Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[AczelRathjen], p. 71Definition 8.1.4enumct 7176  fidcenum 7017
[AczelRathjen], p. 72Proposition 8.1.11fidcenum 7017
[AczelRathjen], p. 73Lemma 8.1.14enumct 7176
[AczelRathjen], p. 73Corollary 8.1.13ennnfone 12585
[AczelRathjen], p. 74Lemma 8.1.16xpfi 6988
[AczelRathjen], p. 74Remark 8.1.17unfiexmid 6976
[AczelRathjen], p. 74Theorem 8.1.19ctiunct 12600
[AczelRathjen], p. 75Corollary 8.1.20unct 12602
[AczelRathjen], p. 75Corollary 8.1.23qnnen 12591  znnen 12558
[AczelRathjen], p. 77Lemma 8.1.27omctfn 12603
[AczelRathjen], p. 78Theorem 8.1.28omiunct 12604
[AczelRathjen], p. 80Corollary 8.2.4df-ihash 10850
[AczelRathjen], p. 183Chapter 20ax-setind 4570
[AhoHopUll] p. 318Section 9.1df-word 10918  lencl 10921  wrd0 10942
[Apostol] p. 18Theorem I.1addcan 8201  addcan2d 8206  addcan2i 8204  addcand 8205  addcani 8203
[Apostol] p. 18Theorem I.2negeu 8212
[Apostol] p. 18Theorem I.3negsub 8269  negsubd 8338  negsubi 8299
[Apostol] p. 18Theorem I.4negneg 8271  negnegd 8323  negnegi 8291
[Apostol] p. 18Theorem I.5subdi 8406  subdid 8435  subdii 8428  subdir 8407  subdird 8436  subdiri 8429
[Apostol] p. 18Theorem I.6mul01 8410  mul01d 8414  mul01i 8412  mul02 8408  mul02d 8413  mul02i 8411
[Apostol] p. 18Theorem I.9divrecapd 8814
[Apostol] p. 18Theorem I.10recrecapi 8765
[Apostol] p. 18Theorem I.12mul2neg 8419  mul2negd 8434  mul2negi 8427  mulneg1 8416  mulneg1d 8432  mulneg1i 8425
[Apostol] p. 18Theorem I.14rdivmuldivd 13643
[Apostol] p. 18Theorem I.15divdivdivap 8734
[Apostol] p. 20Axiom 7rpaddcl 9746  rpaddcld 9781  rpmulcl 9747  rpmulcld 9782
[Apostol] p. 20Axiom 90nrp 9758
[Apostol] p. 20Theorem I.17lttri 8126
[Apostol] p. 20Theorem I.18ltadd1d 8559  ltadd1dd 8577  ltadd1i 8523
[Apostol] p. 20Theorem I.19ltmul1 8613  ltmul1a 8612  ltmul1i 8941  ltmul1ii 8949  ltmul2 8877  ltmul2d 9808  ltmul2dd 9822  ltmul2i 8944
[Apostol] p. 20Theorem I.210lt1 8148
[Apostol] p. 20Theorem I.23lt0neg1 8489  lt0neg1d 8536  ltneg 8483  ltnegd 8544  ltnegi 8514
[Apostol] p. 20Theorem I.25lt2add 8466  lt2addd 8588  lt2addi 8531
[Apostol] p. 20Definition of positive numbersdf-rp 9723
[Apostol] p. 21Exercise 4recgt0 8871  recgt0d 8955  recgt0i 8927  recgt0ii 8928
[Apostol] p. 22Definition of integersdf-z 9321
[Apostol] p. 22Definition of rationalsdf-q 9688
[Apostol] p. 24Theorem I.26supeuti 7055
[Apostol] p. 26Theorem I.29arch 9240
[Apostol] p. 28Exercise 2btwnz 9439
[Apostol] p. 28Exercise 3nnrecl 9241
[Apostol] p. 28Exercise 6qbtwnre 10328
[Apostol] p. 28Exercise 10(a)zeneo 12015  zneo 9421
[Apostol] p. 29Theorem I.35resqrtth 11178  sqrtthi 11266
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8987
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwodc 12176
[Apostol] p. 363Remarkabsgt0api 11293
[Apostol] p. 363Exampleabssubd 11340  abssubi 11297
[ApostolNT] p. 14Definitiondf-dvds 11934
[ApostolNT] p. 14Theorem 1.1(a)iddvds 11950
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 11974
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 11970
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 11964
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 11966
[ApostolNT] p. 14Theorem 1.1(f)1dvds 11951
[ApostolNT] p. 14Theorem 1.1(g)dvds0 11952
[ApostolNT] p. 14Theorem 1.1(h)0dvds 11957
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 11990
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 11992
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 11994
[ApostolNT] p. 15Definitiondfgcd2 12154
[ApostolNT] p. 16Definitionisprm2 12258
[ApostolNT] p. 16Theorem 1.5coprmdvds 12233
[ApostolNT] p. 16Theorem 1.7prminf 12615
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 12113
[ApostolNT] p. 16Theorem 1.4(b)gcdass 12155
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 12157
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 12127
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 12120
[ApostolNT] p. 17Theorem 1.8coprm 12285
[ApostolNT] p. 17Theorem 1.9euclemma 12287
[ApostolNT] p. 17Theorem 1.101arith2 12509
[ApostolNT] p. 19Theorem 1.14divalg 12068
[ApostolNT] p. 20Theorem 1.15eucalg 12200
[ApostolNT] p. 25Definitiondf-phi 12352
[ApostolNT] p. 26Theorem 2.2phisum 12381
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 12363
[ApostolNT] p. 28Theorem 2.5(c)phimul 12367
[ApostolNT] p. 104Definitioncongr 12241
[ApostolNT] p. 106Remarkdvdsval3 11937
[ApostolNT] p. 106Definitionmoddvds 11945
[ApostolNT] p. 107Example 2mod2eq0even 12022
[ApostolNT] p. 107Example 3mod2eq1n2dvds 12023
[ApostolNT] p. 107Example 4zmod1congr 10415
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 10452
[ApostolNT] p. 107Theorem 5.2(c)modqexp 10740
[ApostolNT] p. 108Theorem 5.3modmulconst 11969
[ApostolNT] p. 109Theorem 5.4cncongr1 12244
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 12246
[ApostolNT] p. 113Theorem 5.17eulerth 12374
[ApostolNT] p. 113Theorem 5.18vfermltl 12392
[ApostolNT] p. 114Theorem 5.19fermltl 12375
[ApostolNT] p. 179Definitiondf-lgs 15155  lgsprme0 15199
[ApostolNT] p. 180Example 11lgs 15200
[ApostolNT] p. 180Theorem 9.2lgsvalmod 15176
[ApostolNT] p. 180Theorem 9.3lgsdirprm 15191
[ApostolNT] p. 181Theorem 9.4m1lgs 15242
[ApostolNT] p. 181Theorem 9.52lgs 15261  2lgsoddprm 15270
[ApostolNT] p. 182Theorem 9.6gausslemma2d 15226
[ApostolNT] p. 185Theorem 9.8lgsquad 15237
[ApostolNT] p. 188Definitiondf-lgs 15155  lgs1 15201
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 15192
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 15194
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 15202
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 15203
[Bauer] p. 482Section 1.2pm2.01 617  pm2.65 660
[Bauer] p. 483Theorem 1.3acexmid 5918  onsucelsucexmidlem 4562
[Bauer], p. 481Section 1.1pwtrufal 15558
[Bauer], p. 483Definitionn0rf 3460
[Bauer], p. 483Theorem 1.22irrexpq 15149  2irrexpqap 15151
[Bauer], p. 485Theorem 2.1ssfiexmid 6934
[Bauer], p. 493Section 5.1ivthdich 14832
[Bauer], p. 494Theorem 5.5ivthinc 14822
[BauerHanson], p. 27Proposition 5.2cnstab 8666
[BauerSwan], p. 14Remark0ct 7168  ctm 7170
[BauerSwan], p. 14Proposition 2.6subctctexmid 15561
[BauerSwan], p. 14Table" is defined as ` ` per enumct 7176
[BauerTaylor], p. 32Lemma 6.16prarloclem 7563
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 7476
[BauerTaylor], p. 52Proposition 11.15prarloc 7565
[BauerTaylor], p. 53Lemma 11.16addclpr 7599  addlocpr 7598
[BauerTaylor], p. 55Proposition 12.7appdivnq 7625
[BauerTaylor], p. 56Lemma 12.8prmuloc 7628
[BauerTaylor], p. 56Lemma 12.9mullocpr 7633
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 2045
[BellMachover] p. 460Notationdf-mo 2046
[BellMachover] p. 460Definitionmo3 2096  mo3h 2095
[BellMachover] p. 462Theorem 1.1bm1.1 2178
[BellMachover] p. 463Theorem 1.3iibm1.3ii 4151
[BellMachover] p. 466Axiom Powaxpow3 4207
[BellMachover] p. 466Axiom Unionaxun2 4467
[BellMachover] p. 469Theorem 2.2(i)ordirr 4575
[BellMachover] p. 469Theorem 2.2(iii)onelon 4416
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4578
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4529
[BellMachover] p. 471Definition of Limdf-ilim 4401
[BellMachover] p. 472Axiom Infzfinf2 4622
[BellMachover] p. 473Theorem 2.8limom 4647
[Bobzien] p. 116Statement T3stoic3 1442
[Bobzien] p. 117Statement T2stoic2a 1440
[Bobzien] p. 117Statement T4stoic4a 1443
[Bobzien] p. 117Conclusion the contradictorystoic1a 1438
[BourbakiAlg1] p. 1Definition 1df-mgm 12942
[BourbakiAlg1] p. 4Definition 5df-sgrp 12988
[BourbakiAlg1] p. 12Definition 2df-mnd 13001
[BourbakiAlg1] p. 92Definition 1df-ring 13497
[BourbakiAlg1] p. 93Section I.8.1df-rng 13432
[BourbakiEns] p. Proposition 8fcof1 5827  fcofo 5828
[BourbakiTop1] p. Remarkxnegmnf 9898  xnegpnf 9897
[BourbakiTop1] p. Remark rexneg 9899
[BourbakiTop1] p. Propositionishmeo 14483
[BourbakiTop1] p. Property V_issnei2 14336
[BourbakiTop1] p. Property V_iiinnei 14342
[BourbakiTop1] p. Property V_ivneissex 14344
[BourbakiTop1] p. Proposition 1neipsm 14333  neiss 14329
[BourbakiTop1] p. Proposition 2cnptopco 14401
[BourbakiTop1] p. Proposition 4imasnopn 14478
[BourbakiTop1] p. Property V_iiielnei 14331
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 14177
[Bruck] p. 1Section I.1df-mgm 12942
[Bruck] p. 23Section II.1df-sgrp 12988
[Bruck] p. 28Theorem 3.2dfgrp3m 13174
[ChoquetDD] p. 2Definition of mappingdf-mpt 4093
[Cohen] p. 301Remarkrelogoprlem 15044
[Cohen] p. 301Property 2relogmul 15045  relogmuld 15060
[Cohen] p. 301Property 3relogdiv 15046  relogdivd 15061
[Cohen] p. 301Property 4relogexp 15048
[Cohen] p. 301Property 1alog1 15042
[Cohen] p. 301Property 1bloge 15043
[Cohen4] p. 348Observationrelogbcxpbap 15138
[Cohen4] p. 352Definitionrpelogb 15122
[Cohen4] p. 361Property 2rprelogbmul 15128
[Cohen4] p. 361Property 3logbrec 15133  rprelogbdiv 15130
[Cohen4] p. 361Property 4rplogbreexp 15126
[Cohen4] p. 361Property 6relogbexpap 15131
[Cohen4] p. 361Property 1(a)rplogbid1 15120
[Cohen4] p. 361Property 1(b)rplogb1 15121
[Cohen4] p. 367Propertyrplogbchbase 15123
[Cohen4] p. 377Property 2logblt 15135
[Crosilla] p. Axiom 1ax-ext 2175
[Crosilla] p. Axiom 2ax-pr 4239
[Crosilla] p. Axiom 3ax-un 4465
[Crosilla] p. Axiom 4ax-nul 4156
[Crosilla] p. Axiom 5ax-iinf 4621
[Crosilla] p. Axiom 6ru 2985
[Crosilla] p. Axiom 8ax-pow 4204
[Crosilla] p. Axiom 9ax-setind 4570
[Crosilla], p. Axiom 6ax-sep 4148
[Crosilla], p. Axiom 7ax-coll 4145
[Crosilla], p. Axiom 7'repizf 4146
[Crosilla], p. Theorem is statedordtriexmid 4554
[Crosilla], p. Axiom of choice implies instancesacexmid 5918
[Crosilla], p. Definition of ordinaldf-iord 4398
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4568
[Eisenberg] p. 67Definition 5.3df-dif 3156
[Eisenberg] p. 82Definition 6.3df-iom 4624
[Eisenberg] p. 125Definition 8.21df-map 6706
[Enderton] p. 18Axiom of Empty Setaxnul 4155
[Enderton] p. 19Definitiondf-tp 3627
[Enderton] p. 26Exercise 5unissb 3866
[Enderton] p. 26Exercise 10pwel 4248
[Enderton] p. 28Exercise 7(b)pwunim 4318
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3983  iinin2m 3982  iunin1 3978  iunin2 3977
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3981  iundif2ss 3979
[Enderton] p. 33Exercise 23iinuniss 3996
[Enderton] p. 33Exercise 25iununir 3997
[Enderton] p. 33Exercise 24(a)iinpw 4004
[Enderton] p. 33Exercise 24(b)iunpw 4512  iunpwss 4005
[Enderton] p. 38Exercise 6(a)unipw 4247
[Enderton] p. 38Exercise 6(b)pwuni 4222
[Enderton] p. 41Lemma 3Dopeluu 4482  rnex 4930  rnexg 4928
[Enderton] p. 41Exercise 8dmuni 4873  rnuni 5078
[Enderton] p. 42Definition of a functiondffun7 5282  dffun8 5283
[Enderton] p. 43Definition of function valuefunfvdm2 5622
[Enderton] p. 43Definition of single-rootedfuncnv 5316
[Enderton] p. 44Definition (d)dfima2 5008  dfima3 5009
[Enderton] p. 47Theorem 3Hfvco2 5627
[Enderton] p. 49Axiom of Choice (first form)df-ac 7268
[Enderton] p. 50Theorem 3K(a)imauni 5805
[Enderton] p. 52Definitiondf-map 6706
[Enderton] p. 53Exercise 21coass 5185
[Enderton] p. 53Exercise 27dmco 5175
[Enderton] p. 53Exercise 14(a)funin 5326
[Enderton] p. 53Exercise 22(a)imass2 5042
[Enderton] p. 54Remarkixpf 6776  ixpssmap 6788
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 6755
[Enderton] p. 56Theorem 3Merref 6609
[Enderton] p. 57Lemma 3Nerthi 6637
[Enderton] p. 57Definitiondf-ec 6591
[Enderton] p. 58Definitiondf-qs 6595
[Enderton] p. 60Theorem 3Qth3q 6696  th3qcor 6695  th3qlem1 6693  th3qlem2 6694
[Enderton] p. 61Exercise 35df-ec 6591
[Enderton] p. 65Exercise 56(a)dmun 4870
[Enderton] p. 68Definition of successordf-suc 4403
[Enderton] p. 71Definitiondf-tr 4129  dftr4 4133
[Enderton] p. 72Theorem 4Eunisuc 4445  unisucg 4446
[Enderton] p. 73Exercise 6unisuc 4445  unisucg 4446
[Enderton] p. 73Exercise 5(a)truni 4142
[Enderton] p. 73Exercise 5(b)trint 4143
[Enderton] p. 79Theorem 4I(A1)nna0 6529
[Enderton] p. 79Theorem 4I(A2)nnasuc 6531  onasuc 6521
[Enderton] p. 79Definition of operation valuedf-ov 5922
[Enderton] p. 80Theorem 4J(A1)nnm0 6530
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6532  onmsuc 6528
[Enderton] p. 81Theorem 4K(1)nnaass 6540
[Enderton] p. 81Theorem 4K(2)nna0r 6533  nnacom 6539
[Enderton] p. 81Theorem 4K(3)nndi 6541
[Enderton] p. 81Theorem 4K(4)nnmass 6542
[Enderton] p. 81Theorem 4K(5)nnmcom 6544
[Enderton] p. 82Exercise 16nnm0r 6534  nnmsucr 6543
[Enderton] p. 88Exercise 23nnaordex 6583
[Enderton] p. 129Definitiondf-en 6797
[Enderton] p. 132Theorem 6B(b)canth 5872
[Enderton] p. 133Exercise 1xpomen 12555
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6923
[Enderton] p. 136Corollary 6Enneneq 6915
[Enderton] p. 139Theorem 6H(c)mapen 6904
[Enderton] p. 142Theorem 6I(3)xpdjuen 7280
[Enderton] p. 143Theorem 6Jdju0en 7276  dju1en 7275
[Enderton] p. 144Corollary 6Kundif2ss 3523
[Enderton] p. 145Figure 38ffoss 5533
[Enderton] p. 145Definitiondf-dom 6798
[Enderton] p. 146Example 1domen 6807  domeng 6808
[Enderton] p. 146Example 3nndomo 6922
[Enderton] p. 149Theorem 6L(c)xpdom1 6891  xpdom1g 6889  xpdom2g 6888
[Enderton] p. 168Definitiondf-po 4328
[Enderton] p. 192Theorem 7M(a)oneli 4460
[Enderton] p. 192Theorem 7M(b)ontr1 4421
[Enderton] p. 192Theorem 7M(c)onirri 4576
[Enderton] p. 193Corollary 7N(b)0elon 4424
[Enderton] p. 193Corollary 7N(c)onsuci 4549
[Enderton] p. 193Corollary 7N(d)ssonunii 4522
[Enderton] p. 194Remarkonprc 4585
[Enderton] p. 194Exercise 16suc11 4591
[Enderton] p. 197Definitiondf-card 7242
[Enderton] p. 200Exercise 25tfis 4616
[Enderton] p. 206Theorem 7X(b)en2lp 4587
[Enderton] p. 207Exercise 34opthreg 4589
[Enderton] p. 208Exercise 35suc11g 4590
[Geuvers], p. 1Remarkexpap0 10643
[Geuvers], p. 6Lemma 2.13mulap0r 8636
[Geuvers], p. 6Lemma 2.15mulap0 8675
[Geuvers], p. 9Lemma 2.35msqge0 8637
[Geuvers], p. 9Definition 3.1(2)ax-arch 7993
[Geuvers], p. 10Lemma 3.9maxcom 11350
[Geuvers], p. 10Lemma 3.10maxle1 11358  maxle2 11359
[Geuvers], p. 10Lemma 3.11maxleast 11360
[Geuvers], p. 10Lemma 3.12maxleb 11363
[Geuvers], p. 11Definition 3.13dfabsmax 11364
[Geuvers], p. 17Definition 6.1df-ap 8603
[Gleason] p. 117Proposition 9-2.1df-enq 7409  enqer 7420
[Gleason] p. 117Proposition 9-2.2df-1nqqs 7413  df-nqqs 7410
[Gleason] p. 117Proposition 9-2.3df-plpq 7406  df-plqqs 7411
[Gleason] p. 119Proposition 9-2.4df-mpq 7407  df-mqqs 7412
[Gleason] p. 119Proposition 9-2.5df-rq 7414
[Gleason] p. 119Proposition 9-2.6ltexnqq 7470
[Gleason] p. 120Proposition 9-2.6(i)halfnq 7473  ltbtwnnq 7478  ltbtwnnqq 7477
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 7462
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 7463
[Gleason] p. 123Proposition 9-3.5addclpr 7599
[Gleason] p. 123Proposition 9-3.5(i)addassprg 7641
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 7640
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 7659
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 7675
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 7681  ltaprlem 7680
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 7678
[Gleason] p. 124Proposition 9-3.7mulclpr 7634
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 7654
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 7643
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 7642
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 7650
[Gleason] p. 124Proposition 9-3.7(v)recexpr 7700
[Gleason] p. 126Proposition 9-4.1df-enr 7788  enrer 7797
[Gleason] p. 126Proposition 9-4.2df-0r 7793  df-1r 7794  df-nr 7789
[Gleason] p. 126Proposition 9-4.3df-mr 7791  df-plr 7790  negexsr 7834  recexsrlem 7836
[Gleason] p. 127Proposition 9-4.4df-ltr 7792
[Gleason] p. 130Proposition 10-1.3creui 8981  creur 8980  cru 8623
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7985  axcnre 7943
[Gleason] p. 132Definition 10-3.1crim 11005  crimd 11124  crimi 11084  crre 11004  crred 11123  crrei 11083
[Gleason] p. 132Definition 10-3.2remim 11007  remimd 11089
[Gleason] p. 133Definition 10.36absval2 11204  absval2d 11332  absval2i 11291
[Gleason] p. 133Proposition 10-3.4(a)cjadd 11031  cjaddd 11112  cjaddi 11079
[Gleason] p. 133Proposition 10-3.4(c)cjmul 11032  cjmuld 11113  cjmuli 11080
[Gleason] p. 133Proposition 10-3.4(e)cjcj 11030  cjcjd 11090  cjcji 11062
[Gleason] p. 133Proposition 10-3.4(f)cjre 11029  cjreb 11013  cjrebd 11093  cjrebi 11065  cjred 11118  rere 11012  rereb 11010  rerebd 11092  rerebi 11064  rered 11116
[Gleason] p. 133Proposition 10-3.4(h)addcj 11038  addcjd 11104  addcji 11074
[Gleason] p. 133Proposition 10-3.7(a)absval 11148
[Gleason] p. 133Proposition 10-3.7(b)abscj 11199  abscjd 11337  abscji 11295
[Gleason] p. 133Proposition 10-3.7(c)abs00 11211  abs00d 11333  abs00i 11292  absne0d 11334
[Gleason] p. 133Proposition 10-3.7(d)releabs 11243  releabsd 11338  releabsi 11296
[Gleason] p. 133Proposition 10-3.7(f)absmul 11216  absmuld 11341  absmuli 11298
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 11202  sqabsaddi 11299
[Gleason] p. 133Proposition 10-3.7(h)abstri 11251  abstrid 11343  abstrii 11302
[Gleason] p. 134Definition 10-4.1df-exp 10613  exp0 10617  expp1 10620  expp1d 10748
[Gleason] p. 135Proposition 10-4.2(a)expadd 10655  expaddd 10749
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 15088  cxpmuld 15111  expmul 10658  expmuld 10750
[Gleason] p. 135Proposition 10-4.2(c)mulexp 10652  mulexpd 10762  rpmulcxp 15085
[Gleason] p. 141Definition 11-2.1fzval 10079
[Gleason] p. 168Proposition 12-2.1(a)climadd 11472
[Gleason] p. 168Proposition 12-2.1(b)climsub 11474
[Gleason] p. 168Proposition 12-2.1(c)climmul 11473
[Gleason] p. 171Corollary 12-2.2climmulc2 11477
[Gleason] p. 172Corollary 12-2.5climrecl 11470
[Gleason] p. 172Proposition 12-2.4(c)climabs 11466  climcj 11467  climim 11469  climre 11468
[Gleason] p. 173Definition 12-3.1df-ltxr 8061  df-xr 8060  ltxr 9844
[Gleason] p. 180Theorem 12-5.3climcau 11493
[Gleason] p. 217Lemma 13-4.1btwnzge0 10372
[Gleason] p. 223Definition 14-1.1df-met 14044
[Gleason] p. 223Definition 14-1.1(a)met0 14543  xmet0 14542
[Gleason] p. 223Definition 14-1.1(c)metsym 14550
[Gleason] p. 223Definition 14-1.1(d)mettri 14552  mstri 14652  xmettri 14551  xmstri 14651
[Gleason] p. 230Proposition 14-2.6txlm 14458
[Gleason] p. 240Proposition 14-4.2metcnp3 14690
[Gleason] p. 243Proposition 14-4.16addcn2 11456  addcncntop 14741  mulcn2 11458  mulcncntop 14743  subcn2 11457  subcncntop 14742
[Gleason] p. 295Remarkbcval3 10825  bcval4 10826
[Gleason] p. 295Equation 2bcpasc 10840
[Gleason] p. 295Definition of binomial coefficientbcval 10823  df-bc 10822
[Gleason] p. 296Remarkbcn0 10829  bcnn 10831
[Gleason] p. 296Theorem 15-2.8binom 11630
[Gleason] p. 308Equation 2ef0 11818
[Gleason] p. 308Equation 3efcj 11819
[Gleason] p. 309Corollary 15-4.3efne0 11824
[Gleason] p. 309Corollary 15-4.4efexp 11828
[Gleason] p. 310Equation 14sinadd 11882
[Gleason] p. 310Equation 15cosadd 11883
[Gleason] p. 311Equation 17sincossq 11894
[Gleason] p. 311Equation 18cosbnd 11899  sinbnd 11898
[Gleason] p. 311Definition of ` `df-pi 11799
[Golan] p. 1Remarksrgisid 13485
[Golan] p. 1Definitiondf-srg 13463
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1460
[Herstein] p. 55Lemma 2.2.1(a)grpideu 13086  mndideu 13010
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 13113
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 13142
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 13153
[Herstein] p. 57Exercise 1dfgrp3me 13175
[Heyting] p. 127Axiom #1ax1hfs 15634
[Hitchcock] p. 5Rule A3mptnan 1434
[Hitchcock] p. 5Rule A4mptxor 1435
[Hitchcock] p. 5Rule A5mtpxor 1437
[HoTT], p. Lemma 10.4.1exmidontriim 7287
[HoTT], p. Theorem 7.2.6nndceq 6554
[HoTT], p. Exercise 11.10neapmkv 15628
[HoTT], p. Exercise 11.11mulap0bd 8678
[HoTT], p. Section 11.2.1df-iltp 7532  df-imp 7531  df-iplp 7530  df-reap 8596
[HoTT], p. Theorem 11.2.4recapb 8692  rerecapb 8864
[HoTT], p. Corollary 3.9.2uchoice 6192
[HoTT], p. Theorem 11.2.12cauappcvgpr 7724
[HoTT], p. Corollary 11.4.3conventions 15283
[HoTT], p. Exercise 11.6(i)dcapnconst 15621  dceqnconst 15620
[HoTT], p. Corollary 11.2.13axcaucvg 7962  caucvgpr 7744  caucvgprpr 7774  caucvgsr 7864
[HoTT], p. Definition 11.2.1df-inp 7528
[HoTT], p. Exercise 11.6(ii)nconstwlpo 15626
[HoTT], p. Proposition 11.2.3df-iso 4329  ltpopr 7657  ltsopr 7658
[HoTT], p. Definition 11.2.7(v)apsym 8627  reapcotr 8619  reapirr 8598
[HoTT], p. Definition 11.2.7(vi)0lt1 8148  gt0add 8594  leadd1 8451  lelttr 8110  lemul1a 8879  lenlt 8097  ltadd1 8450  ltletr 8111  ltmul1 8613  reaplt 8609
[Jech] p. 4Definition of classcv 1363  cvjust 2188
[Jech] p. 78Noteopthprc 4711
[KalishMontague] p. 81Note 1ax-i9 1541
[Kreyszig] p. 3Property M1metcl 14532  xmetcl 14531
[Kreyszig] p. 4Property M2meteq0 14539
[Kreyszig] p. 12Equation 5muleqadd 8689
[Kreyszig] p. 18Definition 1.3-2mopnval 14621
[Kreyszig] p. 19Remarkmopntopon 14622
[Kreyszig] p. 19Theorem T1mopn0 14667  mopnm 14627
[Kreyszig] p. 19Theorem T2unimopn 14665
[Kreyszig] p. 19Definition of neighborhoodneibl 14670
[Kreyszig] p. 20Definition 1.3-3metcnp2 14692
[Kreyszig] p. 25Definition 1.4-1lmbr 14392
[Kreyszig] p. 51Equation 2lmodvneg1 13829
[Kreyszig] p. 51Equation 1almod0vs 13820
[Kreyszig] p. 51Equation 1blmodvs0 13821
[Kunen] p. 10Axiom 0a9e 1707
[Kunen] p. 12Axiom 6zfrep6 4147
[Kunen] p. 24Definition 10.24mapval 6716  mapvalg 6714
[Kunen] p. 31Definition 10.24mapex 6710
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3923
[Lang] p. 3Statementlidrideqd 12967  mndbn0 13015
[Lang] p. 3Definitiondf-mnd 13001
[Lang] p. 4Definition of a (finite) productgsumsplit1r 12984
[Lang] p. 5Equationgsumfzreidx 13410
[Lang] p. 6Definitionmulgnn0gsum 13201
[Lang] p. 7Definitiondfgrp2e 13103
[Levy] p. 338Axiomdf-clab 2180  df-clel 2189  df-cleq 2186
[Lopez-Astorga] p. 12Rule 1mptnan 1434
[Lopez-Astorga] p. 12Rule 2mptxor 1435
[Lopez-Astorga] p. 12Rule 3mtpxor 1437
[Margaris] p. 40Rule Cexlimiv 1609
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3condc 854
[Margaris] p. 49Definitiondfbi2 388  dfordc 893  exalim 1513
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 45
[Margaris] p. 60Theorem 8jcn 652
[Margaris] p. 89Theorem 19.219.2 1649  r19.2m 3534
[Margaris] p. 89Theorem 19.319.3 1565  19.3h 1564  rr19.3v 2900
[Margaris] p. 89Theorem 19.5alcom 1489
[Margaris] p. 89Theorem 19.6alexdc 1630  alexim 1656
[Margaris] p. 89Theorem 19.7alnex 1510
[Margaris] p. 89Theorem 19.819.8a 1601  spsbe 1853
[Margaris] p. 89Theorem 19.919.9 1655  19.9h 1654  19.9v 1882  exlimd 1608
[Margaris] p. 89Theorem 19.11excom 1675  excomim 1674
[Margaris] p. 89Theorem 19.1219.12 1676  r19.12 2600
[Margaris] p. 90Theorem 19.14exnalim 1657
[Margaris] p. 90Theorem 19.15albi 1479  ralbi 2626
[Margaris] p. 90Theorem 19.1619.16 1566
[Margaris] p. 90Theorem 19.1719.17 1567
[Margaris] p. 90Theorem 19.18exbi 1615  rexbi 2627
[Margaris] p. 90Theorem 19.1919.19 1677
[Margaris] p. 90Theorem 19.20alim 1468  alimd 1532  alimdh 1478  alimdv 1890  ralimdaa 2560  ralimdv 2562  ralimdva 2561  ralimdvva 2563  sbcimdv 3052
[Margaris] p. 90Theorem 19.2119.21-2 1678  19.21 1594  19.21bi 1569  19.21h 1568  19.21ht 1592  19.21t 1593  19.21v 1884  alrimd 1621  alrimdd 1620  alrimdh 1490  alrimdv 1887  alrimi 1533  alrimih 1480  alrimiv 1885  alrimivv 1886  r19.21 2570  r19.21be 2585  r19.21bi 2582  r19.21t 2569  r19.21v 2571  ralrimd 2572  ralrimdv 2573  ralrimdva 2574  ralrimdvv 2578  ralrimdvva 2579  ralrimi 2565  ralrimiv 2566  ralrimiva 2567  ralrimivv 2575  ralrimivva 2576  ralrimivvva 2577  ralrimivw 2568  rexlimi 2604
[Margaris] p. 90Theorem 19.222alimdv 1892  2eximdv 1893  exim 1610  eximd 1623  eximdh 1622  eximdv 1891  rexim 2588  reximdai 2592  reximddv 2597  reximddv2 2599  reximdv 2595  reximdv2 2593  reximdva 2596  reximdvai 2594  reximi2 2590
[Margaris] p. 90Theorem 19.2319.23 1689  19.23bi 1603  19.23h 1509  19.23ht 1508  19.23t 1688  19.23v 1894  19.23vv 1895  exlimd2 1606  exlimdh 1607  exlimdv 1830  exlimdvv 1909  exlimi 1605  exlimih 1604  exlimiv 1609  exlimivv 1908  r19.23 2602  r19.23v 2603  rexlimd 2608  rexlimdv 2610  rexlimdv3a 2613  rexlimdva 2611  rexlimdva2 2614  rexlimdvaa 2612  rexlimdvv 2618  rexlimdvva 2619  rexlimdvw 2615  rexlimiv 2605  rexlimiva 2606  rexlimivv 2617
[Margaris] p. 90Theorem 19.24i19.24 1650
[Margaris] p. 90Theorem 19.2519.25 1637
[Margaris] p. 90Theorem 19.2619.26-2 1493  19.26-3an 1494  19.26 1492  r19.26-2 2623  r19.26-3 2624  r19.26 2620  r19.26m 2625
[Margaris] p. 90Theorem 19.2719.27 1572  19.27h 1571  19.27v 1911  r19.27av 2629  r19.27m 3543  r19.27mv 3544
[Margaris] p. 90Theorem 19.2819.28 1574  19.28h 1573  19.28v 1912  r19.28av 2630  r19.28m 3537  r19.28mv 3540  rr19.28v 2901
[Margaris] p. 90Theorem 19.2919.29 1631  19.29r 1632  19.29r2 1633  19.29x 1634  r19.29 2631  r19.29d2r 2638  r19.29r 2632
[Margaris] p. 90Theorem 19.3019.30dc 1638
[Margaris] p. 90Theorem 19.3119.31r 1692
[Margaris] p. 90Theorem 19.3219.32dc 1690  19.32r 1691  r19.32r 2640  r19.32vdc 2643  r19.32vr 2642
[Margaris] p. 90Theorem 19.3319.33 1495  19.33b2 1640  19.33bdc 1641
[Margaris] p. 90Theorem 19.3419.34 1695
[Margaris] p. 90Theorem 19.3519.35-1 1635  19.35i 1636
[Margaris] p. 90Theorem 19.3619.36-1 1684  19.36aiv 1913  19.36i 1683  r19.36av 2645
[Margaris] p. 90Theorem 19.3719.37-1 1685  19.37aiv 1686  r19.37 2646  r19.37av 2647
[Margaris] p. 90Theorem 19.3819.38 1687
[Margaris] p. 90Theorem 19.39i19.39 1651
[Margaris] p. 90Theorem 19.4019.40-2 1643  19.40 1642  r19.40 2648
[Margaris] p. 90Theorem 19.4119.41 1697  19.41h 1696  19.41v 1914  19.41vv 1915  19.41vvv 1916  19.41vvvv 1917  r19.41 2649  r19.41v 2650
[Margaris] p. 90Theorem 19.4219.42 1699  19.42h 1698  19.42v 1918  19.42vv 1923  19.42vvv 1924  19.42vvvv 1925  r19.42v 2651
[Margaris] p. 90Theorem 19.4319.43 1639  r19.43 2652
[Margaris] p. 90Theorem 19.4419.44 1693  r19.44av 2653  r19.44mv 3542
[Margaris] p. 90Theorem 19.4519.45 1694  r19.45av 2654  r19.45mv 3541
[Margaris] p. 110Exercise 2(b)eu1 2067
[Megill] p. 444Axiom C5ax-17 1537
[Megill] p. 445Lemma L12alequcom 1526  ax-10 1516
[Megill] p. 446Lemma L17equtrr 1721
[Megill] p. 446Lemma L19hbnae 1732
[Megill] p. 447Remark 9.1df-sb 1774  sbid 1785
[Megill] p. 448Scheme C5'ax-4 1521
[Megill] p. 448Scheme C6'ax-7 1459
[Megill] p. 448Scheme C8'ax-8 1515
[Megill] p. 448Scheme C9'ax-i12 1518
[Megill] p. 448Scheme C11'ax-10o 1727
[Megill] p. 448Scheme C12'ax-13 2166
[Megill] p. 448Scheme C13'ax-14 2167
[Megill] p. 448Scheme C15'ax-11o 1834
[Megill] p. 448Scheme C16'ax-16 1825
[Megill] p. 448Theorem 9.4dral1 1741  dral2 1742  drex1 1809  drex2 1743  drsb1 1810  drsb2 1852
[Megill] p. 449Theorem 9.7sbcom2 2003  sbequ 1851  sbid2v 2012
[Megill] p. 450Example in Appendixhba1 1551
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 3069  rspsbca 3070  stdpc4 1786
[Mendelson] p. 69Axiom 5ra5 3075  stdpc5 1595
[Mendelson] p. 81Rule Cexlimiv 1609
[Mendelson] p. 95Axiom 6stdpc6 1714
[Mendelson] p. 95Axiom 7stdpc7 1781
[Mendelson] p. 231Exercise 4.10(k)inv1 3484
[Mendelson] p. 231Exercise 4.10(l)unv 3485
[Mendelson] p. 231Exercise 4.10(n)inssun 3400
[Mendelson] p. 231Exercise 4.10(o)df-nul 3448
[Mendelson] p. 231Exercise 4.10(q)inssddif 3401
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3291
[Mendelson] p. 231Definition of unionunssin 3399
[Mendelson] p. 235Exercise 4.12(c)univ 4508
[Mendelson] p. 235Exercise 4.12(d)pwv 3835
[Mendelson] p. 235Exercise 4.12(j)pwin 4314
[Mendelson] p. 235Exercise 4.12(k)pwunss 4315
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4316
[Mendelson] p. 235Exercise 4.12(n)uniin 3856
[Mendelson] p. 235Exercise 4.12(p)reli 4792
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 5187
[Mendelson] p. 246Definition of successordf-suc 4403
[Mendelson] p. 254Proposition 4.22(b)xpen 6903
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6877  xpsneng 6878
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6883  xpcomeng 6884
[Mendelson] p. 254Proposition 4.22(e)xpassen 6886
[Mendelson] p. 255Exercise 4.39endisj 6880
[Mendelson] p. 255Exercise 4.41mapprc 6708
[Mendelson] p. 255Exercise 4.43mapsnen 6867
[Mendelson] p. 255Exercise 4.47xpmapen 6908
[Mendelson] p. 255Exercise 4.42(a)map0e 6742
[Mendelson] p. 255Exercise 4.42(b)map1 6868
[Mendelson] p. 258Exercise 4.56(c)djuassen 7279  djucomen 7278
[Mendelson] p. 258Exercise 4.56(g)xp2dju 7277
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6522
[Monk1] p. 26Theorem 2.8(vii)ssin 3382
[Monk1] p. 33Theorem 3.2(i)ssrel 4748
[Monk1] p. 33Theorem 3.2(ii)eqrel 4749
[Monk1] p. 34Definition 3.3df-opab 4092
[Monk1] p. 36Theorem 3.7(i)coi1 5182  coi2 5183
[Monk1] p. 36Theorem 3.8(v)dm0 4877  rn0 4919
[Monk1] p. 36Theorem 3.7(ii)cnvi 5071
[Monk1] p. 37Theorem 3.13(i)relxp 4769
[Monk1] p. 37Theorem 3.13(x)dmxpm 4883  rnxpm 5096
[Monk1] p. 37Theorem 3.13(ii)0xp 4740  xp0 5086
[Monk1] p. 38Theorem 3.16(ii)ima0 5025
[Monk1] p. 38Theorem 3.16(viii)imai 5022
[Monk1] p. 39Theorem 3.17imaex 5021  imaexg 5020
[Monk1] p. 39Theorem 3.16(xi)imassrn 5017
[Monk1] p. 41Theorem 4.3(i)fnopfv 5689  funfvop 5671
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5601
[Monk1] p. 42Theorem 4.4(iii)fvelima 5609
[Monk1] p. 43Theorem 4.6funun 5299
[Monk1] p. 43Theorem 4.8(iv)dff13 5812  dff13f 5814
[Monk1] p. 46Theorem 4.15(v)funex 5782  funrnex 6168
[Monk1] p. 50Definition 5.4fniunfv 5806
[Monk1] p. 52Theorem 5.12(ii)op2ndb 5150
[Monk1] p. 52Theorem 5.11(viii)ssint 3887
[Monk1] p. 52Definition 5.13 (i)1stval2 6210  df-1st 6195
[Monk1] p. 52Definition 5.13 (ii)2ndval2 6211  df-2nd 6196
[Monk2] p. 105Axiom C4ax-5 1458
[Monk2] p. 105Axiom C7ax-8 1515
[Monk2] p. 105Axiom C8ax-11 1517  ax-11o 1834
[Monk2] p. 105Axiom (C8)ax11v 1838
[Monk2] p. 109Lemma 12ax-7 1459
[Monk2] p. 109Lemma 15equvin 1874  equvini 1769  eqvinop 4273
[Monk2] p. 113Axiom C5-1ax-17 1537
[Monk2] p. 113Axiom C5-2ax6b 1662
[Monk2] p. 113Axiom C5-3ax-7 1459
[Monk2] p. 114Lemma 22hba1 1551
[Monk2] p. 114Lemma 23hbia1 1563  nfia1 1591
[Monk2] p. 114Lemma 24hba2 1562  nfa2 1590
[Moschovakis] p. 2Chapter 2 df-stab 832  dftest 15635
[Munkres] p. 77Example 2distop 14264
[Munkres] p. 78Definition of basisdf-bases 14222  isbasis3g 14225
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 12874  tgval2 14230
[Munkres] p. 79Remarktgcl 14243
[Munkres] p. 80Lemma 2.1tgval3 14237
[Munkres] p. 80Lemma 2.2tgss2 14258  tgss3 14257
[Munkres] p. 81Lemma 2.3basgen 14259  basgen2 14260
[Munkres] p. 89Definition of subspace topologyresttop 14349
[Munkres] p. 93Theorem 6.1(1)0cld 14291  topcld 14288
[Munkres] p. 93Theorem 6.1(3)uncld 14292
[Munkres] p. 94Definition of closureclsval 14290
[Munkres] p. 94Definition of interiorntrval 14289
[Munkres] p. 102Definition of continuous functiondf-cn 14367  iscn 14376  iscn2 14379
[Munkres] p. 107Theorem 7.2(g)cncnp 14409  cncnp2m 14410  cncnpi 14407  df-cnp 14368  iscnp 14378
[Munkres] p. 127Theorem 10.1metcn 14693
[Pierik], p. 8Section 2.2.1dfrex2fin 6961
[Pierik], p. 9Definition 2.4df-womni 7225
[Pierik], p. 9Definition 2.5df-markov 7213  omniwomnimkv 7228
[Pierik], p. 10Section 2.3dfdif3 3270
[Pierik], p. 14Definition 3.1df-omni 7196  exmidomniim 7202  finomni 7201
[Pierik], p. 15Section 3.1df-nninf 7181
[Pradic2025], p. 2Section 1.1nnnninfen 15581
[PradicBrown2022], p. 1Theorem 1exmidsbthr 15583
[PradicBrown2022], p. 2Remarkexmidpw 6966
[PradicBrown2022], p. 2Proposition 1.1exmidfodomrlemim 7263
[PradicBrown2022], p. 2Proposition 1.2exmidfodomrlemr 7264  exmidfodomrlemrALT 7265
[PradicBrown2022], p. 4Lemma 3.2fodjuomni 7210
[PradicBrown2022], p. 5Lemma 3.4peano3nninf 15567  peano4nninf 15566
[PradicBrown2022], p. 5Lemma 3.5nninfall 15569
[PradicBrown2022], p. 5Theorem 3.6nninfsel 15577
[PradicBrown2022], p. 5Corollary 3.7nninfomni 15579
[PradicBrown2022], p. 5Definition 3.3nnsf 15565
[Quine] p. 16Definition 2.1df-clab 2180  rabid 2670
[Quine] p. 17Definition 2.1''dfsb7 2007
[Quine] p. 18Definition 2.7df-cleq 2186
[Quine] p. 19Definition 2.9df-v 2762
[Quine] p. 34Theorem 5.1abeq2 2302
[Quine] p. 35Theorem 5.2abid2 2314  abid2f 2362
[Quine] p. 40Theorem 6.1sb5 1899
[Quine] p. 40Theorem 6.2sb56 1897  sb6 1898
[Quine] p. 41Theorem 6.3df-clel 2189
[Quine] p. 41Theorem 6.4eqid 2193
[Quine] p. 41Theorem 6.5eqcom 2195
[Quine] p. 42Theorem 6.6df-sbc 2987
[Quine] p. 42Theorem 6.7dfsbcq 2988  dfsbcq2 2989
[Quine] p. 43Theorem 6.8vex 2763
[Quine] p. 43Theorem 6.9isset 2766
[Quine] p. 44Theorem 7.3spcgf 2843  spcgv 2848  spcimgf 2841
[Quine] p. 44Theorem 6.11spsbc 2998  spsbcd 2999
[Quine] p. 44Theorem 6.12elex 2771
[Quine] p. 44Theorem 6.13elab 2905  elabg 2907  elabgf 2903
[Quine] p. 44Theorem 6.14noel 3451
[Quine] p. 48Theorem 7.2snprc 3684
[Quine] p. 48Definition 7.1df-pr 3626  df-sn 3625
[Quine] p. 49Theorem 7.4snss 3754  snssg 3753
[Quine] p. 49Theorem 7.5prss 3775  prssg 3776
[Quine] p. 49Theorem 7.6prid1 3725  prid1g 3723  prid2 3726  prid2g 3724  snid 3650  snidg 3648
[Quine] p. 51Theorem 7.12snexg 4214  snexprc 4216
[Quine] p. 51Theorem 7.13prexg 4241
[Quine] p. 53Theorem 8.2unisn 3852  unisng 3853
[Quine] p. 53Theorem 8.3uniun 3855
[Quine] p. 54Theorem 8.6elssuni 3864
[Quine] p. 54Theorem 8.7uni0 3863
[Quine] p. 56Theorem 8.17uniabio 5226
[Quine] p. 56Definition 8.18dfiota2 5217
[Quine] p. 57Theorem 8.19iotaval 5227
[Quine] p. 57Theorem 8.22iotanul 5231
[Quine] p. 58Theorem 8.23euiotaex 5232
[Quine] p. 58Definition 9.1df-op 3628
[Quine] p. 61Theorem 9.5opabid 4287  opabidw 4288  opelopab 4303  opelopaba 4297  opelopabaf 4305  opelopabf 4306  opelopabg 4299  opelopabga 4294  opelopabgf 4301  oprabid 5951
[Quine] p. 64Definition 9.11df-xp 4666
[Quine] p. 64Definition 9.12df-cnv 4668
[Quine] p. 64Definition 9.15df-id 4325
[Quine] p. 65Theorem 10.3fun0 5313
[Quine] p. 65Theorem 10.4funi 5287
[Quine] p. 65Theorem 10.5funsn 5303  funsng 5301
[Quine] p. 65Definition 10.1df-fun 5257
[Quine] p. 65Definition 10.2args 5035  dffv4g 5552
[Quine] p. 68Definition 10.11df-fv 5263  fv2 5550
[Quine] p. 124Theorem 17.3nn0opth2 10798  nn0opth2d 10797  nn0opthd 10796
[Quine] p. 284Axiom 39(vi)funimaex 5340  funimaexg 5339
[Roman] p. 18Part Preliminariesdf-rng 13432
[Roman] p. 19Part Preliminariesdf-ring 13497
[Rudin] p. 164Equation 27efcan 11822
[Rudin] p. 164Equation 30efzval 11829
[Rudin] p. 167Equation 48absefi 11915
[Sanford] p. 39Remarkax-mp 5
[Sanford] p. 39Rule 3mtpxor 1437
[Sanford] p. 39Rule 4mptxor 1435
[Sanford] p. 40Rule 1mptnan 1434
[Schechter] p. 51Definition of antisymmetryintasym 5051
[Schechter] p. 51Definition of irreflexivityintirr 5053
[Schechter] p. 51Definition of symmetrycnvsym 5050
[Schechter] p. 51Definition of transitivitycotr 5048
[Schechter] p. 187Definition of "ring with unit"isring 13499
[Schechter] p. 428Definition 15.35bastop1 14262
[Stoll] p. 13Definition of symmetric differencesymdif1 3425
[Stoll] p. 16Exercise 4.40dif 3519  dif0 3518
[Stoll] p. 16Exercise 4.8difdifdirss 3532
[Stoll] p. 19Theorem 5.2(13)undm 3418
[Stoll] p. 19Theorem 5.2(13')indmss 3419
[Stoll] p. 20Remarkinvdif 3402
[Stoll] p. 25Definition of ordered tripledf-ot 3629
[Stoll] p. 43Definitionuniiun 3967
[Stoll] p. 44Definitionintiin 3968
[Stoll] p. 45Definitiondf-iin 3916
[Stoll] p. 45Definition indexed uniondf-iun 3915
[Stoll] p. 176Theorem 3.4(27)imandc 890  imanst 889
[Stoll] p. 262Example 4.1symdif1 3425
[Suppes] p. 22Theorem 2eq0 3466
[Suppes] p. 22Theorem 4eqss 3195  eqssd 3197  eqssi 3196
[Suppes] p. 23Theorem 5ss0 3488  ss0b 3487
[Suppes] p. 23Theorem 6sstr 3188
[Suppes] p. 25Theorem 12elin 3343  elun 3301
[Suppes] p. 26Theorem 15inidm 3369
[Suppes] p. 26Theorem 16in0 3482
[Suppes] p. 27Theorem 23unidm 3303
[Suppes] p. 27Theorem 24un0 3481
[Suppes] p. 27Theorem 25ssun1 3323
[Suppes] p. 27Theorem 26ssequn1 3330
[Suppes] p. 27Theorem 27unss 3334
[Suppes] p. 27Theorem 28indir 3409
[Suppes] p. 27Theorem 29undir 3410
[Suppes] p. 28Theorem 32difid 3516  difidALT 3517
[Suppes] p. 29Theorem 33difin 3397
[Suppes] p. 29Theorem 34indif 3403
[Suppes] p. 29Theorem 35undif1ss 3522
[Suppes] p. 29Theorem 36difun2 3527
[Suppes] p. 29Theorem 37difin0 3521
[Suppes] p. 29Theorem 38disjdif 3520
[Suppes] p. 29Theorem 39difundi 3412
[Suppes] p. 29Theorem 40difindiss 3414
[Suppes] p. 30Theorem 41nalset 4160
[Suppes] p. 39Theorem 61uniss 3857
[Suppes] p. 39Theorem 65uniop 4285
[Suppes] p. 41Theorem 70intsn 3906
[Suppes] p. 42Theorem 71intpr 3903  intprg 3904
[Suppes] p. 42Theorem 73op1stb 4510  op1stbg 4511
[Suppes] p. 42Theorem 78intun 3902
[Suppes] p. 44Definition 15(a)dfiun2 3947  dfiun2g 3945
[Suppes] p. 44Definition 15(b)dfiin2 3948
[Suppes] p. 47Theorem 86elpw 3608  elpw2 4187  elpw2g 4186  elpwg 3610
[Suppes] p. 47Theorem 87pwid 3617
[Suppes] p. 47Theorem 89pw0 3766
[Suppes] p. 48Theorem 90pwpw0ss 3831
[Suppes] p. 52Theorem 101xpss12 4767
[Suppes] p. 52Theorem 102xpindi 4798  xpindir 4799
[Suppes] p. 52Theorem 103xpundi 4716  xpundir 4717
[Suppes] p. 54Theorem 105elirrv 4581
[Suppes] p. 58Theorem 2relss 4747
[Suppes] p. 59Theorem 4eldm 4860  eldm2 4861  eldm2g 4859  eldmg 4858
[Suppes] p. 59Definition 3df-dm 4670
[Suppes] p. 60Theorem 6dmin 4871
[Suppes] p. 60Theorem 8rnun 5075
[Suppes] p. 60Theorem 9rnin 5076
[Suppes] p. 60Definition 4dfrn2 4851
[Suppes] p. 61Theorem 11brcnv 4846  brcnvg 4844
[Suppes] p. 62Equation 5elcnv 4840  elcnv2 4841
[Suppes] p. 62Theorem 12relcnv 5044
[Suppes] p. 62Theorem 15cnvin 5074
[Suppes] p. 62Theorem 16cnvun 5072
[Suppes] p. 63Theorem 20co02 5180
[Suppes] p. 63Theorem 21dmcoss 4932
[Suppes] p. 63Definition 7df-co 4669
[Suppes] p. 64Theorem 26cnvco 4848
[Suppes] p. 64Theorem 27coass 5185
[Suppes] p. 65Theorem 31resundi 4956
[Suppes] p. 65Theorem 34elima 5011  elima2 5012  elima3 5013  elimag 5010
[Suppes] p. 65Theorem 35imaundi 5079
[Suppes] p. 66Theorem 40dminss 5081
[Suppes] p. 66Theorem 41imainss 5082
[Suppes] p. 67Exercise 11cnvxp 5085
[Suppes] p. 81Definition 34dfec2 6592
[Suppes] p. 82Theorem 72elec 6630  elecg 6629
[Suppes] p. 82Theorem 73erth 6635  erth2 6636
[Suppes] p. 89Theorem 96map0b 6743
[Suppes] p. 89Theorem 97map0 6745  map0g 6744
[Suppes] p. 89Theorem 98mapsn 6746
[Suppes] p. 89Theorem 99mapss 6747
[Suppes] p. 92Theorem 1enref 6821  enrefg 6820
[Suppes] p. 92Theorem 2ensym 6837  ensymb 6836  ensymi 6838
[Suppes] p. 92Theorem 3entr 6840
[Suppes] p. 92Theorem 4unen 6872
[Suppes] p. 94Theorem 15endom 6819
[Suppes] p. 94Theorem 16ssdomg 6834
[Suppes] p. 94Theorem 17domtr 6841
[Suppes] p. 95Theorem 18isbth 7028
[Suppes] p. 98Exercise 4fundmen 6862  fundmeng 6863
[Suppes] p. 98Exercise 6xpdom3m 6890
[Suppes] p. 130Definition 3df-tr 4129
[Suppes] p. 132Theorem 9ssonuni 4521
[Suppes] p. 134Definition 6df-suc 4403
[Suppes] p. 136Theorem Schema 22findes 4636  finds 4633  finds1 4635  finds2 4634
[Suppes] p. 162Definition 5df-ltnqqs 7415  df-ltpq 7408
[Suppes] p. 228Theorem Schema 61onintss 4422
[TakeutiZaring] p. 8Axiom 1ax-ext 2175
[TakeutiZaring] p. 13Definition 4.5df-cleq 2186
[TakeutiZaring] p. 13Proposition 4.6df-clel 2189
[TakeutiZaring] p. 13Proposition 4.9cvjust 2188
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2211
[TakeutiZaring] p. 14Definition 4.16df-oprab 5923
[TakeutiZaring] p. 14Proposition 4.14ru 2985
[TakeutiZaring] p. 15Exercise 1elpr 3640  elpr2 3641  elprg 3639
[TakeutiZaring] p. 15Exercise 2elsn 3635  elsn2 3653  elsn2g 3652  elsng 3634  velsn 3636
[TakeutiZaring] p. 15Exercise 3elop 4261
[TakeutiZaring] p. 15Exercise 4sneq 3630  sneqr 3787
[TakeutiZaring] p. 15Definition 5.1dfpr2 3638  dfsn2 3633
[TakeutiZaring] p. 16Axiom 3uniex 4469
[TakeutiZaring] p. 16Exercise 6opth 4267
[TakeutiZaring] p. 16Exercise 8rext 4245
[TakeutiZaring] p. 16Corollary 5.8unex 4473  unexg 4475
[TakeutiZaring] p. 16Definition 5.3dftp2 3668
[TakeutiZaring] p. 16Definition 5.5df-uni 3837
[TakeutiZaring] p. 16Definition 5.6df-in 3160  df-un 3158
[TakeutiZaring] p. 16Proposition 5.7unipr 3850  uniprg 3851
[TakeutiZaring] p. 17Axiom 4vpwex 4209
[TakeutiZaring] p. 17Exercise 1eltp 3667
[TakeutiZaring] p. 17Exercise 5elsuc 4438  elsucg 4436  sstr2 3187
[TakeutiZaring] p. 17Exercise 6uncom 3304
[TakeutiZaring] p. 17Exercise 7incom 3352
[TakeutiZaring] p. 17Exercise 8unass 3317
[TakeutiZaring] p. 17Exercise 9inass 3370
[TakeutiZaring] p. 17Exercise 10indi 3407
[TakeutiZaring] p. 17Exercise 11undi 3408
[TakeutiZaring] p. 17Definition 5.9dfss2 3169
[TakeutiZaring] p. 17Definition 5.10df-pw 3604
[TakeutiZaring] p. 18Exercise 7unss2 3331
[TakeutiZaring] p. 18Exercise 9df-ss 3167  sseqin2 3379
[TakeutiZaring] p. 18Exercise 10ssid 3200
[TakeutiZaring] p. 18Exercise 12inss1 3380  inss2 3381
[TakeutiZaring] p. 18Exercise 13nssr 3240
[TakeutiZaring] p. 18Exercise 15unieq 3845
[TakeutiZaring] p. 18Exercise 18sspwb 4246
[TakeutiZaring] p. 18Exercise 19pweqb 4253
[TakeutiZaring] p. 20Definitiondf-rab 2481
[TakeutiZaring] p. 20Corollary 5.160ex 4157
[TakeutiZaring] p. 20Definition 5.12df-dif 3156
[TakeutiZaring] p. 20Definition 5.14dfnul2 3449
[TakeutiZaring] p. 20Proposition 5.15difid 3516  difidALT 3517
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3460
[TakeutiZaring] p. 21Theorem 5.22setind 4572
[TakeutiZaring] p. 21Definition 5.20df-v 2762
[TakeutiZaring] p. 21Proposition 5.21vprc 4162
[TakeutiZaring] p. 22Exercise 10ss 3486
[TakeutiZaring] p. 22Exercise 3ssex 4167  ssexg 4169
[TakeutiZaring] p. 22Exercise 4inex1 4164
[TakeutiZaring] p. 22Exercise 5ruv 4583
[TakeutiZaring] p. 22Exercise 6elirr 4574
[TakeutiZaring] p. 22Exercise 7ssdif0im 3512
[TakeutiZaring] p. 22Exercise 11difdif 3285
[TakeutiZaring] p. 22Exercise 13undif3ss 3421
[TakeutiZaring] p. 22Exercise 14difss 3286
[TakeutiZaring] p. 22Exercise 15sscon 3294
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2477
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2478
[TakeutiZaring] p. 23Proposition 6.2xpex 4775  xpexg 4774  xpexgALT 6187
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4667
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 5319
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5471  fun11 5322
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 5266  svrelfun 5320
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4850
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4852
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4672
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4673
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4669
[TakeutiZaring] p. 25Exercise 2cnvcnvss 5121  dfrel2 5117
[TakeutiZaring] p. 25Exercise 3xpss 4768
[TakeutiZaring] p. 25Exercise 5relun 4777
[TakeutiZaring] p. 25Exercise 6reluni 4783
[TakeutiZaring] p. 25Exercise 9inxp 4797
[TakeutiZaring] p. 25Exercise 12relres 4971
[TakeutiZaring] p. 25Exercise 13opelres 4948  opelresg 4950
[TakeutiZaring] p. 25Exercise 14dmres 4964
[TakeutiZaring] p. 25Exercise 15resss 4967
[TakeutiZaring] p. 25Exercise 17resabs1 4972
[TakeutiZaring] p. 25Exercise 18funres 5296
[TakeutiZaring] p. 25Exercise 24relco 5165
[TakeutiZaring] p. 25Exercise 29funco 5295
[TakeutiZaring] p. 25Exercise 30f1co 5472
[TakeutiZaring] p. 26Definition 6.10eu2 2086
[TakeutiZaring] p. 26Definition 6.11df-fv 5263  fv3 5578
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 5205  cnvexg 5204
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4929  dmexg 4927
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4930  rnexg 4928
[TakeutiZaring] p. 27Corollary 6.13funfvex 5572
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5582  tz6.12 5583  tz6.12c 5585
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5546
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 5258
[TakeutiZaring] p. 27Definition 6.15(3)df-f 5259
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 5261  wfo 5253
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 5260  wf1 5252
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 5262  wf1o 5254
[TakeutiZaring] p. 28Exercise 4eqfnfv 5656  eqfnfv2 5657  eqfnfv2f 5660
[TakeutiZaring] p. 28Exercise 5fvco 5628
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5781  fnexALT 6165
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5780  resfunexgALT 6162
[TakeutiZaring] p. 29Exercise 9funimaex 5340  funimaexg 5339
[TakeutiZaring] p. 29Definition 6.18df-br 4031
[TakeutiZaring] p. 30Definition 6.21eliniseg 5036  iniseg 5038
[TakeutiZaring] p. 30Definition 6.22df-eprel 4321
[TakeutiZaring] p. 32Definition 6.28df-isom 5264
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5854
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5855
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5860
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5862
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5870
[TakeutiZaring] p. 35Notationwtr 4128
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4386
[TakeutiZaring] p. 35Definition 7.1dftr3 4132
[TakeutiZaring] p. 36Proposition 7.4ordwe 4609
[TakeutiZaring] p. 36Proposition 7.6ordelord 4413
[TakeutiZaring] p. 37Proposition 7.9ordin 4417
[TakeutiZaring] p. 38Corollary 7.15ordsson 4525
[TakeutiZaring] p. 38Definition 7.11df-on 4400
[TakeutiZaring] p. 38Proposition 7.12ordon 4519
[TakeutiZaring] p. 38Proposition 7.13onprc 4585
[TakeutiZaring] p. 39Theorem 7.17tfi 4615
[TakeutiZaring] p. 40Exercise 7dftr2 4130
[TakeutiZaring] p. 40Exercise 11unon 4544
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4520
[TakeutiZaring] p. 40Proposition 7.20elssuni 3864
[TakeutiZaring] p. 41Definition 7.22df-suc 4403
[TakeutiZaring] p. 41Proposition 7.23sssucid 4447  sucidg 4448
[TakeutiZaring] p. 41Proposition 7.24onsuc 4534
[TakeutiZaring] p. 42Exercise 1df-ilim 4401
[TakeutiZaring] p. 42Exercise 8onsucssi 4539  ordelsuc 4538
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4627
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4628
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4629
[TakeutiZaring] p. 43Axiom 7omex 4626
[TakeutiZaring] p. 43Theorem 7.32ordom 4640
[TakeutiZaring] p. 43Corollary 7.31find 4632
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4630
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4631
[TakeutiZaring] p. 44Exercise 2int0 3885
[TakeutiZaring] p. 44Exercise 3trintssm 4144
[TakeutiZaring] p. 44Exercise 4intss1 3886
[TakeutiZaring] p. 44Exercise 6onintonm 4550
[TakeutiZaring] p. 44Definition 7.35df-int 3872
[TakeutiZaring] p. 47Lemma 1tfrlem1 6363
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 6420  tfri1d 6390
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 6421  tfri2d 6391
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 6422
[TakeutiZaring] p. 50Exercise 3smoiso 6357
[TakeutiZaring] p. 50Definition 7.46df-smo 6341
[TakeutiZaring] p. 56Definition 8.1oasuc 6519
[TakeutiZaring] p. 57Proposition 8.2oacl 6515
[TakeutiZaring] p. 57Proposition 8.3oa0 6512
[TakeutiZaring] p. 57Proposition 8.16omcl 6516
[TakeutiZaring] p. 58Proposition 8.4nnaord 6564  nnaordi 6563
[TakeutiZaring] p. 59Proposition 8.6iunss2 3958  uniss2 3867
[TakeutiZaring] p. 59Proposition 8.7oawordriexmid 6525
[TakeutiZaring] p. 59Proposition 8.9nnacl 6535
[TakeutiZaring] p. 62Exercise 5oaword1 6526
[TakeutiZaring] p. 62Definition 8.15om0 6513  omsuc 6527
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6536
[TakeutiZaring] p. 63Proposition 8.19nnmord 6572  nnmordi 6571
[TakeutiZaring] p. 67Definition 8.30oei0 6514
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 7249
[TakeutiZaring] p. 88Exercise 1en0 6851
[TakeutiZaring] p. 90Proposition 10.20nneneq 6915
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6916
[TakeutiZaring] p. 91Definition 10.29df-fin 6799  isfi 6817
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6887
[TakeutiZaring] p. 95Definition 10.42df-map 6706
[TakeutiZaring] p. 96Proposition 10.44pw2f1odc 6893
[TakeutiZaring] p. 96Proposition 10.45mapxpen 6906
[Tarski] p. 67Axiom B5ax-4 1521
[Tarski] p. 68Lemma 6equid 1712
[Tarski] p. 69Lemma 7equcomi 1715
[Tarski] p. 70Lemma 14spim 1749  spime 1752  spimeh 1750  spimh 1748
[Tarski] p. 70Lemma 16ax-11 1517  ax-11o 1834  ax11i 1725
[Tarski] p. 70Lemmas 16 and 17sb6 1898
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1537
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 2166  ax-14 2167
[WhiteheadRussell] p. 96Axiom *1.3olc 712
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 728
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 757
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 766
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 790
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 617
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 644
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 82
[WhiteheadRussell] p. 100Theorem *2.05imim2 55
[WhiteheadRussell] p. 100Theorem *2.06imim1 76
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 838
[WhiteheadRussell] p. 101Theorem *2.06barbara 2140  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 738
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 837
[WhiteheadRussell] p. 101Theorem *2.12notnot 630
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 886
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 844
[WhiteheadRussell] p. 102Theorem *2.15con1dc 857
[WhiteheadRussell] p. 103Theorem *2.16con3 643
[WhiteheadRussell] p. 103Theorem *2.17condc 854
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 856
[WhiteheadRussell] p. 104Theorem *2.2orc 713
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 776
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 618
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 622
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 894
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 908
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 40
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 769
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 770
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 805
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 806
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 804
[WhiteheadRussell] p. 105Definition *2.33df-3or 981
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 779
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 777
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 778
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 53
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 739
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 740
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 868  pm2.5gdc 867
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 863
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 741
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 742
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 743
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 656
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 657
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 723
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 892
[WhiteheadRussell] p. 107Theorem *2.55orel1 726
[WhiteheadRussell] p. 107Theorem *2.56orel2 727
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 866
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 749
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 801
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 802
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 660
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 714  pm2.67 744
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 870  pm2.521gdc 869
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 748
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 811
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 895
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 916
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 807
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 808
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 810
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 809
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 812
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 813
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 77
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 906
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 101
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 755
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 139
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 959
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 960
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 961
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 754
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 264
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 265
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 694
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 347
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 261
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 262
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 109  simplimdc 861
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 110  simprimdc 860
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 345
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 346
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 690
[WhiteheadRussell] p. 113Fact)pm3.45 597
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 333
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 331
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 332
[WhiteheadRussell] p. 113Theorem *3.44jao 756  pm3.44 716
[WhiteheadRussell] p. 113Theorem *3.47anim12 344
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 602
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 786
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 872
[WhiteheadRussell] p. 117Theorem *4.2biid 171
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 873
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 891
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 695
[WhiteheadRussell] p. 117Theorem *4.21bicom 140
[WhiteheadRussell] p. 117Theorem *4.22biantr 954  bitr 472
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 395
[WhiteheadRussell] p. 117Theorem *4.25oridm 758  pm4.25 759
[WhiteheadRussell] p. 118Theorem *4.3ancom 266
[WhiteheadRussell] p. 118Theorem *4.4andi 819
[WhiteheadRussell] p. 118Theorem *4.31orcom 729
[WhiteheadRussell] p. 118Theorem *4.32anass 401
[WhiteheadRussell] p. 118Theorem *4.33orass 768
[WhiteheadRussell] p. 118Theorem *4.36anbi1 466
[WhiteheadRussell] p. 118Theorem *4.37orbi1 793
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 605
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 823
[WhiteheadRussell] p. 118Definition *4.34df-3an 982
[WhiteheadRussell] p. 119Theorem *4.41ordi 817
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 973
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 951
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 780
[WhiteheadRussell] p. 119Theorem *4.45orabs 815  pm4.45 785  pm4.45im 334
[WhiteheadRussell] p. 119Theorem *10.2219.26 1492
[WhiteheadRussell] p. 120Theorem *4.5anordc 958
[WhiteheadRussell] p. 120Theorem *4.6imordc 898  imorr 722
[WhiteheadRussell] p. 120Theorem *4.7anclb 319
[WhiteheadRussell] p. 120Theorem *4.51ianordc 900
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 751
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 752
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 903
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 940
[WhiteheadRussell] p. 120Theorem *4.56ioran 753  pm4.56 781
[WhiteheadRussell] p. 120Theorem *4.57orandc 941  oranim 782
[WhiteheadRussell] p. 120Theorem *4.61annimim 687
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 899
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 887
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 901
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 688
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 902
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 888
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 389  pm4.71d 393  pm4.71i 391  pm4.71r 390  pm4.71rd 394  pm4.71ri 392
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 828
[WhiteheadRussell] p. 121Theorem *4.73iba 300
[WhiteheadRussell] p. 121Theorem *4.74biorf 745
[WhiteheadRussell] p. 121Theorem *4.76jcab 603  pm4.76 604
[WhiteheadRussell] p. 121Theorem *4.77jaob 711  pm4.77 800
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 783
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 904
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 708
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 909
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 952
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 953
[WhiteheadRussell] p. 122Theorem *4.84imbi1 236
[WhiteheadRussell] p. 122Theorem *4.85imbi2 237
[WhiteheadRussell] p. 122Theorem *4.86bibi1 240
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 248  impexp 263  pm4.87 557
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 601
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 910
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 911
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 913
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 912
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1400
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 829
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 905
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1405  pm5.18dc 884
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 707
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 696
[WhiteheadRussell] p. 124Theorem *5.22xordc 1403
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1408
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1409
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 896
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 475
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 249
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 242
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 927  pm5.6r 928
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 956
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 348
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 453
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 609
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 918
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 610
[WhiteheadRussell] p. 125Theorem *5.41imdi 250  pm5.41 251
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 320
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 926
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 803
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 919
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 914
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 795
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 947
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 948
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 963
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 244
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 179
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 964
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1646
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1496
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1643
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1907
[WhiteheadRussell] p. 175Definition *14.02df-eu 2045
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2445
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2446
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2899
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3043
[WhiteheadRussell] p. 190Theorem *14.22iota4 5235
[WhiteheadRussell] p. 191Theorem *14.23iota4an 5236
[WhiteheadRussell] p. 192Theorem *14.26eupick 2121  eupickbi 2124
[WhiteheadRussell] p. 235Definition *30.01df-fv 5263
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 7252

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]