Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7092  fidcenum 6933
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 6933
[AczelRathjen], p. 73Lemma 8.1.14enumct 7092
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12380
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6907
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6895
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12395
[AczelRathjen], p. 75Corollary 8.1.20unct 12397
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12386  znnen 12353
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12398
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12399
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10710
[AczelRathjen], p. 183Chapter 20ax-setind 4521
[Apostol] p. 18Theorem I.1addcan 8099  addcan2d 8104  addcan2i 8102  addcand 8103  addcani 8101
[Apostol] p. 18Theorem I.2negeu 8110
[Apostol] p. 18Theorem I.3negsub 8167  negsubd 8236  negsubi 8197
[Apostol] p. 18Theorem I.4negneg 8169  negnegd 8221  negnegi 8189
[Apostol] p. 18Theorem I.5subdi 8304  subdid 8333  subdii 8326  subdir 8305  subdird 8334  subdiri 8327
[Apostol] p. 18Theorem I.6mul01 8308  mul01d 8312  mul01i 8310  mul02 8306  mul02d 8311  mul02i 8309
[Apostol] p. 18Theorem I.9divrecapd 8710
[Apostol] p. 18Theorem I.10recrecapi 8661
[Apostol] p. 18Theorem I.12mul2neg 8317  mul2negd 8332  mul2negi 8325  mulneg1 8314  mulneg1d 8330  mulneg1i 8323
[Apostol] p. 18Theorem I.15divdivdivap 8630
[Apostol] p. 20Axiom 7rpaddcl 9634  rpaddcld 9669  rpmulcl 9635  rpmulcld 9670
[Apostol] p. 20Axiom 90nrp 9646
[Apostol] p. 20Theorem I.17lttri 8024
[Apostol] p. 20Theorem I.18ltadd1d 8457  ltadd1dd 8475  ltadd1i 8421
[Apostol] p. 20Theorem I.19ltmul1 8511  ltmul1a 8510  ltmul1i 8836  ltmul1ii 8844  ltmul2 8772  ltmul2d 9696  ltmul2dd 9710  ltmul2i 8839
[Apostol] p. 20Theorem I.210lt1 8046
[Apostol] p. 20Theorem I.23lt0neg1 8387  lt0neg1d 8434  ltneg 8381  ltnegd 8442  ltnegi 8412
[Apostol] p. 20Theorem I.25lt2add 8364  lt2addd 8486  lt2addi 8429
[Apostol] p. 20Definition of positive numbersdf-rp 9611
[Apostol] p. 21Exercise 4recgt0 8766  recgt0d 8850  recgt0i 8822  recgt0ii 8823
[Apostol] p. 22Definition of integersdf-z 9213
[Apostol] p. 22Definition of rationalsdf-q 9579
[Apostol] p. 24Theorem I.26supeuti 6971
[Apostol] p. 26Theorem I.29arch 9132
[Apostol] p. 28Exercise 2btwnz 9331
[Apostol] p. 28Exercise 3nnrecl 9133
[Apostol] p. 28Exercise 6qbtwnre 10213
[Apostol] p. 28Exercise 10(a)zeneo 11830  zneo 9313
[Apostol] p. 29Theorem I.35resqrtth 10995  sqrtthi 11083
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8881
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 11991
[Apostol] p. 363Remarkabsgt0api 11110
[Apostol] p. 363Exampleabssubd 11157  abssubi 11114
[ApostolNT] p. 14Definitiondf-dvds 11750
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11766
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11790
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11786
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11780
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11782
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11767
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11768
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11773
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11805
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11807
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11809
[ApostolNT] p. 15Definitiondfgcd2 11969
[ApostolNT] p. 16Definitionisprm2 12071
[ApostolNT] p. 16Theorem 1.5coprmdvds 12046
[ApostolNT] p. 16Theorem 1.7prminf 12410
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 11928
[ApostolNT] p. 16Theorem 1.4(b)gcdass 11970
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 11972
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 11942
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 11935
[ApostolNT] p. 17Theorem 1.8coprm 12098
[ApostolNT] p. 17Theorem 1.9euclemma 12100
[ApostolNT] p. 17Theorem 1.101arith2 12320
[ApostolNT] p. 19Theorem 1.14divalg 11883
[ApostolNT] p. 20Theorem 1.15eucalg 12013
[ApostolNT] p. 25Definitiondf-phi 12165
[ApostolNT] p. 26Theorem 2.2phisum 12194
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12176
[ApostolNT] p. 28Theorem 2.5(c)phimul 12180
[ApostolNT] p. 104Definitioncongr 12054
[ApostolNT] p. 106Remarkdvdsval3 11753
[ApostolNT] p. 106Definitionmoddvds 11761
[ApostolNT] p. 107Example 2mod2eq0even 11837
[ApostolNT] p. 107Example 3mod2eq1n2dvds 11838
[ApostolNT] p. 107Example 4zmod1congr 10297
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10334
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10602
[ApostolNT] p. 108Theorem 5.3modmulconst 11785
[ApostolNT] p. 109Theorem 5.4cncongr1 12057
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12059
[ApostolNT] p. 113Theorem 5.17eulerth 12187
[ApostolNT] p. 113Theorem 5.18vfermltl 12205
[ApostolNT] p. 114Theorem 5.19fermltl 12188
[ApostolNT] p. 179Definitiondf-lgs 13693  lgsprme0 13737
[ApostolNT] p. 180Example 11lgs 13738
[ApostolNT] p. 180Theorem 9.2lgsvalmod 13714
[ApostolNT] p. 180Theorem 9.3lgsdirprm 13729
[ApostolNT] p. 188Definitiondf-lgs 13693  lgs1 13739
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 13730
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 13732
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 13740
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 13741
[Bauer] p. 482Section 1.2pm2.01 611  pm2.65 654
[Bauer] p. 483Theorem 1.3acexmid 5852  onsucelsucexmidlem 4513
[Bauer], p. 481Section 1.1pwtrufal 14030
[Bauer], p. 483Definitionn0rf 3427
[Bauer], p. 483Theorem 1.22irrexpq 13688  2irrexpqap 13690
[Bauer], p. 485Theorem 2.1ssfiexmid 6854
[Bauer], p. 494Theorem 5.5ivthinc 13415
[BauerHanson], p. 27Proposition 5.2cnstab 8564
[BauerSwan], p. 14Remark0ct 7084  ctm 7086
[BauerSwan], p. 14Proposition 2.6subctctexmid 14034
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7092
[BauerTaylor], p. 32Lemma 6.16prarloclem 7463
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7376
[BauerTaylor], p. 52Proposition 11.15prarloc 7465
[BauerTaylor], p. 53Lemma 11.16addclpr 7499  addlocpr 7498
[BauerTaylor], p. 55Proposition 12.7appdivnq 7525
[BauerTaylor], p. 56Lemma 12.8prmuloc 7528
[BauerTaylor], p. 56Lemma 12.9mullocpr 7533
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2022
[BellMachover] p. 460Notationdf-mo 2023
[BellMachover] p. 460Definitionmo3 2073  mo3h 2072
[BellMachover] p. 462Theorem 1.1bm1.1 2155
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4110
[BellMachover] p. 466Axiom Powaxpow3 4163
[BellMachover] p. 466Axiom Unionaxun2 4420
[BellMachover] p. 469Theorem 2.2(i)ordirr 4526
[BellMachover] p. 469Theorem 2.2(iii)onelon 4369
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4529
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4480
[BellMachover] p. 471Definition of Limdf-ilim 4354
[BellMachover] p. 472Axiom Infzfinf2 4573
[BellMachover] p. 473Theorem 2.8limom 4598
[Bobzien] p. 116Statement T3stoic3 1424
[Bobzien] p. 117Statement T2stoic2a 1422
[Bobzien] p. 117Statement T4stoic4a 1425
[BourbakiAlg1] p. 1Definition 1df-mgm 12610
[BourbakiAlg1] p. 4Definition 5df-sgrp 12643
[BourbakiAlg1] p. 12Definition 2df-mnd 12653
[BourbakiEns] p. Proposition 8fcof1 5762  fcofo 5763
[BourbakiTop1] p. Remarkxnegmnf 9786  xnegpnf 9785
[BourbakiTop1] p. Remark rexneg 9787
[BourbakiTop1] p. Propositionishmeo 13098
[BourbakiTop1] p. Property V_issnei2 12951
[BourbakiTop1] p. Property V_iiinnei 12957
[BourbakiTop1] p. Property V_ivneissex 12959
[BourbakiTop1] p. Proposition 1neipsm 12948  neiss 12944
[BourbakiTop1] p. Proposition 2cnptopco 13016
[BourbakiTop1] p. Proposition 4imasnopn 13093
[BourbakiTop1] p. Property V_iiielnei 12946
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 12790
[Bruck] p. 1Section I.1df-mgm 12610
[Bruck] p. 23Section II.1df-sgrp 12643
[ChoquetDD] p. 2Definition of mappingdf-mpt 4052
[Cohen] p. 301Remarkrelogoprlem 13583
[Cohen] p. 301Property 2relogmul 13584  relogmuld 13599
[Cohen] p. 301Property 3relogdiv 13585  relogdivd 13600
[Cohen] p. 301Property 4relogexp 13587
[Cohen] p. 301Property 1alog1 13581
[Cohen] p. 301Property 1bloge 13582
[Cohen4] p. 348Observationrelogbcxpbap 13677
[Cohen4] p. 352Definitionrpelogb 13661
[Cohen4] p. 361Property 2rprelogbmul 13667
[Cohen4] p. 361Property 3logbrec 13672  rprelogbdiv 13669
[Cohen4] p. 361Property 4rplogbreexp 13665
[Cohen4] p. 361Property 6relogbexpap 13670
[Cohen4] p. 361Property 1(a)rplogbid1 13659
[Cohen4] p. 361Property 1(b)rplogb1 13660
[Cohen4] p. 367Propertyrplogbchbase 13662
[Cohen4] p. 377Property 2logblt 13674
[Crosilla] p. Axiom 1ax-ext 2152
[Crosilla] p. Axiom 2ax-pr 4194
[Crosilla] p. Axiom 3ax-un 4418
[Crosilla] p. Axiom 4ax-nul 4115
[Crosilla] p. Axiom 5ax-iinf 4572
[Crosilla] p. Axiom 6ru 2954
[Crosilla] p. Axiom 8ax-pow 4160
[Crosilla] p. Axiom 9ax-setind 4521
[Crosilla], p. Axiom 6ax-sep 4107
[Crosilla], p. Axiom 7ax-coll 4104
[Crosilla], p. Axiom 7'repizf 4105
[Crosilla], p. Theorem is statedordtriexmid 4505
[Crosilla], p. Axiom of choice implies instancesacexmid 5852
[Crosilla], p. Definition of ordinaldf-iord 4351
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4519
[Eisenberg] p. 67Definition 5.3df-dif 3123
[Eisenberg] p. 82Definition 6.3df-iom 4575
[Eisenberg] p. 125Definition 8.21df-map 6628
[Enderton] p. 18Axiom of Empty Setaxnul 4114
[Enderton] p. 19Definitiondf-tp 3591
[Enderton] p. 26Exercise 5unissb 3826
[Enderton] p. 26Exercise 10pwel 4203
[Enderton] p. 28Exercise 7(b)pwunim 4271
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3942  iinin2m 3941  iunin1 3937  iunin2 3936
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3940  iundif2ss 3938
[Enderton] p. 33Exercise 23iinuniss 3955
[Enderton] p. 33Exercise 25iununir 3956
[Enderton] p. 33Exercise 24(a)iinpw 3963
[Enderton] p. 33Exercise 24(b)iunpw 4465  iunpwss 3964
[Enderton] p. 38Exercise 6(a)unipw 4202
[Enderton] p. 38Exercise 6(b)pwuni 4178
[Enderton] p. 41Lemma 3Dopeluu 4435  rnex 4878  rnexg 4876
[Enderton] p. 41Exercise 8dmuni 4821  rnuni 5022
[Enderton] p. 42Definition of a functiondffun7 5225  dffun8 5226
[Enderton] p. 43Definition of function valuefunfvdm2 5560
[Enderton] p. 43Definition of single-rootedfuncnv 5259
[Enderton] p. 44Definition (d)dfima2 4955  dfima3 4956
[Enderton] p. 47Theorem 3Hfvco2 5565
[Enderton] p. 49Axiom of Choice (first form)df-ac 7183
[Enderton] p. 50Theorem 3K(a)imauni 5740
[Enderton] p. 52Definitiondf-map 6628
[Enderton] p. 53Exercise 21coass 5129
[Enderton] p. 53Exercise 27dmco 5119
[Enderton] p. 53Exercise 14(a)funin 5269
[Enderton] p. 53Exercise 22(a)imass2 4987
[Enderton] p. 54Remarkixpf 6698  ixpssmap 6710
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6677
[Enderton] p. 56Theorem 3Merref 6533
[Enderton] p. 57Lemma 3Nerthi 6559
[Enderton] p. 57Definitiondf-ec 6515
[Enderton] p. 58Definitiondf-qs 6519
[Enderton] p. 60Theorem 3Qth3q 6618  th3qcor 6617  th3qlem1 6615  th3qlem2 6616
[Enderton] p. 61Exercise 35df-ec 6515
[Enderton] p. 65Exercise 56(a)dmun 4818
[Enderton] p. 68Definition of successordf-suc 4356
[Enderton] p. 71Definitiondf-tr 4088  dftr4 4092
[Enderton] p. 72Theorem 4Eunisuc 4398  unisucg 4399
[Enderton] p. 73Exercise 6unisuc 4398  unisucg 4399
[Enderton] p. 73Exercise 5(a)truni 4101
[Enderton] p. 73Exercise 5(b)trint 4102
[Enderton] p. 79Theorem 4I(A1)nna0 6453
[Enderton] p. 79Theorem 4I(A2)nnasuc 6455  onasuc 6445
[Enderton] p. 79Definition of operation valuedf-ov 5856
[Enderton] p. 80Theorem 4J(A1)nnm0 6454
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6456  onmsuc 6452
[Enderton] p. 81Theorem 4K(1)nnaass 6464
[Enderton] p. 81Theorem 4K(2)nna0r 6457  nnacom 6463
[Enderton] p. 81Theorem 4K(3)nndi 6465
[Enderton] p. 81Theorem 4K(4)nnmass 6466
[Enderton] p. 81Theorem 4K(5)nnmcom 6468
[Enderton] p. 82Exercise 16nnm0r 6458  nnmsucr 6467
[Enderton] p. 88Exercise 23nnaordex 6507
[Enderton] p. 129Definitiondf-en 6719
[Enderton] p. 132Theorem 6B(b)canth 5807
[Enderton] p. 133Exercise 1xpomen 12350
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6843
[Enderton] p. 136Corollary 6Enneneq 6835
[Enderton] p. 139Theorem 6H(c)mapen 6824
[Enderton] p. 142Theorem 6I(3)xpdjuen 7195
[Enderton] p. 143Theorem 6Jdju0en 7191  dju1en 7190
[Enderton] p. 144Corollary 6Kundif2ss 3490
[Enderton] p. 145Figure 38ffoss 5474
[Enderton] p. 145Definitiondf-dom 6720
[Enderton] p. 146Example 1domen 6729  domeng 6730
[Enderton] p. 146Example 3nndomo 6842
[Enderton] p. 149Theorem 6L(c)xpdom1 6813  xpdom1g 6811  xpdom2g 6810
[Enderton] p. 168Definitiondf-po 4281
[Enderton] p. 192Theorem 7M(a)oneli 4413
[Enderton] p. 192Theorem 7M(b)ontr1 4374
[Enderton] p. 192Theorem 7M(c)onirri 4527
[Enderton] p. 193Corollary 7N(b)0elon 4377
[Enderton] p. 193Corollary 7N(c)onsuci 4500
[Enderton] p. 193Corollary 7N(d)ssonunii 4473
[Enderton] p. 194Remarkonprc 4536
[Enderton] p. 194Exercise 16suc11 4542
[Enderton] p. 197Definitiondf-card 7157
[Enderton] p. 200Exercise 25tfis 4567
[Enderton] p. 206Theorem 7X(b)en2lp 4538
[Enderton] p. 207Exercise 34opthreg 4540
[Enderton] p. 208Exercise 35suc11g 4541
[Geuvers], p. 1Remarkexpap0 10506
[Geuvers], p. 6Lemma 2.13mulap0r 8534
[Geuvers], p. 6Lemma 2.15mulap0 8572
[Geuvers], p. 9Lemma 2.35msqge0 8535
[Geuvers], p. 9Definition 3.1(2)ax-arch 7893
[Geuvers], p. 10Lemma 3.9maxcom 11167
[Geuvers], p. 10Lemma 3.10maxle1 11175  maxle2 11176
[Geuvers], p. 10Lemma 3.11maxleast 11177
[Geuvers], p. 10Lemma 3.12maxleb 11180
[Geuvers], p. 11Definition 3.13dfabsmax 11181
[Geuvers], p. 17Definition 6.1df-ap 8501
[Gleason] p. 117Proposition 9-2.1df-enq 7309  enqer 7320
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7313  df-nqqs 7310
[Gleason] p. 117Proposition 9-2.3df-plpq 7306  df-plqqs 7311
[Gleason] p. 119Proposition 9-2.4df-mpq 7307  df-mqqs 7312
[Gleason] p. 119Proposition 9-2.5df-rq 7314
[Gleason] p. 119Proposition 9-2.6ltexnqq 7370
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7373  ltbtwnnq 7378  ltbtwnnqq 7377
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7362
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7363
[Gleason] p. 123Proposition 9-3.5addclpr 7499
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7541
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7540
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7559
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7575
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7581  ltaprlem 7580
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7578
[Gleason] p. 124Proposition 9-3.7mulclpr 7534
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7554
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7543
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7542
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7550
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7600
[Gleason] p. 126Proposition 9-4.1df-enr 7688  enrer 7697
[Gleason] p. 126Proposition 9-4.2df-0r 7693  df-1r 7694  df-nr 7689
[Gleason] p. 126Proposition 9-4.3df-mr 7691  df-plr 7690  negexsr 7734  recexsrlem 7736
[Gleason] p. 127Proposition 9-4.4df-ltr 7692
[Gleason] p. 130Proposition 10-1.3creui 8876  creur 8875  cru 8521
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7885  axcnre 7843
[Gleason] p. 132Definition 10-3.1crim 10822  crimd 10941  crimi 10901  crre 10821  crred 10940  crrei 10900
[Gleason] p. 132Definition 10-3.2remim 10824  remimd 10906
[Gleason] p. 133Definition 10.36absval2 11021  absval2d 11149  absval2i 11108
[Gleason] p. 133Proposition 10-3.4(a)cjadd 10848  cjaddd 10929  cjaddi 10896
[Gleason] p. 133Proposition 10-3.4(c)cjmul 10849  cjmuld 10930  cjmuli 10897
[Gleason] p. 133Proposition 10-3.4(e)cjcj 10847  cjcjd 10907  cjcji 10879
[Gleason] p. 133Proposition 10-3.4(f)cjre 10846  cjreb 10830  cjrebd 10910  cjrebi 10882  cjred 10935  rere 10829  rereb 10827  rerebd 10909  rerebi 10881  rered 10933
[Gleason] p. 133Proposition 10-3.4(h)addcj 10855  addcjd 10921  addcji 10891
[Gleason] p. 133Proposition 10-3.7(a)absval 10965
[Gleason] p. 133Proposition 10-3.7(b)abscj 11016  abscjd 11154  abscji 11112
[Gleason] p. 133Proposition 10-3.7(c)abs00 11028  abs00d 11150  abs00i 11109  absne0d 11151
[Gleason] p. 133Proposition 10-3.7(d)releabs 11060  releabsd 11155  releabsi 11113
[Gleason] p. 133Proposition 10-3.7(f)absmul 11033  absmuld 11158  absmuli 11115
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11019  sqabsaddi 11116
[Gleason] p. 133Proposition 10-3.7(h)abstri 11068  abstrid 11160  abstrii 11119
[Gleason] p. 134Definition 10-4.1df-exp 10476  exp0 10480  expp1 10483  expp1d 10610
[Gleason] p. 135Proposition 10-4.2(a)expadd 10518  expaddd 10611
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 13627  cxpmuld 13650  expmul 10521  expmuld 10612
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10515  mulexpd 10624  rpmulcxp 13624
[Gleason] p. 141Definition 11-2.1fzval 9967
[Gleason] p. 168Proposition 12-2.1(a)climadd 11289
[Gleason] p. 168Proposition 12-2.1(b)climsub 11291
[Gleason] p. 168Proposition 12-2.1(c)climmul 11290
[Gleason] p. 171Corollary 12-2.2climmulc2 11294
[Gleason] p. 172Corollary 12-2.5climrecl 11287
[Gleason] p. 172Proposition 12-2.4(c)climabs 11283  climcj 11284  climim 11286  climre 11285
[Gleason] p. 173Definition 12-3.1df-ltxr 7959  df-xr 7958  ltxr 9732
[Gleason] p. 180Theorem 12-5.3climcau 11310
[Gleason] p. 217Lemma 13-4.1btwnzge0 10256
[Gleason] p. 223Definition 14-1.1df-met 12783
[Gleason] p. 223Definition 14-1.1(a)met0 13158  xmet0 13157
[Gleason] p. 223Definition 14-1.1(c)metsym 13165
[Gleason] p. 223Definition 14-1.1(d)mettri 13167  mstri 13267  xmettri 13166  xmstri 13266
[Gleason] p. 230Proposition 14-2.6txlm 13073
[Gleason] p. 240Proposition 14-4.2metcnp3 13305
[Gleason] p. 243Proposition 14-4.16addcn2 11273  addcncntop 13346  mulcn2 11275  mulcncntop 13348  subcn2 11274  subcncntop 13347
[Gleason] p. 295Remarkbcval3 10685  bcval4 10686
[Gleason] p. 295Equation 2bcpasc 10700
[Gleason] p. 295Definition of binomial coefficientbcval 10683  df-bc 10682
[Gleason] p. 296Remarkbcn0 10689  bcnn 10691
[Gleason] p. 296Theorem 15-2.8binom 11447
[Gleason] p. 308Equation 2ef0 11635
[Gleason] p. 308Equation 3efcj 11636
[Gleason] p. 309Corollary 15-4.3efne0 11641
[Gleason] p. 309Corollary 15-4.4efexp 11645
[Gleason] p. 310Equation 14sinadd 11699
[Gleason] p. 310Equation 15cosadd 11700
[Gleason] p. 311Equation 17sincossq 11711
[Gleason] p. 311Equation 18cosbnd 11716  sinbnd 11715
[Gleason] p. 311Definition of ` `df-pi 11616
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1442
[Herstein] p. 55Lemma 2.2.1(a)grpideu 12719  mndideu 12662
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 12741
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 12766
[Heyting] p. 127Axiom #1ax1hfs 14103
[Hitchcock] p. 5Rule A3mptnan 1418
[Hitchcock] p. 5Rule A4mptxor 1419
[Hitchcock] p. 5Rule A5mtpxor 1421
[HoTT], p. Lemma 10.4.1exmidontriim 7202
[HoTT], p. Theorem 7.2.6nndceq 6478
[HoTT], p. Exercise 11.10neapmkv 14099
[HoTT], p. Exercise 11.11mulap0bd 8575
[HoTT], p. Section 11.2.1df-iltp 7432  df-imp 7431  df-iplp 7430  df-reap 8494
[HoTT], p. Theorem 11.2.12cauappcvgpr 7624
[HoTT], p. Corollary 11.4.3conventions 13756
[HoTT], p. Exercise 11.6(i)dcapnconst 14092  dceqnconst 14091
[HoTT], p. Corollary 11.2.13axcaucvg 7862  caucvgpr 7644  caucvgprpr 7674  caucvgsr 7764
[HoTT], p. Definition 11.2.1df-inp 7428
[HoTT], p. Exercise 11.6(ii)nconstwlpo 14097
[HoTT], p. Proposition 11.2.3df-iso 4282  ltpopr 7557  ltsopr 7558
[HoTT], p. Definition 11.2.7(v)apsym 8525  reapcotr 8517  reapirr 8496
[HoTT], p. Definition 11.2.7(vi)0lt1 8046  gt0add 8492  leadd1 8349  lelttr 8008  lemul1a 8774  lenlt 7995  ltadd1 8348  ltletr 8009  ltmul1 8511  reaplt 8507
[Jech] p. 4Definition of classcv 1347  cvjust 2165
[Jech] p. 78Noteopthprc 4662
[KalishMontague] p. 81Note 1ax-i9 1523
[Kreyszig] p. 3Property M1metcl 13147  xmetcl 13146
[Kreyszig] p. 4Property M2meteq0 13154
[Kreyszig] p. 12Equation 5muleqadd 8586
[Kreyszig] p. 18Definition 1.3-2mopnval 13236
[Kreyszig] p. 19Remarkmopntopon 13237
[Kreyszig] p. 19Theorem T1mopn0 13282  mopnm 13242
[Kreyszig] p. 19Theorem T2unimopn 13280
[Kreyszig] p. 19Definition of neighborhoodneibl 13285
[Kreyszig] p. 20Definition 1.3-3metcnp2 13307
[Kreyszig] p. 25Definition 1.4-1lmbr 13007
[Kunen] p. 10Axiom 0a9e 1689
[Kunen] p. 12Axiom 6zfrep6 4106
[Kunen] p. 24Definition 10.24mapval 6638  mapvalg 6636
[Kunen] p. 31Definition 10.24mapex 6632
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3883
[Lang] p. 3Statementlidrideqd 12635  mndbn0 12667
[Lang] p. 3Definitiondf-mnd 12653
[Lang] p. 7Definitiondfgrp2e 12733
[Levy] p. 338Axiomdf-clab 2157  df-clel 2166  df-cleq 2163
[Lopez-Astorga] p. 12Rule 1mptnan 1418
[Lopez-Astorga] p. 12Rule 2mptxor 1419
[Lopez-Astorga] p. 12Rule 3mtpxor 1421
[Margaris] p. 40Rule Cexlimiv 1591
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 848
[Margaris] p. 49Definitiondfbi2 386  dfordc 887  exalim 1495
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 646
[Margaris] p. 89Theorem 19.219.2 1631  r19.2m 3501
[Margaris] p. 89Theorem 19.319.3 1547  19.3h 1546  rr19.3v 2869
[Margaris] p. 89Theorem 19.5alcom 1471
[Margaris] p. 89Theorem 19.6alexdc 1612  alexim 1638
[Margaris] p. 89Theorem 19.7alnex 1492
[Margaris] p. 89Theorem 19.819.8a 1583  spsbe 1835
[Margaris] p. 89Theorem 19.919.9 1637  19.9h 1636  19.9v 1864  exlimd 1590
[Margaris] p. 89Theorem 19.11excom 1657  excomim 1656
[Margaris] p. 89Theorem 19.1219.12 1658  r19.12 2576
[Margaris] p. 90Theorem 19.14exnalim 1639
[Margaris] p. 90Theorem 19.15albi 1461  ralbi 2602
[Margaris] p. 90Theorem 19.1619.16 1548
[Margaris] p. 90Theorem 19.1719.17 1549
[Margaris] p. 90Theorem 19.18exbi 1597  rexbi 2603
[Margaris] p. 90Theorem 19.1919.19 1659
[Margaris] p. 90Theorem 19.20alim 1450  alimd 1514  alimdh 1460  alimdv 1872  ralimdaa 2536  ralimdv 2538  ralimdva 2537  ralimdvva 2539  sbcimdv 3020
[Margaris] p. 90Theorem 19.2119.21-2 1660  19.21 1576  19.21bi 1551  19.21h 1550  19.21ht 1574  19.21t 1575  19.21v 1866  alrimd 1603  alrimdd 1602  alrimdh 1472  alrimdv 1869  alrimi 1515  alrimih 1462  alrimiv 1867  alrimivv 1868  r19.21 2546  r19.21be 2561  r19.21bi 2558  r19.21t 2545  r19.21v 2547  ralrimd 2548  ralrimdv 2549  ralrimdva 2550  ralrimdvv 2554  ralrimdvva 2555  ralrimi 2541  ralrimiv 2542  ralrimiva 2543  ralrimivv 2551  ralrimivva 2552  ralrimivvva 2553  ralrimivw 2544  rexlimi 2580
[Margaris] p. 90Theorem 19.222alimdv 1874  2eximdv 1875  exim 1592  eximd 1605  eximdh 1604  eximdv 1873  rexim 2564  reximdai 2568  reximddv 2573  reximddv2 2575  reximdv 2571  reximdv2 2569  reximdva 2572  reximdvai 2570  reximi2 2566
[Margaris] p. 90Theorem 19.2319.23 1671  19.23bi 1585  19.23h 1491  19.23ht 1490  19.23t 1670  19.23v 1876  19.23vv 1877  exlimd2 1588  exlimdh 1589  exlimdv 1812  exlimdvv 1890  exlimi 1587  exlimih 1586  exlimiv 1591  exlimivv 1889  r19.23 2578  r19.23v 2579  rexlimd 2584  rexlimdv 2586  rexlimdv3a 2589  rexlimdva 2587  rexlimdva2 2590  rexlimdvaa 2588  rexlimdvv 2594  rexlimdvva 2595  rexlimdvw 2591  rexlimiv 2581  rexlimiva 2582  rexlimivv 2593
[Margaris] p. 90Theorem 19.24i19.24 1632
[Margaris] p. 90Theorem 19.2519.25 1619
[Margaris] p. 90Theorem 19.2619.26-2 1475  19.26-3an 1476  19.26 1474  r19.26-2 2599  r19.26-3 2600  r19.26 2596  r19.26m 2601
[Margaris] p. 90Theorem 19.2719.27 1554  19.27h 1553  19.27v 1892  r19.27av 2605  r19.27m 3510  r19.27mv 3511
[Margaris] p. 90Theorem 19.2819.28 1556  19.28h 1555  19.28v 1893  r19.28av 2606  r19.28m 3504  r19.28mv 3507  rr19.28v 2870
[Margaris] p. 90Theorem 19.2919.29 1613  19.29r 1614  19.29r2 1615  19.29x 1616  r19.29 2607  r19.29d2r 2614  r19.29r 2608
[Margaris] p. 90Theorem 19.3019.30dc 1620
[Margaris] p. 90Theorem 19.3119.31r 1674
[Margaris] p. 90Theorem 19.3219.32dc 1672  19.32r 1673  r19.32r 2616  r19.32vdc 2619  r19.32vr 2618
[Margaris] p. 90Theorem 19.3319.33 1477  19.33b2 1622  19.33bdc 1623
[Margaris] p. 90Theorem 19.3419.34 1677
[Margaris] p. 90Theorem 19.3519.35-1 1617  19.35i 1618
[Margaris] p. 90Theorem 19.3619.36-1 1666  19.36aiv 1894  19.36i 1665  r19.36av 2621
[Margaris] p. 90Theorem 19.3719.37-1 1667  19.37aiv 1668  r19.37 2622  r19.37av 2623
[Margaris] p. 90Theorem 19.3819.38 1669
[Margaris] p. 90Theorem 19.39i19.39 1633
[Margaris] p. 90Theorem 19.4019.40-2 1625  19.40 1624  r19.40 2624
[Margaris] p. 90Theorem 19.4119.41 1679  19.41h 1678  19.41v 1895  19.41vv 1896  19.41vvv 1897  19.41vvvv 1898  r19.41 2625  r19.41v 2626
[Margaris] p. 90Theorem 19.4219.42 1681  19.42h 1680  19.42v 1899  19.42vv 1904  19.42vvv 1905  19.42vvvv 1906  r19.42v 2627
[Margaris] p. 90Theorem 19.4319.43 1621  r19.43 2628
[Margaris] p. 90Theorem 19.4419.44 1675  r19.44av 2629  r19.44mv 3509
[Margaris] p. 90Theorem 19.4519.45 1676  r19.45av 2630  r19.45mv 3508
[Margaris] p. 110Exercise 2(b)eu1 2044
[Megill] p. 444Axiom C5ax-17 1519
[Megill] p. 445Lemma L12alequcom 1508  ax-10 1498
[Megill] p. 446Lemma L17equtrr 1703
[Megill] p. 446Lemma L19hbnae 1714
[Megill] p. 447Remark 9.1df-sb 1756  sbid 1767
[Megill] p. 448Scheme C5'ax-4 1503
[Megill] p. 448Scheme C6'ax-7 1441
[Megill] p. 448Scheme C8'ax-8 1497
[Megill] p. 448Scheme C9'ax-i12 1500
[Megill] p. 448Scheme C11'ax-10o 1709
[Megill] p. 448Scheme C12'ax-13 2143
[Megill] p. 448Scheme C13'ax-14 2144
[Megill] p. 448Scheme C15'ax-11o 1816
[Megill] p. 448Scheme C16'ax-16 1807
[Megill] p. 448Theorem 9.4dral1 1723  dral2 1724  drex1 1791  drex2 1725  drsb1 1792  drsb2 1834
[Megill] p. 449Theorem 9.7sbcom2 1980  sbequ 1833  sbid2v 1989
[Megill] p. 450Example in Appendixhba1 1533
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3037  rspsbca 3038  stdpc4 1768
[Mendelson] p. 69Axiom 5ra5 3043  stdpc5 1577
[Mendelson] p. 81Rule Cexlimiv 1591
[Mendelson] p. 95Axiom 6stdpc6 1696
[Mendelson] p. 95Axiom 7stdpc7 1763
[Mendelson] p. 231Exercise 4.10(k)inv1 3451
[Mendelson] p. 231Exercise 4.10(l)unv 3452
[Mendelson] p. 231Exercise 4.10(n)inssun 3367
[Mendelson] p. 231Exercise 4.10(o)df-nul 3415
[Mendelson] p. 231Exercise 4.10(q)inssddif 3368
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3258
[Mendelson] p. 231Definition of unionunssin 3366
[Mendelson] p. 235Exercise 4.12(c)univ 4461
[Mendelson] p. 235Exercise 4.12(d)pwv 3795
[Mendelson] p. 235Exercise 4.12(j)pwin 4267
[Mendelson] p. 235Exercise 4.12(k)pwunss 4268
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4269
[Mendelson] p. 235Exercise 4.12(n)uniin 3816
[Mendelson] p. 235Exercise 4.12(p)reli 4740
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5131
[Mendelson] p. 246Definition of successordf-suc 4356
[Mendelson] p. 254Proposition 4.22(b)xpen 6823
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6799  xpsneng 6800
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6805  xpcomeng 6806
[Mendelson] p. 254Proposition 4.22(e)xpassen 6808
[Mendelson] p. 255Exercise 4.39endisj 6802
[Mendelson] p. 255Exercise 4.41mapprc 6630
[Mendelson] p. 255Exercise 4.43mapsnen 6789
[Mendelson] p. 255Exercise 4.47xpmapen 6828
[Mendelson] p. 255Exercise 4.42(a)map0e 6664
[Mendelson] p. 255Exercise 4.42(b)map1 6790
[Mendelson] p. 258Exercise 4.56(c)djuassen 7194  djucomen 7193
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7192
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6446
[Monk1] p. 26Theorem 2.8(vii)ssin 3349
[Monk1] p. 33Theorem 3.2(i)ssrel 4699
[Monk1] p. 33Theorem 3.2(ii)eqrel 4700
[Monk1] p. 34Definition 3.3df-opab 4051
[Monk1] p. 36Theorem 3.7(i)coi1 5126  coi2 5127
[Monk1] p. 36Theorem 3.8(v)dm0 4825  rn0 4867
[Monk1] p. 36Theorem 3.7(ii)cnvi 5015
[Monk1] p. 37Theorem 3.13(i)relxp 4720
[Monk1] p. 37Theorem 3.13(x)dmxpm 4831  rnxpm 5040
[Monk1] p. 37Theorem 3.13(ii)0xp 4691  xp0 5030
[Monk1] p. 38Theorem 3.16(ii)ima0 4970
[Monk1] p. 38Theorem 3.16(viii)imai 4967
[Monk1] p. 39Theorem 3.17imaex 4966  imaexg 4965
[Monk1] p. 39Theorem 3.16(xi)imassrn 4964
[Monk1] p. 41Theorem 4.3(i)fnopfv 5626  funfvop 5608
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5540
[Monk1] p. 42Theorem 4.4(iii)fvelima 5548
[Monk1] p. 43Theorem 4.6funun 5242
[Monk1] p. 43Theorem 4.8(iv)dff13 5747  dff13f 5749
[Monk1] p. 46Theorem 4.15(v)funex 5719  funrnex 6093
[Monk1] p. 50Definition 5.4fniunfv 5741
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5094
[Monk1] p. 52Theorem 5.11(viii)ssint 3847
[Monk1] p. 52Definition 5.13 (i)1stval2 6134  df-1st 6119
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6135  df-2nd 6120
[Monk2] p. 105Axiom C4ax-5 1440
[Monk2] p. 105Axiom C7ax-8 1497
[Monk2] p. 105Axiom C8ax-11 1499  ax-11o 1816
[Monk2] p. 105Axiom (C8)ax11v 1820
[Monk2] p. 109Lemma 12ax-7 1441
[Monk2] p. 109Lemma 15equvin 1856  equvini 1751  eqvinop 4228
[Monk2] p. 113Axiom C5-1ax-17 1519
[Monk2] p. 113Axiom C5-2ax6b 1644
[Monk2] p. 113Axiom C5-3ax-7 1441
[Monk2] p. 114Lemma 22hba1 1533
[Monk2] p. 114Lemma 23hbia1 1545  nfia1 1573
[Monk2] p. 114Lemma 24hba2 1544  nfa2 1572
[Moschovakis] p. 2Chapter 2 df-stab 826  dftest 14104
[Munkres] p. 77Example 2distop 12879
[Munkres] p. 78Definition of basisdf-bases 12835  isbasis3g 12838
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12600  tgval2 12845
[Munkres] p. 79Remarktgcl 12858
[Munkres] p. 80Lemma 2.1tgval3 12852
[Munkres] p. 80Lemma 2.2tgss2 12873  tgss3 12872
[Munkres] p. 81Lemma 2.3basgen 12874  basgen2 12875
[Munkres] p. 89Definition of subspace topologyresttop 12964
[Munkres] p. 93Theorem 6.1(1)0cld 12906  topcld 12903
[Munkres] p. 93Theorem 6.1(3)uncld 12907
[Munkres] p. 94Definition of closureclsval 12905
[Munkres] p. 94Definition of interiorntrval 12904
[Munkres] p. 102Definition of continuous functiondf-cn 12982  iscn 12991  iscn2 12994
[Munkres] p. 107Theorem 7.2(g)cncnp 13024  cncnp2m 13025  cncnpi 13022  df-cnp 12983  iscnp 12993
[Munkres] p. 127Theorem 10.1metcn 13308
[Pierik], p. 8Section 2.2.1dfrex2fin 6881
[Pierik], p. 9Definition 2.4df-womni 7140
[Pierik], p. 9Definition 2.5df-markov 7128  omniwomnimkv 7143
[Pierik], p. 10Section 2.3dfdif3 3237
[Pierik], p. 14Definition 3.1df-omni 7111  exmidomniim 7117  finomni 7116
[Pierik], p. 15Section 3.1df-nninf 7097
[PradicBrown2022], p. 1Theorem 1exmidsbthr 14055
[PradicBrown2022], p. 2Remarkexmidpw 6886
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7178
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7179  exmidfodomrlemrALT 7180
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7125
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 14040  peano4nninf 14039
[PradicBrown2022], p. 5Lemma 3.5nninfall 14042
[PradicBrown2022], p. 5Theorem 3.6nninfsel 14050
[PradicBrown2022], p. 5Corollary 3.7nninfomni 14052
[PradicBrown2022], p. 5Definition 3.3nnsf 14038
[Quine] p. 16Definition 2.1df-clab 2157  rabid 2645
[Quine] p. 17Definition 2.1''dfsb7 1984
[Quine] p. 18Definition 2.7df-cleq 2163
[Quine] p. 19Definition 2.9df-v 2732
[Quine] p. 34Theorem 5.1abeq2 2279
[Quine] p. 35Theorem 5.2abid2 2291  abid2f 2338
[Quine] p. 40Theorem 6.1sb5 1880
[Quine] p. 40Theorem 6.2sb56 1878  sb6 1879
[Quine] p. 41Theorem 6.3df-clel 2166
[Quine] p. 41Theorem 6.4eqid 2170
[Quine] p. 41Theorem 6.5eqcom 2172
[Quine] p. 42Theorem 6.6df-sbc 2956
[Quine] p. 42Theorem 6.7dfsbcq 2957  dfsbcq2 2958
[Quine] p. 43Theorem 6.8vex 2733
[Quine] p. 43Theorem 6.9isset 2736
[Quine] p. 44Theorem 7.3spcgf 2812  spcgv 2817  spcimgf 2810
[Quine] p. 44Theorem 6.11spsbc 2966  spsbcd 2967
[Quine] p. 44Theorem 6.12elex 2741
[Quine] p. 44Theorem 6.13elab 2874  elabg 2876  elabgf 2872
[Quine] p. 44Theorem 6.14noel 3418
[Quine] p. 48Theorem 7.2snprc 3648
[Quine] p. 48Definition 7.1df-pr 3590  df-sn 3589
[Quine] p. 49Theorem 7.4snss 3709  snssg 3716
[Quine] p. 49Theorem 7.5prss 3736  prssg 3737
[Quine] p. 49Theorem 7.6prid1 3689  prid1g 3687  prid2 3690  prid2g 3688  snid 3614  snidg 3612
[Quine] p. 51Theorem 7.12snexg 4170  snexprc 4172
[Quine] p. 51Theorem 7.13prexg 4196
[Quine] p. 53Theorem 8.2unisn 3812  unisng 3813
[Quine] p. 53Theorem 8.3uniun 3815
[Quine] p. 54Theorem 8.6elssuni 3824
[Quine] p. 54Theorem 8.7uni0 3823
[Quine] p. 56Theorem 8.17uniabio 5170
[Quine] p. 56Definition 8.18dfiota2 5161
[Quine] p. 57Theorem 8.19iotaval 5171
[Quine] p. 57Theorem 8.22iotanul 5175
[Quine] p. 58Theorem 8.23euiotaex 5176
[Quine] p. 58Definition 9.1df-op 3592
[Quine] p. 61Theorem 9.5opabid 4242  opelopab 4256  opelopaba 4251  opelopabaf 4258  opelopabf 4259  opelopabg 4253  opelopabga 4248  oprabid 5885
[Quine] p. 64Definition 9.11df-xp 4617
[Quine] p. 64Definition 9.12df-cnv 4619
[Quine] p. 64Definition 9.15df-id 4278
[Quine] p. 65Theorem 10.3fun0 5256
[Quine] p. 65Theorem 10.4funi 5230
[Quine] p. 65Theorem 10.5funsn 5246  funsng 5244
[Quine] p. 65Definition 10.1df-fun 5200
[Quine] p. 65Definition 10.2args 4980  dffv4g 5493
[Quine] p. 68Definition 10.11df-fv 5206  fv2 5491
[Quine] p. 124Theorem 17.3nn0opth2 10658  nn0opth2d 10657  nn0opthd 10656
[Quine] p. 284Axiom 39(vi)funimaex 5283  funimaexg 5282
[Rudin] p. 164Equation 27efcan 11639
[Rudin] p. 164Equation 30efzval 11646
[Rudin] p. 167Equation 48absefi 11731
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1421
[Sanford] p. 39Rule 4mptxor 1419
[Sanford] p. 40Rule 1mptnan 1418
[Schechter] p. 51Definition of antisymmetryintasym 4995
[Schechter] p. 51Definition of irreflexivityintirr 4997
[Schechter] p. 51Definition of symmetrycnvsym 4994
[Schechter] p. 51Definition of transitivitycotr 4992
[Schechter] p. 428Definition 15.35bastop1 12877
[Stoll] p. 13Definition of symmetric differencesymdif1 3392
[Stoll] p. 16Exercise 4.40dif 3486  dif0 3485
[Stoll] p. 16Exercise 4.8difdifdirss 3499
[Stoll] p. 19Theorem 5.2(13)undm 3385
[Stoll] p. 19Theorem 5.2(13')indmss 3386
[Stoll] p. 20Remarkinvdif 3369
[Stoll] p. 25Definition of ordered tripledf-ot 3593
[Stoll] p. 43Definitionuniiun 3926
[Stoll] p. 44Definitionintiin 3927
[Stoll] p. 45Definitiondf-iin 3876
[Stoll] p. 45Definition indexed uniondf-iun 3875
[Stoll] p. 176Theorem 3.4(27)imandc 884  imanst 883
[Stoll] p. 262Example 4.1symdif1 3392
[Suppes] p. 22Theorem 2eq0 3433
[Suppes] p. 22Theorem 4eqss 3162  eqssd 3164  eqssi 3163
[Suppes] p. 23Theorem 5ss0 3455  ss0b 3454
[Suppes] p. 23Theorem 6sstr 3155
[Suppes] p. 25Theorem 12elin 3310  elun 3268
[Suppes] p. 26Theorem 15inidm 3336
[Suppes] p. 26Theorem 16in0 3449
[Suppes] p. 27Theorem 23unidm 3270
[Suppes] p. 27Theorem 24un0 3448
[Suppes] p. 27Theorem 25ssun1 3290
[Suppes] p. 27Theorem 26ssequn1 3297
[Suppes] p. 27Theorem 27unss 3301
[Suppes] p. 27Theorem 28indir 3376
[Suppes] p. 27Theorem 29undir 3377
[Suppes] p. 28Theorem 32difid 3483  difidALT 3484
[Suppes] p. 29Theorem 33difin 3364
[Suppes] p. 29Theorem 34indif 3370
[Suppes] p. 29Theorem 35undif1ss 3489
[Suppes] p. 29Theorem 36difun2 3494
[Suppes] p. 29Theorem 37difin0 3488
[Suppes] p. 29Theorem 38disjdif 3487
[Suppes] p. 29Theorem 39difundi 3379
[Suppes] p. 29Theorem 40difindiss 3381
[Suppes] p. 30Theorem 41nalset 4119
[Suppes] p. 39Theorem 61uniss 3817
[Suppes] p. 39Theorem 65uniop 4240
[Suppes] p. 41Theorem 70intsn 3866
[Suppes] p. 42Theorem 71intpr 3863  intprg 3864
[Suppes] p. 42Theorem 73op1stb 4463  op1stbg 4464
[Suppes] p. 42Theorem 78intun 3862
[Suppes] p. 44Definition 15(a)dfiun2 3907  dfiun2g 3905
[Suppes] p. 44Definition 15(b)dfiin2 3908
[Suppes] p. 47Theorem 86elpw 3572  elpw2 4143  elpw2g 4142  elpwg 3574
[Suppes] p. 47Theorem 87pwid 3581
[Suppes] p. 47Theorem 89pw0 3727
[Suppes] p. 48Theorem 90pwpw0ss 3791
[Suppes] p. 52Theorem 101xpss12 4718
[Suppes] p. 52Theorem 102xpindi 4746  xpindir 4747
[Suppes] p. 52Theorem 103xpundi 4667  xpundir 4668
[Suppes] p. 54Theorem 105elirrv 4532
[Suppes] p. 58Theorem 2relss 4698
[Suppes] p. 59Theorem 4eldm 4808  eldm2 4809  eldm2g 4807  eldmg 4806
[Suppes] p. 59Definition 3df-dm 4621
[Suppes] p. 60Theorem 6dmin 4819
[Suppes] p. 60Theorem 8rnun 5019
[Suppes] p. 60Theorem 9rnin 5020
[Suppes] p. 60Definition 4dfrn2 4799
[Suppes] p. 61Theorem 11brcnv 4794  brcnvg 4792
[Suppes] p. 62Equation 5elcnv 4788  elcnv2 4789
[Suppes] p. 62Theorem 12relcnv 4989
[Suppes] p. 62Theorem 15cnvin 5018
[Suppes] p. 62Theorem 16cnvun 5016
[Suppes] p. 63Theorem 20co02 5124
[Suppes] p. 63Theorem 21dmcoss 4880
[Suppes] p. 63Definition 7df-co 4620
[Suppes] p. 64Theorem 26cnvco 4796
[Suppes] p. 64Theorem 27coass 5129
[Suppes] p. 65Theorem 31resundi 4904
[Suppes] p. 65Theorem 34elima 4958  elima2 4959  elima3 4960  elimag 4957
[Suppes] p. 65Theorem 35imaundi 5023
[Suppes] p. 66Theorem 40dminss 5025
[Suppes] p. 66Theorem 41imainss 5026
[Suppes] p. 67Exercise 11cnvxp 5029
[Suppes] p. 81Definition 34dfec2 6516
[Suppes] p. 82Theorem 72elec 6552  elecg 6551
[Suppes] p. 82Theorem 73erth 6557  erth2 6558
[Suppes] p. 89Theorem 96map0b 6665
[Suppes] p. 89Theorem 97map0 6667  map0g 6666
[Suppes] p. 89Theorem 98mapsn 6668
[Suppes] p. 89Theorem 99mapss 6669
[Suppes] p. 92Theorem 1enref 6743  enrefg 6742
[Suppes] p. 92Theorem 2ensym 6759  ensymb 6758  ensymi 6760
[Suppes] p. 92Theorem 3entr 6762
[Suppes] p. 92Theorem 4unen 6794
[Suppes] p. 94Theorem 15endom 6741
[Suppes] p. 94Theorem 16ssdomg 6756
[Suppes] p. 94Theorem 17domtr 6763
[Suppes] p. 95Theorem 18isbth 6944
[Suppes] p. 98Exercise 4fundmen 6784  fundmeng 6785
[Suppes] p. 98Exercise 6xpdom3m 6812
[Suppes] p. 130Definition 3df-tr 4088
[Suppes] p. 132Theorem 9ssonuni 4472
[Suppes] p. 134Definition 6df-suc 4356
[Suppes] p. 136Theorem Schema 22findes 4587  finds 4584  finds1 4586  finds2 4585
[Suppes] p. 162Definition 5df-ltnqqs 7315  df-ltpq 7308
[Suppes] p. 228Theorem Schema 61onintss 4375
[TakeutiZaring] p. 8Axiom 1ax-ext 2152
[TakeutiZaring] p. 13Definition 4.5df-cleq 2163
[TakeutiZaring] p. 13Proposition 4.6df-clel 2166
[TakeutiZaring] p. 13Proposition 4.9cvjust 2165
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2188
[TakeutiZaring] p. 14Definition 4.16df-oprab 5857
[TakeutiZaring] p. 14Proposition 4.14ru 2954
[TakeutiZaring] p. 15Exercise 1elpr 3604  elpr2 3605  elprg 3603
[TakeutiZaring] p. 15Exercise 2elsn 3599  elsn2 3617  elsn2g 3616  elsng 3598  velsn 3600
[TakeutiZaring] p. 15Exercise 3elop 4216
[TakeutiZaring] p. 15Exercise 4sneq 3594  sneqr 3747
[TakeutiZaring] p. 15Definition 5.1dfpr2 3602  dfsn2 3597
[TakeutiZaring] p. 16Axiom 3uniex 4422
[TakeutiZaring] p. 16Exercise 6opth 4222
[TakeutiZaring] p. 16Exercise 8rext 4200
[TakeutiZaring] p. 16Corollary 5.8unex 4426  unexg 4428
[TakeutiZaring] p. 16Definition 5.3dftp2 3632
[TakeutiZaring] p. 16Definition 5.5df-uni 3797
[TakeutiZaring] p. 16Definition 5.6df-in 3127  df-un 3125
[TakeutiZaring] p. 16Proposition 5.7unipr 3810  uniprg 3811
[TakeutiZaring] p. 17Axiom 4vpwex 4165
[TakeutiZaring] p. 17Exercise 1eltp 3631
[TakeutiZaring] p. 17Exercise 5elsuc 4391  elsucg 4389  sstr2 3154
[TakeutiZaring] p. 17Exercise 6uncom 3271
[TakeutiZaring] p. 17Exercise 7incom 3319
[TakeutiZaring] p. 17Exercise 8unass 3284
[TakeutiZaring] p. 17Exercise 9inass 3337
[TakeutiZaring] p. 17Exercise 10indi 3374
[TakeutiZaring] p. 17Exercise 11undi 3375
[TakeutiZaring] p. 17Definition 5.9dfss2 3136
[TakeutiZaring] p. 17Definition 5.10df-pw 3568
[TakeutiZaring] p. 18Exercise 7unss2 3298
[TakeutiZaring] p. 18Exercise 9df-ss 3134  sseqin2 3346
[TakeutiZaring] p. 18Exercise 10ssid 3167
[TakeutiZaring] p. 18Exercise 12inss1 3347  inss2 3348
[TakeutiZaring] p. 18Exercise 13nssr 3207
[TakeutiZaring] p. 18Exercise 15unieq 3805
[TakeutiZaring] p. 18Exercise 18sspwb 4201
[TakeutiZaring] p. 18Exercise 19pweqb 4208
[TakeutiZaring] p. 20Definitiondf-rab 2457
[TakeutiZaring] p. 20Corollary 5.160ex 4116
[TakeutiZaring] p. 20Definition 5.12df-dif 3123
[TakeutiZaring] p. 20Definition 5.14dfnul2 3416
[TakeutiZaring] p. 20Proposition 5.15difid 3483  difidALT 3484
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3427
[TakeutiZaring] p. 21Theorem 5.22setind 4523
[TakeutiZaring] p. 21Definition 5.20df-v 2732
[TakeutiZaring] p. 21Proposition 5.21vprc 4121
[TakeutiZaring] p. 22Exercise 10ss 3453
[TakeutiZaring] p. 22Exercise 3ssex 4126  ssexg 4128
[TakeutiZaring] p. 22Exercise 4inex1 4123
[TakeutiZaring] p. 22Exercise 5ruv 4534
[TakeutiZaring] p. 22Exercise 6elirr 4525
[TakeutiZaring] p. 22Exercise 7ssdif0im 3479
[TakeutiZaring] p. 22Exercise 11difdif 3252
[TakeutiZaring] p. 22Exercise 13undif3ss 3388
[TakeutiZaring] p. 22Exercise 14difss 3253
[TakeutiZaring] p. 22Exercise 15sscon 3261
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2453
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2454
[TakeutiZaring] p. 23Proposition 6.2xpex 4726  xpexg 4725  xpexgALT 6112
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4618
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5262
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5414  fun11 5265
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5209  svrelfun 5263
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4798
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4800
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4623
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4624
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4620
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5065  dfrel2 5061
[TakeutiZaring] p. 25Exercise 3xpss 4719
[TakeutiZaring] p. 25Exercise 5relun 4728
[TakeutiZaring] p. 25Exercise 6reluni 4734
[TakeutiZaring] p. 25Exercise 9inxp 4745
[TakeutiZaring] p. 25Exercise 12relres 4919
[TakeutiZaring] p. 25Exercise 13opelres 4896  opelresg 4898
[TakeutiZaring] p. 25Exercise 14dmres 4912
[TakeutiZaring] p. 25Exercise 15resss 4915
[TakeutiZaring] p. 25Exercise 17resabs1 4920
[TakeutiZaring] p. 25Exercise 18funres 5239
[TakeutiZaring] p. 25Exercise 24relco 5109
[TakeutiZaring] p. 25Exercise 29funco 5238
[TakeutiZaring] p. 25Exercise 30f1co 5415
[TakeutiZaring] p. 26Definition 6.10eu2 2063
[TakeutiZaring] p. 26Definition 6.11df-fv 5206  fv3 5519
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5149  cnvexg 5148
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4877  dmexg 4875
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4878  rnexg 4876
[TakeutiZaring] p. 27Corollary 6.13funfvex 5513
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5523  tz6.12 5524  tz6.12c 5526
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5487
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5201
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5202
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5204  wfo 5196
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5203  wf1 5195
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5205  wf1o 5197
[TakeutiZaring] p. 28Exercise 4eqfnfv 5593  eqfnfv2 5594  eqfnfv2f 5597
[TakeutiZaring] p. 28Exercise 5fvco 5566
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5718  fnexALT 6090
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5717  resfunexgALT 6087
[TakeutiZaring] p. 29Exercise 9funimaex 5283  funimaexg 5282
[TakeutiZaring] p. 29Definition 6.18df-br 3990
[TakeutiZaring] p. 30Definition 6.21eliniseg 4981  iniseg 4983
[TakeutiZaring] p. 30Definition 6.22df-eprel 4274
[TakeutiZaring] p. 32Definition 6.28df-isom 5207
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5789
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5790
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5795
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5797
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5805
[TakeutiZaring] p. 35Notationwtr 4087
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4339
[TakeutiZaring] p. 35Definition 7.1dftr3 4091
[TakeutiZaring] p. 36Proposition 7.4ordwe 4560
[TakeutiZaring] p. 36Proposition 7.6ordelord 4366
[TakeutiZaring] p. 37Proposition 7.9ordin 4370
[TakeutiZaring] p. 38Corollary 7.15ordsson 4476
[TakeutiZaring] p. 38Definition 7.11df-on 4353
[TakeutiZaring] p. 38Proposition 7.12ordon 4470
[TakeutiZaring] p. 38Proposition 7.13onprc 4536
[TakeutiZaring] p. 39Theorem 7.17tfi 4566
[TakeutiZaring] p. 40Exercise 7dftr2 4089
[TakeutiZaring] p. 40Exercise 11unon 4495
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4471
[TakeutiZaring] p. 40Proposition 7.20elssuni 3824
[TakeutiZaring] p. 41Definition 7.22df-suc 4356
[TakeutiZaring] p. 41Proposition 7.23sssucid 4400  sucidg 4401
[TakeutiZaring] p. 41Proposition 7.24suceloni 4485
[TakeutiZaring] p. 42Exercise 1df-ilim 4354
[TakeutiZaring] p. 42Exercise 8onsucssi 4490  ordelsuc 4489
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4578
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4579
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4580
[TakeutiZaring] p. 43Axiom 7omex 4577
[TakeutiZaring] p. 43Theorem 7.32ordom 4591
[TakeutiZaring] p. 43Corollary 7.31find 4583
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4581
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4582
[TakeutiZaring] p. 44Exercise 2int0 3845
[TakeutiZaring] p. 44Exercise 3trintssm 4103
[TakeutiZaring] p. 44Exercise 4intss1 3846
[TakeutiZaring] p. 44Exercise 6onintonm 4501
[TakeutiZaring] p. 44Definition 7.35df-int 3832
[TakeutiZaring] p. 47Lemma 1tfrlem1 6287
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6344  tfri1d 6314
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6345  tfri2d 6315
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6346
[TakeutiZaring] p. 50Exercise 3smoiso 6281
[TakeutiZaring] p. 50Definition 7.46df-smo 6265
[TakeutiZaring] p. 56Definition 8.1oasuc 6443
[TakeutiZaring] p. 57Proposition 8.2oacl 6439
[TakeutiZaring] p. 57Proposition 8.3oa0 6436
[TakeutiZaring] p. 57Proposition 8.16omcl 6440
[TakeutiZaring] p. 58Proposition 8.4nnaord 6488  nnaordi 6487
[TakeutiZaring] p. 59Proposition 8.6iunss2 3918  uniss2 3827
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6449
[TakeutiZaring] p. 59Proposition 8.9nnacl 6459
[TakeutiZaring] p. 62Exercise 5oaword1 6450
[TakeutiZaring] p. 62Definition 8.15om0 6437  omsuc 6451
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6460
[TakeutiZaring] p. 63Proposition 8.19nnmord 6496  nnmordi 6495
[TakeutiZaring] p. 67Definition 8.30oei0 6438
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7164
[TakeutiZaring] p. 88Exercise 1en0 6773
[TakeutiZaring] p. 90Proposition 10.20nneneq 6835
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6836
[TakeutiZaring] p. 91Definition 10.29df-fin 6721  isfi 6739
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6809
[TakeutiZaring] p. 95Definition 10.42df-map 6628
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6826
[Tarski] p. 67Axiom B5ax-4 1503
[Tarski] p. 68Lemma 6equid 1694
[Tarski] p. 69Lemma 7equcomi 1697
[Tarski] p. 70Lemma 14spim 1731  spime 1734  spimeh 1732  spimh 1730
[Tarski] p. 70Lemma 16ax-11 1499  ax-11o 1816  ax11i 1707
[Tarski] p. 70Lemmas 16 and 17sb6 1879
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1519
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2143  ax-14 2144
[WhiteheadRussell] p. 96Axiom *1.3olc 706
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 722
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 751
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 760
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 784
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 611
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 638
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 832
[WhiteheadRussell] p. 101Theorem *2.06barbara 2117  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 732
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 831
[WhiteheadRussell] p. 101Theorem *2.12notnot 624
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 880
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 838
[WhiteheadRussell] p. 102Theorem *2.15con1dc 851
[WhiteheadRussell] p. 103Theorem *2.16con3 637
[WhiteheadRussell] p. 103Theorem *2.17condc 848
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 850
[WhiteheadRussell] p. 104Theorem *2.2orc 707
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 770
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 612
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 616
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 888
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 902
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 763
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 764
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 799
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 800
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 798
[WhiteheadRussell] p. 105Definition *2.33df-3or 974
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 773
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 771
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 772
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 733
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 734
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 862  pm2.5gdc 861
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 857
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 735
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 736
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 737
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 650
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 651
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 717
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 886
[WhiteheadRussell] p. 107Theorem *2.55orel1 720
[WhiteheadRussell] p. 107Theorem *2.56orel2 721
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 860
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 743
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 795
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 796
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 654
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 708  pm2.67 738
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 864  pm2.521gdc 863
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 742
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 805
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 889
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 910
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 801
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 802
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 804
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 803
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 806
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 807
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 900
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 100
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 749
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 138
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 952
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 953
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 954
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 748
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 262
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 263
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 688
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 345
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 259
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 260
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 108  simplimdc 855
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 109  simprimdc 854
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 343
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 344
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 684
[WhiteheadRussell] p. 113Fact)pm3.45 592
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 331
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 329
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 330
[WhiteheadRussell] p. 113Theorem *3.44jao 750  pm3.44 710
[WhiteheadRussell] p. 113Theorem *3.47anim12 342
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 597
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 780
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 866
[WhiteheadRussell] p. 117Theorem *4.2biid 170
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 867
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 885
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 689
[WhiteheadRussell] p. 117Theorem *4.21bicom 139
[WhiteheadRussell] p. 117Theorem *4.22biantr 947  bitr 469
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 393
[WhiteheadRussell] p. 117Theorem *4.25oridm 752  pm4.25 753
[WhiteheadRussell] p. 118Theorem *4.3ancom 264
[WhiteheadRussell] p. 118Theorem *4.4andi 813
[WhiteheadRussell] p. 118Theorem *4.31orcom 723
[WhiteheadRussell] p. 118Theorem *4.32anass 399
[WhiteheadRussell] p. 118Theorem *4.33orass 762
[WhiteheadRussell] p. 118Theorem *4.36anbi1 463
[WhiteheadRussell] p. 118Theorem *4.37orbi1 787
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 600
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 817
[WhiteheadRussell] p. 118Definition *4.34df-3an 975
[WhiteheadRussell] p. 119Theorem *4.41ordi 811
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 966
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 944
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 774
[WhiteheadRussell] p. 119Theorem *4.45orabs 809  pm4.45 779  pm4.45im 332
[WhiteheadRussell] p. 119Theorem *10.2219.26 1474
[WhiteheadRussell] p. 120Theorem *4.5anordc 951
[WhiteheadRussell] p. 120Theorem *4.6imordc 892  imorr 716
[WhiteheadRussell] p. 120Theorem *4.7anclb 317
[WhiteheadRussell] p. 120Theorem *4.51ianordc 894
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 745
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 746
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 897
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 933
[WhiteheadRussell] p. 120Theorem *4.56ioran 747  pm4.56 775
[WhiteheadRussell] p. 120Theorem *4.57orandc 934  oranim 776
[WhiteheadRussell] p. 120Theorem *4.61annimim 681
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 893
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 881
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 895
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 682
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 896
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 882
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 387  pm4.71d 391  pm4.71i 389  pm4.71r 388  pm4.71rd 392  pm4.71ri 390
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 822
[WhiteheadRussell] p. 121Theorem *4.73iba 298
[WhiteheadRussell] p. 121Theorem *4.74biorf 739
[WhiteheadRussell] p. 121Theorem *4.76jcab 598  pm4.76 599
[WhiteheadRussell] p. 121Theorem *4.77jaob 705  pm4.77 794
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 777
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 898
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 702
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 903
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 945
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 946
[WhiteheadRussell] p. 122Theorem *4.84imbi1 235
[WhiteheadRussell] p. 122Theorem *4.85imbi2 236
[WhiteheadRussell] p. 122Theorem *4.86bibi1 239
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 247  impexp 261  pm4.87 552
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 596
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 904
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 905
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 907
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 906
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1384
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 823
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 899
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1389  pm5.18dc 878
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 701
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 690
[WhiteheadRussell] p. 124Theorem *5.22xordc 1387
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1392
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1393
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 890
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 472
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 248
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 241
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 921  pm5.6r 922
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 949
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 346
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 450
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 604
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 912
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 605
[WhiteheadRussell] p. 125Theorem *5.41imdi 249  pm5.41 250
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 318
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 920
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 797
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 913
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 908
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 789
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 940
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 941
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 956
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 243
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 178
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 957
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1628
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1478
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1625
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1888
[WhiteheadRussell] p. 175Definition *14.02df-eu 2022
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2421
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2422
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2868
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3011
[WhiteheadRussell] p. 190Theorem *14.22iota4 5178
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5179
[WhiteheadRussell] p. 192Theorem *14.26eupick 2098  eupickbi 2101
[WhiteheadRussell] p. 235Definition *30.01df-fv 5206
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7167

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]