Bibliographic Reference |
Description | Intuitionistic Logic Explorer Page(s)
|
---|
[AczelRathjen], p.
71 | Definition 8.1.4 | enumct 7113 fidcenum 6954 |
[AczelRathjen], p.
72 | Proposition 8.1.11 | fidcenum 6954 |
[AczelRathjen], p.
73 | Lemma 8.1.14 | enumct 7113 |
[AczelRathjen], p.
73 | Corollary 8.1.13 | ennnfone 12425 |
[AczelRathjen], p.
74 | Lemma 8.1.16 | xpfi 6928 |
[AczelRathjen], p.
74 | Remark 8.1.17 | unfiexmid 6916 |
[AczelRathjen], p.
74 | Theorem 8.1.19 | ctiunct 12440 |
[AczelRathjen], p.
75 | Corollary 8.1.20 | unct 12442 |
[AczelRathjen], p.
75 | Corollary 8.1.23 | qnnen 12431 znnen 12398 |
[AczelRathjen], p.
77 | Lemma 8.1.27 | omctfn 12443 |
[AczelRathjen], p.
78 | Theorem 8.1.28 | omiunct 12444 |
[AczelRathjen], p.
80 | Corollary 8.2.4 | df-ihash 10755 |
[AczelRathjen], p.
183 | Chapter 20 | ax-setind 4536 |
[Apostol] p. 18 | Theorem
I.1 | addcan 8136 addcan2d 8141 addcan2i 8139 addcand 8140 addcani 8138 |
[Apostol] p. 18 | Theorem
I.2 | negeu 8147 |
[Apostol] p. 18 | Theorem
I.3 | negsub 8204 negsubd 8273 negsubi 8234 |
[Apostol] p. 18 | Theorem
I.4 | negneg 8206 negnegd 8258 negnegi 8226 |
[Apostol] p. 18 | Theorem
I.5 | subdi 8341 subdid 8370 subdii 8363 subdir 8342 subdird 8371 subdiri 8364 |
[Apostol] p. 18 | Theorem
I.6 | mul01 8345 mul01d 8349 mul01i 8347 mul02 8343 mul02d 8348 mul02i 8346 |
[Apostol] p. 18 | Theorem
I.9 | divrecapd 8749 |
[Apostol] p. 18 | Theorem
I.10 | recrecapi 8700 |
[Apostol] p. 18 | Theorem
I.12 | mul2neg 8354 mul2negd 8369 mul2negi 8362 mulneg1 8351 mulneg1d 8367 mulneg1i 8360 |
[Apostol] p. 18 | Theorem
I.14 | rdivmuldivd 13311 |
[Apostol] p. 18 | Theorem
I.15 | divdivdivap 8669 |
[Apostol] p. 20 | Axiom
7 | rpaddcl 9676 rpaddcld 9711 rpmulcl 9677 rpmulcld 9712 |
[Apostol] p. 20 | Axiom
9 | 0nrp 9688 |
[Apostol] p. 20 | Theorem
I.17 | lttri 8061 |
[Apostol] p. 20 | Theorem
I.18 | ltadd1d 8494 ltadd1dd 8512 ltadd1i 8458 |
[Apostol] p. 20 | Theorem
I.19 | ltmul1 8548 ltmul1a 8547 ltmul1i 8876 ltmul1ii 8884 ltmul2 8812 ltmul2d 9738 ltmul2dd 9752 ltmul2i 8879 |
[Apostol] p. 20 | Theorem
I.21 | 0lt1 8083 |
[Apostol] p. 20 | Theorem
I.23 | lt0neg1 8424 lt0neg1d 8471 ltneg 8418 ltnegd 8479 ltnegi 8449 |
[Apostol] p. 20 | Theorem
I.25 | lt2add 8401 lt2addd 8523 lt2addi 8466 |
[Apostol] p.
20 | Definition of positive numbers | df-rp 9653 |
[Apostol] p. 21 | Exercise
4 | recgt0 8806 recgt0d 8890 recgt0i 8862 recgt0ii 8863 |
[Apostol] p.
22 | Definition of integers | df-z 9253 |
[Apostol] p.
22 | Definition of rationals | df-q 9619 |
[Apostol] p. 24 | Theorem
I.26 | supeuti 6992 |
[Apostol] p. 26 | Theorem
I.29 | arch 9172 |
[Apostol] p. 28 | Exercise
2 | btwnz 9371 |
[Apostol] p. 28 | Exercise
3 | nnrecl 9173 |
[Apostol] p. 28 | Exercise
6 | qbtwnre 10256 |
[Apostol] p. 28 | Exercise
10(a) | zeneo 11875 zneo 9353 |
[Apostol] p. 29 | Theorem
I.35 | resqrtth 11039 sqrtthi 11127 |
[Apostol] p. 34 | Theorem
I.36 (principle of mathematical induction) | peano5nni 8921 |
[Apostol] p. 34 | Theorem
I.37 (well-ordering principle) | nnwodc 12036 |
[Apostol] p.
363 | Remark | absgt0api 11154 |
[Apostol] p.
363 | Example | abssubd 11201 abssubi 11158 |
[ApostolNT] p.
14 | Definition | df-dvds 11794 |
[ApostolNT] p.
14 | Theorem 1.1(a) | iddvds 11810 |
[ApostolNT] p.
14 | Theorem 1.1(b) | dvdstr 11834 |
[ApostolNT] p.
14 | Theorem 1.1(c) | dvds2ln 11830 |
[ApostolNT] p.
14 | Theorem 1.1(d) | dvdscmul 11824 |
[ApostolNT] p.
14 | Theorem 1.1(e) | dvdscmulr 11826 |
[ApostolNT] p.
14 | Theorem 1.1(f) | 1dvds 11811 |
[ApostolNT] p.
14 | Theorem 1.1(g) | dvds0 11812 |
[ApostolNT] p.
14 | Theorem 1.1(h) | 0dvds 11817 |
[ApostolNT] p.
14 | Theorem 1.1(i) | dvdsleabs 11850 |
[ApostolNT] p.
14 | Theorem 1.1(j) | dvdsabseq 11852 |
[ApostolNT] p.
14 | Theorem 1.1(k) | divconjdvds 11854 |
[ApostolNT] p.
15 | Definition | dfgcd2 12014 |
[ApostolNT] p.
16 | Definition | isprm2 12116 |
[ApostolNT] p.
16 | Theorem 1.5 | coprmdvds 12091 |
[ApostolNT] p.
16 | Theorem 1.7 | prminf 12455 |
[ApostolNT] p.
16 | Theorem 1.4(a) | gcdcom 11973 |
[ApostolNT] p.
16 | Theorem 1.4(b) | gcdass 12015 |
[ApostolNT] p.
16 | Theorem 1.4(c) | absmulgcd 12017 |
[ApostolNT] p.
16 | Theorem 1.4(d)1 | gcd1 11987 |
[ApostolNT] p.
16 | Theorem 1.4(d)2 | gcdid0 11980 |
[ApostolNT] p.
17 | Theorem 1.8 | coprm 12143 |
[ApostolNT] p.
17 | Theorem 1.9 | euclemma 12145 |
[ApostolNT] p.
17 | Theorem 1.10 | 1arith2 12365 |
[ApostolNT] p.
19 | Theorem 1.14 | divalg 11928 |
[ApostolNT] p.
20 | Theorem 1.15 | eucalg 12058 |
[ApostolNT] p.
25 | Definition | df-phi 12210 |
[ApostolNT] p.
26 | Theorem 2.2 | phisum 12239 |
[ApostolNT] p.
28 | Theorem 2.5(a) | phiprmpw 12221 |
[ApostolNT] p.
28 | Theorem 2.5(c) | phimul 12225 |
[ApostolNT] p.
104 | Definition | congr 12099 |
[ApostolNT] p.
106 | Remark | dvdsval3 11797 |
[ApostolNT] p.
106 | Definition | moddvds 11805 |
[ApostolNT] p.
107 | Example 2 | mod2eq0even 11882 |
[ApostolNT] p.
107 | Example 3 | mod2eq1n2dvds 11883 |
[ApostolNT] p.
107 | Example 4 | zmod1congr 10340 |
[ApostolNT] p.
107 | Theorem 5.2(b) | modqmul12d 10377 |
[ApostolNT] p.
107 | Theorem 5.2(c) | modqexp 10646 |
[ApostolNT] p.
108 | Theorem 5.3 | modmulconst 11829 |
[ApostolNT] p.
109 | Theorem 5.4 | cncongr1 12102 |
[ApostolNT] p.
109 | Theorem 5.4 "Cancellation law" | cncongr 12104 |
[ApostolNT] p.
113 | Theorem 5.17 | eulerth 12232 |
[ApostolNT] p.
113 | Theorem 5.18 | vfermltl 12250 |
[ApostolNT] p.
114 | Theorem 5.19 | fermltl 12233 |
[ApostolNT] p.
179 | Definition | df-lgs 14335 lgsprme0 14379 |
[ApostolNT] p.
180 | Example 1 | 1lgs 14380 |
[ApostolNT] p.
180 | Theorem 9.2 | lgsvalmod 14356 |
[ApostolNT] p.
180 | Theorem 9.3 | lgsdirprm 14371 |
[ApostolNT] p.
181 | Theorem 9.4 | m1lgs 14388 |
[ApostolNT] p.
188 | Definition | df-lgs 14335 lgs1 14381 |
[ApostolNT] p.
188 | Theorem 9.9(a) | lgsdir 14372 |
[ApostolNT] p.
188 | Theorem 9.9(b) | lgsdi 14374 |
[ApostolNT] p.
188 | Theorem 9.9(c) | lgsmodeq 14382 |
[ApostolNT] p.
188 | Theorem 9.9(d) | lgsmulsqcoprm 14383 |
[Bauer] p. 482 | Section
1.2 | pm2.01 616 pm2.65 659 |
[Bauer] p. 483 | Theorem
1.3 | acexmid 5873 onsucelsucexmidlem 4528 |
[Bauer], p.
481 | Section 1.1 | pwtrufal 14683 |
[Bauer], p.
483 | Definition | n0rf 3435 |
[Bauer], p. 483 | Theorem
1.2 | 2irrexpq 14330 2irrexpqap 14332 |
[Bauer], p. 485 | Theorem
2.1 | ssfiexmid 6875 |
[Bauer], p. 494 | Theorem
5.5 | ivthinc 14057 |
[BauerHanson], p.
27 | Proposition 5.2 | cnstab 8601 |
[BauerSwan], p.
14 | Remark | 0ct 7105 ctm 7107 |
[BauerSwan],
p. 14 | Proposition 2.6 | subctctexmid 14686 |
[BauerSwan], p.
14 | Table" is defined as ` ` per | enumct 7113 |
[BauerTaylor], p.
32 | Lemma 6.16 | prarloclem 7499 |
[BauerTaylor], p.
50 | Lemma 11.4 | subhalfnqq 7412 |
[BauerTaylor], p.
52 | Proposition 11.15 | prarloc 7501 |
[BauerTaylor], p.
53 | Lemma 11.16 | addclpr 7535 addlocpr 7534 |
[BauerTaylor], p.
55 | Proposition 12.7 | appdivnq 7561 |
[BauerTaylor], p.
56 | Lemma 12.8 | prmuloc 7564 |
[BauerTaylor], p.
56 | Lemma 12.9 | mullocpr 7569 |
[BellMachover] p.
36 | Lemma 10.3 | idALT 20 |
[BellMachover] p.
97 | Definition 10.1 | df-eu 2029 |
[BellMachover] p.
460 | Notation | df-mo 2030 |
[BellMachover] p.
460 | Definition | mo3 2080 mo3h 2079 |
[BellMachover] p.
462 | Theorem 1.1 | bm1.1 2162 |
[BellMachover] p.
463 | Theorem 1.3ii | bm1.3ii 4124 |
[BellMachover] p.
466 | Axiom Pow | axpow3 4177 |
[BellMachover] p.
466 | Axiom Union | axun2 4435 |
[BellMachover] p.
469 | Theorem 2.2(i) | ordirr 4541 |
[BellMachover] p.
469 | Theorem 2.2(iii) | onelon 4384 |
[BellMachover] p.
469 | Theorem 2.2(vii) | ordn2lp 4544 |
[BellMachover] p.
471 | Problem 2.5(ii) | bm2.5ii 4495 |
[BellMachover] p.
471 | Definition of Lim | df-ilim 4369 |
[BellMachover] p.
472 | Axiom Inf | zfinf2 4588 |
[BellMachover] p.
473 | Theorem 2.8 | limom 4613 |
[Bobzien] p.
116 | Statement T3 | stoic3 1431 |
[Bobzien] p.
117 | Statement T2 | stoic2a 1429 |
[Bobzien] p.
117 | Statement T4 | stoic4a 1432 |
[Bobzien] p.
117 | Conclusion the contradictory | stoic1a 1427 |
[BourbakiAlg1] p.
1 | Definition 1 | df-mgm 12774 |
[BourbakiAlg1] p.
4 | Definition 5 | df-sgrp 12807 |
[BourbakiAlg1] p.
12 | Definition 2 | df-mnd 12817 |
[BourbakiAlg1] p.
92 | Definition 1 | df-ring 13179 |
[BourbakiEns] p.
| Proposition 8 | fcof1 5783 fcofo 5784 |
[BourbakiTop1] p.
| Remark | xnegmnf 9828 xnegpnf 9827 |
[BourbakiTop1] p.
| Remark | rexneg 9829 |
[BourbakiTop1] p.
| Proposition | ishmeo 13740 |
[BourbakiTop1] p.
| Property V_i | ssnei2 13593 |
[BourbakiTop1] p.
| Property V_ii | innei 13599 |
[BourbakiTop1] p.
| Property V_iv | neissex 13601 |
[BourbakiTop1] p.
| Proposition 1 | neipsm 13590 neiss 13586 |
[BourbakiTop1] p.
| Proposition 2 | cnptopco 13658 |
[BourbakiTop1] p.
| Proposition 4 | imasnopn 13735 |
[BourbakiTop1] p.
| Property V_iii | elnei 13588 |
[BourbakiTop1] p.
| Definition is due to Bourbaki (Def. 1 | df-top 13434 |
[Bruck] p. 1 | Section
I.1 | df-mgm 12774 |
[Bruck] p. 23 | Section
II.1 | df-sgrp 12807 |
[Bruck] p. 28 | Theorem
3.2 | dfgrp3m 12968 |
[ChoquetDD] p.
2 | Definition of mapping | df-mpt 4066 |
[Cohen] p.
301 | Remark | relogoprlem 14225 |
[Cohen] p. 301 | Property
2 | relogmul 14226 relogmuld 14241 |
[Cohen] p. 301 | Property
3 | relogdiv 14227 relogdivd 14242 |
[Cohen] p. 301 | Property
4 | relogexp 14229 |
[Cohen] p. 301 | Property
1a | log1 14223 |
[Cohen] p. 301 | Property
1b | loge 14224 |
[Cohen4] p.
348 | Observation | relogbcxpbap 14319 |
[Cohen4] p.
352 | Definition | rpelogb 14303 |
[Cohen4] p. 361 | Property
2 | rprelogbmul 14309 |
[Cohen4] p. 361 | Property
3 | logbrec 14314 rprelogbdiv 14311 |
[Cohen4] p. 361 | Property
4 | rplogbreexp 14307 |
[Cohen4] p. 361 | Property
6 | relogbexpap 14312 |
[Cohen4] p. 361 | Property
1(a) | rplogbid1 14301 |
[Cohen4] p. 361 | Property
1(b) | rplogb1 14302 |
[Cohen4] p.
367 | Property | rplogbchbase 14304 |
[Cohen4] p. 377 | Property
2 | logblt 14316 |
[Crosilla] p. | Axiom
1 | ax-ext 2159 |
[Crosilla] p. | Axiom
2 | ax-pr 4209 |
[Crosilla] p. | Axiom
3 | ax-un 4433 |
[Crosilla] p. | Axiom
4 | ax-nul 4129 |
[Crosilla] p. | Axiom
5 | ax-iinf 4587 |
[Crosilla] p. | Axiom
6 | ru 2961 |
[Crosilla] p. | Axiom
8 | ax-pow 4174 |
[Crosilla] p. | Axiom
9 | ax-setind 4536 |
[Crosilla], p. | Axiom
6 | ax-sep 4121 |
[Crosilla], p. | Axiom
7 | ax-coll 4118 |
[Crosilla], p. | Axiom
7' | repizf 4119 |
[Crosilla], p. | Theorem
is stated | ordtriexmid 4520 |
[Crosilla], p. | Axiom
of choice implies instances | acexmid 5873 |
[Crosilla], p.
| Definition of ordinal | df-iord 4366 |
[Crosilla], p. | Theorem
"Foundation implies instances of EM" | regexmid 4534 |
[Eisenberg] p.
67 | Definition 5.3 | df-dif 3131 |
[Eisenberg] p.
82 | Definition 6.3 | df-iom 4590 |
[Eisenberg] p.
125 | Definition 8.21 | df-map 6649 |
[Enderton] p. 18 | Axiom
of Empty Set | axnul 4128 |
[Enderton] p.
19 | Definition | df-tp 3600 |
[Enderton] p.
26 | Exercise 5 | unissb 3839 |
[Enderton] p.
26 | Exercise 10 | pwel 4218 |
[Enderton] p.
28 | Exercise 7(b) | pwunim 4286 |
[Enderton] p.
30 | Theorem "Distributive laws" | iinin1m 3956 iinin2m 3955 iunin1 3951 iunin2 3950 |
[Enderton] p.
31 | Theorem "De Morgan's laws" | iindif2m 3954 iundif2ss 3952 |
[Enderton] p.
33 | Exercise 23 | iinuniss 3969 |
[Enderton] p.
33 | Exercise 25 | iununir 3970 |
[Enderton] p.
33 | Exercise 24(a) | iinpw 3977 |
[Enderton] p.
33 | Exercise 24(b) | iunpw 4480 iunpwss 3978 |
[Enderton] p.
38 | Exercise 6(a) | unipw 4217 |
[Enderton] p.
38 | Exercise 6(b) | pwuni 4192 |
[Enderton] p. 41 | Lemma
3D | opeluu 4450 rnex 4894
rnexg 4892 |
[Enderton] p.
41 | Exercise 8 | dmuni 4837 rnuni 5040 |
[Enderton] p.
42 | Definition of a function | dffun7 5243 dffun8 5244 |
[Enderton] p.
43 | Definition of function value | funfvdm2 5580 |
[Enderton] p.
43 | Definition of single-rooted | funcnv 5277 |
[Enderton] p.
44 | Definition (d) | dfima2 4972 dfima3 4973 |
[Enderton] p.
47 | Theorem 3H | fvco2 5585 |
[Enderton] p. 49 | Axiom
of Choice (first form) | df-ac 7204 |
[Enderton] p.
50 | Theorem 3K(a) | imauni 5761 |
[Enderton] p.
52 | Definition | df-map 6649 |
[Enderton] p.
53 | Exercise 21 | coass 5147 |
[Enderton] p.
53 | Exercise 27 | dmco 5137 |
[Enderton] p.
53 | Exercise 14(a) | funin 5287 |
[Enderton] p.
53 | Exercise 22(a) | imass2 5004 |
[Enderton] p.
54 | Remark | ixpf 6719 ixpssmap 6731 |
[Enderton] p.
54 | Definition of infinite Cartesian product | df-ixp 6698 |
[Enderton] p.
56 | Theorem 3M | erref 6554 |
[Enderton] p. 57 | Lemma
3N | erthi 6580 |
[Enderton] p.
57 | Definition | df-ec 6536 |
[Enderton] p.
58 | Definition | df-qs 6540 |
[Enderton] p.
60 | Theorem 3Q | th3q 6639 th3qcor 6638 th3qlem1 6636 th3qlem2 6637 |
[Enderton] p.
61 | Exercise 35 | df-ec 6536 |
[Enderton] p.
65 | Exercise 56(a) | dmun 4834 |
[Enderton] p.
68 | Definition of successor | df-suc 4371 |
[Enderton] p.
71 | Definition | df-tr 4102 dftr4 4106 |
[Enderton] p.
72 | Theorem 4E | unisuc 4413 unisucg 4414 |
[Enderton] p.
73 | Exercise 6 | unisuc 4413 unisucg 4414 |
[Enderton] p.
73 | Exercise 5(a) | truni 4115 |
[Enderton] p.
73 | Exercise 5(b) | trint 4116 |
[Enderton] p.
79 | Theorem 4I(A1) | nna0 6474 |
[Enderton] p.
79 | Theorem 4I(A2) | nnasuc 6476 onasuc 6466 |
[Enderton] p.
79 | Definition of operation value | df-ov 5877 |
[Enderton] p.
80 | Theorem 4J(A1) | nnm0 6475 |
[Enderton] p.
80 | Theorem 4J(A2) | nnmsuc 6477 onmsuc 6473 |
[Enderton] p.
81 | Theorem 4K(1) | nnaass 6485 |
[Enderton] p.
81 | Theorem 4K(2) | nna0r 6478 nnacom 6484 |
[Enderton] p.
81 | Theorem 4K(3) | nndi 6486 |
[Enderton] p.
81 | Theorem 4K(4) | nnmass 6487 |
[Enderton] p.
81 | Theorem 4K(5) | nnmcom 6489 |
[Enderton] p.
82 | Exercise 16 | nnm0r 6479 nnmsucr 6488 |
[Enderton] p.
88 | Exercise 23 | nnaordex 6528 |
[Enderton] p.
129 | Definition | df-en 6740 |
[Enderton] p.
132 | Theorem 6B(b) | canth 5828 |
[Enderton] p.
133 | Exercise 1 | xpomen 12395 |
[Enderton] p.
134 | Theorem (Pigeonhole Principle) | phpm 6864 |
[Enderton] p.
136 | Corollary 6E | nneneq 6856 |
[Enderton] p.
139 | Theorem 6H(c) | mapen 6845 |
[Enderton] p.
142 | Theorem 6I(3) | xpdjuen 7216 |
[Enderton] p.
143 | Theorem 6J | dju0en 7212 dju1en 7211 |
[Enderton] p.
144 | Corollary 6K | undif2ss 3498 |
[Enderton] p.
145 | Figure 38 | ffoss 5493 |
[Enderton] p.
145 | Definition | df-dom 6741 |
[Enderton] p.
146 | Example 1 | domen 6750 domeng 6751 |
[Enderton] p.
146 | Example 3 | nndomo 6863 |
[Enderton] p.
149 | Theorem 6L(c) | xpdom1 6834 xpdom1g 6832 xpdom2g 6831 |
[Enderton] p.
168 | Definition | df-po 4296 |
[Enderton] p.
192 | Theorem 7M(a) | oneli 4428 |
[Enderton] p.
192 | Theorem 7M(b) | ontr1 4389 |
[Enderton] p.
192 | Theorem 7M(c) | onirri 4542 |
[Enderton] p.
193 | Corollary 7N(b) | 0elon 4392 |
[Enderton] p.
193 | Corollary 7N(c) | onsuci 4515 |
[Enderton] p.
193 | Corollary 7N(d) | ssonunii 4488 |
[Enderton] p.
194 | Remark | onprc 4551 |
[Enderton] p.
194 | Exercise 16 | suc11 4557 |
[Enderton] p.
197 | Definition | df-card 7178 |
[Enderton] p.
200 | Exercise 25 | tfis 4582 |
[Enderton] p.
206 | Theorem 7X(b) | en2lp 4553 |
[Enderton] p.
207 | Exercise 34 | opthreg 4555 |
[Enderton] p.
208 | Exercise 35 | suc11g 4556 |
[Geuvers], p.
1 | Remark | expap0 10549 |
[Geuvers], p. 6 | Lemma
2.13 | mulap0r 8571 |
[Geuvers], p. 6 | Lemma
2.15 | mulap0 8610 |
[Geuvers], p. 9 | Lemma
2.35 | msqge0 8572 |
[Geuvers], p.
9 | Definition 3.1(2) | ax-arch 7929 |
[Geuvers], p. 10 | Lemma
3.9 | maxcom 11211 |
[Geuvers], p. 10 | Lemma
3.10 | maxle1 11219 maxle2 11220 |
[Geuvers], p. 10 | Lemma
3.11 | maxleast 11221 |
[Geuvers], p. 10 | Lemma
3.12 | maxleb 11224 |
[Geuvers], p.
11 | Definition 3.13 | dfabsmax 11225 |
[Geuvers], p.
17 | Definition 6.1 | df-ap 8538 |
[Gleason] p.
117 | Proposition 9-2.1 | df-enq 7345 enqer 7356 |
[Gleason] p.
117 | Proposition 9-2.2 | df-1nqqs 7349 df-nqqs 7346 |
[Gleason] p.
117 | Proposition 9-2.3 | df-plpq 7342 df-plqqs 7347 |
[Gleason] p.
119 | Proposition 9-2.4 | df-mpq 7343 df-mqqs 7348 |
[Gleason] p.
119 | Proposition 9-2.5 | df-rq 7350 |
[Gleason] p.
119 | Proposition 9-2.6 | ltexnqq 7406 |
[Gleason] p.
120 | Proposition 9-2.6(i) | halfnq 7409 ltbtwnnq 7414 ltbtwnnqq 7413 |
[Gleason] p.
120 | Proposition 9-2.6(ii) | ltanqg 7398 |
[Gleason] p.
120 | Proposition 9-2.6(iii) | ltmnqg 7399 |
[Gleason] p.
123 | Proposition 9-3.5 | addclpr 7535 |
[Gleason] p.
123 | Proposition 9-3.5(i) | addassprg 7577 |
[Gleason] p.
123 | Proposition 9-3.5(ii) | addcomprg 7576 |
[Gleason] p.
123 | Proposition 9-3.5(iii) | ltaddpr 7595 |
[Gleason] p.
123 | Proposition 9-3.5(iv) | ltexpri 7611 |
[Gleason] p.
123 | Proposition 9-3.5(v) | ltaprg 7617 ltaprlem 7616 |
[Gleason] p.
123 | Proposition 9-3.5(vi) | addcanprg 7614 |
[Gleason] p.
124 | Proposition 9-3.7 | mulclpr 7570 |
[Gleason] p. 124 | Theorem
9-3.7(iv) | 1idpr 7590 |
[Gleason] p.
124 | Proposition 9-3.7(i) | mulassprg 7579 |
[Gleason] p.
124 | Proposition 9-3.7(ii) | mulcomprg 7578 |
[Gleason] p.
124 | Proposition 9-3.7(iii) | distrprg 7586 |
[Gleason] p.
124 | Proposition 9-3.7(v) | recexpr 7636 |
[Gleason] p.
126 | Proposition 9-4.1 | df-enr 7724 enrer 7733 |
[Gleason] p.
126 | Proposition 9-4.2 | df-0r 7729 df-1r 7730 df-nr 7725 |
[Gleason] p.
126 | Proposition 9-4.3 | df-mr 7727 df-plr 7726 negexsr 7770 recexsrlem 7772 |
[Gleason] p.
127 | Proposition 9-4.4 | df-ltr 7728 |
[Gleason] p.
130 | Proposition 10-1.3 | creui 8916 creur 8915 cru 8558 |
[Gleason] p.
130 | Definition 10-1.1(v) | ax-cnre 7921 axcnre 7879 |
[Gleason] p.
132 | Definition 10-3.1 | crim 10866 crimd 10985 crimi 10945 crre 10865 crred 10984 crrei 10944 |
[Gleason] p.
132 | Definition 10-3.2 | remim 10868 remimd 10950 |
[Gleason] p.
133 | Definition 10.36 | absval2 11065 absval2d 11193 absval2i 11152 |
[Gleason] p.
133 | Proposition 10-3.4(a) | cjadd 10892 cjaddd 10973 cjaddi 10940 |
[Gleason] p.
133 | Proposition 10-3.4(c) | cjmul 10893 cjmuld 10974 cjmuli 10941 |
[Gleason] p.
133 | Proposition 10-3.4(e) | cjcj 10891 cjcjd 10951 cjcji 10923 |
[Gleason] p.
133 | Proposition 10-3.4(f) | cjre 10890 cjreb 10874 cjrebd 10954 cjrebi 10926 cjred 10979 rere 10873 rereb 10871 rerebd 10953 rerebi 10925 rered 10977 |
[Gleason] p.
133 | Proposition 10-3.4(h) | addcj 10899 addcjd 10965 addcji 10935 |
[Gleason] p.
133 | Proposition 10-3.7(a) | absval 11009 |
[Gleason] p.
133 | Proposition 10-3.7(b) | abscj 11060 abscjd 11198 abscji 11156 |
[Gleason] p.
133 | Proposition 10-3.7(c) | abs00 11072 abs00d 11194 abs00i 11153 absne0d 11195 |
[Gleason] p.
133 | Proposition 10-3.7(d) | releabs 11104 releabsd 11199 releabsi 11157 |
[Gleason] p.
133 | Proposition 10-3.7(f) | absmul 11077 absmuld 11202 absmuli 11159 |
[Gleason] p.
133 | Proposition 10-3.7(g) | sqabsadd 11063 sqabsaddi 11160 |
[Gleason] p.
133 | Proposition 10-3.7(h) | abstri 11112 abstrid 11204 abstrii 11163 |
[Gleason] p.
134 | Definition 10-4.1 | df-exp 10519 exp0 10523 expp1 10526 expp1d 10654 |
[Gleason] p.
135 | Proposition 10-4.2(a) | expadd 10561 expaddd 10655 |
[Gleason] p.
135 | Proposition 10-4.2(b) | cxpmul 14269 cxpmuld 14292 expmul 10564 expmuld 10656 |
[Gleason] p.
135 | Proposition 10-4.2(c) | mulexp 10558 mulexpd 10668 rpmulcxp 14266 |
[Gleason] p.
141 | Definition 11-2.1 | fzval 10009 |
[Gleason] p.
168 | Proposition 12-2.1(a) | climadd 11333 |
[Gleason] p.
168 | Proposition 12-2.1(b) | climsub 11335 |
[Gleason] p.
168 | Proposition 12-2.1(c) | climmul 11334 |
[Gleason] p.
171 | Corollary 12-2.2 | climmulc2 11338 |
[Gleason] p.
172 | Corollary 12-2.5 | climrecl 11331 |
[Gleason] p.
172 | Proposition 12-2.4(c) | climabs 11327 climcj 11328 climim 11330 climre 11329 |
[Gleason] p.
173 | Definition 12-3.1 | df-ltxr 7996 df-xr 7995 ltxr 9774 |
[Gleason] p. 180 | Theorem
12-5.3 | climcau 11354 |
[Gleason] p. 217 | Lemma
13-4.1 | btwnzge0 10299 |
[Gleason] p.
223 | Definition 14-1.1 | df-met 13385 |
[Gleason] p.
223 | Definition 14-1.1(a) | met0 13800 xmet0 13799 |
[Gleason] p.
223 | Definition 14-1.1(c) | metsym 13807 |
[Gleason] p.
223 | Definition 14-1.1(d) | mettri 13809 mstri 13909 xmettri 13808 xmstri 13908 |
[Gleason] p.
230 | Proposition 14-2.6 | txlm 13715 |
[Gleason] p.
240 | Proposition 14-4.2 | metcnp3 13947 |
[Gleason] p.
243 | Proposition 14-4.16 | addcn2 11317 addcncntop 13988 mulcn2 11319 mulcncntop 13990 subcn2 11318 subcncntop 13989 |
[Gleason] p.
295 | Remark | bcval3 10730 bcval4 10731 |
[Gleason] p.
295 | Equation 2 | bcpasc 10745 |
[Gleason] p.
295 | Definition of binomial coefficient | bcval 10728 df-bc 10727 |
[Gleason] p.
296 | Remark | bcn0 10734 bcnn 10736 |
[Gleason] p. 296 | Theorem
15-2.8 | binom 11491 |
[Gleason] p.
308 | Equation 2 | ef0 11679 |
[Gleason] p.
308 | Equation 3 | efcj 11680 |
[Gleason] p.
309 | Corollary 15-4.3 | efne0 11685 |
[Gleason] p.
309 | Corollary 15-4.4 | efexp 11689 |
[Gleason] p.
310 | Equation 14 | sinadd 11743 |
[Gleason] p.
310 | Equation 15 | cosadd 11744 |
[Gleason] p.
311 | Equation 17 | sincossq 11755 |
[Gleason] p.
311 | Equation 18 | cosbnd 11760 sinbnd 11759 |
[Gleason] p.
311 | Definition of ` ` | df-pi 11660 |
[Golan] p.
1 | Remark | srgisid 13167 |
[Golan] p.
1 | Definition | df-srg 13145 |
[Hamilton] p.
31 | Example 2.7(a) | idALT 20 |
[Hamilton] p. 73 | Rule
1 | ax-mp 5 |
[Hamilton] p. 74 | Rule
2 | ax-gen 1449 |
[Herstein] p. 55 | Lemma
2.2.1(a) | grpideu 12887 mndideu 12826 |
[Herstein] p. 55 | Lemma
2.2.1(b) | grpinveu 12910 |
[Herstein] p. 55 | Lemma
2.2.1(c) | grpinvinv 12936 |
[Herstein] p. 55 | Lemma
2.2.1(d) | grpinvadd 12947 |
[Herstein] p.
57 | Exercise 1 | dfgrp3me 12969 |
[Heyting] p.
127 | Axiom #1 | ax1hfs 14757 |
[Hitchcock] p. 5 | Rule
A3 | mptnan 1423 |
[Hitchcock] p. 5 | Rule
A4 | mptxor 1424 |
[Hitchcock] p. 5 | Rule
A5 | mtpxor 1426 |
[HoTT], p. | Lemma
10.4.1 | exmidontriim 7223 |
[HoTT], p. | Theorem
7.2.6 | nndceq 6499 |
[HoTT], p.
| Exercise 11.10 | neapmkv 14751 |
[HoTT], p. | Exercise
11.11 | mulap0bd 8613 |
[HoTT], p. | Section
11.2.1 | df-iltp 7468 df-imp 7467 df-iplp 7466 df-reap 8531 |
[HoTT], p. | Theorem
11.2.4 | recapb 8627 rerecapb 8799 |
[HoTT], p. | Theorem
11.2.12 | cauappcvgpr 7660 |
[HoTT], p. | Corollary
11.4.3 | conventions 14409 |
[HoTT], p.
| Exercise 11.6(i) | dcapnconst 14744 dceqnconst 14743 |
[HoTT], p. | Corollary
11.2.13 | axcaucvg 7898 caucvgpr 7680 caucvgprpr 7710 caucvgsr 7800 |
[HoTT], p. | Definition
11.2.1 | df-inp 7464 |
[HoTT], p.
| Exercise 11.6(ii) | nconstwlpo 14749 |
[HoTT], p. | Proposition
11.2.3 | df-iso 4297 ltpopr 7593 ltsopr 7594 |
[HoTT], p. | Definition
11.2.7(v) | apsym 8562 reapcotr 8554 reapirr 8533 |
[HoTT], p. | Definition
11.2.7(vi) | 0lt1 8083 gt0add 8529 leadd1 8386 lelttr 8045 lemul1a 8814 lenlt 8032 ltadd1 8385 ltletr 8046 ltmul1 8548 reaplt 8544 |
[Jech] p. 4 | Definition of
class | cv 1352 cvjust 2172 |
[Jech] p.
78 | Note | opthprc 4677 |
[KalishMontague] p.
81 | Note 1 | ax-i9 1530 |
[Kreyszig] p.
3 | Property M1 | metcl 13789 xmetcl 13788 |
[Kreyszig] p.
4 | Property M2 | meteq0 13796 |
[Kreyszig] p.
12 | Equation 5 | muleqadd 8624 |
[Kreyszig] p.
18 | Definition 1.3-2 | mopnval 13878 |
[Kreyszig] p.
19 | Remark | mopntopon 13879 |
[Kreyszig] p.
19 | Theorem T1 | mopn0 13924 mopnm 13884 |
[Kreyszig] p.
19 | Theorem T2 | unimopn 13922 |
[Kreyszig] p.
19 | Definition of neighborhood | neibl 13927 |
[Kreyszig] p.
20 | Definition 1.3-3 | metcnp2 13949 |
[Kreyszig] p.
25 | Definition 1.4-1 | lmbr 13649 |
[Kunen] p. 10 | Axiom
0 | a9e 1696 |
[Kunen] p. 12 | Axiom
6 | zfrep6 4120 |
[Kunen] p. 24 | Definition
10.24 | mapval 6659 mapvalg 6657 |
[Kunen] p. 31 | Definition
10.24 | mapex 6653 |
[KuratowskiMostowski] p.
109 | Section. Eq. 14 | iuniin 3896 |
[Lang] p.
3 | Statement | lidrideqd 12799 mndbn0 12831 |
[Lang] p.
3 | Definition | df-mnd 12817 |
[Lang] p.
7 | Definition | dfgrp2e 12902 |
[Levy] p.
338 | Axiom | df-clab 2164 df-clel 2173 df-cleq 2170 |
[Lopez-Astorga] p.
12 | Rule 1 | mptnan 1423 |
[Lopez-Astorga] p.
12 | Rule 2 | mptxor 1424 |
[Lopez-Astorga] p.
12 | Rule 3 | mtpxor 1426 |
[Margaris] p. 40 | Rule
C | exlimiv 1598 |
[Margaris] p. 49 | Axiom
A1 | ax-1 6 |
[Margaris] p. 49 | Axiom
A2 | ax-2 7 |
[Margaris] p. 49 | Axiom
A3 | condc 853 |
[Margaris] p.
49 | Definition | dfbi2 388 dfordc 892 exalim 1502 |
[Margaris] p.
51 | Theorem 1 | idALT 20 |
[Margaris] p.
56 | Theorem 3 | syld 45 |
[Margaris] p.
60 | Theorem 8 | jcn 651 |
[Margaris] p.
89 | Theorem 19.2 | 19.2 1638 r19.2m 3509 |
[Margaris] p.
89 | Theorem 19.3 | 19.3 1554 19.3h 1553 rr19.3v 2876 |
[Margaris] p.
89 | Theorem 19.5 | alcom 1478 |
[Margaris] p.
89 | Theorem 19.6 | alexdc 1619 alexim 1645 |
[Margaris] p.
89 | Theorem 19.7 | alnex 1499 |
[Margaris] p.
89 | Theorem 19.8 | 19.8a 1590 spsbe 1842 |
[Margaris] p.
89 | Theorem 19.9 | 19.9 1644 19.9h 1643 19.9v 1871 exlimd 1597 |
[Margaris] p.
89 | Theorem 19.11 | excom 1664 excomim 1663 |
[Margaris] p.
89 | Theorem 19.12 | 19.12 1665 r19.12 2583 |
[Margaris] p.
90 | Theorem 19.14 | exnalim 1646 |
[Margaris] p.
90 | Theorem 19.15 | albi 1468 ralbi 2609 |
[Margaris] p.
90 | Theorem 19.16 | 19.16 1555 |
[Margaris] p.
90 | Theorem 19.17 | 19.17 1556 |
[Margaris] p.
90 | Theorem 19.18 | exbi 1604 rexbi 2610 |
[Margaris] p.
90 | Theorem 19.19 | 19.19 1666 |
[Margaris] p.
90 | Theorem 19.20 | alim 1457 alimd 1521 alimdh 1467 alimdv 1879 ralimdaa 2543 ralimdv 2545 ralimdva 2544 ralimdvva 2546 sbcimdv 3028 |
[Margaris] p.
90 | Theorem 19.21 | 19.21-2 1667 19.21 1583 19.21bi 1558 19.21h 1557 19.21ht 1581 19.21t 1582 19.21v 1873 alrimd 1610 alrimdd 1609 alrimdh 1479 alrimdv 1876 alrimi 1522 alrimih 1469 alrimiv 1874 alrimivv 1875 r19.21 2553 r19.21be 2568 r19.21bi 2565 r19.21t 2552 r19.21v 2554 ralrimd 2555 ralrimdv 2556 ralrimdva 2557 ralrimdvv 2561 ralrimdvva 2562 ralrimi 2548 ralrimiv 2549 ralrimiva 2550 ralrimivv 2558 ralrimivva 2559 ralrimivvva 2560 ralrimivw 2551 rexlimi 2587 |
[Margaris] p.
90 | Theorem 19.22 | 2alimdv 1881 2eximdv 1882 exim 1599
eximd 1612 eximdh 1611 eximdv 1880 rexim 2571 reximdai 2575 reximddv 2580 reximddv2 2582 reximdv 2578 reximdv2 2576 reximdva 2579 reximdvai 2577 reximi2 2573 |
[Margaris] p.
90 | Theorem 19.23 | 19.23 1678 19.23bi 1592 19.23h 1498 19.23ht 1497 19.23t 1677 19.23v 1883 19.23vv 1884 exlimd2 1595 exlimdh 1596 exlimdv 1819 exlimdvv 1897 exlimi 1594 exlimih 1593 exlimiv 1598 exlimivv 1896 r19.23 2585 r19.23v 2586 rexlimd 2591 rexlimdv 2593 rexlimdv3a 2596 rexlimdva 2594 rexlimdva2 2597 rexlimdvaa 2595 rexlimdvv 2601 rexlimdvva 2602 rexlimdvw 2598 rexlimiv 2588 rexlimiva 2589 rexlimivv 2600 |
[Margaris] p.
90 | Theorem 19.24 | i19.24 1639 |
[Margaris] p.
90 | Theorem 19.25 | 19.25 1626 |
[Margaris] p.
90 | Theorem 19.26 | 19.26-2 1482 19.26-3an 1483 19.26 1481 r19.26-2 2606 r19.26-3 2607 r19.26 2603 r19.26m 2608 |
[Margaris] p.
90 | Theorem 19.27 | 19.27 1561 19.27h 1560 19.27v 1899 r19.27av 2612 r19.27m 3518 r19.27mv 3519 |
[Margaris] p.
90 | Theorem 19.28 | 19.28 1563 19.28h 1562 19.28v 1900 r19.28av 2613 r19.28m 3512 r19.28mv 3515 rr19.28v 2877 |
[Margaris] p.
90 | Theorem 19.29 | 19.29 1620 19.29r 1621 19.29r2 1622 19.29x 1623 r19.29 2614 r19.29d2r 2621 r19.29r 2615 |
[Margaris] p.
90 | Theorem 19.30 | 19.30dc 1627 |
[Margaris] p.
90 | Theorem 19.31 | 19.31r 1681 |
[Margaris] p.
90 | Theorem 19.32 | 19.32dc 1679 19.32r 1680 r19.32r 2623 r19.32vdc 2626 r19.32vr 2625 |
[Margaris] p.
90 | Theorem 19.33 | 19.33 1484 19.33b2 1629 19.33bdc 1630 |
[Margaris] p.
90 | Theorem 19.34 | 19.34 1684 |
[Margaris] p.
90 | Theorem 19.35 | 19.35-1 1624 19.35i 1625 |
[Margaris] p.
90 | Theorem 19.36 | 19.36-1 1673 19.36aiv 1901 19.36i 1672 r19.36av 2628 |
[Margaris] p.
90 | Theorem 19.37 | 19.37-1 1674 19.37aiv 1675 r19.37 2629 r19.37av 2630 |
[Margaris] p.
90 | Theorem 19.38 | 19.38 1676 |
[Margaris] p.
90 | Theorem 19.39 | i19.39 1640 |
[Margaris] p.
90 | Theorem 19.40 | 19.40-2 1632 19.40 1631 r19.40 2631 |
[Margaris] p.
90 | Theorem 19.41 | 19.41 1686 19.41h 1685 19.41v 1902 19.41vv 1903 19.41vvv 1904 19.41vvvv 1905 r19.41 2632 r19.41v 2633 |
[Margaris] p.
90 | Theorem 19.42 | 19.42 1688 19.42h 1687 19.42v 1906 19.42vv 1911 19.42vvv 1912 19.42vvvv 1913 r19.42v 2634 |
[Margaris] p.
90 | Theorem 19.43 | 19.43 1628 r19.43 2635 |
[Margaris] p.
90 | Theorem 19.44 | 19.44 1682 r19.44av 2636 r19.44mv 3517 |
[Margaris] p.
90 | Theorem 19.45 | 19.45 1683 r19.45av 2637 r19.45mv 3516 |
[Margaris] p.
110 | Exercise 2(b) | eu1 2051 |
[Megill] p. 444 | Axiom
C5 | ax-17 1526 |
[Megill] p. 445 | Lemma
L12 | alequcom 1515 ax-10 1505 |
[Megill] p. 446 | Lemma
L17 | equtrr 1710 |
[Megill] p. 446 | Lemma
L19 | hbnae 1721 |
[Megill] p. 447 | Remark
9.1 | df-sb 1763 sbid 1774 |
[Megill] p. 448 | Scheme
C5' | ax-4 1510 |
[Megill] p. 448 | Scheme
C6' | ax-7 1448 |
[Megill] p. 448 | Scheme
C8' | ax-8 1504 |
[Megill] p. 448 | Scheme
C9' | ax-i12 1507 |
[Megill] p. 448 | Scheme
C11' | ax-10o 1716 |
[Megill] p. 448 | Scheme
C12' | ax-13 2150 |
[Megill] p. 448 | Scheme
C13' | ax-14 2151 |
[Megill] p. 448 | Scheme
C15' | ax-11o 1823 |
[Megill] p. 448 | Scheme
C16' | ax-16 1814 |
[Megill] p. 448 | Theorem
9.4 | dral1 1730 dral2 1731 drex1 1798 drex2 1732 drsb1 1799 drsb2 1841 |
[Megill] p. 449 | Theorem
9.7 | sbcom2 1987 sbequ 1840 sbid2v 1996 |
[Megill] p. 450 | Example
in Appendix | hba1 1540 |
[Mendelson] p.
36 | Lemma 1.8 | idALT 20 |
[Mendelson] p.
69 | Axiom 4 | rspsbc 3045 rspsbca 3046 stdpc4 1775 |
[Mendelson] p.
69 | Axiom 5 | ra5 3051 stdpc5 1584 |
[Mendelson] p. 81 | Rule
C | exlimiv 1598 |
[Mendelson] p.
95 | Axiom 6 | stdpc6 1703 |
[Mendelson] p.
95 | Axiom 7 | stdpc7 1770 |
[Mendelson] p.
231 | Exercise 4.10(k) | inv1 3459 |
[Mendelson] p.
231 | Exercise 4.10(l) | unv 3460 |
[Mendelson] p.
231 | Exercise 4.10(n) | inssun 3375 |
[Mendelson] p.
231 | Exercise 4.10(o) | df-nul 3423 |
[Mendelson] p.
231 | Exercise 4.10(q) | inssddif 3376 |
[Mendelson] p.
231 | Exercise 4.10(s) | ddifnel 3266 |
[Mendelson] p.
231 | Definition of union | unssin 3374 |
[Mendelson] p.
235 | Exercise 4.12(c) | univ 4476 |
[Mendelson] p.
235 | Exercise 4.12(d) | pwv 3808 |
[Mendelson] p.
235 | Exercise 4.12(j) | pwin 4282 |
[Mendelson] p.
235 | Exercise 4.12(k) | pwunss 4283 |
[Mendelson] p.
235 | Exercise 4.12(l) | pwssunim 4284 |
[Mendelson] p.
235 | Exercise 4.12(n) | uniin 3829 |
[Mendelson] p.
235 | Exercise 4.12(p) | reli 4756 |
[Mendelson] p.
235 | Exercise 4.12(t) | relssdmrn 5149 |
[Mendelson] p.
246 | Definition of successor | df-suc 4371 |
[Mendelson] p.
254 | Proposition 4.22(b) | xpen 6844 |
[Mendelson] p.
254 | Proposition 4.22(c) | xpsnen 6820 xpsneng 6821 |
[Mendelson] p.
254 | Proposition 4.22(d) | xpcomen 6826 xpcomeng 6827 |
[Mendelson] p.
254 | Proposition 4.22(e) | xpassen 6829 |
[Mendelson] p.
255 | Exercise 4.39 | endisj 6823 |
[Mendelson] p.
255 | Exercise 4.41 | mapprc 6651 |
[Mendelson] p.
255 | Exercise 4.43 | mapsnen 6810 |
[Mendelson] p.
255 | Exercise 4.47 | xpmapen 6849 |
[Mendelson] p.
255 | Exercise 4.42(a) | map0e 6685 |
[Mendelson] p.
255 | Exercise 4.42(b) | map1 6811 |
[Mendelson] p.
258 | Exercise 4.56(c) | djuassen 7215 djucomen 7214 |
[Mendelson] p.
258 | Exercise 4.56(g) | xp2dju 7213 |
[Mendelson] p.
266 | Proposition 4.34(a) | oa1suc 6467 |
[Monk1] p. 26 | Theorem
2.8(vii) | ssin 3357 |
[Monk1] p. 33 | Theorem
3.2(i) | ssrel 4714 |
[Monk1] p. 33 | Theorem
3.2(ii) | eqrel 4715 |
[Monk1] p. 34 | Definition
3.3 | df-opab 4065 |
[Monk1] p. 36 | Theorem
3.7(i) | coi1 5144 coi2 5145 |
[Monk1] p. 36 | Theorem
3.8(v) | dm0 4841 rn0 4883 |
[Monk1] p. 36 | Theorem
3.7(ii) | cnvi 5033 |
[Monk1] p. 37 | Theorem
3.13(i) | relxp 4735 |
[Monk1] p. 37 | Theorem
3.13(x) | dmxpm 4847 rnxpm 5058 |
[Monk1] p. 37 | Theorem
3.13(ii) | 0xp 4706 xp0 5048 |
[Monk1] p. 38 | Theorem
3.16(ii) | ima0 4987 |
[Monk1] p. 38 | Theorem
3.16(viii) | imai 4984 |
[Monk1] p. 39 | Theorem
3.17 | imaex 4983 imaexg 4982 |
[Monk1] p. 39 | Theorem
3.16(xi) | imassrn 4981 |
[Monk1] p. 41 | Theorem
4.3(i) | fnopfv 5646 funfvop 5628 |
[Monk1] p. 42 | Theorem
4.3(ii) | funopfvb 5559 |
[Monk1] p. 42 | Theorem
4.4(iii) | fvelima 5567 |
[Monk1] p. 43 | Theorem
4.6 | funun 5260 |
[Monk1] p. 43 | Theorem
4.8(iv) | dff13 5768 dff13f 5770 |
[Monk1] p. 46 | Theorem
4.15(v) | funex 5739 funrnex 6114 |
[Monk1] p. 50 | Definition
5.4 | fniunfv 5762 |
[Monk1] p. 52 | Theorem
5.12(ii) | op2ndb 5112 |
[Monk1] p. 52 | Theorem
5.11(viii) | ssint 3860 |
[Monk1] p. 52 | Definition
5.13 (i) | 1stval2 6155 df-1st 6140 |
[Monk1] p. 52 | Definition
5.13 (ii) | 2ndval2 6156 df-2nd 6141 |
[Monk2] p. 105 | Axiom
C4 | ax-5 1447 |
[Monk2] p. 105 | Axiom
C7 | ax-8 1504 |
[Monk2] p. 105 | Axiom
C8 | ax-11 1506 ax-11o 1823 |
[Monk2] p. 105 | Axiom
(C8) | ax11v 1827 |
[Monk2] p. 109 | Lemma
12 | ax-7 1448 |
[Monk2] p. 109 | Lemma
15 | equvin 1863 equvini 1758 eqvinop 4243 |
[Monk2] p. 113 | Axiom
C5-1 | ax-17 1526 |
[Monk2] p. 113 | Axiom
C5-2 | ax6b 1651 |
[Monk2] p. 113 | Axiom
C5-3 | ax-7 1448 |
[Monk2] p. 114 | Lemma
22 | hba1 1540 |
[Monk2] p. 114 | Lemma
23 | hbia1 1552 nfia1 1580 |
[Monk2] p. 114 | Lemma
24 | hba2 1551 nfa2 1579 |
[Moschovakis] p.
2 | Chapter 2 | df-stab 831 dftest 14758 |
[Munkres] p. 77 | Example
2 | distop 13521 |
[Munkres] p.
78 | Definition of basis | df-bases 13479 isbasis3g 13482 |
[Munkres] p.
78 | Definition of a topology generated by a basis | df-topgen 12708 tgval2 13487 |
[Munkres] p.
79 | Remark | tgcl 13500 |
[Munkres] p. 80 | Lemma
2.1 | tgval3 13494 |
[Munkres] p. 80 | Lemma
2.2 | tgss2 13515 tgss3 13514 |
[Munkres] p. 81 | Lemma
2.3 | basgen 13516 basgen2 13517 |
[Munkres] p.
89 | Definition of subspace topology | resttop 13606 |
[Munkres] p. 93 | Theorem
6.1(1) | 0cld 13548 topcld 13545 |
[Munkres] p. 93 | Theorem
6.1(3) | uncld 13549 |
[Munkres] p.
94 | Definition of closure | clsval 13547 |
[Munkres] p.
94 | Definition of interior | ntrval 13546 |
[Munkres] p.
102 | Definition of continuous function | df-cn 13624 iscn 13633 iscn2 13636 |
[Munkres] p. 107 | Theorem
7.2(g) | cncnp 13666 cncnp2m 13667 cncnpi 13664 df-cnp 13625 iscnp 13635 |
[Munkres] p. 127 | Theorem
10.1 | metcn 13950 |
[Pierik], p. 8 | Section
2.2.1 | dfrex2fin 6902 |
[Pierik], p. 9 | Definition
2.4 | df-womni 7161 |
[Pierik], p. 9 | Definition
2.5 | df-markov 7149 omniwomnimkv 7164 |
[Pierik], p. 10 | Section
2.3 | dfdif3 3245 |
[Pierik], p.
14 | Definition 3.1 | df-omni 7132 exmidomniim 7138 finomni 7137 |
[Pierik], p. 15 | Section
3.1 | df-nninf 7118 |
[PradicBrown2022], p. 1 | Theorem
1 | exmidsbthr 14707 |
[PradicBrown2022], p.
2 | Remark | exmidpw 6907 |
[PradicBrown2022], p.
2 | Proposition 1.1 | exmidfodomrlemim 7199 |
[PradicBrown2022], p.
2 | Proposition 1.2 | exmidfodomrlemr 7200 exmidfodomrlemrALT 7201 |
[PradicBrown2022], p.
4 | Lemma 3.2 | fodjuomni 7146 |
[PradicBrown2022], p. 5 | Lemma
3.4 | peano3nninf 14692 peano4nninf 14691 |
[PradicBrown2022], p. 5 | Lemma
3.5 | nninfall 14694 |
[PradicBrown2022], p. 5 | Theorem
3.6 | nninfsel 14702 |
[PradicBrown2022], p. 5 | Corollary
3.7 | nninfomni 14704 |
[PradicBrown2022], p. 5 | Definition
3.3 | nnsf 14690 |
[Quine] p. 16 | Definition
2.1 | df-clab 2164 rabid 2652 |
[Quine] p. 17 | Definition
2.1'' | dfsb7 1991 |
[Quine] p. 18 | Definition
2.7 | df-cleq 2170 |
[Quine] p. 19 | Definition
2.9 | df-v 2739 |
[Quine] p. 34 | Theorem
5.1 | abeq2 2286 |
[Quine] p. 35 | Theorem
5.2 | abid2 2298 abid2f 2345 |
[Quine] p. 40 | Theorem
6.1 | sb5 1887 |
[Quine] p. 40 | Theorem
6.2 | sb56 1885 sb6 1886 |
[Quine] p. 41 | Theorem
6.3 | df-clel 2173 |
[Quine] p. 41 | Theorem
6.4 | eqid 2177 |
[Quine] p. 41 | Theorem
6.5 | eqcom 2179 |
[Quine] p. 42 | Theorem
6.6 | df-sbc 2963 |
[Quine] p. 42 | Theorem
6.7 | dfsbcq 2964 dfsbcq2 2965 |
[Quine] p. 43 | Theorem
6.8 | vex 2740 |
[Quine] p. 43 | Theorem
6.9 | isset 2743 |
[Quine] p. 44 | Theorem
7.3 | spcgf 2819 spcgv 2824 spcimgf 2817 |
[Quine] p. 44 | Theorem
6.11 | spsbc 2974 spsbcd 2975 |
[Quine] p. 44 | Theorem
6.12 | elex 2748 |
[Quine] p. 44 | Theorem
6.13 | elab 2881 elabg 2883 elabgf 2879 |
[Quine] p. 44 | Theorem
6.14 | noel 3426 |
[Quine] p. 48 | Theorem
7.2 | snprc 3657 |
[Quine] p. 48 | Definition
7.1 | df-pr 3599 df-sn 3598 |
[Quine] p. 49 | Theorem
7.4 | snss 3727 snssg 3726 |
[Quine] p. 49 | Theorem
7.5 | prss 3748 prssg 3749 |
[Quine] p. 49 | Theorem
7.6 | prid1 3698 prid1g 3696 prid2 3699 prid2g 3697 snid 3623
snidg 3621 |
[Quine] p. 51 | Theorem
7.12 | snexg 4184 snexprc 4186 |
[Quine] p. 51 | Theorem
7.13 | prexg 4211 |
[Quine] p. 53 | Theorem
8.2 | unisn 3825 unisng 3826 |
[Quine] p. 53 | Theorem
8.3 | uniun 3828 |
[Quine] p. 54 | Theorem
8.6 | elssuni 3837 |
[Quine] p. 54 | Theorem
8.7 | uni0 3836 |
[Quine] p. 56 | Theorem
8.17 | uniabio 5188 |
[Quine] p. 56 | Definition
8.18 | dfiota2 5179 |
[Quine] p. 57 | Theorem
8.19 | iotaval 5189 |
[Quine] p. 57 | Theorem
8.22 | iotanul 5193 |
[Quine] p. 58 | Theorem
8.23 | euiotaex 5194 |
[Quine] p. 58 | Definition
9.1 | df-op 3601 |
[Quine] p. 61 | Theorem
9.5 | opabid 4257 opelopab 4271 opelopaba 4266 opelopabaf 4273 opelopabf 4274 opelopabg 4268 opelopabga 4263 oprabid 5906 |
[Quine] p. 64 | Definition
9.11 | df-xp 4632 |
[Quine] p. 64 | Definition
9.12 | df-cnv 4634 |
[Quine] p. 64 | Definition
9.15 | df-id 4293 |
[Quine] p. 65 | Theorem
10.3 | fun0 5274 |
[Quine] p. 65 | Theorem
10.4 | funi 5248 |
[Quine] p. 65 | Theorem
10.5 | funsn 5264 funsng 5262 |
[Quine] p. 65 | Definition
10.1 | df-fun 5218 |
[Quine] p. 65 | Definition
10.2 | args 4997 dffv4g 5512 |
[Quine] p. 68 | Definition
10.11 | df-fv 5224 fv2 5510 |
[Quine] p. 124 | Theorem
17.3 | nn0opth2 10703 nn0opth2d 10702 nn0opthd 10701 |
[Quine] p. 284 | Axiom
39(vi) | funimaex 5301 funimaexg 5300 |
[Roman] p. 19 | Part
Preliminaries | df-ring 13179 |
[Rudin] p. 164 | Equation
27 | efcan 11683 |
[Rudin] p. 164 | Equation
30 | efzval 11690 |
[Rudin] p. 167 | Equation
48 | absefi 11775 |
[Sanford] p.
39 | Remark | ax-mp 5 |
[Sanford] p. 39 | Rule
3 | mtpxor 1426 |
[Sanford] p. 39 | Rule
4 | mptxor 1424 |
[Sanford] p. 40 | Rule
1 | mptnan 1423 |
[Schechter] p.
51 | Definition of antisymmetry | intasym 5013 |
[Schechter] p.
51 | Definition of irreflexivity | intirr 5015 |
[Schechter] p.
51 | Definition of symmetry | cnvsym 5012 |
[Schechter] p.
51 | Definition of transitivity | cotr 5010 |
[Schechter] p.
187 | Definition of "ring with unit" | isring 13181 |
[Schechter] p.
428 | Definition 15.35 | bastop1 13519 |
[Stoll] p. 13 | Definition
of symmetric difference | symdif1 3400 |
[Stoll] p. 16 | Exercise
4.4 | 0dif 3494 dif0 3493 |
[Stoll] p. 16 | Exercise
4.8 | difdifdirss 3507 |
[Stoll] p. 19 | Theorem
5.2(13) | undm 3393 |
[Stoll] p. 19 | Theorem
5.2(13') | indmss 3394 |
[Stoll] p.
20 | Remark | invdif 3377 |
[Stoll] p. 25 | Definition
of ordered triple | df-ot 3602 |
[Stoll] p.
43 | Definition | uniiun 3940 |
[Stoll] p.
44 | Definition | intiin 3941 |
[Stoll] p.
45 | Definition | df-iin 3889 |
[Stoll] p. 45 | Definition
indexed union | df-iun 3888 |
[Stoll] p. 176 | Theorem
3.4(27) | imandc 889 imanst 888 |
[Stoll] p. 262 | Example
4.1 | symdif1 3400 |
[Suppes] p. 22 | Theorem
2 | eq0 3441 |
[Suppes] p. 22 | Theorem
4 | eqss 3170 eqssd 3172 eqssi 3171 |
[Suppes] p. 23 | Theorem
5 | ss0 3463 ss0b 3462 |
[Suppes] p. 23 | Theorem
6 | sstr 3163 |
[Suppes] p. 25 | Theorem
12 | elin 3318 elun 3276 |
[Suppes] p. 26 | Theorem
15 | inidm 3344 |
[Suppes] p. 26 | Theorem
16 | in0 3457 |
[Suppes] p. 27 | Theorem
23 | unidm 3278 |
[Suppes] p. 27 | Theorem
24 | un0 3456 |
[Suppes] p. 27 | Theorem
25 | ssun1 3298 |
[Suppes] p. 27 | Theorem
26 | ssequn1 3305 |
[Suppes] p. 27 | Theorem
27 | unss 3309 |
[Suppes] p. 27 | Theorem
28 | indir 3384 |
[Suppes] p. 27 | Theorem
29 | undir 3385 |
[Suppes] p. 28 | Theorem
32 | difid 3491 difidALT 3492 |
[Suppes] p. 29 | Theorem
33 | difin 3372 |
[Suppes] p. 29 | Theorem
34 | indif 3378 |
[Suppes] p. 29 | Theorem
35 | undif1ss 3497 |
[Suppes] p. 29 | Theorem
36 | difun2 3502 |
[Suppes] p. 29 | Theorem
37 | difin0 3496 |
[Suppes] p. 29 | Theorem
38 | disjdif 3495 |
[Suppes] p. 29 | Theorem
39 | difundi 3387 |
[Suppes] p. 29 | Theorem
40 | difindiss 3389 |
[Suppes] p. 30 | Theorem
41 | nalset 4133 |
[Suppes] p. 39 | Theorem
61 | uniss 3830 |
[Suppes] p. 39 | Theorem
65 | uniop 4255 |
[Suppes] p. 41 | Theorem
70 | intsn 3879 |
[Suppes] p. 42 | Theorem
71 | intpr 3876 intprg 3877 |
[Suppes] p. 42 | Theorem
73 | op1stb 4478 op1stbg 4479 |
[Suppes] p. 42 | Theorem
78 | intun 3875 |
[Suppes] p. 44 | Definition
15(a) | dfiun2 3920 dfiun2g 3918 |
[Suppes] p. 44 | Definition
15(b) | dfiin2 3921 |
[Suppes] p. 47 | Theorem
86 | elpw 3581 elpw2 4157 elpw2g 4156 elpwg 3583 |
[Suppes] p. 47 | Theorem
87 | pwid 3590 |
[Suppes] p. 47 | Theorem
89 | pw0 3739 |
[Suppes] p. 48 | Theorem
90 | pwpw0ss 3804 |
[Suppes] p. 52 | Theorem
101 | xpss12 4733 |
[Suppes] p. 52 | Theorem
102 | xpindi 4762 xpindir 4763 |
[Suppes] p. 52 | Theorem
103 | xpundi 4682 xpundir 4683 |
[Suppes] p. 54 | Theorem
105 | elirrv 4547 |
[Suppes] p. 58 | Theorem
2 | relss 4713 |
[Suppes] p. 59 | Theorem
4 | eldm 4824 eldm2 4825 eldm2g 4823 eldmg 4822 |
[Suppes] p. 59 | Definition
3 | df-dm 4636 |
[Suppes] p. 60 | Theorem
6 | dmin 4835 |
[Suppes] p. 60 | Theorem
8 | rnun 5037 |
[Suppes] p. 60 | Theorem
9 | rnin 5038 |
[Suppes] p. 60 | Definition
4 | dfrn2 4815 |
[Suppes] p. 61 | Theorem
11 | brcnv 4810 brcnvg 4808 |
[Suppes] p. 62 | Equation
5 | elcnv 4804 elcnv2 4805 |
[Suppes] p. 62 | Theorem
12 | relcnv 5006 |
[Suppes] p. 62 | Theorem
15 | cnvin 5036 |
[Suppes] p. 62 | Theorem
16 | cnvun 5034 |
[Suppes] p. 63 | Theorem
20 | co02 5142 |
[Suppes] p. 63 | Theorem
21 | dmcoss 4896 |
[Suppes] p. 63 | Definition
7 | df-co 4635 |
[Suppes] p. 64 | Theorem
26 | cnvco 4812 |
[Suppes] p. 64 | Theorem
27 | coass 5147 |
[Suppes] p. 65 | Theorem
31 | resundi 4920 |
[Suppes] p. 65 | Theorem
34 | elima 4975 elima2 4976 elima3 4977 elimag 4974 |
[Suppes] p. 65 | Theorem
35 | imaundi 5041 |
[Suppes] p. 66 | Theorem
40 | dminss 5043 |
[Suppes] p. 66 | Theorem
41 | imainss 5044 |
[Suppes] p. 67 | Exercise
11 | cnvxp 5047 |
[Suppes] p. 81 | Definition
34 | dfec2 6537 |
[Suppes] p. 82 | Theorem
72 | elec 6573 elecg 6572 |
[Suppes] p. 82 | Theorem
73 | erth 6578 erth2 6579 |
[Suppes] p. 89 | Theorem
96 | map0b 6686 |
[Suppes] p. 89 | Theorem
97 | map0 6688 map0g 6687 |
[Suppes] p. 89 | Theorem
98 | mapsn 6689 |
[Suppes] p. 89 | Theorem
99 | mapss 6690 |
[Suppes] p. 92 | Theorem
1 | enref 6764 enrefg 6763 |
[Suppes] p. 92 | Theorem
2 | ensym 6780 ensymb 6779 ensymi 6781 |
[Suppes] p. 92 | Theorem
3 | entr 6783 |
[Suppes] p. 92 | Theorem
4 | unen 6815 |
[Suppes] p. 94 | Theorem
15 | endom 6762 |
[Suppes] p. 94 | Theorem
16 | ssdomg 6777 |
[Suppes] p. 94 | Theorem
17 | domtr 6784 |
[Suppes] p. 95 | Theorem
18 | isbth 6965 |
[Suppes] p. 98 | Exercise
4 | fundmen 6805 fundmeng 6806 |
[Suppes] p. 98 | Exercise
6 | xpdom3m 6833 |
[Suppes] p.
130 | Definition 3 | df-tr 4102 |
[Suppes] p. 132 | Theorem
9 | ssonuni 4487 |
[Suppes] p.
134 | Definition 6 | df-suc 4371 |
[Suppes] p. 136 | Theorem
Schema 22 | findes 4602 finds 4599 finds1 4601 finds2 4600 |
[Suppes] p.
162 | Definition 5 | df-ltnqqs 7351 df-ltpq 7344 |
[Suppes] p. 228 | Theorem
Schema 61 | onintss 4390 |
[TakeutiZaring] p.
8 | Axiom 1 | ax-ext 2159 |
[TakeutiZaring] p.
13 | Definition 4.5 | df-cleq 2170 |
[TakeutiZaring] p.
13 | Proposition 4.6 | df-clel 2173 |
[TakeutiZaring] p.
13 | Proposition 4.9 | cvjust 2172 |
[TakeutiZaring] p.
13 | Proposition 4.7(3) | eqtr 2195 |
[TakeutiZaring] p.
14 | Definition 4.16 | df-oprab 5878 |
[TakeutiZaring] p.
14 | Proposition 4.14 | ru 2961 |
[TakeutiZaring] p.
15 | Exercise 1 | elpr 3613 elpr2 3614 elprg 3612 |
[TakeutiZaring] p.
15 | Exercise 2 | elsn 3608 elsn2 3626 elsn2g 3625 elsng 3607 velsn 3609 |
[TakeutiZaring] p.
15 | Exercise 3 | elop 4231 |
[TakeutiZaring] p.
15 | Exercise 4 | sneq 3603 sneqr 3760 |
[TakeutiZaring] p.
15 | Definition 5.1 | dfpr2 3611 dfsn2 3606 |
[TakeutiZaring] p.
16 | Axiom 3 | uniex 4437 |
[TakeutiZaring] p.
16 | Exercise 6 | opth 4237 |
[TakeutiZaring] p.
16 | Exercise 8 | rext 4215 |
[TakeutiZaring] p.
16 | Corollary 5.8 | unex 4441 unexg 4443 |
[TakeutiZaring] p.
16 | Definition 5.3 | dftp2 3641 |
[TakeutiZaring] p.
16 | Definition 5.5 | df-uni 3810 |
[TakeutiZaring] p.
16 | Definition 5.6 | df-in 3135 df-un 3133 |
[TakeutiZaring] p.
16 | Proposition 5.7 | unipr 3823 uniprg 3824 |
[TakeutiZaring] p.
17 | Axiom 4 | vpwex 4179 |
[TakeutiZaring] p.
17 | Exercise 1 | eltp 3640 |
[TakeutiZaring] p.
17 | Exercise 5 | elsuc 4406 elsucg 4404 sstr2 3162 |
[TakeutiZaring] p.
17 | Exercise 6 | uncom 3279 |
[TakeutiZaring] p.
17 | Exercise 7 | incom 3327 |
[TakeutiZaring] p.
17 | Exercise 8 | unass 3292 |
[TakeutiZaring] p.
17 | Exercise 9 | inass 3345 |
[TakeutiZaring] p.
17 | Exercise 10 | indi 3382 |
[TakeutiZaring] p.
17 | Exercise 11 | undi 3383 |
[TakeutiZaring] p.
17 | Definition 5.9 | dfss2 3144 |
[TakeutiZaring] p.
17 | Definition 5.10 | df-pw 3577 |
[TakeutiZaring] p.
18 | Exercise 7 | unss2 3306 |
[TakeutiZaring] p.
18 | Exercise 9 | df-ss 3142 sseqin2 3354 |
[TakeutiZaring] p.
18 | Exercise 10 | ssid 3175 |
[TakeutiZaring] p.
18 | Exercise 12 | inss1 3355 inss2 3356 |
[TakeutiZaring] p.
18 | Exercise 13 | nssr 3215 |
[TakeutiZaring] p.
18 | Exercise 15 | unieq 3818 |
[TakeutiZaring] p.
18 | Exercise 18 | sspwb 4216 |
[TakeutiZaring] p.
18 | Exercise 19 | pweqb 4223 |
[TakeutiZaring] p.
20 | Definition | df-rab 2464 |
[TakeutiZaring] p.
20 | Corollary 5.16 | 0ex 4130 |
[TakeutiZaring] p.
20 | Definition 5.12 | df-dif 3131 |
[TakeutiZaring] p.
20 | Definition 5.14 | dfnul2 3424 |
[TakeutiZaring] p.
20 | Proposition 5.15 | difid 3491 difidALT 3492 |
[TakeutiZaring] p.
20 | Proposition 5.17(1) | n0rf 3435 |
[TakeutiZaring] p.
21 | Theorem 5.22 | setind 4538 |
[TakeutiZaring] p.
21 | Definition 5.20 | df-v 2739 |
[TakeutiZaring] p.
21 | Proposition 5.21 | vprc 4135 |
[TakeutiZaring] p.
22 | Exercise 1 | 0ss 3461 |
[TakeutiZaring] p.
22 | Exercise 3 | ssex 4140 ssexg 4142 |
[TakeutiZaring] p.
22 | Exercise 4 | inex1 4137 |
[TakeutiZaring] p.
22 | Exercise 5 | ruv 4549 |
[TakeutiZaring] p.
22 | Exercise 6 | elirr 4540 |
[TakeutiZaring] p.
22 | Exercise 7 | ssdif0im 3487 |
[TakeutiZaring] p.
22 | Exercise 11 | difdif 3260 |
[TakeutiZaring] p.
22 | Exercise 13 | undif3ss 3396 |
[TakeutiZaring] p.
22 | Exercise 14 | difss 3261 |
[TakeutiZaring] p.
22 | Exercise 15 | sscon 3269 |
[TakeutiZaring] p.
22 | Definition 4.15(3) | df-ral 2460 |
[TakeutiZaring] p.
22 | Definition 4.15(4) | df-rex 2461 |
[TakeutiZaring] p.
23 | Proposition 6.2 | xpex 4741 xpexg 4740 xpexgALT 6133 |
[TakeutiZaring] p.
23 | Definition 6.4(1) | df-rel 4633 |
[TakeutiZaring] p.
23 | Definition 6.4(2) | fun2cnv 5280 |
[TakeutiZaring] p.
24 | Definition 6.4(3) | f1cnvcnv 5432 fun11 5283 |
[TakeutiZaring] p.
24 | Definition 6.4(4) | dffun4 5227 svrelfun 5281 |
[TakeutiZaring] p.
24 | Definition 6.5(1) | dfdm3 4814 |
[TakeutiZaring] p.
24 | Definition 6.5(2) | dfrn3 4816 |
[TakeutiZaring] p.
24 | Definition 6.6(1) | df-res 4638 |
[TakeutiZaring] p.
24 | Definition 6.6(2) | df-ima 4639 |
[TakeutiZaring] p.
24 | Definition 6.6(3) | df-co 4635 |
[TakeutiZaring] p.
25 | Exercise 2 | cnvcnvss 5083 dfrel2 5079 |
[TakeutiZaring] p.
25 | Exercise 3 | xpss 4734 |
[TakeutiZaring] p.
25 | Exercise 5 | relun 4743 |
[TakeutiZaring] p.
25 | Exercise 6 | reluni 4749 |
[TakeutiZaring] p.
25 | Exercise 9 | inxp 4761 |
[TakeutiZaring] p.
25 | Exercise 12 | relres 4935 |
[TakeutiZaring] p.
25 | Exercise 13 | opelres 4912 opelresg 4914 |
[TakeutiZaring] p.
25 | Exercise 14 | dmres 4928 |
[TakeutiZaring] p.
25 | Exercise 15 | resss 4931 |
[TakeutiZaring] p.
25 | Exercise 17 | resabs1 4936 |
[TakeutiZaring] p.
25 | Exercise 18 | funres 5257 |
[TakeutiZaring] p.
25 | Exercise 24 | relco 5127 |
[TakeutiZaring] p.
25 | Exercise 29 | funco 5256 |
[TakeutiZaring] p.
25 | Exercise 30 | f1co 5433 |
[TakeutiZaring] p.
26 | Definition 6.10 | eu2 2070 |
[TakeutiZaring] p.
26 | Definition 6.11 | df-fv 5224 fv3 5538 |
[TakeutiZaring] p.
26 | Corollary 6.8(1) | cnvex 5167 cnvexg 5166 |
[TakeutiZaring] p.
26 | Corollary 6.8(2) | dmex 4893 dmexg 4891 |
[TakeutiZaring] p.
26 | Corollary 6.8(3) | rnex 4894 rnexg 4892 |
[TakeutiZaring] p.
27 | Corollary 6.13 | funfvex 5532 |
[TakeutiZaring] p.
27 | Theorem 6.12(1) | tz6.12-1 5542 tz6.12 5543 tz6.12c 5545 |
[TakeutiZaring] p.
27 | Theorem 6.12(2) | tz6.12-2 5506 |
[TakeutiZaring] p.
27 | Definition 6.15(1) | df-fn 5219 |
[TakeutiZaring] p.
27 | Definition 6.15(3) | df-f 5220 |
[TakeutiZaring] p.
27 | Definition 6.15(4) | df-fo 5222 wfo 5214 |
[TakeutiZaring] p.
27 | Definition 6.15(5) | df-f1 5221 wf1 5213 |
[TakeutiZaring] p.
27 | Definition 6.15(6) | df-f1o 5223 wf1o 5215 |
[TakeutiZaring] p.
28 | Exercise 4 | eqfnfv 5613 eqfnfv2 5614 eqfnfv2f 5617 |
[TakeutiZaring] p.
28 | Exercise 5 | fvco 5586 |
[TakeutiZaring] p.
28 | Theorem 6.16(1) | fnex 5738 fnexALT 6111 |
[TakeutiZaring] p.
28 | Proposition 6.17 | resfunexg 5737 resfunexgALT 6108 |
[TakeutiZaring] p.
29 | Exercise 9 | funimaex 5301 funimaexg 5300 |
[TakeutiZaring] p.
29 | Definition 6.18 | df-br 4004 |
[TakeutiZaring] p.
30 | Definition 6.21 | eliniseg 4998 iniseg 5000 |
[TakeutiZaring] p.
30 | Definition 6.22 | df-eprel 4289 |
[TakeutiZaring] p.
32 | Definition 6.28 | df-isom 5225 |
[TakeutiZaring] p.
33 | Proposition 6.30(1) | isoid 5810 |
[TakeutiZaring] p.
33 | Proposition 6.30(2) | isocnv 5811 |
[TakeutiZaring] p.
33 | Proposition 6.30(3) | isotr 5816 |
[TakeutiZaring] p.
33 | Proposition 6.31(2) | isoini 5818 |
[TakeutiZaring] p.
34 | Proposition 6.33 | f1oiso 5826 |
[TakeutiZaring] p.
35 | Notation | wtr 4101 |
[TakeutiZaring] p.
35 | Theorem 7.2 | tz7.2 4354 |
[TakeutiZaring] p.
35 | Definition 7.1 | dftr3 4105 |
[TakeutiZaring] p.
36 | Proposition 7.4 | ordwe 4575 |
[TakeutiZaring] p.
36 | Proposition 7.6 | ordelord 4381 |
[TakeutiZaring] p.
37 | Proposition 7.9 | ordin 4385 |
[TakeutiZaring] p.
38 | Corollary 7.15 | ordsson 4491 |
[TakeutiZaring] p.
38 | Definition 7.11 | df-on 4368 |
[TakeutiZaring] p.
38 | Proposition 7.12 | ordon 4485 |
[TakeutiZaring] p.
38 | Proposition 7.13 | onprc 4551 |
[TakeutiZaring] p.
39 | Theorem 7.17 | tfi 4581 |
[TakeutiZaring] p.
40 | Exercise 7 | dftr2 4103 |
[TakeutiZaring] p.
40 | Exercise 11 | unon 4510 |
[TakeutiZaring] p.
40 | Proposition 7.19 | ssorduni 4486 |
[TakeutiZaring] p.
40 | Proposition 7.20 | elssuni 3837 |
[TakeutiZaring] p.
41 | Definition 7.22 | df-suc 4371 |
[TakeutiZaring] p.
41 | Proposition 7.23 | sssucid 4415 sucidg 4416 |
[TakeutiZaring] p.
41 | Proposition 7.24 | onsuc 4500 |
[TakeutiZaring] p.
42 | Exercise 1 | df-ilim 4369 |
[TakeutiZaring] p.
42 | Exercise 8 | onsucssi 4505 ordelsuc 4504 |
[TakeutiZaring] p.
42 | Proposition 7.30(1) | peano1 4593 |
[TakeutiZaring] p.
42 | Proposition 7.30(2) | peano2 4594 |
[TakeutiZaring] p.
42 | Proposition 7.30(3) | peano3 4595 |
[TakeutiZaring] p.
43 | Axiom 7 | omex 4592 |
[TakeutiZaring] p.
43 | Theorem 7.32 | ordom 4606 |
[TakeutiZaring] p.
43 | Corollary 7.31 | find 4598 |
[TakeutiZaring] p.
43 | Proposition 7.30(4) | peano4 4596 |
[TakeutiZaring] p.
43 | Proposition 7.30(5) | peano5 4597 |
[TakeutiZaring] p.
44 | Exercise 2 | int0 3858 |
[TakeutiZaring] p.
44 | Exercise 3 | trintssm 4117 |
[TakeutiZaring] p.
44 | Exercise 4 | intss1 3859 |
[TakeutiZaring] p.
44 | Exercise 6 | onintonm 4516 |
[TakeutiZaring] p.
44 | Definition 7.35 | df-int 3845 |
[TakeutiZaring] p.
47 | Lemma 1 | tfrlem1 6308 |
[TakeutiZaring] p.
47 | Theorem 7.41(1) | tfri1 6365 tfri1d 6335 |
[TakeutiZaring] p.
47 | Theorem 7.41(2) | tfri2 6366 tfri2d 6336 |
[TakeutiZaring] p.
47 | Theorem 7.41(3) | tfri3 6367 |
[TakeutiZaring] p.
50 | Exercise 3 | smoiso 6302 |
[TakeutiZaring] p.
50 | Definition 7.46 | df-smo 6286 |
[TakeutiZaring] p.
56 | Definition 8.1 | oasuc 6464 |
[TakeutiZaring] p.
57 | Proposition 8.2 | oacl 6460 |
[TakeutiZaring] p.
57 | Proposition 8.3 | oa0 6457 |
[TakeutiZaring] p.
57 | Proposition 8.16 | omcl 6461 |
[TakeutiZaring] p.
58 | Proposition 8.4 | nnaord 6509 nnaordi 6508 |
[TakeutiZaring] p.
59 | Proposition 8.6 | iunss2 3931 uniss2 3840 |
[TakeutiZaring] p.
59 | Proposition 8.7 | oawordriexmid 6470 |
[TakeutiZaring] p.
59 | Proposition 8.9 | nnacl 6480 |
[TakeutiZaring] p.
62 | Exercise 5 | oaword1 6471 |
[TakeutiZaring] p.
62 | Definition 8.15 | om0 6458 omsuc 6472 |
[TakeutiZaring] p.
63 | Proposition 8.17 | nnmcl 6481 |
[TakeutiZaring] p.
63 | Proposition 8.19 | nnmord 6517 nnmordi 6516 |
[TakeutiZaring] p.
67 | Definition 8.30 | oei0 6459 |
[TakeutiZaring] p.
85 | Proposition 10.6(3) | cardonle 7185 |
[TakeutiZaring] p.
88 | Exercise 1 | en0 6794 |
[TakeutiZaring] p.
90 | Proposition 10.20 | nneneq 6856 |
[TakeutiZaring] p.
90 | Corollary 10.21(1) | php5 6857 |
[TakeutiZaring] p.
91 | Definition 10.29 | df-fin 6742 isfi 6760 |
[TakeutiZaring] p.
92 | Proposition 10.33(2) | xpdom2 6830 |
[TakeutiZaring] p.
95 | Definition 10.42 | df-map 6649 |
[TakeutiZaring] p.
96 | Proposition 10.45 | mapxpen 6847 |
[Tarski] p. 67 | Axiom
B5 | ax-4 1510 |
[Tarski] p. 68 | Lemma
6 | equid 1701 |
[Tarski] p. 69 | Lemma
7 | equcomi 1704 |
[Tarski] p. 70 | Lemma
14 | spim 1738 spime 1741 spimeh 1739 spimh 1737 |
[Tarski] p. 70 | Lemma
16 | ax-11 1506 ax-11o 1823 ax11i 1714 |
[Tarski] p. 70 | Lemmas 16
and 17 | sb6 1886 |
[Tarski] p. 77 | Axiom B6
(p. 75) of system S2 | ax-17 1526 |
[Tarski] p. 77 | Axiom B8
(p. 75) of system S2 | ax-13 2150 ax-14 2151 |
[WhiteheadRussell] p.
96 | Axiom *1.3 | olc 711 |
[WhiteheadRussell] p.
96 | Axiom *1.4 | pm1.4 727 |
[WhiteheadRussell] p.
96 | Axiom *1.2 (Taut) | pm1.2 756 |
[WhiteheadRussell] p.
96 | Axiom *1.5 (Assoc) | pm1.5 765 |
[WhiteheadRussell] p.
97 | Axiom *1.6 (Sum) | orim2 789 |
[WhiteheadRussell] p.
100 | Theorem *2.01 | pm2.01 616 |
[WhiteheadRussell] p.
100 | Theorem *2.02 | ax-1 6 |
[WhiteheadRussell] p.
100 | Theorem *2.03 | con2 643 |
[WhiteheadRussell] p.
100 | Theorem *2.04 | pm2.04 82 |
[WhiteheadRussell] p.
100 | Theorem *2.05 | imim2 55 |
[WhiteheadRussell] p.
100 | Theorem *2.06 | imim1 76 |
[WhiteheadRussell] p.
101 | Theorem *2.1 | pm2.1dc 837 |
[WhiteheadRussell] p.
101 | Theorem *2.06 | barbara 2124 syl 14 |
[WhiteheadRussell] p.
101 | Theorem *2.07 | pm2.07 737 |
[WhiteheadRussell] p.
101 | Theorem *2.08 | id 19 idALT 20 |
[WhiteheadRussell] p.
101 | Theorem *2.11 | exmiddc 836 |
[WhiteheadRussell] p.
101 | Theorem *2.12 | notnot 629 |
[WhiteheadRussell] p.
101 | Theorem *2.13 | pm2.13dc 885 |
[WhiteheadRussell] p.
102 | Theorem *2.14 | notnotrdc 843 |
[WhiteheadRussell] p.
102 | Theorem *2.15 | con1dc 856 |
[WhiteheadRussell] p.
103 | Theorem *2.16 | con3 642 |
[WhiteheadRussell] p.
103 | Theorem *2.17 | condc 853 |
[WhiteheadRussell] p.
103 | Theorem *2.18 | pm2.18dc 855 |
[WhiteheadRussell] p.
104 | Theorem *2.2 | orc 712 |
[WhiteheadRussell] p.
104 | Theorem *2.3 | pm2.3 775 |
[WhiteheadRussell] p.
104 | Theorem *2.21 | pm2.21 617 |
[WhiteheadRussell] p.
104 | Theorem *2.24 | pm2.24 621 |
[WhiteheadRussell] p.
104 | Theorem *2.25 | pm2.25dc 893 |
[WhiteheadRussell] p.
104 | Theorem *2.26 | pm2.26dc 907 |
[WhiteheadRussell] p.
104 | Theorem *2.27 | pm2.27 40 |
[WhiteheadRussell] p.
104 | Theorem *2.31 | pm2.31 768 |
[WhiteheadRussell] p.
105 | Theorem *2.32 | pm2.32 769 |
[WhiteheadRussell] p.
105 | Theorem *2.36 | pm2.36 804 |
[WhiteheadRussell] p.
105 | Theorem *2.37 | pm2.37 805 |
[WhiteheadRussell] p.
105 | Theorem *2.38 | pm2.38 803 |
[WhiteheadRussell] p.
105 | Definition *2.33 | df-3or 979 |
[WhiteheadRussell] p.
106 | Theorem *2.4 | pm2.4 778 |
[WhiteheadRussell] p.
106 | Theorem *2.41 | pm2.41 776 |
[WhiteheadRussell] p.
106 | Theorem *2.42 | pm2.42 777 |
[WhiteheadRussell] p.
106 | Theorem *2.43 | pm2.43 53 |
[WhiteheadRussell] p.
106 | Theorem *2.45 | pm2.45 738 |
[WhiteheadRussell] p.
106 | Theorem *2.46 | pm2.46 739 |
[WhiteheadRussell] p.
107 | Theorem *2.5 | pm2.5dc 867 pm2.5gdc 866 |
[WhiteheadRussell] p.
107 | Theorem *2.6 | pm2.6dc 862 |
[WhiteheadRussell] p.
107 | Theorem *2.47 | pm2.47 740 |
[WhiteheadRussell] p.
107 | Theorem *2.48 | pm2.48 741 |
[WhiteheadRussell] p.
107 | Theorem *2.49 | pm2.49 742 |
[WhiteheadRussell] p.
107 | Theorem *2.51 | pm2.51 655 |
[WhiteheadRussell] p.
107 | Theorem *2.52 | pm2.52 656 |
[WhiteheadRussell] p.
107 | Theorem *2.53 | pm2.53 722 |
[WhiteheadRussell] p.
107 | Theorem *2.54 | pm2.54dc 891 |
[WhiteheadRussell] p.
107 | Theorem *2.55 | orel1 725 |
[WhiteheadRussell] p.
107 | Theorem *2.56 | orel2 726 |
[WhiteheadRussell] p.
107 | Theorem *2.61 | pm2.61dc 865 |
[WhiteheadRussell] p.
107 | Theorem *2.62 | pm2.62 748 |
[WhiteheadRussell] p.
107 | Theorem *2.63 | pm2.63 800 |
[WhiteheadRussell] p.
107 | Theorem *2.64 | pm2.64 801 |
[WhiteheadRussell] p.
107 | Theorem *2.65 | pm2.65 659 |
[WhiteheadRussell] p.
107 | Theorem *2.67 | pm2.67-2 713 pm2.67 743 |
[WhiteheadRussell] p.
107 | Theorem *2.521 | pm2.521dc 869 pm2.521gdc 868 |
[WhiteheadRussell] p.
107 | Theorem *2.621 | pm2.621 747 |
[WhiteheadRussell] p.
108 | Theorem *2.8 | pm2.8 810 |
[WhiteheadRussell] p.
108 | Theorem *2.68 | pm2.68dc 894 |
[WhiteheadRussell] p.
108 | Theorem *2.69 | looinvdc 915 |
[WhiteheadRussell] p.
108 | Theorem *2.73 | pm2.73 806 |
[WhiteheadRussell] p.
108 | Theorem *2.74 | pm2.74 807 |
[WhiteheadRussell] p.
108 | Theorem *2.75 | pm2.75 809 |
[WhiteheadRussell] p.
108 | Theorem *2.76 | pm2.76 808 |
[WhiteheadRussell] p.
108 | Theorem *2.77 | ax-2 7 |
[WhiteheadRussell] p.
108 | Theorem *2.81 | pm2.81 811 |
[WhiteheadRussell] p.
108 | Theorem *2.82 | pm2.82 812 |
[WhiteheadRussell] p.
108 | Theorem *2.83 | pm2.83 77 |
[WhiteheadRussell] p.
108 | Theorem *2.85 | pm2.85dc 905 |
[WhiteheadRussell] p.
108 | Theorem *2.86 | pm2.86 101 |
[WhiteheadRussell] p.
111 | Theorem *3.1 | pm3.1 754 |
[WhiteheadRussell] p.
111 | Theorem *3.2 | pm3.2 139 |
[WhiteheadRussell] p.
111 | Theorem *3.11 | pm3.11dc 957 |
[WhiteheadRussell] p.
111 | Theorem *3.12 | pm3.12dc 958 |
[WhiteheadRussell] p.
111 | Theorem *3.13 | pm3.13dc 959 |
[WhiteheadRussell] p.
111 | Theorem *3.14 | pm3.14 753 |
[WhiteheadRussell] p.
111 | Theorem *3.21 | pm3.21 264 |
[WhiteheadRussell] p.
111 | Theorem *3.22 | pm3.22 265 |
[WhiteheadRussell] p.
111 | Theorem *3.24 | pm3.24 693 |
[WhiteheadRussell] p.
112 | Theorem *3.35 | pm3.35 347 |
[WhiteheadRussell] p.
112 | Theorem *3.3 (Exp) | pm3.3 261 |
[WhiteheadRussell] p.
112 | Theorem *3.31 (Imp) | pm3.31 262 |
[WhiteheadRussell] p.
112 | Theorem *3.26 (Simp) | simpl 109 simplimdc 860 |
[WhiteheadRussell] p.
112 | Theorem *3.27 (Simp) | simpr 110 simprimdc 859 |
[WhiteheadRussell] p.
112 | Theorem *3.33 (Syll) | pm3.33 345 |
[WhiteheadRussell] p.
112 | Theorem *3.34 (Syll) | pm3.34 346 |
[WhiteheadRussell] p.
112 | Theorem *3.37 (Transp) | pm3.37 689 |
[WhiteheadRussell] p.
113 | Fact) | pm3.45 597 |
[WhiteheadRussell] p.
113 | Theorem *3.4 | pm3.4 333 |
[WhiteheadRussell] p.
113 | Theorem *3.41 | pm3.41 331 |
[WhiteheadRussell] p.
113 | Theorem *3.42 | pm3.42 332 |
[WhiteheadRussell] p.
113 | Theorem *3.44 | jao 755 pm3.44 715 |
[WhiteheadRussell] p.
113 | Theorem *3.47 | anim12 344 |
[WhiteheadRussell] p.
113 | Theorem *3.43 (Comp) | pm3.43 602 |
[WhiteheadRussell] p.
114 | Theorem *3.48 | pm3.48 785 |
[WhiteheadRussell] p.
116 | Theorem *4.1 | con34bdc 871 |
[WhiteheadRussell] p.
117 | Theorem *4.2 | biid 171 |
[WhiteheadRussell] p.
117 | Theorem *4.13 | notnotbdc 872 |
[WhiteheadRussell] p.
117 | Theorem *4.14 | pm4.14dc 890 |
[WhiteheadRussell] p.
117 | Theorem *4.15 | pm4.15 694 |
[WhiteheadRussell] p.
117 | Theorem *4.21 | bicom 140 |
[WhiteheadRussell] p.
117 | Theorem *4.22 | biantr 952 bitr 472 |
[WhiteheadRussell] p.
117 | Theorem *4.24 | pm4.24 395 |
[WhiteheadRussell] p.
117 | Theorem *4.25 | oridm 757 pm4.25 758 |
[WhiteheadRussell] p.
118 | Theorem *4.3 | ancom 266 |
[WhiteheadRussell] p.
118 | Theorem *4.4 | andi 818 |
[WhiteheadRussell] p.
118 | Theorem *4.31 | orcom 728 |
[WhiteheadRussell] p.
118 | Theorem *4.32 | anass 401 |
[WhiteheadRussell] p.
118 | Theorem *4.33 | orass 767 |
[WhiteheadRussell] p.
118 | Theorem *4.36 | anbi1 466 |
[WhiteheadRussell] p.
118 | Theorem *4.37 | orbi1 792 |
[WhiteheadRussell] p.
118 | Theorem *4.38 | pm4.38 605 |
[WhiteheadRussell] p.
118 | Theorem *4.39 | pm4.39 822 |
[WhiteheadRussell] p.
118 | Definition *4.34 | df-3an 980 |
[WhiteheadRussell] p.
119 | Theorem *4.41 | ordi 816 |
[WhiteheadRussell] p.
119 | Theorem *4.42 | pm4.42r 971 |
[WhiteheadRussell] p.
119 | Theorem *4.43 | pm4.43 949 |
[WhiteheadRussell] p.
119 | Theorem *4.44 | pm4.44 779 |
[WhiteheadRussell] p.
119 | Theorem *4.45 | orabs 814 pm4.45 784 pm4.45im 334 |
[WhiteheadRussell] p.
119 | Theorem *10.22 | 19.26 1481 |
[WhiteheadRussell] p.
120 | Theorem *4.5 | anordc 956 |
[WhiteheadRussell] p.
120 | Theorem *4.6 | imordc 897 imorr 721 |
[WhiteheadRussell] p.
120 | Theorem *4.7 | anclb 319 |
[WhiteheadRussell] p.
120 | Theorem *4.51 | ianordc 899 |
[WhiteheadRussell] p.
120 | Theorem *4.52 | pm4.52im 750 |
[WhiteheadRussell] p.
120 | Theorem *4.53 | pm4.53r 751 |
[WhiteheadRussell] p.
120 | Theorem *4.54 | pm4.54dc 902 |
[WhiteheadRussell] p.
120 | Theorem *4.55 | pm4.55dc 938 |
[WhiteheadRussell] p.
120 | Theorem *4.56 | ioran 752 pm4.56 780 |
[WhiteheadRussell] p.
120 | Theorem *4.57 | orandc 939 oranim 781 |
[WhiteheadRussell] p.
120 | Theorem *4.61 | annimim 686 |
[WhiteheadRussell] p.
120 | Theorem *4.62 | pm4.62dc 898 |
[WhiteheadRussell] p.
120 | Theorem *4.63 | pm4.63dc 886 |
[WhiteheadRussell] p.
120 | Theorem *4.64 | pm4.64dc 900 |
[WhiteheadRussell] p.
120 | Theorem *4.65 | pm4.65r 687 |
[WhiteheadRussell] p.
120 | Theorem *4.66 | pm4.66dc 901 |
[WhiteheadRussell] p.
120 | Theorem *4.67 | pm4.67dc 887 |
[WhiteheadRussell] p.
120 | Theorem *4.71 | pm4.71 389 pm4.71d 393 pm4.71i 391 pm4.71r 390 pm4.71rd 394 pm4.71ri 392 |
[WhiteheadRussell] p.
121 | Theorem *4.72 | pm4.72 827 |
[WhiteheadRussell] p.
121 | Theorem *4.73 | iba 300 |
[WhiteheadRussell] p.
121 | Theorem *4.74 | biorf 744 |
[WhiteheadRussell] p.
121 | Theorem *4.76 | jcab 603 pm4.76 604 |
[WhiteheadRussell] p.
121 | Theorem *4.77 | jaob 710 pm4.77 799 |
[WhiteheadRussell] p.
121 | Theorem *4.78 | pm4.78i 782 |
[WhiteheadRussell] p.
121 | Theorem *4.79 | pm4.79dc 903 |
[WhiteheadRussell] p.
122 | Theorem *4.8 | pm4.8 707 |
[WhiteheadRussell] p.
122 | Theorem *4.81 | pm4.81dc 908 |
[WhiteheadRussell] p.
122 | Theorem *4.82 | pm4.82 950 |
[WhiteheadRussell] p.
122 | Theorem *4.83 | pm4.83dc 951 |
[WhiteheadRussell] p.
122 | Theorem *4.84 | imbi1 236 |
[WhiteheadRussell] p.
122 | Theorem *4.85 | imbi2 237 |
[WhiteheadRussell] p.
122 | Theorem *4.86 | bibi1 240 |
[WhiteheadRussell] p.
122 | Theorem *4.87 | bi2.04 248 impexp 263 pm4.87 557 |
[WhiteheadRussell] p.
123 | Theorem *5.1 | pm5.1 601 |
[WhiteheadRussell] p.
123 | Theorem *5.11 | pm5.11dc 909 |
[WhiteheadRussell] p.
123 | Theorem *5.12 | pm5.12dc 910 |
[WhiteheadRussell] p.
123 | Theorem *5.13 | pm5.13dc 912 |
[WhiteheadRussell] p.
123 | Theorem *5.14 | pm5.14dc 911 |
[WhiteheadRussell] p.
124 | Theorem *5.15 | pm5.15dc 1389 |
[WhiteheadRussell] p.
124 | Theorem *5.16 | pm5.16 828 |
[WhiteheadRussell] p.
124 | Theorem *5.17 | pm5.17dc 904 |
[WhiteheadRussell] p.
124 | Theorem *5.18 | nbbndc 1394 pm5.18dc 883 |
[WhiteheadRussell] p.
124 | Theorem *5.19 | pm5.19 706 |
[WhiteheadRussell] p.
124 | Theorem *5.21 | pm5.21 695 |
[WhiteheadRussell] p.
124 | Theorem *5.22 | xordc 1392 |
[WhiteheadRussell] p.
124 | Theorem *5.23 | dfbi3dc 1397 |
[WhiteheadRussell] p.
124 | Theorem *5.24 | pm5.24dc 1398 |
[WhiteheadRussell] p.
124 | Theorem *5.25 | dfor2dc 895 |
[WhiteheadRussell] p.
125 | Theorem *5.3 | pm5.3 475 |
[WhiteheadRussell] p.
125 | Theorem *5.4 | pm5.4 249 |
[WhiteheadRussell] p.
125 | Theorem *5.5 | pm5.5 242 |
[WhiteheadRussell] p.
125 | Theorem *5.6 | pm5.6dc 926 pm5.6r 927 |
[WhiteheadRussell] p.
125 | Theorem *5.7 | pm5.7dc 954 |
[WhiteheadRussell] p.
125 | Theorem *5.31 | pm5.31 348 |
[WhiteheadRussell] p.
125 | Theorem *5.32 | pm5.32 453 |
[WhiteheadRussell] p.
125 | Theorem *5.33 | pm5.33 609 |
[WhiteheadRussell] p.
125 | Theorem *5.35 | pm5.35 917 |
[WhiteheadRussell] p.
125 | Theorem *5.36 | pm5.36 610 |
[WhiteheadRussell] p.
125 | Theorem *5.41 | imdi 250 pm5.41 251 |
[WhiteheadRussell] p.
125 | Theorem *5.42 | pm5.42 320 |
[WhiteheadRussell] p.
125 | Theorem *5.44 | pm5.44 925 |
[WhiteheadRussell] p.
125 | Theorem *5.53 | pm5.53 802 |
[WhiteheadRussell] p.
125 | Theorem *5.54 | pm5.54dc 918 |
[WhiteheadRussell] p.
125 | Theorem *5.55 | pm5.55dc 913 |
[WhiteheadRussell] p.
125 | Theorem *5.61 | pm5.61 794 |
[WhiteheadRussell] p.
125 | Theorem *5.62 | pm5.62dc 945 |
[WhiteheadRussell] p.
125 | Theorem *5.63 | pm5.63dc 946 |
[WhiteheadRussell] p.
125 | Theorem *5.71 | pm5.71dc 961 |
[WhiteheadRussell] p.
125 | Theorem *5.501 | pm5.501 244 |
[WhiteheadRussell] p.
126 | Theorem *5.74 | pm5.74 179 |
[WhiteheadRussell] p.
126 | Theorem *5.75 | pm5.75 962 |
[WhiteheadRussell] p.
150 | Theorem *10.3 | alsyl 1635 |
[WhiteheadRussell] p.
160 | Theorem *11.21 | alrot3 1485 |
[WhiteheadRussell] p.
163 | Theorem *11.42 | 19.40-2 1632 |
[WhiteheadRussell] p.
164 | Theorem *11.53 | pm11.53 1895 |
[WhiteheadRussell] p.
175 | Definition *14.02 | df-eu 2029 |
[WhiteheadRussell] p.
178 | Theorem *13.18 | pm13.18 2428 |
[WhiteheadRussell] p.
178 | Theorem *13.181 | pm13.181 2429 |
[WhiteheadRussell] p.
178 | Theorem *13.183 | pm13.183 2875 |
[WhiteheadRussell] p.
185 | Theorem *14.121 | sbeqalb 3019 |
[WhiteheadRussell] p.
190 | Theorem *14.22 | iota4 5196 |
[WhiteheadRussell] p.
191 | Theorem *14.23 | iota4an 5197 |
[WhiteheadRussell] p.
192 | Theorem *14.26 | eupick 2105 eupickbi 2108 |
[WhiteheadRussell] p.
235 | Definition *30.01 | df-fv 5224 |
[WhiteheadRussell] p.
360 | Theorem *54.43 | pm54.43 7188 |