Bibliographic Cross-Reference for the Intuitionistic Logic
Explorer
Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
---|
[AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7092 fidcenum 6933 |
[AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 6933 |
[AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7092 |
[AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12380 |
[AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 6907 |
[AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 6895 |
[AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12395 |
[AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12397 |
[AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12386 znnen 12353 |
[AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12398 |
[AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12399 |
[AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10710 |
[AczelRathjen], p.
183 | Chapter 20 | ax-setind 4521 |
[Apostol] p. 18 | Theorem
I.1 | addcan 8099 addcan2d 8104 addcan2i 8102 addcand 8103 addcani 8101 |
[Apostol] p. 18 | Theorem
I.2 | negeu 8110 |
[Apostol] p. 18 | Theorem
I.3 | negsub 8167 negsubd 8236 negsubi 8197 |
[Apostol] p. 18 | Theorem
I.4 | negneg 8169 negnegd 8221 negnegi 8189 |
[Apostol] p. 18 | Theorem
I.5 | subdi 8304 subdid 8333 subdii 8326 subdir 8305 subdird 8334 subdiri 8327 |
[Apostol] p. 18 | Theorem
I.6 | mul01 8308 mul01d 8312 mul01i 8310 mul02 8306 mul02d 8311 mul02i 8309 |
[Apostol] p. 18 | Theorem
I.9 | divrecapd 8710 |
[Apostol] p. 18 | Theorem
I.10 | recrecapi 8661 |
[Apostol] p. 18 | Theorem
I.12 | mul2neg 8317 mul2negd 8332 mul2negi 8325 mulneg1 8314 mulneg1d 8330 mulneg1i 8323 |
[Apostol] p. 18 | Theorem
I.15 | divdivdivap 8630 |
[Apostol] p. 20 | Axiom
7 | rpaddcl 9634 rpaddcld 9669 rpmulcl 9635 rpmulcld 9670 |
[Apostol] p. 20 | Axiom
9 | 0nrp 9646 |
[Apostol] p. 20 | Theorem
I.17 | lttri 8024 |
[Apostol] p. 20 | Theorem
I.18 | ltadd1d 8457 ltadd1dd 8475 ltadd1i 8421 |
[Apostol] p. 20 | Theorem
I.19 | ltmul1 8511 ltmul1a 8510 ltmul1i 8836 ltmul1ii 8844 ltmul2 8772 ltmul2d 9696 ltmul2dd 9710 ltmul2i 8839 |
[Apostol] p. 20 | Theorem
I.21 | 0lt1 8046 |
[Apostol] p. 20 | Theorem
I.23 | lt0neg1 8387 lt0neg1d 8434 ltneg 8381 ltnegd 8442 ltnegi 8412 |
[Apostol] p. 20 | Theorem
I.25 | lt2add 8364 lt2addd 8486 lt2addi 8429 |
[Apostol] p.
20 | Definition of positive numbers | df-rp 9611 |
[Apostol] p. 21 | Exercise
4 | recgt0 8766 recgt0d 8850 recgt0i 8822 recgt0ii 8823 |
[Apostol] p.
22 | Definition of integers | df-z 9213 |
[Apostol] p.
22 | Definition of rationals | df-q 9579 |
[Apostol] p. 24 | Theorem
I.26 | supeuti 6971 |
[Apostol] p. 26 | Theorem
I.29 | arch 9132 |
[Apostol] p. 28 | Exercise
2 | btwnz 9331 |
[Apostol] p. 28 | Exercise
3 | nnrecl 9133 |
[Apostol] p. 28 | Exercise
6 | qbtwnre 10213 |
[Apostol] p. 28 | Exercise
10(a) | zeneo 11830 zneo 9313 |
[Apostol] p. 29 | Theorem
I.35 | resqrtth 10995 sqrtthi 11083 |
[Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 8881 |
[Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 11991 |
[Apostol] p.
363 | Remark | absgt0api 11110 |
[Apostol] p.
363 | Example | abssubd 11157 abssubi 11114 |
[ApostolNT] p.
14 | Definition | df-dvds 11750 |
[ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 11766 |
[ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 11790 |
[ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 11786 |
[ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 11780 |
[ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 11782 |
[ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 11767 |
[ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 11768 |
[ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 11773 |
[ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 11805 |
[ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 11807 |
[ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 11809 |
[ApostolNT] p.
15 | Definition | dfgcd2 11969 |
[ApostolNT] p.
16 | Definition | isprm2 12071 |
[ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12046 |
[ApostolNT] p.
16 | Theorem 1.7 | prminf 12410 |
[ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 11928 |
[ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 11970 |
[ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 11972 |
[ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 11942 |
[ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 11935 |
[ApostolNT] p.
17 | Theorem 1.8 | coprm 12098 |
[ApostolNT] p.
17 | Theorem 1.9 | euclemma 12100 |
[ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12320 |
[ApostolNT] p.
19 | Theorem 1.14 | divalg 11883 |
[ApostolNT] p.
20 | Theorem 1.15 | eucalg 12013 |
[ApostolNT] p.
25 | Definition | df-phi 12165 |
[ApostolNT] p.
26 | Theorem 2.2 | phisum 12194 |
[ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12176 |
[ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12180 |
[ApostolNT] p.
104 | Definition | congr 12054 |
[ApostolNT] p.
106 | Remark | dvdsval3 11753 |
[ApostolNT] p.
106 | Definition | moddvds 11761 |
[ApostolNT] p.
107 | Example 2 | mod2eq0even 11837 |
[ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 11838 |
[ApostolNT] p.
107 | Example 4 | zmod1congr 10297 |
[ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10334 |
[ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10602 |
[ApostolNT] p.
108 | Theorem 5.3 | modmulconst 11785 |
[ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12057 |
[ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12059 |
[ApostolNT] p.
113 | Theorem 5.17 | eulerth 12187 |
[ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12205 |
[ApostolNT] p.
114 | Theorem 5.19 | fermltl 12188 |
[ApostolNT] p.
179 | Definition | df-lgs 13693 lgsprme0 13737 |
[ApostolNT] p.
180 | Example 1 | 1lgs 13738 |
[ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 13714 |
[ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 13729 |
[ApostolNT] p.
188 | Definition | df-lgs 13693 lgs1 13739 |
[ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 13730 |
[ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 13732 |
[ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 13740 |
[ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 13741 |
[Bauer] p. 482 | Section
1.2 | pm2.01 611 pm2.65 654 |
[Bauer] p. 483 | Theorem
1.3 | acexmid 5852 onsucelsucexmidlem 4513 |
[Bauer], p.
481 | Section 1.1 | pwtrufal 14030 |
[Bauer], p.
483 | Definition | n0rf 3427 |
[Bauer], p. 483 | Theorem
1.2 | 2irrexpq 13688 2irrexpqap 13690 |
[Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6854 |
[Bauer], p. 494 | Theorem
5.5 | ivthinc 13415 |
[BauerHanson], p.
27 | Proposition 5.2 | cnstab 8564 |
[BauerSwan], p.
14 | Remark | 0ct 7084 ctm 7086 |
[BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 14034 |
[BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7092 |
[BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7463 |
[BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7376 |
[BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7465 |
[BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7499 addlocpr 7498 |
[BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7525 |
[BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7528 |
[BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7533 |
[BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
[BellMachover] p.
97 | Definition 10.1 | df-eu 2022 |
[BellMachover] p.
460 | Notation | df-mo 2023 |
[BellMachover] p.
460 | Definition | mo3 2073 mo3h 2072 |
[BellMachover] p.
462 | Theorem 1.1 | bm1.1 2155 |
[BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4110 |
[BellMachover] p.
466 | Axiom Pow | axpow3 4163 |
[BellMachover] p.
466 | Axiom Union | axun2 4420 |
[BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4526 |
[BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4369 |
[BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4529 |
[BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4480 |
[BellMachover] p.
471 | Definition of Lim | df-ilim 4354 |
[BellMachover] p.
472 | Axiom Inf | zfinf2 4573 |
[BellMachover] p.
473 | Theorem 2.8 | limom 4598 |
[Bobzien] p.
116 | Statement T3 | stoic3 1424 |
[Bobzien] p.
117 | Statement T2 | stoic2a 1422 |
[Bobzien] p.
117 | Statement T4 | stoic4a 1425 |
[BourbakiAlg1] p.
1 | Definition 1 | df-mgm 12610 |
[BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 12643 |
[BourbakiAlg1] p.
12 | Definition 2 | df-mnd 12653 |
[BourbakiEns] p.
| Proposition 8 | fcof1 5762 fcofo 5763 |
[BourbakiTop1] p.
| Remark | xnegmnf 9786 xnegpnf 9785 |
[BourbakiTop1] p.
| Remark | rexneg 9787 |
[BourbakiTop1] p.
| Proposition | ishmeo 13098 |
[BourbakiTop1] p.
| Property V_i | ssnei2 12951 |
[BourbakiTop1] p.
| Property V_ii | innei 12957 |
[BourbakiTop1] p.
| Property V_iv | neissex 12959 |
[BourbakiTop1] p.
| Proposition 1 | neipsm 12948 neiss 12944 |
[BourbakiTop1] p.
| Proposition 2 | cnptopco 13016 |
[BourbakiTop1] p.
| Proposition 4 | imasnopn 13093 |
[BourbakiTop1] p.
| Property V_iii | elnei 12946 |
[BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 12790 |
[Bruck] p. 1 | Section
I.1 | df-mgm 12610 |
[Bruck] p. 23 | Section
II.1 | df-sgrp 12643 |
[ChoquetDD] p.
2 | Definition of mapping | df-mpt 4052 |
[Cohen] p.
301 | Remark | relogoprlem 13583 |
[Cohen] p. 301 | Property
2 | relogmul 13584 relogmuld 13599 |
[Cohen] p. 301 | Property
3 | relogdiv 13585 relogdivd 13600 |
[Cohen] p. 301 | Property
4 | relogexp 13587 |
[Cohen] p. 301 | Property
1a | log1 13581 |
[Cohen] p. 301 | Property
1b | loge 13582 |
[Cohen4] p.
348 | Observation | relogbcxpbap 13677 |
[Cohen4] p.
352 | Definition | rpelogb 13661 |
[Cohen4] p. 361 | Property
2 | rprelogbmul 13667 |
[Cohen4] p. 361 | Property
3 | logbrec 13672 rprelogbdiv 13669 |
[Cohen4] p. 361 | Property
4 | rplogbreexp 13665 |
[Cohen4] p. 361 | Property
6 | relogbexpap 13670 |
[Cohen4] p. 361 | Property
1(a) | rplogbid1 13659 |
[Cohen4] p. 361 | Property
1(b) | rplogb1 13660 |
[Cohen4] p.
367 | Property | rplogbchbase 13662 |
[Cohen4] p. 377 | Property
2 | logblt 13674 |
[Crosilla] p. | Axiom
1 | ax-ext 2152 |
[Crosilla] p. | Axiom
2 | ax-pr 4194 |
[Crosilla] p. | Axiom
3 | ax-un 4418 |
[Crosilla] p. | Axiom
4 | ax-nul 4115 |
[Crosilla] p. | Axiom
5 | ax-iinf 4572 |
[Crosilla] p. | Axiom
6 | ru 2954 |
[Crosilla] p. | Axiom
8 | ax-pow 4160 |
[Crosilla] p. | Axiom
9 | ax-setind 4521 |
[Crosilla], p. | Axiom
6 | ax-sep 4107 |
[Crosilla], p. | Axiom
7 | ax-coll 4104 |
[Crosilla], p. | Axiom
7' | repizf 4105 |
[Crosilla], p. | Theorem
is stated | ordtriexmid 4505 |
[Crosilla], p. | Axiom
of choice implies instances | acexmid 5852 |
[Crosilla], p.
| Definition of ordinal | df-iord 4351 |
[Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4519 |
[Eisenberg] p.
67 | Definition 5.3 | df-dif 3123 |
[Eisenberg] p.
82 | Definition 6.3 | df-iom 4575 |
[Eisenberg] p.
125 | Definition 8.21 | df-map 6628 |
[Enderton] p. 18 | Axiom
of Empty Set | axnul 4114 |
[Enderton] p.
19 | Definition | df-tp 3591 |
[Enderton] p.
26 | Exercise 5 | unissb 3826 |
[Enderton] p.
26 | Exercise 10 | pwel 4203 |
[Enderton] p.
28 | Exercise 7(b) | pwunim 4271 |
[Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3942 iinin2m 3941 iunin1 3937 iunin2 3936 |
[Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3940 iundif2ss 3938 |
[Enderton] p.
33 | Exercise 23 | iinuniss 3955 |
[Enderton] p.
33 | Exercise 25 | iununir 3956 |
[Enderton] p.
33 | Exercise 24(a) | iinpw 3963 |
[Enderton] p.
33 | Exercise 24(b) | iunpw 4465 iunpwss 3964 |
[Enderton] p.
38 | Exercise 6(a) | unipw 4202 |
[Enderton] p.
38 | Exercise 6(b) | pwuni 4178 |
[Enderton] p. 41 | Lemma
3D | opeluu 4435 rnex 4878
rnexg 4876 |
[Enderton] p.
41 | Exercise 8 | dmuni 4821 rnuni 5022 |
[Enderton] p.
42 | Definition of a function | dffun7 5225 dffun8 5226 |
[Enderton] p.
43 | Definition of function value | funfvdm2 5560 |
[Enderton] p.
43 | Definition of single-rooted | funcnv 5259 |
[Enderton] p.
44 | Definition (d) | dfima2 4955 dfima3 4956 |
[Enderton] p.
47 | Theorem 3H | fvco2 5565 |
[Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7183 |
[Enderton] p.
50 | Theorem 3K(a) | imauni 5740 |
[Enderton] p.
52 | Definition | df-map 6628 |
[Enderton] p.
53 | Exercise 21 | coass 5129 |
[Enderton] p.
53 | Exercise 27 | dmco 5119 |
[Enderton] p.
53 | Exercise 14(a) | funin 5269 |
[Enderton] p.
53 | Exercise 22(a) | imass2 4987 |
[Enderton] p.
54 | Remark | ixpf 6698 ixpssmap 6710 |
[Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6677 |
[Enderton] p.
56 | Theorem 3M | erref 6533 |
[Enderton] p. 57 | Lemma
3N | erthi 6559 |
[Enderton] p.
57 | Definition | df-ec 6515 |
[Enderton] p.
58 | Definition | df-qs 6519 |
[Enderton] p.
60 | Theorem 3Q | th3q 6618 th3qcor 6617 th3qlem1 6615 th3qlem2 6616 |
[Enderton] p.
61 | Exercise 35 | df-ec 6515 |
[Enderton] p.
65 | Exercise 56(a) | dmun 4818 |
[Enderton] p.
68 | Definition of successor | df-suc 4356 |
[Enderton] p.
71 | Definition | df-tr 4088 dftr4 4092 |
[Enderton] p.
72 | Theorem 4E | unisuc 4398 unisucg 4399 |
[Enderton] p.
73 | Exercise 6 | unisuc 4398 unisucg 4399 |
[Enderton] p.
73 | Exercise 5(a) | truni 4101 |
[Enderton] p.
73 | Exercise 5(b) | trint 4102 |
[Enderton] p.
79 | Theorem 4I(A1) | nna0 6453 |
[Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6455 onasuc 6445 |
[Enderton] p.
79 | Definition of operation value | df-ov 5856 |
[Enderton] p.
80 | Theorem 4J(A1) | nnm0 6454 |
[Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6456 onmsuc 6452 |
[Enderton] p.
81 | Theorem 4K(1) | nnaass 6464 |
[Enderton] p.
81 | Theorem 4K(2) | nna0r 6457 nnacom 6463 |
[Enderton] p.
81 | Theorem 4K(3) | nndi 6465 |
[Enderton] p.
81 | Theorem 4K(4) | nnmass 6466 |
[Enderton] p.
81 | Theorem 4K(5) | nnmcom 6468 |
[Enderton] p.
82 | Exercise 16 | nnm0r 6458 nnmsucr 6467 |
[Enderton] p.
88 | Exercise 23 | nnaordex 6507 |
[Enderton] p.
129 | Definition | df-en 6719 |
[Enderton] p.
132 | Theorem 6B(b) | canth 5807 |
[Enderton] p.
133 | Exercise 1 | xpomen 12350 |
[Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6843 |
[Enderton] p.
136 | Corollary 6E | nneneq 6835 |
[Enderton] p.
139 | Theorem 6H(c) | mapen 6824 |
[Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7195 |
[Enderton] p.
143 | Theorem 6J | dju0en 7191 dju1en 7190 |
[Enderton] p.
144 | Corollary 6K | undif2ss 3490 |
[Enderton] p.
145 | Figure 38 | ffoss 5474 |
[Enderton] p.
145 | Definition | df-dom 6720 |
[Enderton] p.
146 | Example 1 | domen 6729 domeng 6730 |
[Enderton] p.
146 | Example 3 | nndomo 6842 |
[Enderton] p.
149 | Theorem 6L(c) | xpdom1 6813 xpdom1g 6811 xpdom2g 6810 |
[Enderton] p.
168 | Definition | df-po 4281 |
[Enderton] p.
192 | Theorem 7M(a) | oneli 4413 |
[Enderton] p.
192 | Theorem 7M(b) | ontr1 4374 |
[Enderton] p.
192 | Theorem 7M(c) | onirri 4527 |
[Enderton] p.
193 | Corollary 7N(b) | 0elon 4377 |
[Enderton] p.
193 | Corollary 7N(c) | onsuci 4500 |
[Enderton] p.
193 | Corollary 7N(d) | ssonunii 4473 |
[Enderton] p.
194 | Remark | onprc 4536 |
[Enderton] p.
194 | Exercise 16 | suc11 4542 |
[Enderton] p.
197 | Definition | df-card 7157 |
[Enderton] p.
200 | Exercise 25 | tfis 4567 |
[Enderton] p.
206 | Theorem 7X(b) | en2lp 4538 |
[Enderton] p.
207 | Exercise 34 | opthreg 4540 |
[Enderton] p.
208 | Exercise 35 | suc11g 4541 |
[Geuvers], p.
1 | Remark | expap0 10506 |
[Geuvers], p. 6 | Lemma
2.13 | mulap0r 8534 |
[Geuvers], p. 6 | Lemma
2.15 | mulap0 8572 |
[Geuvers], p. 9 | Lemma
2.35 | msqge0 8535 |
[Geuvers], p.
9 | Definition 3.1(2) | ax-arch 7893 |
[Geuvers], p. 10 | Lemma
3.9 | maxcom 11167 |
[Geuvers], p. 10 | Lemma
3.10 | maxle1 11175 maxle2 11176 |
[Geuvers], p. 10 | Lemma
3.11 | maxleast 11177 |
[Geuvers], p. 10 | Lemma
3.12 | maxleb 11180 |
[Geuvers], p.
11 | Definition 3.13 | dfabsmax 11181 |
[Geuvers], p.
17 | Definition 6.1 | df-ap 8501 |
[Gleason] p.
117 | Proposition 9-2.1 | df-enq 7309 enqer 7320 |
[Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7313 df-nqqs 7310 |
[Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7306 df-plqqs 7311 |
[Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7307 df-mqqs 7312 |
[Gleason] p.
119 | Proposition 9-2.5 | df-rq 7314 |
[Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7370 |
[Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7373 ltbtwnnq 7378 ltbtwnnqq 7377 |
[Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7362 |
[Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7363 |
[Gleason] p.
123 | Proposition 9-3.5 | addclpr 7499 |
[Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7541 |
[Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7540 |
[Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7559 |
[Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7575 |
[Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7581 ltaprlem 7580 |
[Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7578 |
[Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7534 |
[Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7554 |
[Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7543 |
[Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7542 |
[Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7550 |
[Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7600 |
[Gleason] p.
126 | Proposition 9-4.1 | df-enr 7688 enrer 7697 |
[Gleason] p.
126 | Proposition 9-4.2 | df-0r 7693 df-1r 7694 df-nr 7689 |
[Gleason] p.
126 | Proposition 9-4.3 | df-mr 7691 df-plr 7690 negexsr 7734 recexsrlem 7736 |
[Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7692 |
[Gleason] p.
130 | Proposition 10-1.3 | creui 8876 creur 8875 cru 8521 |
[Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 7885 axcnre 7843 |
[Gleason] p.
132 | Definition 10-3.1 | crim 10822 crimd 10941 crimi 10901 crre 10821 crred 10940 crrei 10900 |
[Gleason] p.
132 | Definition 10-3.2 | remim 10824 remimd 10906 |
[Gleason] p.
133 | Definition 10.36 | absval2 11021 absval2d 11149 absval2i 11108 |
[Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 10848 cjaddd 10929 cjaddi 10896 |
[Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 10849 cjmuld 10930 cjmuli 10897 |
[Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 10847 cjcjd 10907 cjcji 10879 |
[Gleason] p.
133 | Proposition 10-3.4(f) | cjre 10846 cjreb 10830 cjrebd 10910 cjrebi 10882 cjred 10935 rere 10829 rereb 10827 rerebd 10909 rerebi 10881 rered 10933 |
[Gleason] p.
133 | Proposition 10-3.4(h) | addcj 10855 addcjd 10921 addcji 10891 |
[Gleason] p.
133 | Proposition 10-3.7(a) | absval 10965 |
[Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11016 abscjd 11154 abscji 11112 |
[Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11028 abs00d 11150 abs00i 11109 absne0d 11151 |
[Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11060 releabsd 11155 releabsi 11113 |
[Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11033 absmuld 11158 absmuli 11115 |
[Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11019 sqabsaddi 11116 |
[Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11068 abstrid 11160 abstrii 11119 |
[Gleason] p.
134 | Definition 10-4.1 | df-exp 10476 exp0 10480 expp1 10483 expp1d 10610 |
[Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10518 expaddd 10611 |
[Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 13627 cxpmuld 13650 expmul 10521 expmuld 10612 |
[Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10515 mulexpd 10624 rpmulcxp 13624 |
[Gleason] p.
141 | Definition 11-2.1 | fzval 9967 |
[Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11289 |
[Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11291 |
[Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11290 |
[Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11294 |
[Gleason] p.
172 | Corollary 12-2.5 | climrecl 11287 |
[Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11283 climcj 11284 climim 11286 climre 11285 |
[Gleason] p.
173 | Definition 12-3.1 | df-ltxr 7959 df-xr 7958 ltxr 9732 |
[Gleason] p. 180 | Theorem
12-5.3 | climcau 11310 |
[Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10256 |
[Gleason] p.
223 | Definition 14-1.1 | df-met 12783 |
[Gleason] p.
223 | Definition 14-1.1(a) | met0 13158 xmet0 13157 |
[Gleason] p.
223 | Definition 14-1.1(c) | metsym 13165 |
[Gleason] p.
223 | Definition 14-1.1(d) | mettri 13167 mstri 13267 xmettri 13166 xmstri 13266 |
[Gleason] p.
230 | Proposition 14-2.6 | txlm 13073 |
[Gleason] p.
240 | Proposition 14-4.2 | metcnp3 13305 |
[Gleason] p.
243 | Proposition 14-4.16 | addcn2 11273 addcncntop 13346 mulcn2 11275 mulcncntop 13348 subcn2 11274 subcncntop 13347 |
[Gleason] p.
295 | Remark | bcval3 10685 bcval4 10686 |
[Gleason] p.
295 | Equation 2 | bcpasc 10700 |
[Gleason] p.
295 | Definition of binomial coefficient | bcval 10683 df-bc 10682 |
[Gleason] p.
296 | Remark | bcn0 10689 bcnn 10691 |
[Gleason] p. 296 | Theorem
15-2.8 | binom 11447 |
[Gleason] p.
308 | Equation 2 | ef0 11635 |
[Gleason] p.
308 | Equation 3 | efcj 11636 |
[Gleason] p.
309 | Corollary 15-4.3 | efne0 11641 |
[Gleason] p.
309 | Corollary 15-4.4 | efexp 11645 |
[Gleason] p.
310 | Equation 14 | sinadd 11699 |
[Gleason] p.
310 | Equation 15 | cosadd 11700 |
[Gleason] p.
311 | Equation 17 | sincossq 11711 |
[Gleason] p.
311 | Equation 18 | cosbnd 11716 sinbnd 11715 |
[Gleason] p.
311 | Definition of ` ` | df-pi 11616 |
[Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
[Hamilton] p. 73 | Rule
1 | ax-mp 5 |
[Hamilton] p. 74 | Rule
2 | ax-gen 1442 |
[Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 12719 mndideu 12662 |
[Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 12741 |
[Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 12766 |
[Heyting] p.
127 | Axiom #1 | ax1hfs 14103 |
[Hitchcock] p. 5 | Rule
A3 | mptnan 1418 |
[Hitchcock] p. 5 | Rule
A4 | mptxor 1419 |
[Hitchcock] p. 5 | Rule
A5 | mtpxor 1421 |
[HoTT], p. | Lemma
10.4.1 | exmidontriim 7202 |
[HoTT], p. | Theorem
7.2.6 | nndceq 6478 |
[HoTT], p.
| Exercise 11.10 | neapmkv 14099 |
[HoTT], p. | Exercise
11.11 | mulap0bd 8575 |
[HoTT], p. | Section
11.2.1 | df-iltp 7432 df-imp 7431 df-iplp 7430 df-reap 8494 |
[HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7624 |
[HoTT], p. | Corollary
11.4.3 | conventions 13756 |
[HoTT], p.
| Exercise 11.6(i) | dcapnconst 14092 dceqnconst 14091 |
[HoTT], p. | Corollary
11.2.13 | axcaucvg 7862 caucvgpr 7644 caucvgprpr 7674 caucvgsr 7764 |
[HoTT], p. | Definition
11.2.1 | df-inp 7428 |
[HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 14097 |
[HoTT], p. | Proposition
11.2.3 | df-iso 4282 ltpopr 7557 ltsopr 7558 |
[HoTT], p. | Definition
11.2.7(v) | apsym 8525 reapcotr 8517 reapirr 8496 |
[HoTT], p. | Definition
11.2.7(vi) | 0lt1 8046 gt0add 8492 leadd1 8349 lelttr 8008 lemul1a 8774 lenlt 7995 ltadd1 8348 ltletr 8009 ltmul1 8511 reaplt 8507 |
[Jech] p. 4 | Definition of
class | cv 1347 cvjust 2165 |
[Jech] p.
78 | Note | opthprc 4662 |
[KalishMontague] p.
81 | Note 1 | ax-i9 1523 |
[Kreyszig] p.
3 | Property M1 | metcl 13147 xmetcl 13146 |
[Kreyszig] p.
4 | Property M2 | meteq0 13154 |
[Kreyszig] p.
12 | Equation 5 | muleqadd 8586 |
[Kreyszig] p.
18 | Definition 1.3-2 | mopnval 13236 |
[Kreyszig] p.
19 | Remark | mopntopon 13237 |
[Kreyszig] p.
19 | Theorem T1 | mopn0 13282 mopnm 13242 |
[Kreyszig] p.
19 | Theorem T2 | unimopn 13280 |
[Kreyszig] p.
19 | Definition of neighborhood | neibl 13285 |
[Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 13307 |
[Kreyszig] p.
25 | Definition 1.4-1 | lmbr 13007 |
[Kunen] p. 10 | Axiom
0 | a9e 1689 |
[Kunen] p. 12 | Axiom
6 | zfrep6 4106 |
[Kunen] p. 24 | Definition
10.24 | mapval 6638 mapvalg 6636 |
[Kunen] p. 31 | Definition
10.24 | mapex 6632 |
[KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3883 |
[Lang] p.
3 | Statement | lidrideqd 12635 mndbn0 12667 |
[Lang] p.
3 | Definition | df-mnd 12653 |
[Lang] p.
7 | Definition | dfgrp2e 12733 |
[Levy] p.
338 | Axiom | df-clab 2157 df-clel 2166 df-cleq 2163 |
[Lopez-Astorga] p.
12 | Rule 1 | mptnan 1418 |
[Lopez-Astorga] p.
12 | Rule 2 | mptxor 1419 |
[Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1421 |
[Margaris] p. 40 | Rule
C | exlimiv 1591 |
[Margaris] p. 49 | Axiom
A1 | ax-1 6 |
[Margaris] p. 49 | Axiom
A2 | ax-2 7 |
[Margaris] p. 49 | Axiom
A3 | condc 848 |
[Margaris] p.
49 | Definition | dfbi2 386 dfordc 887 exalim 1495 |
[Margaris] p.
51 | Theorem 1 | idALT 20 |
[Margaris] p.
56 | Theorem 3 | syld 45 |
[Margaris] p.
60 | Theorem 8 | jcn 646 |
[Margaris] p.
89 | Theorem 19.2 | 19.2 1631 r19.2m 3501 |
[Margaris] p.
89 | Theorem 19.3 | 19.3 1547 19.3h 1546 rr19.3v 2869 |
[Margaris] p.
89 | Theorem 19.5 | alcom 1471 |
[Margaris] p.
89 | Theorem 19.6 | alexdc 1612 alexim 1638 |
[Margaris] p.
89 | Theorem 19.7 | alnex 1492 |
[Margaris] p.
89 | Theorem 19.8 | 19.8a 1583 spsbe 1835 |
[Margaris] p.
89 | Theorem 19.9 | 19.9 1637 19.9h 1636 19.9v 1864 exlimd 1590 |
[Margaris] p.
89 | Theorem 19.11 | excom 1657 excomim 1656 |
[Margaris] p.
89 | Theorem 19.12 | 19.12 1658 r19.12 2576 |
[Margaris] p.
90 | Theorem 19.14 | exnalim 1639 |
[Margaris] p.
90 | Theorem 19.15 | albi 1461 ralbi 2602 |
[Margaris] p.
90 | Theorem 19.16 | 19.16 1548 |
[Margaris] p.
90 | Theorem 19.17 | 19.17 1549 |
[Margaris] p.
90 | Theorem 19.18 | exbi 1597 rexbi 2603 |
[Margaris] p.
90 | Theorem 19.19 | 19.19 1659 |
[Margaris] p.
90 | Theorem 19.20 | alim 1450 alimd 1514 alimdh 1460 alimdv 1872 ralimdaa 2536 ralimdv 2538 ralimdva 2537 ralimdvva 2539 sbcimdv 3020 |
[Margaris] p.
90 | Theorem 19.21 | 19.21-2 1660 19.21 1576 19.21bi 1551 19.21h 1550 19.21ht 1574 19.21t 1575 19.21v 1866 alrimd 1603 alrimdd 1602 alrimdh 1472 alrimdv 1869 alrimi 1515 alrimih 1462 alrimiv 1867 alrimivv 1868 r19.21 2546 r19.21be 2561 r19.21bi 2558 r19.21t 2545 r19.21v 2547 ralrimd 2548 ralrimdv 2549 ralrimdva 2550 ralrimdvv 2554 ralrimdvva 2555 ralrimi 2541 ralrimiv 2542 ralrimiva 2543 ralrimivv 2551 ralrimivva 2552 ralrimivvva 2553 ralrimivw 2544 rexlimi 2580 |
[Margaris] p.
90 | Theorem 19.22 | 2alimdv 1874 2eximdv 1875 exim 1592
eximd 1605 eximdh 1604 eximdv 1873 rexim 2564 reximdai 2568 reximddv 2573 reximddv2 2575 reximdv 2571 reximdv2 2569 reximdva 2572 reximdvai 2570 reximi2 2566 |
[Margaris] p.
90 | Theorem 19.23 | 19.23 1671 19.23bi 1585 19.23h 1491 19.23ht 1490 19.23t 1670 19.23v 1876 19.23vv 1877 exlimd2 1588 exlimdh 1589 exlimdv 1812 exlimdvv 1890 exlimi 1587 exlimih 1586 exlimiv 1591 exlimivv 1889 r19.23 2578 r19.23v 2579 rexlimd 2584 rexlimdv 2586 rexlimdv3a 2589 rexlimdva 2587 rexlimdva2 2590 rexlimdvaa 2588 rexlimdvv 2594 rexlimdvva 2595 rexlimdvw 2591 rexlimiv 2581 rexlimiva 2582 rexlimivv 2593 |
[Margaris] p.
90 | Theorem 19.24 | i19.24 1632 |
[Margaris] p.
90 | Theorem 19.25 | 19.25 1619 |
[Margaris] p.
90 | Theorem 19.26 | 19.26-2 1475 19.26-3an 1476 19.26 1474 r19.26-2 2599 r19.26-3 2600 r19.26 2596 r19.26m 2601 |
[Margaris] p.
90 | Theorem 19.27 | 19.27 1554 19.27h 1553 19.27v 1892 r19.27av 2605 r19.27m 3510 r19.27mv 3511 |
[Margaris] p.
90 | Theorem 19.28 | 19.28 1556 19.28h 1555 19.28v 1893 r19.28av 2606 r19.28m 3504 r19.28mv 3507 rr19.28v 2870 |
[Margaris] p.
90 | Theorem 19.29 | 19.29 1613 19.29r 1614 19.29r2 1615 19.29x 1616 r19.29 2607 r19.29d2r 2614 r19.29r 2608 |
[Margaris] p.
90 | Theorem 19.30 | 19.30dc 1620 |
[Margaris] p.
90 | Theorem 19.31 | 19.31r 1674 |
[Margaris] p.
90 | Theorem 19.32 | 19.32dc 1672 19.32r 1673 r19.32r 2616 r19.32vdc 2619 r19.32vr 2618 |
[Margaris] p.
90 | Theorem 19.33 | 19.33 1477 19.33b2 1622 19.33bdc 1623 |
[Margaris] p.
90 | Theorem 19.34 | 19.34 1677 |
[Margaris] p.
90 | Theorem 19.35 | 19.35-1 1617 19.35i 1618 |
[Margaris] p.
90 | Theorem 19.36 | 19.36-1 1666 19.36aiv 1894 19.36i 1665 r19.36av 2621 |
[Margaris] p.
90 | Theorem 19.37 | 19.37-1 1667 19.37aiv 1668 r19.37 2622 r19.37av 2623 |
[Margaris] p.
90 | Theorem 19.38 | 19.38 1669 |
[Margaris] p.
90 | Theorem 19.39 | i19.39 1633 |
[Margaris] p.
90 | Theorem 19.40 | 19.40-2 1625 19.40 1624 r19.40 2624 |
[Margaris] p.
90 | Theorem 19.41 | 19.41 1679 19.41h 1678 19.41v 1895 19.41vv 1896 19.41vvv 1897 19.41vvvv 1898 r19.41 2625 r19.41v 2626 |
[Margaris] p.
90 | Theorem 19.42 | 19.42 1681 19.42h 1680 19.42v 1899 19.42vv 1904 19.42vvv 1905 19.42vvvv 1906 r19.42v 2627 |
[Margaris] p.
90 | Theorem 19.43 | 19.43 1621 r19.43 2628 |
[Margaris] p.
90 | Theorem 19.44 | 19.44 1675 r19.44av 2629 r19.44mv 3509 |
[Margaris] p.
90 | Theorem 19.45 | 19.45 1676 r19.45av 2630 r19.45mv 3508 |
[Margaris] p.
110 | Exercise 2(b) | eu1 2044 |
[Megill] p. 444 | Axiom
C5 | ax-17 1519 |
[Megill] p. 445 | Lemma
L12 | alequcom 1508 ax-10 1498 |
[Megill] p. 446 | Lemma
L17 | equtrr 1703 |
[Megill] p. 446 | Lemma
L19 | hbnae 1714 |
[Megill] p. 447 | Remark
9.1 | df-sb 1756 sbid 1767 |
[Megill] p. 448 | Scheme
C5' | ax-4 1503 |
[Megill] p. 448 | Scheme
C6' | ax-7 1441 |
[Megill] p. 448 | Scheme
C8' | ax-8 1497 |
[Megill] p. 448 | Scheme
C9' | ax-i12 1500 |
[Megill] p. 448 | Scheme
C11' | ax-10o 1709 |
[Megill] p. 448 | Scheme
C12' | ax-13 2143 |
[Megill] p. 448 | Scheme
C13' | ax-14 2144 |
[Megill] p. 448 | Scheme
C15' | ax-11o 1816 |
[Megill] p. 448 | Scheme
C16' | ax-16 1807 |
[Megill] p. 448 | Theorem
9.4 | dral1 1723 dral2 1724 drex1 1791 drex2 1725 drsb1 1792 drsb2 1834 |
[Megill] p. 449 | Theorem
9.7 | sbcom2 1980 sbequ 1833 sbid2v 1989 |
[Megill] p. 450 | Example
in Appendix | hba1 1533 |
[Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
[Mendelson] p.
69 | Axiom 4 | rspsbc 3037 rspsbca 3038 stdpc4 1768 |
[Mendelson] p.
69 | Axiom 5 | ra5 3043 stdpc5 1577 |
[Mendelson] p. 81 | Rule
C | exlimiv 1591 |
[Mendelson] p.
95 | Axiom 6 | stdpc6 1696 |
[Mendelson] p.
95 | Axiom 7 | stdpc7 1763 |
[Mendelson] p.
231 | Exercise 4.10(k) | inv1 3451 |
[Mendelson] p.
231 | Exercise 4.10(l) | unv 3452 |
[Mendelson] p.
231 | Exercise 4.10(n) | inssun 3367 |
[Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3415 |
[Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3368 |
[Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3258 |
[Mendelson] p.
231 | Definition of union | unssin 3366 |
[Mendelson] p.
235 | Exercise 4.12(c) | univ 4461 |
[Mendelson] p.
235 | Exercise 4.12(d) | pwv 3795 |
[Mendelson] p.
235 | Exercise 4.12(j) | pwin 4267 |
[Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4268 |
[Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4269 |
[Mendelson] p.
235 | Exercise 4.12(n) | uniin 3816 |
[Mendelson] p.
235 | Exercise 4.12(p) | reli 4740 |
[Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5131 |
[Mendelson] p.
246 | Definition of successor | df-suc 4356 |
[Mendelson] p.
254 | Proposition 4.22(b) | xpen 6823 |
[Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6799 xpsneng 6800 |
[Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6805 xpcomeng 6806 |
[Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6808 |
[Mendelson] p.
255 | Exercise 4.39 | endisj 6802 |
[Mendelson] p.
255 | Exercise 4.41 | mapprc 6630 |
[Mendelson] p.
255 | Exercise 4.43 | mapsnen 6789 |
[Mendelson] p.
255 | Exercise 4.47 | xpmapen 6828 |
[Mendelson] p.
255 | Exercise 4.42(a) | map0e 6664 |
[Mendelson] p.
255 | Exercise 4.42(b) | map1 6790 |
[Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7194 djucomen 7193 |
[Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7192 |
[Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6446 |
[Monk1] p. 26 | Theorem
2.8(vii) | ssin 3349 |
[Monk1] p. 33 | Theorem
3.2(i) | ssrel 4699 |
[Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4700 |
[Monk1] p. 34 | Definition
3.3 | df-opab 4051 |
[Monk1] p. 36 | Theorem
3.7(i) | coi1 5126 coi2 5127 |
[Monk1] p. 36 | Theorem
3.8(v) | dm0 4825 rn0 4867 |
[Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5015 |
[Monk1] p. 37 | Theorem
3.13(i) | relxp 4720 |
[Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4831 rnxpm 5040 |
[Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4691 xp0 5030 |
[Monk1] p. 38 | Theorem
3.16(ii) | ima0 4970 |
[Monk1] p. 38 | Theorem
3.16(viii) | imai 4967 |
[Monk1] p. 39 | Theorem
3.17 | imaex 4966 imaexg 4965 |
[Monk1] p. 39 | Theorem
3.16(xi) | imassrn 4964 |
[Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5626 funfvop 5608 |
[Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5540 |
[Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5548 |
[Monk1] p. 43 | Theorem
4.6 | funun 5242 |
[Monk1] p. 43 | Theorem
4.8(iv) | dff13 5747 dff13f 5749 |
[Monk1] p. 46 | Theorem
4.15(v) | funex 5719 funrnex 6093 |
[Monk1] p. 50 | Definition
5.4 | fniunfv 5741 |
[Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5094 |
[Monk1] p. 52 | Theorem
5.11(viii) | ssint 3847 |
[Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6134 df-1st 6119 |
[Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6135 df-2nd 6120 |
[Monk2] p. 105 | Axiom
C4 | ax-5 1440 |
[Monk2] p. 105 | Axiom
C7 | ax-8 1497 |
[Monk2] p. 105 | Axiom
C8 | ax-11 1499 ax-11o 1816 |
[Monk2] p. 105 | Axiom
(C8) | ax11v 1820 |
[Monk2] p. 109 | Lemma
12 | ax-7 1441 |
[Monk2] p. 109 | Lemma
15 | equvin 1856 equvini 1751 eqvinop 4228 |
[Monk2] p. 113 | Axiom
C5-1 | ax-17 1519 |
[Monk2] p. 113 | Axiom
C5-2 | ax6b 1644 |
[Monk2] p. 113 | Axiom
C5-3 | ax-7 1441 |
[Monk2] p. 114 | Lemma
22 | hba1 1533 |
[Monk2] p. 114 | Lemma
23 | hbia1 1545 nfia1 1573 |
[Monk2] p. 114 | Lemma
24 | hba2 1544 nfa2 1572 |
[Moschovakis] p.
2 | Chapter 2 | df-stab 826 dftest 14104 |
[Munkres] p. 77 | Example
2 | distop 12879 |
[Munkres] p.
78 | Definition of basis | df-bases 12835 isbasis3g 12838 |
[Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 12600 tgval2 12845 |
[Munkres] p.
79 | Remark | tgcl 12858 |
[Munkres] p. 80 | Lemma
2.1 | tgval3 12852 |
[Munkres] p. 80 | Lemma
2.2 | tgss2 12873 tgss3 12872 |
[Munkres] p. 81 | Lemma
2.3 | basgen 12874 basgen2 12875 |
[Munkres] p.
89 | Definition of subspace topology | resttop 12964 |
[Munkres] p. 93 | Theorem
6.1(1) | 0cld 12906 topcld 12903 |
[Munkres] p. 93 | Theorem
6.1(3) | uncld 12907 |
[Munkres] p.
94 | Definition of closure | clsval 12905 |
[Munkres] p.
94 | Definition of interior | ntrval 12904 |
[Munkres] p.
102 | Definition of continuous function | df-cn 12982 iscn 12991 iscn2 12994 |
[Munkres] p. 107 | Theorem
7.2(g) | cncnp 13024 cncnp2m 13025 cncnpi 13022 df-cnp 12983 iscnp 12993 |
[Munkres] p. 127 | Theorem
10.1 | metcn 13308 |
[Pierik], p. 8 | Section
2.2.1 | dfrex2fin 6881 |
[Pierik], p. 9 | Definition
2.4 | df-womni 7140 |
[Pierik], p. 9 | Definition
2.5 | df-markov 7128 omniwomnimkv 7143 |
[Pierik], p. 10 | Section
2.3 | dfdif3 3237 |
[Pierik], p.
14 | Definition 3.1 | df-omni 7111 exmidomniim 7117 finomni 7116 |
[Pierik], p. 15 | Section
3.1 | df-nninf 7097 |
[PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 14055 |
[PradicBrown2022], p.
2 | Remark | exmidpw 6886 |
[PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7178 |
[PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 |
[PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7125 |
[PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 14040 peano4nninf 14039 |
[PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 14042 |
[PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 14050 |
[PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 14052 |
[PradicBrown2022], p. 5 | Definition
3.3 | nnsf 14038 |
[Quine] p. 16 | Definition
2.1 | df-clab 2157 rabid 2645 |
[Quine] p. 17 | Definition
2.1'' | dfsb7 1984 |
[Quine] p. 18 | Definition
2.7 | df-cleq 2163 |
[Quine] p. 19 | Definition
2.9 | df-v 2732 |
[Quine] p. 34 | Theorem
5.1 | abeq2 2279 |
[Quine] p. 35 | Theorem
5.2 | abid2 2291 abid2f 2338 |
[Quine] p. 40 | Theorem
6.1 | sb5 1880 |
[Quine] p. 40 | Theorem
6.2 | sb56 1878 sb6 1879 |
[Quine] p. 41 | Theorem
6.3 | df-clel 2166 |
[Quine] p. 41 | Theorem
6.4 | eqid 2170 |
[Quine] p. 41 | Theorem
6.5 | eqcom 2172 |
[Quine] p. 42 | Theorem
6.6 | df-sbc 2956 |
[Quine] p. 42 | Theorem
6.7 | dfsbcq 2957 dfsbcq2 2958 |
[Quine] p. 43 | Theorem
6.8 | vex 2733 |
[Quine] p. 43 | Theorem
6.9 | isset 2736 |
[Quine] p. 44 | Theorem
7.3 | spcgf 2812 spcgv 2817 spcimgf 2810 |
[Quine] p. 44 | Theorem
6.11 | spsbc 2966 spsbcd 2967 |
[Quine] p. 44 | Theorem
6.12 | elex 2741 |
[Quine] p. 44 | Theorem
6.13 | elab 2874 elabg 2876 elabgf 2872 |
[Quine] p. 44 | Theorem
6.14 | noel 3418 |
[Quine] p. 48 | Theorem
7.2 | snprc 3648 |
[Quine] p. 48 | Definition
7.1 | df-pr 3590 df-sn 3589 |
[Quine] p. 49 | Theorem
7.4 | snss 3709 snssg 3716 |
[Quine] p. 49 | Theorem
7.5 | prss 3736 prssg 3737 |
[Quine] p. 49 | Theorem
7.6 | prid1 3689 prid1g 3687 prid2 3690 prid2g 3688 snid 3614
snidg 3612 |
[Quine] p. 51 | Theorem
7.12 | snexg 4170 snexprc 4172 |
[Quine] p. 51 | Theorem
7.13 | prexg 4196 |
[Quine] p. 53 | Theorem
8.2 | unisn 3812 unisng 3813 |
[Quine] p. 53 | Theorem
8.3 | uniun 3815 |
[Quine] p. 54 | Theorem
8.6 | elssuni 3824 |
[Quine] p. 54 | Theorem
8.7 | uni0 3823 |
[Quine] p. 56 | Theorem
8.17 | uniabio 5170 |
[Quine] p. 56 | Definition
8.18 | dfiota2 5161 |
[Quine] p. 57 | Theorem
8.19 | iotaval 5171 |
[Quine] p. 57 | Theorem
8.22 | iotanul 5175 |
[Quine] p. 58 | Theorem
8.23 | euiotaex 5176 |
[Quine] p. 58 | Definition
9.1 | df-op 3592 |
[Quine] p. 61 | Theorem
9.5 | opabid 4242 opelopab 4256 opelopaba 4251 opelopabaf 4258 opelopabf 4259 opelopabg 4253 opelopabga 4248 oprabid 5885 |
[Quine] p. 64 | Definition
9.11 | df-xp 4617 |
[Quine] p. 64 | Definition
9.12 | df-cnv 4619 |
[Quine] p. 64 | Definition
9.15 | df-id 4278 |
[Quine] p. 65 | Theorem
10.3 | fun0 5256 |
[Quine] p. 65 | Theorem
10.4 | funi 5230 |
[Quine] p. 65 | Theorem
10.5 | funsn 5246 funsng 5244 |
[Quine] p. 65 | Definition
10.1 | df-fun 5200 |
[Quine] p. 65 | Definition
10.2 | args 4980 dffv4g 5493 |
[Quine] p. 68 | Definition
10.11 | df-fv 5206 fv2 5491 |
[Quine] p. 124 | Theorem
17.3 | nn0opth2 10658 nn0opth2d 10657 nn0opthd 10656 |
[Quine] p. 284 | Axiom
39(vi) | funimaex 5283 funimaexg 5282 |
[Rudin] p. 164 | Equation
27 | efcan 11639 |
[Rudin] p. 164 | Equation
30 | efzval 11646 |
[Rudin] p. 167 | Equation
48 | absefi 11731 |
[Sanford] p.
39 | Remark | ax-mp 5 |
[Sanford] p. 39 | Rule
3 | mtpxor 1421 |
[Sanford] p. 39 | Rule
4 | mptxor 1419 |
[Sanford] p. 40 | Rule
1 | mptnan 1418 |
[Schechter] p.
51 | Definition of antisymmetry | intasym 4995 |
[Schechter] p.
51 | Definition of irreflexivity | intirr 4997 |
[Schechter] p.
51 | Definition of symmetry | cnvsym 4994 |
[Schechter] p.
51 | Definition of transitivity | cotr 4992 |
[Schechter] p.
428 | Definition 15.35 | bastop1 12877 |
[Stoll] p. 13 | Definition
of symmetric difference | symdif1 3392 |
[Stoll] p. 16 | Exercise
4.4 | 0dif 3486 dif0 3485 |
[Stoll] p. 16 | Exercise
4.8 | difdifdirss 3499 |
[Stoll] p. 19 | Theorem
5.2(13) | undm 3385 |
[Stoll] p. 19 | Theorem
5.2(13') | indmss 3386 |
[Stoll] p.
20 | Remark | invdif 3369 |
[Stoll] p. 25 | Definition
of ordered triple | df-ot 3593 |
[Stoll] p.
43 | Definition | uniiun 3926 |
[Stoll] p.
44 | Definition | intiin 3927 |
[Stoll] p.
45 | Definition | df-iin 3876 |
[Stoll] p. 45 | Definition
indexed union | df-iun 3875 |
[Stoll] p. 176 | Theorem
3.4(27) | imandc 884 imanst 883 |
[Stoll] p. 262 | Example
4.1 | symdif1 3392 |
[Suppes] p. 22 | Theorem
2 | eq0 3433 |
[Suppes] p. 22 | Theorem
4 | eqss 3162 eqssd 3164 eqssi 3163 |
[Suppes] p. 23 | Theorem
5 | ss0 3455 ss0b 3454 |
[Suppes] p. 23 | Theorem
6 | sstr 3155 |
[Suppes] p. 25 | Theorem
12 | elin 3310 elun 3268 |
[Suppes] p. 26 | Theorem
15 | inidm 3336 |
[Suppes] p. 26 | Theorem
16 | in0 3449 |
[Suppes] p. 27 | Theorem
23 | unidm 3270 |
[Suppes] p. 27 | Theorem
24 | un0 3448 |
[Suppes] p. 27 | Theorem
25 | ssun1 3290 |
[Suppes] p. 27 | Theorem
26 | ssequn1 3297 |
[Suppes] p. 27 | Theorem
27 | unss 3301 |
[Suppes] p. 27 | Theorem
28 | indir 3376 |
[Suppes] p. 27 | Theorem
29 | undir 3377 |
[Suppes] p. 28 | Theorem
32 | difid 3483 difidALT 3484 |
[Suppes] p. 29 | Theorem
33 | difin 3364 |
[Suppes] p. 29 | Theorem
34 | indif 3370 |
[Suppes] p. 29 | Theorem
35 | undif1ss 3489 |
[Suppes] p. 29 | Theorem
36 | difun2 3494 |
[Suppes] p. 29 | Theorem
37 | difin0 3488 |
[Suppes] p. 29 | Theorem
38 | disjdif 3487 |
[Suppes] p. 29 | Theorem
39 | difundi 3379 |
[Suppes] p. 29 | Theorem
40 | difindiss 3381 |
[Suppes] p. 30 | Theorem
41 | nalset 4119 |
[Suppes] p. 39 | Theorem
61 | uniss 3817 |
[Suppes] p. 39 | Theorem
65 | uniop 4240 |
[Suppes] p. 41 | Theorem
70 | intsn 3866 |
[Suppes] p. 42 | Theorem
71 | intpr 3863 intprg 3864 |
[Suppes] p. 42 | Theorem
73 | op1stb 4463 op1stbg 4464 |
[Suppes] p. 42 | Theorem
78 | intun 3862 |
[Suppes] p. 44 | Definition
15(a) | dfiun2 3907 dfiun2g 3905 |
[Suppes] p. 44 | Definition
15(b) | dfiin2 3908 |
[Suppes] p. 47 | Theorem
86 | elpw 3572 elpw2 4143 elpw2g 4142 elpwg 3574 |
[Suppes] p. 47 | Theorem
87 | pwid 3581 |
[Suppes] p. 47 | Theorem
89 | pw0 3727 |
[Suppes] p. 48 | Theorem
90 | pwpw0ss 3791 |
[Suppes] p. 52 | Theorem
101 | xpss12 4718 |
[Suppes] p. 52 | Theorem
102 | xpindi 4746 xpindir 4747 |
[Suppes] p. 52 | Theorem
103 | xpundi 4667 xpundir 4668 |
[Suppes] p. 54 | Theorem
105 | elirrv 4532 |
[Suppes] p. 58 | Theorem
2 | relss 4698 |
[Suppes] p. 59 | Theorem
4 | eldm 4808 eldm2 4809 eldm2g 4807 eldmg 4806 |
[Suppes] p. 59 | Definition
3 | df-dm 4621 |
[Suppes] p. 60 | Theorem
6 | dmin 4819 |
[Suppes] p. 60 | Theorem
8 | rnun 5019 |
[Suppes] p. 60 | Theorem
9 | rnin 5020 |
[Suppes] p. 60 | Definition
4 | dfrn2 4799 |
[Suppes] p. 61 | Theorem
11 | brcnv 4794 brcnvg 4792 |
[Suppes] p. 62 | Equation
5 | elcnv 4788 elcnv2 4789 |
[Suppes] p. 62 | Theorem
12 | relcnv 4989 |
[Suppes] p. 62 | Theorem
15 | cnvin 5018 |
[Suppes] p. 62 | Theorem
16 | cnvun 5016 |
[Suppes] p. 63 | Theorem
20 | co02 5124 |
[Suppes] p. 63 | Theorem
21 | dmcoss 4880 |
[Suppes] p. 63 | Definition
7 | df-co 4620 |
[Suppes] p. 64 | Theorem
26 | cnvco 4796 |
[Suppes] p. 64 | Theorem
27 | coass 5129 |
[Suppes] p. 65 | Theorem
31 | resundi 4904 |
[Suppes] p. 65 | Theorem
34 | elima 4958 elima2 4959 elima3 4960 elimag 4957 |
[Suppes] p. 65 | Theorem
35 | imaundi 5023 |
[Suppes] p. 66 | Theorem
40 | dminss 5025 |
[Suppes] p. 66 | Theorem
41 | imainss 5026 |
[Suppes] p. 67 | Exercise
11 | cnvxp 5029 |
[Suppes] p. 81 | Definition
34 | dfec2 6516 |
[Suppes] p. 82 | Theorem
72 | elec 6552 elecg 6551 |
[Suppes] p. 82 | Theorem
73 | erth 6557 erth2 6558 |
[Suppes] p. 89 | Theorem
96 | map0b 6665 |
[Suppes] p. 89 | Theorem
97 | map0 6667 map0g 6666 |
[Suppes] p. 89 | Theorem
98 | mapsn 6668 |
[Suppes] p. 89 | Theorem
99 | mapss 6669 |
[Suppes] p. 92 | Theorem
1 | enref 6743 enrefg 6742 |
[Suppes] p. 92 | Theorem
2 | ensym 6759 ensymb 6758 ensymi 6760 |
[Suppes] p. 92 | Theorem
3 | entr 6762 |
[Suppes] p. 92 | Theorem
4 | unen 6794 |
[Suppes] p. 94 | Theorem
15 | endom 6741 |
[Suppes] p. 94 | Theorem
16 | ssdomg 6756 |
[Suppes] p. 94 | Theorem
17 | domtr 6763 |
[Suppes] p. 95 | Theorem
18 | isbth 6944 |
[Suppes] p. 98 | Exercise
4 | fundmen 6784 fundmeng 6785 |
[Suppes] p. 98 | Exercise
6 | xpdom3m 6812 |
[Suppes] p.
130 | Definition 3 | df-tr 4088 |
[Suppes] p. 132 | Theorem
9 | ssonuni 4472 |
[Suppes] p.
134 | Definition 6 | df-suc 4356 |
[Suppes] p. 136 | Theorem
Schema 22 | findes 4587 finds 4584 finds1 4586 finds2 4585 |
[Suppes] p.
162 | Definition 5 | df-ltnqqs 7315 df-ltpq 7308 |
[Suppes] p. 228 | Theorem
Schema 61 | onintss 4375 |
[TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2152 |
[TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2163 |
[TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2166 |
[TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2165 |
[TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2188 |
[TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5857 |
[TakeutiZaring] p.
14 | Proposition 4.14 | ru 2954 |
[TakeutiZaring] p.
15 | Exercise 1 | elpr 3604 elpr2 3605 elprg 3603 |
[TakeutiZaring] p.
15 | Exercise 2 | elsn 3599 elsn2 3617 elsn2g 3616 elsng 3598 velsn 3600 |
[TakeutiZaring] p.
15 | Exercise 3 | elop 4216 |
[TakeutiZaring] p.
15 | Exercise 4 | sneq 3594 sneqr 3747 |
[TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3602 dfsn2 3597 |
[TakeutiZaring] p.
16 | Axiom 3 | uniex 4422 |
[TakeutiZaring] p.
16 | Exercise 6 | opth 4222 |
[TakeutiZaring] p.
16 | Exercise 8 | rext 4200 |
[TakeutiZaring] p.
16 | Corollary 5.8 | unex 4426 unexg 4428 |
[TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3632 |
[TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3797 |
[TakeutiZaring] p.
16 | Definition 5.6 | df-in 3127 df-un 3125 |
[TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3810 uniprg 3811 |
[TakeutiZaring] p.
17 | Axiom 4 | vpwex 4165 |
[TakeutiZaring] p.
17 | Exercise 1 | eltp 3631 |
[TakeutiZaring] p.
17 | Exercise 5 | elsuc 4391 elsucg 4389 sstr2 3154 |
[TakeutiZaring] p.
17 | Exercise 6 | uncom 3271 |
[TakeutiZaring] p.
17 | Exercise 7 | incom 3319 |
[TakeutiZaring] p.
17 | Exercise 8 | unass 3284 |
[TakeutiZaring] p.
17 | Exercise 9 | inass 3337 |
[TakeutiZaring] p.
17 | Exercise 10 | indi 3374 |
[TakeutiZaring] p.
17 | Exercise 11 | undi 3375 |
[TakeutiZaring] p.
17 | Definition 5.9 | dfss2 3136 |
[TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3568 |
[TakeutiZaring] p.
18 | Exercise 7 | unss2 3298 |
[TakeutiZaring] p.
18 | Exercise 9 | df-ss 3134 sseqin2 3346 |
[TakeutiZaring] p.
18 | Exercise 10 | ssid 3167 |
[TakeutiZaring] p.
18 | Exercise 12 | inss1 3347 inss2 3348 |
[TakeutiZaring] p.
18 | Exercise 13 | nssr 3207 |
[TakeutiZaring] p.
18 | Exercise 15 | unieq 3805 |
[TakeutiZaring] p.
18 | Exercise 18 | sspwb 4201 |
[TakeutiZaring] p.
18 | Exercise 19 | pweqb 4208 |
[TakeutiZaring] p.
20 | Definition | df-rab 2457 |
[TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4116 |
[TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3123 |
[TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3416 |
[TakeutiZaring] p.
20 | Proposition 5.15 | difid 3483 difidALT 3484 |
[TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3427 |
[TakeutiZaring] p.
21 | Theorem 5.22 | setind 4523 |
[TakeutiZaring] p.
21 | Definition 5.20 | df-v 2732 |
[TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4121 |
[TakeutiZaring] p.
22 | Exercise 1 | 0ss 3453 |
[TakeutiZaring] p.
22 | Exercise 3 | ssex 4126 ssexg 4128 |
[TakeutiZaring] p.
22 | Exercise 4 | inex1 4123 |
[TakeutiZaring] p.
22 | Exercise 5 | ruv 4534 |
[TakeutiZaring] p.
22 | Exercise 6 | elirr 4525 |
[TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3479 |
[TakeutiZaring] p.
22 | Exercise 11 | difdif 3252 |
[TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3388 |
[TakeutiZaring] p.
22 | Exercise 14 | difss 3253 |
[TakeutiZaring] p.
22 | Exercise 15 | sscon 3261 |
[TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2453 |
[TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2454 |
[TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4726 xpexg 4725 xpexgALT 6112 |
[TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4618 |
[TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5262 |
[TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5414 fun11 5265 |
[TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5209 svrelfun 5263 |
[TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4798 |
[TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4800 |
[TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4623 |
[TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4624 |
[TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4620 |
[TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5065 dfrel2 5061 |
[TakeutiZaring] p.
25 | Exercise 3 | xpss 4719 |
[TakeutiZaring] p.
25 | Exercise 5 | relun 4728 |
[TakeutiZaring] p.
25 | Exercise 6 | reluni 4734 |
[TakeutiZaring] p.
25 | Exercise 9 | inxp 4745 |
[TakeutiZaring] p.
25 | Exercise 12 | relres 4919 |
[TakeutiZaring] p.
25 | Exercise 13 | opelres 4896 opelresg 4898 |
[TakeutiZaring] p.
25 | Exercise 14 | dmres 4912 |
[TakeutiZaring] p.
25 | Exercise 15 | resss 4915 |
[TakeutiZaring] p.
25 | Exercise 17 | resabs1 4920 |
[TakeutiZaring] p.
25 | Exercise 18 | funres 5239 |
[TakeutiZaring] p.
25 | Exercise 24 | relco 5109 |
[TakeutiZaring] p.
25 | Exercise 29 | funco 5238 |
[TakeutiZaring] p.
25 | Exercise 30 | f1co 5415 |
[TakeutiZaring] p.
26 | Definition 6.10 | eu2 2063 |
[TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5206 fv3 5519 |
[TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5149 cnvexg 5148 |
[TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4877 dmexg 4875 |
[TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4878 rnexg 4876 |
[TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5513 |
[TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5523 tz6.12 5524 tz6.12c 5526 |
[TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5487 |
[TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5201 |
[TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5202 |
[TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5204 wfo 5196 |
[TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5203 wf1 5195 |
[TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5205 wf1o 5197 |
[TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5593 eqfnfv2 5594 eqfnfv2f 5597 |
[TakeutiZaring] p.
28 | Exercise 5 | fvco 5566 |
[TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5718 fnexALT 6090 |
[TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5717 resfunexgALT 6087 |
[TakeutiZaring] p.
29 | Exercise 9 | funimaex 5283 funimaexg 5282 |
[TakeutiZaring] p.
29 | Definition 6.18 | df-br 3990 |
[TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 4981 iniseg 4983 |
[TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4274 |
[TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5207 |
[TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5789 |
[TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5790 |
[TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5795 |
[TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5797 |
[TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5805 |
[TakeutiZaring] p.
35 | Notation | wtr 4087 |
[TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4339 |
[TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4091 |
[TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4560 |
[TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4366 |
[TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4370 |
[TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4476 |
[TakeutiZaring] p.
38 | Definition 7.11 | df-on 4353 |
[TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4470 |
[TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4536 |
[TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4566 |
[TakeutiZaring] p.
40 | Exercise 7 | dftr2 4089 |
[TakeutiZaring] p.
40 | Exercise 11 | unon 4495 |
[TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4471 |
[TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3824 |
[TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4356 |
[TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4400 sucidg 4401 |
[TakeutiZaring] p.
41 | Proposition 7.24 | suceloni 4485 |
[TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4354 |
[TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4490 ordelsuc 4489 |
[TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4578 |
[TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4579 |
[TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4580 |
[TakeutiZaring] p.
43 | Axiom 7 | omex 4577 |
[TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4591 |
[TakeutiZaring] p.
43 | Corollary 7.31 | find 4583 |
[TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4581 |
[TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4582 |
[TakeutiZaring] p.
44 | Exercise 2 | int0 3845 |
[TakeutiZaring] p.
44 | Exercise 3 | trintssm 4103 |
[TakeutiZaring] p.
44 | Exercise 4 | intss1 3846 |
[TakeutiZaring] p.
44 | Exercise 6 | onintonm 4501 |
[TakeutiZaring] p.
44 | Definition 7.35 | df-int 3832 |
[TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6287 |
[TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6344 tfri1d 6314 |
[TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6345 tfri2d 6315 |
[TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6346 |
[TakeutiZaring] p.
50 | Exercise 3 | smoiso 6281 |
[TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6265 |
[TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6443 |
[TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6439 |
[TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6436 |
[TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6440 |
[TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6488 nnaordi 6487 |
[TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3918 uniss2 3827 |
[TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6449 |
[TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6459 |
[TakeutiZaring] p.
62 | Exercise 5 | oaword1 6450 |
[TakeutiZaring] p.
62 | Definition 8.15 | om0 6437 omsuc 6451 |
[TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6460 |
[TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6496 nnmordi 6495 |
[TakeutiZaring] p.
67 | Definition 8.30 | oei0 6438 |
[TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7164 |
[TakeutiZaring] p.
88 | Exercise 1 | en0 6773 |
[TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6835 |
[TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6836 |
[TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6721 isfi 6739 |
[TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6809 |
[TakeutiZaring] p.
95 | Definition 10.42 | df-map 6628 |
[TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6826 |
[Tarski] p. 67 | Axiom
B5 | ax-4 1503 |
[Tarski] p. 68 | Lemma
6 | equid 1694 |
[Tarski] p. 69 | Lemma
7 | equcomi 1697 |
[Tarski] p. 70 | Lemma
14 | spim 1731 spime 1734 spimeh 1732 spimh 1730 |
[Tarski] p. 70 | Lemma
16 | ax-11 1499 ax-11o 1816 ax11i 1707 |
[Tarski] p. 70 | Lemmas 16
and 17 | sb6 1879 |
[Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1519 |
[Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2143 ax-14 2144 |
[WhiteheadRussell] p.
96 | Axiom *1.3 | olc 706 |
[WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 722 |
[WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 751 |
[WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 760 |
[WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 784 |
[WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 611 |
[WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
[WhiteheadRussell] p.
100 | Theorem *2.03 | con2 638 |
[WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
[WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
[WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
[WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 832 |
[WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2117 syl 14 |
[WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 732 |
[WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
[WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 831 |
[WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 624 |
[WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 880 |
[WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 838 |
[WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 851 |
[WhiteheadRussell] p.
103 | Theorem *2.16 | con3 637 |
[WhiteheadRussell] p.
103 | Theorem *2.17 | condc 848 |
[WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 850 |
[WhiteheadRussell] p.
104 | Theorem *2.2 | orc 707 |
[WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 770 |
[WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 612 |
[WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 616 |
[WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 888 |
[WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 902 |
[WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
[WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 763 |
[WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 764 |
[WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 799 |
[WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 800 |
[WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 798 |
[WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 974 |
[WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 773 |
[WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 771 |
[WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 772 |
[WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
[WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 733 |
[WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 734 |
[WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 862 pm2.5gdc 861 |
[WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 857 |
[WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 735 |
[WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 736 |
[WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 737 |
[WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 650 |
[WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 651 |
[WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 717 |
[WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 886 |
[WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 720 |
[WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 721 |
[WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 860 |
[WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 743 |
[WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 795 |
[WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 796 |
[WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 654 |
[WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 708 pm2.67 738 |
[WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 864 pm2.521gdc 863 |
[WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 742 |
[WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 805 |
[WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 889 |
[WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 910 |
[WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 801 |
[WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 802 |
[WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 804 |
[WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 803 |
[WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
[WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 806 |
[WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 807 |
[WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
[WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 900 |
[WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 100 |
[WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 749 |
[WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 138 |
[WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 952 |
[WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 953 |
[WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 954 |
[WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 748 |
[WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 262 |
[WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 263 |
[WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 688 |
[WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 345 |
[WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 259 |
[WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 260 |
[WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 108 simplimdc 855 |
[WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 109 simprimdc 854 |
[WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 343 |
[WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 344 |
[WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 684 |
[WhiteheadRussell] p.
113 | Fact) | pm3.45 592 |
[WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 331 |
[WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 329 |
[WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 330 |
[WhiteheadRussell] p.
113 | Theorem *3.44 | jao 750 pm3.44 710 |
[WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 342 |
[WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 597 |
[WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 780 |
[WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 866 |
[WhiteheadRussell] p.
117 | Theorem *4.2 | biid 170 |
[WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 867 |
[WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 885 |
[WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 689 |
[WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 139 |
[WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 947 bitr 469 |
[WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 393 |
[WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 752 pm4.25 753 |
[WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 264 |
[WhiteheadRussell] p.
118 | Theorem *4.4 | andi 813 |
[WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 723 |
[WhiteheadRussell] p.
118 | Theorem *4.32 | anass 399 |
[WhiteheadRussell] p.
118 | Theorem *4.33 | orass 762 |
[WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 463 |
[WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 787 |
[WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 600 |
[WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 817 |
[WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 975 |
[WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 811 |
[WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 966 |
[WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 944 |
[WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 774 |
[WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 809 pm4.45 779 pm4.45im 332 |
[WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1474 |
[WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 951 |
[WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 892 imorr 716 |
[WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 317 |
[WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 894 |
[WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 745 |
[WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 746 |
[WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 897 |
[WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 933 |
[WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 747 pm4.56 775 |
[WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 934 oranim 776 |
[WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 681 |
[WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 893 |
[WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 881 |
[WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 895 |
[WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 682 |
[WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 896 |
[WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 882 |
[WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 387 pm4.71d 391 pm4.71i 389 pm4.71r 388 pm4.71rd 392 pm4.71ri 390 |
[WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 822 |
[WhiteheadRussell] p.
121 | Theorem *4.73 | iba 298 |
[WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 739 |
[WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 598 pm4.76 599 |
[WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 705 pm4.77 794 |
[WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 777 |
[WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 898 |
[WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 702 |
[WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 903 |
[WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 945 |
[WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 946 |
[WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 235 |
[WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 236 |
[WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 239 |
[WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 247 impexp 261 pm4.87 552 |
[WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 596 |
[WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 904 |
[WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 905 |
[WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 907 |
[WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 906 |
[WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1384 |
[WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 823 |
[WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 899 |
[WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1389 pm5.18dc 878 |
[WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 701 |
[WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 690 |
[WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1387 |
[WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1392 |
[WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1393 |
[WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 890 |
[WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 472 |
[WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 248 |
[WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 241 |
[WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 921 pm5.6r 922 |
[WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 949 |
[WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 346 |
[WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 450 |
[WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 604 |
[WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 912 |
[WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 605 |
[WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 249 pm5.41 250 |
[WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 318 |
[WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 920 |
[WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 797 |
[WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 913 |
[WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 908 |
[WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 789 |
[WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 940 |
[WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 941 |
[WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 956 |
[WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 243 |
[WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 178 |
[WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 957 |
[WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1628 |
[WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1478 |
[WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1625 |
[WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1888 |
[WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2022 |
[WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2421 |
[WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2422 |
[WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2868 |
[WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3011 |
[WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5178 |
[WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5179 |
[WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2098 eupickbi 2101 |
[WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5206 |
[WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7167 |