[Pierik], p. 9Definition 2.5df-markov 7149  omniwomnimkv 7164
[Pierik], p. 10Section 2.3dfdif3 3245
[Pierik], p. 14Definition 3.1df-omni 7132  exmidomniim 7138  finomni 7137
[Pierik], p. 15Section 3.1df-nninf 7118
[PradicBrown2022], p. 1Theorem 1exmidsbthr 14707
[PradicBrown2022], p. 2Remarkexmidpw 6907
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7199
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7200  exmidfodomrlemrALT 7201
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7146
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 14692  peano4nninf 14691
[PradicBrown2022], p. 5Lemma 3.5nninfall 14694
[PradicBrown2022], p. 5Theorem 3.6nninfsel 14702
[PradicBrown2022], p. 5Corollary 3.7nninfomni 14704
[PradicBrown2022], p. 5Definition 3.3nnsf 14690
[Quine] p. 16Definition 2.1df-clab 2164  rabid 2652
[Quine] p. 17Definition 2.1''dfsb7 1991
[Quine] p. 18Definition 2.7df-cleq 2170
[Quine] p. 19Definition 2.9df-v 2739
[Quine] p. 34Theorem 5.1abeq2 2286
[Quine] p. 35Theorem 5.2abid2 2298  abid2f 2345
[Quine] p. 40Theorem 6.1sb5 1887
[Quine] p. 40Theorem 6.2sb56 1885  sb6 1886
[Quine] p. 41Theorem 6.3df-clel 2173
[Quine] p. 41Theorem 6.4eqid 2177
[Quine] p. 41Theorem 6.5eqcom 2179
[Quine] p. 42Theorem 6.6df-sbc 2963
[Quine] p. 42Theorem 6.7dfsbcq 2964  dfsbcq2 2965
[Quine] p. 43Theorem 6.8vex 2740
[Quine] p. 43Theorem 6.9isset 2743
[Quine] p. 44Theorem 7.3spcgf 2819  spcgv 2824  spcimgf 2817
[Quine] p. 44Theorem 6.11spsbc 2974  spsbcd 2975
[Quine] p. 44Theorem 6.12elex 2748
[Quine] p. 44Theorem 6.13elab 2881  elabg 2883  elabgf 2879
[Quine] p. 44Theorem 6.14noel 3426
[Quine] p. 48Theorem 7.2snprc 3657
[Quine] p. 48Definition 7.1df-pr 3599  df-sn 3598
[Quine] p. 49Theorem 7.4snss 3727  snssg 3726
[Quine] p. 49Theorem 7.5prss 3748  prssg 3749
[Quine] p. 49Theorem 7.6prid1 3698  prid1g 3696  prid2 3699  prid2g 3697  snid 3623  snidg 3621
[Quine] p. 51Theorem 7.12snexg 4184  snexprc 4186
[Quine] p. 51Theorem 7.13prexg 4211
[Quine] p. 53Theorem 8.2unisn 3825  unisng 3826
[Quine] p. 53Theorem 8.3uniun 3828
[Quine] p. 54Theorem 8.6elssuni 3837
[Quine] p. 54Theorem 8.7uni0 3836
[Quine] p. 56Theorem 8.17uniabio 5188
[Quine] p. 56Definition 8.18dfiota2 5179
[Quine] p. 57Theorem 8.19iotaval 5189
[Quine] p. 57Theorem 8.22iotanul 5193
[Quine] p. 58Theorem 8.23euiotaex 5194
[Quine] p. 58Definition 9.1df-op 3601
[Quine] p. 61Theorem 9.5opabid 4257  opelopab 4271  opelopaba 4266  opelopabaf 4273  opelopabf 4274  opelopabg 4268  opelopabga 4263  oprabid 5906
[Quine] p. 64Definition 9.11df-xp 4632
[Quine] p. 64Definition 9.12df-cnv 4634
[Quine] p. 64Definition 9.15df-id 4293
[Quine] p. 65Theorem 10.3fun0 5274
[Quine] p. 65Theorem 10.4funi 5248
[Quine] p. 65Theorem 10.5funsn 5264  funsng 5262
[Quine] p. 65Definition 10.1df-fun 5218
[Quine] p. 65Definition 10.2args 4997  dffv4g 5512
[Quine] p. 68Definition 10.11df-fv 5224  fv2 5510
[Quine] p. 124Theorem 17.3nn0opth2 10703  nn0opth2d 10702  nn0opthd 10701
[Quine] p. 284Axiom 39(vi)funimaex 5301  funimaexg 5300
[Roman] p. 19Part Preliminariesdf-ring 13179
[Rudin] p. 164Equation 27efcan 11683
[Rudin] p. 164Equation 30efzval 11690
[Rudin] p. 167Equation 48absefi 11775
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1426
[Sanford] p. 39Rule 4mptxor 1424
[Sanford] p. 40Rule 1mptnan 1423
[Schechter] p. 51Definition of antisymmetryintasym 5013
[Schechter] p. 51Definition of irreflexivityintirr 5015
[Schechter] p. 51Definition of symmetrycnvsym 5012
[Schechter] p. 51Definition of transitivitycotr 5010
[Schechter] p. 187Definition of "ring with unit"isring 13181
[Schechter] p. 428Definition 15.35bastop1 13519
[Stoll] p. 13Definition of symmetric differencesymdif1 3400
[Stoll] p. 16Exercise 4.40dif 3494  dif0 3493
[Stoll] p. 16Exercise 4.8difdifdirss 3507
[Stoll] p. 19Theorem 5.2(13)undm 3393
[Stoll] p. 19Theorem 5.2(13')indmss 3394
[Stoll] p. 20Remarkinvdif 3377
[Stoll] p. 25Definition of ordered tripledf-ot 3602
[Stoll] p. 43Definitionuniiun 3940
[Stoll] p. 44Definitionintiin 3941
[Stoll] p. 45Definitiondf-iin 3889
[Stoll] p. 45Definition indexed uniondf-iun 3888
[Stoll] p. 176Theorem 3.4(27)imandc 889  imanst 888
[Stoll] p. 262Example 4.1symdif1 3400
[Suppes] p. 22Theorem 2eq0 3441
[Suppes] p. 22Theorem 4eqss 3170  eqssd 3172  eqssi 3171
[Suppes] p. 23Theorem 5ss0 3463  ss0b 3462
[Suppes] p. 23Theorem 6sstr 3163
[Suppes] p. 25Theorem 12elin 3318  elun 3276
[Suppes] p. 26Theorem 15inidm 3344
[Suppes] p. 26Theorem 16in0 3457
[Suppes] p. 27Theorem 23unidm 3278
[Suppes] p. 27Theorem 24un0 3456
[Suppes] p. 27Theorem 25ssun1 3298
[Suppes] p. 27Theorem 26ssequn1 3305
[Suppes] p. 27Theorem 27unss 3309
[Suppes] p. 27Theorem 28indir 3384
[Suppes] p. 27Theorem 29undir 3385
[Suppes] p. 28Theorem 32difid 3491  difidALT 3492
[Suppes] p. 29Theorem 33difin 3372
[Suppes] p. 29Theorem 34indif 3378
[Suppes] p. 29Theorem 35undif1ss 3497
[Suppes] p. 29Theorem 36difun2 3502
[Suppes] p. 29Theorem 37difin0 3496
[Suppes] p. 29Theorem 38disjdif 3495
[Suppes] p. 29Theorem 39difundi 3387
[Suppes] p. 29Theorem 40difindiss 3389
[Suppes] p. 30Theorem 41nalset 4133
[Suppes] p. 39Theorem 61uniss 3830
[Suppes] p. 39Theorem 65uniop 4255
[Suppes] p. 41Theorem 70intsn 3879
[Suppes] p. 42Theorem 71intpr 3876  intprg 3877
[Suppes] p. 42Theorem 73op1stb 4478  op1stbg 4479
[Suppes] p. 42Theorem 78intun 3875
[Suppes] p. 44Definition 15(a)dfiun2 3920  dfiun2g 3918
[Suppes] p. 44Definition 15(b)dfiin2 3921
[Suppes] p. 47Theorem 86elpw 3581  elpw2 4157  elpw2g 4156  elpwg 3583
[Suppes] p. 47Theorem 87pwid 3590
[Suppes] p. 47Theorem 89pw0 3739
[Suppes] p. 48Theorem 90pwpw0ss 3804
[Suppes] p. 52Theorem 101xpss12 4733
[Suppes] p. 52Theorem 102xpindi 4762  xpindir 4763
[Suppes] p. 52Theorem 103xpundi 4682  xpundir 4683
[Suppes] p. 54Theorem 105elirrv 4547
[Suppes] p. 58Theorem 2relss 4713
[Suppes] p. 59Theorem 4eldm 4824  eldm2 4825  eldm2g 4823  eldmg 4822
[Suppes] p. 59Definition 3df-dm 4636
[Suppes] p. 60Theorem 6dmin 4835
[Suppes] p. 60Theorem 8rnun 5037
[Suppes] p. 60Theorem 9rnin 5038
[Suppes] p. 60Definition 4dfrn2 4815
[Suppes] p. 61Theorem 11brcnv 4810  brcnvg 4808
[Suppes] p. 62Equation 5elcnv 4804  elcnv2 4805
[Suppes] p. 62Theorem 12relcnv 5006
[Suppes] p. 62Theorem 15cnvin 5036
[Suppes] p. 62Theorem 16cnvun 5034
[Suppes] p. 63Theorem 20co02 5142
[Suppes] p. 63Theorem 21dmcoss 4896
[Suppes] p. 63Definition 7df-co 4635
[Suppes] p. 64Theorem 26cnvco 4812
[Suppes] p. 64Theorem 27coass 5147
[Suppes] p. 65Theorem 31resundi 4920
[Suppes] p. 65Theorem 34elima 4975  elima2 4976  elima3 4977  elimag 4974
[Suppes] p. 65Theorem 35imaundi 5041
[Suppes] p. 66Theorem 40dminss 5043
[Suppes] p. 66Theorem 41imainss 5044
[Suppes] p. 67Exercise 11cnvxp 5047
[Suppes] p. 81Definition 34dfec2 6537
[Suppes] p. 82Theorem 72elec 6573  elecg 6572
[Suppes] p. 82Theorem 73erth 6578  erth2 6579
[Suppes] p. 89Theorem 96map0b 6686
[Suppes] p. 89Theorem 97map0 6688  map0g 6687
[Suppes] p. 89Theorem 98mapsn 6689
[Suppes] p. 89Theorem 99mapss 6690
[Suppes] p. 92Theorem 1enref 6764  enrefg 6763
[Suppes] p. 92Theorem 2ensym 6780  ensymb 6779  ensymi 6781
[Suppes] p. 92Theorem 3entr 6783
[Suppes] p. 92Theorem 4unen 6815
[Suppes] p. 94Theorem 15endom 6762
[Suppes] p. 94Theorem 16ssdomg 6777
[Suppes] p. 94Theorem 17domtr 6784
[Suppes] p. 95Theorem 18isbth 6965
[Suppes] p. 98Exercise 4fundmen 6805  fundmeng 6806
[Suppes] p. 98Exercise 6xpdom3m 6833
[Suppes] p. 130Definition 3df-tr 4102
[Suppes] p. 132Theorem 9ssonuni 4487
[Suppes] p. 134Definition 6df-suc 4371
[Suppes] p. 136Theorem Schema 22findes 4602  finds 4599  finds1 4601  finds2 4600
[Suppes] p. 162Definition 5df-ltnqqs 7351  df-ltpq 7344
[Suppes] p. 228Theorem Schema 61onintss 4390
[TakeutiZaring] p. 8Axiom 1ax-ext 2159
[TakeutiZaring] p. 13Definition 4.5df-cleq 2170
[TakeutiZaring] p. 13Proposition 4.6df-clel 2173
[TakeutiZaring] p. 13Proposition 4.9cvjust 2172
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2195
[TakeutiZaring] p. 14Definition 4.16df-oprab 5878
[TakeutiZaring] p. 14Proposition 4.14ru 2961
[TakeutiZaring] p. 15Exercise 1elpr 3613  elpr2 3614  elprg 3612
[TakeutiZaring] p. 15Exercise 2elsn 3608  elsn2 3626  elsn2g 3625  elsng 3607  velsn 3609
[TakeutiZaring] p. 15Exercise 3elop 4231
[TakeutiZaring] p. 15Exercise 4sneq 3603  sneqr 3760
[TakeutiZaring] p. 15Definition 5.1dfpr2 3611  dfsn2 3606
[TakeutiZaring] p. 16Axiom 3uniex 4437
[TakeutiZaring] p. 16Exercise 6opth 4237
[TakeutiZaring] p. 16Exercise 8rext 4215
[TakeutiZaring] p. 16Corollary 5.8unex 4441  unexg 4443
[TakeutiZaring] p. 16Definition 5.3dftp2 3641
[TakeutiZaring] p. 16Definition 5.5df-uni 3810
[TakeutiZaring] p. 16Definition 5.6df-in 3135  df-un 3133
[TakeutiZaring] p. 16Proposition 5.7unipr 3823  uniprg 3824
[TakeutiZaring] p. 17Axiom 4vpwex 4179
[TakeutiZaring] p. 17Exercise 1eltp 3640
[TakeutiZaring] p. 17Exercise 5elsuc 4406  elsucg 4404  sstr2 3162
[TakeutiZaring] p. 17Exercise 6uncom 3279
[TakeutiZaring] p. 17Exercise 7incom 3327
[TakeutiZaring] p. 17Exercise 8unass 3292
[TakeutiZaring] p. 17Exercise 9inass 3345
[TakeutiZaring] p. 17Exercise 10indi 3382
[TakeutiZaring] p. 17Exercise 11undi 3383
[TakeutiZaring] p. 17Definition 5.9dfss2 3144
[TakeutiZaring] p. 17Definition 5.10df-pw 3577
[TakeutiZaring] p. 18Exercise 7unss2 3306
[TakeutiZaring] p. 18Exercise 9df-ss 3142  sseqin2 3354
[TakeutiZaring] p. 18Exercise 10ssid 3175
[TakeutiZaring] p. 18Exercise 12inss1 3355  inss2 3356
[TakeutiZaring] p. 18Exercise 13nssr 3215
[TakeutiZaring] p. 18Exercise 15unieq 3818
[TakeutiZaring] p. 18Exercise 18sspwb 4216
[TakeutiZaring] p. 18Exercise 19pweqb 4223
[TakeutiZaring] p. 20Definitiondf-rab 2464
[TakeutiZaring] p. 20Corollary 5.160ex 4130
[TakeutiZaring] p. 20Definition 5.12df-dif 3131
[TakeutiZaring] p. 20Definition 5.14dfnul2 3424
[TakeutiZaring] p. 20Proposition 5.15difid 3491  difidALT 3492
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3435
[TakeutiZaring] p. 21Theorem 5.22setind 4538
[TakeutiZaring] p. 21Definition 5.20df-v 2739
[TakeutiZaring] p. 21Proposition 5.21vprc 4135
[TakeutiZaring] p. 22Exercise 10ss 3461
[TakeutiZaring] p. 22Exercise 3ssex 4140  ssexg 4142
[TakeutiZaring] p. 22Exercise 4inex1 4137
[TakeutiZaring] p. 22Exercise 5ruv 4549
[TakeutiZaring] p. 22Exercise 6elirr 4540
[TakeutiZaring] p. 22Exercise 7ssdif0im 3487
[TakeutiZaring] p. 22Exercise 11difdif 3260
[TakeutiZaring] p. 22Exercise 13undif3ss 3396
[TakeutiZaring] p. 22Exercise 14difss 3261
[TakeutiZaring] p. 22Exercise 15sscon 3269
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2460
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2461
[TakeutiZaring] p. 23Proposition 6.2xpex 4741  xpexg 4740  xpexgALT 6133
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4633
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5280
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5432  fun11 5283
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5227  svrelfun 5281
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4814
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4816
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4638
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4639
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4635
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5083  dfrel2 5079
[TakeutiZaring] p. 25Exercise 3xpss 4734
[TakeutiZaring] p. 25Exercise 5relun 4743
[TakeutiZaring] p. 25Exercise 6reluni 4749
[TakeutiZaring] p. 25Exercise 9inxp 4761
[TakeutiZaring] p. 25Exercise 12relres 4935
[TakeutiZaring] p. 25Exercise 13opelres 4912  opelresg 4914
[TakeutiZaring] p. 25Exercise 14dmres 4928
[TakeutiZaring] p. 25Exercise 15resss 4931
[TakeutiZaring] p. 25Exercise 17resabs1 4936
[TakeutiZaring] p. 25Exercise 18funres 5257
[TakeutiZaring] p. 25Exercise 24relco 5127
[TakeutiZaring] p. 25Exercise 29funco 5256
[TakeutiZaring] p. 25Exercise 30f1co 5433
[TakeutiZaring] p. 26Definition 6.10eu2 2070
[TakeutiZaring] p. 26Definition 6.11df-fv 5224  fv3 5538
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5167  cnvexg 5166
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4893  dmexg 4891
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4894  rnexg 4892
[TakeutiZaring] p. 27Corollary 6.13funfvex 5532
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5542  tz6.12 5543  tz6.12c 5545
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5506
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5219
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5220
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5222  wfo 5214
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5221  wf1 5213
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5223  wf1o 5215
[TakeutiZaring] p. 28Exercise 4eqfnfv 5613  eqfnfv2 5614  eqfnfv2f 5617
[TakeutiZaring] p. 28Exercise 5fvco 5586
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5738  fnexALT 6111
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5737  resfunexgALT 6108
[TakeutiZaring] p. 29Exercise 9funimaex 5301  funimaexg 5300
[TakeutiZaring] p. 29Definition 6.18df-br 4004
[TakeutiZaring] p. 30Definition 6.21eliniseg 4998  iniseg 5000
[TakeutiZaring] p. 30Definition 6.22df-eprel 4289
[TakeutiZaring] p. 32Definition 6.28df-isom 5225
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5810
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5811
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5816
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5818
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5826
[TakeutiZaring] p. 35Notationwtr 4101
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4354
[TakeutiZaring] p. 35Definition 7.1dftr3 4105
[TakeutiZaring] p. 36Proposition 7.4ordwe 4575
[TakeutiZaring] p. 36Proposition 7.6ordelord 4381
[TakeutiZaring] p. 37Proposition 7.9ordin 4385
[TakeutiZaring] p. 38Corollary 7.15ordsson 4491
[TakeutiZaring] p. 38Definition 7.11df-on 4368
[TakeutiZaring] p. 38Proposition 7.12ordon 4485
[TakeutiZaring] p. 38Proposition 7.13onprc 4551
[TakeutiZaring] p. 39Theorem 7.17tfi 4581
[TakeutiZaring] p. 40Exercise 7dftr2 4103
[TakeutiZaring] p. 40Exercise 11unon 4510
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4486
[TakeutiZaring] p. 40Proposition 7.20elssuni 3837
[TakeutiZaring] p. 41Definition 7.22df-suc 4371
[TakeutiZaring] p. 41Proposition 7.23sssucid 4415  sucidg 4416
[TakeutiZaring] p. 41Proposition 7.24onsuc 4500
[TakeutiZaring] p. 42Exercise 1df-ilim 4369
[TakeutiZaring] p. 42Exercise 8onsucssi 4505  ordelsuc 4504
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4593
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4594
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4595
[TakeutiZaring] p. 43Axiom 7omex 4592
[TakeutiZaring] p. 43Theorem 7.32ordom 4606
[TakeutiZaring] p. 43Corollary 7.31find 4598
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4596
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4597
[TakeutiZaring] p. 44Exercise 2int0 3858
[TakeutiZaring] p. 44Exercise 3trintssm 4117
[TakeutiZaring] p. 44Exercise 4intss1 3859
[TakeutiZaring] p. 44Exercise 6onintonm 4516
[TakeutiZaring] p. 44Definition 7.35df-int 3845
[TakeutiZaring] p. 47Lemma 1tfrlem1 6308
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6365  tfri1d 6335
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6366  tfri2d 6336
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6367
[TakeutiZaring] p. 50Exercise 3smoiso 6302
[TakeutiZaring] p. 50Definition 7.46df-smo 6286
[TakeutiZaring] p. 56Definition 8.1oasuc 6464
[TakeutiZaring] p. 57Proposition 8.2oacl 6460
[TakeutiZaring] p. 57Proposition 8.3oa0 6457
[TakeutiZaring] p. 57Proposition 8.16omcl 6461
[TakeutiZaring] p. 58Proposition 8.4nnaord 6509  nnaordi 6508
[TakeutiZaring] p. 59Proposition 8.6iunss2 3931  uniss2 3840
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6470
[TakeutiZaring] p. 59Proposition 8.9nnacl 6480
[TakeutiZaring] p. 62Exercise 5oaword1 6471
[TakeutiZaring] p. 62Definition 8.15om0 6458  omsuc 6472
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6481
[TakeutiZaring] p. 63Proposition 8.19nnmord 6517  nnmordi 6516
[TakeutiZaring] p. 67Definition 8.30oei0 6459
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7185
[TakeutiZaring] p. 88Exercise 1en0 6794
[TakeutiZaring] p. 90Proposition 10.20nneneq 6856
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6857
[TakeutiZaring] p. 91Definition 10.29df-fin 6742  isfi 6760
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6830
[TakeutiZaring] p. 95Definition 10.42df-map 6649
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6847
[Tarski] p. 67Axiom B5ax-4 1510
[Tarski] p. 68Lemma 6equid 1701
[Tarski] p. 69Lemma 7equcomi 1704
[Tarski] p. 70Lemma 14spim 1738  spime 1741  spimeh 1739  spimh 1737
[Tarski] p. 70Lemma 16ax-11 1506  ax-11o 1823  ax11i 1714
[Tarski] p. 70Lemmas 16 and 17sb6 1886
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1526
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2150  ax-14 2151
[WhiteheadRussell] p. 96Axiom *1.3olc 711
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 727
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 756
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 765
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 789
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 616
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 643
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 837
[WhiteheadRussell] p. 101Theorem *2.06barbara 2124  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 737
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 836
[WhiteheadRussell] p. 101Theorem *2.12notnot 629
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 885
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 843
[WhiteheadRussell] p. 102Theorem *2.15con1dc 856
[WhiteheadRussell] p. 103Theorem *2.16con3 642
[WhiteheadRussell] p. 103Theorem *2.17condc 853
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 855
[WhiteheadRussell] p. 104Theorem *2.2orc 712
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 775
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 617
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 621
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 893
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 907
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 768
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 769
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 804
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 805
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 803
[WhiteheadRussell] p. 105Definition *2.33df-3or 979
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 778
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 776
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 777
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 738
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 739
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 867  pm2.5gdc 866
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 862
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 740
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 741
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 742
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 655
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 656
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 722
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 891
[WhiteheadRussell] p. 107Theorem *2.55orel1 725
[WhiteheadRussell] p. 107Theorem *2.56orel2 726
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 865
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 748
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 800
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 801
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 659
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 713  pm2.67 743
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 869  pm2.521gdc 868
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 747
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 810
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 894
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 915
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 806
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 807
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 809
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 808
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 811
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 812
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 905
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 754
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 957
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 958
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 959
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 753
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 693
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 860
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 859
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 689
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 755  pm3.44 715
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 785
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 871
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 872
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 890
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 694
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 952  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 757  pm4.25 758
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 818
[WhiteheadRussell] p. 118Theorem *4.31orcom 728
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 767
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 792
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 822
[WhiteheadRussell] p. 118Definition *4.34df-3an 980
[WhiteheadRussell] p. 119Theorem *4.41ordi 816
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 971
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 949
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 779
[WhiteheadRussell] p. 119Theorem *4.45orabs 814  pm4.45 784  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1481
[WhiteheadRussell] p. 120Theorem *4.5anordc 956
[WhiteheadRussell] p. 120Theorem *4.6imordc 897  imorr 721
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 899
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 750
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 751
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 902
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 938
[WhiteheadRussell] p. 120Theorem *4.56ioran 752  pm4.56 780
[WhiteheadRussell] p. 120Theorem *4.57orandc 939  oranim 781
[WhiteheadRussell] p. 120Theorem *4.61annimim 686
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 898
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 886
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 900
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 687
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 901
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 887
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 827
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 744
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 710  pm4.77 799
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 782
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 903
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 707
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 908
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 950
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 951
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 909
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 910
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 912
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 911
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1389
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 828
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 904
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1394  pm5.18dc 883
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 706
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 695
[WhiteheadRussell] p. 124Theorem *5.22xordc 1392
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1397
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1398
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 895
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 926  pm5.6r 927
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 954
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 917
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 925
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 802
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 918
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 913
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 794
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 945
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 946
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 961
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 962
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1635
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1485
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1632
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1895
[WhiteheadRussell] p. 175Definition *14.02df-eu 2029
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2428
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2429
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2875
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3019
[WhiteheadRussell] p. 190Theorem *14.22iota4 5196
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5197
[WhiteheadRussell] p. 192Theorem *14.26eupick 2105  eupickbi 2108
[WhiteheadRussell] p. 235Definition *30.01df-fv 5224
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7188

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]