Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
---|
[AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7080 fidcenum 6921 |
[AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 6921 |
[AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7080 |
[AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12358 |
[AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 6895 |
[AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 6883 |
[AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12373 |
[AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12375 |
[AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12364 znnen 12331 |
[AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12376 |
[AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12377 |
[AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10689 |
[AczelRathjen], p.
183 | Chapter 20 | ax-setind 4514 |
[Apostol] p. 18 | Theorem
I.1 | addcan 8078 addcan2d 8083 addcan2i 8081 addcand 8082 addcani 8080 |
[Apostol] p. 18 | Theorem
I.2 | negeu 8089 |
[Apostol] p. 18 | Theorem
I.3 | negsub 8146 negsubd 8215 negsubi 8176 |
[Apostol] p. 18 | Theorem
I.4 | negneg 8148 negnegd 8200 negnegi 8168 |
[Apostol] p. 18 | Theorem
I.5 | subdi 8283 subdid 8312 subdii 8305 subdir 8284 subdird 8313 subdiri 8306 |
[Apostol] p. 18 | Theorem
I.6 | mul01 8287 mul01d 8291 mul01i 8289 mul02 8285 mul02d 8290 mul02i 8288 |
[Apostol] p. 18 | Theorem
I.9 | divrecapd 8689 |
[Apostol] p. 18 | Theorem
I.10 | recrecapi 8640 |
[Apostol] p. 18 | Theorem
I.12 | mul2neg 8296 mul2negd 8311 mul2negi 8304 mulneg1 8293 mulneg1d 8309 mulneg1i 8302 |
[Apostol] p. 18 | Theorem
I.15 | divdivdivap 8609 |
[Apostol] p. 20 | Axiom
7 | rpaddcl 9613 rpaddcld 9648 rpmulcl 9614 rpmulcld 9649 |
[Apostol] p. 20 | Axiom
9 | 0nrp 9625 |
[Apostol] p. 20 | Theorem
I.17 | lttri 8003 |
[Apostol] p. 20 | Theorem
I.18 | ltadd1d 8436 ltadd1dd 8454 ltadd1i 8400 |
[Apostol] p. 20 | Theorem
I.19 | ltmul1 8490 ltmul1a 8489 ltmul1i 8815 ltmul1ii 8823 ltmul2 8751 ltmul2d 9675 ltmul2dd 9689 ltmul2i 8818 |
[Apostol] p. 20 | Theorem
I.21 | 0lt1 8025 |
[Apostol] p. 20 | Theorem
I.23 | lt0neg1 8366 lt0neg1d 8413 ltneg 8360 ltnegd 8421 ltnegi 8391 |
[Apostol] p. 20 | Theorem
I.25 | lt2add 8343 lt2addd 8465 lt2addi 8408 |
[Apostol] p.
20 | Definition of positive numbers | df-rp 9590 |
[Apostol] p. 21 | Exercise
4 | recgt0 8745 recgt0d 8829 recgt0i 8801 recgt0ii 8802 |
[Apostol] p.
22 | Definition of integers | df-z 9192 |
[Apostol] p.
22 | Definition of rationals | df-q 9558 |
[Apostol] p. 24 | Theorem
I.26 | supeuti 6959 |
[Apostol] p. 26 | Theorem
I.29 | arch 9111 |
[Apostol] p. 28 | Exercise
2 | btwnz 9310 |
[Apostol] p. 28 | Exercise
3 | nnrecl 9112 |
[Apostol] p. 28 | Exercise
6 | qbtwnre 10192 |
[Apostol] p. 28 | Exercise
10(a) | zeneo 11808 zneo 9292 |
[Apostol] p. 29 | Theorem
I.35 | resqrtth 10973 sqrtthi 11061 |
[Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 8860 |
[Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 11969 |
[Apostol] p.
363 | Remark | absgt0api 11088 |
[Apostol] p.
363 | Example | abssubd 11135 abssubi 11092 |
[ApostolNT] p.
14 | Definition | df-dvds 11728 |
[ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 11744 |
[ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 11768 |
[ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 11764 |
[ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 11758 |
[ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 11760 |
[ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 11745 |
[ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 11746 |
[ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 11751 |
[ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 11783 |
[ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 11785 |
[ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 11787 |
[ApostolNT] p.
15 | Definition | dfgcd2 11947 |
[ApostolNT] p.
16 | Definition | isprm2 12049 |
[ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12024 |
[ApostolNT] p.
16 | Theorem 1.7 | prminf 12388 |
[ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 11906 |
[ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 11948 |
[ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 11950 |
[ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 11920 |
[ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 11913 |
[ApostolNT] p.
17 | Theorem 1.8 | coprm 12076 |
[ApostolNT] p.
17 | Theorem 1.9 | euclemma 12078 |
[ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12298 |
[ApostolNT] p.
19 | Theorem 1.14 | divalg 11861 |
[ApostolNT] p.
20 | Theorem 1.15 | eucalg 11991 |
[ApostolNT] p.
25 | Definition | df-phi 12143 |
[ApostolNT] p.
26 | Theorem 2.2 | phisum 12172 |
[ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12154 |
[ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12158 |
[ApostolNT] p.
104 | Definition | congr 12032 |
[ApostolNT] p.
106 | Remark | dvdsval3 11731 |
[ApostolNT] p.
106 | Definition | moddvds 11739 |
[ApostolNT] p.
107 | Example 2 | mod2eq0even 11815 |
[ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 11816 |
[ApostolNT] p.
107 | Example 4 | zmod1congr 10276 |
[ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10313 |
[ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10581 |
[ApostolNT] p.
108 | Theorem 5.3 | modmulconst 11763 |
[ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12035 |
[ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12037 |
[ApostolNT] p.
113 | Theorem 5.17 | eulerth 12165 |
[ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12183 |
[ApostolNT] p.
114 | Theorem 5.19 | fermltl 12166 |
[ApostolNT] p.
179 | Definition | df-lgs 13539 lgsprme0 13583 |
[ApostolNT] p.
180 | Example 1 | 1lgs 13584 |
[ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 13560 |
[ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 13575 |
[ApostolNT] p.
188 | Definition | df-lgs 13539 lgs1 13585 |
[ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 13576 |
[ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 13578 |
[ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 13586 |
[ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 13587 |
[Bauer] p. 482 | Section
1.2 | pm2.01 606 pm2.65 649 |
[Bauer] p. 483 | Theorem
1.3 | acexmid 5841 onsucelsucexmidlem 4506 |
[Bauer], p.
481 | Section 1.1 | pwtrufal 13877 |
[Bauer], p.
483 | Definition | n0rf 3421 |
[Bauer], p. 483 | Theorem
1.2 | 2irrexpq 13534 2irrexpqap 13536 |
[Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6842 |
[Bauer], p. 494 | Theorem
5.5 | ivthinc 13261 |
[BauerHanson], p.
27 | Proposition 5.2 | cnstab 8543 |
[BauerSwan], p.
14 | Remark | 0ct 7072 ctm 7074 |
[BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 13881 |
[BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7080 |
[BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7442 |
[BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7355 |
[BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7444 |
[BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7478 addlocpr 7477 |
[BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7504 |
[BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7507 |
[BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7512 |
[BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
[BellMachover] p.
97 | Definition 10.1 | df-eu 2017 |
[BellMachover] p.
460 | Notation | df-mo 2018 |
[BellMachover] p.
460 | Definition | mo3 2068 mo3h 2067 |
[BellMachover] p.
462 | Theorem 1.1 | bm1.1 2150 |
[BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4103 |
[BellMachover] p.
466 | Axiom Pow | axpow3 4156 |
[BellMachover] p.
466 | Axiom Union | axun2 4413 |
[BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4519 |
[BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4362 |
[BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4522 |
[BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4473 |
[BellMachover] p.
471 | Definition of Lim | df-ilim 4347 |
[BellMachover] p.
472 | Axiom Inf | zfinf2 4566 |
[BellMachover] p.
473 | Theorem 2.8 | limom 4591 |
[Bobzien] p.
116 | Statement T3 | stoic3 1419 |
[Bobzien] p.
117 | Statement T2 | stoic2a 1417 |
[Bobzien] p.
117 | Statement T4 | stoic4a 1420 |
[BourbakiAlg1] p.
1 | Definition 1 | df-mgm 12587 |
[BourbakiEns] p.
| Proposition 8 | fcof1 5751 fcofo 5752 |
[BourbakiTop1] p.
| Remark | xnegmnf 9765 xnegpnf 9764 |
[BourbakiTop1] p.
| Remark | rexneg 9766 |
[BourbakiTop1] p.
| Proposition | ishmeo 12944 |
[BourbakiTop1] p.
| Property V_i | ssnei2 12797 |
[BourbakiTop1] p.
| Property V_ii | innei 12803 |
[BourbakiTop1] p.
| Property V_iv | neissex 12805 |
[BourbakiTop1] p.
| Proposition 1 | neipsm 12794 neiss 12790 |
[BourbakiTop1] p.
| Proposition 2 | cnptopco 12862 |
[BourbakiTop1] p.
| Proposition 4 | imasnopn 12939 |
[BourbakiTop1] p.
| Property V_iii | elnei 12792 |
[BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 12636 |
[Bruck] p. 1 | Section
I.1 | df-mgm 12587 |
[ChoquetDD] p.
2 | Definition of mapping | df-mpt 4045 |
[Cohen] p.
301 | Remark | relogoprlem 13429 |
[Cohen] p. 301 | Property
2 | relogmul 13430 relogmuld 13445 |
[Cohen] p. 301 | Property
3 | relogdiv 13431 relogdivd 13446 |
[Cohen] p. 301 | Property
4 | relogexp 13433 |
[Cohen] p. 301 | Property
1a | log1 13427 |
[Cohen] p. 301 | Property
1b | loge 13428 |
[Cohen4] p.
348 | Observation | relogbcxpbap 13523 |
[Cohen4] p.
352 | Definition | rpelogb 13507 |
[Cohen4] p. 361 | Property
2 | rprelogbmul 13513 |
[Cohen4] p. 361 | Property
3 | logbrec 13518 rprelogbdiv 13515 |
[Cohen4] p. 361 | Property
4 | rplogbreexp 13511 |
[Cohen4] p. 361 | Property
6 | relogbexpap 13516 |
[Cohen4] p. 361 | Property
1(a) | rplogbid1 13505 |
[Cohen4] p. 361 | Property
1(b) | rplogb1 13506 |
[Cohen4] p.
367 | Property | rplogbchbase 13508 |
[Cohen4] p. 377 | Property
2 | logblt 13520 |
[Crosilla] p. | Axiom
1 | ax-ext 2147 |
[Crosilla] p. | Axiom
2 | ax-pr 4187 |
[Crosilla] p. | Axiom
3 | ax-un 4411 |
[Crosilla] p. | Axiom
4 | ax-nul 4108 |
[Crosilla] p. | Axiom
5 | ax-iinf 4565 |
[Crosilla] p. | Axiom
6 | ru 2950 |
[Crosilla] p. | Axiom
8 | ax-pow 4153 |
[Crosilla] p. | Axiom
9 | ax-setind 4514 |
[Crosilla], p. | Axiom
6 | ax-sep 4100 |
[Crosilla], p. | Axiom
7 | ax-coll 4097 |
[Crosilla], p. | Axiom
7' | repizf 4098 |
[Crosilla], p. | Theorem
is stated | ordtriexmid 4498 |
[Crosilla], p. | Axiom
of choice implies instances | acexmid 5841 |
[Crosilla], p.
| Definition of ordinal | df-iord 4344 |
[Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4512 |
[Eisenberg] p.
67 | Definition 5.3 | df-dif 3118 |
[Eisenberg] p.
82 | Definition 6.3 | df-iom 4568 |
[Eisenberg] p.
125 | Definition 8.21 | df-map 6616 |
[Enderton] p. 18 | Axiom
of Empty Set | axnul 4107 |
[Enderton] p.
19 | Definition | df-tp 3584 |
[Enderton] p.
26 | Exercise 5 | unissb 3819 |
[Enderton] p.
26 | Exercise 10 | pwel 4196 |
[Enderton] p.
28 | Exercise 7(b) | pwunim 4264 |
[Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3935 iinin2m 3934 iunin1 3930 iunin2 3929 |
[Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3933 iundif2ss 3931 |
[Enderton] p.
33 | Exercise 23 | iinuniss 3948 |
[Enderton] p.
33 | Exercise 25 | iununir 3949 |
[Enderton] p.
33 | Exercise 24(a) | iinpw 3956 |
[Enderton] p.
33 | Exercise 24(b) | iunpw 4458 iunpwss 3957 |
[Enderton] p.
38 | Exercise 6(a) | unipw 4195 |
[Enderton] p.
38 | Exercise 6(b) | pwuni 4171 |
[Enderton] p. 41 | Lemma
3D | opeluu 4428 rnex 4871
rnexg 4869 |
[Enderton] p.
41 | Exercise 8 | dmuni 4814 rnuni 5015 |
[Enderton] p.
42 | Definition of a function | dffun7 5215 dffun8 5216 |
[Enderton] p.
43 | Definition of function value | funfvdm2 5550 |
[Enderton] p.
43 | Definition of single-rooted | funcnv 5249 |
[Enderton] p.
44 | Definition (d) | dfima2 4948 dfima3 4949 |
[Enderton] p.
47 | Theorem 3H | fvco2 5555 |
[Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7162 |
[Enderton] p.
50 | Theorem 3K(a) | imauni 5729 |
[Enderton] p.
52 | Definition | df-map 6616 |
[Enderton] p.
53 | Exercise 21 | coass 5122 |
[Enderton] p.
53 | Exercise 27 | dmco 5112 |
[Enderton] p.
53 | Exercise 14(a) | funin 5259 |
[Enderton] p.
53 | Exercise 22(a) | imass2 4980 |
[Enderton] p.
54 | Remark | ixpf 6686 ixpssmap 6698 |
[Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6665 |
[Enderton] p.
56 | Theorem 3M | erref 6521 |
[Enderton] p. 57 | Lemma
3N | erthi 6547 |
[Enderton] p.
57 | Definition | df-ec 6503 |
[Enderton] p.
58 | Definition | df-qs 6507 |
[Enderton] p.
60 | Theorem 3Q | th3q 6606 th3qcor 6605 th3qlem1 6603 th3qlem2 6604 |
[Enderton] p.
61 | Exercise 35 | df-ec 6503 |
[Enderton] p.
65 | Exercise 56(a) | dmun 4811 |
[Enderton] p.
68 | Definition of successor | df-suc 4349 |
[Enderton] p.
71 | Definition | df-tr 4081 dftr4 4085 |
[Enderton] p.
72 | Theorem 4E | unisuc 4391 unisucg 4392 |
[Enderton] p.
73 | Exercise 6 | unisuc 4391 unisucg 4392 |
[Enderton] p.
73 | Exercise 5(a) | truni 4094 |
[Enderton] p.
73 | Exercise 5(b) | trint 4095 |
[Enderton] p.
79 | Theorem 4I(A1) | nna0 6442 |
[Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6444 onasuc 6434 |
[Enderton] p.
79 | Definition of operation value | df-ov 5845 |
[Enderton] p.
80 | Theorem 4J(A1) | nnm0 6443 |
[Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6445 onmsuc 6441 |
[Enderton] p.
81 | Theorem 4K(1) | nnaass 6453 |
[Enderton] p.
81 | Theorem 4K(2) | nna0r 6446 nnacom 6452 |
[Enderton] p.
81 | Theorem 4K(3) | nndi 6454 |
[Enderton] p.
81 | Theorem 4K(4) | nnmass 6455 |
[Enderton] p.
81 | Theorem 4K(5) | nnmcom 6457 |
[Enderton] p.
82 | Exercise 16 | nnm0r 6447 nnmsucr 6456 |
[Enderton] p.
88 | Exercise 23 | nnaordex 6495 |
[Enderton] p.
129 | Definition | df-en 6707 |
[Enderton] p.
132 | Theorem 6B(b) | canth 5796 |
[Enderton] p.
133 | Exercise 1 | xpomen 12328 |
[Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6831 |
[Enderton] p.
136 | Corollary 6E | nneneq 6823 |
[Enderton] p.
139 | Theorem 6H(c) | mapen 6812 |
[Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7174 |
[Enderton] p.
143 | Theorem 6J | dju0en 7170 dju1en 7169 |
[Enderton] p.
144 | Corollary 6K | undif2ss 3484 |
[Enderton] p.
145 | Figure 38 | ffoss 5464 |
[Enderton] p.
145 | Definition | df-dom 6708 |
[Enderton] p.
146 | Example 1 | domen 6717 domeng 6718 |
[Enderton] p.
146 | Example 3 | nndomo 6830 |
[Enderton] p.
149 | Theorem 6L(c) | xpdom1 6801 xpdom1g 6799 xpdom2g 6798 |
[Enderton] p.
168 | Definition | df-po 4274 |
[Enderton] p.
192 | Theorem 7M(a) | oneli 4406 |
[Enderton] p.
192 | Theorem 7M(b) | ontr1 4367 |
[Enderton] p.
192 | Theorem 7M(c) | onirri 4520 |
[Enderton] p.
193 | Corollary 7N(b) | 0elon 4370 |
[Enderton] p.
193 | Corollary 7N(c) | onsuci 4493 |
[Enderton] p.
193 | Corollary 7N(d) | ssonunii 4466 |
[Enderton] p.
194 | Remark | onprc 4529 |
[Enderton] p.
194 | Exercise 16 | suc11 4535 |
[Enderton] p.
197 | Definition | df-card 7136 |
[Enderton] p.
200 | Exercise 25 | tfis 4560 |
[Enderton] p.
206 | Theorem 7X(b) | en2lp 4531 |
[Enderton] p.
207 | Exercise 34 | opthreg 4533 |
[Enderton] p.
208 | Exercise 35 | suc11g 4534 |
[Geuvers], p.
1 | Remark | expap0 10485 |
[Geuvers], p. 6 | Lemma
2.13 | mulap0r 8513 |
[Geuvers], p. 6 | Lemma
2.15 | mulap0 8551 |
[Geuvers], p. 9 | Lemma
2.35 | msqge0 8514 |
[Geuvers], p.
9 | Definition 3.1(2) | ax-arch 7872 |
[Geuvers], p. 10 | Lemma
3.9 | maxcom 11145 |
[Geuvers], p. 10 | Lemma
3.10 | maxle1 11153 maxle2 11154 |
[Geuvers], p. 10 | Lemma
3.11 | maxleast 11155 |
[Geuvers], p. 10 | Lemma
3.12 | maxleb 11158 |
[Geuvers], p.
11 | Definition 3.13 | dfabsmax 11159 |
[Geuvers], p.
17 | Definition 6.1 | df-ap 8480 |
[Gleason] p.
117 | Proposition 9-2.1 | df-enq 7288 enqer 7299 |
[Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7292 df-nqqs 7289 |
[Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7285 df-plqqs 7290 |
[Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7286 df-mqqs 7291 |
[Gleason] p.
119 | Proposition 9-2.5 | df-rq 7293 |
[Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7349 |
[Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7352 ltbtwnnq 7357 ltbtwnnqq 7356 |
[Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7341 |
[Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7342 |
[Gleason] p.
123 | Proposition 9-3.5 | addclpr 7478 |
[Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7520 |
[Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7519 |
[Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7538 |
[Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7554 |
[Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7560 ltaprlem 7559 |
[Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7557 |
[Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7513 |
[Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7533 |
[Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7522 |
[Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7521 |
[Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7529 |
[Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7579 |
[Gleason] p.
126 | Proposition 9-4.1 | df-enr 7667 enrer 7676 |
[Gleason] p.
126 | Proposition 9-4.2 | df-0r 7672 df-1r 7673 df-nr 7668 |
[Gleason] p.
126 | Proposition 9-4.3 | df-mr 7670 df-plr 7669 negexsr 7713 recexsrlem 7715 |
[Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7671 |
[Gleason] p.
130 | Proposition 10-1.3 | creui 8855 creur 8854 cru 8500 |
[Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 7864 axcnre 7822 |
[Gleason] p.
132 | Definition 10-3.1 | crim 10800 crimd 10919 crimi 10879 crre 10799 crred 10918 crrei 10878 |
[Gleason] p.
132 | Definition 10-3.2 | remim 10802 remimd 10884 |
[Gleason] p.
133 | Definition 10.36 | absval2 10999 absval2d 11127 absval2i 11086 |
[Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 10826 cjaddd 10907 cjaddi 10874 |
[Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 10827 cjmuld 10908 cjmuli 10875 |
[Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 10825 cjcjd 10885 cjcji 10857 |
[Gleason] p.
133 | Proposition 10-3.4(f) | cjre 10824 cjreb 10808 cjrebd 10888 cjrebi 10860 cjred 10913 rere 10807 rereb 10805 rerebd 10887 rerebi 10859 rered 10911 |
[Gleason] p.
133 | Proposition 10-3.4(h) | addcj 10833 addcjd 10899 addcji 10869 |
[Gleason] p.
133 | Proposition 10-3.7(a) | absval 10943 |
[Gleason] p.
133 | Proposition 10-3.7(b) | abscj 10994 abscjd 11132 abscji 11090 |
[Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11006 abs00d 11128 abs00i 11087 absne0d 11129 |
[Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11038 releabsd 11133 releabsi 11091 |
[Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11011 absmuld 11136 absmuli 11093 |
[Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 10997 sqabsaddi 11094 |
[Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11046 abstrid 11138 abstrii 11097 |
[Gleason] p.
134 | Definition 10-4.1 | df-exp 10455 exp0 10459 expp1 10462 expp1d 10589 |
[Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10497 expaddd 10590 |
[Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 13473 cxpmuld 13496 expmul 10500 expmuld 10591 |
[Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10494 mulexpd 10603 rpmulcxp 13470 |
[Gleason] p.
141 | Definition 11-2.1 | fzval 9946 |
[Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11267 |
[Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11269 |
[Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11268 |
[Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11272 |
[Gleason] p.
172 | Corollary 12-2.5 | climrecl 11265 |
[Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11261 climcj 11262 climim 11264 climre 11263 |
[Gleason] p.
173 | Definition 12-3.1 | df-ltxr 7938 df-xr 7937 ltxr 9711 |
[Gleason] p. 180 | Theorem
12-5.3 | climcau 11288 |
[Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10235 |
[Gleason] p.
223 | Definition 14-1.1 | df-met 12629 |
[Gleason] p.
223 | Definition 14-1.1(a) | met0 13004 xmet0 13003 |
[Gleason] p.
223 | Definition 14-1.1(c) | metsym 13011 |
[Gleason] p.
223 | Definition 14-1.1(d) | mettri 13013 mstri 13113 xmettri 13012 xmstri 13112 |
[Gleason] p.
230 | Proposition 14-2.6 | txlm 12919 |
[Gleason] p.
240 | Proposition 14-4.2 | metcnp3 13151 |
[Gleason] p.
243 | Proposition 14-4.16 | addcn2 11251 addcncntop 13192 mulcn2 11253 mulcncntop 13194 subcn2 11252 subcncntop 13193 |
[Gleason] p.
295 | Remark | bcval3 10664 bcval4 10665 |
[Gleason] p.
295 | Equation 2 | bcpasc 10679 |
[Gleason] p.
295 | Definition of binomial coefficient | bcval 10662 df-bc 10661 |
[Gleason] p.
296 | Remark | bcn0 10668 bcnn 10670 |
[Gleason] p. 296 | Theorem
15-2.8 | binom 11425 |
[Gleason] p.
308 | Equation 2 | ef0 11613 |
[Gleason] p.
308 | Equation 3 | efcj 11614 |
[Gleason] p.
309 | Corollary 15-4.3 | efne0 11619 |
[Gleason] p.
309 | Corollary 15-4.4 | efexp 11623 |
[Gleason] p.
310 | Equation 14 | sinadd 11677 |
[Gleason] p.
310 | Equation 15 | cosadd 11678 |
[Gleason] p.
311 | Equation 17 | sincossq 11689 |
[Gleason] p.
311 | Equation 18 | cosbnd 11694 sinbnd 11693 |
[Gleason] p.
311 | Definition of ` ` | df-pi 11594 |
[Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
[Hamilton] p. 73 | Rule
1 | ax-mp 5 |
[Hamilton] p. 74 | Rule
2 | ax-gen 1437 |
[Heyting] p.
127 | Axiom #1 | ax1hfs 13950 |
[Hitchcock] p. 5 | Rule
A3 | mptnan 1413 |
[Hitchcock] p. 5 | Rule
A4 | mptxor 1414 |
[Hitchcock] p. 5 | Rule
A5 | mtpxor 1416 |
[HoTT], p. | Lemma
10.4.1 | exmidontriim 7181 |
[HoTT], p. | Theorem
7.2.6 | nndceq 6467 |
[HoTT], p.
| Exercise 11.10 | neapmkv 13946 |
[HoTT], p. | Exercise
11.11 | mulap0bd 8554 |
[HoTT], p. | Section
11.2.1 | df-iltp 7411 df-imp 7410 df-iplp 7409 df-reap 8473 |
[HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7603 |
[HoTT], p. | Corollary
11.4.3 | conventions 13602 |
[HoTT], p.
| Exercise 11.6(i) | dcapnconst 13939 dceqnconst 13938 |
[HoTT], p. | Corollary
11.2.13 | axcaucvg 7841 caucvgpr 7623 caucvgprpr 7653 caucvgsr 7743 |
[HoTT], p. | Definition
11.2.1 | df-inp 7407 |
[HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 13944 |
[HoTT], p. | Proposition
11.2.3 | df-iso 4275 ltpopr 7536 ltsopr 7537 |
[HoTT], p. | Definition
11.2.7(v) | apsym 8504 reapcotr 8496 reapirr 8475 |
[HoTT], p. | Definition
11.2.7(vi) | 0lt1 8025 gt0add 8471 leadd1 8328 lelttr 7987 lemul1a 8753 lenlt 7974 ltadd1 8327 ltletr 7988 ltmul1 8490 reaplt 8486 |
[Jech] p. 4 | Definition of
class | cv 1342 cvjust 2160 |
[Jech] p.
78 | Note | opthprc 4655 |
[KalishMontague] p.
81 | Note 1 | ax-i9 1518 |
[Kreyszig] p.
3 | Property M1 | metcl 12993 xmetcl 12992 |
[Kreyszig] p.
4 | Property M2 | meteq0 13000 |
[Kreyszig] p.
12 | Equation 5 | muleqadd 8565 |
[Kreyszig] p.
18 | Definition 1.3-2 | mopnval 13082 |
[Kreyszig] p.
19 | Remark | mopntopon 13083 |
[Kreyszig] p.
19 | Theorem T1 | mopn0 13128 mopnm 13088 |
[Kreyszig] p.
19 | Theorem T2 | unimopn 13126 |
[Kreyszig] p.
19 | Definition of neighborhood | neibl 13131 |
[Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 13153 |
[Kreyszig] p.
25 | Definition 1.4-1 | lmbr 12853 |
[Kunen] p. 10 | Axiom
0 | a9e 1684 |
[Kunen] p. 12 | Axiom
6 | zfrep6 4099 |
[Kunen] p. 24 | Definition
10.24 | mapval 6626 mapvalg 6624 |
[Kunen] p. 31 | Definition
10.24 | mapex 6620 |
[KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3876 |
[Lang] p.
3 | Statement | lidrideqd 12612 |
[Levy] p.
338 | Axiom | df-clab 2152 df-clel 2161 df-cleq 2158 |
[Lopez-Astorga] p.
12 | Rule 1 | mptnan 1413 |
[Lopez-Astorga] p.
12 | Rule 2 | mptxor 1414 |
[Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1416 |
[Margaris] p. 40 | Rule
C | exlimiv 1586 |
[Margaris] p. 49 | Axiom
A1 | ax-1 6 |
[Margaris] p. 49 | Axiom
A2 | ax-2 7 |
[Margaris] p. 49 | Axiom
A3 | condc 843 |
[Margaris] p.
49 | Definition | dfbi2 386 dfordc 882 exalim 1490 |
[Margaris] p.
51 | Theorem 1 | idALT 20 |
[Margaris] p.
56 | Theorem 3 | syld 45 |
[Margaris] p.
60 | Theorem 8 | jcn 641 |
[Margaris] p.
89 | Theorem 19.2 | 19.2 1626 r19.2m 3495 |
[Margaris] p.
89 | Theorem 19.3 | 19.3 1542 19.3h 1541 rr19.3v 2865 |
[Margaris] p.
89 | Theorem 19.5 | alcom 1466 |
[Margaris] p.
89 | Theorem 19.6 | alexdc 1607 alexim 1633 |
[Margaris] p.
89 | Theorem 19.7 | alnex 1487 |
[Margaris] p.
89 | Theorem 19.8 | 19.8a 1578 spsbe 1830 |
[Margaris] p.
89 | Theorem 19.9 | 19.9 1632 19.9h 1631 19.9v 1859 exlimd 1585 |
[Margaris] p.
89 | Theorem 19.11 | excom 1652 excomim 1651 |
[Margaris] p.
89 | Theorem 19.12 | 19.12 1653 r19.12 2572 |
[Margaris] p.
90 | Theorem 19.14 | exnalim 1634 |
[Margaris] p.
90 | Theorem 19.15 | albi 1456 ralbi 2598 |
[Margaris] p.
90 | Theorem 19.16 | 19.16 1543 |
[Margaris] p.
90 | Theorem 19.17 | 19.17 1544 |
[Margaris] p.
90 | Theorem 19.18 | exbi 1592 rexbi 2599 |
[Margaris] p.
90 | Theorem 19.19 | 19.19 1654 |
[Margaris] p.
90 | Theorem 19.20 | alim 1445 alimd 1509 alimdh 1455 alimdv 1867 ralimdaa 2532 ralimdv 2534 ralimdva 2533 ralimdvva 2535 sbcimdv 3016 |
[Margaris] p.
90 | Theorem 19.21 | 19.21-2 1655 19.21 1571 19.21bi 1546 19.21h 1545 19.21ht 1569 19.21t 1570 19.21v 1861 alrimd 1598 alrimdd 1597 alrimdh 1467 alrimdv 1864 alrimi 1510 alrimih 1457 alrimiv 1862 alrimivv 1863 r19.21 2542 r19.21be 2557 r19.21bi 2554 r19.21t 2541 r19.21v 2543 ralrimd 2544 ralrimdv 2545 ralrimdva 2546 ralrimdvv 2550 ralrimdvva 2551 ralrimi 2537 ralrimiv 2538 ralrimiva 2539 ralrimivv 2547 ralrimivva 2548 ralrimivvva 2549 ralrimivw 2540 rexlimi 2576 |
[Margaris] p.
90 | Theorem 19.22 | 2alimdv 1869 2eximdv 1870 exim 1587
eximd 1600 eximdh 1599 eximdv 1868 rexim 2560 reximdai 2564 reximddv 2569 reximddv2 2571 reximdv 2567 reximdv2 2565 reximdva 2568 reximdvai 2566 reximi2 2562 |
[Margaris] p.
90 | Theorem 19.23 | 19.23 1666 19.23bi 1580 19.23h 1486 19.23ht 1485 19.23t 1665 19.23v 1871 19.23vv 1872 exlimd2 1583 exlimdh 1584 exlimdv 1807 exlimdvv 1885 exlimi 1582 exlimih 1581 exlimiv 1586 exlimivv 1884 r19.23 2574 r19.23v 2575 rexlimd 2580 rexlimdv 2582 rexlimdv3a 2585 rexlimdva 2583 rexlimdva2 2586 rexlimdvaa 2584 rexlimdvv 2590 rexlimdvva 2591 rexlimdvw 2587 rexlimiv 2577 rexlimiva 2578 rexlimivv 2589 |
[Margaris] p.
90 | Theorem 19.24 | i19.24 1627 |
[Margaris] p.
90 | Theorem 19.25 | 19.25 1614 |
[Margaris] p.
90 | Theorem 19.26 | 19.26-2 1470 19.26-3an 1471 19.26 1469 r19.26-2 2595 r19.26-3 2596 r19.26 2592 r19.26m 2597 |
[Margaris] p.
90 | Theorem 19.27 | 19.27 1549 19.27h 1548 19.27v 1887 r19.27av 2601 r19.27m 3504 r19.27mv 3505 |
[Margaris] p.
90 | Theorem 19.28 | 19.28 1551 19.28h 1550 19.28v 1888 r19.28av 2602 r19.28m 3498 r19.28mv 3501 rr19.28v 2866 |
[Margaris] p.
90 | Theorem 19.29 | 19.29 1608 19.29r 1609 19.29r2 1610 19.29x 1611 r19.29 2603 r19.29d2r 2610 r19.29r 2604 |
[Margaris] p.
90 | Theorem 19.30 | 19.30dc 1615 |
[Margaris] p.
90 | Theorem 19.31 | 19.31r 1669 |
[Margaris] p.
90 | Theorem 19.32 | 19.32dc 1667 19.32r 1668 r19.32r 2612 r19.32vdc 2615 r19.32vr 2614 |
[Margaris] p.
90 | Theorem 19.33 | 19.33 1472 19.33b2 1617 19.33bdc 1618 |
[Margaris] p.
90 | Theorem 19.34 | 19.34 1672 |
[Margaris] p.
90 | Theorem 19.35 | 19.35-1 1612 19.35i 1613 |
[Margaris] p.
90 | Theorem 19.36 | 19.36-1 1661 19.36aiv 1889 19.36i 1660 r19.36av 2617 |
[Margaris] p.
90 | Theorem 19.37 | 19.37-1 1662 19.37aiv 1663 r19.37 2618 r19.37av 2619 |
[Margaris] p.
90 | Theorem 19.38 | 19.38 1664 |
[Margaris] p.
90 | Theorem 19.39 | i19.39 1628 |
[Margaris] p.
90 | Theorem 19.40 | 19.40-2 1620 19.40 1619 r19.40 2620 |
[Margaris] p.
90 | Theorem 19.41 | 19.41 1674 19.41h 1673 19.41v 1890 19.41vv 1891 19.41vvv 1892 19.41vvvv 1893 r19.41 2621 r19.41v 2622 |
[Margaris] p.
90 | Theorem 19.42 | 19.42 1676 19.42h 1675 19.42v 1894 19.42vv 1899 19.42vvv 1900 19.42vvvv 1901 r19.42v 2623 |
[Margaris] p.
90 | Theorem 19.43 | 19.43 1616 r19.43 2624 |
[Margaris] p.
90 | Theorem 19.44 | 19.44 1670 r19.44av 2625 r19.44mv 3503 |
[Margaris] p.
90 | Theorem 19.45 | 19.45 1671 r19.45av 2626 r19.45mv 3502 |
[Margaris] p.
110 | Exercise 2(b) | eu1 2039 |
[Megill] p. 444 | Axiom
C5 | ax-17 1514 |
[Megill] p. 445 | Lemma
L12 | alequcom 1503 ax-10 1493 |
[Megill] p. 446 | Lemma
L17 | equtrr 1698 |
[Megill] p. 446 | Lemma
L19 | hbnae 1709 |
[Megill] p. 447 | Remark
9.1 | df-sb 1751 sbid 1762 |
[Megill] p. 448 | Scheme
C5' | ax-4 1498 |
[Megill] p. 448 | Scheme
C6' | ax-7 1436 |
[Megill] p. 448 | Scheme
C8' | ax-8 1492 |
[Megill] p. 448 | Scheme
C9' | ax-i12 1495 |
[Megill] p. 448 | Scheme
C11' | ax-10o 1704 |
[Megill] p. 448 | Scheme
C12' | ax-13 2138 |
[Megill] p. 448 | Scheme
C13' | ax-14 2139 |
[Megill] p. 448 | Scheme
C15' | ax-11o 1811 |
[Megill] p. 448 | Scheme
C16' | ax-16 1802 |
[Megill] p. 448 | Theorem
9.4 | dral1 1718 dral2 1719 drex1 1786 drex2 1720 drsb1 1787 drsb2 1829 |
[Megill] p. 449 | Theorem
9.7 | sbcom2 1975 sbequ 1828 sbid2v 1984 |
[Megill] p. 450 | Example
in Appendix | hba1 1528 |
[Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
[Mendelson] p.
69 | Axiom 4 | rspsbc 3033 rspsbca 3034 stdpc4 1763 |
[Mendelson] p.
69 | Axiom 5 | ra5 3039 stdpc5 1572 |
[Mendelson] p. 81 | Rule
C | exlimiv 1586 |
[Mendelson] p.
95 | Axiom 6 | stdpc6 1691 |
[Mendelson] p.
95 | Axiom 7 | stdpc7 1758 |
[Mendelson] p.
231 | Exercise 4.10(k) | inv1 3445 |
[Mendelson] p.
231 | Exercise 4.10(l) | unv 3446 |
[Mendelson] p.
231 | Exercise 4.10(n) | inssun 3362 |
[Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3410 |
[Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3363 |
[Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3253 |
[Mendelson] p.
231 | Definition of union | unssin 3361 |
[Mendelson] p.
235 | Exercise 4.12(c) | univ 4454 |
[Mendelson] p.
235 | Exercise 4.12(d) | pwv 3788 |
[Mendelson] p.
235 | Exercise 4.12(j) | pwin 4260 |
[Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4261 |
[Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4262 |
[Mendelson] p.
235 | Exercise 4.12(n) | uniin 3809 |
[Mendelson] p.
235 | Exercise 4.12(p) | reli 4733 |
[Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5124 |
[Mendelson] p.
246 | Definition of successor | df-suc 4349 |
[Mendelson] p.
254 | Proposition 4.22(b) | xpen 6811 |
[Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6787 xpsneng 6788 |
[Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6793 xpcomeng 6794 |
[Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6796 |
[Mendelson] p.
255 | Exercise 4.39 | endisj 6790 |
[Mendelson] p.
255 | Exercise 4.41 | mapprc 6618 |
[Mendelson] p.
255 | Exercise 4.43 | mapsnen 6777 |
[Mendelson] p.
255 | Exercise 4.47 | xpmapen 6816 |
[Mendelson] p.
255 | Exercise 4.42(a) | map0e 6652 |
[Mendelson] p.
255 | Exercise 4.42(b) | map1 6778 |
[Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7173 djucomen 7172 |
[Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7171 |
[Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6435 |
[Monk1] p. 26 | Theorem
2.8(vii) | ssin 3344 |
[Monk1] p. 33 | Theorem
3.2(i) | ssrel 4692 |
[Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4693 |
[Monk1] p. 34 | Definition
3.3 | df-opab 4044 |
[Monk1] p. 36 | Theorem
3.7(i) | coi1 5119 coi2 5120 |
[Monk1] p. 36 | Theorem
3.8(v) | dm0 4818 rn0 4860 |
[Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5008 |
[Monk1] p. 37 | Theorem
3.13(i) | relxp 4713 |
[Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4824 rnxpm 5033 |
[Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4684 xp0 5023 |
[Monk1] p. 38 | Theorem
3.16(ii) | ima0 4963 |
[Monk1] p. 38 | Theorem
3.16(viii) | imai 4960 |
[Monk1] p. 39 | Theorem
3.17 | imaex 4959 imaexg 4958 |
[Monk1] p. 39 | Theorem
3.16(xi) | imassrn 4957 |
[Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5615 funfvop 5597 |
[Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5530 |
[Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5538 |
[Monk1] p. 43 | Theorem
4.6 | funun 5232 |
[Monk1] p. 43 | Theorem
4.8(iv) | dff13 5736 dff13f 5738 |
[Monk1] p. 46 | Theorem
4.15(v) | funex 5708 funrnex 6082 |
[Monk1] p. 50 | Definition
5.4 | fniunfv 5730 |
[Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5087 |
[Monk1] p. 52 | Theorem
5.11(viii) | ssint 3840 |
[Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6123 df-1st 6108 |
[Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6124 df-2nd 6109 |
[Monk2] p. 105 | Axiom
C4 | ax-5 1435 |
[Monk2] p. 105 | Axiom
C7 | ax-8 1492 |
[Monk2] p. 105 | Axiom
C8 | ax-11 1494 ax-11o 1811 |
[Monk2] p. 105 | Axiom
(C8) | ax11v 1815 |
[Monk2] p. 109 | Lemma
12 | ax-7 1436 |
[Monk2] p. 109 | Lemma
15 | equvin 1851 equvini 1746 eqvinop 4221 |
[Monk2] p. 113 | Axiom
C5-1 | ax-17 1514 |
[Monk2] p. 113 | Axiom
C5-2 | ax6b 1639 |
[Monk2] p. 113 | Axiom
C5-3 | ax-7 1436 |
[Monk2] p. 114 | Lemma
22 | hba1 1528 |
[Monk2] p. 114 | Lemma
23 | hbia1 1540 nfia1 1568 |
[Monk2] p. 114 | Lemma
24 | hba2 1539 nfa2 1567 |
[Moschovakis] p.
2 | Chapter 2 | df-stab 821 dftest 13951 |
[Munkres] p. 77 | Example
2 | distop 12725 |
[Munkres] p.
78 | Definition of basis | df-bases 12681 isbasis3g 12684 |
[Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 12577 tgval2 12691 |
[Munkres] p.
79 | Remark | tgcl 12704 |
[Munkres] p. 80 | Lemma
2.1 | tgval3 12698 |
[Munkres] p. 80 | Lemma
2.2 | tgss2 12719 tgss3 12718 |
[Munkres] p. 81 | Lemma
2.3 | basgen 12720 basgen2 12721 |
[Munkres] p.
89 | Definition of subspace topology | resttop 12810 |
[Munkres] p. 93 | Theorem
6.1(1) | 0cld 12752 topcld 12749 |
[Munkres] p. 93 | Theorem
6.1(3) | uncld 12753 |
[Munkres] p.
94 | Definition of closure | clsval 12751 |
[Munkres] p.
94 | Definition of interior | ntrval 12750 |
[Munkres] p.
102 | Definition of continuous function | df-cn 12828 iscn 12837 iscn2 12840 |
[Munkres] p. 107 | Theorem
7.2(g) | cncnp 12870 cncnp2m 12871 cncnpi 12868 df-cnp 12829 iscnp 12839 |
[Munkres] p. 127 | Theorem
10.1 | metcn 13154 |
[Pierik], p. 8 | Section
2.2.1 | dfrex2fin 6869 |
[Pierik], p. 9 | Definition
2.4 | df-womni 7128 |
[Pierik], p. 9 | Definition
2.5 | df-markov 7116 omniwomnimkv 7131 |
[Pierik], p. 10 | Section
2.3 | dfdif3 3232 |
[Pierik], p.
14 | Definition 3.1 | df-omni 7099 exmidomniim 7105 finomni 7104 |
[Pierik], p. 15 | Section
3.1 | df-nninf 7085 |
[PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 13902 |
[PradicBrown2022], p.
2 | Remark | exmidpw 6874 |
[PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7157 |
[PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 |
[PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7113 |
[PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 13887 peano4nninf 13886 |
[PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 13889 |
[PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 13897 |
[PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 13899 |
[PradicBrown2022], p. 5 | Definition
3.3 | nnsf 13885 |
[Quine] p. 16 | Definition
2.1 | df-clab 2152 rabid 2641 |
[Quine] p. 17 | Definition
2.1'' | dfsb7 1979 |
[Quine] p. 18 | Definition
2.7 | df-cleq 2158 |
[Quine] p. 19 | Definition
2.9 | df-v 2728 |
[Quine] p. 34 | Theorem
5.1 | abeq2 2275 |
[Quine] p. 35 | Theorem
5.2 | abid2 2287 abid2f 2334 |
[Quine] p. 40 | Theorem
6.1 | sb5 1875 |
[Quine] p. 40 | Theorem
6.2 | sb56 1873 sb6 1874 |
[Quine] p. 41 | Theorem
6.3 | df-clel 2161 |
[Quine] p. 41 | Theorem
6.4 | eqid 2165 |
[Quine] p. 41 | Theorem
6.5 | eqcom 2167 |
[Quine] p. 42 | Theorem
6.6 | df-sbc 2952 |
[Quine] p. 42 | Theorem
6.7 | dfsbcq 2953 dfsbcq2 2954 |
[Quine] p. 43 | Theorem
6.8 | vex 2729 |
[Quine] p. 43 | Theorem
6.9 | isset 2732 |
[Quine] p. 44 | Theorem
7.3 | spcgf 2808 spcgv 2813 spcimgf 2806 |
[Quine] p. 44 | Theorem
6.11 | spsbc 2962 spsbcd 2963 |
[Quine] p. 44 | Theorem
6.12 | elex 2737 |
[Quine] p. 44 | Theorem
6.13 | elab 2870 elabg 2872 elabgf 2868 |
[Quine] p. 44 | Theorem
6.14 | noel 3413 |
[Quine] p. 48 | Theorem
7.2 | snprc 3641 |
[Quine] p. 48 | Definition
7.1 | df-pr 3583 df-sn 3582 |
[Quine] p. 49 | Theorem
7.4 | snss 3702 snssg 3709 |
[Quine] p. 49 | Theorem
7.5 | prss 3729 prssg 3730 |
[Quine] p. 49 | Theorem
7.6 | prid1 3682 prid1g 3680 prid2 3683 prid2g 3681 snid 3607
snidg 3605 |
[Quine] p. 51 | Theorem
7.12 | snexg 4163 snexprc 4165 |
[Quine] p. 51 | Theorem
7.13 | prexg 4189 |
[Quine] p. 53 | Theorem
8.2 | unisn 3805 unisng 3806 |
[Quine] p. 53 | Theorem
8.3 | uniun 3808 |
[Quine] p. 54 | Theorem
8.6 | elssuni 3817 |
[Quine] p. 54 | Theorem
8.7 | uni0 3816 |
[Quine] p. 56 | Theorem
8.17 | uniabio 5163 |
[Quine] p. 56 | Definition
8.18 | dfiota2 5154 |
[Quine] p. 57 | Theorem
8.19 | iotaval 5164 |
[Quine] p. 57 | Theorem
8.22 | iotanul 5168 |
[Quine] p. 58 | Theorem
8.23 | euiotaex 5169 |
[Quine] p. 58 | Definition
9.1 | df-op 3585 |
[Quine] p. 61 | Theorem
9.5 | opabid 4235 opelopab 4249 opelopaba 4244 opelopabaf 4251 opelopabf 4252 opelopabg 4246 opelopabga 4241 oprabid 5874 |
[Quine] p. 64 | Definition
9.11 | df-xp 4610 |
[Quine] p. 64 | Definition
9.12 | df-cnv 4612 |
[Quine] p. 64 | Definition
9.15 | df-id 4271 |
[Quine] p. 65 | Theorem
10.3 | fun0 5246 |
[Quine] p. 65 | Theorem
10.4 | funi 5220 |
[Quine] p. 65 | Theorem
10.5 | funsn 5236 funsng 5234 |
[Quine] p. 65 | Definition
10.1 | df-fun 5190 |
[Quine] p. 65 | Definition
10.2 | args 4973 dffv4g 5483 |
[Quine] p. 68 | Definition
10.11 | df-fv 5196 fv2 5481 |
[Quine] p. 124 | Theorem
17.3 | nn0opth2 10637 nn0opth2d 10636 nn0opthd 10635 |
[Quine] p. 284 | Axiom
39(vi) | funimaex 5273 funimaexg 5272 |
[Rudin] p. 164 | Equation
27 | efcan 11617 |
[Rudin] p. 164 | Equation
30 | efzval 11624 |
[Rudin] p. 167 | Equation
48 | absefi 11709 |
[Sanford] p.
39 | Remark | ax-mp 5 |
[Sanford] p. 39 | Rule
3 | mtpxor 1416 |
[Sanford] p. 39 | Rule
4 | mptxor 1414 |
[Sanford] p. 40 | Rule
1 | mptnan 1413 |
[Schechter] p.
51 | Definition of antisymmetry | intasym 4988 |
[Schechter] p.
51 | Definition of irreflexivity | intirr 4990 |
[Schechter] p.
51 | Definition of symmetry | cnvsym 4987 |
[Schechter] p.
51 | Definition of transitivity | cotr 4985 |
[Schechter] p.
428 | Definition 15.35 | bastop1 12723 |
[Stoll] p. 13 | Definition
of symmetric difference | symdif1 3387 |
[Stoll] p. 16 | Exercise
4.4 | 0dif 3480 dif0 3479 |
[Stoll] p. 16 | Exercise
4.8 | difdifdirss 3493 |
[Stoll] p. 19 | Theorem
5.2(13) | undm 3380 |
[Stoll] p. 19 | Theorem
5.2(13') | indmss 3381 |
[Stoll] p.
20 | Remark | invdif 3364 |
[Stoll] p. 25 | Definition
of ordered triple | df-ot 3586 |
[Stoll] p.
43 | Definition | uniiun 3919 |
[Stoll] p.
44 | Definition | intiin 3920 |
[Stoll] p.
45 | Definition | df-iin 3869 |
[Stoll] p. 45 | Definition
indexed union | df-iun 3868 |
[Stoll] p. 176 | Theorem
3.4(27) | imandc 879 imanst 878 |
[Stoll] p. 262 | Example
4.1 | symdif1 3387 |
[Suppes] p. 22 | Theorem
2 | eq0 3427 |
[Suppes] p. 22 | Theorem
4 | eqss 3157 eqssd 3159 eqssi 3158 |
[Suppes] p. 23 | Theorem
5 | ss0 3449 ss0b 3448 |
[Suppes] p. 23 | Theorem
6 | sstr 3150 |
[Suppes] p. 25 | Theorem
12 | elin 3305 elun 3263 |
[Suppes] p. 26 | Theorem
15 | inidm 3331 |
[Suppes] p. 26 | Theorem
16 | in0 3443 |
[Suppes] p. 27 | Theorem
23 | unidm 3265 |
[Suppes] p. 27 | Theorem
24 | un0 3442 |
[Suppes] p. 27 | Theorem
25 | ssun1 3285 |
[Suppes] p. 27 | Theorem
26 | ssequn1 3292 |
[Suppes] p. 27 | Theorem
27 | unss 3296 |
[Suppes] p. 27 | Theorem
28 | indir 3371 |
[Suppes] p. 27 | Theorem
29 | undir 3372 |
[Suppes] p. 28 | Theorem
32 | difid 3477 difidALT 3478 |
[Suppes] p. 29 | Theorem
33 | difin 3359 |
[Suppes] p. 29 | Theorem
34 | indif 3365 |
[Suppes] p. 29 | Theorem
35 | undif1ss 3483 |
[Suppes] p. 29 | Theorem
36 | difun2 3488 |
[Suppes] p. 29 | Theorem
37 | difin0 3482 |
[Suppes] p. 29 | Theorem
38 | disjdif 3481 |
[Suppes] p. 29 | Theorem
39 | difundi 3374 |
[Suppes] p. 29 | Theorem
40 | difindiss 3376 |
[Suppes] p. 30 | Theorem
41 | nalset 4112 |
[Suppes] p. 39 | Theorem
61 | uniss 3810 |
[Suppes] p. 39 | Theorem
65 | uniop 4233 |
[Suppes] p. 41 | Theorem
70 | intsn 3859 |
[Suppes] p. 42 | Theorem
71 | intpr 3856 intprg 3857 |
[Suppes] p. 42 | Theorem
73 | op1stb 4456 op1stbg 4457 |
[Suppes] p. 42 | Theorem
78 | intun 3855 |
[Suppes] p. 44 | Definition
15(a) | dfiun2 3900 dfiun2g 3898 |
[Suppes] p. 44 | Definition
15(b) | dfiin2 3901 |
[Suppes] p. 47 | Theorem
86 | elpw 3565 elpw2 4136 elpw2g 4135 elpwg 3567 |
[Suppes] p. 47 | Theorem
87 | pwid 3574 |
[Suppes] p. 47 | Theorem
89 | pw0 3720 |
[Suppes] p. 48 | Theorem
90 | pwpw0ss 3784 |
[Suppes] p. 52 | Theorem
101 | xpss12 4711 |
[Suppes] p. 52 | Theorem
102 | xpindi 4739 xpindir 4740 |
[Suppes] p. 52 | Theorem
103 | xpundi 4660 xpundir 4661 |
[Suppes] p. 54 | Theorem
105 | elirrv 4525 |
[Suppes] p. 58 | Theorem
2 | relss 4691 |
[Suppes] p. 59 | Theorem
4 | eldm 4801 eldm2 4802 eldm2g 4800 eldmg 4799 |
[Suppes] p. 59 | Definition
3 | df-dm 4614 |
[Suppes] p. 60 | Theorem
6 | dmin 4812 |
[Suppes] p. 60 | Theorem
8 | rnun 5012 |
[Suppes] p. 60 | Theorem
9 | rnin 5013 |
[Suppes] p. 60 | Definition
4 | dfrn2 4792 |
[Suppes] p. 61 | Theorem
11 | brcnv 4787 brcnvg 4785 |
[Suppes] p. 62 | Equation
5 | elcnv 4781 elcnv2 4782 |
[Suppes] p. 62 | Theorem
12 | relcnv 4982 |
[Suppes] p. 62 | Theorem
15 | cnvin 5011 |
[Suppes] p. 62 | Theorem
16 | cnvun 5009 |
[Suppes] p. 63 | Theorem
20 | co02 5117 |
[Suppes] p. 63 | Theorem
21 | dmcoss 4873 |
[Suppes] p. 63 | Definition
7 | df-co 4613 |
[Suppes] p. 64 | Theorem
26 | cnvco 4789 |
[Suppes] p. 64 | Theorem
27 | coass 5122 |
[Suppes] p. 65 | Theorem
31 | resundi 4897 |
[Suppes] p. 65 | Theorem
34 | elima 4951 elima2 4952 elima3 4953 elimag 4950 |
[Suppes] p. 65 | Theorem
35 | imaundi 5016 |
[Suppes] p. 66 | Theorem
40 | dminss 5018 |
[Suppes] p. 66 | Theorem
41 | imainss 5019 |
[Suppes] p. 67 | Exercise
11 | cnvxp 5022 |
[Suppes] p. 81 | Definition
34 | dfec2 6504 |
[Suppes] p. 82 | Theorem
72 | elec 6540 elecg 6539 |
[Suppes] p. 82 | Theorem
73 | erth 6545 erth2 6546 |
[Suppes] p. 89 | Theorem
96 | map0b 6653 |
[Suppes] p. 89 | Theorem
97 | map0 6655 map0g 6654 |
[Suppes] p. 89 | Theorem
98 | mapsn 6656 |
[Suppes] p. 89 | Theorem
99 | mapss 6657 |
[Suppes] p. 92 | Theorem
1 | enref 6731 enrefg 6730 |
[Suppes] p. 92 | Theorem
2 | ensym 6747 ensymb 6746 ensymi 6748 |
[Suppes] p. 92 | Theorem
3 | entr 6750 |
[Suppes] p. 92 | Theorem
4 | unen 6782 |
[Suppes] p. 94 | Theorem
15 | endom 6729 |
[Suppes] p. 94 | Theorem
16 | ssdomg 6744 |
[Suppes] p. 94 | Theorem
17 | domtr 6751 |
[Suppes] p. 95 | Theorem
18 | isbth 6932 |
[Suppes] p. 98 | Exercise
4 | fundmen 6772 fundmeng 6773 |
[Suppes] p. 98 | Exercise
6 | xpdom3m 6800 |
[Suppes] p.
130 | Definition 3 | df-tr 4081 |
[Suppes] p. 132 | Theorem
9 | ssonuni 4465 |
[Suppes] p.
134 | Definition 6 | df-suc 4349 |
[Suppes] p. 136 | Theorem
Schema 22 | findes 4580 finds 4577 finds1 4579 finds2 4578 |
[Suppes] p.
162 | Definition 5 | df-ltnqqs 7294 df-ltpq 7287 |
[Suppes] p. 228 | Theorem
Schema 61 | onintss 4368 |
[TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2147 |
[TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2158 |
[TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2161 |
[TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2160 |
[TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2183 |
[TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5846 |
[TakeutiZaring] p.
14 | Proposition 4.14 | ru 2950 |
[TakeutiZaring] p.
15 | Exercise 1 | elpr 3597 elpr2 3598 elprg 3596 |
[TakeutiZaring] p.
15 | Exercise 2 | elsn 3592 elsn2 3610 elsn2g 3609 elsng 3591 velsn 3593 |
[TakeutiZaring] p.
15 | Exercise 3 | elop 4209 |
[TakeutiZaring] p.
15 | Exercise 4 | sneq 3587 sneqr 3740 |
[TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3595 dfsn2 3590 |
[TakeutiZaring] p.
16 | Axiom 3 | uniex 4415 |
[TakeutiZaring] p.
16 | Exercise 6 | opth 4215 |
[TakeutiZaring] p.
16 | Exercise 8 | rext 4193 |
[TakeutiZaring] p.
16 | Corollary 5.8 | unex 4419 unexg 4421 |
[TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3625 |
[TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3790 |
[TakeutiZaring] p.
16 | Definition 5.6 | df-in 3122 df-un 3120 |
[TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3803 uniprg 3804 |
[TakeutiZaring] p.
17 | Axiom 4 | vpwex 4158 |
[TakeutiZaring] p.
17 | Exercise 1 | eltp 3624 |
[TakeutiZaring] p.
17 | Exercise 5 | elsuc 4384 elsucg 4382 sstr2 3149 |
[TakeutiZaring] p.
17 | Exercise 6 | uncom 3266 |
[TakeutiZaring] p.
17 | Exercise 7 | incom 3314 |
[TakeutiZaring] p.
17 | Exercise 8 | unass 3279 |
[TakeutiZaring] p.
17 | Exercise 9 | inass 3332 |
[TakeutiZaring] p.
17 | Exercise 10 | indi 3369 |
[TakeutiZaring] p.
17 | Exercise 11 | undi 3370 |
[TakeutiZaring] p.
17 | Definition 5.9 | dfss2 3131 |
[TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3561 |
[TakeutiZaring] p.
18 | Exercise 7 | unss2 3293 |
[TakeutiZaring] p.
18 | Exercise 9 | df-ss 3129 sseqin2 3341 |
[TakeutiZaring] p.
18 | Exercise 10 | ssid 3162 |
[TakeutiZaring] p.
18 | Exercise 12 | inss1 3342 inss2 3343 |
[TakeutiZaring] p.
18 | Exercise 13 | nssr 3202 |
[TakeutiZaring] p.
18 | Exercise 15 | unieq 3798 |
[TakeutiZaring] p.
18 | Exercise 18 | sspwb 4194 |
[TakeutiZaring] p.
18 | Exercise 19 | pweqb 4201 |
[TakeutiZaring] p.
20 | Definition | df-rab 2453 |
[TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4109 |
[TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3118 |
[TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3411 |
[TakeutiZaring] p.
20 | Proposition 5.15 | difid 3477 difidALT 3478 |
[TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3421 |
[TakeutiZaring] p.
21 | Theorem 5.22 | setind 4516 |
[TakeutiZaring] p.
21 | Definition 5.20 | df-v 2728 |
[TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4114 |
[TakeutiZaring] p.
22 | Exercise 1 | 0ss 3447 |
[TakeutiZaring] p.
22 | Exercise 3 | ssex 4119 ssexg 4121 |
[TakeutiZaring] p.
22 | Exercise 4 | inex1 4116 |
[TakeutiZaring] p.
22 | Exercise 5 | ruv 4527 |
[TakeutiZaring] p.
22 | Exercise 6 | elirr 4518 |
[TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3473 |
[TakeutiZaring] p.
22 | Exercise 11 | difdif 3247 |
[TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3383 |
[TakeutiZaring] p.
22 | Exercise 14 | difss 3248 |
[TakeutiZaring] p.
22 | Exercise 15 | sscon 3256 |
[TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2449 |
[TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2450 |
[TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4719 xpexg 4718 xpexgALT 6101 |
[TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4611 |
[TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5252 |
[TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5404 fun11 5255 |
[TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5199 svrelfun 5253 |
[TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4791 |
[TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4793 |
[TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4616 |
[TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4617 |
[TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4613 |
[TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5058 dfrel2 5054 |
[TakeutiZaring] p.
25 | Exercise 3 | xpss 4712 |
[TakeutiZaring] p.
25 | Exercise 5 | relun 4721 |
[TakeutiZaring] p.
25 | Exercise 6 | reluni 4727 |
[TakeutiZaring] p.
25 | Exercise 9 | inxp 4738 |
[TakeutiZaring] p.
25 | Exercise 12 | relres 4912 |
[TakeutiZaring] p.
25 | Exercise 13 | opelres 4889 opelresg 4891 |
[TakeutiZaring] p.
25 | Exercise 14 | dmres 4905 |
[TakeutiZaring] p.
25 | Exercise 15 | resss 4908 |
[TakeutiZaring] p.
25 | Exercise 17 | resabs1 4913 |
[TakeutiZaring] p.
25 | Exercise 18 | funres 5229 |
[TakeutiZaring] p.
25 | Exercise 24 | relco 5102 |
[TakeutiZaring] p.
25 | Exercise 29 | funco 5228 |
[TakeutiZaring] p.
25 | Exercise 30 | f1co 5405 |
[TakeutiZaring] p.
26 | Definition 6.10 | eu2 2058 |
[TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5196 fv3 5509 |
[TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5142 cnvexg 5141 |
[TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4870 dmexg 4868 |
[TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4871 rnexg 4869 |
[TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5503 |
[TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5513 tz6.12 5514 tz6.12c 5516 |
[TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5477 |
[TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5191 |
[TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5192 |
[TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5194 wfo 5186 |
[TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5193 wf1 5185 |
[TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5195 wf1o 5187 |
[TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5583 eqfnfv2 5584 eqfnfv2f 5587 |
[TakeutiZaring] p.
28 | Exercise 5 | fvco 5556 |
[TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5707 fnexALT 6079 |
[TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5706 resfunexgALT 6076 |
[TakeutiZaring] p.
29 | Exercise 9 | funimaex 5273 funimaexg 5272 |
[TakeutiZaring] p.
29 | Definition 6.18 | df-br 3983 |
[TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 4974 iniseg 4976 |
[TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4267 |
[TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5197 |
[TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5778 |
[TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5779 |
[TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5784 |
[TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5786 |
[TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5794 |
[TakeutiZaring] p.
35 | Notation | wtr 4080 |
[TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4332 |
[TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4084 |
[TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4553 |
[TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4359 |
[TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4363 |
[TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4469 |
[TakeutiZaring] p.
38 | Definition 7.11 | df-on 4346 |
[TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4463 |
[TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4529 |
[TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4559 |
[TakeutiZaring] p.
40 | Exercise 7 | dftr2 4082 |
[TakeutiZaring] p.
40 | Exercise 11 | unon 4488 |
[TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4464 |
[TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3817 |
[TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4349 |
[TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4393 sucidg 4394 |
[TakeutiZaring] p.
41 | Proposition 7.24 | suceloni 4478 |
[TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4347 |
[TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4483 ordelsuc 4482 |
[TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4571 |
[TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4572 |
[TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4573 |
[TakeutiZaring] p.
43 | Axiom 7 | omex 4570 |
[TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4584 |
[TakeutiZaring] p.
43 | Corollary 7.31 | find 4576 |
[TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4574 |
[TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4575 |
[TakeutiZaring] p.
44 | Exercise 2 | int0 3838 |
[TakeutiZaring] p.
44 | Exercise 3 | trintssm 4096 |
[TakeutiZaring] p.
44 | Exercise 4 | intss1 3839 |
[TakeutiZaring] p.
44 | Exercise 6 | onintonm 4494 |
[TakeutiZaring] p.
44 | Definition 7.35 | df-int 3825 |
[TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6276 |
[TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6333 tfri1d 6303 |
[TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6334 tfri2d 6304 |
[TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6335 |
[TakeutiZaring] p.
50 | Exercise 3 | smoiso 6270 |
[TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6254 |
[TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6432 |
[TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6428 |
[TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6425 |
[TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6429 |
[TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6477 nnaordi 6476 |
[TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3911 uniss2 3820 |
[TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6438 |
[TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6448 |
[TakeutiZaring] p.
62 | Exercise 5 | oaword1 6439 |
[TakeutiZaring] p.
62 | Definition 8.15 | om0 6426 omsuc 6440 |
[TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6449 |
[TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6485 nnmordi 6484 |
[TakeutiZaring] p.
67 | Definition 8.30 | oei0 6427 |
[TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7143 |
[TakeutiZaring] p.
88 | Exercise 1 | en0 6761 |
[TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6823 |
[TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6824 |
[TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6709 isfi 6727 |
[TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6797 |
[TakeutiZaring] p.
95 | Definition 10.42 | df-map 6616 |
[TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6814 |
[Tarski] p. 67 | Axiom
B5 | ax-4 1498 |
[Tarski] p. 68 | Lemma
6 | equid 1689 |
[Tarski] p. 69 | Lemma
7 | equcomi 1692 |
[Tarski] p. 70 | Lemma
14 | spim 1726 spime 1729 spimeh 1727 spimh 1725 |
[Tarski] p. 70 | Lemma
16 | ax-11 1494 ax-11o 1811 ax11i 1702 |
[Tarski] p. 70 | Lemmas 16
and 17 | sb6 1874 |
[Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1514 |
[Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2138 ax-14 2139 |
[WhiteheadRussell] p.
96 | Axiom *1.3 | olc 701 |
[WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 717 |
[WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 746 |
[WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 755 |
[WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 779 |
[WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 606 |
[WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
[WhiteheadRussell] p.
100 | Theorem *2.03 | con2 633 |
[WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
[WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
[WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
[WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 827 |
[WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2112 syl 14 |
[WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 727 |
[WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
[WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 826 |
[WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 619 |
[WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 875 |
[WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 833 |
[WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 846 |
[WhiteheadRussell] p.
103 | Theorem *2.16 | con3 632 |
[WhiteheadRussell] p.
103 | Theorem *2.17 | condc 843 |
[WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 845 |
[WhiteheadRussell] p.
104 | Theorem *2.2 | orc 702 |
[WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 765 |
[WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 607 |
[WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 611 |
[WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 883 |
[WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 897 |
[WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
[WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 758 |
[WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 759 |
[WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 794 |
[WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 795 |
[WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 793 |
[WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 969 |
[WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 768 |
[WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 766 |
[WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 767 |
[WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
[WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 728 |
[WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 729 |
[WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 857 pm2.5gdc 856 |
[WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 852 |
[WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 730 |
[WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 731 |
[WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 732 |
[WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 645 |
[WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 646 |
[WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 712 |
[WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 881 |
[WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 715 |
[WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 716 |
[WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 855 |
[WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 738 |
[WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 790 |
[WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 791 |
[WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 649 |
[WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 703 pm2.67 733 |
[WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 859 pm2.521gdc 858 |
[WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 737 |
[WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 800 |
[WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 884 |
[WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 905 |
[WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 796 |
[WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 797 |
[WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 799 |
[WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 798 |
[WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
[WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 801 |
[WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 802 |
[WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
[WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 895 |
[WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 100 |
[WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 744 |
[WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 138 |
[WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 947 |
[WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 948 |
[WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 949 |
[WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 743 |
[WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 262 |
[WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 263 |
[WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 683 |
[WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 345 |
[WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 259 |
[WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 260 |
[WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 108 simplimdc 850 |
[WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 109 simprimdc 849 |
[WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 343 |
[WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 344 |
[WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 679 |
[WhiteheadRussell] p.
113 | Fact) | pm3.45 587 |
[WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 331 |
[WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 329 |
[WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 330 |
[WhiteheadRussell] p.
113 | Theorem *3.44 | jao 745 pm3.44 705 |
[WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 342 |
[WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 592 |
[WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 775 |
[WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 861 |
[WhiteheadRussell] p.
117 | Theorem *4.2 | biid 170 |
[WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 862 |
[WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 880 |
[WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 684 |
[WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 139 |
[WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 942 bitr 464 |
[WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 393 |
[WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 747 pm4.25 748 |
[WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 264 |
[WhiteheadRussell] p.
118 | Theorem *4.4 | andi 808 |
[WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 718 |
[WhiteheadRussell] p.
118 | Theorem *4.32 | anass 399 |
[WhiteheadRussell] p.
118 | Theorem *4.33 | orass 757 |
[WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 462 |
[WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 782 |
[WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 595 |
[WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 812 |
[WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 970 |
[WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 806 |
[WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 961 |
[WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 939 |
[WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 769 |
[WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 804 pm4.45 774 pm4.45im 332 |
[WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1469 |
[WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 946 |
[WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 887 imorr 711 |
[WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 317 |
[WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 889 |
[WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 740 |
[WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 741 |
[WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 892 |
[WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 928 |
[WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 742 pm4.56 770 |
[WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 929 oranim 771 |
[WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 676 |
[WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 888 |
[WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 876 |
[WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 890 |
[WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 677 |
[WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 891 |
[WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 877 |
[WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 387 pm4.71d 391 pm4.71i 389 pm4.71r 388 pm4.71rd 392 pm4.71ri 390 |
[WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 817 |
[WhiteheadRussell] p.
121 | Theorem *4.73 | iba 298 |
[WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 734 |
[WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 593 pm4.76 594 |
[WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 700 pm4.77 789 |
[WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 772 |
[WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 893 |
[WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 697 |
[WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 898 |
[WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 940 |
[WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 941 |
[WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 235 |
[WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 236 |
[WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 239 |
[WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 247 impexp 261 pm4.87 547 |
[WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 591 |
[WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 899 |
[WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 900 |
[WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 902 |
[WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 901 |
[WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1379 |
[WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 818 |
[WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 894 |
[WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1384 pm5.18dc 873 |
[WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 696 |
[WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 685 |
[WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1382 |
[WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1387 |
[WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1388 |
[WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 885 |
[WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 467 |
[WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 248 |
[WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 241 |
[WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 916 pm5.6r 917 |
[WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 944 |
[WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 346 |
[WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 449 |
[WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 599 |
[WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 907 |
[WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 600 |
[WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 249 pm5.41 250 |
[WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 318 |
[WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 915 |
[WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 792 |
[WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 908 |
[WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 903 |
[WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 784 |
[WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 935 |
[WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 936 |
[WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 951 |
[WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 243 |
[WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 178 |
[WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 952 |
[WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1623 |
[WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1473 |
[WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1620 |
[WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1883 |
[WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2017 |
[WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2417 |
[WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2418 |
[WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2864 |
[WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3007 |
[WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5171 |
[WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5172 |
[WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2093 eupickbi 2096 |
[WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5196 |
[WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7146 |