Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
---|
[AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7174 fidcenum 7015 |
[AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 7015 |
[AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7174 |
[AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12582 |
[AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 6986 |
[AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 6974 |
[AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12597 |
[AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12599 |
[AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12588 znnen 12555 |
[AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12600 |
[AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12601 |
[AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10847 |
[AczelRathjen], p.
183 | Chapter 20 | ax-setind 4569 |
[AhoHopUll] p.
318 | Section 9.1 | df-word 10915 lencl 10918 wrd0 10939 |
[Apostol] p. 18 | Theorem
I.1 | addcan 8199 addcan2d 8204 addcan2i 8202 addcand 8203 addcani 8201 |
[Apostol] p. 18 | Theorem
I.2 | negeu 8210 |
[Apostol] p. 18 | Theorem
I.3 | negsub 8267 negsubd 8336 negsubi 8297 |
[Apostol] p. 18 | Theorem
I.4 | negneg 8269 negnegd 8321 negnegi 8289 |
[Apostol] p. 18 | Theorem
I.5 | subdi 8404 subdid 8433 subdii 8426 subdir 8405 subdird 8434 subdiri 8427 |
[Apostol] p. 18 | Theorem
I.6 | mul01 8408 mul01d 8412 mul01i 8410 mul02 8406 mul02d 8411 mul02i 8409 |
[Apostol] p. 18 | Theorem
I.9 | divrecapd 8812 |
[Apostol] p. 18 | Theorem
I.10 | recrecapi 8763 |
[Apostol] p. 18 | Theorem
I.12 | mul2neg 8417 mul2negd 8432 mul2negi 8425 mulneg1 8414 mulneg1d 8430 mulneg1i 8423 |
[Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 13640 |
[Apostol] p. 18 | Theorem
I.15 | divdivdivap 8732 |
[Apostol] p. 20 | Axiom
7 | rpaddcl 9743 rpaddcld 9778 rpmulcl 9744 rpmulcld 9779 |
[Apostol] p. 20 | Axiom
9 | 0nrp 9755 |
[Apostol] p. 20 | Theorem
I.17 | lttri 8124 |
[Apostol] p. 20 | Theorem
I.18 | ltadd1d 8557 ltadd1dd 8575 ltadd1i 8521 |
[Apostol] p. 20 | Theorem
I.19 | ltmul1 8611 ltmul1a 8610 ltmul1i 8939 ltmul1ii 8947 ltmul2 8875 ltmul2d 9805 ltmul2dd 9819 ltmul2i 8942 |
[Apostol] p. 20 | Theorem
I.21 | 0lt1 8146 |
[Apostol] p. 20 | Theorem
I.23 | lt0neg1 8487 lt0neg1d 8534 ltneg 8481 ltnegd 8542 ltnegi 8512 |
[Apostol] p. 20 | Theorem
I.25 | lt2add 8464 lt2addd 8586 lt2addi 8529 |
[Apostol] p.
20 | Definition of positive numbers | df-rp 9720 |
[Apostol] p. 21 | Exercise
4 | recgt0 8869 recgt0d 8953 recgt0i 8925 recgt0ii 8926 |
[Apostol] p.
22 | Definition of integers | df-z 9318 |
[Apostol] p.
22 | Definition of rationals | df-q 9685 |
[Apostol] p. 24 | Theorem
I.26 | supeuti 7053 |
[Apostol] p. 26 | Theorem
I.29 | arch 9237 |
[Apostol] p. 28 | Exercise
2 | btwnz 9436 |
[Apostol] p. 28 | Exercise
3 | nnrecl 9238 |
[Apostol] p. 28 | Exercise
6 | qbtwnre 10325 |
[Apostol] p. 28 | Exercise
10(a) | zeneo 12012 zneo 9418 |
[Apostol] p. 29 | Theorem
I.35 | resqrtth 11175 sqrtthi 11263 |
[Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 8985 |
[Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12173 |
[Apostol] p.
363 | Remark | absgt0api 11290 |
[Apostol] p.
363 | Example | abssubd 11337 abssubi 11294 |
[ApostolNT] p.
14 | Definition | df-dvds 11931 |
[ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 11947 |
[ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 11971 |
[ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 11967 |
[ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 11961 |
[ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 11963 |
[ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 11948 |
[ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 11949 |
[ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 11954 |
[ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 11987 |
[ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 11989 |
[ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 11991 |
[ApostolNT] p.
15 | Definition | dfgcd2 12151 |
[ApostolNT] p.
16 | Definition | isprm2 12255 |
[ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12230 |
[ApostolNT] p.
16 | Theorem 1.7 | prminf 12612 |
[ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 12110 |
[ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12152 |
[ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12154 |
[ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 12124 |
[ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 12117 |
[ApostolNT] p.
17 | Theorem 1.8 | coprm 12282 |
[ApostolNT] p.
17 | Theorem 1.9 | euclemma 12284 |
[ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12506 |
[ApostolNT] p.
19 | Theorem 1.14 | divalg 12065 |
[ApostolNT] p.
20 | Theorem 1.15 | eucalg 12197 |
[ApostolNT] p.
25 | Definition | df-phi 12349 |
[ApostolNT] p.
26 | Theorem 2.2 | phisum 12378 |
[ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12360 |
[ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12364 |
[ApostolNT] p.
104 | Definition | congr 12238 |
[ApostolNT] p.
106 | Remark | dvdsval3 11934 |
[ApostolNT] p.
106 | Definition | moddvds 11942 |
[ApostolNT] p.
107 | Example 2 | mod2eq0even 12019 |
[ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 12020 |
[ApostolNT] p.
107 | Example 4 | zmod1congr 10412 |
[ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10449 |
[ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10737 |
[ApostolNT] p.
108 | Theorem 5.3 | modmulconst 11966 |
[ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12241 |
[ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12243 |
[ApostolNT] p.
113 | Theorem 5.17 | eulerth 12371 |
[ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12389 |
[ApostolNT] p.
114 | Theorem 5.19 | fermltl 12372 |
[ApostolNT] p.
179 | Definition | df-lgs 15114 lgsprme0 15158 |
[ApostolNT] p.
180 | Example 1 | 1lgs 15159 |
[ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 15135 |
[ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 15150 |
[ApostolNT] p.
181 | Theorem 9.4 | m1lgs 15192 |
[ApostolNT] p.
182 | Theorem 9.6 | gausslemma2d 15185 |
[ApostolNT] p.
188 | Definition | df-lgs 15114 lgs1 15160 |
[ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 15151 |
[ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 15153 |
[ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 15161 |
[ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 15162 |
[Bauer] p. 482 | Section
1.2 | pm2.01 617 pm2.65 660 |
[Bauer] p. 483 | Theorem
1.3 | acexmid 5917 onsucelsucexmidlem 4561 |
[Bauer], p.
481 | Section 1.1 | pwtrufal 15488 |
[Bauer], p.
483 | Definition | n0rf 3459 |
[Bauer], p. 483 | Theorem
1.2 | 2irrexpq 15108 2irrexpqap 15110 |
[Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6932 |
[Bauer], p. 493 | Section
5.1 | ivthdich 14807 |
[Bauer], p. 494 | Theorem
5.5 | ivthinc 14797 |
[BauerHanson], p.
27 | Proposition 5.2 | cnstab 8664 |
[BauerSwan], p.
14 | Remark | 0ct 7166 ctm 7168 |
[BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 15491 |
[BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7174 |
[BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7561 |
[BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7474 |
[BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7563 |
[BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7597 addlocpr 7596 |
[BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7623 |
[BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7626 |
[BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7631 |
[BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
[BellMachover] p.
97 | Definition 10.1 | df-eu 2045 |
[BellMachover] p.
460 | Notation | df-mo 2046 |
[BellMachover] p.
460 | Definition | mo3 2096 mo3h 2095 |
[BellMachover] p.
462 | Theorem 1.1 | bm1.1 2178 |
[BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4150 |
[BellMachover] p.
466 | Axiom Pow | axpow3 4206 |
[BellMachover] p.
466 | Axiom Union | axun2 4466 |
[BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4574 |
[BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4415 |
[BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4577 |
[BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4528 |
[BellMachover] p.
471 | Definition of Lim | df-ilim 4400 |
[BellMachover] p.
472 | Axiom Inf | zfinf2 4621 |
[BellMachover] p.
473 | Theorem 2.8 | limom 4646 |
[Bobzien] p.
116 | Statement T3 | stoic3 1442 |
[Bobzien] p.
117 | Statement T2 | stoic2a 1440 |
[Bobzien] p.
117 | Statement T4 | stoic4a 1443 |
[Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1438 |
[BourbakiAlg1] p.
1 | Definition 1 | df-mgm 12939 |
[BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 12985 |
[BourbakiAlg1] p.
12 | Definition 2 | df-mnd 12998 |
[BourbakiAlg1] p.
92 | Definition 1 | df-ring 13494 |
[BourbakiAlg1] p.
93 | Section I.8.1 | df-rng 13429 |
[BourbakiEns] p.
| Proposition 8 | fcof1 5826 fcofo 5827 |
[BourbakiTop1] p.
| Remark | xnegmnf 9895 xnegpnf 9894 |
[BourbakiTop1] p.
| Remark | rexneg 9896 |
[BourbakiTop1] p.
| Proposition | ishmeo 14472 |
[BourbakiTop1] p.
| Property V_i | ssnei2 14325 |
[BourbakiTop1] p.
| Property V_ii | innei 14331 |
[BourbakiTop1] p.
| Property V_iv | neissex 14333 |
[BourbakiTop1] p.
| Proposition 1 | neipsm 14322 neiss 14318 |
[BourbakiTop1] p.
| Proposition 2 | cnptopco 14390 |
[BourbakiTop1] p.
| Proposition 4 | imasnopn 14467 |
[BourbakiTop1] p.
| Property V_iii | elnei 14320 |
[BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 14166 |
[Bruck] p. 1 | Section
I.1 | df-mgm 12939 |
[Bruck] p. 23 | Section
II.1 | df-sgrp 12985 |
[Bruck] p. 28 | Theorem
3.2 | dfgrp3m 13171 |
[ChoquetDD] p.
2 | Definition of mapping | df-mpt 4092 |
[Cohen] p.
301 | Remark | relogoprlem 15003 |
[Cohen] p. 301 | Property
2 | relogmul 15004 relogmuld 15019 |
[Cohen] p. 301 | Property
3 | relogdiv 15005 relogdivd 15020 |
[Cohen] p. 301 | Property
4 | relogexp 15007 |
[Cohen] p. 301 | Property
1a | log1 15001 |
[Cohen] p. 301 | Property
1b | loge 15002 |
[Cohen4] p.
348 | Observation | relogbcxpbap 15097 |
[Cohen4] p.
352 | Definition | rpelogb 15081 |
[Cohen4] p. 361 | Property
2 | rprelogbmul 15087 |
[Cohen4] p. 361 | Property
3 | logbrec 15092 rprelogbdiv 15089 |
[Cohen4] p. 361 | Property
4 | rplogbreexp 15085 |
[Cohen4] p. 361 | Property
6 | relogbexpap 15090 |
[Cohen4] p. 361 | Property
1(a) | rplogbid1 15079 |
[Cohen4] p. 361 | Property
1(b) | rplogb1 15080 |
[Cohen4] p.
367 | Property | rplogbchbase 15082 |
[Cohen4] p. 377 | Property
2 | logblt 15094 |
[Crosilla] p. | Axiom
1 | ax-ext 2175 |
[Crosilla] p. | Axiom
2 | ax-pr 4238 |
[Crosilla] p. | Axiom
3 | ax-un 4464 |
[Crosilla] p. | Axiom
4 | ax-nul 4155 |
[Crosilla] p. | Axiom
5 | ax-iinf 4620 |
[Crosilla] p. | Axiom
6 | ru 2984 |
[Crosilla] p. | Axiom
8 | ax-pow 4203 |
[Crosilla] p. | Axiom
9 | ax-setind 4569 |
[Crosilla], p. | Axiom
6 | ax-sep 4147 |
[Crosilla], p. | Axiom
7 | ax-coll 4144 |
[Crosilla], p. | Axiom
7' | repizf 4145 |
[Crosilla], p. | Theorem
is stated | ordtriexmid 4553 |
[Crosilla], p. | Axiom
of choice implies instances | acexmid 5917 |
[Crosilla], p.
| Definition of ordinal | df-iord 4397 |
[Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4567 |
[Eisenberg] p.
67 | Definition 5.3 | df-dif 3155 |
[Eisenberg] p.
82 | Definition 6.3 | df-iom 4623 |
[Eisenberg] p.
125 | Definition 8.21 | df-map 6704 |
[Enderton] p. 18 | Axiom
of Empty Set | axnul 4154 |
[Enderton] p.
19 | Definition | df-tp 3626 |
[Enderton] p.
26 | Exercise 5 | unissb 3865 |
[Enderton] p.
26 | Exercise 10 | pwel 4247 |
[Enderton] p.
28 | Exercise 7(b) | pwunim 4317 |
[Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3982 iinin2m 3981 iunin1 3977 iunin2 3976 |
[Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3980 iundif2ss 3978 |
[Enderton] p.
33 | Exercise 23 | iinuniss 3995 |
[Enderton] p.
33 | Exercise 25 | iununir 3996 |
[Enderton] p.
33 | Exercise 24(a) | iinpw 4003 |
[Enderton] p.
33 | Exercise 24(b) | iunpw 4511 iunpwss 4004 |
[Enderton] p.
38 | Exercise 6(a) | unipw 4246 |
[Enderton] p.
38 | Exercise 6(b) | pwuni 4221 |
[Enderton] p. 41 | Lemma
3D | opeluu 4481 rnex 4929
rnexg 4927 |
[Enderton] p.
41 | Exercise 8 | dmuni 4872 rnuni 5077 |
[Enderton] p.
42 | Definition of a function | dffun7 5281 dffun8 5282 |
[Enderton] p.
43 | Definition of function value | funfvdm2 5621 |
[Enderton] p.
43 | Definition of single-rooted | funcnv 5315 |
[Enderton] p.
44 | Definition (d) | dfima2 5007 dfima3 5008 |
[Enderton] p.
47 | Theorem 3H | fvco2 5626 |
[Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7266 |
[Enderton] p.
50 | Theorem 3K(a) | imauni 5804 |
[Enderton] p.
52 | Definition | df-map 6704 |
[Enderton] p.
53 | Exercise 21 | coass 5184 |
[Enderton] p.
53 | Exercise 27 | dmco 5174 |
[Enderton] p.
53 | Exercise 14(a) | funin 5325 |
[Enderton] p.
53 | Exercise 22(a) | imass2 5041 |
[Enderton] p.
54 | Remark | ixpf 6774 ixpssmap 6786 |
[Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6753 |
[Enderton] p.
56 | Theorem 3M | erref 6607 |
[Enderton] p. 57 | Lemma
3N | erthi 6635 |
[Enderton] p.
57 | Definition | df-ec 6589 |
[Enderton] p.
58 | Definition | df-qs 6593 |
[Enderton] p.
60 | Theorem 3Q | th3q 6694 th3qcor 6693 th3qlem1 6691 th3qlem2 6692 |
[Enderton] p.
61 | Exercise 35 | df-ec 6589 |
[Enderton] p.
65 | Exercise 56(a) | dmun 4869 |
[Enderton] p.
68 | Definition of successor | df-suc 4402 |
[Enderton] p.
71 | Definition | df-tr 4128 dftr4 4132 |
[Enderton] p.
72 | Theorem 4E | unisuc 4444 unisucg 4445 |
[Enderton] p.
73 | Exercise 6 | unisuc 4444 unisucg 4445 |
[Enderton] p.
73 | Exercise 5(a) | truni 4141 |
[Enderton] p.
73 | Exercise 5(b) | trint 4142 |
[Enderton] p.
79 | Theorem 4I(A1) | nna0 6527 |
[Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6529 onasuc 6519 |
[Enderton] p.
79 | Definition of operation value | df-ov 5921 |
[Enderton] p.
80 | Theorem 4J(A1) | nnm0 6528 |
[Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6530 onmsuc 6526 |
[Enderton] p.
81 | Theorem 4K(1) | nnaass 6538 |
[Enderton] p.
81 | Theorem 4K(2) | nna0r 6531 nnacom 6537 |
[Enderton] p.
81 | Theorem 4K(3) | nndi 6539 |
[Enderton] p.
81 | Theorem 4K(4) | nnmass 6540 |
[Enderton] p.
81 | Theorem 4K(5) | nnmcom 6542 |
[Enderton] p.
82 | Exercise 16 | nnm0r 6532 nnmsucr 6541 |
[Enderton] p.
88 | Exercise 23 | nnaordex 6581 |
[Enderton] p.
129 | Definition | df-en 6795 |
[Enderton] p.
132 | Theorem 6B(b) | canth 5871 |
[Enderton] p.
133 | Exercise 1 | xpomen 12552 |
[Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6921 |
[Enderton] p.
136 | Corollary 6E | nneneq 6913 |
[Enderton] p.
139 | Theorem 6H(c) | mapen 6902 |
[Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7278 |
[Enderton] p.
143 | Theorem 6J | dju0en 7274 dju1en 7273 |
[Enderton] p.
144 | Corollary 6K | undif2ss 3522 |
[Enderton] p.
145 | Figure 38 | ffoss 5532 |
[Enderton] p.
145 | Definition | df-dom 6796 |
[Enderton] p.
146 | Example 1 | domen 6805 domeng 6806 |
[Enderton] p.
146 | Example 3 | nndomo 6920 |
[Enderton] p.
149 | Theorem 6L(c) | xpdom1 6889 xpdom1g 6887 xpdom2g 6886 |
[Enderton] p.
168 | Definition | df-po 4327 |
[Enderton] p.
192 | Theorem 7M(a) | oneli 4459 |
[Enderton] p.
192 | Theorem 7M(b) | ontr1 4420 |
[Enderton] p.
192 | Theorem 7M(c) | onirri 4575 |
[Enderton] p.
193 | Corollary 7N(b) | 0elon 4423 |
[Enderton] p.
193 | Corollary 7N(c) | onsuci 4548 |
[Enderton] p.
193 | Corollary 7N(d) | ssonunii 4521 |
[Enderton] p.
194 | Remark | onprc 4584 |
[Enderton] p.
194 | Exercise 16 | suc11 4590 |
[Enderton] p.
197 | Definition | df-card 7240 |
[Enderton] p.
200 | Exercise 25 | tfis 4615 |
[Enderton] p.
206 | Theorem 7X(b) | en2lp 4586 |
[Enderton] p.
207 | Exercise 34 | opthreg 4588 |
[Enderton] p.
208 | Exercise 35 | suc11g 4589 |
[Geuvers], p.
1 | Remark | expap0 10640 |
[Geuvers], p. 6 | Lemma
2.13 | mulap0r 8634 |
[Geuvers], p. 6 | Lemma
2.15 | mulap0 8673 |
[Geuvers], p. 9 | Lemma
2.35 | msqge0 8635 |
[Geuvers], p.
9 | Definition 3.1(2) | ax-arch 7991 |
[Geuvers], p. 10 | Lemma
3.9 | maxcom 11347 |
[Geuvers], p. 10 | Lemma
3.10 | maxle1 11355 maxle2 11356 |
[Geuvers], p. 10 | Lemma
3.11 | maxleast 11357 |
[Geuvers], p. 10 | Lemma
3.12 | maxleb 11360 |
[Geuvers], p.
11 | Definition 3.13 | dfabsmax 11361 |
[Geuvers], p.
17 | Definition 6.1 | df-ap 8601 |
[Gleason] p.
117 | Proposition 9-2.1 | df-enq 7407 enqer 7418 |
[Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7411 df-nqqs 7408 |
[Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7404 df-plqqs 7409 |
[Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7405 df-mqqs 7410 |
[Gleason] p.
119 | Proposition 9-2.5 | df-rq 7412 |
[Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7468 |
[Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7471 ltbtwnnq 7476 ltbtwnnqq 7475 |
[Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7460 |
[Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7461 |
[Gleason] p.
123 | Proposition 9-3.5 | addclpr 7597 |
[Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7639 |
[Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7638 |
[Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7657 |
[Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7673 |
[Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7679 ltaprlem 7678 |
[Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7676 |
[Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7632 |
[Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7652 |
[Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7641 |
[Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7640 |
[Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7648 |
[Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7698 |
[Gleason] p.
126 | Proposition 9-4.1 | df-enr 7786 enrer 7795 |
[Gleason] p.
126 | Proposition 9-4.2 | df-0r 7791 df-1r 7792 df-nr 7787 |
[Gleason] p.
126 | Proposition 9-4.3 | df-mr 7789 df-plr 7788 negexsr 7832 recexsrlem 7834 |
[Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7790 |
[Gleason] p.
130 | Proposition 10-1.3 | creui 8979 creur 8978 cru 8621 |
[Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 7983 axcnre 7941 |
[Gleason] p.
132 | Definition 10-3.1 | crim 11002 crimd 11121 crimi 11081 crre 11001 crred 11120 crrei 11080 |
[Gleason] p.
132 | Definition 10-3.2 | remim 11004 remimd 11086 |
[Gleason] p.
133 | Definition 10.36 | absval2 11201 absval2d 11329 absval2i 11288 |
[Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 11028 cjaddd 11109 cjaddi 11076 |
[Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 11029 cjmuld 11110 cjmuli 11077 |
[Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 11027 cjcjd 11087 cjcji 11059 |
[Gleason] p.
133 | Proposition 10-3.4(f) | cjre 11026 cjreb 11010 cjrebd 11090 cjrebi 11062 cjred 11115 rere 11009 rereb 11007 rerebd 11089 rerebi 11061 rered 11113 |
[Gleason] p.
133 | Proposition 10-3.4(h) | addcj 11035 addcjd 11101 addcji 11071 |
[Gleason] p.
133 | Proposition 10-3.7(a) | absval 11145 |
[Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11196 abscjd 11334 abscji 11292 |
[Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11208 abs00d 11330 abs00i 11289 absne0d 11331 |
[Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11240 releabsd 11335 releabsi 11293 |
[Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11213 absmuld 11338 absmuli 11295 |
[Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11199 sqabsaddi 11296 |
[Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11248 abstrid 11340 abstrii 11299 |
[Gleason] p.
134 | Definition 10-4.1 | df-exp 10610 exp0 10614 expp1 10617 expp1d 10745 |
[Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10652 expaddd 10746 |
[Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 15047 cxpmuld 15070 expmul 10655 expmuld 10747 |
[Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10649 mulexpd 10759 rpmulcxp 15044 |
[Gleason] p.
141 | Definition 11-2.1 | fzval 10076 |
[Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11469 |
[Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11471 |
[Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11470 |
[Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11474 |
[Gleason] p.
172 | Corollary 12-2.5 | climrecl 11467 |
[Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11463 climcj 11464 climim 11466 climre 11465 |
[Gleason] p.
173 | Definition 12-3.1 | df-ltxr 8059 df-xr 8058 ltxr 9841 |
[Gleason] p. 180 | Theorem
12-5.3 | climcau 11490 |
[Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10369 |
[Gleason] p.
223 | Definition 14-1.1 | df-met 14041 |
[Gleason] p.
223 | Definition 14-1.1(a) | met0 14532 xmet0 14531 |
[Gleason] p.
223 | Definition 14-1.1(c) | metsym 14539 |
[Gleason] p.
223 | Definition 14-1.1(d) | mettri 14541 mstri 14641 xmettri 14540 xmstri 14640 |
[Gleason] p.
230 | Proposition 14-2.6 | txlm 14447 |
[Gleason] p.
240 | Proposition 14-4.2 | metcnp3 14679 |
[Gleason] p.
243 | Proposition 14-4.16 | addcn2 11453 addcncntop 14720 mulcn2 11455 mulcncntop 14722 subcn2 11454 subcncntop 14721 |
[Gleason] p.
295 | Remark | bcval3 10822 bcval4 10823 |
[Gleason] p.
295 | Equation 2 | bcpasc 10837 |
[Gleason] p.
295 | Definition of binomial coefficient | bcval 10820 df-bc 10819 |
[Gleason] p.
296 | Remark | bcn0 10826 bcnn 10828 |
[Gleason] p. 296 | Theorem
15-2.8 | binom 11627 |
[Gleason] p.
308 | Equation 2 | ef0 11815 |
[Gleason] p.
308 | Equation 3 | efcj 11816 |
[Gleason] p.
309 | Corollary 15-4.3 | efne0 11821 |
[Gleason] p.
309 | Corollary 15-4.4 | efexp 11825 |
[Gleason] p.
310 | Equation 14 | sinadd 11879 |
[Gleason] p.
310 | Equation 15 | cosadd 11880 |
[Gleason] p.
311 | Equation 17 | sincossq 11891 |
[Gleason] p.
311 | Equation 18 | cosbnd 11896 sinbnd 11895 |
[Gleason] p.
311 | Definition of ` ` | df-pi 11796 |
[Golan] p.
1 | Remark | srgisid 13482 |
[Golan] p.
1 | Definition | df-srg 13460 |
[Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
[Hamilton] p. 73 | Rule
1 | ax-mp 5 |
[Hamilton] p. 74 | Rule
2 | ax-gen 1460 |
[Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 13083 mndideu 13007 |
[Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 13110 |
[Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 13139 |
[Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 13150 |
[Herstein] p.
57 | Exercise 1 | dfgrp3me 13172 |
[Heyting] p.
127 | Axiom #1 | ax1hfs 15564 |
[Hitchcock] p. 5 | Rule
A3 | mptnan 1434 |
[Hitchcock] p. 5 | Rule
A4 | mptxor 1435 |
[Hitchcock] p. 5 | Rule
A5 | mtpxor 1437 |
[HoTT], p. | Lemma
10.4.1 | exmidontriim 7285 |
[HoTT], p. | Theorem
7.2.6 | nndceq 6552 |
[HoTT], p.
| Exercise 11.10 | neapmkv 15558 |
[HoTT], p. | Exercise
11.11 | mulap0bd 8676 |
[HoTT], p. | Section
11.2.1 | df-iltp 7530 df-imp 7529 df-iplp 7528 df-reap 8594 |
[HoTT], p. | Theorem
11.2.4 | recapb 8690 rerecapb 8862 |
[HoTT], p. | Corollary
3.9.2 | uchoice 6190 |
[HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7722 |
[HoTT], p. | Corollary
11.4.3 | conventions 15213 |
[HoTT], p.
| Exercise 11.6(i) | dcapnconst 15551 dceqnconst 15550 |
[HoTT], p. | Corollary
11.2.13 | axcaucvg 7960 caucvgpr 7742 caucvgprpr 7772 caucvgsr 7862 |
[HoTT], p. | Definition
11.2.1 | df-inp 7526 |
[HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 15556 |
[HoTT], p. | Proposition
11.2.3 | df-iso 4328 ltpopr 7655 ltsopr 7656 |
[HoTT], p. | Definition
11.2.7(v) | apsym 8625 reapcotr 8617 reapirr 8596 |
[HoTT], p. | Definition
11.2.7(vi) | 0lt1 8146 gt0add 8592 leadd1 8449 lelttr 8108 lemul1a 8877 lenlt 8095 ltadd1 8448 ltletr 8109 ltmul1 8611 reaplt 8607 |
[Jech] p. 4 | Definition of
class | cv 1363 cvjust 2188 |
[Jech] p.
78 | Note | opthprc 4710 |
[KalishMontague] p.
81 | Note 1 | ax-i9 1541 |
[Kreyszig] p.
3 | Property M1 | metcl 14521 xmetcl 14520 |
[Kreyszig] p.
4 | Property M2 | meteq0 14528 |
[Kreyszig] p.
12 | Equation 5 | muleqadd 8687 |
[Kreyszig] p.
18 | Definition 1.3-2 | mopnval 14610 |
[Kreyszig] p.
19 | Remark | mopntopon 14611 |
[Kreyszig] p.
19 | Theorem T1 | mopn0 14656 mopnm 14616 |
[Kreyszig] p.
19 | Theorem T2 | unimopn 14654 |
[Kreyszig] p.
19 | Definition of neighborhood | neibl 14659 |
[Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 14681 |
[Kreyszig] p.
25 | Definition 1.4-1 | lmbr 14381 |
[Kreyszig] p.
51 | Equation 2 | lmodvneg1 13826 |
[Kreyszig] p.
51 | Equation 1a | lmod0vs 13817 |
[Kreyszig] p.
51 | Equation 1b | lmodvs0 13818 |
[Kunen] p. 10 | Axiom
0 | a9e 1707 |
[Kunen] p. 12 | Axiom
6 | zfrep6 4146 |
[Kunen] p. 24 | Definition
10.24 | mapval 6714 mapvalg 6712 |
[Kunen] p. 31 | Definition
10.24 | mapex 6708 |
[KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3922 |
[Lang] p.
3 | Statement | lidrideqd 12964 mndbn0 13012 |
[Lang] p.
3 | Definition | df-mnd 12998 |
[Lang] p. 4 | Definition of a
(finite) product | gsumsplit1r 12981 |
[Lang] p.
5 | Equation | gsumfzreidx 13407 |
[Lang] p.
6 | Definition | mulgnn0gsum 13198 |
[Lang] p.
7 | Definition | dfgrp2e 13100 |
[Levy] p.
338 | Axiom | df-clab 2180 df-clel 2189 df-cleq 2186 |
[Lopez-Astorga] p.
12 | Rule 1 | mptnan 1434 |
[Lopez-Astorga] p.
12 | Rule 2 | mptxor 1435 |
[Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1437 |
[Margaris] p. 40 | Rule
C | exlimiv 1609 |
[Margaris] p. 49 | Axiom
A1 | ax-1 6 |
[Margaris] p. 49 | Axiom
A2 | ax-2 7 |
[Margaris] p. 49 | Axiom
A3 | condc 854 |
[Margaris] p.
49 | Definition | dfbi2 388 dfordc 893 exalim 1513 |
[Margaris] p.
51 | Theorem 1 | idALT 20 |
[Margaris] p.
56 | Theorem 3 | syld 45 |
[Margaris] p.
60 | Theorem 8 | jcn 652 |
[Margaris] p.
89 | Theorem 19.2 | 19.2 1649 r19.2m 3533 |
[Margaris] p.
89 | Theorem 19.3 | 19.3 1565 19.3h 1564 rr19.3v 2899 |
[Margaris] p.
89 | Theorem 19.5 | alcom 1489 |
[Margaris] p.
89 | Theorem 19.6 | alexdc 1630 alexim 1656 |
[Margaris] p.
89 | Theorem 19.7 | alnex 1510 |
[Margaris] p.
89 | Theorem 19.8 | 19.8a 1601 spsbe 1853 |
[Margaris] p.
89 | Theorem 19.9 | 19.9 1655 19.9h 1654 19.9v 1882 exlimd 1608 |
[Margaris] p.
89 | Theorem 19.11 | excom 1675 excomim 1674 |
[Margaris] p.
89 | Theorem 19.12 | 19.12 1676 r19.12 2600 |
[Margaris] p.
90 | Theorem 19.14 | exnalim 1657 |
[Margaris] p.
90 | Theorem 19.15 | albi 1479 ralbi 2626 |
[Margaris] p.
90 | Theorem 19.16 | 19.16 1566 |
[Margaris] p.
90 | Theorem 19.17 | 19.17 1567 |
[Margaris] p.
90 | Theorem 19.18 | exbi 1615 rexbi 2627 |
[Margaris] p.
90 | Theorem 19.19 | 19.19 1677 |
[Margaris] p.
90 | Theorem 19.20 | alim 1468 alimd 1532 alimdh 1478 alimdv 1890 ralimdaa 2560 ralimdv 2562 ralimdva 2561 ralimdvva 2563 sbcimdv 3051 |
[Margaris] p.
90 | Theorem 19.21 | 19.21-2 1678 19.21 1594 19.21bi 1569 19.21h 1568 19.21ht 1592 19.21t 1593 19.21v 1884 alrimd 1621 alrimdd 1620 alrimdh 1490 alrimdv 1887 alrimi 1533 alrimih 1480 alrimiv 1885 alrimivv 1886 r19.21 2570 r19.21be 2585 r19.21bi 2582 r19.21t 2569 r19.21v 2571 ralrimd 2572 ralrimdv 2573 ralrimdva 2574 ralrimdvv 2578 ralrimdvva 2579 ralrimi 2565 ralrimiv 2566 ralrimiva 2567 ralrimivv 2575 ralrimivva 2576 ralrimivvva 2577 ralrimivw 2568 rexlimi 2604 |
[Margaris] p.
90 | Theorem 19.22 | 2alimdv 1892 2eximdv 1893 exim 1610
eximd 1623 eximdh 1622 eximdv 1891 rexim 2588 reximdai 2592 reximddv 2597 reximddv2 2599 reximdv 2595 reximdv2 2593 reximdva 2596 reximdvai 2594 reximi2 2590 |
[Margaris] p.
90 | Theorem 19.23 | 19.23 1689 19.23bi 1603 19.23h 1509 19.23ht 1508 19.23t 1688 19.23v 1894 19.23vv 1895 exlimd2 1606 exlimdh 1607 exlimdv 1830 exlimdvv 1909 exlimi 1605 exlimih 1604 exlimiv 1609 exlimivv 1908 r19.23 2602 r19.23v 2603 rexlimd 2608 rexlimdv 2610 rexlimdv3a 2613 rexlimdva 2611 rexlimdva2 2614 rexlimdvaa 2612 rexlimdvv 2618 rexlimdvva 2619 rexlimdvw 2615 rexlimiv 2605 rexlimiva 2606 rexlimivv 2617 |
[Margaris] p.
90 | Theorem 19.24 | i19.24 1650 |
[Margaris] p.
90 | Theorem 19.25 | 19.25 1637 |
[Margaris] p.
90 | Theorem 19.26 | 19.26-2 1493 19.26-3an 1494 19.26 1492 r19.26-2 2623 r19.26-3 2624 r19.26 2620 r19.26m 2625 |
[Margaris] p.
90 | Theorem 19.27 | 19.27 1572 19.27h 1571 19.27v 1911 r19.27av 2629 r19.27m 3542 r19.27mv 3543 |
[Margaris] p.
90 | Theorem 19.28 | 19.28 1574 19.28h 1573 19.28v 1912 r19.28av 2630 r19.28m 3536 r19.28mv 3539 rr19.28v 2900 |
[Margaris] p.
90 | Theorem 19.29 | 19.29 1631 19.29r 1632 19.29r2 1633 19.29x 1634 r19.29 2631 r19.29d2r 2638 r19.29r 2632 |
[Margaris] p.
90 | Theorem 19.30 | 19.30dc 1638 |
[Margaris] p.
90 | Theorem 19.31 | 19.31r 1692 |
[Margaris] p.
90 | Theorem 19.32 | 19.32dc 1690 19.32r 1691 r19.32r 2640 r19.32vdc 2643 r19.32vr 2642 |
[Margaris] p.
90 | Theorem 19.33 | 19.33 1495 19.33b2 1640 19.33bdc 1641 |
[Margaris] p.
90 | Theorem 19.34 | 19.34 1695 |
[Margaris] p.
90 | Theorem 19.35 | 19.35-1 1635 19.35i 1636 |
[Margaris] p.
90 | Theorem 19.36 | 19.36-1 1684 19.36aiv 1913 19.36i 1683 r19.36av 2645 |
[Margaris] p.
90 | Theorem 19.37 | 19.37-1 1685 19.37aiv 1686 r19.37 2646 r19.37av 2647 |
[Margaris] p.
90 | Theorem 19.38 | 19.38 1687 |
[Margaris] p.
90 | Theorem 19.39 | i19.39 1651 |
[Margaris] p.
90 | Theorem 19.40 | 19.40-2 1643 19.40 1642 r19.40 2648 |
[Margaris] p.
90 | Theorem 19.41 | 19.41 1697 19.41h 1696 19.41v 1914 19.41vv 1915 19.41vvv 1916 19.41vvvv 1917 r19.41 2649 r19.41v 2650 |
[Margaris] p.
90 | Theorem 19.42 | 19.42 1699 19.42h 1698 19.42v 1918 19.42vv 1923 19.42vvv 1924 19.42vvvv 1925 r19.42v 2651 |
[Margaris] p.
90 | Theorem 19.43 | 19.43 1639 r19.43 2652 |
[Margaris] p.
90 | Theorem 19.44 | 19.44 1693 r19.44av 2653 r19.44mv 3541 |
[Margaris] p.
90 | Theorem 19.45 | 19.45 1694 r19.45av 2654 r19.45mv 3540 |
[Margaris] p.
110 | Exercise 2(b) | eu1 2067 |
[Megill] p. 444 | Axiom
C5 | ax-17 1537 |
[Megill] p. 445 | Lemma
L12 | alequcom 1526 ax-10 1516 |
[Megill] p. 446 | Lemma
L17 | equtrr 1721 |
[Megill] p. 446 | Lemma
L19 | hbnae 1732 |
[Megill] p. 447 | Remark
9.1 | df-sb 1774 sbid 1785 |
[Megill] p. 448 | Scheme
C5' | ax-4 1521 |
[Megill] p. 448 | Scheme
C6' | ax-7 1459 |
[Megill] p. 448 | Scheme
C8' | ax-8 1515 |
[Megill] p. 448 | Scheme
C9' | ax-i12 1518 |
[Megill] p. 448 | Scheme
C11' | ax-10o 1727 |
[Megill] p. 448 | Scheme
C12' | ax-13 2166 |
[Megill] p. 448 | Scheme
C13' | ax-14 2167 |
[Megill] p. 448 | Scheme
C15' | ax-11o 1834 |
[Megill] p. 448 | Scheme
C16' | ax-16 1825 |
[Megill] p. 448 | Theorem
9.4 | dral1 1741 dral2 1742 drex1 1809 drex2 1743 drsb1 1810 drsb2 1852 |
[Megill] p. 449 | Theorem
9.7 | sbcom2 2003 sbequ 1851 sbid2v 2012 |
[Megill] p. 450 | Example
in Appendix | hba1 1551 |
[Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
[Mendelson] p.
69 | Axiom 4 | rspsbc 3068 rspsbca 3069 stdpc4 1786 |
[Mendelson] p.
69 | Axiom 5 | ra5 3074 stdpc5 1595 |
[Mendelson] p. 81 | Rule
C | exlimiv 1609 |
[Mendelson] p.
95 | Axiom 6 | stdpc6 1714 |
[Mendelson] p.
95 | Axiom 7 | stdpc7 1781 |
[Mendelson] p.
231 | Exercise 4.10(k) | inv1 3483 |
[Mendelson] p.
231 | Exercise 4.10(l) | unv 3484 |
[Mendelson] p.
231 | Exercise 4.10(n) | inssun 3399 |
[Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3447 |
[Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3400 |
[Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3290 |
[Mendelson] p.
231 | Definition of union | unssin 3398 |
[Mendelson] p.
235 | Exercise 4.12(c) | univ 4507 |
[Mendelson] p.
235 | Exercise 4.12(d) | pwv 3834 |
[Mendelson] p.
235 | Exercise 4.12(j) | pwin 4313 |
[Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4314 |
[Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4315 |
[Mendelson] p.
235 | Exercise 4.12(n) | uniin 3855 |
[Mendelson] p.
235 | Exercise 4.12(p) | reli 4791 |
[Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5186 |
[Mendelson] p.
246 | Definition of successor | df-suc 4402 |
[Mendelson] p.
254 | Proposition 4.22(b) | xpen 6901 |
[Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6875 xpsneng 6876 |
[Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6881 xpcomeng 6882 |
[Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6884 |
[Mendelson] p.
255 | Exercise 4.39 | endisj 6878 |
[Mendelson] p.
255 | Exercise 4.41 | mapprc 6706 |
[Mendelson] p.
255 | Exercise 4.43 | mapsnen 6865 |
[Mendelson] p.
255 | Exercise 4.47 | xpmapen 6906 |
[Mendelson] p.
255 | Exercise 4.42(a) | map0e 6740 |
[Mendelson] p.
255 | Exercise 4.42(b) | map1 6866 |
[Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7277 djucomen 7276 |
[Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7275 |
[Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6520 |
[Monk1] p. 26 | Theorem
2.8(vii) | ssin 3381 |
[Monk1] p. 33 | Theorem
3.2(i) | ssrel 4747 |
[Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4748 |
[Monk1] p. 34 | Definition
3.3 | df-opab 4091 |
[Monk1] p. 36 | Theorem
3.7(i) | coi1 5181 coi2 5182 |
[Monk1] p. 36 | Theorem
3.8(v) | dm0 4876 rn0 4918 |
[Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5070 |
[Monk1] p. 37 | Theorem
3.13(i) | relxp 4768 |
[Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4882 rnxpm 5095 |
[Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4739 xp0 5085 |
[Monk1] p. 38 | Theorem
3.16(ii) | ima0 5024 |
[Monk1] p. 38 | Theorem
3.16(viii) | imai 5021 |
[Monk1] p. 39 | Theorem
3.17 | imaex 5020 imaexg 5019 |
[Monk1] p. 39 | Theorem
3.16(xi) | imassrn 5016 |
[Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5688 funfvop 5670 |
[Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5600 |
[Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5608 |
[Monk1] p. 43 | Theorem
4.6 | funun 5298 |
[Monk1] p. 43 | Theorem
4.8(iv) | dff13 5811 dff13f 5813 |
[Monk1] p. 46 | Theorem
4.15(v) | funex 5781 funrnex 6166 |
[Monk1] p. 50 | Definition
5.4 | fniunfv 5805 |
[Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5149 |
[Monk1] p. 52 | Theorem
5.11(viii) | ssint 3886 |
[Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6208 df-1st 6193 |
[Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6209 df-2nd 6194 |
[Monk2] p. 105 | Axiom
C4 | ax-5 1458 |
[Monk2] p. 105 | Axiom
C7 | ax-8 1515 |
[Monk2] p. 105 | Axiom
C8 | ax-11 1517 ax-11o 1834 |
[Monk2] p. 105 | Axiom
(C8) | ax11v 1838 |
[Monk2] p. 109 | Lemma
12 | ax-7 1459 |
[Monk2] p. 109 | Lemma
15 | equvin 1874 equvini 1769 eqvinop 4272 |
[Monk2] p. 113 | Axiom
C5-1 | ax-17 1537 |
[Monk2] p. 113 | Axiom
C5-2 | ax6b 1662 |
[Monk2] p. 113 | Axiom
C5-3 | ax-7 1459 |
[Monk2] p. 114 | Lemma
22 | hba1 1551 |
[Monk2] p. 114 | Lemma
23 | hbia1 1563 nfia1 1591 |
[Monk2] p. 114 | Lemma
24 | hba2 1562 nfa2 1590 |
[Moschovakis] p.
2 | Chapter 2 | df-stab 832 dftest 15565 |
[Munkres] p. 77 | Example
2 | distop 14253 |
[Munkres] p.
78 | Definition of basis | df-bases 14211 isbasis3g 14214 |
[Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 12871 tgval2 14219 |
[Munkres] p.
79 | Remark | tgcl 14232 |
[Munkres] p. 80 | Lemma
2.1 | tgval3 14226 |
[Munkres] p. 80 | Lemma
2.2 | tgss2 14247 tgss3 14246 |
[Munkres] p. 81 | Lemma
2.3 | basgen 14248 basgen2 14249 |
[Munkres] p.
89 | Definition of subspace topology | resttop 14338 |
[Munkres] p. 93 | Theorem
6.1(1) | 0cld 14280 topcld 14277 |
[Munkres] p. 93 | Theorem
6.1(3) | uncld 14281 |
[Munkres] p.
94 | Definition of closure | clsval 14279 |
[Munkres] p.
94 | Definition of interior | ntrval 14278 |
[Munkres] p.
102 | Definition of continuous function | df-cn 14356 iscn 14365 iscn2 14368 |
[Munkres] p. 107 | Theorem
7.2(g) | cncnp 14398 cncnp2m 14399 cncnpi 14396 df-cnp 14357 iscnp 14367 |
[Munkres] p. 127 | Theorem
10.1 | metcn 14682 |
[Pierik], p. 8 | Section
2.2.1 | dfrex2fin 6959 |
[Pierik], p. 9 | Definition
2.4 | df-womni 7223 |
[Pierik], p. 9 | Definition
2.5 | df-markov 7211 omniwomnimkv 7226 |
[Pierik], p. 10 | Section
2.3 | dfdif3 3269 |
[Pierik], p.
14 | Definition 3.1 | df-omni 7194 exmidomniim 7200 finomni 7199 |
[Pierik], p. 15 | Section
3.1 | df-nninf 7179 |
[Pradic2025], p. 2 | Section
1.1 | nnnninfen 15511 |
[PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 15513 |
[PradicBrown2022], p.
2 | Remark | exmidpw 6964 |
[PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7261 |
[PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 |
[PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7208 |
[PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 15497 peano4nninf 15496 |
[PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 15499 |
[PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 15507 |
[PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 15509 |
[PradicBrown2022], p. 5 | Definition
3.3 | nnsf 15495 |
[Quine] p. 16 | Definition
2.1 | df-clab 2180 rabid 2670 |
[Quine] p. 17 | Definition
2.1'' | dfsb7 2007 |
[Quine] p. 18 | Definition
2.7 | df-cleq 2186 |
[Quine] p. 19 | Definition
2.9 | df-v 2762 |
[Quine] p. 34 | Theorem
5.1 | abeq2 2302 |
[Quine] p. 35 | Theorem
5.2 | abid2 2314 abid2f 2362 |
[Quine] p. 40 | Theorem
6.1 | sb5 1899 |
[Quine] p. 40 | Theorem
6.2 | sb56 1897 sb6 1898 |
[Quine] p. 41 | Theorem
6.3 | df-clel 2189 |
[Quine] p. 41 | Theorem
6.4 | eqid 2193 |
[Quine] p. 41 | Theorem
6.5 | eqcom 2195 |
[Quine] p. 42 | Theorem
6.6 | df-sbc 2986 |
[Quine] p. 42 | Theorem
6.7 | dfsbcq 2987 dfsbcq2 2988 |
[Quine] p. 43 | Theorem
6.8 | vex 2763 |
[Quine] p. 43 | Theorem
6.9 | isset 2766 |
[Quine] p. 44 | Theorem
7.3 | spcgf 2842 spcgv 2847 spcimgf 2840 |
[Quine] p. 44 | Theorem
6.11 | spsbc 2997 spsbcd 2998 |
[Quine] p. 44 | Theorem
6.12 | elex 2771 |
[Quine] p. 44 | Theorem
6.13 | elab 2904 elabg 2906 elabgf 2902 |
[Quine] p. 44 | Theorem
6.14 | noel 3450 |
[Quine] p. 48 | Theorem
7.2 | snprc 3683 |
[Quine] p. 48 | Definition
7.1 | df-pr 3625 df-sn 3624 |
[Quine] p. 49 | Theorem
7.4 | snss 3753 snssg 3752 |
[Quine] p. 49 | Theorem
7.5 | prss 3774 prssg 3775 |
[Quine] p. 49 | Theorem
7.6 | prid1 3724 prid1g 3722 prid2 3725 prid2g 3723 snid 3649
snidg 3647 |
[Quine] p. 51 | Theorem
7.12 | snexg 4213 snexprc 4215 |
[Quine] p. 51 | Theorem
7.13 | prexg 4240 |
[Quine] p. 53 | Theorem
8.2 | unisn 3851 unisng 3852 |
[Quine] p. 53 | Theorem
8.3 | uniun 3854 |
[Quine] p. 54 | Theorem
8.6 | elssuni 3863 |
[Quine] p. 54 | Theorem
8.7 | uni0 3862 |
[Quine] p. 56 | Theorem
8.17 | uniabio 5225 |
[Quine] p. 56 | Definition
8.18 | dfiota2 5216 |
[Quine] p. 57 | Theorem
8.19 | iotaval 5226 |
[Quine] p. 57 | Theorem
8.22 | iotanul 5230 |
[Quine] p. 58 | Theorem
8.23 | euiotaex 5231 |
[Quine] p. 58 | Definition
9.1 | df-op 3627 |
[Quine] p. 61 | Theorem
9.5 | opabid 4286 opabidw 4287 opelopab 4302 opelopaba 4296 opelopabaf 4304 opelopabf 4305 opelopabg 4298 opelopabga 4293 opelopabgf 4300 oprabid 5950 |
[Quine] p. 64 | Definition
9.11 | df-xp 4665 |
[Quine] p. 64 | Definition
9.12 | df-cnv 4667 |
[Quine] p. 64 | Definition
9.15 | df-id 4324 |
[Quine] p. 65 | Theorem
10.3 | fun0 5312 |
[Quine] p. 65 | Theorem
10.4 | funi 5286 |
[Quine] p. 65 | Theorem
10.5 | funsn 5302 funsng 5300 |
[Quine] p. 65 | Definition
10.1 | df-fun 5256 |
[Quine] p. 65 | Definition
10.2 | args 5034 dffv4g 5551 |
[Quine] p. 68 | Definition
10.11 | df-fv 5262 fv2 5549 |
[Quine] p. 124 | Theorem
17.3 | nn0opth2 10795 nn0opth2d 10794 nn0opthd 10793 |
[Quine] p. 284 | Axiom
39(vi) | funimaex 5339 funimaexg 5338 |
[Roman] p. 18 | Part
Preliminaries | df-rng 13429 |
[Roman] p. 19 | Part
Preliminaries | df-ring 13494 |
[Rudin] p. 164 | Equation
27 | efcan 11819 |
[Rudin] p. 164 | Equation
30 | efzval 11826 |
[Rudin] p. 167 | Equation
48 | absefi 11912 |
[Sanford] p.
39 | Remark | ax-mp 5 |
[Sanford] p. 39 | Rule
3 | mtpxor 1437 |
[Sanford] p. 39 | Rule
4 | mptxor 1435 |
[Sanford] p. 40 | Rule
1 | mptnan 1434 |
[Schechter] p.
51 | Definition of antisymmetry | intasym 5050 |
[Schechter] p.
51 | Definition of irreflexivity | intirr 5052 |
[Schechter] p.
51 | Definition of symmetry | cnvsym 5049 |
[Schechter] p.
51 | Definition of transitivity | cotr 5047 |
[Schechter] p.
187 | Definition of "ring with unit" | isring 13496 |
[Schechter] p.
428 | Definition 15.35 | bastop1 14251 |
[Stoll] p. 13 | Definition
of symmetric difference | symdif1 3424 |
[Stoll] p. 16 | Exercise
4.4 | 0dif 3518 dif0 3517 |
[Stoll] p. 16 | Exercise
4.8 | difdifdirss 3531 |
[Stoll] p. 19 | Theorem
5.2(13) | undm 3417 |
[Stoll] p. 19 | Theorem
5.2(13') | indmss 3418 |
[Stoll] p.
20 | Remark | invdif 3401 |
[Stoll] p. 25 | Definition
of ordered triple | df-ot 3628 |
[Stoll] p.
43 | Definition | uniiun 3966 |
[Stoll] p.
44 | Definition | intiin 3967 |
[Stoll] p.
45 | Definition | df-iin 3915 |
[Stoll] p. 45 | Definition
indexed union | df-iun 3914 |
[Stoll] p. 176 | Theorem
3.4(27) | imandc 890 imanst 889 |
[Stoll] p. 262 | Example
4.1 | symdif1 3424 |
[Suppes] p. 22 | Theorem
2 | eq0 3465 |
[Suppes] p. 22 | Theorem
4 | eqss 3194 eqssd 3196 eqssi 3195 |
[Suppes] p. 23 | Theorem
5 | ss0 3487 ss0b 3486 |
[Suppes] p. 23 | Theorem
6 | sstr 3187 |
[Suppes] p. 25 | Theorem
12 | elin 3342 elun 3300 |
[Suppes] p. 26 | Theorem
15 | inidm 3368 |
[Suppes] p. 26 | Theorem
16 | in0 3481 |
[Suppes] p. 27 | Theorem
23 | unidm 3302 |
[Suppes] p. 27 | Theorem
24 | un0 3480 |
[Suppes] p. 27 | Theorem
25 | ssun1 3322 |
[Suppes] p. 27 | Theorem
26 | ssequn1 3329 |
[Suppes] p. 27 | Theorem
27 | unss 3333 |
[Suppes] p. 27 | Theorem
28 | indir 3408 |
[Suppes] p. 27 | Theorem
29 | undir 3409 |
[Suppes] p. 28 | Theorem
32 | difid 3515 difidALT 3516 |
[Suppes] p. 29 | Theorem
33 | difin 3396 |
[Suppes] p. 29 | Theorem
34 | indif 3402 |
[Suppes] p. 29 | Theorem
35 | undif1ss 3521 |
[Suppes] p. 29 | Theorem
36 | difun2 3526 |
[Suppes] p. 29 | Theorem
37 | difin0 3520 |
[Suppes] p. 29 | Theorem
38 | disjdif 3519 |
[Suppes] p. 29 | Theorem
39 | difundi 3411 |
[Suppes] p. 29 | Theorem
40 | difindiss 3413 |
[Suppes] p. 30 | Theorem
41 | nalset 4159 |
[Suppes] p. 39 | Theorem
61 | uniss 3856 |
[Suppes] p. 39 | Theorem
65 | uniop 4284 |
[Suppes] p. 41 | Theorem
70 | intsn 3905 |
[Suppes] p. 42 | Theorem
71 | intpr 3902 intprg 3903 |
[Suppes] p. 42 | Theorem
73 | op1stb 4509 op1stbg 4510 |
[Suppes] p. 42 | Theorem
78 | intun 3901 |
[Suppes] p. 44 | Definition
15(a) | dfiun2 3946 dfiun2g 3944 |
[Suppes] p. 44 | Definition
15(b) | dfiin2 3947 |
[Suppes] p. 47 | Theorem
86 | elpw 3607 elpw2 4186 elpw2g 4185 elpwg 3609 |
[Suppes] p. 47 | Theorem
87 | pwid 3616 |
[Suppes] p. 47 | Theorem
89 | pw0 3765 |
[Suppes] p. 48 | Theorem
90 | pwpw0ss 3830 |
[Suppes] p. 52 | Theorem
101 | xpss12 4766 |
[Suppes] p. 52 | Theorem
102 | xpindi 4797 xpindir 4798 |
[Suppes] p. 52 | Theorem
103 | xpundi 4715 xpundir 4716 |
[Suppes] p. 54 | Theorem
105 | elirrv 4580 |
[Suppes] p. 58 | Theorem
2 | relss 4746 |
[Suppes] p. 59 | Theorem
4 | eldm 4859 eldm2 4860 eldm2g 4858 eldmg 4857 |
[Suppes] p. 59 | Definition
3 | df-dm 4669 |
[Suppes] p. 60 | Theorem
6 | dmin 4870 |
[Suppes] p. 60 | Theorem
8 | rnun 5074 |
[Suppes] p. 60 | Theorem
9 | rnin 5075 |
[Suppes] p. 60 | Definition
4 | dfrn2 4850 |
[Suppes] p. 61 | Theorem
11 | brcnv 4845 brcnvg 4843 |
[Suppes] p. 62 | Equation
5 | elcnv 4839 elcnv2 4840 |
[Suppes] p. 62 | Theorem
12 | relcnv 5043 |
[Suppes] p. 62 | Theorem
15 | cnvin 5073 |
[Suppes] p. 62 | Theorem
16 | cnvun 5071 |
[Suppes] p. 63 | Theorem
20 | co02 5179 |
[Suppes] p. 63 | Theorem
21 | dmcoss 4931 |
[Suppes] p. 63 | Definition
7 | df-co 4668 |
[Suppes] p. 64 | Theorem
26 | cnvco 4847 |
[Suppes] p. 64 | Theorem
27 | coass 5184 |
[Suppes] p. 65 | Theorem
31 | resundi 4955 |
[Suppes] p. 65 | Theorem
34 | elima 5010 elima2 5011 elima3 5012 elimag 5009 |
[Suppes] p. 65 | Theorem
35 | imaundi 5078 |
[Suppes] p. 66 | Theorem
40 | dminss 5080 |
[Suppes] p. 66 | Theorem
41 | imainss 5081 |
[Suppes] p. 67 | Exercise
11 | cnvxp 5084 |
[Suppes] p. 81 | Definition
34 | dfec2 6590 |
[Suppes] p. 82 | Theorem
72 | elec 6628 elecg 6627 |
[Suppes] p. 82 | Theorem
73 | erth 6633 erth2 6634 |
[Suppes] p. 89 | Theorem
96 | map0b 6741 |
[Suppes] p. 89 | Theorem
97 | map0 6743 map0g 6742 |
[Suppes] p. 89 | Theorem
98 | mapsn 6744 |
[Suppes] p. 89 | Theorem
99 | mapss 6745 |
[Suppes] p. 92 | Theorem
1 | enref 6819 enrefg 6818 |
[Suppes] p. 92 | Theorem
2 | ensym 6835 ensymb 6834 ensymi 6836 |
[Suppes] p. 92 | Theorem
3 | entr 6838 |
[Suppes] p. 92 | Theorem
4 | unen 6870 |
[Suppes] p. 94 | Theorem
15 | endom 6817 |
[Suppes] p. 94 | Theorem
16 | ssdomg 6832 |
[Suppes] p. 94 | Theorem
17 | domtr 6839 |
[Suppes] p. 95 | Theorem
18 | isbth 7026 |
[Suppes] p. 98 | Exercise
4 | fundmen 6860 fundmeng 6861 |
[Suppes] p. 98 | Exercise
6 | xpdom3m 6888 |
[Suppes] p.
130 | Definition 3 | df-tr 4128 |
[Suppes] p. 132 | Theorem
9 | ssonuni 4520 |
[Suppes] p.
134 | Definition 6 | df-suc 4402 |
[Suppes] p. 136 | Theorem
Schema 22 | findes 4635 finds 4632 finds1 4634 finds2 4633 |
[Suppes] p.
162 | Definition 5 | df-ltnqqs 7413 df-ltpq 7406 |
[Suppes] p. 228 | Theorem
Schema 61 | onintss 4421 |
[TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2175 |
[TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2186 |
[TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2189 |
[TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2188 |
[TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2211 |
[TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5922 |
[TakeutiZaring] p.
14 | Proposition 4.14 | ru 2984 |
[TakeutiZaring] p.
15 | Exercise 1 | elpr 3639 elpr2 3640 elprg 3638 |
[TakeutiZaring] p.
15 | Exercise 2 | elsn 3634 elsn2 3652 elsn2g 3651 elsng 3633 velsn 3635 |
[TakeutiZaring] p.
15 | Exercise 3 | elop 4260 |
[TakeutiZaring] p.
15 | Exercise 4 | sneq 3629 sneqr 3786 |
[TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3637 dfsn2 3632 |
[TakeutiZaring] p.
16 | Axiom 3 | uniex 4468 |
[TakeutiZaring] p.
16 | Exercise 6 | opth 4266 |
[TakeutiZaring] p.
16 | Exercise 8 | rext 4244 |
[TakeutiZaring] p.
16 | Corollary 5.8 | unex 4472 unexg 4474 |
[TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3667 |
[TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3836 |
[TakeutiZaring] p.
16 | Definition 5.6 | df-in 3159 df-un 3157 |
[TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3849 uniprg 3850 |
[TakeutiZaring] p.
17 | Axiom 4 | vpwex 4208 |
[TakeutiZaring] p.
17 | Exercise 1 | eltp 3666 |
[TakeutiZaring] p.
17 | Exercise 5 | elsuc 4437 elsucg 4435 sstr2 3186 |
[TakeutiZaring] p.
17 | Exercise 6 | uncom 3303 |
[TakeutiZaring] p.
17 | Exercise 7 | incom 3351 |
[TakeutiZaring] p.
17 | Exercise 8 | unass 3316 |
[TakeutiZaring] p.
17 | Exercise 9 | inass 3369 |
[TakeutiZaring] p.
17 | Exercise 10 | indi 3406 |
[TakeutiZaring] p.
17 | Exercise 11 | undi 3407 |
[TakeutiZaring] p.
17 | Definition 5.9 | dfss2 3168 |
[TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3603 |
[TakeutiZaring] p.
18 | Exercise 7 | unss2 3330 |
[TakeutiZaring] p.
18 | Exercise 9 | df-ss 3166 sseqin2 3378 |
[TakeutiZaring] p.
18 | Exercise 10 | ssid 3199 |
[TakeutiZaring] p.
18 | Exercise 12 | inss1 3379 inss2 3380 |
[TakeutiZaring] p.
18 | Exercise 13 | nssr 3239 |
[TakeutiZaring] p.
18 | Exercise 15 | unieq 3844 |
[TakeutiZaring] p.
18 | Exercise 18 | sspwb 4245 |
[TakeutiZaring] p.
18 | Exercise 19 | pweqb 4252 |
[TakeutiZaring] p.
20 | Definition | df-rab 2481 |
[TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4156 |
[TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3155 |
[TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3448 |
[TakeutiZaring] p.
20 | Proposition 5.15 | difid 3515 difidALT 3516 |
[TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3459 |
[TakeutiZaring] p.
21 | Theorem 5.22 | setind 4571 |
[TakeutiZaring] p.
21 | Definition 5.20 | df-v 2762 |
[TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4161 |
[TakeutiZaring] p.
22 | Exercise 1 | 0ss 3485 |
[TakeutiZaring] p.
22 | Exercise 3 | ssex 4166 ssexg 4168 |
[TakeutiZaring] p.
22 | Exercise 4 | inex1 4163 |
[TakeutiZaring] p.
22 | Exercise 5 | ruv 4582 |
[TakeutiZaring] p.
22 | Exercise 6 | elirr 4573 |
[TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3511 |
[TakeutiZaring] p.
22 | Exercise 11 | difdif 3284 |
[TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3420 |
[TakeutiZaring] p.
22 | Exercise 14 | difss 3285 |
[TakeutiZaring] p.
22 | Exercise 15 | sscon 3293 |
[TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2477 |
[TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2478 |
[TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4774 xpexg 4773 xpexgALT 6185 |
[TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4666 |
[TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5318 |
[TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5470 fun11 5321 |
[TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5265 svrelfun 5319 |
[TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4849 |
[TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4851 |
[TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4671 |
[TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4672 |
[TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4668 |
[TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5120 dfrel2 5116 |
[TakeutiZaring] p.
25 | Exercise 3 | xpss 4767 |
[TakeutiZaring] p.
25 | Exercise 5 | relun 4776 |
[TakeutiZaring] p.
25 | Exercise 6 | reluni 4782 |
[TakeutiZaring] p.
25 | Exercise 9 | inxp 4796 |
[TakeutiZaring] p.
25 | Exercise 12 | relres 4970 |
[TakeutiZaring] p.
25 | Exercise 13 | opelres 4947 opelresg 4949 |
[TakeutiZaring] p.
25 | Exercise 14 | dmres 4963 |
[TakeutiZaring] p.
25 | Exercise 15 | resss 4966 |
[TakeutiZaring] p.
25 | Exercise 17 | resabs1 4971 |
[TakeutiZaring] p.
25 | Exercise 18 | funres 5295 |
[TakeutiZaring] p.
25 | Exercise 24 | relco 5164 |
[TakeutiZaring] p.
25 | Exercise 29 | funco 5294 |
[TakeutiZaring] p.
25 | Exercise 30 | f1co 5471 |
[TakeutiZaring] p.
26 | Definition 6.10 | eu2 2086 |
[TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5262 fv3 5577 |
[TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5204 cnvexg 5203 |
[TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4928 dmexg 4926 |
[TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4929 rnexg 4927 |
[TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5571 |
[TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5581 tz6.12 5582 tz6.12c 5584 |
[TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5545 |
[TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5257 |
[TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5258 |
[TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5260 wfo 5252 |
[TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5259 wf1 5251 |
[TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5261 wf1o 5253 |
[TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5655 eqfnfv2 5656 eqfnfv2f 5659 |
[TakeutiZaring] p.
28 | Exercise 5 | fvco 5627 |
[TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5780 fnexALT 6163 |
[TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5779 resfunexgALT 6160 |
[TakeutiZaring] p.
29 | Exercise 9 | funimaex 5339 funimaexg 5338 |
[TakeutiZaring] p.
29 | Definition 6.18 | df-br 4030 |
[TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 5035 iniseg 5037 |
[TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4320 |
[TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5263 |
[TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5853 |
[TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5854 |
[TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5859 |
[TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5861 |
[TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5869 |
[TakeutiZaring] p.
35 | Notation | wtr 4127 |
[TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4385 |
[TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4131 |
[TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4608 |
[TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4412 |
[TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4416 |
[TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4524 |
[TakeutiZaring] p.
38 | Definition 7.11 | df-on 4399 |
[TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4518 |
[TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4584 |
[TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4614 |
[TakeutiZaring] p.
40 | Exercise 7 | dftr2 4129 |
[TakeutiZaring] p.
40 | Exercise 11 | unon 4543 |
[TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4519 |
[TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3863 |
[TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4402 |
[TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4446 sucidg 4447 |
[TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4533 |
[TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4400 |
[TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4538 ordelsuc 4537 |
[TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4626 |
[TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4627 |
[TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4628 |
[TakeutiZaring] p.
43 | Axiom 7 | omex 4625 |
[TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4639 |
[TakeutiZaring] p.
43 | Corollary 7.31 | find 4631 |
[TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4629 |
[TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4630 |
[TakeutiZaring] p.
44 | Exercise 2 | int0 3884 |
[TakeutiZaring] p.
44 | Exercise 3 | trintssm 4143 |
[TakeutiZaring] p.
44 | Exercise 4 | intss1 3885 |
[TakeutiZaring] p.
44 | Exercise 6 | onintonm 4549 |
[TakeutiZaring] p.
44 | Definition 7.35 | df-int 3871 |
[TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6361 |
[TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6418 tfri1d 6388 |
[TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6419 tfri2d 6389 |
[TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6420 |
[TakeutiZaring] p.
50 | Exercise 3 | smoiso 6355 |
[TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6339 |
[TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6517 |
[TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6513 |
[TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6510 |
[TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6514 |
[TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6562 nnaordi 6561 |
[TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3957 uniss2 3866 |
[TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6523 |
[TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6533 |
[TakeutiZaring] p.
62 | Exercise 5 | oaword1 6524 |
[TakeutiZaring] p.
62 | Definition 8.15 | om0 6511 omsuc 6525 |
[TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6534 |
[TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6570 nnmordi 6569 |
[TakeutiZaring] p.
67 | Definition 8.30 | oei0 6512 |
[TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7247 |
[TakeutiZaring] p.
88 | Exercise 1 | en0 6849 |
[TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6913 |
[TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6914 |
[TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6797 isfi 6815 |
[TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6885 |
[TakeutiZaring] p.
95 | Definition 10.42 | df-map 6704 |
[TakeutiZaring] p.
96 | Proposition 10.44 | pw2f1odc 6891 |
[TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6904 |
[Tarski] p. 67 | Axiom
B5 | ax-4 1521 |
[Tarski] p. 68 | Lemma
6 | equid 1712 |
[Tarski] p. 69 | Lemma
7 | equcomi 1715 |
[Tarski] p. 70 | Lemma
14 | spim 1749 spime 1752 spimeh 1750 spimh 1748 |
[Tarski] p. 70 | Lemma
16 | ax-11 1517 ax-11o 1834 ax11i 1725 |
[Tarski] p. 70 | Lemmas 16
and 17 | sb6 1898 |
[Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1537 |
[Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2166 ax-14 2167 |
[WhiteheadRussell] p.
96 | Axiom *1.3 | olc 712 |
[WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 728 |
[WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 757 |
[WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 766 |
[WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 790 |
[WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 617 |
[WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
[WhiteheadRussell] p.
100 | Theorem *2.03 | con2 644 |
[WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
[WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
[WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
[WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 838 |
[WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2140 syl 14 |
[WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 738 |
[WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
[WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 837 |
[WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 630 |
[WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 886 |
[WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 844 |
[WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 857 |
[WhiteheadRussell] p.
103 | Theorem *2.16 | con3 643 |
[WhiteheadRussell] p.
103 | Theorem *2.17 | condc 854 |
[WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 856 |
[WhiteheadRussell] p.
104 | Theorem *2.2 | orc 713 |
[WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 776 |
[WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 618 |
[WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 622 |
[WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 894 |
[WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 908 |
[WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
[WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 769 |
[WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 770 |
[WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 805 |
[WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 806 |
[WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 804 |
[WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 981 |
[WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 779 |
[WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 777 |
[WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 778 |
[WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
[WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 739 |
[WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 740 |
[WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 868 pm2.5gdc 867 |
[WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 863 |
[WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 741 |
[WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 742 |
[WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 743 |
[WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 656 |
[WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 657 |
[WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 723 |
[WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 892 |
[WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 726 |
[WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 727 |
[WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 866 |
[WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 749 |
[WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 801 |
[WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 802 |
[WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 660 |
[WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 714 pm2.67 744 |
[WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 870 pm2.521gdc 869 |
[WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 748 |
[WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 811 |
[WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 895 |
[WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 916 |
[WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 807 |
[WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 808 |
[WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 810 |
[WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 809 |
[WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
[WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 812 |
[WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 813 |
[WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
[WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 906 |
[WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
[WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 755 |
[WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
[WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 959 |
[WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 960 |
[WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 961 |
[WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 754 |
[WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
[WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
[WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 694 |
[WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
[WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
[WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
[WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 861 |
[WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 860 |
[WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
[WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
[WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 690 |
[WhiteheadRussell] p.
113 | Fact) | pm3.45 597 |
[WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
[WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
[WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
[WhiteheadRussell] p.
113 | Theorem *3.44 | jao 756 pm3.44 716 |
[WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
[WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 602 |
[WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 786 |
[WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 872 |
[WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
[WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 873 |
[WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 891 |
[WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 695 |
[WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
[WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 954 bitr 472 |
[WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
[WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 758 pm4.25 759 |
[WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
[WhiteheadRussell] p.
118 | Theorem *4.4 | andi 819 |
[WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 729 |
[WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
[WhiteheadRussell] p.
118 | Theorem *4.33 | orass 768 |
[WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
[WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 793 |
[WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 605 |
[WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 823 |
[WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 982 |
[WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 817 |
[WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 973 |
[WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 951 |
[WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 780 |
[WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 815 pm4.45 785 pm4.45im 334 |
[WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1492 |
[WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 958 |
[WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 898 imorr 722 |
[WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
[WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 900 |
[WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 751 |
[WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 752 |
[WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 903 |
[WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 940 |
[WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 753 pm4.56 781 |
[WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 941 oranim 782 |
[WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 687 |
[WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 899 |
[WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 887 |
[WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 901 |
[WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 688 |
[WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 902 |
[WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 888 |
[WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
[WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 828 |
[WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
[WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 745 |
[WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 603 pm4.76 604 |
[WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 711 pm4.77 800 |
[WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 783 |
[WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 904 |
[WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 708 |
[WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 909 |
[WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 952 |
[WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 953 |
[WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
[WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
[WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
[WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
[WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 601 |
[WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 910 |
[WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 911 |
[WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 913 |
[WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 912 |
[WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1400 |
[WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 829 |
[WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 905 |
[WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1405 pm5.18dc 884 |
[WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 707 |
[WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 696 |
[WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1403 |
[WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1408 |
[WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1409 |
[WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 896 |
[WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
[WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
[WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
[WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 927 pm5.6r 928 |
[WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 956 |
[WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
[WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
[WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 609 |
[WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 918 |
[WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 610 |
[WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
[WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
[WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 926 |
[WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 803 |
[WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 919 |
[WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 914 |
[WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 795 |
[WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 947 |
[WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 948 |
[WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 963 |
[WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
[WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
[WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 964 |
[WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1646 |
[WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1496 |
[WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1643 |
[WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1907 |
[WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2045 |
[WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2445 |
[WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2446 |
[WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2898 |
[WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3042 |
[WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5234 |
[WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5235 |
[WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2121 eupickbi 2124 |
[WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5262 |
[WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7250 |