Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7217  fidcenum 7058
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7058
[AczelRathjen], p. 73Lemma 8.1.14enumct 7217
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12796
[AczelRathjen], p. 74Lemma 8.1.16xpfi 7029
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 7015
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12811
[AczelRathjen], p. 75Corollary 8.1.20unct 12813
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12802  znnen 12769
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12814
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12815
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10921
[AczelRathjen], p. 183Chapter 20ax-setind 4585
[AhoHopUll] p. 318Section 9.1df-concat 11047  df-substr 11099  df-word 10995  lencl 10998  wrd0 11019
[Apostol] p. 18Theorem I.1addcan 8252  addcan2d 8257  addcan2i 8255  addcand 8256  addcani 8254
[Apostol] p. 18Theorem I.2negeu 8263
[Apostol] p. 18Theorem I.3negsub 8320  negsubd 8389  negsubi 8350
[Apostol] p. 18Theorem I.4negneg 8322  negnegd 8374  negnegi 8342
[Apostol] p. 18Theorem I.5subdi 8457  subdid 8486  subdii 8479  subdir 8458  subdird 8487  subdiri 8480
[Apostol] p. 18Theorem I.6mul01 8461  mul01d 8465  mul01i 8463  mul02 8459  mul02d 8464  mul02i 8462
[Apostol] p. 18Theorem I.9divrecapd 8866
[Apostol] p. 18Theorem I.10recrecapi 8817
[Apostol] p. 18Theorem I.12mul2neg 8470  mul2negd 8485  mul2negi 8478  mulneg1 8467  mulneg1d 8483  mulneg1i 8476
[Apostol] p. 18Theorem I.14rdivmuldivd 13906
[Apostol] p. 18Theorem I.15divdivdivap 8786
[Apostol] p. 20Axiom 7rpaddcl 9799  rpaddcld 9834  rpmulcl 9800  rpmulcld 9835
[Apostol] p. 20Axiom 90nrp 9811
[Apostol] p. 20Theorem I.17lttri 8177
[Apostol] p. 20Theorem I.18ltadd1d 8611  ltadd1dd 8629  ltadd1i 8575
[Apostol] p. 20Theorem I.19ltmul1 8665  ltmul1a 8664  ltmul1i 8993  ltmul1ii 9001  ltmul2 8929  ltmul2d 9861  ltmul2dd 9875  ltmul2i 8996
[Apostol] p. 20Theorem I.210lt1 8199
[Apostol] p. 20Theorem I.23lt0neg1 8541  lt0neg1d 8588  ltneg 8535  ltnegd 8596  ltnegi 8566
[Apostol] p. 20Theorem I.25lt2add 8518  lt2addd 8640  lt2addi 8583
[Apostol] p. 20Definition of positive numbersdf-rp 9776
[Apostol] p. 21Exercise 4recgt0 8923  recgt0d 9007  recgt0i 8979  recgt0ii 8980
[Apostol] p. 22Definition of integersdf-z 9373
[Apostol] p. 22Definition of rationalsdf-q 9741
[Apostol] p. 24Theorem I.26supeuti 7096
[Apostol] p. 26Theorem I.29arch 9292
[Apostol] p. 28Exercise 2btwnz 9492
[Apostol] p. 28Exercise 3nnrecl 9293
[Apostol] p. 28Exercise 6qbtwnre 10399
[Apostol] p. 28Exercise 10(a)zeneo 12182  zneo 9474
[Apostol] p. 29Theorem I.35resqrtth 11342  sqrtthi 11430
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 9039
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12357
[Apostol] p. 363Remarkabsgt0api 11457
[Apostol] p. 363Exampleabssubd 11504  abssubi 11461
[ApostolNT] p. 14Definitiondf-dvds 12099
[ApostolNT] p. 14Theorem 1.1(a)iddvds 12115
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 12139
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 12135
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 12129
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 12131
[ApostolNT] p. 14Theorem 1.1(f)1dvds 12116
[ApostolNT] p. 14Theorem 1.1(g)dvds0 12117
[ApostolNT] p. 14Theorem 1.1(h)0dvds 12122
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 12156
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 12158
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 12160
[ApostolNT] p. 15Definitiondfgcd2 12335
[ApostolNT] p. 16Definitionisprm2 12439
[ApostolNT] p. 16Theorem 1.5coprmdvds 12414
[ApostolNT] p. 16Theorem 1.7prminf 12826
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12294
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12336
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12338
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12308
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12301
[ApostolNT] p. 17Theorem 1.8coprm 12466
[ApostolNT] p. 17Theorem 1.9euclemma 12468
[ApostolNT] p. 17Theorem 1.101arith2 12691
[ApostolNT] p. 19Theorem 1.14divalg 12235
[ApostolNT] p. 20Theorem 1.15eucalg 12381
[ApostolNT] p. 25Definitiondf-phi 12533
[ApostolNT] p. 26Theorem 2.2phisum 12563
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12544
[ApostolNT] p. 28Theorem 2.5(c)phimul 12548
[ApostolNT] p. 38Remarkdf-sgm 15454
[ApostolNT] p. 38Definitiondf-sgm 15454
[ApostolNT] p. 104Definitioncongr 12422
[ApostolNT] p. 106Remarkdvdsval3 12102
[ApostolNT] p. 106Definitionmoddvds 12110
[ApostolNT] p. 107Example 2mod2eq0even 12189
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12190
[ApostolNT] p. 107Example 4zmod1congr 10486
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10523
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10811
[ApostolNT] p. 108Theorem 5.3modmulconst 12134
[ApostolNT] p. 109Theorem 5.4cncongr1 12425
[ApostolNT] p. 109Theorem 5.6gcdmodi 12744
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12427
[ApostolNT] p. 113Theorem 5.17eulerth 12555
[ApostolNT] p. 113Theorem 5.18vfermltl 12574
[ApostolNT] p. 114Theorem 5.19fermltl 12556
[ApostolNT] p. 179Definitiondf-lgs 15475  lgsprme0 15519
[ApostolNT] p. 180Example 11lgs 15520
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15496
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15511
[ApostolNT] p. 181Theorem 9.4m1lgs 15562
[ApostolNT] p. 181Theorem 9.52lgs 15581  2lgsoddprm 15590
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15546
[ApostolNT] p. 185Theorem 9.8lgsquad 15557
[ApostolNT] p. 188Definitiondf-lgs 15475  lgs1 15521
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15512
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15514
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15522
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15523
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 661
[Bauer] p. 483Theorem 1.3acexmid 5943  onsucelsucexmidlem 4577
[Bauer], p. 481Section 1.1pwtrufal 15934
[Bauer], p. 483Definitionn0rf 3473
[Bauer], p. 483Theorem 1.22irrexpq 15448  2irrexpqap 15450
[Bauer], p. 485Theorem 2.1ssfiexmid 6973
[Bauer], p. 493Section 5.1ivthdich 15125
[Bauer], p. 494Theorem 5.5ivthinc 15115
[BauerHanson], p. 27Proposition 5.2cnstab 8718
[BauerSwan], p. 14Remark0ct 7209  ctm 7211
[BauerSwan], p. 14Proposition 2.6subctctexmid 15937
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7217
[BauerTaylor], p. 32Lemma 6.16prarloclem 7614
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7527
[BauerTaylor], p. 52Proposition 11.15prarloc 7616
[BauerTaylor], p. 53Lemma 11.16addclpr 7650  addlocpr 7649
[BauerTaylor], p. 55Proposition 12.7appdivnq 7676
[BauerTaylor], p. 56Lemma 12.8prmuloc 7679
[BauerTaylor], p. 56Lemma 12.9mullocpr 7684
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2057
[BellMachover] p. 460Notationdf-mo 2058
[BellMachover] p. 460Definitionmo3 2108  mo3h 2107
[BellMachover] p. 462Theorem 1.1bm1.1 2190
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4165
[BellMachover] p. 466Axiom Powaxpow3 4221
[BellMachover] p. 466Axiom Unionaxun2 4482
[BellMachover] p. 469Theorem 2.2(i)ordirr 4590
[BellMachover] p. 469Theorem 2.2(iii)onelon 4431
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4593
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4544
[BellMachover] p. 471Definition of Limdf-ilim 4416
[BellMachover] p. 472Axiom Infzfinf2 4637
[BellMachover] p. 473Theorem 2.8limom 4662
[Bobzien] p. 116Statement T3stoic3 1451
[Bobzien] p. 117Statement T2stoic2a 1449
[Bobzien] p. 117Statement T4stoic4a 1452
[Bobzien] p. 117Conclusion the contradictorystoic1a 1447
[Bollobas] p. 1Section I.1df-edg 15653
[BourbakiAlg1] p. 1Definition 1df-mgm 13188
[BourbakiAlg1] p. 4Definition 5df-sgrp 13234
[BourbakiAlg1] p. 12Definition 2df-mnd 13249
[BourbakiAlg1] p. 92Definition 1df-ring 13760
[BourbakiAlg1] p. 93Section I.8.1df-rng 13695
[BourbakiEns] p. Proposition 8fcof1 5852  fcofo 5853
[BourbakiTop1] p. Remarkxnegmnf 9951  xnegpnf 9950
[BourbakiTop1] p. Remark rexneg 9952
[BourbakiTop1] p. Propositionishmeo 14776
[BourbakiTop1] p. Property V_issnei2 14629
[BourbakiTop1] p. Property V_iiinnei 14635
[BourbakiTop1] p. Property V_ivneissex 14637
[BourbakiTop1] p. Proposition 1neipsm 14626  neiss 14622
[BourbakiTop1] p. Proposition 2cnptopco 14694
[BourbakiTop1] p. Proposition 4imasnopn 14771
[BourbakiTop1] p. Property V_iiielnei 14624
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14470
[Bruck] p. 1Section I.1df-mgm 13188
[Bruck] p. 23Section II.1df-sgrp 13234
[Bruck] p. 28Theorem 3.2dfgrp3m 13431
[ChoquetDD] p. 2Definition of mappingdf-mpt 4107
[Cohen] p. 301Remarkrelogoprlem 15340
[Cohen] p. 301Property 2relogmul 15341  relogmuld 15356
[Cohen] p. 301Property 3relogdiv 15342  relogdivd 15357
[Cohen] p. 301Property 4relogexp 15344
[Cohen] p. 301Property 1alog1 15338
[Cohen] p. 301Property 1bloge 15339
[Cohen4] p. 348Observationrelogbcxpbap 15437
[Cohen4] p. 352Definitionrpelogb 15421
[Cohen4] p. 361Property 2rprelogbmul 15427
[Cohen4] p. 361Property 3logbrec 15432  rprelogbdiv 15429
[Cohen4] p. 361Property 4rplogbreexp 15425
[Cohen4] p. 361Property 6relogbexpap 15430
[Cohen4] p. 361Property 1(a)rplogbid1 15419
[Cohen4] p. 361Property 1(b)rplogb1 15420
[Cohen4] p. 367Propertyrplogbchbase 15422
[Cohen4] p. 377Property 2logblt 15434
[Crosilla] p. Axiom 1ax-ext 2187
[Crosilla] p. Axiom 2ax-pr 4253
[Crosilla] p. Axiom 3ax-un 4480
[Crosilla] p. Axiom 4ax-nul 4170
[Crosilla] p. Axiom 5ax-iinf 4636
[Crosilla] p. Axiom 6ru 2997
[Crosilla] p. Axiom 8ax-pow 4218
[Crosilla] p. Axiom 9ax-setind 4585
[Crosilla], p. Axiom 6ax-sep 4162
[Crosilla], p. Axiom 7ax-coll 4159
[Crosilla], p. Axiom 7'repizf 4160
[Crosilla], p. Theorem is statedordtriexmid 4569
[Crosilla], p. Axiom of choice implies instancesacexmid 5943
[Crosilla], p. Definition of ordinaldf-iord 4413
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4583
[Eisenberg] p. 67Definition 5.3df-dif 3168
[Eisenberg] p. 82Definition 6.3df-iom 4639
[Eisenberg] p. 125Definition 8.21df-map 6737
[Enderton] p. 18Axiom of Empty Setaxnul 4169
[Enderton] p. 19Definitiondf-tp 3641
[Enderton] p. 26Exercise 5unissb 3880
[Enderton] p. 26Exercise 10pwel 4262
[Enderton] p. 28Exercise 7(b)pwunim 4333
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3997  iinin2m 3996  iunin1 3992  iunin2 3991
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3995  iundif2ss 3993
[Enderton] p. 33Exercise 23iinuniss 4010
[Enderton] p. 33Exercise 25iununir 4011
[Enderton] p. 33Exercise 24(a)iinpw 4018
[Enderton] p. 33Exercise 24(b)iunpw 4527  iunpwss 4019
[Enderton] p. 38Exercise 6(a)unipw 4261
[Enderton] p. 38Exercise 6(b)pwuni 4236
[Enderton] p. 41Lemma 3Dopeluu 4497  rnex 4946  rnexg 4943
[Enderton] p. 41Exercise 8dmuni 4888  rnuni 5094
[Enderton] p. 42Definition of a functiondffun7 5298  dffun8 5299
[Enderton] p. 43Definition of function valuefunfvdm2 5643
[Enderton] p. 43Definition of single-rootedfuncnv 5335
[Enderton] p. 44Definition (d)dfima2 5024  dfima3 5025
[Enderton] p. 47Theorem 3Hfvco2 5648
[Enderton] p. 49Axiom of Choice (first form)df-ac 7318
[Enderton] p. 50Theorem 3K(a)imauni 5830
[Enderton] p. 52Definitiondf-map 6737
[Enderton] p. 53Exercise 21coass 5201
[Enderton] p. 53Exercise 27dmco 5191
[Enderton] p. 53Exercise 14(a)funin 5345
[Enderton] p. 53Exercise 22(a)imass2 5058
[Enderton] p. 54Remarkixpf 6807  ixpssmap 6819
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6786
[Enderton] p. 56Theorem 3Merref 6640
[Enderton] p. 57Lemma 3Nerthi 6668
[Enderton] p. 57Definitiondf-ec 6622
[Enderton] p. 58Definitiondf-qs 6626
[Enderton] p. 60Theorem 3Qth3q 6727  th3qcor 6726  th3qlem1 6724  th3qlem2 6725
[Enderton] p. 61Exercise 35df-ec 6622
[Enderton] p. 65Exercise 56(a)dmun 4885
[Enderton] p. 68Definition of successordf-suc 4418
[Enderton] p. 71Definitiondf-tr 4143  dftr4 4147
[Enderton] p. 72Theorem 4Eunisuc 4460  unisucg 4461
[Enderton] p. 73Exercise 6unisuc 4460  unisucg 4461
[Enderton] p. 73Exercise 5(a)truni 4156
[Enderton] p. 73Exercise 5(b)trint 4157
[Enderton] p. 79Theorem 4I(A1)nna0 6560
[Enderton] p. 79Theorem 4I(A2)nnasuc 6562  onasuc 6552
[Enderton] p. 79Definition of operation valuedf-ov 5947
[Enderton] p. 80Theorem 4J(A1)nnm0 6561
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6563  onmsuc 6559
[Enderton] p. 81Theorem 4K(1)nnaass 6571
[Enderton] p. 81Theorem 4K(2)nna0r 6564  nnacom 6570
[Enderton] p. 81Theorem 4K(3)nndi 6572
[Enderton] p. 81Theorem 4K(4)nnmass 6573
[Enderton] p. 81Theorem 4K(5)nnmcom 6575
[Enderton] p. 82Exercise 16nnm0r 6565  nnmsucr 6574
[Enderton] p. 88Exercise 23nnaordex 6614
[Enderton] p. 129Definitiondf-en 6828
[Enderton] p. 132Theorem 6B(b)canth 5897
[Enderton] p. 133Exercise 1xpomen 12766
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6962
[Enderton] p. 136Corollary 6Enneneq 6954
[Enderton] p. 139Theorem 6H(c)mapen 6943
[Enderton] p. 142Theorem 6I(3)xpdjuen 7330
[Enderton] p. 143Theorem 6Jdju0en 7326  dju1en 7325
[Enderton] p. 144Corollary 6Kundif2ss 3536
[Enderton] p. 145Figure 38ffoss 5554
[Enderton] p. 145Definitiondf-dom 6829
[Enderton] p. 146Example 1domen 6840  domeng 6841
[Enderton] p. 146Example 3nndomo 6961
[Enderton] p. 149Theorem 6L(c)xpdom1 6930  xpdom1g 6928  xpdom2g 6927
[Enderton] p. 168Definitiondf-po 4343
[Enderton] p. 192Theorem 7M(a)oneli 4475
[Enderton] p. 192Theorem 7M(b)ontr1 4436
[Enderton] p. 192Theorem 7M(c)onirri 4591
[Enderton] p. 193Corollary 7N(b)0elon 4439
[Enderton] p. 193Corollary 7N(c)onsuci 4564
[Enderton] p. 193Corollary 7N(d)ssonunii 4537
[Enderton] p. 194Remarkonprc 4600
[Enderton] p. 194Exercise 16suc11 4606
[Enderton] p. 197Definitiondf-card 7286
[Enderton] p. 200Exercise 25tfis 4631
[Enderton] p. 206Theorem 7X(b)en2lp 4602
[Enderton] p. 207Exercise 34opthreg 4604
[Enderton] p. 208Exercise 35suc11g 4605
[Geuvers], p. 1Remarkexpap0 10714
[Geuvers], p. 6Lemma 2.13mulap0r 8688
[Geuvers], p. 6Lemma 2.15mulap0 8727
[Geuvers], p. 9Lemma 2.35msqge0 8689
[Geuvers], p. 9Definition 3.1(2)ax-arch 8044
[Geuvers], p. 10Lemma 3.9maxcom 11514
[Geuvers], p. 10Lemma 3.10maxle1 11522  maxle2 11523
[Geuvers], p. 10Lemma 3.11maxleast 11524
[Geuvers], p. 10Lemma 3.12maxleb 11527
[Geuvers], p. 11Definition 3.13dfabsmax 11528
[Geuvers], p. 17Definition 6.1df-ap 8655
[Gleason] p. 117Proposition 9-2.1df-enq 7460  enqer 7471
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7464  df-nqqs 7461
[Gleason] p. 117Proposition 9-2.3df-plpq 7457  df-plqqs 7462
[Gleason] p. 119Proposition 9-2.4df-mpq 7458  df-mqqs 7463
[Gleason] p. 119Proposition 9-2.5df-rq 7465
[Gleason] p. 119Proposition 9-2.6ltexnqq 7521
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7524  ltbtwnnq 7529  ltbtwnnqq 7528
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7513
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7514
[Gleason] p. 123Proposition 9-3.5addclpr 7650
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7692
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7691
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7710
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7726
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7732  ltaprlem 7731
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7729
[Gleason] p. 124Proposition 9-3.7mulclpr 7685
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7705
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7694
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7693
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7701
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7751
[Gleason] p. 126Proposition 9-4.1df-enr 7839  enrer 7848
[Gleason] p. 126Proposition 9-4.2df-0r 7844  df-1r 7845  df-nr 7840
[Gleason] p. 126Proposition 9-4.3df-mr 7842  df-plr 7841  negexsr 7885  recexsrlem 7887
[Gleason] p. 127Proposition 9-4.4df-ltr 7843
[Gleason] p. 130Proposition 10-1.3creui 9033  creur 9032  cru 8675
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 8036  axcnre 7994
[Gleason] p. 132Definition 10-3.1crim 11169  crimd 11288  crimi 11248  crre 11168  crred 11287  crrei 11247
[Gleason] p. 132Definition 10-3.2remim 11171  remimd 11253
[Gleason] p. 133Definition 10.36absval2 11368  absval2d 11496  absval2i 11455
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11195  cjaddd 11276  cjaddi 11243
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11196  cjmuld 11277  cjmuli 11244
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11194  cjcjd 11254  cjcji 11226
[Gleason] p. 133Proposition 10-3.4(f)cjre 11193  cjreb 11177  cjrebd 11257  cjrebi 11229  cjred 11282  rere 11176  rereb 11174  rerebd 11256  rerebi 11228  rered 11280
[Gleason] p. 133Proposition 10-3.4(h)addcj 11202  addcjd 11268  addcji 11238
[Gleason] p. 133Proposition 10-3.7(a)absval 11312
[Gleason] p. 133Proposition 10-3.7(b)abscj 11363  abscjd 11501  abscji 11459
[Gleason] p. 133Proposition 10-3.7(c)abs00 11375  abs00d 11497  abs00i 11456  absne0d 11498
[Gleason] p. 133Proposition 10-3.7(d)releabs 11407  releabsd 11502  releabsi 11460
[Gleason] p. 133Proposition 10-3.7(f)absmul 11380  absmuld 11505  absmuli 11462
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11366  sqabsaddi 11463
[Gleason] p. 133Proposition 10-3.7(h)abstri 11415  abstrid 11507  abstrii 11466
[Gleason] p. 134Definition 10-4.1df-exp 10684  exp0 10688  expp1 10691  expp1d 10819
[Gleason] p. 135Proposition 10-4.2(a)expadd 10726  expaddd 10820
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15384  cxpmuld 15409  expmul 10729  expmuld 10821
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10723  mulexpd 10833  rpmulcxp 15381
[Gleason] p. 141Definition 11-2.1fzval 10132
[Gleason] p. 168Proposition 12-2.1(a)climadd 11637
[Gleason] p. 168Proposition 12-2.1(b)climsub 11639
[Gleason] p. 168Proposition 12-2.1(c)climmul 11638
[Gleason] p. 171Corollary 12-2.2climmulc2 11642
[Gleason] p. 172Corollary 12-2.5climrecl 11635
[Gleason] p. 172Proposition 12-2.4(c)climabs 11631  climcj 11632  climim 11634  climre 11633
[Gleason] p. 173Definition 12-3.1df-ltxr 8112  df-xr 8111  ltxr 9897
[Gleason] p. 180Theorem 12-5.3climcau 11658
[Gleason] p. 217Lemma 13-4.1btwnzge0 10443
[Gleason] p. 223Definition 14-1.1df-met 14307
[Gleason] p. 223Definition 14-1.1(a)met0 14836  xmet0 14835
[Gleason] p. 223Definition 14-1.1(c)metsym 14843
[Gleason] p. 223Definition 14-1.1(d)mettri 14845  mstri 14945  xmettri 14844  xmstri 14944
[Gleason] p. 230Proposition 14-2.6txlm 14751
[Gleason] p. 240Proposition 14-4.2metcnp3 14983
[Gleason] p. 243Proposition 14-4.16addcn2 11621  addcncntop 15034  mulcn2 11623  mulcncntop 15036  subcn2 11622  subcncntop 15035
[Gleason] p. 295Remarkbcval3 10896  bcval4 10897
[Gleason] p. 295Equation 2bcpasc 10911
[Gleason] p. 295Definition of binomial coefficientbcval 10894  df-bc 10893
[Gleason] p. 296Remarkbcn0 10900  bcnn 10902
[Gleason] p. 296Theorem 15-2.8binom 11795
[Gleason] p. 308Equation 2ef0 11983
[Gleason] p. 308Equation 3efcj 11984
[Gleason] p. 309Corollary 15-4.3efne0 11989
[Gleason] p. 309Corollary 15-4.4efexp 11993
[Gleason] p. 310Equation 14sinadd 12047
[Gleason] p. 310Equation 15cosadd 12048
[Gleason] p. 311Equation 17sincossq 12059
[Gleason] p. 311Equation 18cosbnd 12064  sinbnd 12063
[Gleason] p. 311Definition of ` `df-pi 11964
[Golan] p. 1Remarksrgisid 13748
[Golan] p. 1Definitiondf-srg 13726
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1472
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13343  mndideu 13258
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13370
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13399
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13410
[Herstein] p. 57Exercise 1dfgrp3me 13432
[Heyting] p. 127Axiom #1ax1hfs 16013
[Hitchcock] p. 5Rule A3mptnan 1443
[Hitchcock] p. 5Rule A4mptxor 1444
[Hitchcock] p. 5Rule A5mtpxor 1446
[HoTT], p. Lemma 10.4.1exmidontriim 7337
[HoTT], p. Theorem 7.2.6nndceq 6585
[HoTT], p. Exercise 11.10neapmkv 16007
[HoTT], p. Exercise 11.11mulap0bd 8730
[HoTT], p. Section 11.2.1df-iltp 7583  df-imp 7582  df-iplp 7581  df-reap 8648
[HoTT], p. Theorem 11.2.4recapb 8744  rerecapb 8916
[HoTT], p. Corollary 3.9.2uchoice 6223
[HoTT], p. Theorem 11.2.12cauappcvgpr 7775
[HoTT], p. Corollary 11.4.3conventions 15657
[HoTT], p. Exercise 11.6(i)dcapnconst 16000  dceqnconst 15999
[HoTT], p. Corollary 11.2.13axcaucvg 8013  caucvgpr 7795  caucvgprpr 7825  caucvgsr 7915
[HoTT], p. Definition 11.2.1df-inp 7579
[HoTT], p. Exercise 11.6(ii)nconstwlpo 16005
[HoTT], p. Proposition 11.2.3df-iso 4344  ltpopr 7708  ltsopr 7709
[HoTT], p. Definition 11.2.7(v)apsym 8679  reapcotr 8671  reapirr 8650
[HoTT], p. Definition 11.2.7(vi)0lt1 8199  gt0add 8646  leadd1 8503  lelttr 8161  lemul1a 8931  lenlt 8148  ltadd1 8502  ltletr 8162  ltmul1 8665  reaplt 8661
[Jech] p. 4Definition of classcv 1372  cvjust 2200
[Jech] p. 78Noteopthprc 4726
[KalishMontague] p. 81Note 1ax-i9 1553
[Kreyszig] p. 3Property M1metcl 14825  xmetcl 14824
[Kreyszig] p. 4Property M2meteq0 14832
[Kreyszig] p. 12Equation 5muleqadd 8741
[Kreyszig] p. 18Definition 1.3-2mopnval 14914
[Kreyszig] p. 19Remarkmopntopon 14915
[Kreyszig] p. 19Theorem T1mopn0 14960  mopnm 14920
[Kreyszig] p. 19Theorem T2unimopn 14958
[Kreyszig] p. 19Definition of neighborhoodneibl 14963
[Kreyszig] p. 20Definition 1.3-3metcnp2 14985
[Kreyszig] p. 25Definition 1.4-1lmbr 14685
[Kreyszig] p. 51Equation 2lmodvneg1 14092
[Kreyszig] p. 51Equation 1almod0vs 14083
[Kreyszig] p. 51Equation 1blmodvs0 14084
[Kunen] p. 10Axiom 0a9e 1719
[Kunen] p. 12Axiom 6zfrep6 4161
[Kunen] p. 24Definition 10.24mapval 6747  mapvalg 6745
[Kunen] p. 31Definition 10.24mapex 6741
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3937
[Lang] p. 3Statementlidrideqd 13213  mndbn0 13263
[Lang] p. 3Definitiondf-mnd 13249
[Lang] p. 4Definition of a (finite) productgsumsplit1r 13230
[Lang] p. 5Equationgsumfzreidx 13673
[Lang] p. 6Definitionmulgnn0gsum 13464
[Lang] p. 7Definitiondfgrp2e 13360
[Levy] p. 338Axiomdf-clab 2192  df-clel 2201  df-cleq 2198
[Lopez-Astorga] p. 12Rule 1mptnan 1443
[Lopez-Astorga] p. 12Rule 2mptxor 1444
[Lopez-Astorga] p. 12Rule 3mtpxor 1446
[Margaris] p. 40Rule Cexlimiv 1621
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 855
[Margaris] p. 49Definitiondfbi2 388  dfordc 894  exalim 1525
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 653
[Margaris] p. 89Theorem 19.219.2 1661  r19.2m 3547
[Margaris] p. 89Theorem 19.319.3 1577  19.3h 1576  rr19.3v 2912
[Margaris] p. 89Theorem 19.5alcom 1501
[Margaris] p. 89Theorem 19.6alexdc 1642  alexim 1668
[Margaris] p. 89Theorem 19.7alnex 1522
[Margaris] p. 89Theorem 19.819.8a 1613  spsbe 1865
[Margaris] p. 89Theorem 19.919.9 1667  19.9h 1666  19.9v 1894  exlimd 1620
[Margaris] p. 89Theorem 19.11excom 1687  excomim 1686
[Margaris] p. 89Theorem 19.1219.12 1688  r19.12 2612
[Margaris] p. 90Theorem 19.14exnalim 1669
[Margaris] p. 90Theorem 19.15albi 1491  ralbi 2638
[Margaris] p. 90Theorem 19.1619.16 1578
[Margaris] p. 90Theorem 19.1719.17 1579
[Margaris] p. 90Theorem 19.18exbi 1627  rexbi 2639
[Margaris] p. 90Theorem 19.1919.19 1689
[Margaris] p. 90Theorem 19.20alim 1480  alimd 1544  alimdh 1490  alimdv 1902  ralimdaa 2572  ralimdv 2574  ralimdva 2573  ralimdvva 2575  sbcimdv 3064
[Margaris] p. 90Theorem 19.2119.21-2 1690  19.21 1606  19.21bi 1581  19.21h 1580  19.21ht 1604  19.21t 1605  19.21v 1896  alrimd 1633  alrimdd 1632  alrimdh 1502  alrimdv 1899  alrimi 1545  alrimih 1492  alrimiv 1897  alrimivv 1898  r19.21 2582  r19.21be 2597  r19.21bi 2594  r19.21t 2581  r19.21v 2583  ralrimd 2584  ralrimdv 2585  ralrimdva 2586  ralrimdvv 2590  ralrimdvva 2591  ralrimi 2577  ralrimiv 2578  ralrimiva 2579  ralrimivv 2587  ralrimivva 2588  ralrimivvva 2589  ralrimivw 2580  rexlimi 2616
[Margaris] p. 90Theorem 19.222alimdv 1904  2eximdv 1905  exim 1622  eximd 1635  eximdh 1634  eximdv 1903  rexim 2600  reximdai 2604  reximddv 2609  reximddv2 2611  reximdv 2607  reximdv2 2605  reximdva 2608  reximdvai 2606  reximi2 2602
[Margaris] p. 90Theorem 19.2319.23 1701  19.23bi 1615  19.23h 1521  19.23ht 1520  19.23t 1700  19.23v 1906  19.23vv 1907  exlimd2 1618  exlimdh 1619  exlimdv 1842  exlimdvv 1921  exlimi 1617  exlimih 1616  exlimiv 1621  exlimivv 1920  r19.23 2614  r19.23v 2615  rexlimd 2620  rexlimdv 2622  rexlimdv3a 2625  rexlimdva 2623  rexlimdva2 2626  rexlimdvaa 2624  rexlimdvv 2630  rexlimdvva 2631  rexlimdvw 2627  rexlimiv 2617  rexlimiva 2618  rexlimivv 2629
[Margaris] p. 90Theorem 19.24i19.24 1662
[Margaris] p. 90Theorem 19.2519.25 1649
[Margaris] p. 90Theorem 19.2619.26-2 1505  19.26-3an 1506  19.26 1504  r19.26-2 2635  r19.26-3 2636  r19.26 2632  r19.26m 2637
[Margaris] p. 90Theorem 19.2719.27 1584  19.27h 1583  19.27v 1923  r19.27av 2641  r19.27m 3556  r19.27mv 3557
[Margaris] p. 90Theorem 19.2819.28 1586  19.28h 1585  19.28v 1924  r19.28av 2642  r19.28m 3550  r19.28mv 3553  rr19.28v 2913
[Margaris] p. 90Theorem 19.2919.29 1643  19.29r 1644  19.29r2 1645  19.29x 1646  r19.29 2643  r19.29d2r 2650  r19.29r 2644
[Margaris] p. 90Theorem 19.3019.30dc 1650
[Margaris] p. 90Theorem 19.3119.31r 1704
[Margaris] p. 90Theorem 19.3219.32dc 1702  19.32r 1703  r19.32r 2652  r19.32vdc 2655  r19.32vr 2654
[Margaris] p. 90Theorem 19.3319.33 1507  19.33b2 1652  19.33bdc 1653
[Margaris] p. 90Theorem 19.3419.34 1707
[Margaris] p. 90Theorem 19.3519.35-1 1647  19.35i 1648
[Margaris] p. 90Theorem 19.3619.36-1 1696  19.36aiv 1925  19.36i 1695  r19.36av 2657
[Margaris] p. 90Theorem 19.3719.37-1 1697  19.37aiv 1698  r19.37 2658  r19.37av 2659
[Margaris] p. 90Theorem 19.3819.38 1699
[Margaris] p. 90Theorem 19.39i19.39 1663
[Margaris] p. 90Theorem 19.4019.40-2 1655  19.40 1654  r19.40 2660
[Margaris] p. 90Theorem 19.4119.41 1709  19.41h 1708  19.41v 1926  19.41vv 1927  19.41vvv 1928  19.41vvvv 1929  r19.41 2661  r19.41v 2662
[Margaris] p. 90Theorem 19.4219.42 1711  19.42h 1710  19.42v 1930  19.42vv 1935  19.42vvv 1936  19.42vvvv 1937  r19.42v 2663
[Margaris] p. 90Theorem 19.4319.43 1651  r19.43 2664
[Margaris] p. 90Theorem 19.4419.44 1705  r19.44av 2665  r19.44mv 3555
[Margaris] p. 90Theorem 19.4519.45 1706  r19.45av 2666  r19.45mv 3554
[Margaris] p. 110Exercise 2(b)eu1 2079
[Megill] p. 444Axiom C5ax-17 1549
[Megill] p. 445Lemma L12alequcom 1538  ax-10 1528
[Megill] p. 446Lemma L17equtrr 1733
[Megill] p. 446Lemma L19hbnae 1744
[Megill] p. 447Remark 9.1df-sb 1786  sbid 1797
[Megill] p. 448Scheme C5'ax-4 1533
[Megill] p. 448Scheme C6'ax-7 1471
[Megill] p. 448Scheme C8'ax-8 1527
[Megill] p. 448Scheme C9'ax-i12 1530
[Megill] p. 448Scheme C11'ax-10o 1739
[Megill] p. 448Scheme C12'ax-13 2178
[Megill] p. 448Scheme C13'ax-14 2179
[Megill] p. 448Scheme C15'ax-11o 1846
[Megill] p. 448Scheme C16'ax-16 1837
[Megill] p. 448Theorem 9.4dral1 1753  dral2 1754  drex1 1821  drex2 1755  drsb1 1822  drsb2 1864
[Megill] p. 449Theorem 9.7sbcom2 2015  sbequ 1863  sbid2v 2024
[Megill] p. 450Example in Appendixhba1 1563
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3081  rspsbca 3082  stdpc4 1798
[Mendelson] p. 69Axiom 5ra5 3087  stdpc5 1607
[Mendelson] p. 81Rule Cexlimiv 1621
[Mendelson] p. 95Axiom 6stdpc6 1726
[Mendelson] p. 95Axiom 7stdpc7 1793
[Mendelson] p. 231Exercise 4.10(k)inv1 3497
[Mendelson] p. 231Exercise 4.10(l)unv 3498
[Mendelson] p. 231Exercise 4.10(n)inssun 3413
[Mendelson] p. 231Exercise 4.10(o)df-nul 3461
[Mendelson] p. 231Exercise 4.10(q)inssddif 3414
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3304
[Mendelson] p. 231Definition of unionunssin 3412
[Mendelson] p. 235Exercise 4.12(c)univ 4523
[Mendelson] p. 235Exercise 4.12(d)pwv 3849
[Mendelson] p. 235Exercise 4.12(j)pwin 4329
[Mendelson] p. 235Exercise 4.12(k)pwunss 4330
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4331
[Mendelson] p. 235Exercise 4.12(n)uniin 3870
[Mendelson] p. 235Exercise 4.12(p)reli 4807
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5203
[Mendelson] p. 246Definition of successordf-suc 4418
[Mendelson] p. 254Proposition 4.22(b)xpen 6942
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6916  xpsneng 6917
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6922  xpcomeng 6923
[Mendelson] p. 254Proposition 4.22(e)xpassen 6925
[Mendelson] p. 255Exercise 4.39endisj 6919
[Mendelson] p. 255Exercise 4.41mapprc 6739
[Mendelson] p. 255Exercise 4.43mapsnen 6903
[Mendelson] p. 255Exercise 4.47xpmapen 6947
[Mendelson] p. 255Exercise 4.42(a)map0e 6773
[Mendelson] p. 255Exercise 4.42(b)map1 6904
[Mendelson] p. 258Exercise 4.56(c)djuassen 7329  djucomen 7328
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7327
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6553
[Monk1] p. 26Theorem 2.8(vii)ssin 3395
[Monk1] p. 33Theorem 3.2(i)ssrel 4763
[Monk1] p. 33Theorem 3.2(ii)eqrel 4764
[Monk1] p. 34Definition 3.3df-opab 4106
[Monk1] p. 36Theorem 3.7(i)coi1 5198  coi2 5199
[Monk1] p. 36Theorem 3.8(v)dm0 4892  rn0 4934
[Monk1] p. 36Theorem 3.7(ii)cnvi 5087
[Monk1] p. 37Theorem 3.13(i)relxp 4784
[Monk1] p. 37Theorem 3.13(x)dmxpm 4898  rnxpm 5112
[Monk1] p. 37Theorem 3.13(ii)0xp 4755  xp0 5102
[Monk1] p. 38Theorem 3.16(ii)ima0 5041
[Monk1] p. 38Theorem 3.16(viii)imai 5038
[Monk1] p. 39Theorem 3.17imaex 5037  imaexg 5036
[Monk1] p. 39Theorem 3.16(xi)imassrn 5033
[Monk1] p. 41Theorem 4.3(i)fnopfv 5710  funfvop 5692
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5622
[Monk1] p. 42Theorem 4.4(iii)fvelima 5630
[Monk1] p. 43Theorem 4.6funun 5315
[Monk1] p. 43Theorem 4.8(iv)dff13 5837  dff13f 5839
[Monk1] p. 46Theorem 4.15(v)funex 5807  funrnex 6199
[Monk1] p. 50Definition 5.4fniunfv 5831
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5166
[Monk1] p. 52Theorem 5.11(viii)ssint 3901
[Monk1] p. 52Definition 5.13 (i)1stval2 6241  df-1st 6226
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6242  df-2nd 6227
[Monk2] p. 105Axiom C4ax-5 1470
[Monk2] p. 105Axiom C7ax-8 1527
[Monk2] p. 105Axiom C8ax-11 1529  ax-11o 1846
[Monk2] p. 105Axiom (C8)ax11v 1850
[Monk2] p. 109Lemma 12ax-7 1471
[Monk2] p. 109Lemma 15equvin 1886  equvini 1781  eqvinop 4287
[Monk2] p. 113Axiom C5-1ax-17 1549
[Monk2] p. 113Axiom C5-2ax6b 1674
[Monk2] p. 113Axiom C5-3ax-7 1471
[Monk2] p. 114Lemma 22hba1 1563
[Monk2] p. 114Lemma 23hbia1 1575  nfia1 1603
[Monk2] p. 114Lemma 24hba2 1574  nfa2 1602
[Moschovakis] p. 2Chapter 2 df-stab 833  dftest 16014
[Munkres] p. 77Example 2distop 14557
[Munkres] p. 78Definition of basisdf-bases 14515  isbasis3g 14518
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 13092  tgval2 14523
[Munkres] p. 79Remarktgcl 14536
[Munkres] p. 80Lemma 2.1tgval3 14530
[Munkres] p. 80Lemma 2.2tgss2 14551  tgss3 14550
[Munkres] p. 81Lemma 2.3basgen 14552  basgen2 14553
[Munkres] p. 89Definition of subspace topologyresttop 14642
[Munkres] p. 93Theorem 6.1(1)0cld 14584  topcld 14581
[Munkres] p. 93Theorem 6.1(3)uncld 14585
[Munkres] p. 94Definition of closureclsval 14583
[Munkres] p. 94Definition of interiorntrval 14582
[Munkres] p. 102Definition of continuous functiondf-cn 14660  iscn 14669  iscn2 14672
[Munkres] p. 107Theorem 7.2(g)cncnp 14702  cncnp2m 14703  cncnpi 14700  df-cnp 14661  iscnp 14671
[Munkres] p. 127Theorem 10.1metcn 14986
[Pierik], p. 8Section 2.2.1dfrex2fin 7000
[Pierik], p. 9Definition 2.4df-womni 7266
[Pierik], p. 9Definition 2.5df-markov 7254  omniwomnimkv 7269
[Pierik], p. 10Section 2.3dfdif3 3283
[Pierik], p. 14Definition 3.1df-omni 7237  exmidomniim 7243  finomni 7242
[Pierik], p. 15Section 3.1df-nninf 7222
[Pradic2025], p. 2Section 1.1nnnninfen 15958
[PradicBrown2022], p. 1Theorem 1exmidsbthr 15962
[PradicBrown2022], p. 2Remarkexmidpw 7005
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7309
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7310  exmidfodomrlemrALT 7311
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7251
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 15944  peano4nninf 15943
[PradicBrown2022], p. 5Lemma 3.5nninfall 15946
[PradicBrown2022], p. 5Theorem 3.6nninfsel 15954
[PradicBrown2022], p. 5Corollary 3.7nninfomni 15956
[PradicBrown2022], p. 5Definition 3.3nnsf 15942
[Quine] p. 16Definition 2.1df-clab 2192  rabid 2682
[Quine] p. 17Definition 2.1''dfsb7 2019
[Quine] p. 18Definition 2.7df-cleq 2198
[Quine] p. 19Definition 2.9df-v 2774
[Quine] p. 34Theorem 5.1abeq2 2314
[Quine] p. 35Theorem 5.2abid2 2326  abid2f 2374
[Quine] p. 40Theorem 6.1sb5 1911
[Quine] p. 40Theorem 6.2sb56 1909  sb6 1910
[Quine] p. 41Theorem 6.3df-clel 2201
[Quine] p. 41Theorem 6.4eqid 2205
[Quine] p. 41Theorem 6.5eqcom 2207
[Quine] p. 42Theorem 6.6df-sbc 2999
[Quine] p. 42Theorem 6.7dfsbcq 3000  dfsbcq2 3001
[Quine] p. 43Theorem 6.8vex 2775
[Quine] p. 43Theorem 6.9isset 2778
[Quine] p. 44Theorem 7.3spcgf 2855  spcgv 2860  spcimgf 2853
[Quine] p. 44Theorem 6.11spsbc 3010  spsbcd 3011
[Quine] p. 44Theorem 6.12elex 2783
[Quine] p. 44Theorem 6.13elab 2917  elabg 2919  elabgf 2915
[Quine] p. 44Theorem 6.14noel 3464
[Quine] p. 48Theorem 7.2snprc 3698
[Quine] p. 48Definition 7.1df-pr 3640  df-sn 3639
[Quine] p. 49Theorem 7.4snss 3768  snssg 3767
[Quine] p. 49Theorem 7.5prss 3789  prssg 3790
[Quine] p. 49Theorem 7.6prid1 3739  prid1g 3737  prid2 3740  prid2g 3738  snid 3664  snidg 3662
[Quine] p. 51Theorem 7.12snexg 4228  snexprc 4230
[Quine] p. 51Theorem 7.13prexg 4255
[Quine] p. 53Theorem 8.2unisn 3866  unisng 3867
[Quine] p. 53Theorem 8.3uniun 3869
[Quine] p. 54Theorem 8.6elssuni 3878
[Quine] p. 54Theorem 8.7uni0 3877
[Quine] p. 56Theorem 8.17uniabio 5242
[Quine] p. 56Definition 8.18dfiota2 5233
[Quine] p. 57Theorem 8.19iotaval 5243
[Quine] p. 57Theorem 8.22iotanul 5247
[Quine] p. 58Theorem 8.23euiotaex 5248
[Quine] p. 58Definition 9.1df-op 3642
[Quine] p. 61Theorem 9.5opabid 4302  opabidw 4303  opelopab 4318  opelopaba 4312  opelopabaf 4320  opelopabf 4321  opelopabg 4314  opelopabga 4309  opelopabgf 4316  oprabid 5976
[Quine] p. 64Definition 9.11df-xp 4681
[Quine] p. 64Definition 9.12df-cnv 4683
[Quine] p. 64Definition 9.15df-id 4340
[Quine] p. 65Theorem 10.3fun0 5332
[Quine] p. 65Theorem 10.4funi 5303
[Quine] p. 65Theorem 10.5funsn 5322  funsng 5320
[Quine] p. 65Definition 10.1df-fun 5273
[Quine] p. 65Definition 10.2args 5051  dffv4g 5573
[Quine] p. 68Definition 10.11df-fv 5279  fv2 5571
[Quine] p. 124Theorem 17.3nn0opth2 10869  nn0opth2d 10868  nn0opthd 10867
[Quine] p. 284Axiom 39(vi)funimaex 5359  funimaexg 5358
[Roman] p. 18Part Preliminariesdf-rng 13695
[Roman] p. 19Part Preliminariesdf-ring 13760
[Rudin] p. 164Equation 27efcan 11987
[Rudin] p. 164Equation 30efzval 11994
[Rudin] p. 167Equation 48absefi 12080
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1446
[Sanford] p. 39Rule 4mptxor 1444
[Sanford] p. 40Rule 1mptnan 1443
[Schechter] p. 51Definition of antisymmetryintasym 5067
[Schechter] p. 51Definition of irreflexivityintirr 5069
[Schechter] p. 51Definition of symmetrycnvsym 5066
[Schechter] p. 51Definition of transitivitycotr 5064
[Schechter] p. 187Definition of "ring with unit"isring 13762
[Schechter] p. 428Definition 15.35bastop1 14555
[Stoll] p. 13Definition of symmetric differencesymdif1 3438
[Stoll] p. 16Exercise 4.40dif 3532  dif0 3531
[Stoll] p. 16Exercise 4.8difdifdirss 3545
[Stoll] p. 19Theorem 5.2(13)undm 3431
[Stoll] p. 19Theorem 5.2(13')indmss 3432
[Stoll] p. 20Remarkinvdif 3415
[Stoll] p. 25Definition of ordered tripledf-ot 3643
[Stoll] p. 43Definitionuniiun 3981
[Stoll] p. 44Definitionintiin 3982
[Stoll] p. 45Definitiondf-iin 3930
[Stoll] p. 45Definition indexed uniondf-iun 3929
[Stoll] p. 176Theorem 3.4(27)imandc 891  imanst 890
[Stoll] p. 262Example 4.1symdif1 3438
[Suppes] p. 22Theorem 2eq0 3479
[Suppes] p. 22Theorem 4eqss 3208  eqssd 3210  eqssi 3209
[Suppes] p. 23Theorem 5ss0 3501  ss0b 3500
[Suppes] p. 23Theorem 6sstr 3201
[Suppes] p. 25Theorem 12elin 3356  elun 3314
[Suppes] p. 26Theorem 15inidm 3382
[Suppes] p. 26Theorem 16in0 3495
[Suppes] p. 27Theorem 23unidm 3316
[Suppes] p. 27Theorem 24un0 3494
[Suppes] p. 27Theorem 25ssun1 3336
[Suppes] p. 27Theorem 26ssequn1 3343
[Suppes] p. 27Theorem 27unss 3347
[Suppes] p. 27Theorem 28indir 3422
[Suppes] p. 27Theorem 29undir 3423
[Suppes] p. 28Theorem 32difid 3529  difidALT 3530
[Suppes] p. 29Theorem 33difin 3410
[Suppes] p. 29Theorem 34indif 3416
[Suppes] p. 29Theorem 35undif1ss 3535
[Suppes] p. 29Theorem 36difun2 3540
[Suppes] p. 29Theorem 37difin0 3534
[Suppes] p. 29Theorem 38disjdif 3533
[Suppes] p. 29Theorem 39difundi 3425
[Suppes] p. 29Theorem 40difindiss 3427
[Suppes] p. 30Theorem 41nalset 4174
[Suppes] p. 39Theorem 61uniss 3871
[Suppes] p. 39Theorem 65uniop 4300
[Suppes] p. 41Theorem 70intsn 3920
[Suppes] p. 42Theorem 71intpr 3917  intprg 3918
[Suppes] p. 42Theorem 73op1stb 4525  op1stbg 4526
[Suppes] p. 42Theorem 78intun 3916
[Suppes] p. 44Definition 15(a)dfiun2 3961  dfiun2g 3959
[Suppes] p. 44Definition 15(b)dfiin2 3962
[Suppes] p. 47Theorem 86elpw 3622  elpw2 4201  elpw2g 4200  elpwg 3624
[Suppes] p. 47Theorem 87pwid 3631
[Suppes] p. 47Theorem 89pw0 3780
[Suppes] p. 48Theorem 90pwpw0ss 3845
[Suppes] p. 52Theorem 101xpss12 4782
[Suppes] p. 52Theorem 102xpindi 4813  xpindir 4814
[Suppes] p. 52Theorem 103xpundi 4731  xpundir 4732
[Suppes] p. 54Theorem 105elirrv 4596
[Suppes] p. 58Theorem 2relss 4762
[Suppes] p. 59Theorem 4eldm 4875  eldm2 4876  eldm2g 4874  eldmg 4873
[Suppes] p. 59Definition 3df-dm 4685
[Suppes] p. 60Theorem 6dmin 4886
[Suppes] p. 60Theorem 8rnun 5091
[Suppes] p. 60Theorem 9rnin 5092
[Suppes] p. 60Definition 4dfrn2 4866
[Suppes] p. 61Theorem 11brcnv 4861  brcnvg 4859
[Suppes] p. 62Equation 5elcnv 4855  elcnv2 4856
[Suppes] p. 62Theorem 12relcnv 5060
[Suppes] p. 62Theorem 15cnvin 5090
[Suppes] p. 62Theorem 16cnvun 5088
[Suppes] p. 63Theorem 20co02 5196
[Suppes] p. 63Theorem 21dmcoss 4948
[Suppes] p. 63Definition 7df-co 4684
[Suppes] p. 64Theorem 26cnvco 4863
[Suppes] p. 64Theorem 27coass 5201
[Suppes] p. 65Theorem 31resundi 4972
[Suppes] p. 65Theorem 34elima 5027  elima2 5028  elima3 5029  elimag 5026
[Suppes] p. 65Theorem 35imaundi 5095
[Suppes] p. 66Theorem 40dminss 5097
[Suppes] p. 66Theorem 41imainss 5098
[Suppes] p. 67Exercise 11cnvxp 5101
[Suppes] p. 81Definition 34dfec2 6623
[Suppes] p. 82Theorem 72elec 6661  elecg 6660
[Suppes] p. 82Theorem 73erth 6666  erth2 6667
[Suppes] p. 89Theorem 96map0b 6774
[Suppes] p. 89Theorem 97map0 6776  map0g 6775
[Suppes] p. 89Theorem 98mapsn 6777
[Suppes] p. 89Theorem 99mapss 6778
[Suppes] p. 92Theorem 1enref 6856  enrefg 6855
[Suppes] p. 92Theorem 2ensym 6873  ensymb 6872  ensymi 6874
[Suppes] p. 92Theorem 3entr 6876
[Suppes] p. 92Theorem 4unen 6908
[Suppes] p. 94Theorem 15endom 6854
[Suppes] p. 94Theorem 16ssdomg 6870
[Suppes] p. 94Theorem 17domtr 6877
[Suppes] p. 95Theorem 18isbth 7069
[Suppes] p. 98Exercise 4fundmen 6898  fundmeng 6899
[Suppes] p. 98Exercise 6xpdom3m 6929
[Suppes] p. 130Definition 3df-tr 4143
[Suppes] p. 132Theorem 9ssonuni 4536
[Suppes] p. 134Definition 6df-suc 4418
[Suppes] p. 136Theorem Schema 22findes 4651  finds 4648  finds1 4650  finds2 4649
[Suppes] p. 162Definition 5df-ltnqqs 7466  df-ltpq 7459
[Suppes] p. 228Theorem Schema 61onintss 4437
[TakeutiZaring] p. 8Axiom 1ax-ext 2187
[TakeutiZaring] p. 13Definition 4.5df-cleq 2198
[TakeutiZaring] p. 13Proposition 4.6df-clel 2201
[TakeutiZaring] p. 13Proposition 4.9cvjust 2200
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2223
[TakeutiZaring] p. 14Definition 4.16df-oprab 5948
[TakeutiZaring] p. 14Proposition 4.14ru 2997
[TakeutiZaring] p. 15Exercise 1elpr 3654  elpr2 3655  elprg 3653
[TakeutiZaring] p. 15Exercise 2elsn 3649  elsn2 3667  elsn2g 3666  elsng 3648  velsn 3650
[TakeutiZaring] p. 15Exercise 3elop 4275
[TakeutiZaring] p. 15Exercise 4sneq 3644  sneqr 3801
[TakeutiZaring] p. 15Definition 5.1dfpr2 3652  dfsn2 3647
[TakeutiZaring] p. 16Axiom 3uniex 4484
[TakeutiZaring] p. 16Exercise 6opth 4281
[TakeutiZaring] p. 16Exercise 8rext 4259
[TakeutiZaring] p. 16Corollary 5.8unex 4488  unexg 4490
[TakeutiZaring] p. 16Definition 5.3dftp2 3682
[TakeutiZaring] p. 16Definition 5.5df-uni 3851
[TakeutiZaring] p. 16Definition 5.6df-in 3172  df-un 3170
[TakeutiZaring] p. 16Proposition 5.7unipr 3864  uniprg 3865
[TakeutiZaring] p. 17Axiom 4vpwex 4223
[TakeutiZaring] p. 17Exercise 1eltp 3681
[TakeutiZaring] p. 17Exercise 5elsuc 4453  elsucg 4451  sstr2 3200
[TakeutiZaring] p. 17Exercise 6uncom 3317
[TakeutiZaring] p. 17Exercise 7incom 3365
[TakeutiZaring] p. 17Exercise 8unass 3330
[TakeutiZaring] p. 17Exercise 9inass 3383
[TakeutiZaring] p. 17Exercise 10indi 3420
[TakeutiZaring] p. 17Exercise 11undi 3421
[TakeutiZaring] p. 17Definition 5.9ssalel 3181
[TakeutiZaring] p. 17Definition 5.10df-pw 3618
[TakeutiZaring] p. 18Exercise 7unss2 3344
[TakeutiZaring] p. 18Exercise 9df-ss 3179  dfss2 3183  sseqin2 3392
[TakeutiZaring] p. 18Exercise 10ssid 3213
[TakeutiZaring] p. 18Exercise 12inss1 3393  inss2 3394
[TakeutiZaring] p. 18Exercise 13nssr 3253
[TakeutiZaring] p. 18Exercise 15unieq 3859
[TakeutiZaring] p. 18Exercise 18sspwb 4260
[TakeutiZaring] p. 18Exercise 19pweqb 4267
[TakeutiZaring] p. 20Definitiondf-rab 2493
[TakeutiZaring] p. 20Corollary 5.160ex 4171
[TakeutiZaring] p. 20Definition 5.12df-dif 3168
[TakeutiZaring] p. 20Definition 5.14dfnul2 3462
[TakeutiZaring] p. 20Proposition 5.15difid 3529  difidALT 3530
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3473
[TakeutiZaring] p. 21Theorem 5.22setind 4587
[TakeutiZaring] p. 21Definition 5.20df-v 2774
[TakeutiZaring] p. 21Proposition 5.21vprc 4176
[TakeutiZaring] p. 22Exercise 10ss 3499
[TakeutiZaring] p. 22Exercise 3ssex 4181  ssexg 4183
[TakeutiZaring] p. 22Exercise 4inex1 4178
[TakeutiZaring] p. 22Exercise 5ruv 4598
[TakeutiZaring] p. 22Exercise 6elirr 4589
[TakeutiZaring] p. 22Exercise 7ssdif0im 3525
[TakeutiZaring] p. 22Exercise 11difdif 3298
[TakeutiZaring] p. 22Exercise 13undif3ss 3434
[TakeutiZaring] p. 22Exercise 14difss 3299
[TakeutiZaring] p. 22Exercise 15sscon 3307
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2489
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2490
[TakeutiZaring] p. 23Proposition 6.2xpex 4790  xpexg 4789  xpexgALT 6218
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4682
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5338
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5492  fun11 5341
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5282  svrelfun 5339
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4865
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4867
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4687
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4688
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4684
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5137  dfrel2 5133
[TakeutiZaring] p. 25Exercise 3xpss 4783
[TakeutiZaring] p. 25Exercise 5relun 4792
[TakeutiZaring] p. 25Exercise 6reluni 4798
[TakeutiZaring] p. 25Exercise 9inxp 4812
[TakeutiZaring] p. 25Exercise 12relres 4987
[TakeutiZaring] p. 25Exercise 13opelres 4964  opelresg 4966
[TakeutiZaring] p. 25Exercise 14dmres 4980
[TakeutiZaring] p. 25Exercise 15resss 4983
[TakeutiZaring] p. 25Exercise 17resabs1 4988
[TakeutiZaring] p. 25Exercise 18funres 5312
[TakeutiZaring] p. 25Exercise 24relco 5181
[TakeutiZaring] p. 25Exercise 29funco 5311
[TakeutiZaring] p. 25Exercise 30f1co 5493
[TakeutiZaring] p. 26Definition 6.10eu2 2098
[TakeutiZaring] p. 26Definition 6.11df-fv 5279  fv3 5599
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5221  cnvexg 5220
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4945  dmexg 4942
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4946  rnexg 4943
[TakeutiZaring] p. 27Corollary 6.13funfvex 5593
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5603  tz6.12 5604  tz6.12c 5606
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5567
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5274
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5275
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5277  wfo 5269
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5276  wf1 5268
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5278  wf1o 5270
[TakeutiZaring] p. 28Exercise 4eqfnfv 5677  eqfnfv2 5678  eqfnfv2f 5681
[TakeutiZaring] p. 28Exercise 5fvco 5649
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5806  fnexALT 6196
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5805  resfunexgALT 6193
[TakeutiZaring] p. 29Exercise 9funimaex 5359  funimaexg 5358
[TakeutiZaring] p. 29Definition 6.18df-br 4045
[TakeutiZaring] p. 30Definition 6.21eliniseg 5052  iniseg 5054
[TakeutiZaring] p. 30Definition 6.22df-eprel 4336
[TakeutiZaring] p. 32Definition 6.28df-isom 5280
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5879
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5880
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5885
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5887
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5895
[TakeutiZaring] p. 35Notationwtr 4142
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4401
[TakeutiZaring] p. 35Definition 7.1dftr3 4146
[TakeutiZaring] p. 36Proposition 7.4ordwe 4624
[TakeutiZaring] p. 36Proposition 7.6ordelord 4428
[TakeutiZaring] p. 37Proposition 7.9ordin 4432
[TakeutiZaring] p. 38Corollary 7.15ordsson 4540
[TakeutiZaring] p. 38Definition 7.11df-on 4415
[TakeutiZaring] p. 38Proposition 7.12ordon 4534
[TakeutiZaring] p. 38Proposition 7.13onprc 4600
[TakeutiZaring] p. 39Theorem 7.17tfi 4630
[TakeutiZaring] p. 40Exercise 7dftr2 4144
[TakeutiZaring] p. 40Exercise 11unon 4559
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4535
[TakeutiZaring] p. 40Proposition 7.20elssuni 3878
[TakeutiZaring] p. 41Definition 7.22df-suc 4418
[TakeutiZaring] p. 41Proposition 7.23sssucid 4462  sucidg 4463
[TakeutiZaring] p. 41Proposition 7.24onsuc 4549
[TakeutiZaring] p. 42Exercise 1df-ilim 4416
[TakeutiZaring] p. 42Exercise 8onsucssi 4554  ordelsuc 4553
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4642
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4643
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4644
[TakeutiZaring] p. 43Axiom 7omex 4641
[TakeutiZaring] p. 43Theorem 7.32ordom 4655
[TakeutiZaring] p. 43Corollary 7.31find 4647
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4645
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4646
[TakeutiZaring] p. 44Exercise 2int0 3899
[TakeutiZaring] p. 44Exercise 3trintssm 4158
[TakeutiZaring] p. 44Exercise 4intss1 3900
[TakeutiZaring] p. 44Exercise 6onintonm 4565
[TakeutiZaring] p. 44Definition 7.35df-int 3886
[TakeutiZaring] p. 47Lemma 1tfrlem1 6394
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6451  tfri1d 6421
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6452  tfri2d 6422
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6453
[TakeutiZaring] p. 50Exercise 3smoiso 6388
[TakeutiZaring] p. 50Definition 7.46df-smo 6372
[TakeutiZaring] p. 56Definition 8.1oasuc 6550
[TakeutiZaring] p. 57Proposition 8.2oacl 6546
[TakeutiZaring] p. 57Proposition 8.3oa0 6543
[TakeutiZaring] p. 57Proposition 8.16omcl 6547
[TakeutiZaring] p. 58Proposition 8.4nnaord 6595  nnaordi 6594
[TakeutiZaring] p. 59Proposition 8.6iunss2 3972  uniss2 3881
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6556
[TakeutiZaring] p. 59Proposition 8.9nnacl 6566
[TakeutiZaring] p. 62Exercise 5oaword1 6557
[TakeutiZaring] p. 62Definition 8.15om0 6544  omsuc 6558
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6567
[TakeutiZaring] p. 63Proposition 8.19nnmord 6603  nnmordi 6602
[TakeutiZaring] p. 67Definition 8.30oei0 6545
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7294
[TakeutiZaring] p. 88Exercise 1en0 6887
[TakeutiZaring] p. 90Proposition 10.20nneneq 6954
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6955
[TakeutiZaring] p. 91Definition 10.29df-fin 6830  isfi 6852
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6926
[TakeutiZaring] p. 95Definition 10.42df-map 6737
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6932
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6945
[Tarski] p. 67Axiom B5ax-4 1533
[Tarski] p. 68Lemma 6equid 1724
[Tarski] p. 69Lemma 7equcomi 1727
[Tarski] p. 70Lemma 14spim 1761  spime 1764  spimeh 1762  spimh 1760
[Tarski] p. 70Lemma 16ax-11 1529  ax-11o 1846  ax11i 1737
[Tarski] p. 70Lemmas 16 and 17sb6 1910
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1549
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2178  ax-14 2179
[WhiteheadRussell] p. 96Axiom *1.3olc 713
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 729
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 758
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 767
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 791
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 839
[WhiteheadRussell] p. 101Theorem *2.06barbara 2152  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 739
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 838
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 887
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 845
[WhiteheadRussell] p. 102Theorem *2.15con1dc 858
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 855
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 857
[WhiteheadRussell] p. 104Theorem *2.2orc 714
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 777
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 895
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 909
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 770
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 771
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 806
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 807
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 805
[WhiteheadRussell] p. 105Definition *2.33df-3or 982
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 780
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 778
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 779
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 740
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 741
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 869  pm2.5gdc 868
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 864
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 742
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 743
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 744
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 657
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 658
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 724
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 893
[WhiteheadRussell] p. 107Theorem *2.55orel1 727
[WhiteheadRussell] p. 107Theorem *2.56orel2 728
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 867
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 750
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 802
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 803
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 661
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 715  pm2.67 745
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 871  pm2.521gdc 870
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 749
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 812
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 896
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 917
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 808
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 809
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 811
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 810
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 813
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 814
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 907
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 756
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 960
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 961
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 962
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 755
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 695
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 862
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 861
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 691
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 757  pm3.44 717
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 787
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 873
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 874
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 892
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 696
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 955  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 759  pm4.25 760
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 820
[WhiteheadRussell] p. 118Theorem *4.31orcom 730
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 769
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 794
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 824
[WhiteheadRussell] p. 118Definition *4.34df-3an 983
[WhiteheadRussell] p. 119Theorem *4.41ordi 818
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 974
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 952
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 781
[WhiteheadRussell] p. 119Theorem *4.45orabs 816  pm4.45 786  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1504
[WhiteheadRussell] p. 120Theorem *4.5anordc 959
[WhiteheadRussell] p. 120Theorem *4.6imordc 899  imorr 723
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 901
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 752
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 753
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 904
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 941
[WhiteheadRussell] p. 120Theorem *4.56ioran 754  pm4.56 782
[WhiteheadRussell] p. 120Theorem *4.57orandc 942  oranim 783
[WhiteheadRussell] p. 120Theorem *4.61annimim 688
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 900
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 888
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 902
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 689
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 903
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 889
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 829
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 746
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 712  pm4.77 801
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 784
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 905
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 709
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 910
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 953
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 954
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 911
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 912
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 914
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 913
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1409
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 830
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 906
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1414  pm5.18dc 885
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 708
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 697
[WhiteheadRussell] p. 124Theorem *5.22xordc 1412
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1417
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1418
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 897
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 928  pm5.6r 929
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 957
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 919
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 927
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 804
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 920
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 915
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 796
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 948
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 949
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 964
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 965
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1658
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1508
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1655
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1919
[WhiteheadRussell] p. 175Definition *14.02df-eu 2057
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2457
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2458
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2911
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3055
[WhiteheadRussell] p. 190Theorem *14.22iota4 5251
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5252
[WhiteheadRussell] p. 192Theorem *14.26eupick 2133  eupickbi 2136
[WhiteheadRussell] p. 235Definition *30.01df-fv 5279
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7298

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]