Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7245  fidcenum 7086
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7086
[AczelRathjen], p. 73Lemma 8.1.14enumct 7245
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12957
[AczelRathjen], p. 74Lemma 8.1.16xpfi 7057
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 7043
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12972
[AczelRathjen], p. 75Corollary 8.1.20unct 12974
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12963  znnen 12930
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12975
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12976
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10960
[AczelRathjen], p. 183Chapter 20ax-setind 4604
[AhoHopUll] p. 318Section 9.1df-concat 11087  df-pfx 11166  df-substr 11139  df-word 11034  lencl 11037  wrd0 11058
[Apostol] p. 18Theorem I.1addcan 8289  addcan2d 8294  addcan2i 8292  addcand 8293  addcani 8291
[Apostol] p. 18Theorem I.2negeu 8300
[Apostol] p. 18Theorem I.3negsub 8357  negsubd 8426  negsubi 8387
[Apostol] p. 18Theorem I.4negneg 8359  negnegd 8411  negnegi 8379
[Apostol] p. 18Theorem I.5subdi 8494  subdid 8523  subdii 8516  subdir 8495  subdird 8524  subdiri 8517
[Apostol] p. 18Theorem I.6mul01 8498  mul01d 8502  mul01i 8500  mul02 8496  mul02d 8501  mul02i 8499
[Apostol] p. 18Theorem I.9divrecapd 8903
[Apostol] p. 18Theorem I.10recrecapi 8854
[Apostol] p. 18Theorem I.12mul2neg 8507  mul2negd 8522  mul2negi 8515  mulneg1 8504  mulneg1d 8520  mulneg1i 8513
[Apostol] p. 18Theorem I.14rdivmuldivd 14067
[Apostol] p. 18Theorem I.15divdivdivap 8823
[Apostol] p. 20Axiom 7rpaddcl 9836  rpaddcld 9871  rpmulcl 9837  rpmulcld 9872
[Apostol] p. 20Axiom 90nrp 9848
[Apostol] p. 20Theorem I.17lttri 8214
[Apostol] p. 20Theorem I.18ltadd1d 8648  ltadd1dd 8666  ltadd1i 8612
[Apostol] p. 20Theorem I.19ltmul1 8702  ltmul1a 8701  ltmul1i 9030  ltmul1ii 9038  ltmul2 8966  ltmul2d 9898  ltmul2dd 9912  ltmul2i 9033
[Apostol] p. 20Theorem I.210lt1 8236
[Apostol] p. 20Theorem I.23lt0neg1 8578  lt0neg1d 8625  ltneg 8572  ltnegd 8633  ltnegi 8603
[Apostol] p. 20Theorem I.25lt2add 8555  lt2addd 8677  lt2addi 8620
[Apostol] p. 20Definition of positive numbersdf-rp 9813
[Apostol] p. 21Exercise 4recgt0 8960  recgt0d 9044  recgt0i 9016  recgt0ii 9017
[Apostol] p. 22Definition of integersdf-z 9410
[Apostol] p. 22Definition of rationalsdf-q 9778
[Apostol] p. 24Theorem I.26supeuti 7124
[Apostol] p. 26Theorem I.29arch 9329
[Apostol] p. 28Exercise 2btwnz 9529
[Apostol] p. 28Exercise 3nnrecl 9330
[Apostol] p. 28Exercise 6qbtwnre 10438
[Apostol] p. 28Exercise 10(a)zeneo 12343  zneo 9511
[Apostol] p. 29Theorem I.35resqrtth 11503  sqrtthi 11591
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 9076
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12518
[Apostol] p. 363Remarkabsgt0api 11618
[Apostol] p. 363Exampleabssubd 11665  abssubi 11622
[ApostolNT] p. 14Definitiondf-dvds 12260
[ApostolNT] p. 14Theorem 1.1(a)iddvds 12276
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 12300
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 12296
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 12290
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 12292
[ApostolNT] p. 14Theorem 1.1(f)1dvds 12277
[ApostolNT] p. 14Theorem 1.1(g)dvds0 12278
[ApostolNT] p. 14Theorem 1.1(h)0dvds 12283
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12317
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12319
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12321
[ApostolNT] p. 15Definitiondfgcd2 12496
[ApostolNT] p. 16Definitionisprm2 12600
[ApostolNT] p. 16Theorem 1.5coprmdvds 12575
[ApostolNT] p. 16Theorem 1.7prminf 12987
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12455
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12497
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12499
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12469
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12462
[ApostolNT] p. 17Theorem 1.8coprm 12627
[ApostolNT] p. 17Theorem 1.9euclemma 12629
[ApostolNT] p. 17Theorem 1.101arith2 12852
[ApostolNT] p. 19Theorem 1.14divalg 12396
[ApostolNT] p. 20Theorem 1.15eucalg 12542
[ApostolNT] p. 25Definitiondf-phi 12694
[ApostolNT] p. 26Theorem 2.2phisum 12724
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12705
[ApostolNT] p. 28Theorem 2.5(c)phimul 12709
[ApostolNT] p. 38Remarkdf-sgm 15615
[ApostolNT] p. 38Definitiondf-sgm 15615
[ApostolNT] p. 104Definitioncongr 12583
[ApostolNT] p. 106Remarkdvdsval3 12263
[ApostolNT] p. 106Definitionmoddvds 12271
[ApostolNT] p. 107Example 2mod2eq0even 12350
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12351
[ApostolNT] p. 107Example 4zmod1congr 10525
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10562
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10850
[ApostolNT] p. 108Theorem 5.3modmulconst 12295
[ApostolNT] p. 109Theorem 5.4cncongr1 12586
[ApostolNT] p. 109Theorem 5.6gcdmodi 12905
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12588
[ApostolNT] p. 113Theorem 5.17eulerth 12716
[ApostolNT] p. 113Theorem 5.18vfermltl 12735
[ApostolNT] p. 114Theorem 5.19fermltl 12717
[ApostolNT] p. 179Definitiondf-lgs 15636  lgsprme0 15680
[ApostolNT] p. 180Example 11lgs 15681
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15657
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15672
[ApostolNT] p. 181Theorem 9.4m1lgs 15723
[ApostolNT] p. 181Theorem 9.52lgs 15742  2lgsoddprm 15751
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15707
[ApostolNT] p. 185Theorem 9.8lgsquad 15718
[ApostolNT] p. 188Definitiondf-lgs 15636  lgs1 15682
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15673
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15675
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15683
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15684
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 661
[Bauer] p. 483Theorem 1.3acexmid 5968  onsucelsucexmidlem 4596
[Bauer], p. 481Section 1.1pwtrufal 16244
[Bauer], p. 483Definitionn0rf 3482
[Bauer], p. 483Theorem 1.22irrexpq 15609  2irrexpqap 15611
[Bauer], p. 485Theorem 2.1ssfiexmid 7001
[Bauer], p. 493Section 5.1ivthdich 15286
[Bauer], p. 494Theorem 5.5ivthinc 15276
[BauerHanson], p. 27Proposition 5.2cnstab 8755
[BauerSwan], p. 14Remark0ct 7237  ctm 7239
[BauerSwan], p. 14Proposition 2.6subctctexmid 16247
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7245
[BauerTaylor], p. 32Lemma 6.16prarloclem 7651
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7564
[BauerTaylor], p. 52Proposition 11.15prarloc 7653
[BauerTaylor], p. 53Lemma 11.16addclpr 7687  addlocpr 7686
[BauerTaylor], p. 55Proposition 12.7appdivnq 7713
[BauerTaylor], p. 56Lemma 12.8prmuloc 7716
[BauerTaylor], p. 56Lemma 12.9mullocpr 7721
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2058
[BellMachover] p. 460Notationdf-mo 2059
[BellMachover] p. 460Definitionmo3 2110  mo3h 2109
[BellMachover] p. 462Theorem 1.1bm1.1 2192
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4182
[BellMachover] p. 466Axiom Powaxpow3 4238
[BellMachover] p. 466Axiom Unionaxun2 4501
[BellMachover] p. 469Theorem 2.2(i)ordirr 4609
[BellMachover] p. 469Theorem 2.2(iii)onelon 4450
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4612
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4563
[BellMachover] p. 471Definition of Limdf-ilim 4435
[BellMachover] p. 472Axiom Infzfinf2 4656
[BellMachover] p. 473Theorem 2.8limom 4681
[Bobzien] p. 116Statement T3stoic3 1451
[Bobzien] p. 117Statement T2stoic2a 1449
[Bobzien] p. 117Statement T4stoic4a 1452
[Bobzien] p. 117Conclusion the contradictorystoic1a 1447
[Bollobas] p. 1Section I.1df-edg 15816  isuhgropm 15838  isusgropen 15920  isuspgropen 15919
[Bollobas] p. 7Section I.1df-ushgrm 15827
[BourbakiAlg1] p. 1Definition 1df-mgm 13349
[BourbakiAlg1] p. 4Definition 5df-sgrp 13395
[BourbakiAlg1] p. 12Definition 2df-mnd 13410
[BourbakiAlg1] p. 92Definition 1df-ring 13921
[BourbakiAlg1] p. 93Section I.8.1df-rng 13856
[BourbakiEns] p. Proposition 8fcof1 5877  fcofo 5878
[BourbakiTop1] p. Remarkxnegmnf 9988  xnegpnf 9987
[BourbakiTop1] p. Remark rexneg 9989
[BourbakiTop1] p. Propositionishmeo 14937
[BourbakiTop1] p. Property V_issnei2 14790
[BourbakiTop1] p. Property V_iiinnei 14796
[BourbakiTop1] p. Property V_ivneissex 14798
[BourbakiTop1] p. Proposition 1neipsm 14787  neiss 14783
[BourbakiTop1] p. Proposition 2cnptopco 14855
[BourbakiTop1] p. Proposition 4imasnopn 14932
[BourbakiTop1] p. Property V_iiielnei 14785
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14631
[Bruck] p. 1Section I.1df-mgm 13349
[Bruck] p. 23Section II.1df-sgrp 13395
[Bruck] p. 28Theorem 3.2dfgrp3m 13592
[ChoquetDD] p. 2Definition of mappingdf-mpt 4124
[Cohen] p. 301Remarkrelogoprlem 15501
[Cohen] p. 301Property 2relogmul 15502  relogmuld 15517
[Cohen] p. 301Property 3relogdiv 15503  relogdivd 15518
[Cohen] p. 301Property 4relogexp 15505
[Cohen] p. 301Property 1alog1 15499
[Cohen] p. 301Property 1bloge 15500
[Cohen4] p. 348Observationrelogbcxpbap 15598
[Cohen4] p. 352Definitionrpelogb 15582
[Cohen4] p. 361Property 2rprelogbmul 15588
[Cohen4] p. 361Property 3logbrec 15593  rprelogbdiv 15590
[Cohen4] p. 361Property 4rplogbreexp 15586
[Cohen4] p. 361Property 6relogbexpap 15591
[Cohen4] p. 361Property 1(a)rplogbid1 15580
[Cohen4] p. 361Property 1(b)rplogb1 15581
[Cohen4] p. 367Propertyrplogbchbase 15583
[Cohen4] p. 377Property 2logblt 15595
[Crosilla] p. Axiom 1ax-ext 2189
[Crosilla] p. Axiom 2ax-pr 4270
[Crosilla] p. Axiom 3ax-un 4499
[Crosilla] p. Axiom 4ax-nul 4187
[Crosilla] p. Axiom 5ax-iinf 4655
[Crosilla] p. Axiom 6ru 3005
[Crosilla] p. Axiom 8ax-pow 4235
[Crosilla] p. Axiom 9ax-setind 4604
[Crosilla], p. Axiom 6ax-sep 4179
[Crosilla], p. Axiom 7ax-coll 4176
[Crosilla], p. Axiom 7'repizf 4177
[Crosilla], p. Theorem is statedordtriexmid 4588
[Crosilla], p. Axiom of choice implies instancesacexmid 5968
[Crosilla], p. Definition of ordinaldf-iord 4432
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4602
[Diestel] p. 27Section 1.10df-ushgrm 15827
[Eisenberg] p. 67Definition 5.3df-dif 3177
[Eisenberg] p. 82Definition 6.3df-iom 4658
[Eisenberg] p. 125Definition 8.21df-map 6762
[Enderton] p. 18Axiom of Empty Setaxnul 4186
[Enderton] p. 19Definitiondf-tp 3652
[Enderton] p. 26Exercise 5unissb 3895
[Enderton] p. 26Exercise 10pwel 4281
[Enderton] p. 28Exercise 7(b)pwunim 4352
[Enderton] p. 30Theorem "Distributive laws"iinin1m 4012  iinin2m 4011  iunin1 4007  iunin2 4006
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 4010  iundif2ss 4008
[Enderton] p. 33Exercise 23iinuniss 4025
[Enderton] p. 33Exercise 25iununir 4026
[Enderton] p. 33Exercise 24(a)iinpw 4033
[Enderton] p. 33Exercise 24(b)iunpw 4546  iunpwss 4034
[Enderton] p. 38Exercise 6(a)unipw 4280
[Enderton] p. 38Exercise 6(b)pwuni 4253
[Enderton] p. 41Lemma 3Dopeluu 4516  rnex 4966  rnexg 4963
[Enderton] p. 41Exercise 8dmuni 4908  rnuni 5114
[Enderton] p. 42Definition of a functiondffun7 5318  dffun8 5319
[Enderton] p. 43Definition of function valuefunfvdm2 5668
[Enderton] p. 43Definition of single-rootedfuncnv 5355
[Enderton] p. 44Definition (d)dfima2 5044  dfima3 5045
[Enderton] p. 47Theorem 3Hfvco2 5673
[Enderton] p. 49Axiom of Choice (first form)df-ac 7351
[Enderton] p. 50Theorem 3K(a)imauni 5855
[Enderton] p. 52Definitiondf-map 6762
[Enderton] p. 53Exercise 21coass 5221
[Enderton] p. 53Exercise 27dmco 5211
[Enderton] p. 53Exercise 14(a)funin 5365
[Enderton] p. 53Exercise 22(a)imass2 5078
[Enderton] p. 54Remarkixpf 6832  ixpssmap 6844
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6811
[Enderton] p. 56Theorem 3Merref 6665
[Enderton] p. 57Lemma 3Nerthi 6693
[Enderton] p. 57Definitiondf-ec 6647
[Enderton] p. 58Definitiondf-qs 6651
[Enderton] p. 60Theorem 3Qth3q 6752  th3qcor 6751  th3qlem1 6749  th3qlem2 6750
[Enderton] p. 61Exercise 35df-ec 6647
[Enderton] p. 65Exercise 56(a)dmun 4905
[Enderton] p. 68Definition of successordf-suc 4437
[Enderton] p. 71Definitiondf-tr 4160  dftr4 4164
[Enderton] p. 72Theorem 4Eunisuc 4479  unisucg 4480
[Enderton] p. 73Exercise 6unisuc 4479  unisucg 4480
[Enderton] p. 73Exercise 5(a)truni 4173
[Enderton] p. 73Exercise 5(b)trint 4174
[Enderton] p. 79Theorem 4I(A1)nna0 6585
[Enderton] p. 79Theorem 4I(A2)nnasuc 6587  onasuc 6577
[Enderton] p. 79Definition of operation valuedf-ov 5972
[Enderton] p. 80Theorem 4J(A1)nnm0 6586
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6588  onmsuc 6584
[Enderton] p. 81Theorem 4K(1)nnaass 6596
[Enderton] p. 81Theorem 4K(2)nna0r 6589  nnacom 6595
[Enderton] p. 81Theorem 4K(3)nndi 6597
[Enderton] p. 81Theorem 4K(4)nnmass 6598
[Enderton] p. 81Theorem 4K(5)nnmcom 6600
[Enderton] p. 82Exercise 16nnm0r 6590  nnmsucr 6599
[Enderton] p. 88Exercise 23nnaordex 6639
[Enderton] p. 129Definitiondf-en 6853
[Enderton] p. 132Theorem 6B(b)canth 5922
[Enderton] p. 133Exercise 1xpomen 12927
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6990
[Enderton] p. 136Corollary 6Enneneq 6981
[Enderton] p. 139Theorem 6H(c)mapen 6970
[Enderton] p. 142Theorem 6I(3)xpdjuen 7363
[Enderton] p. 143Theorem 6Jdju0en 7359  dju1en 7358
[Enderton] p. 144Corollary 6Kundif2ss 3545
[Enderton] p. 145Figure 38ffoss 5577
[Enderton] p. 145Definitiondf-dom 6854
[Enderton] p. 146Example 1domen 6865  domeng 6866
[Enderton] p. 146Example 3nndomo 6988
[Enderton] p. 149Theorem 6L(c)xpdom1 6957  xpdom1g 6955  xpdom2g 6954
[Enderton] p. 168Definitiondf-po 4362
[Enderton] p. 192Theorem 7M(a)oneli 4494
[Enderton] p. 192Theorem 7M(b)ontr1 4455
[Enderton] p. 192Theorem 7M(c)onirri 4610
[Enderton] p. 193Corollary 7N(b)0elon 4458
[Enderton] p. 193Corollary 7N(c)onsuci 4583
[Enderton] p. 193Corollary 7N(d)ssonunii 4556
[Enderton] p. 194Remarkonprc 4619
[Enderton] p. 194Exercise 16suc11 4625
[Enderton] p. 197Definitiondf-card 7314
[Enderton] p. 200Exercise 25tfis 4650
[Enderton] p. 206Theorem 7X(b)en2lp 4621
[Enderton] p. 207Exercise 34opthreg 4623
[Enderton] p. 208Exercise 35suc11g 4624
[Geuvers], p. 1Remarkexpap0 10753
[Geuvers], p. 6Lemma 2.13mulap0r 8725
[Geuvers], p. 6Lemma 2.15mulap0 8764
[Geuvers], p. 9Lemma 2.35msqge0 8726
[Geuvers], p. 9Definition 3.1(2)ax-arch 8081
[Geuvers], p. 10Lemma 3.9maxcom 11675
[Geuvers], p. 10Lemma 3.10maxle1 11683  maxle2 11684
[Geuvers], p. 10Lemma 3.11maxleast 11685
[Geuvers], p. 10Lemma 3.12maxleb 11688
[Geuvers], p. 11Definition 3.13dfabsmax 11689
[Geuvers], p. 17Definition 6.1df-ap 8692
[Gleason] p. 117Proposition 9-2.1df-enq 7497  enqer 7508
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7501  df-nqqs 7498
[Gleason] p. 117Proposition 9-2.3df-plpq 7494  df-plqqs 7499
[Gleason] p. 119Proposition 9-2.4df-mpq 7495  df-mqqs 7500
[Gleason] p. 119Proposition 9-2.5df-rq 7502
[Gleason] p. 119Proposition 9-2.6ltexnqq 7558
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7561  ltbtwnnq 7566  ltbtwnnqq 7565
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7550
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7551
[Gleason] p. 123Proposition 9-3.5addclpr 7687
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7729
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7728
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7747
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7763
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7769  ltaprlem 7768
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7766
[Gleason] p. 124Proposition 9-3.7mulclpr 7722
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7742
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7731
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7730
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7738
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7788
[Gleason] p. 126Proposition 9-4.1df-enr 7876  enrer 7885
[Gleason] p. 126Proposition 9-4.2df-0r 7881  df-1r 7882  df-nr 7877
[Gleason] p. 126Proposition 9-4.3df-mr 7879  df-plr 7878  negexsr 7922  recexsrlem 7924
[Gleason] p. 127Proposition 9-4.4df-ltr 7880
[Gleason] p. 130Proposition 10-1.3creui 9070  creur 9069  cru 8712
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 8073  axcnre 8031
[Gleason] p. 132Definition 10-3.1crim 11330  crimd 11449  crimi 11409  crre 11329  crred 11448  crrei 11408
[Gleason] p. 132Definition 10-3.2remim 11332  remimd 11414
[Gleason] p. 133Definition 10.36absval2 11529  absval2d 11657  absval2i 11616
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11356  cjaddd 11437  cjaddi 11404
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11357  cjmuld 11438  cjmuli 11405
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11355  cjcjd 11415  cjcji 11387
[Gleason] p. 133Proposition 10-3.4(f)cjre 11354  cjreb 11338  cjrebd 11418  cjrebi 11390  cjred 11443  rere 11337  rereb 11335  rerebd 11417  rerebi 11389  rered 11441
[Gleason] p. 133Proposition 10-3.4(h)addcj 11363  addcjd 11429  addcji 11399
[Gleason] p. 133Proposition 10-3.7(a)absval 11473
[Gleason] p. 133Proposition 10-3.7(b)abscj 11524  abscjd 11662  abscji 11620
[Gleason] p. 133Proposition 10-3.7(c)abs00 11536  abs00d 11658  abs00i 11617  absne0d 11659
[Gleason] p. 133Proposition 10-3.7(d)releabs 11568  releabsd 11663  releabsi 11621
[Gleason] p. 133Proposition 10-3.7(f)absmul 11541  absmuld 11666  absmuli 11623
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11527  sqabsaddi 11624
[Gleason] p. 133Proposition 10-3.7(h)abstri 11576  abstrid 11668  abstrii 11627
[Gleason] p. 134Definition 10-4.1df-exp 10723  exp0 10727  expp1 10730  expp1d 10858
[Gleason] p. 135Proposition 10-4.2(a)expadd 10765  expaddd 10859
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15545  cxpmuld 15570  expmul 10768  expmuld 10860
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10762  mulexpd 10872  rpmulcxp 15542
[Gleason] p. 141Definition 11-2.1fzval 10169
[Gleason] p. 168Proposition 12-2.1(a)climadd 11798
[Gleason] p. 168Proposition 12-2.1(b)climsub 11800
[Gleason] p. 168Proposition 12-2.1(c)climmul 11799
[Gleason] p. 171Corollary 12-2.2climmulc2 11803
[Gleason] p. 172Corollary 12-2.5climrecl 11796
[Gleason] p. 172Proposition 12-2.4(c)climabs 11792  climcj 11793  climim 11795  climre 11794
[Gleason] p. 173Definition 12-3.1df-ltxr 8149  df-xr 8148  ltxr 9934
[Gleason] p. 180Theorem 12-5.3climcau 11819
[Gleason] p. 217Lemma 13-4.1btwnzge0 10482
[Gleason] p. 223Definition 14-1.1df-met 14468
[Gleason] p. 223Definition 14-1.1(a)met0 14997  xmet0 14996
[Gleason] p. 223Definition 14-1.1(c)metsym 15004
[Gleason] p. 223Definition 14-1.1(d)mettri 15006  mstri 15106  xmettri 15005  xmstri 15105
[Gleason] p. 230Proposition 14-2.6txlm 14912
[Gleason] p. 240Proposition 14-4.2metcnp3 15144
[Gleason] p. 243Proposition 14-4.16addcn2 11782  addcncntop 15195  mulcn2 11784  mulcncntop 15197  subcn2 11783  subcncntop 15196
[Gleason] p. 295Remarkbcval3 10935  bcval4 10936
[Gleason] p. 295Equation 2bcpasc 10950
[Gleason] p. 295Definition of binomial coefficientbcval 10933  df-bc 10932
[Gleason] p. 296Remarkbcn0 10939  bcnn 10941
[Gleason] p. 296Theorem 15-2.8binom 11956
[Gleason] p. 308Equation 2ef0 12144
[Gleason] p. 308Equation 3efcj 12145
[Gleason] p. 309Corollary 15-4.3efne0 12150
[Gleason] p. 309Corollary 15-4.4efexp 12154
[Gleason] p. 310Equation 14sinadd 12208
[Gleason] p. 310Equation 15cosadd 12209
[Gleason] p. 311Equation 17sincossq 12220
[Gleason] p. 311Equation 18cosbnd 12225  sinbnd 12224
[Gleason] p. 311Definition of ` `df-pi 12125
[Golan] p. 1Remarksrgisid 13909
[Golan] p. 1Definitiondf-srg 13887
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1473
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13504  mndideu 13419
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13531
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13560
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13571
[Herstein] p. 57Exercise 1dfgrp3me 13593
[Heyting] p. 127Axiom #1ax1hfs 16323
[Hitchcock] p. 5Rule A3mptnan 1443
[Hitchcock] p. 5Rule A4mptxor 1444
[Hitchcock] p. 5Rule A5mtpxor 1446
[HoTT], p. Lemma 10.4.1exmidontriim 7370
[HoTT], p. Theorem 7.2.6nndceq 6610
[HoTT], p. Exercise 11.10neapmkv 16317
[HoTT], p. Exercise 11.11mulap0bd 8767
[HoTT], p. Section 11.2.1df-iltp 7620  df-imp 7619  df-iplp 7618  df-reap 8685
[HoTT], p. Theorem 11.2.4recapb 8781  rerecapb 8953
[HoTT], p. Corollary 3.9.2uchoice 6248
[HoTT], p. Theorem 11.2.12cauappcvgpr 7812
[HoTT], p. Corollary 11.4.3conventions 15965
[HoTT], p. Exercise 11.6(i)dcapnconst 16310  dceqnconst 16309
[HoTT], p. Corollary 11.2.13axcaucvg 8050  caucvgpr 7832  caucvgprpr 7862  caucvgsr 7952
[HoTT], p. Definition 11.2.1df-inp 7616
[HoTT], p. Exercise 11.6(ii)nconstwlpo 16315
[HoTT], p. Proposition 11.2.3df-iso 4363  ltpopr 7745  ltsopr 7746
[HoTT], p. Definition 11.2.7(v)apsym 8716  reapcotr 8708  reapirr 8687
[HoTT], p. Definition 11.2.7(vi)0lt1 8236  gt0add 8683  leadd1 8540  lelttr 8198  lemul1a 8968  lenlt 8185  ltadd1 8539  ltletr 8199  ltmul1 8702  reaplt 8698
[Jech] p. 4Definition of classcv 1372  cvjust 2202
[Jech] p. 78Noteopthprc 4745
[KalishMontague] p. 81Note 1ax-i9 1554
[Kreyszig] p. 3Property M1metcl 14986  xmetcl 14985
[Kreyszig] p. 4Property M2meteq0 14993
[Kreyszig] p. 12Equation 5muleqadd 8778
[Kreyszig] p. 18Definition 1.3-2mopnval 15075
[Kreyszig] p. 19Remarkmopntopon 15076
[Kreyszig] p. 19Theorem T1mopn0 15121  mopnm 15081
[Kreyszig] p. 19Theorem T2unimopn 15119
[Kreyszig] p. 19Definition of neighborhoodneibl 15124
[Kreyszig] p. 20Definition 1.3-3metcnp2 15146
[Kreyszig] p. 25Definition 1.4-1lmbr 14846
[Kreyszig] p. 51Equation 2lmodvneg1 14253
[Kreyszig] p. 51Equation 1almod0vs 14244
[Kreyszig] p. 51Equation 1blmodvs0 14245
[Kunen] p. 10Axiom 0a9e 1720
[Kunen] p. 12Axiom 6zfrep6 4178
[Kunen] p. 24Definition 10.24mapval 6772  mapvalg 6770
[Kunen] p. 31Definition 10.24mapex 6766
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3952
[Lang] p. 3Statementlidrideqd 13374  mndbn0 13424
[Lang] p. 3Definitiondf-mnd 13410
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13391
[Lang] p. 5Equationgsumfzreidx 13834
[Lang] p. 6Definitionmulgnn0gsum 13625
[Lang] p. 7Definitiondfgrp2e 13521
[Levy] p. 338Axiomdf-clab 2194  df-clel 2203  df-cleq 2200
[Lopez-Astorga] p. 12Rule 1mptnan 1443
[Lopez-Astorga] p. 12Rule 2mptxor 1444
[Lopez-Astorga] p. 12Rule 3mtpxor 1446
[Margaris] p. 40Rule Cexlimiv 1622
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 855
[Margaris] p. 49Definitiondfbi2 388  dfordc 894  exalim 1526
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 653
[Margaris] p. 89Theorem 19.219.2 1662  r19.2m 3556
[Margaris] p. 89Theorem 19.319.3 1578  19.3h 1577  rr19.3v 2920
[Margaris] p. 89Theorem 19.5alcom 1502
[Margaris] p. 89Theorem 19.6alexdc 1643  alexim 1669
[Margaris] p. 89Theorem 19.7alnex 1523
[Margaris] p. 89Theorem 19.819.8a 1614  spsbe 1866
[Margaris] p. 89Theorem 19.919.9 1668  19.9h 1667  19.9v 1895  exlimd 1621
[Margaris] p. 89Theorem 19.11excom 1688  excomim 1687
[Margaris] p. 89Theorem 19.1219.12 1689  r19.12 2615
[Margaris] p. 90Theorem 19.14exnalim 1670
[Margaris] p. 90Theorem 19.15albi 1492  ralbi 2641
[Margaris] p. 90Theorem 19.1619.16 1579
[Margaris] p. 90Theorem 19.1719.17 1580
[Margaris] p. 90Theorem 19.18exbi 1628  rexbi 2642
[Margaris] p. 90Theorem 19.1919.19 1690
[Margaris] p. 90Theorem 19.20alim 1481  alimd 1545  alimdh 1491  alimdv 1903  ralimdaa 2574  ralimdv 2576  ralimdva 2575  ralimdvva 2577  sbcimdv 3072
[Margaris] p. 90Theorem 19.2119.21-2 1691  19.21 1607  19.21bi 1582  19.21h 1581  19.21ht 1605  19.21t 1606  19.21v 1897  alrimd 1634  alrimdd 1633  alrimdh 1503  alrimdv 1900  alrimi 1546  alrimih 1493  alrimiv 1898  alrimivv 1899  r19.21 2584  r19.21be 2599  r19.21bi 2596  r19.21t 2583  r19.21v 2585  ralrimd 2586  ralrimdv 2587  ralrimdva 2588  ralrimdvv 2592  ralrimdvva 2593  ralrimi 2579  ralrimiv 2580  ralrimiva 2581  ralrimivv 2589  ralrimivva 2590  ralrimivvva 2591  ralrimivw 2582  rexlimi 2619
[Margaris] p. 90Theorem 19.222alimdv 1905  2eximdv 1906  exim 1623  eximd 1636  eximdh 1635  eximdv 1904  rexim 2602  reximdai 2606  reximddv 2611  reximddv2 2613  reximdv 2609  reximdv2 2607  reximdva 2610  reximdvai 2608  reximi2 2604
[Margaris] p. 90Theorem 19.2319.23 1702  19.23bi 1616  19.23h 1522  19.23ht 1521  19.23t 1701  19.23v 1907  19.23vv 1908  exlimd2 1619  exlimdh 1620  exlimdv 1843  exlimdvv 1922  exlimi 1618  exlimih 1617  exlimiv 1622  exlimivv 1921  r19.23 2617  r19.23v 2618  rexlimd 2623  rexlimdv 2625  rexlimdv3a 2628  rexlimdva 2626  rexlimdva2 2629  rexlimdvaa 2627  rexlimdvv 2633  rexlimdvva 2634  rexlimdvw 2630  rexlimiv 2620  rexlimiva 2621  rexlimivv 2632
[Margaris] p. 90Theorem 19.24i19.24 1663
[Margaris] p. 90Theorem 19.2519.25 1650
[Margaris] p. 90Theorem 19.2619.26-2 1506  19.26-3an 1507  19.26 1505  r19.26-2 2638  r19.26-3 2639  r19.26 2635  r19.26m 2640
[Margaris] p. 90Theorem 19.2719.27 1585  19.27h 1584  19.27v 1924  r19.27av 2644  r19.27m 3565  r19.27mv 3566
[Margaris] p. 90Theorem 19.2819.28 1587  19.28h 1586  19.28v 1925  r19.28av 2645  r19.28m 3559  r19.28mv 3562  rr19.28v 2921
[Margaris] p. 90Theorem 19.2919.29 1644  19.29r 1645  19.29r2 1646  19.29x 1647  r19.29 2646  r19.29d2r 2653  r19.29r 2647
[Margaris] p. 90Theorem 19.3019.30dc 1651
[Margaris] p. 90Theorem 19.3119.31r 1705
[Margaris] p. 90Theorem 19.3219.32dc 1703  19.32r 1704  r19.32r 2655  r19.32vdc 2658  r19.32vr 2657
[Margaris] p. 90Theorem 19.3319.33 1508  19.33b2 1653  19.33bdc 1654
[Margaris] p. 90Theorem 19.3419.34 1708
[Margaris] p. 90Theorem 19.3519.35-1 1648  19.35i 1649
[Margaris] p. 90Theorem 19.3619.36-1 1697  19.36aiv 1926  19.36i 1696  r19.36av 2660
[Margaris] p. 90Theorem 19.3719.37-1 1698  19.37aiv 1699  r19.37 2661  r19.37av 2662
[Margaris] p. 90Theorem 19.3819.38 1700
[Margaris] p. 90Theorem 19.39i19.39 1664
[Margaris] p. 90Theorem 19.4019.40-2 1656  19.40 1655  r19.40 2663
[Margaris] p. 90Theorem 19.4119.41 1710  19.41h 1709  19.41v 1927  19.41vv 1928  19.41vvv 1929  19.41vvvv 1930  r19.41 2664  r19.41v 2665
[Margaris] p. 90Theorem 19.4219.42 1712  19.42h 1711  19.42v 1931  19.42vv 1936  19.42vvv 1937  19.42vvvv 1938  r19.42v 2666
[Margaris] p. 90Theorem 19.4319.43 1652  r19.43 2667
[Margaris] p. 90Theorem 19.4419.44 1706  r19.44av 2668  r19.44mv 3564
[Margaris] p. 90Theorem 19.4519.45 1707  r19.45av 2669  r19.45mv 3563
[Margaris] p. 110Exercise 2(b)eu1 2080
[Megill] p. 444Axiom C5ax-17 1550
[Megill] p. 445Lemma L12alequcom 1539  ax-10 1529
[Megill] p. 446Lemma L17equtrr 1734
[Megill] p. 446Lemma L19hbnae 1745
[Megill] p. 447Remark 9.1df-sb 1787  sbid 1798
[Megill] p. 448Scheme C5'ax-4 1534
[Megill] p. 448Scheme C6'ax-7 1472
[Megill] p. 448Scheme C8'ax-8 1528
[Megill] p. 448Scheme C9'ax-i12 1531
[Megill] p. 448Scheme C11'ax-10o 1740
[Megill] p. 448Scheme C12'ax-13 2180
[Megill] p. 448Scheme C13'ax-14 2181
[Megill] p. 448Scheme C15'ax-11o 1847
[Megill] p. 448Scheme C16'ax-16 1838
[Megill] p. 448Theorem 9.4dral1 1754  dral2 1755  drex1 1822  drex2 1756  drsb1 1823  drsb2 1865
[Megill] p. 449Theorem 9.7sbcom2 2016  sbequ 1864  sbid2v 2025
[Megill] p. 450Example in Appendixhba1 1564
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3090  rspsbca 3091  stdpc4 1799
[Mendelson] p. 69Axiom 5ra5 3096  stdpc5 1608
[Mendelson] p. 81Rule Cexlimiv 1622
[Mendelson] p. 95Axiom 6stdpc6 1727
[Mendelson] p. 95Axiom 7stdpc7 1794
[Mendelson] p. 231Exercise 4.10(k)inv1 3506
[Mendelson] p. 231Exercise 4.10(l)unv 3507
[Mendelson] p. 231Exercise 4.10(n)inssun 3422
[Mendelson] p. 231Exercise 4.10(o)df-nul 3470
[Mendelson] p. 231Exercise 4.10(q)inssddif 3423
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3313
[Mendelson] p. 231Definition of unionunssin 3421
[Mendelson] p. 235Exercise 4.12(c)univ 4542
[Mendelson] p. 235Exercise 4.12(d)pwv 3864
[Mendelson] p. 235Exercise 4.12(j)pwin 4348
[Mendelson] p. 235Exercise 4.12(k)pwunss 4349
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4350
[Mendelson] p. 235Exercise 4.12(n)uniin 3885
[Mendelson] p. 235Exercise 4.12(p)reli 4826
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5223
[Mendelson] p. 246Definition of successordf-suc 4437
[Mendelson] p. 254Proposition 4.22(b)xpen 6969
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6943  xpsneng 6944
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6949  xpcomeng 6950
[Mendelson] p. 254Proposition 4.22(e)xpassen 6952
[Mendelson] p. 255Exercise 4.39endisj 6946
[Mendelson] p. 255Exercise 4.41mapprc 6764
[Mendelson] p. 255Exercise 4.43mapsnen 6929
[Mendelson] p. 255Exercise 4.47xpmapen 6974
[Mendelson] p. 255Exercise 4.42(a)map0e 6798
[Mendelson] p. 255Exercise 4.42(b)map1 6930
[Mendelson] p. 258Exercise 4.56(c)djuassen 7362  djucomen 7361
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7360
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6578
[Monk1] p. 26Theorem 2.8(vii)ssin 3404
[Monk1] p. 33Theorem 3.2(i)ssrel 4782
[Monk1] p. 33Theorem 3.2(ii)eqrel 4783
[Monk1] p. 34Definition 3.3df-opab 4123
[Monk1] p. 36Theorem 3.7(i)coi1 5218  coi2 5219
[Monk1] p. 36Theorem 3.8(v)dm0 4912  rn0 4954
[Monk1] p. 36Theorem 3.7(ii)cnvi 5107
[Monk1] p. 37Theorem 3.13(i)relxp 4803
[Monk1] p. 37Theorem 3.13(x)dmxpm 4918  rnxpm 5132
[Monk1] p. 37Theorem 3.13(ii)0xp 4774  xp0 5122
[Monk1] p. 38Theorem 3.16(ii)ima0 5061
[Monk1] p. 38Theorem 3.16(viii)imai 5058
[Monk1] p. 39Theorem 3.17imaex 5057  imaexg 5056
[Monk1] p. 39Theorem 3.16(xi)imassrn 5053
[Monk1] p. 41Theorem 4.3(i)fnopfv 5735  funfvop 5717
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5646
[Monk1] p. 42Theorem 4.4(iii)fvelima 5655
[Monk1] p. 43Theorem 4.6funun 5335
[Monk1] p. 43Theorem 4.8(iv)dff13 5862  dff13f 5864
[Monk1] p. 46Theorem 4.15(v)funex 5832  funrnex 6224
[Monk1] p. 50Definition 5.4fniunfv 5856
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5186
[Monk1] p. 52Theorem 5.11(viii)ssint 3916
[Monk1] p. 52Definition 5.13 (i)1stval2 6266  df-1st 6251
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6267  df-2nd 6252
[Monk2] p. 105Axiom C4ax-5 1471
[Monk2] p. 105Axiom C7ax-8 1528
[Monk2] p. 105Axiom C8ax-11 1530  ax-11o 1847
[Monk2] p. 105Axiom (C8)ax11v 1851
[Monk2] p. 109Lemma 12ax-7 1472
[Monk2] p. 109Lemma 15equvin 1887  equvini 1782  eqvinop 4306
[Monk2] p. 113Axiom C5-1ax-17 1550
[Monk2] p. 113Axiom C5-2ax6b 1675
[Monk2] p. 113Axiom C5-3ax-7 1472
[Monk2] p. 114Lemma 22hba1 1564
[Monk2] p. 114Lemma 23hbia1 1576  nfia1 1604
[Monk2] p. 114Lemma 24hba2 1575  nfa2 1603
[Moschovakis] p. 2Chapter 2 df-stab 833  dftest 16324
[Munkres] p. 77Example 2distop 14718
[Munkres] p. 78Definition of basisdf-bases 14676  isbasis3g 14679
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 13253  tgval2 14684
[Munkres] p. 79Remarktgcl 14697
[Munkres] p. 80Lemma 2.1tgval3 14691
[Munkres] p. 80Lemma 2.2tgss2 14712  tgss3 14711
[Munkres] p. 81Lemma 2.3basgen 14713  basgen2 14714
[Munkres] p. 89Definition of subspace topologyresttop 14803
[Munkres] p. 93Theorem 6.1(1)0cld 14745  topcld 14742
[Munkres] p. 93Theorem 6.1(3)uncld 14746
[Munkres] p. 94Definition of closureclsval 14744
[Munkres] p. 94Definition of interiorntrval 14743
[Munkres] p. 102Definition of continuous functiondf-cn 14821  iscn 14830  iscn2 14833
[Munkres] p. 107Theorem 7.2(g)cncnp 14863  cncnp2m 14864  cncnpi 14861  df-cnp 14822  iscnp 14832
[Munkres] p. 127Theorem 10.1metcn 15147
[Pierik], p. 8Section 2.2.1dfrex2fin 7028
[Pierik], p. 9Definition 2.4df-womni 7294
[Pierik], p. 9Definition 2.5df-markov 7282  omniwomnimkv 7297
[Pierik], p. 10Section 2.3dfdif3 3292
[Pierik], p. 14Definition 3.1df-omni 7265  exmidomniim 7271  finomni 7270
[Pierik], p. 15Section 3.1df-nninf 7250
[Pradic2025], p. 2Section 1.1nnnninfen 16268
[PradicBrown2022], p. 1Theorem 1exmidsbthr 16272
[PradicBrown2022], p. 2Remarkexmidpw 7033
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7342
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7343  exmidfodomrlemrALT 7344
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7279
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 16254  peano4nninf 16253
[PradicBrown2022], p. 5Lemma 3.5nninfall 16256
[PradicBrown2022], p. 5Theorem 3.6nninfsel 16264
[PradicBrown2022], p. 5Corollary 3.7nninfomni 16266
[PradicBrown2022], p. 5Definition 3.3nnsf 16252
[Quine] p. 16Definition 2.1df-clab 2194  rabid 2685
[Quine] p. 17Definition 2.1''dfsb7 2020
[Quine] p. 18Definition 2.7df-cleq 2200
[Quine] p. 19Definition 2.9df-v 2779
[Quine] p. 34Theorem 5.1abeq2 2316
[Quine] p. 35Theorem 5.2abid2 2328  abid2f 2376
[Quine] p. 40Theorem 6.1sb5 1912
[Quine] p. 40Theorem 6.2sb56 1910  sb6 1911
[Quine] p. 41Theorem 6.3df-clel 2203
[Quine] p. 41Theorem 6.4eqid 2207
[Quine] p. 41Theorem 6.5eqcom 2209
[Quine] p. 42Theorem 6.6df-sbc 3007
[Quine] p. 42Theorem 6.7dfsbcq 3008  dfsbcq2 3009
[Quine] p. 43Theorem 6.8vex 2780
[Quine] p. 43Theorem 6.9isset 2784
[Quine] p. 44Theorem 7.3spcgf 2863  spcgv 2868  spcimgf 2861
[Quine] p. 44Theorem 6.11spsbc 3018  spsbcd 3019
[Quine] p. 44Theorem 6.12elex 2789
[Quine] p. 44Theorem 6.13elab 2925  elabg 2927  elabgf 2923
[Quine] p. 44Theorem 6.14noel 3473
[Quine] p. 48Theorem 7.2snprc 3709
[Quine] p. 48Definition 7.1df-pr 3651  df-sn 3650
[Quine] p. 49Theorem 7.4snss 3780  snssg 3779
[Quine] p. 49Theorem 7.5prss 3801  prssg 3802
[Quine] p. 49Theorem 7.6prid1 3750  prid1g 3748  prid2 3751  prid2g 3749  snid 3675  snidg 3673
[Quine] p. 51Theorem 7.12snexg 4245  snexprc 4247
[Quine] p. 51Theorem 7.13prexg 4272
[Quine] p. 53Theorem 8.2unisn 3881  unisng 3882
[Quine] p. 53Theorem 8.3uniun 3884
[Quine] p. 54Theorem 8.6elssuni 3893
[Quine] p. 54Theorem 8.7uni0 3892
[Quine] p. 56Theorem 8.17uniabio 5262
[Quine] p. 56Definition 8.18dfiota2 5253
[Quine] p. 57Theorem 8.19iotaval 5263
[Quine] p. 57Theorem 8.22iotanul 5267
[Quine] p. 58Theorem 8.23euiotaex 5268
[Quine] p. 58Definition 9.1df-op 3653
[Quine] p. 61Theorem 9.5opabid 4321  opabidw 4322  opelopab 4337  opelopaba 4331  opelopabaf 4339  opelopabf 4340  opelopabg 4333  opelopabga 4328  opelopabgf 4335  oprabid 6001
[Quine] p. 64Definition 9.11df-xp 4700
[Quine] p. 64Definition 9.12df-cnv 4702
[Quine] p. 64Definition 9.15df-id 4359
[Quine] p. 65Theorem 10.3fun0 5352
[Quine] p. 65Theorem 10.4funi 5323
[Quine] p. 65Theorem 10.5funsn 5342  funsng 5340
[Quine] p. 65Definition 10.1df-fun 5293
[Quine] p. 65Definition 10.2args 5071  dffv4g 5597
[Quine] p. 68Definition 10.11df-fv 5299  fv2 5595
[Quine] p. 124Theorem 17.3nn0opth2 10908  nn0opth2d 10907  nn0opthd 10906
[Quine] p. 284Axiom 39(vi)funimaex 5379  funimaexg 5378
[Roman] p. 18Part Preliminariesdf-rng 13856
[Roman] p. 19Part Preliminariesdf-ring 13921
[Rudin] p. 164Equation 27efcan 12148
[Rudin] p. 164Equation 30efzval 12155
[Rudin] p. 167Equation 48absefi 12241
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1446
[Sanford] p. 39Rule 4mptxor 1444
[Sanford] p. 40Rule 1mptnan 1443
[Schechter] p. 51Definition of antisymmetryintasym 5087
[Schechter] p. 51Definition of irreflexivityintirr 5089
[Schechter] p. 51Definition of symmetrycnvsym 5086
[Schechter] p. 51Definition of transitivitycotr 5084
[Schechter] p. 187Definition of "ring with unit"isring 13923
[Schechter] p. 428Definition 15.35bastop1 14716
[Stoll] p. 13Definition of symmetric differencesymdif1 3447
[Stoll] p. 16Exercise 4.40dif 3541  dif0 3540
[Stoll] p. 16Exercise 4.8difdifdirss 3554
[Stoll] p. 19Theorem 5.2(13)undm 3440
[Stoll] p. 19Theorem 5.2(13')indmss 3441
[Stoll] p. 20Remarkinvdif 3424
[Stoll] p. 25Definition of ordered tripledf-ot 3654
[Stoll] p. 43Definitionuniiun 3996
[Stoll] p. 44Definitionintiin 3997
[Stoll] p. 45Definitiondf-iin 3945
[Stoll] p. 45Definition indexed uniondf-iun 3944
[Stoll] p. 176Theorem 3.4(27)imandc 891  imanst 890
[Stoll] p. 262Example 4.1symdif1 3447
[Suppes] p. 22Theorem 2eq0 3488
[Suppes] p. 22Theorem 4eqss 3217  eqssd 3219  eqssi 3218
[Suppes] p. 23Theorem 5ss0 3510  ss0b 3509
[Suppes] p. 23Theorem 6sstr 3210
[Suppes] p. 25Theorem 12elin 3365  elun 3323
[Suppes] p. 26Theorem 15inidm 3391
[Suppes] p. 26Theorem 16in0 3504
[Suppes] p. 27Theorem 23unidm 3325
[Suppes] p. 27Theorem 24un0 3503
[Suppes] p. 27Theorem 25ssun1 3345
[Suppes] p. 27Theorem 26ssequn1 3352
[Suppes] p. 27Theorem 27unss 3356
[Suppes] p. 27Theorem 28indir 3431
[Suppes] p. 27Theorem 29undir 3432
[Suppes] p. 28Theorem 32difid 3538  difidALT 3539
[Suppes] p. 29Theorem 33difin 3419
[Suppes] p. 29Theorem 34indif 3425
[Suppes] p. 29Theorem 35undif1ss 3544
[Suppes] p. 29Theorem 36difun2 3549
[Suppes] p. 29Theorem 37difin0 3543
[Suppes] p. 29Theorem 38disjdif 3542
[Suppes] p. 29Theorem 39difundi 3434
[Suppes] p. 29Theorem 40difindiss 3436
[Suppes] p. 30Theorem 41nalset 4191
[Suppes] p. 39Theorem 61uniss 3886
[Suppes] p. 39Theorem 65uniop 4319
[Suppes] p. 41Theorem 70intsn 3935
[Suppes] p. 42Theorem 71intpr 3932  intprg 3933
[Suppes] p. 42Theorem 73op1stb 4544  op1stbg 4545
[Suppes] p. 42Theorem 78intun 3931
[Suppes] p. 44Definition 15(a)dfiun2 3976  dfiun2g 3974
[Suppes] p. 44Definition 15(b)dfiin2 3977
[Suppes] p. 47Theorem 86elpw 3633  elpw2 4218  elpw2g 4217  elpwg 3635
[Suppes] p. 47Theorem 87pwid 3642
[Suppes] p. 47Theorem 89pw0 3792
[Suppes] p. 48Theorem 90pwpw0ss 3860
[Suppes] p. 52Theorem 101xpss12 4801
[Suppes] p. 52Theorem 102xpindi 4832  xpindir 4833
[Suppes] p. 52Theorem 103xpundi 4750  xpundir 4751
[Suppes] p. 54Theorem 105elirrv 4615
[Suppes] p. 58Theorem 2relss 4781
[Suppes] p. 59Theorem 4eldm 4895  eldm2 4896  eldm2g 4894  eldmg 4893
[Suppes] p. 59Definition 3df-dm 4704
[Suppes] p. 60Theorem 6dmin 4906
[Suppes] p. 60Theorem 8rnun 5111
[Suppes] p. 60Theorem 9rnin 5112
[Suppes] p. 60Definition 4dfrn2 4885
[Suppes] p. 61Theorem 11brcnv 4880  brcnvg 4878
[Suppes] p. 62Equation 5elcnv 4874  elcnv2 4875
[Suppes] p. 62Theorem 12relcnv 5080
[Suppes] p. 62Theorem 15cnvin 5110
[Suppes] p. 62Theorem 16cnvun 5108
[Suppes] p. 63Theorem 20co02 5216
[Suppes] p. 63Theorem 21dmcoss 4968
[Suppes] p. 63Definition 7df-co 4703
[Suppes] p. 64Theorem 26cnvco 4882
[Suppes] p. 64Theorem 27coass 5221
[Suppes] p. 65Theorem 31resundi 4992
[Suppes] p. 65Theorem 34elima 5047  elima2 5048  elima3 5049  elimag 5046
[Suppes] p. 65Theorem 35imaundi 5115
[Suppes] p. 66Theorem 40dminss 5117
[Suppes] p. 66Theorem 41imainss 5118
[Suppes] p. 67Exercise 11cnvxp 5121
[Suppes] p. 81Definition 34dfec2 6648
[Suppes] p. 82Theorem 72elec 6686  elecg 6685
[Suppes] p. 82Theorem 73erth 6691  erth2 6692
[Suppes] p. 89Theorem 96map0b 6799
[Suppes] p. 89Theorem 97map0 6801  map0g 6800
[Suppes] p. 89Theorem 98mapsn 6802
[Suppes] p. 89Theorem 99mapss 6803
[Suppes] p. 92Theorem 1enref 6881  enrefg 6880
[Suppes] p. 92Theorem 2ensym 6898  ensymb 6897  ensymi 6899
[Suppes] p. 92Theorem 3entr 6901
[Suppes] p. 92Theorem 4unen 6934
[Suppes] p. 94Theorem 15endom 6879
[Suppes] p. 94Theorem 16ssdomg 6895
[Suppes] p. 94Theorem 17domtr 6902
[Suppes] p. 95Theorem 18isbth 7097
[Suppes] p. 98Exercise 4fundmen 6924  fundmeng 6925
[Suppes] p. 98Exercise 6xpdom3m 6956
[Suppes] p. 130Definition 3df-tr 4160
[Suppes] p. 132Theorem 9ssonuni 4555
[Suppes] p. 134Definition 6df-suc 4437
[Suppes] p. 136Theorem Schema 22findes 4670  finds 4667  finds1 4669  finds2 4668
[Suppes] p. 162Definition 5df-ltnqqs 7503  df-ltpq 7496
[Suppes] p. 228Theorem Schema 61onintss 4456
[TakeutiZaring] p. 8Axiom 1ax-ext 2189
[TakeutiZaring] p. 13Definition 4.5df-cleq 2200
[TakeutiZaring] p. 13Proposition 4.6df-clel 2203
[TakeutiZaring] p. 13Proposition 4.9cvjust 2202
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2225
[TakeutiZaring] p. 14Definition 4.16df-oprab 5973
[TakeutiZaring] p. 14Proposition 4.14ru 3005
[TakeutiZaring] p. 15Exercise 1elpr 3665  elpr2 3666  elprg 3664
[TakeutiZaring] p. 15Exercise 2elsn 3660  elsn2 3678  elsn2g 3677  elsng 3659  velsn 3661
[TakeutiZaring] p. 15Exercise 3elop 4294
[TakeutiZaring] p. 15Exercise 4sneq 3655  sneqr 3815
[TakeutiZaring] p. 15Definition 5.1dfpr2 3663  dfsn2 3658
[TakeutiZaring] p. 16Axiom 3uniex 4503
[TakeutiZaring] p. 16Exercise 6opth 4300
[TakeutiZaring] p. 16Exercise 8rext 4278
[TakeutiZaring] p. 16Corollary 5.8unex 4507  unexg 4509
[TakeutiZaring] p. 16Definition 5.3dftp2 3693
[TakeutiZaring] p. 16Definition 5.5df-uni 3866
[TakeutiZaring] p. 16Definition 5.6df-in 3181  df-un 3179
[TakeutiZaring] p. 16Proposition 5.7unipr 3879  uniprg 3880
[TakeutiZaring] p. 17Axiom 4vpwex 4240
[TakeutiZaring] p. 17Exercise 1eltp 3692
[TakeutiZaring] p. 17Exercise 5elsuc 4472  elsucg 4470  sstr2 3209
[TakeutiZaring] p. 17Exercise 6uncom 3326
[TakeutiZaring] p. 17Exercise 7incom 3374
[TakeutiZaring] p. 17Exercise 8unass 3339
[TakeutiZaring] p. 17Exercise 9inass 3392
[TakeutiZaring] p. 17Exercise 10indi 3429
[TakeutiZaring] p. 17Exercise 11undi 3430
[TakeutiZaring] p. 17Definition 5.9ssalel 3190
[TakeutiZaring] p. 17Definition 5.10df-pw 3629
[TakeutiZaring] p. 18Exercise 7unss2 3353
[TakeutiZaring] p. 18Exercise 9df-ss 3188  dfss2 3192  sseqin2 3401
[TakeutiZaring] p. 18Exercise 10ssid 3222
[TakeutiZaring] p. 18Exercise 12inss1 3402  inss2 3403
[TakeutiZaring] p. 18Exercise 13nssr 3262
[TakeutiZaring] p. 18Exercise 15unieq 3874
[TakeutiZaring] p. 18Exercise 18sspwb 4279
[TakeutiZaring] p. 18Exercise 19pweqb 4286
[TakeutiZaring] p. 20Definitiondf-rab 2495
[TakeutiZaring] p. 20Corollary 5.160ex 4188
[TakeutiZaring] p. 20Definition 5.12df-dif 3177
[TakeutiZaring] p. 20Definition 5.14dfnul2 3471
[TakeutiZaring] p. 20Proposition 5.15difid 3538  difidALT 3539
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3482
[TakeutiZaring] p. 21Theorem 5.22setind 4606
[TakeutiZaring] p. 21Definition 5.20df-v 2779
[TakeutiZaring] p. 21Proposition 5.21vprc 4193
[TakeutiZaring] p. 22Exercise 10ss 3508
[TakeutiZaring] p. 22Exercise 3ssex 4198  ssexg 4200
[TakeutiZaring] p. 22Exercise 4inex1 4195
[TakeutiZaring] p. 22Exercise 5ruv 4617
[TakeutiZaring] p. 22Exercise 6elirr 4608
[TakeutiZaring] p. 22Exercise 7ssdif0im 3534
[TakeutiZaring] p. 22Exercise 11difdif 3307
[TakeutiZaring] p. 22Exercise 13undif3ss 3443
[TakeutiZaring] p. 22Exercise 14difss 3308
[TakeutiZaring] p. 22Exercise 15sscon 3316
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2491
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2492
[TakeutiZaring] p. 23Proposition 6.2xpex 4809  xpexg 4808  xpexgALT 6243
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4701
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5358
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5515  fun11 5361
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5302  svrelfun 5359
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4884
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4886
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4706
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4707
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4703
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5157  dfrel2 5153
[TakeutiZaring] p. 25Exercise 3xpss 4802
[TakeutiZaring] p. 25Exercise 5relun 4811
[TakeutiZaring] p. 25Exercise 6reluni 4817
[TakeutiZaring] p. 25Exercise 9inxp 4831
[TakeutiZaring] p. 25Exercise 12relres 5007
[TakeutiZaring] p. 25Exercise 13opelres 4984  opelresg 4986
[TakeutiZaring] p. 25Exercise 14dmres 5000
[TakeutiZaring] p. 25Exercise 15resss 5003
[TakeutiZaring] p. 25Exercise 17resabs1 5008
[TakeutiZaring] p. 25Exercise 18funres 5332
[TakeutiZaring] p. 25Exercise 24relco 5201
[TakeutiZaring] p. 25Exercise 29funco 5331
[TakeutiZaring] p. 25Exercise 30f1co 5516
[TakeutiZaring] p. 26Definition 6.10eu2 2100
[TakeutiZaring] p. 26Definition 6.11df-fv 5299  fv3 5623
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5241  cnvexg 5240
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4965  dmexg 4962
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4966  rnexg 4963
[TakeutiZaring] p. 27Corollary 6.13funfvex 5617
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5627  tz6.12 5628  tz6.12c 5630
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5591
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5294
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5295
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5297  wfo 5289
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5296  wf1 5288
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5298  wf1o 5290
[TakeutiZaring] p. 28Exercise 4eqfnfv 5702  eqfnfv2 5703  eqfnfv2f 5706
[TakeutiZaring] p. 28Exercise 5fvco 5674
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5831  fnexALT 6221
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5830  resfunexgALT 6218
[TakeutiZaring] p. 29Exercise 9funimaex 5379  funimaexg 5378
[TakeutiZaring] p. 29Definition 6.18df-br 4061
[TakeutiZaring] p. 30Definition 6.21eliniseg 5072  iniseg 5074
[TakeutiZaring] p. 30Definition 6.22df-eprel 4355
[TakeutiZaring] p. 32Definition 6.28df-isom 5300
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5904
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5905
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5910
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5912
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5920
[TakeutiZaring] p. 35Notationwtr 4159
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4420
[TakeutiZaring] p. 35Definition 7.1dftr3 4163
[TakeutiZaring] p. 36Proposition 7.4ordwe 4643
[TakeutiZaring] p. 36Proposition 7.6ordelord 4447
[TakeutiZaring] p. 37Proposition 7.9ordin 4451
[TakeutiZaring] p. 38Corollary 7.15ordsson 4559
[TakeutiZaring] p. 38Definition 7.11df-on 4434
[TakeutiZaring] p. 38Proposition 7.12ordon 4553
[TakeutiZaring] p. 38Proposition 7.13onprc 4619
[TakeutiZaring] p. 39Theorem 7.17tfi 4649
[TakeutiZaring] p. 40Exercise 7dftr2 4161
[TakeutiZaring] p. 40Exercise 11unon 4578
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4554
[TakeutiZaring] p. 40Proposition 7.20elssuni 3893
[TakeutiZaring] p. 41Definition 7.22df-suc 4437
[TakeutiZaring] p. 41Proposition 7.23sssucid 4481  sucidg 4482
[TakeutiZaring] p. 41Proposition 7.24onsuc 4568
[TakeutiZaring] p. 42Exercise 1df-ilim 4435
[TakeutiZaring] p. 42Exercise 8onsucssi 4573  ordelsuc 4572
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4661
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4662
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4663
[TakeutiZaring] p. 43Axiom 7omex 4660
[TakeutiZaring] p. 43Theorem 7.32ordom 4674
[TakeutiZaring] p. 43Corollary 7.31find 4666
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4664
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4665
[TakeutiZaring] p. 44Exercise 2int0 3914
[TakeutiZaring] p. 44Exercise 3trintssm 4175
[TakeutiZaring] p. 44Exercise 4intss1 3915
[TakeutiZaring] p. 44Exercise 6onintonm 4584
[TakeutiZaring] p. 44Definition 7.35df-int 3901
[TakeutiZaring] p. 47Lemma 1tfrlem1 6419
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6476  tfri1d 6446
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6477  tfri2d 6447
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6478
[TakeutiZaring] p. 50Exercise 3smoiso 6413
[TakeutiZaring] p. 50Definition 7.46df-smo 6397
[TakeutiZaring] p. 56Definition 8.1oasuc 6575
[TakeutiZaring] p. 57Proposition 8.2oacl 6571
[TakeutiZaring] p. 57Proposition 8.3oa0 6568
[TakeutiZaring] p. 57Proposition 8.16omcl 6572
[TakeutiZaring] p. 58Proposition 8.4nnaord 6620  nnaordi 6619
[TakeutiZaring] p. 59Proposition 8.6iunss2 3987  uniss2 3896
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6581
[TakeutiZaring] p. 59Proposition 8.9nnacl 6591
[TakeutiZaring] p. 62Exercise 5oaword1 6582
[TakeutiZaring] p. 62Definition 8.15om0 6569  omsuc 6583
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6592
[TakeutiZaring] p. 63Proposition 8.19nnmord 6628  nnmordi 6627
[TakeutiZaring] p. 67Definition 8.30oei0 6570
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7322
[TakeutiZaring] p. 88Exercise 1en0 6912
[TakeutiZaring] p. 90Proposition 10.20nneneq 6981
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6982
[TakeutiZaring] p. 91Definition 10.29df-fin 6855  isfi 6877
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6953
[TakeutiZaring] p. 95Definition 10.42df-map 6762
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6959
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6972
[Tarski] p. 67Axiom B5ax-4 1534
[Tarski] p. 68Lemma 6equid 1725
[Tarski] p. 69Lemma 7equcomi 1728
[Tarski] p. 70Lemma 14spim 1762  spime 1765  spimeh 1763  spimh 1761
[Tarski] p. 70Lemma 16ax-11 1530  ax-11o 1847  ax11i 1738
[Tarski] p. 70Lemmas 16 and 17sb6 1911
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1550
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2180  ax-14 2181
[WhiteheadRussell] p. 96Axiom *1.3olc 713
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 729
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 758
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 767
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 791
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 839
[WhiteheadRussell] p. 101Theorem *2.06barbara 2154  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 739
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 838
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 887
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 845
[WhiteheadRussell] p. 102Theorem *2.15con1dc 858
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 855
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 857
[WhiteheadRussell] p. 104Theorem *2.2orc 714
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 777
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 895
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 909
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 770
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 771
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 806
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 807
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 805
[WhiteheadRussell] p. 105Definition *2.33df-3or 982
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 780
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 778
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 779
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 740
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 741
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 869  pm2.5gdc 868
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 864
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 742
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 743
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 744
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 657
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 658
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 724
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 893
[WhiteheadRussell] p. 107Theorem *2.55orel1 727
[WhiteheadRussell] p. 107Theorem *2.56orel2 728
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 867
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 750
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 802
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 803
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 661
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 715  pm2.67 745
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 871  pm2.521gdc 870
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 749
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 812
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 896
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 917
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 808
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 809
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 811
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 810
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 813
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 814
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 907
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 756
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 960
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 961
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 962
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 755
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 695
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 862
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 861
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 691
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 757  pm3.44 717
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 787
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 873
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 874
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 892
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 696
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 955  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 759  pm4.25 760
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 820
[WhiteheadRussell] p. 118Theorem *4.31orcom 730
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 769
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 794
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 824
[WhiteheadRussell] p. 118Definition *4.34df-3an 983
[WhiteheadRussell] p. 119Theorem *4.41ordi 818
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 974
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 952
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 781
[WhiteheadRussell] p. 119Theorem *4.45orabs 816  pm4.45 786  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1505
[WhiteheadRussell] p. 120Theorem *4.5anordc 959
[WhiteheadRussell] p. 120Theorem *4.6imordc 899  imorr 723
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 901
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 752
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 753
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 904
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 941
[WhiteheadRussell] p. 120Theorem *4.56ioran 754  pm4.56 782
[WhiteheadRussell] p. 120Theorem *4.57orandc 942  oranim 783
[WhiteheadRussell] p. 120Theorem *4.61annimim 688
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 900
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 888
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 902
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 689
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 903
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 889
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 829
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 746
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 712  pm4.77 801
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 784
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 905
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 709
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 910
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 953
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 954
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 911
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 912
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 914
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 913
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1409
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 830
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 906
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1414  pm5.18dc 885
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 708
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 697
[WhiteheadRussell] p. 124Theorem *5.22xordc 1412
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1417
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1418
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 897
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 928  pm5.6r 929
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 957
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 919
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 927
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 804
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 920
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 915
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 796
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 948
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 949
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 964
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 965
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1659
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1509
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1656
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1920
[WhiteheadRussell] p. 175Definition *14.02df-eu 2058
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2459
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2460
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2919
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3063
[WhiteheadRussell] p. 190Theorem *14.22iota4 5271
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5272
[WhiteheadRussell] p. 192Theorem *14.26eupick 2135  eupickbi 2138
[WhiteheadRussell] p. 235Definition *30.01df-fv 5299
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7326

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]