Metamath Proof Explorer Home Metamath Proof Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  MPE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Metamath Proof Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular set theory book, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Color key:   Metamath Proof Explorer  Metamath Proof Explorer   Hilbert Space Explorer  Hilbert Space Explorer   User Mathboxes  User Mathboxes  

Bibliographic Cross-Reference for the Metamath Proof Explorer
Bibliographic ReferenceDescriptionMetamath Proof Explorer Page(s)
[Adamek] p. 21Definition 3.1df-cat 17293
[Adamek] p. 21Condition 3.1(b)df-cat 17293
[Adamek] p. 22Example 3.3(1)df-setc 17706
[Adamek] p. 24Example 3.3(4.c)0cat 17314
[Adamek] p. 24Example 3.3(4.d)df-prstc 46224  prsthinc 46215
[Adamek] p. 24Example 3.3(4.e)df-mndtc 46243  df-mndtc 46243
[Adamek] p. 25Definition 3.5df-oppc 17337
[Adamek] p. 28Remark 3.9oppciso 17409
[Adamek] p. 28Remark 3.12invf1o 17397  invisoinvl 17418
[Adamek] p. 28Example 3.13idinv 17417  idiso 17416
[Adamek] p. 28Corollary 3.11inveq 17402
[Adamek] p. 28Definition 3.8df-inv 17376  df-iso 17377  dfiso2 17400
[Adamek] p. 28Proposition 3.10sectcan 17383
[Adamek] p. 29Remark 3.16cicer 17434
[Adamek] p. 29Definition 3.15cic 17427  df-cic 17424
[Adamek] p. 29Definition 3.17df-func 17488
[Adamek] p. 29Proposition 3.14(1)invinv 17398
[Adamek] p. 29Proposition 3.14(2)invco 17399  isoco 17405
[Adamek] p. 30Remark 3.19df-func 17488
[Adamek] p. 30Example 3.20(1)idfucl 17511
[Adamek] p. 32Proposition 3.21funciso 17504
[Adamek] p. 33Example 3.26(2)df-thinc 46181  prsthinc 46215  thincciso 46210
[Adamek] p. 33Example 3.26(3)df-mndtc 46243
[Adamek] p. 33Proposition 3.23cofucl 17518
[Adamek] p. 34Remark 3.28(2)catciso 17741
[Adamek] p. 34Remark 3.28 (1)embedsetcestrc 17799
[Adamek] p. 34Definition 3.27(2)df-fth 17536
[Adamek] p. 34Definition 3.27(3)df-full 17535
[Adamek] p. 34Definition 3.27 (1)embedsetcestrc 17799
[Adamek] p. 35Corollary 3.32ffthiso 17560
[Adamek] p. 35Proposition 3.30(c)cofth 17566
[Adamek] p. 35Proposition 3.30(d)cofull 17565
[Adamek] p. 36Definition 3.33 (1)equivestrcsetc 17784
[Adamek] p. 36Definition 3.33 (2)equivestrcsetc 17784
[Adamek] p. 39Definition 3.41funcoppc 17505
[Adamek] p. 39Definition 3.44.df-catc 17729
[Adamek] p. 39Proposition 3.43(c)fthoppc 17554
[Adamek] p. 39Proposition 3.43(d)fulloppc 17553
[Adamek] p. 40Remark 3.48catccat 17738
[Adamek] p. 40Definition 3.47df-catc 17729
[Adamek] p. 48Example 4.3(1.a)0subcat 17468
[Adamek] p. 48Example 4.3(1.b)catsubcat 17469
[Adamek] p. 48Definition 4.1(2)fullsubc 17480
[Adamek] p. 48Definition 4.1(a)df-subc 17440
[Adamek] p. 49Remark 4.4(2)ressffth 17569
[Adamek] p. 83Definition 6.1df-nat 17574
[Adamek] p. 87Remark 6.14(a)fuccocl 17597
[Adamek] p. 87Remark 6.14(b)fucass 17601
[Adamek] p. 87Definition 6.15df-fuc 17575
[Adamek] p. 88Remark 6.16fuccat 17603
[Adamek] p. 101Definition 7.1df-inito 17614
[Adamek] p. 101Example 7.2 (6)irinitoringc 45507
[Adamek] p. 102Definition 7.4df-termo 17615
[Adamek] p. 102Proposition 7.3 (1)initoeu1w 17642
[Adamek] p. 102Proposition 7.3 (2)initoeu2 17646
[Adamek] p. 103Definition 7.7df-zeroo 17616
[Adamek] p. 103Example 7.9 (3)nzerooringczr 45510
[Adamek] p. 103Proposition 7.6termoeu1w 17649
[Adamek] p. 106Definition 7.19df-sect 17375
[Adamek] p. 185Section 10.67updjud 9622
[Adamek] p. 478Item Rngdf-ringc 45443
[AhoHopUll] p. 2Section 1.1df-bigo 45774
[AhoHopUll] p. 12Section 1.3df-blen 45796
[AhoHopUll] p. 318Section 9.1df-concat 14201  df-pfx 14311  df-substr 14281  df-word 14145  lencl 14163  wrd0 14169
[AkhiezerGlazman] p. 39Linear operator normdf-nmo 23777  df-nmoo 29007
[AkhiezerGlazman] p. 64Theoremhmopidmch 30415  hmopidmchi 30413
[AkhiezerGlazman] p. 65Theorem 1pjcmul1i 30463  pjcmul2i 30464
[AkhiezerGlazman] p. 72Theoremcnvunop 30180  unoplin 30182
[AkhiezerGlazman] p. 72Equation 2unopadj 30181  unopadj2 30200
[AkhiezerGlazman] p. 73Theoremelunop2 30275  lnopunii 30274
[AkhiezerGlazman] p. 80Proposition 1adjlnop 30348
[Alling] p. 125Theorem 4.02(12)cofcutrtime 34019
[Alling] p. 184Axiom Bbdayfo 33806
[Alling] p. 184Axiom Osltso 33805
[Alling] p. 184Axiom SDnodense 33821
[Alling] p. 185Lemma 0nocvxmin 33899
[Alling] p. 185Theoremconway 33919
[Alling] p. 185Axiom FEnoeta 33872
[Alling] p. 186Theorem 4slerec 33939
[Apostol] p. 18Theorem I.1addcan 11088  addcan2d 11108  addcan2i 11098  addcand 11107  addcani 11097
[Apostol] p. 18Theorem I.2negeu 11140
[Apostol] p. 18Theorem I.3negsub 11198  negsubd 11267  negsubi 11228
[Apostol] p. 18Theorem I.4negneg 11200  negnegd 11252  negnegi 11220
[Apostol] p. 18Theorem I.5subdi 11337  subdid 11360  subdii 11353  subdir 11338  subdird 11361  subdiri 11354
[Apostol] p. 18Theorem I.6mul01 11083  mul01d 11103  mul01i 11094  mul02 11082  mul02d 11102  mul02i 11093
[Apostol] p. 18Theorem I.7mulcan 11541  mulcan2d 11538  mulcand 11537  mulcani 11543
[Apostol] p. 18Theorem I.8receu 11549  xreceu 31097
[Apostol] p. 18Theorem I.9divrec 11578  divrecd 11683  divreci 11649  divreczi 11642
[Apostol] p. 18Theorem I.10recrec 11601  recreci 11636
[Apostol] p. 18Theorem I.11mul0or 11544  mul0ord 11554  mul0ori 11552
[Apostol] p. 18Theorem I.12mul2neg 11343  mul2negd 11359  mul2negi 11352  mulneg1 11340  mulneg1d 11357  mulneg1i 11350
[Apostol] p. 18Theorem I.13divadddiv 11619  divadddivd 11724  divadddivi 11666
[Apostol] p. 18Theorem I.14divmuldiv 11604  divmuldivd 11721  divmuldivi 11664  rdivmuldivd 31389
[Apostol] p. 18Theorem I.15divdivdiv 11605  divdivdivd 11727  divdivdivi 11667
[Apostol] p. 20Axiom 7rpaddcl 12680  rpaddcld 12715  rpmulcl 12681  rpmulcld 12716
[Apostol] p. 20Axiom 8rpneg 12690
[Apostol] p. 20Axiom 90nrp 12693
[Apostol] p. 20Theorem I.17lttri 11030
[Apostol] p. 20Theorem I.18ltadd1d 11497  ltadd1dd 11515  ltadd1i 11458
[Apostol] p. 20Theorem I.19ltmul1 11754  ltmul1a 11753  ltmul1i 11822  ltmul1ii 11832  ltmul2 11755  ltmul2d 12742  ltmul2dd 12756  ltmul2i 11825
[Apostol] p. 20Theorem I.20msqgt0 11424  msqgt0d 11471  msqgt0i 11441
[Apostol] p. 20Theorem I.210lt1 11426
[Apostol] p. 20Theorem I.23lt0neg1 11410  lt0neg1d 11473  ltneg 11404  ltnegd 11482  ltnegi 11448
[Apostol] p. 20Theorem I.25lt2add 11389  lt2addd 11527  lt2addi 11466
[Apostol] p. 20Definition of positive numbersdf-rp 12659
[Apostol] p. 21Exercise 4recgt0 11750  recgt0d 11838  recgt0i 11809  recgt0ii 11810
[Apostol] p. 22Definition of integersdf-z 12249
[Apostol] p. 22Definition of positive integersdfnn3 11916
[Apostol] p. 22Definition of rationalsdf-q 12617
[Apostol] p. 24Theorem I.26supeu 9142
[Apostol] p. 26Theorem I.28nnunb 12158
[Apostol] p. 26Theorem I.29arch 12159
[Apostol] p. 28Exercise 2btwnz 12351
[Apostol] p. 28Exercise 3nnrecl 12160
[Apostol] p. 28Exercise 4rebtwnz 12615
[Apostol] p. 28Exercise 5zbtwnre 12614
[Apostol] p. 28Exercise 6qbtwnre 12861
[Apostol] p. 28Exercise 10(a)zeneo 15975  zneo 12332  zneoALTV 45001
[Apostol] p. 29Theorem I.35cxpsqrtth 25788  msqsqrtd 15079  resqrtth 14894  sqrtth 15003  sqrtthi 15009  sqsqrtd 15078
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 11905
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwo 12581
[Apostol] p. 361Remarkcrreczi 13870
[Apostol] p. 363Remarkabsgt0i 15038
[Apostol] p. 363Exampleabssubd 15092  abssubi 15042
[ApostolNT] p. 7Remarkfmtno0 44872  fmtno1 44873  fmtno2 44882  fmtno3 44883  fmtno4 44884  fmtno5fac 44914  fmtnofz04prm 44909
[ApostolNT] p. 7Definitiondf-fmtno 44860
[ApostolNT] p. 8Definitiondf-ppi 26153
[ApostolNT] p. 14Definitiondf-dvds 15891
[ApostolNT] p. 14Theorem 1.1(a)iddvds 15906
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 15930
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 15925
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 15919
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 15921
[ApostolNT] p. 14Theorem 1.1(f)1dvds 15907
[ApostolNT] p. 14Theorem 1.1(g)dvds0 15908
[ApostolNT] p. 14Theorem 1.1(h)0dvds 15913
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 15947
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 15949
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 15951
[ApostolNT] p. 15Definitiondf-gcd 16129  dfgcd2 16181
[ApostolNT] p. 16Definitionisprm2 16314
[ApostolNT] p. 16Theorem 1.5coprmdvds 16285
[ApostolNT] p. 16Theorem 1.7prminf 16543
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 16147
[ApostolNT] p. 16Theorem 1.4(b)gcdass 16182
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 16184
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 16162
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 16154
[ApostolNT] p. 17Theorem 1.8coprm 16343
[ApostolNT] p. 17Theorem 1.9euclemma 16345
[ApostolNT] p. 17Theorem 1.101arith2 16556
[ApostolNT] p. 18Theorem 1.13prmrec 16550
[ApostolNT] p. 19Theorem 1.14divalg 16039
[ApostolNT] p. 20Theorem 1.15eucalg 16219
[ApostolNT] p. 24Definitiondf-mu 26154
[ApostolNT] p. 25Definitiondf-phi 16394
[ApostolNT] p. 25Theorem 2.1musum 26244
[ApostolNT] p. 26Theorem 2.2phisum 16418
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 16404
[ApostolNT] p. 28Theorem 2.5(c)phimul 16408
[ApostolNT] p. 32Definitiondf-vma 26151
[ApostolNT] p. 32Theorem 2.9muinv 26246
[ApostolNT] p. 32Theorem 2.10vmasum 26268
[ApostolNT] p. 38Remarkdf-sgm 26155
[ApostolNT] p. 38Definitiondf-sgm 26155
[ApostolNT] p. 75Definitiondf-chp 26152  df-cht 26150
[ApostolNT] p. 104Definitioncongr 16296
[ApostolNT] p. 106Remarkdvdsval3 15894
[ApostolNT] p. 106Definitionmoddvds 15901
[ApostolNT] p. 107Example 2mod2eq0even 15982
[ApostolNT] p. 107Example 3mod2eq1n2dvds 15983
[ApostolNT] p. 107Example 4zmod1congr 13535
[ApostolNT] p. 107Theorem 5.2(b)modmul12d 13572
[ApostolNT] p. 107Theorem 5.2(c)modexp 13880
[ApostolNT] p. 108Theorem 5.3modmulconst 15924
[ApostolNT] p. 109Theorem 5.4cncongr1 16299
[ApostolNT] p. 109Theorem 5.6gcdmodi 16702
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 16301
[ApostolNT] p. 113Theorem 5.17eulerth 16411
[ApostolNT] p. 113Theorem 5.18vfermltl 16429
[ApostolNT] p. 114Theorem 5.19fermltl 16412
[ApostolNT] p. 116Theorem 5.24wilthimp 26125
[ApostolNT] p. 179Definitiondf-lgs 26347  lgsprme0 26391
[ApostolNT] p. 180Example 11lgs 26392
[ApostolNT] p. 180Theorem 9.2lgsvalmod 26368
[ApostolNT] p. 180Theorem 9.3lgsdirprm 26383
[ApostolNT] p. 181Theorem 9.4m1lgs 26440
[ApostolNT] p. 181Theorem 9.52lgs 26459  2lgsoddprm 26468
[ApostolNT] p. 182Theorem 9.6gausslemma2d 26426
[ApostolNT] p. 185Theorem 9.8lgsquad 26435
[ApostolNT] p. 188Definitiondf-lgs 26347  lgs1 26393
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 26384
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 26386
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 26394
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 26395
[Baer] p. 40Property (b)mapdord 39578
[Baer] p. 40Property (c)mapd11 39579
[Baer] p. 40Property (e)mapdin 39602  mapdlsm 39604
[Baer] p. 40Property (f)mapd0 39605
[Baer] p. 40Definition of projectivitydf-mapd 39565  mapd1o 39588
[Baer] p. 41Property (g)mapdat 39607
[Baer] p. 44Part (1)mapdpg 39646
[Baer] p. 45Part (2)hdmap1eq 39741  mapdheq 39668  mapdheq2 39669  mapdheq2biN 39670
[Baer] p. 45Part (3)baerlem3 39653
[Baer] p. 46Part (4)mapdheq4 39672  mapdheq4lem 39671
[Baer] p. 46Part (5)baerlem5a 39654  baerlem5abmN 39658  baerlem5amN 39656  baerlem5b 39655  baerlem5bmN 39657
[Baer] p. 47Part (6)hdmap1l6 39761  hdmap1l6a 39749  hdmap1l6e 39754  hdmap1l6f 39755  hdmap1l6g 39756  hdmap1l6lem1 39747  hdmap1l6lem2 39748  mapdh6N 39687  mapdh6aN 39675  mapdh6eN 39680  mapdh6fN 39681  mapdh6gN 39682  mapdh6lem1N 39673  mapdh6lem2N 39674
[Baer] p. 48Part 9hdmapval 39768
[Baer] p. 48Part 10hdmap10 39780
[Baer] p. 48Part 11hdmapadd 39783
[Baer] p. 48Part (6)hdmap1l6h 39757  mapdh6hN 39683
[Baer] p. 48Part (7)mapdh75cN 39693  mapdh75d 39694  mapdh75e 39692  mapdh75fN 39695  mapdh7cN 39689  mapdh7dN 39690  mapdh7eN 39688  mapdh7fN 39691
[Baer] p. 48Part (8)mapdh8 39728  mapdh8a 39715  mapdh8aa 39716  mapdh8ab 39717  mapdh8ac 39718  mapdh8ad 39719  mapdh8b 39720  mapdh8c 39721  mapdh8d 39723  mapdh8d0N 39722  mapdh8e 39724  mapdh8g 39725  mapdh8i 39726  mapdh8j 39727
[Baer] p. 48Part (9)mapdh9a 39729
[Baer] p. 48Equation 10mapdhvmap 39709
[Baer] p. 49Part 12hdmap11 39788  hdmapeq0 39784  hdmapf1oN 39805  hdmapneg 39786  hdmaprnN 39804  hdmaprnlem1N 39789  hdmaprnlem3N 39790  hdmaprnlem3uN 39791  hdmaprnlem4N 39793  hdmaprnlem6N 39794  hdmaprnlem7N 39795  hdmaprnlem8N 39796  hdmaprnlem9N 39797  hdmapsub 39787
[Baer] p. 49Part 14hdmap14lem1 39808  hdmap14lem10 39817  hdmap14lem1a 39806  hdmap14lem2N 39809  hdmap14lem2a 39807  hdmap14lem3 39810  hdmap14lem8 39815  hdmap14lem9 39816
[Baer] p. 50Part 14hdmap14lem11 39818  hdmap14lem12 39819  hdmap14lem13 39820  hdmap14lem14 39821  hdmap14lem15 39822  hgmapval 39827
[Baer] p. 50Part 15hgmapadd 39834  hgmapmul 39835  hgmaprnlem2N 39837  hgmapvs 39831
[Baer] p. 50Part 16hgmaprnN 39841
[Baer] p. 110Lemma 1hdmapip0com 39857
[Baer] p. 110Line 27hdmapinvlem1 39858
[Baer] p. 110Line 28hdmapinvlem2 39859
[Baer] p. 110Line 30hdmapinvlem3 39860
[Baer] p. 110Part 1.2hdmapglem5 39862  hgmapvv 39866
[Baer] p. 110Proposition 1hdmapinvlem4 39861
[Baer] p. 111Line 10hgmapvvlem1 39863
[Baer] p. 111Line 15hdmapg 39870  hdmapglem7 39869
[Bauer], p. 483Theorem 1.22irrexpq 25789  2irrexpqALT 25854
[BellMachover] p. 36Lemma 10.3idALT 23
[BellMachover] p. 97Definition 10.1df-eu 2570
[BellMachover] p. 460Notationdf-mo 2541
[BellMachover] p. 460Definitionmo3 2565
[BellMachover] p. 461Axiom Extax-ext 2710
[BellMachover] p. 462Theorem 1.1axextmo 2714
[BellMachover] p. 463Axiom Repaxrep5 5210
[BellMachover] p. 463Scheme Sepax-sep 5217
[BellMachover] p. 463Theorem 1.3(ii)bj-bm1.3ii 35161  bm1.3ii 5220
[BellMachover] p. 466Problemaxpow2 5285
[BellMachover] p. 466Axiom Powaxpow3 5286
[BellMachover] p. 466Axiom Unionaxun2 7568
[BellMachover] p. 468Definitiondf-ord 6254
[BellMachover] p. 469Theorem 2.2(i)ordirr 6269
[BellMachover] p. 469Theorem 2.2(iii)onelon 6276
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 6271
[BellMachover] p. 471Definition of Ndf-om 7688
[BellMachover] p. 471Problem 2.5(ii)uniordint 7628
[BellMachover] p. 471Definition of Limdf-lim 6256
[BellMachover] p. 472Axiom Infzfinf2 9329
[BellMachover] p. 473Theorem 2.8limom 7703
[BellMachover] p. 477Equation 3.1df-r1 9452
[BellMachover] p. 478Definitionrankval2 9506
[BellMachover] p. 478Theorem 3.3(i)r1ord3 9470  r1ord3g 9467
[BellMachover] p. 480Axiom Regzfreg 9283
[BellMachover] p. 488Axiom ACac5 10163  dfac4 9808
[BellMachover] p. 490Definition of alephalephval3 9796
[BeltramettiCassinelli] p. 98Remarkatlatmstc 37259
[BeltramettiCassinelli] p. 107Remark 10.3.5atom1d 30615
[BeltramettiCassinelli] p. 166Theorem 14.8.4chirred 30657  chirredi 30656
[BeltramettiCassinelli1] p. 400Proposition P8(ii)atoml2i 30645
[Beran] p. 3Definition of joinsshjval3 29616
[Beran] p. 39Theorem 2.3(i)cmcm2 29878  cmcm2i 29855  cmcm2ii 29860  cmt2N 37190
[Beran] p. 40Theorem 2.3(iii)lecm 29879  lecmi 29864  lecmii 29865
[Beran] p. 45Theorem 3.4cmcmlem 29853
[Beran] p. 49Theorem 4.2cm2j 29882  cm2ji 29887  cm2mi 29888
[Beran] p. 95Definitiondf-sh 29469  issh2 29471
[Beran] p. 95Lemma 3.1(S5)his5 29348
[Beran] p. 95Lemma 3.1(S6)his6 29361
[Beran] p. 95Lemma 3.1(S7)his7 29352
[Beran] p. 95Lemma 3.2(S8)ho01i 30090
[Beran] p. 95Lemma 3.2(S9)hoeq1 30092
[Beran] p. 95Lemma 3.2(S10)ho02i 30091
[Beran] p. 95Lemma 3.2(S11)hoeq2 30093
[Beran] p. 95Postulate (S1)ax-his1 29344  his1i 29362
[Beran] p. 95Postulate (S2)ax-his2 29345
[Beran] p. 95Postulate (S3)ax-his3 29346
[Beran] p. 95Postulate (S4)ax-his4 29347
[Beran] p. 96Definition of normdf-hnorm 29230  dfhnorm2 29384  normval 29386
[Beran] p. 96Definition for Cauchy sequencehcau 29446
[Beran] p. 96Definition of Cauchy sequencedf-hcau 29235
[Beran] p. 96Definition of complete subspaceisch3 29503
[Beran] p. 96Definition of convergedf-hlim 29234  hlimi 29450
[Beran] p. 97Theorem 3.3(i)norm-i-i 29395  norm-i 29391
[Beran] p. 97Theorem 3.3(ii)norm-ii-i 29399  norm-ii 29400  normlem0 29371  normlem1 29372  normlem2 29373  normlem3 29374  normlem4 29375  normlem5 29376  normlem6 29377  normlem7 29378  normlem7tALT 29381
[Beran] p. 97Theorem 3.3(iii)norm-iii-i 29401  norm-iii 29402
[Beran] p. 98Remark 3.4bcs 29443  bcsiALT 29441  bcsiHIL 29442
[Beran] p. 98Remark 3.4(B)normlem9at 29383  normpar 29417  normpari 29416
[Beran] p. 98Remark 3.4(C)normpyc 29408  normpyth 29407  normpythi 29404
[Beran] p. 99Remarklnfn0 30309  lnfn0i 30304  lnop0 30228  lnop0i 30232
[Beran] p. 99Theorem 3.5(i)nmcexi 30288  nmcfnex 30315  nmcfnexi 30313  nmcopex 30291  nmcopexi 30289
[Beran] p. 99Theorem 3.5(ii)nmcfnlb 30316  nmcfnlbi 30314  nmcoplb 30292  nmcoplbi 30290
[Beran] p. 99Theorem 3.5(iii)lnfncon 30318  lnfnconi 30317  lnopcon 30297  lnopconi 30296
[Beran] p. 100Lemma 3.6normpar2i 29418
[Beran] p. 101Lemma 3.6norm3adifi 29415  norm3adifii 29410  norm3dif 29412  norm3difi 29409
[Beran] p. 102Theorem 3.7(i)chocunii 29563  pjhth 29655  pjhtheu 29656  pjpjhth 29687  pjpjhthi 29688  pjth 24507
[Beran] p. 102Theorem 3.7(ii)ococ 29668  ococi 29667
[Beran] p. 103Remark 3.8nlelchi 30323
[Beran] p. 104Theorem 3.9riesz3i 30324  riesz4 30326  riesz4i 30325
[Beran] p. 104Theorem 3.10cnlnadj 30341  cnlnadjeu 30340  cnlnadjeui 30339  cnlnadji 30338  cnlnadjlem1 30329  nmopadjlei 30350
[Beran] p. 106Theorem 3.11(i)adjeq0 30353
[Beran] p. 106Theorem 3.11(v)nmopadji 30352
[Beran] p. 106Theorem 3.11(ii)adjmul 30354
[Beran] p. 106Theorem 3.11(iv)adjadj 30198
[Beran] p. 106Theorem 3.11(vi)nmopcoadj2i 30364  nmopcoadji 30363
[Beran] p. 106Theorem 3.11(iii)adjadd 30355
[Beran] p. 106Theorem 3.11(vii)nmopcoadj0i 30365
[Beran] p. 106Theorem 3.11(viii)adjcoi 30362  pjadj2coi 30466  pjadjcoi 30423
[Beran] p. 107Definitiondf-ch 29483  isch2 29485
[Beran] p. 107Remark 3.12choccl 29568  isch3 29503  occl 29566  ocsh 29545  shoccl 29567  shocsh 29546
[Beran] p. 107Remark 3.12(B)ococin 29670
[Beran] p. 108Theorem 3.13chintcl 29594
[Beran] p. 109Property (i)pjadj2 30449  pjadj3 30450  pjadji 29947  pjadjii 29936
[Beran] p. 109Property (ii)pjidmco 30443  pjidmcoi 30439  pjidmi 29935
[Beran] p. 110Definition of projector orderingpjordi 30435
[Beran] p. 111Remarkho0val 30012  pjch1 29932
[Beran] p. 111Definitiondf-hfmul 29996  df-hfsum 29995  df-hodif 29994  df-homul 29993  df-hosum 29992
[Beran] p. 111Lemma 4.4(i)pjo 29933
[Beran] p. 111Lemma 4.4(ii)pjch 29956  pjchi 29694
[Beran] p. 111Lemma 4.4(iii)pjoc2 29701  pjoc2i 29700
[Beran] p. 112Theorem 4.5(i)->(ii)pjss2i 29942
[Beran] p. 112Theorem 4.5(i)->(iv)pjssmi 30427  pjssmii 29943
[Beran] p. 112Theorem 4.5(i)<->(ii)pjss2coi 30426
[Beran] p. 112Theorem 4.5(i)<->(iii)pjss1coi 30425
[Beran] p. 112Theorem 4.5(i)<->(vi)pjnormssi 30430
[Beran] p. 112Theorem 4.5(iv)->(v)pjssge0i 30428  pjssge0ii 29944
[Beran] p. 112Theorem 4.5(v)<->(vi)pjdifnormi 30429  pjdifnormii 29945
[Bobzien] p. 116Statement T3stoic3 1784
[Bobzien] p. 117Statement T2stoic2a 1782
[Bobzien] p. 117Statement T4stoic4a 1785
[Bobzien] p. 117Conclusion the contradictorystoic1a 1780
[Bogachev] p. 16Definition 1.5df-oms 32158
[Bogachev] p. 17Lemma 1.5.4omssubadd 32166
[Bogachev] p. 17Example 1.5.2omsmon 32164
[Bogachev] p. 41Definition 1.11.2df-carsg 32168
[Bogachev] p. 42Theorem 1.11.4carsgsiga 32188
[Bogachev] p. 116Definition 2.3.1df-itgm 32219  df-sitm 32197
[Bogachev] p. 118Chapter 2.4.4df-itgm 32219
[Bogachev] p. 118Definition 2.4.1df-sitg 32196
[Bollobas] p. 1Section I.1df-edg 27320  isuhgrop 27342  isusgrop 27434  isuspgrop 27433
[Bollobas] p. 2Section I.1df-subgr 27537  uhgrspan1 27572  uhgrspansubgr 27560
[Bollobas] p. 3Definitionisomuspgr 45166
[Bollobas] p. 3Section I.1cusgrsize 27723  df-cusgr 27681  df-nbgr 27602  fusgrmaxsize 27733
[Bollobas] p. 4Definitiondf-upwlks 45176  df-wlks 27868
[Bollobas] p. 4Section I.1finsumvtxdg2size 27819  finsumvtxdgeven 27821  fusgr1th 27820  fusgrvtxdgonume 27823  vtxdgoddnumeven 27822
[Bollobas] p. 5Notationdf-pths 27984
[Bollobas] p. 5Definitiondf-crcts 28054  df-cycls 28055  df-trls 27961  df-wlkson 27869
[Bollobas] p. 7Section I.1df-ushgr 27331
[BourbakiAlg1] p. 1Definition 1df-clintop 45274  df-cllaw 45260  df-mgm 18240  df-mgm2 45293
[BourbakiAlg1] p. 4Definition 5df-assintop 45275  df-asslaw 45262  df-sgrp 18289  df-sgrp2 45295
[BourbakiAlg1] p. 7Definition 8df-cmgm2 45294  df-comlaw 45261
[BourbakiAlg1] p. 12Definition 2df-mnd 18300
[BourbakiAlg1] p. 92Definition 1df-ring 19699
[BourbakiAlg1] p. 93Section I.8.1df-rng0 45313
[BourbakiEns] p. Proposition 8fcof1 7139  fcofo 7140
[BourbakiTop1] p. Remarkxnegmnf 12872  xnegpnf 12871
[BourbakiTop1] p. Remark rexneg 12873
[BourbakiTop1] p. Remark 3ust0 23278  ustfilxp 23271
[BourbakiTop1] p. Axiom GT'tgpsubcn 23148
[BourbakiTop1] p. Criterionishmeo 22817
[BourbakiTop1] p. Example 1cstucnd 23343  iducn 23342  snfil 22922
[BourbakiTop1] p. Example 2neifil 22938
[BourbakiTop1] p. Theorem 1cnextcn 23125
[BourbakiTop1] p. Theorem 2ucnextcn 23363
[BourbakiTop1] p. Theorem 3df-hcmp 31808
[BourbakiTop1] p. Paragraph 3infil 22921
[BourbakiTop1] p. Definition 1df-ucn 23335  df-ust 23259  filintn0 22919  filn0 22920  istgp 23135  ucnprima 23341
[BourbakiTop1] p. Definition 2df-cfilu 23346
[BourbakiTop1] p. Definition 3df-cusp 23357  df-usp 23316  df-utop 23290  trust 23288
[BourbakiTop1] p. Definition 6df-pcmp 31707
[BourbakiTop1] p. Property V_issnei2 22174
[BourbakiTop1] p. Theorem 1(d)iscncl 22327
[BourbakiTop1] p. Condition F_Iustssel 23264
[BourbakiTop1] p. Condition U_Iustdiag 23267
[BourbakiTop1] p. Property V_iiinnei 22183
[BourbakiTop1] p. Property V_ivneiptopreu 22191  neissex 22185
[BourbakiTop1] p. Proposition 1neips 22171  neiss 22167  ucncn 23344  ustund 23280  ustuqtop 23305
[BourbakiTop1] p. Proposition 2cnpco 22325  neiptopreu 22191  utop2nei 23309  utop3cls 23310
[BourbakiTop1] p. Proposition 3fmucnd 23351  uspreg 23333  utopreg 23311
[BourbakiTop1] p. Proposition 4imasncld 22749  imasncls 22750  imasnopn 22748
[BourbakiTop1] p. Proposition 9cnpflf2 23058
[BourbakiTop1] p. Condition F_IIustincl 23266
[BourbakiTop1] p. Condition U_IIustinvel 23268
[BourbakiTop1] p. Property V_iiielnei 22169
[BourbakiTop1] p. Proposition 11cnextucn 23362
[BourbakiTop1] p. Condition F_IIbustbasel 23265
[BourbakiTop1] p. Condition U_IIIustexhalf 23269
[BourbakiTop1] p. Definition C'''df-cmp 22445
[BourbakiTop1] p. Axioms FI, FIIa, FIIb, FIII)df-fil 22904
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 21950
[BourbakiTop2] p. 195Definition 1df-ldlf 31704
[BrosowskiDeutsh] p. 89Proof follows stoweidlem62 43485
[BrosowskiDeutsh] p. 89Lemmas are written following stowei 43487  stoweid 43486
[BrosowskiDeutsh] p. 90Lemma 1stoweidlem1 43424  stoweidlem10 43433  stoweidlem14 43437  stoweidlem15 43438  stoweidlem35 43458  stoweidlem36 43459  stoweidlem37 43460  stoweidlem38 43461  stoweidlem40 43463  stoweidlem41 43464  stoweidlem43 43466  stoweidlem44 43467  stoweidlem46 43469  stoweidlem5 43428  stoweidlem50 43473  stoweidlem52 43475  stoweidlem53 43476  stoweidlem55 43478  stoweidlem56 43479
[BrosowskiDeutsh] p. 90Lemma 1 stoweidlem23 43446  stoweidlem24 43447  stoweidlem27 43450  stoweidlem28 43451  stoweidlem30 43453
[BrosowskiDeutsh] p. 91Proofstoweidlem34 43457  stoweidlem59 43482  stoweidlem60 43483
[BrosowskiDeutsh] p. 91Lemma 1stoweidlem45 43468  stoweidlem49 43472  stoweidlem7 43430
[BrosowskiDeutsh] p. 91Lemma 2stoweidlem31 43454  stoweidlem39 43462  stoweidlem42 43465  stoweidlem48 43471  stoweidlem51 43474  stoweidlem54 43477  stoweidlem57 43480  stoweidlem58 43481
[BrosowskiDeutsh] p. 91Lemma 1 stoweidlem25 43448
[BrosowskiDeutsh] p. 91Lemma proves that the function ` ` (as definedstoweidlem17 43440
[BrosowskiDeutsh] p. 92Proofstoweidlem11 43434  stoweidlem13 43436  stoweidlem26 43449  stoweidlem61 43484
[BrosowskiDeutsh] p. 92Lemma 2stoweidlem18 43441
[Bruck] p. 1Section I.1df-clintop 45274  df-mgm 18240  df-mgm2 45293
[Bruck] p. 23Section II.1df-sgrp 18289  df-sgrp2 45295
[Bruck] p. 28Theorem 3.2dfgrp3 18588
[ChoquetDD] p. 2Definition of mappingdf-mpt 5154
[Church] p. 129Section II.24df-ifp 1064  dfifp2 1065
[Clemente] p. 10Definition ITnatded 28667
[Clemente] p. 10Definition I` `m,nnatded 28667
[Clemente] p. 11Definition E=>m,nnatded 28667
[Clemente] p. 11Definition I=>m,nnatded 28667
[Clemente] p. 11Definition E` `(1)natded 28667
[Clemente] p. 11Definition E` `(2)natded 28667
[Clemente] p. 12Definition E` `m,n,pnatded 28667
[Clemente] p. 12Definition I` `n(1)natded 28667
[Clemente] p. 12Definition I` `n(2)natded 28667
[Clemente] p. 13Definition I` `m,n,pnatded 28667
[Clemente] p. 14Proof 5.11natded 28667
[Clemente] p. 14Definition E` `nnatded 28667
[Clemente] p. 15Theorem 5.2ex-natded5.2-2 28669  ex-natded5.2 28668
[Clemente] p. 16Theorem 5.3ex-natded5.3-2 28672  ex-natded5.3 28671
[Clemente] p. 18Theorem 5.5ex-natded5.5 28674
[Clemente] p. 19Theorem 5.7ex-natded5.7-2 28676  ex-natded5.7 28675
[Clemente] p. 20Theorem 5.8ex-natded5.8-2 28678  ex-natded5.8 28677
[Clemente] p. 20Theorem 5.13ex-natded5.13-2 28680  ex-natded5.13 28679
[Clemente] p. 32Definition I` `nnatded 28667
[Clemente] p. 32Definition E` `m,n,p,anatded 28667
[Clemente] p. 32Definition E` `n,tnatded 28667
[Clemente] p. 32Definition I` `n,tnatded 28667
[Clemente] p. 43Theorem 9.20ex-natded9.20 28681
[Clemente] p. 45Theorem 9.20ex-natded9.20-2 28682
[Clemente] p. 45Theorem 9.26ex-natded9.26-2 28684  ex-natded9.26 28683
[Cohen] p. 301Remarkrelogoprlem 25650
[Cohen] p. 301Property 2relogmul 25651  relogmuld 25684
[Cohen] p. 301Property 3relogdiv 25652  relogdivd 25685
[Cohen] p. 301Property 4relogexp 25655
[Cohen] p. 301Property 1alog1 25645
[Cohen] p. 301Property 1bloge 25646
[Cohen4] p. 348Observationrelogbcxpb 25841
[Cohen4] p. 349Propertyrelogbf 25845
[Cohen4] p. 352Definitionelogb 25824
[Cohen4] p. 361Property 2relogbmul 25831
[Cohen4] p. 361Property 3logbrec 25836  relogbdiv 25833
[Cohen4] p. 361Property 4relogbreexp 25829
[Cohen4] p. 361Property 6relogbexp 25834
[Cohen4] p. 361Property 1(a)logbid1 25822
[Cohen4] p. 361Property 1(b)logb1 25823
[Cohen4] p. 367Propertylogbchbase 25825
[Cohen4] p. 377Property 2logblt 25838
[Cohn] p. 4Proposition 1.1.5sxbrsigalem1 32151  sxbrsigalem4 32153
[Cohn] p. 81Section II.5acsdomd 18189  acsinfd 18188  acsinfdimd 18190  acsmap2d 18187  acsmapd 18186
[Cohn] p. 143Example 5.1.1sxbrsiga 32156
[Connell] p. 57Definitiondf-scmat 21547  df-scmatalt 45620
[Conway] p. 4Definitionslerec 33939
[Conway] p. 5Definitionaddsval 34052  df-adds 34045  df-negs 34046
[Conway] p. 7Theorem0slt1s 33949
[Conway] p. 16Theorem 0(i)ssltright 33981
[Conway] p. 16Theorem 0(ii)ssltleft 33980
[Conway] p. 16Theorem 0(iii)slerflex 33892
[Conway] p. 17Theorem 3addscom 34055  addscomd 34056  addsid1 34053  addsid1d 34054
[Conway] p. 17Definitiondf-0s 33944
[Conway] p. 18Definitiondf-1s 33945
[Conway] p. 29Remarkmadebday 34006  newbday 34008  oldbday 34007
[Conway] p. 29Definitiondf-made 33957  df-new 33959  df-old 33958
[CormenLeisersonRivest] p. 33Equation 2.4fldiv2 13508
[Crawley] p. 1Definition of posetdf-poset 17945
[Crawley] p. 107Theorem 13.2hlsupr 37326
[Crawley] p. 110Theorem 13.3arglem1N 38130  dalaw 37826
[Crawley] p. 111Theorem 13.4hlathil 39905
[Crawley] p. 111Definition of set Wdf-watsN 37930
[Crawley] p. 111Definition of dilationdf-dilN 38046  df-ldil 38044  isldil 38050
[Crawley] p. 111Definition of translationdf-ltrn 38045  df-trnN 38047  isltrn 38059  ltrnu 38061
[Crawley] p. 112Lemma Acdlema1N 37731  cdlema2N 37732  exatleN 37344
[Crawley] p. 112Lemma B1cvrat 37416  cdlemb 37734  cdlemb2 37981  cdlemb3 38546  idltrn 38090  l1cvat 36995  lhpat 37983  lhpat2 37985  lshpat 36996  ltrnel 38079  ltrnmw 38091
[Crawley] p. 112Lemma Ccdlemc1 38131  cdlemc2 38132  ltrnnidn 38114  trlat 38109  trljat1 38106  trljat2 38107  trljat3 38108  trlne 38125  trlnidat 38113  trlnle 38126
[Crawley] p. 112Definition of automorphismdf-pautN 37931
[Crawley] p. 113Lemma Ccdlemc 38137  cdlemc3 38133  cdlemc4 38134
[Crawley] p. 113Lemma Dcdlemd 38147  cdlemd1 38138  cdlemd2 38139  cdlemd3 38140  cdlemd4 38141  cdlemd5 38142  cdlemd6 38143  cdlemd7 38144  cdlemd8 38145  cdlemd9 38146  cdleme31sde 38325  cdleme31se 38322  cdleme31se2 38323  cdleme31snd 38326  cdleme32a 38381  cdleme32b 38382  cdleme32c 38383  cdleme32d 38384  cdleme32e 38385  cdleme32f 38386  cdleme32fva 38377  cdleme32fva1 38378  cdleme32fvcl 38380  cdleme32le 38387  cdleme48fv 38439  cdleme4gfv 38447  cdleme50eq 38481  cdleme50f 38482  cdleme50f1 38483  cdleme50f1o 38486  cdleme50laut 38487  cdleme50ldil 38488  cdleme50lebi 38480  cdleme50rn 38485  cdleme50rnlem 38484  cdlemeg49le 38451  cdlemeg49lebilem 38479
[Crawley] p. 113Lemma Ecdleme 38500  cdleme00a 38149  cdleme01N 38161  cdleme02N 38162  cdleme0a 38151  cdleme0aa 38150  cdleme0b 38152  cdleme0c 38153  cdleme0cp 38154  cdleme0cq 38155  cdleme0dN 38156  cdleme0e 38157  cdleme0ex1N 38163  cdleme0ex2N 38164  cdleme0fN 38158  cdleme0gN 38159  cdleme0moN 38165  cdleme1 38167  cdleme10 38194  cdleme10tN 38198  cdleme11 38210  cdleme11a 38200  cdleme11c 38201  cdleme11dN 38202  cdleme11e 38203  cdleme11fN 38204  cdleme11g 38205  cdleme11h 38206  cdleme11j 38207  cdleme11k 38208  cdleme11l 38209  cdleme12 38211  cdleme13 38212  cdleme14 38213  cdleme15 38218  cdleme15a 38214  cdleme15b 38215  cdleme15c 38216  cdleme15d 38217  cdleme16 38225  cdleme16aN 38199  cdleme16b 38219  cdleme16c 38220  cdleme16d 38221  cdleme16e 38222  cdleme16f 38223  cdleme16g 38224  cdleme19a 38243  cdleme19b 38244  cdleme19c 38245  cdleme19d 38246  cdleme19e 38247  cdleme19f 38248  cdleme1b 38166  cdleme2 38168  cdleme20aN 38249  cdleme20bN 38250  cdleme20c 38251  cdleme20d 38252  cdleme20e 38253  cdleme20f 38254  cdleme20g 38255  cdleme20h 38256  cdleme20i 38257  cdleme20j 38258  cdleme20k 38259  cdleme20l 38262  cdleme20l1 38260  cdleme20l2 38261  cdleme20m 38263  cdleme20y 38242  cdleme20zN 38241  cdleme21 38277  cdleme21d 38270  cdleme21e 38271  cdleme22a 38280  cdleme22aa 38279  cdleme22b 38281  cdleme22cN 38282  cdleme22d 38283  cdleme22e 38284  cdleme22eALTN 38285  cdleme22f 38286  cdleme22f2 38287  cdleme22g 38288  cdleme23a 38289  cdleme23b 38290  cdleme23c 38291  cdleme26e 38299  cdleme26eALTN 38301  cdleme26ee 38300  cdleme26f 38303  cdleme26f2 38305  cdleme26f2ALTN 38304  cdleme26fALTN 38302  cdleme27N 38309  cdleme27a 38307  cdleme27cl 38306  cdleme28c 38312  cdleme3 38177  cdleme30a 38318  cdleme31fv 38330  cdleme31fv1 38331  cdleme31fv1s 38332  cdleme31fv2 38333  cdleme31id 38334  cdleme31sc 38324  cdleme31sdnN 38327  cdleme31sn 38320  cdleme31sn1 38321  cdleme31sn1c 38328  cdleme31sn2 38329  cdleme31so 38319  cdleme35a 38388  cdleme35b 38390  cdleme35c 38391  cdleme35d 38392  cdleme35e 38393  cdleme35f 38394  cdleme35fnpq 38389  cdleme35g 38395  cdleme35h 38396  cdleme35h2 38397  cdleme35sn2aw 38398  cdleme35sn3a 38399  cdleme36a 38400  cdleme36m 38401  cdleme37m 38402  cdleme38m 38403  cdleme38n 38404  cdleme39a 38405  cdleme39n 38406  cdleme3b 38169  cdleme3c 38170  cdleme3d 38171  cdleme3e 38172  cdleme3fN 38173  cdleme3fa 38176  cdleme3g 38174  cdleme3h 38175  cdleme4 38178  cdleme40m 38407  cdleme40n 38408  cdleme40v 38409  cdleme40w 38410  cdleme41fva11 38417  cdleme41sn3aw 38414  cdleme41sn4aw 38415  cdleme41snaw 38416  cdleme42a 38411  cdleme42b 38418  cdleme42c 38412  cdleme42d 38413  cdleme42e 38419  cdleme42f 38420  cdleme42g 38421  cdleme42h 38422  cdleme42i 38423  cdleme42k 38424  cdleme42ke 38425  cdleme42keg 38426  cdleme42mN 38427  cdleme42mgN 38428  cdleme43aN 38429  cdleme43bN 38430  cdleme43cN 38431  cdleme43dN 38432  cdleme5 38180  cdleme50ex 38499  cdleme50ltrn 38497  cdleme51finvN 38496  cdleme51finvfvN 38495  cdleme51finvtrN 38498  cdleme6 38181  cdleme7 38189  cdleme7a 38183  cdleme7aa 38182  cdleme7b 38184  cdleme7c 38185  cdleme7d 38186  cdleme7e 38187  cdleme7ga 38188  cdleme8 38190  cdleme8tN 38195  cdleme9 38193  cdleme9a 38191  cdleme9b 38192  cdleme9tN 38197  cdleme9taN 38196  cdlemeda 38238  cdlemedb 38237  cdlemednpq 38239  cdlemednuN 38240  cdlemefr27cl 38343  cdlemefr32fva1 38350  cdlemefr32fvaN 38349  cdlemefrs32fva 38340  cdlemefrs32fva1 38341  cdlemefs27cl 38353  cdlemefs32fva1 38363  cdlemefs32fvaN 38362  cdlemesner 38236  cdlemeulpq 38160
[Crawley] p. 114Lemma E4atex 38016  4atexlem7 38015  cdleme0nex 38230  cdleme17a 38226  cdleme17c 38228  cdleme17d 38438  cdleme17d1 38229  cdleme17d2 38435  cdleme18a 38231  cdleme18b 38232  cdleme18c 38233  cdleme18d 38235  cdleme4a 38179
[Crawley] p. 115Lemma Ecdleme21a 38265  cdleme21at 38268  cdleme21b 38266  cdleme21c 38267  cdleme21ct 38269  cdleme21f 38272  cdleme21g 38273  cdleme21h 38274  cdleme21i 38275  cdleme22gb 38234
[Crawley] p. 116Lemma Fcdlemf 38503  cdlemf1 38501  cdlemf2 38502
[Crawley] p. 116Lemma Gcdlemftr1 38507  cdlemg16 38597  cdlemg28 38644  cdlemg28a 38633  cdlemg28b 38643  cdlemg3a 38537  cdlemg42 38669  cdlemg43 38670  cdlemg44 38673  cdlemg44a 38671  cdlemg46 38675  cdlemg47 38676  cdlemg9 38574  ltrnco 38659  ltrncom 38678  tgrpabl 38691  trlco 38667
[Crawley] p. 116Definition of Gdf-tgrp 38683
[Crawley] p. 117Lemma Gcdlemg17 38617  cdlemg17b 38602
[Crawley] p. 117Definition of Edf-edring-rN 38696  df-edring 38697
[Crawley] p. 117Definition of trace-preserving endomorphismistendo 38700
[Crawley] p. 118Remarktendopltp 38720
[Crawley] p. 118Lemma Hcdlemh 38757  cdlemh1 38755  cdlemh2 38756
[Crawley] p. 118Lemma Icdlemi 38760  cdlemi1 38758  cdlemi2 38759
[Crawley] p. 118Lemma Jcdlemj1 38761  cdlemj2 38762  cdlemj3 38763  tendocan 38764
[Crawley] p. 118Lemma Kcdlemk 38914  cdlemk1 38771  cdlemk10 38783  cdlemk11 38789  cdlemk11t 38886  cdlemk11ta 38869  cdlemk11tb 38871  cdlemk11tc 38885  cdlemk11u-2N 38829  cdlemk11u 38811  cdlemk12 38790  cdlemk12u-2N 38830  cdlemk12u 38812  cdlemk13-2N 38816  cdlemk13 38792  cdlemk14-2N 38818  cdlemk14 38794  cdlemk15-2N 38819  cdlemk15 38795  cdlemk16-2N 38820  cdlemk16 38797  cdlemk16a 38796  cdlemk17-2N 38821  cdlemk17 38798  cdlemk18-2N 38826  cdlemk18-3N 38840  cdlemk18 38808  cdlemk19-2N 38827  cdlemk19 38809  cdlemk19u 38910  cdlemk1u 38799  cdlemk2 38772  cdlemk20-2N 38832  cdlemk20 38814  cdlemk21-2N 38831  cdlemk21N 38813  cdlemk22-3 38841  cdlemk22 38833  cdlemk23-3 38842  cdlemk24-3 38843  cdlemk25-3 38844  cdlemk26-3 38846  cdlemk26b-3 38845  cdlemk27-3 38847  cdlemk28-3 38848  cdlemk29-3 38851  cdlemk3 38773  cdlemk30 38834  cdlemk31 38836  cdlemk32 38837  cdlemk33N 38849  cdlemk34 38850  cdlemk35 38852  cdlemk36 38853  cdlemk37 38854  cdlemk38 38855  cdlemk39 38856  cdlemk39u 38908  cdlemk4 38774  cdlemk41 38860  cdlemk42 38881  cdlemk42yN 38884  cdlemk43N 38903  cdlemk45 38887  cdlemk46 38888  cdlemk47 38889  cdlemk48 38890  cdlemk49 38891  cdlemk5 38776  cdlemk50 38892  cdlemk51 38893  cdlemk52 38894  cdlemk53 38897  cdlemk54 38898  cdlemk55 38901  cdlemk55u 38906  cdlemk56 38911  cdlemk5a 38775  cdlemk5auN 38800  cdlemk5u 38801  cdlemk6 38777  cdlemk6u 38802  cdlemk7 38788  cdlemk7u-2N 38828  cdlemk7u 38810  cdlemk8 38778  cdlemk9 38779  cdlemk9bN 38780  cdlemki 38781  cdlemkid 38876  cdlemkj-2N 38822  cdlemkj 38803  cdlemksat 38786  cdlemksel 38785  cdlemksv 38784  cdlemksv2 38787  cdlemkuat 38806  cdlemkuel-2N 38824  cdlemkuel-3 38838  cdlemkuel 38805  cdlemkuv-2N 38823  cdlemkuv2-2 38825  cdlemkuv2-3N 38839  cdlemkuv2 38807  cdlemkuvN 38804  cdlemkvcl 38782  cdlemky 38866  cdlemkyyN 38902  tendoex 38915
[Crawley] p. 120Remarkdva1dim 38925
[Crawley] p. 120Lemma Lcdleml1N 38916  cdleml2N 38917  cdleml3N 38918  cdleml4N 38919  cdleml5N 38920  cdleml6 38921  cdleml7 38922  cdleml8 38923  cdleml9 38924  dia1dim 39001
[Crawley] p. 120Lemma Mdia11N 38988  diaf11N 38989  dialss 38986  diaord 38987  dibf11N 39101  djajN 39077
[Crawley] p. 120Definition of isomorphism mapdiaval 38972
[Crawley] p. 121Lemma Mcdlemm10N 39058  dia2dimlem1 39004  dia2dimlem2 39005  dia2dimlem3 39006  dia2dimlem4 39007  dia2dimlem5 39008  diaf1oN 39070  diarnN 39069  dvheveccl 39052  dvhopN 39056
[Crawley] p. 121Lemma Ncdlemn 39152  cdlemn10 39146  cdlemn11 39151  cdlemn11a 39147  cdlemn11b 39148  cdlemn11c 39149  cdlemn11pre 39150  cdlemn2 39135  cdlemn2a 39136  cdlemn3 39137  cdlemn4 39138  cdlemn4a 39139  cdlemn5 39141  cdlemn5pre 39140  cdlemn6 39142  cdlemn7 39143  cdlemn8 39144  cdlemn9 39145  diclspsn 39134
[Crawley] p. 121Definition of phi(q)df-dic 39113
[Crawley] p. 122Lemma Ndih11 39205  dihf11 39207  dihjust 39157  dihjustlem 39156  dihord 39204  dihord1 39158  dihord10 39163  dihord11b 39162  dihord11c 39164  dihord2 39167  dihord2a 39159  dihord2b 39160  dihord2cN 39161  dihord2pre 39165  dihord2pre2 39166  dihordlem6 39153  dihordlem7 39154  dihordlem7b 39155
[Crawley] p. 122Definition of isomorphism mapdihffval 39170  dihfval 39171  dihval 39172
[Diestel] p. 3Section 1.1df-cusgr 27681  df-nbgr 27602
[Diestel] p. 4Section 1.1df-subgr 27537  uhgrspan1 27572  uhgrspansubgr 27560
[Diestel] p. 5Proposition 1.2.1fusgrvtxdgonume 27823  vtxdgoddnumeven 27822
[Diestel] p. 27Section 1.10df-ushgr 27331
[EGA] p. 80Notation 1.1.1rspecval 31715
[EGA] p. 80Proposition 1.1.2zartop 31727
[EGA] p. 80Proposition 1.1.2(i)zarcls0 31719  zarcls1 31720
[EGA] p. 81Corollary 1.1.8zart0 31730
[EGA], p. 82Proposition 1.1.10(ii)zarcmp 31733
[EGA], p. 83Corollary 1.2.3rhmpreimacn 31736
[Eisenberg] p. 67Definition 5.3df-dif 3887
[Eisenberg] p. 82Definition 6.3dfom3 9334
[Eisenberg] p. 125Definition 8.21df-map 8576
[Eisenberg] p. 216Example 13.2(4)omenps 9342
[Eisenberg] p. 310Theorem 19.8cardprc 9668
[Eisenberg] p. 310Corollary 19.7(2)cardsdom 10241
[Enderton] p. 18Axiom of Empty Setaxnul 5223
[Enderton] p. 19Definitiondf-tp 4564
[Enderton] p. 26Exercise 5unissb 4871
[Enderton] p. 26Exercise 10pwel 5299
[Enderton] p. 28Exercise 7(b)pwun 5478
[Enderton] p. 30Theorem "Distributive laws"iinin1 5005  iinin2 5004  iinun2 4999  iunin1 4998  iunin1f 30797  iunin2 4997  uniin1 30791  uniin2 30792
[Enderton] p. 31Theorem "De Morgan's laws"iindif2 5003  iundif2 5000
[Enderton] p. 32Exercise 20unineq 4209
[Enderton] p. 33Exercise 23iinuni 5024
[Enderton] p. 33Exercise 25iununi 5025
[Enderton] p. 33Exercise 24(a)iinpw 5032
[Enderton] p. 33Exercise 24(b)iunpw 7599  iunpwss 5033
[Enderton] p. 36Definitionopthwiener 5422
[Enderton] p. 38Exercise 6(a)unipw 5360
[Enderton] p. 38Exercise 6(b)pwuni 4876
[Enderton] p. 41Lemma 3Dopeluu 5379  rnex 7733  rnexg 7725
[Enderton] p. 41Exercise 8dmuni 5812  rnuni 6041
[Enderton] p. 42Definition of a functiondffun7 6445  dffun8 6446
[Enderton] p. 43Definition of function valuefunfv2 6838
[Enderton] p. 43Definition of single-rootedfuncnv 6487
[Enderton] p. 44Definition (d)dfima2 5960  dfima3 5961
[Enderton] p. 47Theorem 3Hfvco2 6847
[Enderton] p. 49Axiom of Choice (first form)ac7 10159  ac7g 10160  df-ac 9802  dfac2 9817  dfac2a 9815  dfac2b 9816  dfac3 9807  dfac7 9818
[Enderton] p. 50Theorem 3K(a)imauni 7101
[Enderton] p. 52Definitiondf-map 8576
[Enderton] p. 53Exercise 21coass 6158
[Enderton] p. 53Exercise 27dmco 6147
[Enderton] p. 53Exercise 14(a)funin 6494
[Enderton] p. 53Exercise 22(a)imass2 5999
[Enderton] p. 54Remarkixpf 8667  ixpssmap 8679
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 8645
[Enderton] p. 55Axiom of Choice (second form)ac9 10169  ac9s 10179
[Enderton] p. 56Theorem 3Meqvrelref 36649  erref 8477
[Enderton] p. 57Lemma 3Neqvrelthi 36652  erthi 8508
[Enderton] p. 57Definitiondf-ec 8459
[Enderton] p. 58Definitiondf-qs 8463
[Enderton] p. 61Exercise 35df-ec 8459
[Enderton] p. 65Exercise 56(a)dmun 5808
[Enderton] p. 68Definition of successordf-suc 6257
[Enderton] p. 71Definitiondf-tr 5187  dftr4 5191
[Enderton] p. 72Theorem 4Eunisuc 6327
[Enderton] p. 73Exercise 6unisuc 6327
[Enderton] p. 73Exercise 5(a)truni 5200
[Enderton] p. 73Exercise 5(b)trint 5202  trintALT 42382
[Enderton] p. 79Theorem 4I(A1)nna0 8398
[Enderton] p. 79Theorem 4I(A2)nnasuc 8400  onasuc 8321
[Enderton] p. 79Definition of operation valuedf-ov 7258
[Enderton] p. 80Theorem 4J(A1)nnm0 8399
[Enderton] p. 80Theorem 4J(A2)nnmsuc 8401  onmsuc 8322
[Enderton] p. 81Theorem 4K(1)nnaass 8416
[Enderton] p. 81Theorem 4K(2)nna0r 8403  nnacom 8411
[Enderton] p. 81Theorem 4K(3)nndi 8417
[Enderton] p. 81Theorem 4K(4)nnmass 8418
[Enderton] p. 81Theorem 4K(5)nnmcom 8420
[Enderton] p. 82Exercise 16nnm0r 8404  nnmsucr 8419
[Enderton] p. 88Exercise 23nnaordex 8432
[Enderton] p. 129Definitiondf-en 8693
[Enderton] p. 132Theorem 6B(b)canth 7209
[Enderton] p. 133Exercise 1xpomen 9701
[Enderton] p. 133Exercise 2qnnen 15849
[Enderton] p. 134Theorem (Pigeonhole Principle)php 8898
[Enderton] p. 135Corollary 6Cphp3 8900
[Enderton] p. 136Corollary 6Enneneq 8897
[Enderton] p. 136Corollary 6D(a)pssinf 8960
[Enderton] p. 136Corollary 6D(b)ominf 8962
[Enderton] p. 137Lemma 6Fpssnn 8914
[Enderton] p. 138Corollary 6Gssfi 8919
[Enderton] p. 139Theorem 6H(c)mapen 8878
[Enderton] p. 142Theorem 6I(3)xpdjuen 9865
[Enderton] p. 142Theorem 6I(4)mapdjuen 9866
[Enderton] p. 143Theorem 6Jdju0en 9861  dju1en 9857
[Enderton] p. 144Exercise 13iunfi 9036  unifi 9037  unifi2 9038
[Enderton] p. 144Corollary 6Kundif2 4408  unfi 8918  unfi2 9012
[Enderton] p. 145Figure 38ffoss 7762
[Enderton] p. 145Definitiondf-dom 8694
[Enderton] p. 146Example 1domen 8707  domeng 8708
[Enderton] p. 146Example 3nndomo 8945  nnsdom 9341  nnsdomg 9002
[Enderton] p. 149Theorem 6L(a)djudom2 9869
[Enderton] p. 149Theorem 6L(c)mapdom1 8879  xpdom1 8812  xpdom1g 8810  xpdom2g 8809
[Enderton] p. 149Theorem 6L(d)mapdom2 8885
[Enderton] p. 151Theorem 6Mzorn 10193  zorng 10190
[Enderton] p. 151Theorem 6M(4)ac8 10178  dfac5 9814
[Enderton] p. 159Theorem 6Qunictb 10261
[Enderton] p. 164Exampleinfdif 9895
[Enderton] p. 168Definitiondf-po 5494
[Enderton] p. 192Theorem 7M(a)oneli 6359
[Enderton] p. 192Theorem 7M(b)ontr1 6297
[Enderton] p. 192Theorem 7M(c)onirri 6358
[Enderton] p. 193Corollary 7N(b)0elon 6304
[Enderton] p. 193Corollary 7N(c)onsuci 7660
[Enderton] p. 193Corollary 7N(d)ssonunii 7608
[Enderton] p. 194Remarkonprc 7605
[Enderton] p. 194Exercise 16suc11 6354
[Enderton] p. 197Definitiondf-card 9627
[Enderton] p. 197Theorem 7Pcarden 10237
[Enderton] p. 200Exercise 25tfis 7676
[Enderton] p. 202Lemma 7Tr1tr 9464
[Enderton] p. 202Definitiondf-r1 9452
[Enderton] p. 202Theorem 7Qr1val1 9474
[Enderton] p. 204Theorem 7V(b)rankval4 9555
[Enderton] p. 206Theorem 7X(b)en2lp 9293
[Enderton] p. 207Exercise 30rankpr 9545  rankprb 9539  rankpw 9531  rankpwi 9511  rankuniss 9554
[Enderton] p. 207Exercise 34opthreg 9305
[Enderton] p. 208Exercise 35suc11reg 9306
[Enderton] p. 212Definition of alephalephval3 9796
[Enderton] p. 213Theorem 8A(a)alephord2 9762
[Enderton] p. 213Theorem 8A(b)cardalephex 9776
[Enderton] p. 218Theorem Schema 8Eonfununi 8143
[Enderton] p. 222Definition of kardkarden 9583  kardex 9582
[Enderton] p. 238Theorem 8Roeoa 8391
[Enderton] p. 238Theorem 8Soeoe 8393
[Enderton] p. 240Exercise 25oarec 8356
[Enderton] p. 257Definition of cofinalitycflm 9936
[FaureFrolicher] p. 57Definition 3.1.9mreexd 17267
[FaureFrolicher] p. 83Definition 4.1.1df-mri 17213
[FaureFrolicher] p. 83Proposition 4.1.3acsfiindd 18185  mrieqv2d 17264  mrieqvd 17263
[FaureFrolicher] p. 84Lemma 4.1.5mreexmrid 17268
[FaureFrolicher] p. 86Proposition 4.2.1mreexexd 17273  mreexexlem2d 17270
[FaureFrolicher] p. 87Theorem 4.2.2acsexdimd 18191  mreexfidimd 17275
[Frege1879] p. 11Statementdf3or2 41257
[Frege1879] p. 12Statementdf3an2 41258  dfxor4 41255  dfxor5 41256
[Frege1879] p. 26Axiom 1ax-frege1 41279
[Frege1879] p. 26Axiom 2ax-frege2 41280
[Frege1879] p. 26Proposition 1ax-1 6
[Frege1879] p. 26Proposition 2ax-2 7
[Frege1879] p. 29Proposition 3frege3 41284
[Frege1879] p. 31Proposition 4frege4 41288
[Frege1879] p. 32Proposition 5frege5 41289
[Frege1879] p. 33Proposition 6frege6 41295
[Frege1879] p. 34Proposition 7frege7 41297
[Frege1879] p. 35Axiom 8ax-frege8 41298  axfrege8 41296
[Frege1879] p. 35Proposition 8pm2.04 90  wl-luk-pm2.04 35542
[Frege1879] p. 35Proposition 9frege9 41301
[Frege1879] p. 36Proposition 10frege10 41309
[Frege1879] p. 36Proposition 11frege11 41303
[Frege1879] p. 37Proposition 12frege12 41302
[Frege1879] p. 37Proposition 13frege13 41311
[Frege1879] p. 37Proposition 14frege14 41312
[Frege1879] p. 38Proposition 15frege15 41315
[Frege1879] p. 38Proposition 16frege16 41305
[Frege1879] p. 39Proposition 17frege17 41310
[Frege1879] p. 39Proposition 18frege18 41307
[Frege1879] p. 39Proposition 19frege19 41313
[Frege1879] p. 40Proposition 20frege20 41317
[Frege1879] p. 40Proposition 21frege21 41316
[Frege1879] p. 41Proposition 22frege22 41308
[Frege1879] p. 42Proposition 23frege23 41314
[Frege1879] p. 42Proposition 24frege24 41304
[Frege1879] p. 42Proposition 25frege25 41306  rp-frege25 41294
[Frege1879] p. 42Proposition 26frege26 41299
[Frege1879] p. 43Axiom 28ax-frege28 41319
[Frege1879] p. 43Proposition 27frege27 41300
[Frege1879] p. 43Proposition 28con3 156
[Frege1879] p. 43Proposition 29frege29 41320
[Frege1879] p. 44Axiom 31ax-frege31 41323  axfrege31 41322
[Frege1879] p. 44Proposition 30frege30 41321
[Frege1879] p. 44Proposition 31notnotr 132
[Frege1879] p. 44Proposition 32frege32 41324
[Frege1879] p. 44Proposition 33frege33 41325
[Frege1879] p. 45Proposition 34frege34 41326
[Frege1879] p. 45Proposition 35frege35 41327
[Frege1879] p. 45Proposition 36frege36 41328
[Frege1879] p. 46Proposition 37frege37 41329
[Frege1879] p. 46Proposition 38frege38 41330
[Frege1879] p. 46Proposition 39frege39 41331
[Frege1879] p. 46Proposition 40frege40 41332
[Frege1879] p. 47Axiom 41ax-frege41 41334  axfrege41 41333
[Frege1879] p. 47Proposition 41notnot 144
[Frege1879] p. 47Proposition 42frege42 41335
[Frege1879] p. 47Proposition 43frege43 41336
[Frege1879] p. 47Proposition 44frege44 41337
[Frege1879] p. 47Proposition 45frege45 41338
[Frege1879] p. 48Proposition 46frege46 41339
[Frege1879] p. 48Proposition 47frege47 41340
[Frege1879] p. 49Proposition 48frege48 41341
[Frege1879] p. 49Proposition 49frege49 41342
[Frege1879] p. 49Proposition 50frege50 41343
[Frege1879] p. 50Axiom 52ax-frege52a 41346  ax-frege52c 41377  frege52aid 41347  frege52b 41378
[Frege1879] p. 50Axiom 54ax-frege54a 41351  ax-frege54c 41381  frege54b 41382
[Frege1879] p. 50Proposition 51frege51 41344
[Frege1879] p. 50Proposition 52dfsbcq 3714
[Frege1879] p. 50Proposition 53frege53a 41349  frege53aid 41348  frege53b 41379  frege53c 41403
[Frege1879] p. 50Proposition 54biid 264  eqid 2739
[Frege1879] p. 50Proposition 55frege55a 41357  frege55aid 41354  frege55b 41386  frege55c 41407  frege55cor1a 41358  frege55lem2a 41356  frege55lem2b 41385  frege55lem2c 41406
[Frege1879] p. 50Proposition 56frege56a 41360  frege56aid 41359  frege56b 41387  frege56c 41408
[Frege1879] p. 51Axiom 58ax-frege58a 41364  ax-frege58b 41390  frege58bid 41391  frege58c 41410
[Frege1879] p. 51Proposition 57frege57a 41362  frege57aid 41361  frege57b 41388  frege57c 41409
[Frege1879] p. 51Proposition 58spsbc 3725
[Frege1879] p. 51Proposition 59frege59a 41366  frege59b 41393  frege59c 41411
[Frege1879] p. 52Proposition 60frege60a 41367  frege60b 41394  frege60c 41412
[Frege1879] p. 52Proposition 61frege61a 41368  frege61b 41395  frege61c 41413
[Frege1879] p. 52Proposition 62frege62a 41369  frege62b 41396  frege62c 41414
[Frege1879] p. 52Proposition 63frege63a 41370  frege63b 41397  frege63c 41415
[Frege1879] p. 53Proposition 64frege64a 41371  frege64b 41398  frege64c 41416
[Frege1879] p. 53Proposition 65frege65a 41372  frege65b 41399  frege65c 41417
[Frege1879] p. 54Proposition 66frege66a 41373  frege66b 41400  frege66c 41418
[Frege1879] p. 54Proposition 67frege67a 41374  frege67b 41401  frege67c 41419
[Frege1879] p. 54Proposition 68frege68a 41375  frege68b 41402  frege68c 41420
[Frege1879] p. 55Definition 69dffrege69 41421
[Frege1879] p. 58Proposition 70frege70 41422
[Frege1879] p. 59Proposition 71frege71 41423
[Frege1879] p. 59Proposition 72frege72 41424
[Frege1879] p. 59Proposition 73frege73 41425
[Frege1879] p. 60Definition 76dffrege76 41428
[Frege1879] p. 60Proposition 74frege74 41426
[Frege1879] p. 60Proposition 75frege75 41427
[Frege1879] p. 62Proposition 77frege77 41429  frege77d 41235
[Frege1879] p. 63Proposition 78frege78 41430
[Frege1879] p. 63Proposition 79frege79 41431
[Frege1879] p. 63Proposition 80frege80 41432
[Frege1879] p. 63Proposition 81frege81 41433  frege81d 41236
[Frege1879] p. 64Proposition 82frege82 41434
[Frege1879] p. 65Proposition 83frege83 41435  frege83d 41237
[Frege1879] p. 65Proposition 84frege84 41436
[Frege1879] p. 66Proposition 85frege85 41437
[Frege1879] p. 66Proposition 86frege86 41438
[Frege1879] p. 66Proposition 87frege87 41439  frege87d 41239
[Frege1879] p. 67Proposition 88frege88 41440
[Frege1879] p. 68Proposition 89frege89 41441
[Frege1879] p. 68Proposition 90frege90 41442
[Frege1879] p. 68Proposition 91frege91 41443  frege91d 41240
[Frege1879] p. 69Proposition 92frege92 41444
[Frege1879] p. 70Proposition 93frege93 41445
[Frege1879] p. 70Proposition 94frege94 41446
[Frege1879] p. 70Proposition 95frege95 41447
[Frege1879] p. 71Definition 99dffrege99 41451
[Frege1879] p. 71Proposition 96frege96 41448  frege96d 41238
[Frege1879] p. 71Proposition 97frege97 41449  frege97d 41241
[Frege1879] p. 71Proposition 98frege98 41450  frege98d 41242
[Frege1879] p. 72Proposition 100frege100 41452
[Frege1879] p. 72Proposition 101frege101 41453
[Frege1879] p. 72Proposition 102frege102 41454  frege102d 41243
[Frege1879] p. 73Proposition 103frege103 41455
[Frege1879] p. 73Proposition 104frege104 41456
[Frege1879] p. 73Proposition 105frege105 41457
[Frege1879] p. 73Proposition 106frege106 41458  frege106d 41244
[Frege1879] p. 74Proposition 107frege107 41459
[Frege1879] p. 74Proposition 108frege108 41460  frege108d 41245
[Frege1879] p. 74Proposition 109frege109 41461  frege109d 41246
[Frege1879] p. 75Proposition 110frege110 41462
[Frege1879] p. 75Proposition 111frege111 41463  frege111d 41248
[Frege1879] p. 76Proposition 112frege112 41464
[Frege1879] p. 76Proposition 113frege113 41465
[Frege1879] p. 76Proposition 114frege114 41466  frege114d 41247
[Frege1879] p. 77Definition 115dffrege115 41467
[Frege1879] p. 77Proposition 116frege116 41468
[Frege1879] p. 78Proposition 117frege117 41469
[Frege1879] p. 78Proposition 118frege118 41470
[Frege1879] p. 78Proposition 119frege119 41471
[Frege1879] p. 78Proposition 120frege120 41472
[Frege1879] p. 79Proposition 121frege121 41473
[Frege1879] p. 79Proposition 122frege122 41474  frege122d 41249
[Frege1879] p. 79Proposition 123frege123 41475
[Frege1879] p. 80Proposition 124frege124 41476  frege124d 41250
[Frege1879] p. 81Proposition 125frege125 41477
[Frege1879] p. 81Proposition 126frege126 41478  frege126d 41251
[Frege1879] p. 82Proposition 127frege127 41479
[Frege1879] p. 83Proposition 128frege128 41480
[Frege1879] p. 83Proposition 129frege129 41481  frege129d 41252
[Frege1879] p. 84Proposition 130frege130 41482
[Frege1879] p. 85Proposition 131frege131 41483  frege131d 41253
[Frege1879] p. 86Proposition 132frege132 41484
[Frege1879] p. 86Proposition 133frege133 41485  frege133d 41254
[Fremlin1] p. 13Definition 111G (b)df-salgen 43736
[Fremlin1] p. 13Definition 111G (d)borelmbl 44056
[Fremlin1] p. 13Proposition 111G (b)salgenss 43757
[Fremlin1] p. 14Definition 112Aismea 43871
[Fremlin1] p. 15Remark 112B (d)psmeasure 43891
[Fremlin1] p. 15Property 112C (a)meadjun 43882  meadjunre 43896
[Fremlin1] p. 15Property 112C (b)meassle 43883
[Fremlin1] p. 15Property 112C (c)meaunle 43884
[Fremlin1] p. 16Property 112C (d)iundjiun 43880  meaiunle 43889  meaiunlelem 43888
[Fremlin1] p. 16Proposition 112C (e)meaiuninc 43901  meaiuninc2 43902  meaiuninc3 43905  meaiuninc3v 43904  meaiunincf 43903  meaiuninclem 43900
[Fremlin1] p. 16Proposition 112C (f)meaiininc 43907  meaiininc2 43908  meaiininclem 43906
[Fremlin1] p. 19Theorem 113Ccaragen0 43926  caragendifcl 43934  caratheodory 43948  omelesplit 43938
[Fremlin1] p. 19Definition 113Aisome 43914  isomennd 43951  isomenndlem 43950
[Fremlin1] p. 19Remark 113B (c)omeunle 43936
[Fremlin1] p. 19Definition 112Dfcaragencmpl 43955  voncmpl 44041
[Fremlin1] p. 19Definition 113A (ii)omessle 43918
[Fremlin1] p. 20Theorem 113Ccarageniuncl 43943  carageniuncllem1 43941  carageniuncllem2 43942  caragenuncl 43933  caragenuncllem 43932  caragenunicl 43944
[Fremlin1] p. 21Remark 113Dcaragenel2d 43952
[Fremlin1] p. 21Theorem 113Ccaratheodorylem1 43946  caratheodorylem2 43947
[Fremlin1] p. 21Exercise 113Xacaragencmpl 43955
[Fremlin1] p. 23Lemma 114Bhoidmv1le 44014  hoidmv1lelem1 44011  hoidmv1lelem2 44012  hoidmv1lelem3 44013
[Fremlin1] p. 25Definition 114Eisvonmbl 44058
[Fremlin1] p. 29Lemma 115Bhoidmv1le 44014  hoidmvle 44020  hoidmvlelem1 44015  hoidmvlelem2 44016  hoidmvlelem3 44017  hoidmvlelem4 44018  hoidmvlelem5 44019  hsphoidmvle2 44005  hsphoif 43996  hsphoival 43999
[Fremlin1] p. 29Definition 1135 (b)hoicvr 43968
[Fremlin1] p. 29Definition 115A (b)hoicvrrex 43976
[Fremlin1] p. 29Definition 115A (c)hoidmv0val 44003  hoidmvn0val 44004  hoidmvval 43997  hoidmvval0 44007  hoidmvval0b 44010
[Fremlin1] p. 30Lemma 115Bhoiprodp1 44008  hsphoidmvle 44006
[Fremlin1] p. 30Definition 115Cdf-ovoln 43957  df-voln 43959
[Fremlin1] p. 30Proposition 115D (a)dmovn 44024  ovn0 43986  ovn0lem 43985  ovnf 43983  ovnome 43993  ovnssle 43981  ovnsslelem 43980  ovnsupge0 43977
[Fremlin1] p. 30Proposition 115D (b)ovnhoi 44023  ovnhoilem1 44021  ovnhoilem2 44022  vonhoi 44087
[Fremlin1] p. 31Lemma 115Fhoidifhspdmvle 44040  hoidifhspf 44038  hoidifhspval 44028  hoidifhspval2 44035  hoidifhspval3 44039  hspmbl 44049  hspmbllem1 44046  hspmbllem2 44047  hspmbllem3 44048
[Fremlin1] p. 31Definition 115Evoncmpl 44041  vonmea 43994
[Fremlin1] p. 31Proposition 115D (a)(iv)ovnsubadd 43992  ovnsubadd2 44066  ovnsubadd2lem 44065  ovnsubaddlem1 43990  ovnsubaddlem2 43991
[Fremlin1] p. 32Proposition 115G (a)hoimbl 44051  hoimbl2 44085  hoimbllem 44050  hspdifhsp 44036  opnvonmbl 44054  opnvonmbllem2 44053
[Fremlin1] p. 32Proposition 115G (b)borelmbl 44056
[Fremlin1] p. 32Proposition 115G (c)iccvonmbl 44099  iccvonmbllem 44098  ioovonmbl 44097
[Fremlin1] p. 32Proposition 115G (d)vonicc 44105  vonicclem2 44104  vonioo 44102  vonioolem2 44101  vonn0icc 44108  vonn0icc2 44112  vonn0ioo 44107  vonn0ioo2 44110
[Fremlin1] p. 32Proposition 115G (e)ctvonmbl 44109  snvonmbl 44106  vonct 44113  vonsn 44111
[Fremlin1] p. 35Lemma 121Asubsalsal 43780
[Fremlin1] p. 35Lemma 121A (iii)subsaliuncl 43779  subsaliuncllem 43778
[Fremlin1] p. 35Proposition 121Bsalpreimagtge 44140  salpreimalegt 44126  salpreimaltle 44141
[Fremlin1] p. 35Proposition 121B (i)issmf 44143  issmff 44149  issmflem 44142
[Fremlin1] p. 35Proposition 121B (ii)issmfle 44160  issmflelem 44159  smfpreimale 44169
[Fremlin1] p. 35Proposition 121B (iii)issmfgt 44171  issmfgtlem 44170
[Fremlin1] p. 36Definition 121Cdf-smblfn 44116  issmf 44143  issmff 44149  issmfge 44184  issmfgelem 44183  issmfgt 44171  issmfgtlem 44170  issmfle 44160  issmflelem 44159  issmflem 44142
[Fremlin1] p. 36Proposition 121Bsalpreimagelt 44124  salpreimagtlt 44145  salpreimalelt 44144
[Fremlin1] p. 36Proposition 121B (iv)issmfge 44184  issmfgelem 44183
[Fremlin1] p. 36Proposition 121D (a)bormflebmf 44168
[Fremlin1] p. 36Proposition 121D (b)cnfrrnsmf 44166  cnfsmf 44155
[Fremlin1] p. 36Proposition 121D (c)decsmf 44181  decsmflem 44180  incsmf 44157  incsmflem 44156
[Fremlin1] p. 37Proposition 121E (a)pimconstlt0 44120  pimconstlt1 44121  smfconst 44164
[Fremlin1] p. 37Proposition 121E (b)smfadd 44179  smfaddlem1 44177  smfaddlem2 44178
[Fremlin1] p. 37Proposition 121E (c)smfmulc1 44209
[Fremlin1] p. 37Proposition 121E (d)smfmul 44208  smfmullem1 44204  smfmullem2 44205  smfmullem3 44206  smfmullem4 44207
[Fremlin1] p. 37Proposition 121E (e)smfdiv 44210
[Fremlin1] p. 37Proposition 121E (f)smfpimbor1 44213  smfpimbor1lem2 44212
[Fremlin1] p. 37Proposition 121E (g)smfco 44215
[Fremlin1] p. 37Proposition 121E (h)smfres 44203
[Fremlin1] p. 38Proposition 121E (e)smfrec 44202
[Fremlin1] p. 38Proposition 121E (f)smfpimbor1lem1 44211  smfresal 44201
[Fremlin1] p. 38Proposition 121F (a)smflim 44191  smflim2 44218  smflimlem1 44185  smflimlem2 44186  smflimlem3 44187  smflimlem4 44188  smflimlem5 44189  smflimlem6 44190  smflimmpt 44222
[Fremlin1] p. 38Proposition 121F (b)smfsup 44226  smfsuplem1 44223  smfsuplem2 44224  smfsuplem3 44225  smfsupmpt 44227  smfsupxr 44228
[Fremlin1] p. 38Proposition 121F (c)smfinf 44230  smfinflem 44229  smfinfmpt 44231
[Fremlin1] p. 39Remark 121Gsmflim 44191  smflim2 44218  smflimmpt 44222
[Fremlin1] p. 39Proposition 121Fsmfpimcc 44220
[Fremlin1] p. 39Proposition 121F (d)smflimsup 44240  smflimsuplem2 44233  smflimsuplem6 44237  smflimsuplem7 44238  smflimsuplem8 44239  smflimsupmpt 44241
[Fremlin1] p. 39Proposition 121F (e)smfliminf 44243  smfliminflem 44242  smfliminfmpt 44244
[Fremlin1] p. 80Definition 135E (b)df-smblfn 44116
[Fremlin5] p. 193Proposition 563Gbnulmbl2 24604
[Fremlin5] p. 213Lemma 565Cauniioovol 24647
[Fremlin5] p. 214Lemma 565Cauniioombl 24657
[Fremlin5] p. 218Lemma 565Ibftc1anclem6 35781
[Fremlin5] p. 220Theorem 565Maftc1anc 35784
[FreydScedrov] p. 283Axiom of Infinityax-inf 9325  inf1 9309  inf2 9310
[Gleason] p. 117Proposition 9-2.1df-enq 10597  enqer 10607
[Gleason] p. 117Proposition 9-2.2df-1nq 10602  df-nq 10598
[Gleason] p. 117Proposition 9-2.3df-plpq 10594  df-plq 10600
[Gleason] p. 119Proposition 9-2.4caovmo 7487  df-mpq 10595  df-mq 10601
[Gleason] p. 119Proposition 9-2.5df-rq 10603
[Gleason] p. 119Proposition 9-2.6ltexnq 10661
[Gleason] p. 120Proposition 9-2.6(i)halfnq 10662  ltbtwnnq 10664
[Gleason] p. 120Proposition 9-2.6(ii)ltanq 10657
[Gleason] p. 120Proposition 9-2.6(iii)ltmnq 10658
[Gleason] p. 120Proposition 9-2.6(iv)ltrnq 10665
[Gleason] p. 121Definition 9-3.1df-np 10667
[Gleason] p. 121Definition 9-3.1 (ii)prcdnq 10679
[Gleason] p. 121Definition 9-3.1(iii)prnmax 10681
[Gleason] p. 122Definitiondf-1p 10668
[Gleason] p. 122Remark (1)prub 10680
[Gleason] p. 122Lemma 9-3.4prlem934 10719
[Gleason] p. 122Proposition 9-3.2df-ltp 10671
[Gleason] p. 122Proposition 9-3.3ltsopr 10718  psslinpr 10717  supexpr 10740  suplem1pr 10738  suplem2pr 10739
[Gleason] p. 123Proposition 9-3.5addclpr 10704  addclprlem1 10702  addclprlem2 10703  df-plp 10669
[Gleason] p. 123Proposition 9-3.5(i)addasspr 10708
[Gleason] p. 123Proposition 9-3.5(ii)addcompr 10707
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 10720
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 10729  ltexprlem1 10722  ltexprlem2 10723  ltexprlem3 10724  ltexprlem4 10725  ltexprlem5 10726  ltexprlem6 10727  ltexprlem7 10728
[Gleason] p. 123Proposition 9-3.5(v)ltapr 10731  ltaprlem 10730
[Gleason] p. 123Proposition 9-3.5(vi)addcanpr 10732
[Gleason] p. 124Lemma 9-3.6prlem936 10733
[Gleason] p. 124Proposition 9-3.7df-mp 10670  mulclpr 10706  mulclprlem 10705  reclem2pr 10734
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 10715
[Gleason] p. 124Proposition 9-3.7(i)mulasspr 10710
[Gleason] p. 124Proposition 9-3.7(ii)mulcompr 10709
[Gleason] p. 124Proposition 9-3.7(iii)distrpr 10714
[Gleason] p. 124Proposition 9-3.7(v)recexpr 10737  reclem3pr 10735  reclem4pr 10736
[Gleason] p. 126Proposition 9-4.1df-enr 10741  enrer 10749
[Gleason] p. 126Proposition 9-4.2df-0r 10746  df-1r 10747  df-nr 10742
[Gleason] p. 126Proposition 9-4.3df-mr 10744  df-plr 10743  negexsr 10788  recexsr 10793  recexsrlem 10789
[Gleason] p. 127Proposition 9-4.4df-ltr 10745
[Gleason] p. 130Proposition 10-1.3creui 11897  creur 11896  cru 11894
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 10874  axcnre 10850
[Gleason] p. 132Definition 10-3.1crim 14753  crimd 14870  crimi 14831  crre 14752  crred 14869  crrei 14830
[Gleason] p. 132Definition 10-3.2remim 14755  remimd 14836
[Gleason] p. 133Definition 10.36absval2 14923  absval2d 15084  absval2i 15036
[Gleason] p. 133Proposition 10-3.4(a)cjadd 14779  cjaddd 14858  cjaddi 14826
[Gleason] p. 133Proposition 10-3.4(c)cjmul 14780  cjmuld 14859  cjmuli 14827
[Gleason] p. 133Proposition 10-3.4(e)cjcj 14778  cjcjd 14837  cjcji 14809
[Gleason] p. 133Proposition 10-3.4(f)cjre 14777  cjreb 14761  cjrebd 14840  cjrebi 14812  cjred 14864  rere 14760  rereb 14758  rerebd 14839  rerebi 14811  rered 14862
[Gleason] p. 133Proposition 10-3.4(h)addcj 14786  addcjd 14850  addcji 14821
[Gleason] p. 133Proposition 10-3.7(a)absval 14876
[Gleason] p. 133Proposition 10-3.7(b)abscj 14918  abscjd 15089  abscji 15040
[Gleason] p. 133Proposition 10-3.7(c)abs00 14928  abs00d 15085  abs00i 15037  absne0d 15086
[Gleason] p. 133Proposition 10-3.7(d)releabs 14960  releabsd 15090  releabsi 15041
[Gleason] p. 133Proposition 10-3.7(f)absmul 14933  absmuld 15093  absmuli 15043
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 14921  sqabsaddi 15044
[Gleason] p. 133Proposition 10-3.7(h)abstri 14969  abstrid 15095  abstrii 15047
[Gleason] p. 134Definition 10-4.1df-exp 13710  exp0 13713  expp1 13716  expp1d 13792
[Gleason] p. 135Proposition 10-4.2(a)cxpadd 25738  cxpaddd 25776  expadd 13752  expaddd 13793  expaddz 13754
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 25747  cxpmuld 25795  expmul 13755  expmuld 13794  expmulz 13756
[Gleason] p. 135Proposition 10-4.2(c)mulcxp 25744  mulcxpd 25787  mulexp 13749  mulexpd 13806  mulexpz 13750
[Gleason] p. 140Exercise 1znnen 15848
[Gleason] p. 141Definition 11-2.1fzval 13169
[Gleason] p. 168Proposition 12-2.1(a)climadd 15268  rlimadd 15279  rlimdiv 15284
[Gleason] p. 168Proposition 12-2.1(b)climsub 15270  rlimsub 15281
[Gleason] p. 168Proposition 12-2.1(c)climmul 15269  rlimmul 15282
[Gleason] p. 171Corollary 12-2.2climmulc2 15273
[Gleason] p. 172Corollary 12-2.5climrecl 15219
[Gleason] p. 172Proposition 12-2.4(c)climabs 15240  climcj 15241  climim 15243  climre 15242  rlimabs 15245  rlimcj 15246  rlimim 15248  rlimre 15247
[Gleason] p. 173Definition 12-3.1df-ltxr 10944  df-xr 10943  ltxr 12779
[Gleason] p. 175Definition 12-4.1df-limsup 15107  limsupval 15110
[Gleason] p. 180Theorem 12-5.1climsup 15308
[Gleason] p. 180Theorem 12-5.3caucvg 15317  caucvgb 15318  caucvgr 15314  climcau 15309
[Gleason] p. 182Exercise 3cvgcmp 15455
[Gleason] p. 182Exercise 4cvgrat 15522
[Gleason] p. 195Theorem 13-2.12abs1m 14974
[Gleason] p. 217Lemma 13-4.1btwnzge0 13475
[Gleason] p. 223Definition 14-1.1df-met 20503
[Gleason] p. 223Definition 14-1.1(a)met0 23403  xmet0 23402
[Gleason] p. 223Definition 14-1.1(b)metgt0 23419
[Gleason] p. 223Definition 14-1.1(c)metsym 23410
[Gleason] p. 223Definition 14-1.1(d)mettri 23412  mstri 23529  xmettri 23411  xmstri 23528
[Gleason] p. 225Definition 14-1.5xpsmet 23442
[Gleason] p. 230Proposition 14-2.6txlm 22706
[Gleason] p. 240Theorem 14-4.3metcnp4 24378
[Gleason] p. 240Proposition 14-4.2metcnp3 23601
[Gleason] p. 243Proposition 14-4.16addcn 23933  addcn2 15230  mulcn 23935  mulcn2 15232  subcn 23934  subcn2 15231
[Gleason] p. 295Remarkbcval3 13947  bcval4 13948
[Gleason] p. 295Equation 2bcpasc 13962
[Gleason] p. 295Definition of binomial coefficientbcval 13945  df-bc 13944
[Gleason] p. 296Remarkbcn0 13951  bcnn 13953
[Gleason] p. 296Theorem 15-2.8binom 15469
[Gleason] p. 308Equation 2ef0 15727
[Gleason] p. 308Equation 3efcj 15728
[Gleason] p. 309Corollary 15-4.3efne0 15733
[Gleason] p. 309Corollary 15-4.4efexp 15737
[Gleason] p. 310Equation 14sinadd 15800
[Gleason] p. 310Equation 15cosadd 15801
[Gleason] p. 311Equation 17sincossq 15812
[Gleason] p. 311Equation 18cosbnd 15817  sinbnd 15816
[Gleason] p. 311Lemma 15-4.7sqeqor 13859  sqeqori 13857
[Gleason] p. 311Definition of ` `df-pi 15709
[Godowski] p. 730Equation SFgoeqi 30535
[GodowskiGreechie] p. 249Equation IV3oai 29930
[Golan] p. 1Remarksrgisid 19678
[Golan] p. 1Definitiondf-srg 19656
[Golan] p. 149Definitiondf-slmd 31355
[Gonshor] p. 7Definitiondf-scut 33904
[Gonshor] p. 9Theorem 2.5slerec 33939
[Gonshor] p. 10Theorem 2.6cofcut1 34016
[Gonshor] p. 10Theorem 2.7cofcut2 34017
[Gonshor] p. 12Theorem 2.9cofcutr 34018
[Gonshor] p. 13Definitiondf-adds 34045
[GramKnuthPat], p. 47Definition 2.42df-fwddif 34387
[Gratzer] p. 23Section 0.6df-mre 17211
[Gratzer] p. 27Section 0.6df-mri 17213
[Hall] p. 1Section 1.1df-asslaw 45262  df-cllaw 45260  df-comlaw 45261
[Hall] p. 2Section 1.2df-clintop 45274
[Hall] p. 7Section 1.3df-sgrp2 45295
[Halmos] p. 31Theorem 17.3riesz1 30327  riesz2 30328
[Halmos] p. 41Definition of Hermitianhmopadj2 30203
[Halmos] p. 42Definition of projector orderingpjordi 30435
[Halmos] p. 43Theorem 26.1elpjhmop 30447  elpjidm 30446  pjnmopi 30410
[Halmos] p. 44Remarkpjinormi 29949  pjinormii 29938
[Halmos] p. 44Theorem 26.2elpjch 30451  pjrn 29969  pjrni 29964  pjvec 29958
[Halmos] p. 44Theorem 26.3pjnorm2 29989
[Halmos] p. 44Theorem 26.4hmopidmpj 30416  hmopidmpji 30414
[Halmos] p. 45Theorem 27.1pjinvari 30453
[Halmos] p. 45Theorem 27.3pjoci 30442  pjocvec 29959
[Halmos] p. 45Theorem 27.4pjorthcoi 30431
[Halmos] p. 48Theorem 29.2pjssposi 30434
[Halmos] p. 48Theorem 29.3pjssdif1i 30437  pjssdif2i 30436
[Halmos] p. 50Definition of spectrumdf-spec 30117
[Hamilton] p. 28Definition 2.1ax-1 6
[Hamilton] p. 31Example 2.7(a)idALT 23
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1803
[Hatcher] p. 25Definitiondf-phtpc 24060  df-phtpy 24039
[Hatcher] p. 26Definitiondf-pco 24073  df-pi1 24076
[Hatcher] p. 26Proposition 1.2phtpcer 24063
[Hatcher] p. 26Proposition 1.3pi1grp 24118
[Hefferon] p. 240Definition 3.12df-dmat 21546  df-dmatalt 45619
[Helfgott] p. 2Theoremtgoldbach 45149
[Helfgott] p. 4Corollary 1.1wtgoldbnnsum4prm 45134
[Helfgott] p. 4Section 1.2.2ax-hgprmladder 45146  bgoldbtbnd 45141  bgoldbtbnd 45141  tgblthelfgott 45147
[Helfgott] p. 5Proposition 1.1circlevma 32521
[Helfgott] p. 69Statement 7.49circlemethhgt 32522
[Helfgott] p. 69Statement 7.50hgt750lema 32536  hgt750lemb 32535  hgt750leme 32537  hgt750lemf 32532  hgt750lemg 32533
[Helfgott] p. 70Section 7.4ax-tgoldbachgt 45143  tgoldbachgt 32542  tgoldbachgtALTV 45144  tgoldbachgtd 32541
[Helfgott] p. 70Statement 7.49ax-hgt749 32523
[Herstein] p. 54Exercise 28df-grpo 28755
[Herstein] p. 55Lemma 2.2.1(a)grpideu 18502  grpoideu 28771  mndideu 18310
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 18528  grpoinveu 28781
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 18556  grpo2inv 28793
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 18567  grpoinvop 28795
[Herstein] p. 57Exercise 1dfgrp3e 18589
[Hitchcock] p. 5Rule A3mptnan 1776
[Hitchcock] p. 5Rule A4mptxor 1777
[Hitchcock] p. 5Rule A5mtpxor 1779
[Holland] p. 1519Theorem 2sumdmdi 30682
[Holland] p. 1520Lemma 5cdj1i 30695  cdj3i 30703  cdj3lem1 30696  cdjreui 30694
[Holland] p. 1524Lemma 7mddmdin0i 30693
[Holland95] p. 13Theorem 3.6hlathil 39905
[Holland95] p. 14Line 15hgmapvs 39831
[Holland95] p. 14Line 16hdmaplkr 39853
[Holland95] p. 14Line 17hdmapellkr 39854
[Holland95] p. 14Line 19hdmapglnm2 39851
[Holland95] p. 14Line 20hdmapip0com 39857
[Holland95] p. 14Theorem 3.6hdmapevec2 39776
[Holland95] p. 14Lines 24 and 25hdmapoc 39871
[Holland95] p. 204Definition of involutiondf-srng 20020
[Holland95] p. 212Definition of subspacedf-psubsp 37443
[Holland95] p. 214Lemma 3.3lclkrlem2v 39468
[Holland95] p. 214Definition 3.2df-lpolN 39421
[Holland95] p. 214Definition of nonsingularpnonsingN 37873
[Holland95] p. 215Lemma 3.3(1)dihoml4 39317  poml4N 37893
[Holland95] p. 215Lemma 3.3(2)dochexmid 39408  pexmidALTN 37918  pexmidN 37909
[Holland95] p. 218Theorem 3.6lclkr 39473
[Holland95] p. 218Definition of dual vector spacedf-ldual 37064  ldualset 37065
[Holland95] p. 222Item 1df-lines 37441  df-pointsN 37442
[Holland95] p. 222Item 2df-polarityN 37843
[Holland95] p. 223Remarkispsubcl2N 37887  omllaw4 37186  pol1N 37850  polcon3N 37857
[Holland95] p. 223Definitiondf-psubclN 37875
[Holland95] p. 223Equation for polaritypolval2N 37846
[Holmes] p. 40Definitiondf-xrn 36427
[Hughes] p. 44Equation 1.21bax-his3 29346
[Hughes] p. 47Definition of projection operatordfpjop 30444
[Hughes] p. 49Equation 1.30eighmre 30225  eigre 30097  eigrei 30096
[Hughes] p. 49Equation 1.31eighmorth 30226  eigorth 30100  eigorthi 30099
[Hughes] p. 137Remark (ii)eigposi 30098
[Huneke] p. 1Claim 1frgrncvvdeq 28573
[Huneke] p. 1Statement 1frgrncvvdeqlem7 28569
[Huneke] p. 1Statement 2frgrncvvdeqlem8 28570
[Huneke] p. 1Statement 3frgrncvvdeqlem9 28571
[Huneke] p. 2Claim 2frgrregorufr 28589  frgrregorufr0 28588  frgrregorufrg 28590
[Huneke] p. 2Claim 3frgrhash2wsp 28596  frrusgrord 28605  frrusgrord0 28604
[Huneke] p. 2Statementdf-clwwlknon 28352
[Huneke] p. 2Statement 4frgrwopreglem4 28579
[Huneke] p. 2Statement 5frgrwopreg1 28582  frgrwopreg2 28583  frgrwopregasn 28580  frgrwopregbsn 28581
[Huneke] p. 2Statement 6frgrwopreglem5 28585
[Huneke] p. 2Statement 7fusgreghash2wspv 28599
[Huneke] p. 2Statement 8fusgreghash2wsp 28602
[Huneke] p. 2Statement 9clwlksndivn 28350  numclwlk1 28635  numclwlk1lem1 28633  numclwlk1lem2 28634  numclwwlk1 28625  numclwwlk8 28656
[Huneke] p. 2Definition 3frgrwopreglem1 28576
[Huneke] p. 2Definition 4df-clwlks 28039
[Huneke] p. 2Definition 62clwwlk 28611
[Huneke] p. 2Definition 7numclwwlkovh 28637  numclwwlkovh0 28636
[Huneke] p. 2Statement 10numclwwlk2 28645
[Huneke] p. 2Statement 11rusgrnumwlkg 28242
[Huneke] p. 2Statement 12numclwwlk3 28649
[Huneke] p. 2Statement 13numclwwlk5 28652
[Huneke] p. 2Statement 14numclwwlk7 28655
[Indrzejczak] p. 33Definition ` `Enatded 28667  natded 28667
[Indrzejczak] p. 33Definition ` `Inatded 28667
[Indrzejczak] p. 34Definition ` `Enatded 28667  natded 28667
[Indrzejczak] p. 34Definition ` `Inatded 28667
[Jech] p. 4Definition of classcv 1542  cvjust 2733
[Jech] p. 42Lemma 6.1alephexp1 10265
[Jech] p. 42Equation 6.1alephadd 10263  alephmul 10264
[Jech] p. 43Lemma 6.2infmap 10262  infmap2 9904
[Jech] p. 71Lemma 9.3jech9.3 9502
[Jech] p. 72Equation 9.3scott0 9574  scottex 9573
[Jech] p. 72Exercise 9.1rankval4 9555
[Jech] p. 72Scheme "Collection Principle"cp 9579
[Jech] p. 78Noteopthprc 5642
[JonesMatijasevic] p. 694Definition 2.3rmxyval 40645
[JonesMatijasevic] p. 695Lemma 2.15jm2.15nn0 40733
[JonesMatijasevic] p. 695Lemma 2.16jm2.16nn0 40734
[JonesMatijasevic] p. 695Equation 2.7rmxadd 40657
[JonesMatijasevic] p. 695Equation 2.8rmyadd 40661
[JonesMatijasevic] p. 695Equation 2.9rmxp1 40662  rmyp1 40663
[JonesMatijasevic] p. 695Equation 2.10rmxm1 40664  rmym1 40665
[JonesMatijasevic] p. 695Equation 2.11rmx0 40655  rmx1 40656  rmxluc 40666
[JonesMatijasevic] p. 695Equation 2.12rmy0 40659  rmy1 40660  rmyluc 40667
[JonesMatijasevic] p. 695Equation 2.13rmxdbl 40669
[JonesMatijasevic] p. 695Equation 2.14rmydbl 40670
[JonesMatijasevic] p. 696Lemma 2.17jm2.17a 40690  jm2.17b 40691  jm2.17c 40692
[JonesMatijasevic] p. 696Lemma 2.19jm2.19 40723
[JonesMatijasevic] p. 696Lemma 2.20jm2.20nn 40727
[JonesMatijasevic] p. 696Theorem 2.18jm2.18 40718
[JonesMatijasevic] p. 697Lemma 2.24jm2.24 40693  jm2.24nn 40689
[JonesMatijasevic] p. 697Lemma 2.26jm2.26 40732
[JonesMatijasevic] p. 697Lemma 2.27jm2.27 40738  rmygeid 40694
[JonesMatijasevic] p. 698Lemma 3.1jm3.1 40750
[Juillerat] p. 11Section *5etransc 43706  etransclem47 43704  etransclem48 43705
[Juillerat] p. 12Equation (7)etransclem44 43701
[Juillerat] p. 12Equation *(7)etransclem46 43703
[Juillerat] p. 12Proof of the derivative calculatedetransclem32 43689
[Juillerat] p. 13Proofetransclem35 43692
[Juillerat] p. 13Part of case 2 proven inetransclem38 43695
[Juillerat] p. 13Part of case 2 provenetransclem24 43681
[Juillerat] p. 13Part of case 2: proven inetransclem41 43698
[Juillerat] p. 14Proofetransclem23 43680
[KalishMontague] p. 81Note 1ax-6 1976
[KalishMontague] p. 85Lemma 2equid 2020
[KalishMontague] p. 85Lemma 3equcomi 2025
[KalishMontague] p. 86Lemma 7cbvalivw 2015  cbvaliw 2014  wl-cbvmotv 35598  wl-motae 35600  wl-moteq 35599
[KalishMontague] p. 87Lemma 8spimvw 2004  spimw 1979
[KalishMontague] p. 87Lemma 9spfw 2041  spw 2042
[Kalmbach] p. 14Definition of latticechabs1 29778  chabs1i 29780  chabs2 29779  chabs2i 29781  chjass 29795  chjassi 29748  latabs1 18107  latabs2 18108
[Kalmbach] p. 15Definition of atomdf-at 30600  ela 30601
[Kalmbach] p. 15Definition of coverscvbr2 30545  cvrval2 37214
[Kalmbach] p. 16Definitiondf-ol 37118  df-oml 37119
[Kalmbach] p. 20Definition of commutescmbr 29846  cmbri 29852  cmtvalN 37151  df-cm 29845  df-cmtN 37117
[Kalmbach] p. 22Remarkomllaw5N 37187  pjoml5 29875  pjoml5i 29850
[Kalmbach] p. 22Definitionpjoml2 29873  pjoml2i 29847
[Kalmbach] p. 22Theorem 2(v)cmcm 29876  cmcmi 29854  cmcmii 29859  cmtcomN 37189
[Kalmbach] p. 22Theorem 2(ii)omllaw3 37185  omlsi 29666  pjoml 29698  pjomli 29697
[Kalmbach] p. 22Definition of OML lawomllaw2N 37184
[Kalmbach] p. 23Remarkcmbr2i 29858  cmcm3 29877  cmcm3i 29856  cmcm3ii 29861  cmcm4i 29857  cmt3N 37191  cmt4N 37192  cmtbr2N 37193
[Kalmbach] p. 23Lemma 3cmbr3 29870  cmbr3i 29862  cmtbr3N 37194
[Kalmbach] p. 25Theorem 5fh1 29880  fh1i 29883  fh2 29881  fh2i 29884  omlfh1N 37198
[Kalmbach] p. 65Remarkchjatom 30619  chslej 29760  chsleji 29720  shslej 29642  shsleji 29632
[Kalmbach] p. 65Proposition 1chocin 29757  chocini 29716  chsupcl 29602  chsupval2 29672  h0elch 29517  helch 29505  hsupval2 29671  ocin 29558  ococss 29555  shococss 29556
[Kalmbach] p. 65Definition of subspace sumshsval 29574
[Kalmbach] p. 66Remarkdf-pjh 29657  pjssmi 30427  pjssmii 29943
[Kalmbach] p. 67Lemma 3osum 29907  osumi 29904
[Kalmbach] p. 67Lemma 4pjci 30462
[Kalmbach] p. 103Exercise 6atmd2 30662
[Kalmbach] p. 103Exercise 12mdsl0 30572
[Kalmbach] p. 140Remarkhatomic 30622  hatomici 30621  hatomistici 30624
[Kalmbach] p. 140Proposition 1atlatmstc 37259
[Kalmbach] p. 140Proposition 1(i)atexch 30643  lsatexch 36983
[Kalmbach] p. 140Proposition 1(ii)chcv1 30617  cvlcvr1 37279  cvr1 37350
[Kalmbach] p. 140Proposition 1(iii)cvexch 30636  cvexchi 30631  cvrexch 37360
[Kalmbach] p. 149Remark 2chrelati 30626  hlrelat 37342  hlrelat5N 37341  lrelat 36954
[Kalmbach] p. 153Exercise 5lsmcv 20317  lsmsatcv 36950  spansncv 29915  spansncvi 29914
[Kalmbach] p. 153Proposition 1(ii)lsmcv2 36969  spansncv2 30555
[Kalmbach] p. 266Definitiondf-st 30473
[Kalmbach2] p. 8Definition of adjointdf-adjh 30111
[KanamoriPincus] p. 415Theorem 1.1fpwwe 10332  fpwwe2 10329
[KanamoriPincus] p. 416Corollary 1.3canth4 10333
[KanamoriPincus] p. 417Corollary 1.6canthp1 10340
[KanamoriPincus] p. 417Corollary 1.4(a)canthnum 10335
[KanamoriPincus] p. 417Corollary 1.4(b)canthwe 10337
[KanamoriPincus] p. 418Proposition 1.7pwfseq 10350
[KanamoriPincus] p. 419Lemma 2.2gchdjuidm 10354  gchxpidm 10355
[KanamoriPincus] p. 419Theorem 2.1gchacg 10366  gchhar 10365
[KanamoriPincus] p. 420Lemma 2.3pwdjudom 9902  unxpwdom 9277
[KanamoriPincus] p. 421Proposition 3.1gchpwdom 10356
[Kreyszig] p. 3Property M1metcl 23392  xmetcl 23391
[Kreyszig] p. 4Property M2meteq0 23399
[Kreyszig] p. 8Definition 1.1-8dscmet 23633
[Kreyszig] p. 12Equation 5conjmul 11621  muleqadd 11548
[Kreyszig] p. 18Definition 1.3-2mopnval 23498
[Kreyszig] p. 19Remarkmopntopon 23499
[Kreyszig] p. 19Theorem T1mopn0 23559  mopnm 23504
[Kreyszig] p. 19Theorem T2unimopn 23557
[Kreyszig] p. 19Definition of neighborhoodneibl 23562
[Kreyszig] p. 20Definition 1.3-3metcnp2 23603
[Kreyszig] p. 25Definition 1.4-1lmbr 22316  lmmbr 24326  lmmbr2 24327
[Kreyszig] p. 26Lemma 1.4-2(a)lmmo 22438
[Kreyszig] p. 28Theorem 1.4-5lmcau 24381
[Kreyszig] p. 28Definition 1.4-3iscau 24344  iscmet2 24362
[Kreyszig] p. 30Theorem 1.4-7cmetss 24384
[Kreyszig] p. 30Theorem 1.4-6(a)1stcelcls 22519  metelcls 24373
[Kreyszig] p. 30Theorem 1.4-6(b)metcld 24374  metcld2 24375
[Kreyszig] p. 51Equation 2clmvneg1 24167  lmodvneg1 20080  nvinv 28901  vcm 28838
[Kreyszig] p. 51Equation 1aclm0vs 24163  lmod0vs 20070  slmd0vs 31378  vc0 28836
[Kreyszig] p. 51Equation 1blmodvs0 20071  slmdvs0 31379  vcz 28837
[Kreyszig] p. 58Definition 2.2-1imsmet 28953  ngpmet 23664  nrmmetd 23635
[Kreyszig] p. 59Equation 1imsdval 28948  imsdval2 28949  ncvspds 24229  ngpds 23665
[Kreyszig] p. 63Problem 1nmval 23650  nvnd 28950
[Kreyszig] p. 64Problem 2nmeq0 23679  nmge0 23678  nvge0 28935  nvz 28931
[Kreyszig] p. 64Problem 3nmrtri 23685  nvabs 28934
[Kreyszig] p. 91Definition 2.7-1isblo3i 29063
[Kreyszig] p. 92Equation 2df-nmoo 29007
[Kreyszig] p. 97Theorem 2.7-9(a)blocn 29069  blocni 29067
[Kreyszig] p. 97Theorem 2.7-9(b)lnocni 29068
[Kreyszig] p. 129Definition 3.1-1cphipeq0 24272  ipeq0 20754  ipz 28981
[Kreyszig] p. 135Problem 2cphpyth 24284  pythi 29112
[Kreyszig] p. 137Lemma 3-2.1(a)sii 29116
[Kreyszig] p. 137Lemma 3.2-1(a)ipcau 24306
[Kreyszig] p. 144Equation 4supcvg 15495
[Kreyszig] p. 144Theorem 3.3-1minvec 24504  minveco 29146
[Kreyszig] p. 196Definition 3.9-1df-aj 29012
[Kreyszig] p. 247Theorem 4.7-2bcth 24397
[Kreyszig] p. 249Theorem 4.7-3ubth 29135
[Kreyszig] p. 470Definition of positive operator orderingleop 30385  leopg 30384
[Kreyszig] p. 476Theorem 9.4-2opsqrlem2 30403
[Kreyszig] p. 525Theorem 10.1-1htth 29180
[Kulpa] p. 547Theorempoimir 35736
[Kulpa] p. 547Equation (1)poimirlem32 35735
[Kulpa] p. 547Equation (2)poimirlem31 35734
[Kulpa] p. 548Theorembroucube 35737
[Kulpa] p. 548Equation (6)poimirlem26 35729
[Kulpa] p. 548Equation (7)poimirlem27 35730
[Kunen] p. 10Axiom 0ax6e 2384  axnul 5223
[Kunen] p. 11Axiom 3axnul 5223
[Kunen] p. 12Axiom 6zfrep6 7771
[Kunen] p. 24Definition 10.24mapval 8586  mapvalg 8584
[Kunen] p. 30Lemma 10.20fodomg 10208
[Kunen] p. 31Definition 10.24mapex 8580
[Kunen] p. 95Definition 2.1df-r1 9452
[Kunen] p. 97Lemma 2.10r1elss 9494  r1elssi 9493
[Kunen] p. 107Exercise 4rankop 9546  rankopb 9540  rankuni 9551  rankxplim 9567  rankxpsuc 9570
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 4934
[Lang] , p. 225Corollary 1.3finexttrb 31638
[Lang] p. Definitiondf-rn 5591
[Lang] p. 3Statementlidrideqd 18267  mndbn0 18315
[Lang] p. 3Definitiondf-mnd 18300
[Lang] p. 4Definition of a (finite) productgsumsplit1r 18285
[Lang] p. 4Property of composites. Second formulagsumccat 18394
[Lang] p. 5Equationgsumreidx 19432
[Lang] p. 5Definition of an (infinite) productgsumfsupp 45256
[Lang] p. 6Examplenn0mnd 45253
[Lang] p. 6Equationgsumxp2 19495
[Lang] p. 6Statementcycsubm 18735
[Lang] p. 6Definitionmulgnn0gsum 18624
[Lang] p. 6Observationmndlsmidm 19190
[Lang] p. 7Definitiondfgrp2e 18519
[Lang] p. 30Definitiondf-tocyc 31275
[Lang] p. 32Property (a)cyc3genpm 31320
[Lang] p. 32Property (b)cyc3conja 31325  cycpmconjv 31310
[Lang] p. 53Definitiondf-cat 17293
[Lang] p. 53Axiom CAT 1cat1 17727  cat1lem 17726
[Lang] p. 54Definitiondf-iso 17377
[Lang] p. 57Definitiondf-inito 17614  df-termo 17615
[Lang] p. 58Exampleirinitoringc 45507
[Lang] p. 58Statementinitoeu1 17641  termoeu1 17648
[Lang] p. 62Definitiondf-func 17488
[Lang] p. 65Definitiondf-nat 17574
[Lang] p. 91Notedf-ringc 45443
[Lang] p. 92Statementmxidlprm 31541
[Lang] p. 92Definitionisprmidlc 31524
[Lang] p. 128Remarkdsmmlmod 20861
[Lang] p. 129Prooflincscm 45651  lincscmcl 45653  lincsum 45650  lincsumcl 45652
[Lang] p. 129Statementlincolss 45655
[Lang] p. 129Observationdsmmfi 20854
[Lang] p. 141Theorem 5.3dimkerim 31609  qusdimsum 31610
[Lang] p. 141Corollary 5.4lssdimle 31592
[Lang] p. 147Definitionsnlindsntor 45692
[Lang] p. 504Statementmat1 21503  matring 21499
[Lang] p. 504Definitiondf-mamu 21442
[Lang] p. 505Statementmamuass 21458  mamutpos 21514  matassa 21500  mattposvs 21511  tposmap 21513
[Lang] p. 513Definitionmdet1 21657  mdetf 21651
[Lang] p. 513Theorem 4.4cramer 21747
[Lang] p. 514Proposition 4.6mdetleib 21643
[Lang] p. 514Proposition 4.8mdettpos 21667
[Lang] p. 515Definitiondf-minmar1 21691  smadiadetr 21731
[Lang] p. 515Corollary 4.9mdetero 21666  mdetralt 21664
[Lang] p. 517Proposition 4.15mdetmul 21679
[Lang] p. 518Definitiondf-madu 21690
[Lang] p. 518Proposition 4.16madulid 21701  madurid 21700  matinv 21733
[Lang] p. 561Theorem 3.1cayleyhamilton 21946
[Lang], p. 224Proposition 1.2extdgmul 31637  fedgmul 31613
[Lang], p. 561Remarkchpmatply1 21888
[Lang], p. 561Definitiondf-chpmat 21883
[LarsonHostetlerEdwards] p. 278Section 4.1dvconstbi 41833
[LarsonHostetlerEdwards] p. 311Example 1alhe4.4ex1a 41828
[LarsonHostetlerEdwards] p. 375Theorem 5.1expgrowth 41834
[LeBlanc] p. 277Rule R2axnul 5223
[Levy] p. 12Axiom 4.3.1df-clab 2717
[Levy] p. 59Definitiondf-ttrcl 33693
[Levy] p. 64Theorem 5.6(ii)frinsg 9439
[Levy] p. 338Axiomdf-clel 2818  df-cleq 2731
[Levy] p. 357Proof sketch of conservativity; for details see Appendixdf-clel 2818  df-cleq 2731
[Levy] p. 357Statements yield an eliminable and weakly (that is, object-level) conservative extension of FOL= plus ~ ax-ext , see Appendixdf-clab 2717
[Levy] p. 358Axiomdf-clab 2717
[Levy58] p. 2Definition Iisfin1-3 10072
[Levy58] p. 2Definition IIdf-fin2 9972
[Levy58] p. 2Definition Iadf-fin1a 9971
[Levy58] p. 2Definition IIIdf-fin3 9974
[Levy58] p. 3Definition Vdf-fin5 9975
[Levy58] p. 3Definition IVdf-fin4 9973
[Levy58] p. 4Definition VIdf-fin6 9976
[Levy58] p. 4Definition VIIdf-fin7 9977
[Levy58], p. 3Theorem 1fin1a2 10101
[Lipparini] p. 3Lemma 2.1.1nosepssdm 33815
[Lipparini] p. 3Lemma 2.1.4noresle 33826
[Lipparini] p. 6Proposition 4.2noinfbnd1 33858  nosupbnd1 33843
[Lipparini] p. 6Proposition 4.3noinfbnd2 33860  nosupbnd2 33845
[Lipparini] p. 7Theorem 5.1noetasuplem3 33864  noetasuplem4 33865
[Lipparini] p. 7Corollary 4.4nosupinfsep 33861
[Lopez-Astorga] p. 12Rule 1mptnan 1776
[Lopez-Astorga] p. 12Rule 2mptxor 1777
[Lopez-Astorga] p. 12Rule 3mtpxor 1779
[Maeda] p. 167Theorem 1(d) to (e)mdsymlem6 30670
[Maeda] p. 168Lemma 5mdsym 30674  mdsymi 30673
[Maeda] p. 168Lemma 4(i)mdsymlem4 30668  mdsymlem6 30670  mdsymlem7 30671
[Maeda] p. 168Lemma 4(ii)mdsymlem8 30672
[MaedaMaeda] p. 1Remarkssdmd1 30575  ssdmd2 30576  ssmd1 30573  ssmd2 30574
[MaedaMaeda] p. 1Lemma 1.2mddmd2 30571
[MaedaMaeda] p. 1Definition 1.1df-dmd 30543  df-md 30542  mdbr 30556
[MaedaMaeda] p. 2Lemma 1.3mdsldmd1i 30593  mdslj1i 30581  mdslj2i 30582  mdslle1i 30579  mdslle2i 30580  mdslmd1i 30591  mdslmd2i 30592
[MaedaMaeda] p. 2Lemma 1.4mdsl1i 30583  mdsl2bi 30585  mdsl2i 30584
[MaedaMaeda] p. 2Lemma 1.6mdexchi 30597
[MaedaMaeda] p. 2Lemma 1.5.1mdslmd3i 30594
[MaedaMaeda] p. 2Lemma 1.5.2mdslmd4i 30595
[MaedaMaeda] p. 2Lemma 1.5.3mdsl0 30572
[MaedaMaeda] p. 2Theorem 1.3dmdsl3 30577  mdsl3 30578
[MaedaMaeda] p. 3Theorem 1.9.1csmdsymi 30596
[MaedaMaeda] p. 4Theorem 1.14mdcompli 30691
[MaedaMaeda] p. 30Lemma 7.2atlrelat1 37261  hlrelat1 37340
[MaedaMaeda] p. 31Lemma 7.5lcvexch 36979
[MaedaMaeda] p. 31Lemma 7.5.1cvmd 30598  cvmdi 30586  cvnbtwn4 30551  cvrnbtwn4 37219
[MaedaMaeda] p. 31Lemma 7.5.2cvdmd 30599
[MaedaMaeda] p. 31Definition 7.4cvlcvrp 37280  cvp 30637  cvrp 37356  lcvp 36980
[MaedaMaeda] p. 31Theorem 7.6(b)atmd 30661
[MaedaMaeda] p. 31Theorem 7.6(c)atdmd 30660
[MaedaMaeda] p. 32Definition 7.8cvlexch4N 37273  hlexch4N 37332
[MaedaMaeda] p. 34Exercise 7.1atabsi 30663
[MaedaMaeda] p. 41Lemma 9.2(delta)cvrat4 37383
[MaedaMaeda] p. 61Definition 15.10psubN 37689  atpsubN 37693  df-pointsN 37442  pointpsubN 37691
[MaedaMaeda] p. 62Theorem 15.5df-pmap 37444  pmap11 37702  pmaple 37701  pmapsub 37708  pmapval 37697
[MaedaMaeda] p. 62Theorem 15.5.1pmap0 37705  pmap1N 37707
[MaedaMaeda] p. 62Theorem 15.5.2pmapglb 37710  pmapglb2N 37711  pmapglb2xN 37712  pmapglbx 37709
[MaedaMaeda] p. 63Equation 15.5.3pmapjoin 37792
[MaedaMaeda] p. 67Postulate PS1ps-1 37417
[MaedaMaeda] p. 68Lemma 16.2df-padd 37736  paddclN 37782  paddidm 37781
[MaedaMaeda] p. 68Condition PS2ps-2 37418
[MaedaMaeda] p. 68Equation 16.2.1paddass 37778
[MaedaMaeda] p. 69Lemma 16.4ps-1 37417
[MaedaMaeda] p. 69Theorem 16.4ps-2 37418
[MaedaMaeda] p. 70Theorem 16.9lsmmod 19195  lsmmod2 19196  lssats 36952  shatomici 30620  shatomistici 30623  shmodi 29652  shmodsi 29651
[MaedaMaeda] p. 130Remark 29.6dmdmd 30562  mdsymlem7 30671
[MaedaMaeda] p. 132Theorem 29.13(e)pjoml6i 29851
[MaedaMaeda] p. 136Lemma 31.1.5shjshseli 29755
[MaedaMaeda] p. 139Remarksumdmdii 30677
[Margaris] p. 40Rule Cexlimiv 1938
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3ax-3 8
[Margaris] p. 49Definitiondf-an 400  df-ex 1788  df-or 848  dfbi2 478
[Margaris] p. 51Theorem 1idALT 23
[Margaris] p. 56Theorem 3conventions 28664
[Margaris] p. 59Section 14notnotrALTVD 42416
[Margaris] p. 60Theorem 8jcn 165
[Margaris] p. 60Section 14con3ALTVD 42417
[Margaris] p. 79Rule Cexinst01 42126  exinst11 42127
[Margaris] p. 89Theorem 19.219.2 1985  19.2g 2187  r19.2z 4423
[Margaris] p. 89Theorem 19.319.3 2202  rr19.3v 3592
[Margaris] p. 89Theorem 19.5alcom 2162
[Margaris] p. 89Theorem 19.6alex 1833
[Margaris] p. 89Theorem 19.7alnex 1789
[Margaris] p. 89Theorem 19.819.8a 2180
[Margaris] p. 89Theorem 19.919.9 2205  19.9h 2289  exlimd 2218  exlimdh 2293
[Margaris] p. 89Theorem 19.11excom 2168  excomim 2169
[Margaris] p. 89Theorem 19.1219.12 2328
[Margaris] p. 90Section 19conventions-labels 28665  conventions-labels 28665  conventions-labels 28665  conventions-labels 28665
[Margaris] p. 90Theorem 19.14exnal 1834
[Margaris] p. 90Theorem 19.152albi 41877  albi 1826
[Margaris] p. 90Theorem 19.1619.16 2225
[Margaris] p. 90Theorem 19.1719.17 2226
[Margaris] p. 90Theorem 19.182exbi 41879  exbi 1854
[Margaris] p. 90Theorem 19.1919.19 2229
[Margaris] p. 90Theorem 19.202alim 41876  2alimdv 1926  alimd 2212  alimdh 1825  alimdv 1924  ax-4 1817  ralimdaa 3141  ralimdv 3104  ralimdva 3103  ralimdvva 3105  sbcimdv 3787
[Margaris] p. 90Theorem 19.2119.21 2207  19.21h 2290  19.21t 2206  19.21vv 41875  alrimd 2215  alrimdd 2214  alrimdh 1871  alrimdv 1937  alrimi 2213  alrimih 1831  alrimiv 1935  alrimivv 1936  hbralrimi 3106  r19.21be 3134  r19.21bi 3133  ralrimd 3142  ralrimdv 3112  ralrimdva 3113  ralrimdvv 3117  ralrimdvva 3118  ralrimi 3140  ralrimia 3421  ralrimiv 3107  ralrimiva 3108  ralrimivv 3114  ralrimivva 3115  ralrimivvva 3116  ralrimivw 3109
[Margaris] p. 90Theorem 19.222exim 41878  2eximdv 1927  exim 1841  eximd 2216  eximdh 1872  eximdv 1925  rexim 3169  reximd2a 3241  reximdai 3240  reximdd 42582  reximddv 3204  reximddv2 3207  reximddv3 42581  reximdv 3202  reximdv2 3199  reximdva 3203  reximdvai 3200  reximdvva 3206  reximi2 3172
[Margaris] p. 90Theorem 19.2319.23 2211  19.23bi 2190  19.23h 2291  19.23t 2210  exlimdv 1941  exlimdvv 1942  exlimexi 42025  exlimiv 1938  exlimivv 1940  rexlimd3 42574  rexlimdv 3212  rexlimdv3a 3215  rexlimdva 3213  rexlimdva2 3216  rexlimdvaa 3214  rexlimdvv 3222  rexlimdvva 3223  rexlimdvw 3219  rexlimiv 3209  rexlimiva 3210  rexlimivv 3221
[Margaris] p. 90Theorem 19.2419.24 1994
[Margaris] p. 90Theorem 19.2519.25 1888
[Margaris] p. 90Theorem 19.2619.26 1878
[Margaris] p. 90Theorem 19.2719.27 2227  r19.27z 4433  r19.27zv 4434
[Margaris] p. 90Theorem 19.2819.28 2228  19.28vv 41885  r19.28z 4426  r19.28zv 4429  rr19.28v 3593
[Margaris] p. 90Theorem 19.2919.29 1881  r19.29d2r 3263  r19.29imd 3186
[Margaris] p. 90Theorem 19.3019.30 1889
[Margaris] p. 90Theorem 19.3119.31 2234  19.31vv 41883
[Margaris] p. 90Theorem 19.3219.32 2233  r19.32 44469
[Margaris] p. 90Theorem 19.3319.33-2 41881  19.33 1892
[Margaris] p. 90Theorem 19.3419.34 1995
[Margaris] p. 90Theorem 19.3519.35 1885
[Margaris] p. 90Theorem 19.3619.36 2230  19.36vv 41882  r19.36zv 4435
[Margaris] p. 90Theorem 19.3719.37 2232  19.37vv 41884  r19.37zv 4430
[Margaris] p. 90Theorem 19.3819.38 1846
[Margaris] p. 90Theorem 19.3919.39 1993
[Margaris] p. 90Theorem 19.4019.40-2 1895  19.40 1894  r19.40 3274
[Margaris] p. 90Theorem 19.4119.41 2235  19.41rg 42051
[Margaris] p. 90Theorem 19.4219.42 2236
[Margaris] p. 90Theorem 19.4319.43 1890
[Margaris] p. 90Theorem 19.4419.44 2237  r19.44zv 4432
[Margaris] p. 90Theorem 19.4519.45 2238  r19.45zv 4431
[Margaris] p. 110Exercise 2(b)eu1 2613
[Mayet] p. 370Remarkjpi 30532  largei 30529  stri 30519
[Mayet3] p. 9Definition of CH-statesdf-hst 30474  ishst 30476
[Mayet3] p. 10Theoremhstrbi 30528  hstri 30527
[Mayet3] p. 1223Theorem 4.1mayete3i 29990
[Mayet3] p. 1240Theorem 7.1mayetes3i 29991
[MegPav2000] p. 2344Theorem 3.3stcltrthi 30540
[MegPav2000] p. 2345Definition 3.4-1chintcl 29594  chsupcl 29602
[MegPav2000] p. 2345Definition 3.4-2hatomic 30622
[MegPav2000] p. 2345Definition 3.4-3(a)superpos 30616
[MegPav2000] p. 2345Definition 3.4-3(b)atexch 30643
[MegPav2000] p. 2366Figure 7pl42N 37923
[MegPav2002] p. 362Lemma 2.2latj31 18119  latj32 18117  latjass 18115
[Megill] p. 444Axiom C5ax-5 1918  ax5ALT 36847
[Megill] p. 444Section 7conventions 28664
[Megill] p. 445Lemma L12aecom-o 36841  ax-c11n 36828  axc11n 2427
[Megill] p. 446Lemma L17equtrr 2030
[Megill] p. 446Lemma L18ax6fromc10 36836
[Megill] p. 446Lemma L19hbnae-o 36868  hbnae 2433
[Megill] p. 447Remark 9.1dfsb1 2486  sbid 2255  sbidd-misc 46299  sbidd 46298
[Megill] p. 448Remark 9.6axc14 2464
[Megill] p. 448Scheme C4'ax-c4 36824
[Megill] p. 448Scheme C5'ax-c5 36823  sp 2182
[Megill] p. 448Scheme C6'ax-11 2160
[Megill] p. 448Scheme C7'ax-c7 36825
[Megill] p. 448Scheme C8'ax-7 2016
[Megill] p. 448Scheme C9'ax-c9 36830
[Megill] p. 448Scheme C10'ax-6 1976  ax-c10 36826
[Megill] p. 448Scheme C11'ax-c11 36827
[Megill] p. 448Scheme C12'ax-8 2114
[Megill] p. 448Scheme C13'ax-9 2122
[Megill] p. 448Scheme C14'ax-c14 36831
[Megill] p. 448Scheme C15'ax-c15 36829
[Megill] p. 448Scheme C16'ax-c16 36832
[Megill] p. 448Theorem 9.4dral1-o 36844  dral1 2440  dral2-o 36870  dral2 2439  drex1 2442  drex2 2443  drsb1 2500  drsb2 2265
[Megill] p. 449Theorem 9.7sbcom2 2167  sbequ 2091  sbid2v 2514
[Megill] p. 450Example in Appendixhba1-o 36837  hba1 2296
[Mendelson] p. 35Axiom A3hirstL-ax3 44266
[Mendelson] p. 36Lemma 1.8idALT 23
[Mendelson] p. 69Axiom 4rspsbc 3809  rspsbca 3810  stdpc4 2076
[Mendelson] p. 69Axiom 5ax-c4 36824  ra4 3816  stdpc5 2208
[Mendelson] p. 81Rule Cexlimiv 1938
[Mendelson] p. 95Axiom 6stdpc6 2036
[Mendelson] p. 95Axiom 7stdpc7 2250
[Mendelson] p. 225Axiom system NBGru 3711
[Mendelson] p. 230Exercise 4.8(b)opthwiener 5422
[Mendelson] p. 231Exercise 4.10(k)inv1 4326
[Mendelson] p. 231Exercise 4.10(l)unv 4327
[Mendelson] p. 231Exercise 4.10(n)dfin3 4198
[Mendelson] p. 231Exercise 4.10(o)df-nul 4255
[Mendelson] p. 231Exercise 4.10(q)dfin4 4199
[Mendelson] p. 231Exercise 4.10(s)ddif 4068
[Mendelson] p. 231Definition of uniondfun3 4197
[Mendelson] p. 235Exercise 4.12(c)univ 5361
[Mendelson] p. 235Exercise 4.12(d)pwv 4834
[Mendelson] p. 235Exercise 4.12(j)pwin 5474
[Mendelson] p. 235Exercise 4.12(k)pwunss 4551
[Mendelson] p. 235Exercise 4.12(l)pwssun 5476
[Mendelson] p. 235Exercise 4.12(n)uniin 4863
[Mendelson] p. 235Exercise 4.12(p)reli 5725
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 6161
[Mendelson] p. 244Proposition 4.8(g)epweon 7603
[Mendelson] p. 246Definition of successordf-suc 6257
[Mendelson] p. 250Exercise 4.36oelim2 8389
[Mendelson] p. 254Proposition 4.22(b)xpen 8877
[Mendelson] p. 254Proposition 4.22(c)xpsnen 8797  xpsneng 8798
[Mendelson] p. 254Proposition 4.22(d)xpcomen 8804  xpcomeng 8805
[Mendelson] p. 254Proposition 4.22(e)xpassen 8807
[Mendelson] p. 255Definitionbrsdom 8719
[Mendelson] p. 255Exercise 4.39endisj 8800
[Mendelson] p. 255Exercise 4.41mapprc 8578
[Mendelson] p. 255Exercise 4.43mapsnen 8782  mapsnend 8781
[Mendelson] p. 255Exercise 4.45mapunen 8883
[Mendelson] p. 255Exercise 4.47xpmapen 8882
[Mendelson] p. 255Exercise 4.42(a)map0e 8629
[Mendelson] p. 255Exercise 4.42(b)map1 8785
[Mendelson] p. 257Proposition 4.24(a)undom 8801
[Mendelson] p. 258Exercise 4.56(c)djuassen 9864  djucomen 9863
[Mendelson] p. 258Exercise 4.56(f)djudom1 9868
[Mendelson] p. 258Exercise 4.56(g)xp2dju 9862
[Mendelson] p. 266Proposition 4.34(a)oa1suc 8324
[Mendelson] p. 266Proposition 4.34(f)oaordex 8352
[Mendelson] p. 275Proposition 4.42(d)entri3 10245
[Mendelson] p. 281Definitiondf-r1 9452
[Mendelson] p. 281Proposition 4.45 (b) to (a)unir1 9501
[Mendelson] p. 287Axiom system MKru 3711
[MertziosUnger] p. 152Definitiondf-frgr 28523
[MertziosUnger] p. 153Remark 1frgrconngr 28558
[MertziosUnger] p. 153Remark 2vdgn1frgrv2 28560  vdgn1frgrv3 28561
[MertziosUnger] p. 153Remark 3vdgfrgrgt2 28562
[MertziosUnger] p. 153Proposition 1(a)n4cyclfrgr 28555
[MertziosUnger] p. 153Proposition 1(b)2pthfrgr 28548  2pthfrgrrn 28546  2pthfrgrrn2 28547
[Mittelstaedt] p. 9Definitiondf-oc 29514
[Monk1] p. 22Remarkconventions 28664
[Monk1] p. 22Theorem 3.1conventions 28664
[Monk1] p. 26Theorem 2.8(vii)ssin 4162
[Monk1] p. 33Theorem 3.2(i)ssrel 5683  ssrelf 30855
[Monk1] p. 33Theorem 3.2(ii)eqrel 5684
[Monk1] p. 34Definition 3.3df-opab 5134
[Monk1] p. 36Theorem 3.7(i)coi1 6155  coi2 6156
[Monk1] p. 36Theorem 3.8(v)dm0 5818  rn0 5824
[Monk1] p. 36Theorem 3.7(ii)cnvi 6034
[Monk1] p. 37Theorem 3.13(i)relxp 5598
[Monk1] p. 37Theorem 3.13(x)dmxp 5827  rnxp 6062
[Monk1] p. 37Theorem 3.13(ii)0xp 5675  xp0 6050
[Monk1] p. 38Theorem 3.16(ii)ima0 5974
[Monk1] p. 38Theorem 3.16(viii)imai 5971
[Monk1] p. 39Theorem 3.17imaex 7737  imaexALTV 36391  imaexg 7736
[Monk1] p. 39Theorem 3.16(xi)imassrn 5969
[Monk1] p. 41Theorem 4.3(i)fnopfv 6935  funfvop 6909
[Monk1] p. 42Theorem 4.3(ii)funopfvb 6807
[Monk1] p. 42Theorem 4.4(iii)fvelima 6817
[Monk1] p. 43Theorem 4.6funun 6464
[Monk1] p. 43Theorem 4.8(iv)dff13 7109  dff13f 7110
[Monk1] p. 46Theorem 4.15(v)funex 7077  funrnex 7770
[Monk1] p. 50Definition 5.4fniunfv 7102
[Monk1] p. 52Theorem 5.12(ii)op2ndb 6119
[Monk1] p. 52Theorem 5.11(viii)ssint 4893
[Monk1] p. 52Definition 5.13 (i)1stval2 7821  df-1st 7804
[Monk1] p. 52Definition 5.13 (ii)2ndval2 7822  df-2nd 7805
[Monk1] p. 112Theorem 15.17(v)ranksn 9542  ranksnb 9515
[Monk1] p. 112Theorem 15.17(iv)rankuni2 9543
[Monk1] p. 112Theorem 15.17(iii)rankun 9544  rankunb 9538
[Monk1] p. 113Theorem 15.18r1val3 9526
[Monk1] p. 113Definition 15.19df-r1 9452  r1val2 9525
[Monk1] p. 117Lemmazorn2 10192  zorn2g 10189
[Monk1] p. 133Theorem 18.11cardom 9674
[Monk1] p. 133Theorem 18.12canth3 10247
[Monk1] p. 133Theorem 18.14carduni 9669
[Monk2] p. 105Axiom C4ax-4 1817
[Monk2] p. 105Axiom C7ax-7 2016
[Monk2] p. 105Axiom C8ax-12 2177  ax-c15 36829  ax12v2 2179
[Monk2] p. 108Lemma 5ax-c4 36824
[Monk2] p. 109Lemma 12ax-11 2160
[Monk2] p. 109Lemma 15equvini 2456  equvinv 2037  eqvinop 5395
[Monk2] p. 113Axiom C5-1ax-5 1918  ax5ALT 36847
[Monk2] p. 113Axiom C5-2ax-10 2143
[Monk2] p. 113Axiom C5-3ax-11 2160
[Monk2] p. 114Lemma 21sp 2182
[Monk2] p. 114Lemma 22axc4 2322  hba1-o 36837  hba1 2296
[Monk2] p. 114Lemma 23nfia1 2156
[Monk2] p. 114Lemma 24nfa2 2176  nfra2 3155  nfra2w 3152
[Moore] p. 53Part Idf-mre 17211
[Munkres] p. 77Example 2distop 22052  indistop 22059  indistopon 22058
[Munkres] p. 77Example 3fctop 22061  fctop2 22062
[Munkres] p. 77Example 4cctop 22063
[Munkres] p. 78Definition of basisdf-bases 22003  isbasis3g 22006
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 17070  tgval2 22013
[Munkres] p. 79Remarktgcl 22026
[Munkres] p. 80Lemma 2.1tgval3 22020
[Munkres] p. 80Lemma 2.2tgss2 22044  tgss3 22043
[Munkres] p. 81Lemma 2.3basgen 22045  basgen2 22046
[Munkres] p. 83Exercise 3topdifinf 35446  topdifinfeq 35447  topdifinffin 35445  topdifinfindis 35443
[Munkres] p. 89Definition of subspace topologyresttop 22218
[Munkres] p. 93Theorem 6.1(1)0cld 22096  topcld 22093
[Munkres] p. 93Theorem 6.1(2)iincld 22097
[Munkres] p. 93Theorem 6.1(3)uncld 22099
[Munkres] p. 94Definition of closureclsval 22095
[Munkres] p. 94Definition of interiorntrval 22094
[Munkres] p. 95Theorem 6.5(a)clsndisj 22133  elcls 22131
[Munkres] p. 95Theorem 6.5(b)elcls3 22141
[Munkres] p. 97Theorem 6.6clslp 22206  neindisj 22175
[Munkres] p. 97Corollary 6.7cldlp 22208
[Munkres] p. 97Definition of limit pointislp2 22203  lpval 22197
[Munkres] p. 98Definition of Hausdorff spacedf-haus 22373
[Munkres] p. 102Definition of continuous functiondf-cn 22285  iscn 22293  iscn2 22296
[Munkres] p. 107Theorem 7.2(g)cncnp 22338  cncnp2 22339  cncnpi 22336  df-cnp 22286  iscnp 22295  iscnp2 22297
[Munkres] p. 127Theorem 10.1metcn 23604
[Munkres] p. 128Theorem 10.3metcn4 24379
[Nathanson] p. 123Remarkreprgt 32500  reprinfz1 32501  reprlt 32498
[Nathanson] p. 123Definitiondf-repr 32488
[Nathanson] p. 123Chapter 5.1circlemethnat 32520
[Nathanson] p. 123Propositionbreprexp 32512  breprexpnat 32513  itgexpif 32485
[NielsenChuang] p. 195Equation 4.73unierri 30366
[OeSilva] p. 2042Section 2ax-bgbltosilva 45142
[Pfenning] p. 17Definition XMnatded 28667
[Pfenning] p. 17Definition NNCnatded 28667  notnotrd 135
[Pfenning] p. 17Definition ` `Cnatded 28667
[Pfenning] p. 18Rule"natded 28667
[Pfenning] p. 18Definition /\Inatded 28667
[Pfenning] p. 18Definition ` `Enatded 28667  natded 28667  natded 28667  natded 28667  natded 28667
[Pfenning] p. 18Definition ` `Inatded 28667  natded 28667  natded 28667  natded 28667  natded 28667
[Pfenning] p. 18Definition ` `ELnatded 28667
[Pfenning] p. 18Definition ` `ERnatded 28667
[Pfenning] p. 18Definition ` `Ea,unatded 28667
[Pfenning] p. 18Definition ` `IRnatded 28667
[Pfenning] p. 18Definition ` `Ianatded 28667
[Pfenning] p. 127Definition =Enatded 28667
[Pfenning] p. 127Definition =Inatded 28667
[Ponnusamy] p. 361Theorem 6.44cphip0l 24270  df-dip 28963  dip0l 28980  ip0l 20752
[Ponnusamy] p. 361Equation 6.45cphipval 24311  ipval 28965
[Ponnusamy] p. 362Equation I1dipcj 28976  ipcj 20750
[Ponnusamy] p. 362Equation I3cphdir 24273  dipdir 29104  ipdir 20755  ipdiri 29092
[Ponnusamy] p. 362Equation I4ipidsq 28972  nmsq 24262
[Ponnusamy] p. 362Equation 6.46ip0i 29087
[Ponnusamy] p. 362Equation 6.47ip1i 29089
[Ponnusamy] p. 362Equation 6.48ip2i 29090
[Ponnusamy] p. 363Equation I2cphass 24279  dipass 29107  ipass 20761  ipassi 29103
[Prugovecki] p. 186Definition of brabraval 30206  df-bra 30112
[Prugovecki] p. 376Equation 8.1df-kb 30113  kbval 30216
[PtakPulmannova] p. 66Proposition 3.2.17atomli 30644
[PtakPulmannova] p. 68Lemma 3.1.4df-pclN 37828
[PtakPulmannova] p. 68Lemma 3.2.20atcvat3i 30658  atcvat4i 30659  cvrat3 37382  cvrat4 37383  lsatcvat3 36992
[PtakPulmannova] p. 68Definition 3.2.18cvbr 30544  cvrval 37209  df-cv 30541  df-lcv 36959  lspsncv0 20322
[PtakPulmannova] p. 72Lemma 3.3.6pclfinN 37840
[PtakPulmannova] p. 74Lemma 3.3.10pclcmpatN 37841
[Quine] p. 16Definition 2.1df-clab 2717  rabid 3305
[Quine] p. 17Definition 2.1''dfsb7 2282
[Quine] p. 18Definition 2.7df-cleq 2731
[Quine] p. 19Definition 2.9conventions 28664  df-v 3425
[Quine] p. 34Theorem 5.1abeq2 2872
[Quine] p. 35Theorem 5.2abid1 2881  abid2f 2939
[Quine] p. 40Theorem 6.1sb5 2274
[Quine] p. 40Theorem 6.2sb6 2093  sbalex 2242
[Quine] p. 41Theorem 6.3df-clel 2818
[Quine] p. 41Theorem 6.4eqid 2739  eqid1 28731
[Quine] p. 41Theorem 6.5eqcom 2746
[Quine] p. 42Theorem 6.6df-sbc 3713
[Quine] p. 42Theorem 6.7dfsbcq 3714  dfsbcq2 3715
[Quine] p. 43Theorem 6.8vex 3427
[Quine] p. 43Theorem 6.9isset 3436
[Quine] p. 44Theorem 7.3spcgf 3521  spcgv 3526  spcimgf 3519
[Quine] p. 44Theorem 6.11spsbc 3725  spsbcd 3726
[Quine] p. 44Theorem 6.12elex 3441
[Quine] p. 44Theorem 6.13elab 3603  elabg 3601  elabgf 3599
[Quine] p. 44Theorem 6.14noel 4262
[Quine] p. 48Theorem 7.2snprc 4651
[Quine] p. 48Definition 7.1df-pr 4562  df-sn 4560
[Quine] p. 49Theorem 7.4snss 4717  snssg 4716
[Quine] p. 49Theorem 7.5prss 4751  prssg 4750
[Quine] p. 49Theorem 7.6prid1 4696  prid1g 4694  prid2 4697  prid2g 4695  snid 4595  snidg 4593
[Quine] p. 51Theorem 7.12snex 5349
[Quine] p. 51Theorem 7.13prex 5350
[Quine] p. 53Theorem 8.2unisn 4859  unisnALT 42427  unisng 4858
[Quine] p. 53Theorem 8.3uniun 4862
[Quine] p. 54Theorem 8.6elssuni 4869
[Quine] p. 54Theorem 8.7uni0 4867
[Quine] p. 56Theorem 8.17uniabio 6391
[Quine] p. 56Definition 8.18dfaiota2 44457  dfiota2 6377
[Quine] p. 57Theorem 8.19aiotaval 44466  iotaval 6392
[Quine] p. 57Theorem 8.22iotanul 6396
[Quine] p. 58Theorem 8.23iotaex 6398
[Quine] p. 58Definition 9.1df-op 4566
[Quine] p. 61Theorem 9.5opabid 5432  opabidw 5431  opelopab 5448  opelopaba 5442  opelopabaf 5450  opelopabf 5451  opelopabg 5444  opelopabga 5439  opelopabgf 5446  oprabid 7287  oprabidw 7286
[Quine] p. 64Definition 9.11df-xp 5586
[Quine] p. 64Definition 9.12df-cnv 5588
[Quine] p. 64Definition 9.15df-id 5480
[Quine] p. 65Theorem 10.3fun0 6483
[Quine] p. 65Theorem 10.4funi 6450
[Quine] p. 65Theorem 10.5funsn 6471  funsng 6469
[Quine] p. 65Definition 10.1df-fun 6420
[Quine] p. 65Definition 10.2args 5989  dffv4 6753
[Quine] p. 68Definition 10.11conventions 28664  df-fv 6426  fv2 6751
[Quine] p. 124Theorem 17.3nn0opth2 13913  nn0opth2i 13912  nn0opthi 13911  omopthi 8452
[Quine] p. 177Definition 25.2df-rdg 8212
[Quine] p. 232Equation icarddom 10240
[Quine] p. 284Axiom 39(vi)funimaex 6505  funimaexg 6504
[Quine] p. 331Axiom system NFru 3711
[ReedSimon] p. 36Definition (iii)ax-his3 29346
[ReedSimon] p. 63Exercise 4(a)df-dip 28963  polid 29421  polid2i 29419  polidi 29420
[ReedSimon] p. 63Exercise 4(b)df-ph 29075
[ReedSimon] p. 195Remarklnophm 30281  lnophmi 30280
[Retherford] p. 49Exercise 1(i)leopadd 30394
[Retherford] p. 49Exercise 1(ii)leopmul 30396  leopmuli 30395
[Retherford] p. 49Exercise 1(iv)leoptr 30399
[Retherford] p. 49Definition VI.1df-leop 30114  leoppos 30388
[Retherford] p. 49Exercise 1(iii)leoptri 30398
[Retherford] p. 49Definition of operator orderingleop3 30387
[Roman] p. 4Definitiondf-dmat 21546  df-dmatalt 45619
[Roman] p. 18Part Preliminariesdf-rng0 45313
[Roman] p. 19Part Preliminariesdf-ring 19699
[Roman] p. 46Theorem 1.6isldepslvec2 45706
[Roman] p. 112Noteisldepslvec2 45706  ldepsnlinc 45729  zlmodzxznm 45718
[Roman] p. 112Examplezlmodzxzequa 45717  zlmodzxzequap 45720  zlmodzxzldep 45725
[Roman] p. 170Theorem 7.8cayleyhamilton 21946
[Rosenlicht] p. 80Theoremheicant 35738
[Rosser] p. 281Definitiondf-op 4566
[RosserSchoenfeld] p. 71Theorem 12.ax-ros335 32524
[RosserSchoenfeld] p. 71Theorem 13.ax-ros336 32525
[Rotman] p. 28Remarkpgrpgt2nabl 45582  pmtr3ncom 18997
[Rotman] p. 31Theorem 3.4symggen2 18993
[Rotman] p. 42Theorem 3.15cayley 18936  cayleyth 18937
[Rudin] p. 164Equation 27efcan 15732
[Rudin] p. 164Equation 30efzval 15738
[Rudin] p. 167Equation 48absefi 15832
[Sanford] p. 39Remarkax-mp 5  mto 200
[Sanford] p. 39Rule 3mtpxor 1779
[Sanford] p. 39Rule 4mptxor 1777
[Sanford] p. 40Rule 1mptnan 1776
[Schechter] p. 51Definition of antisymmetryintasym 6009
[Schechter] p. 51Definition of irreflexivityintirr 6012
[Schechter] p. 51Definition of symmetrycnvsym 6008
[Schechter] p. 51Definition of transitivitycotr 6006
[Schechter] p. 78Definition of Moore collection of setsdf-mre 17211
[Schechter] p. 79Definition of Moore closuredf-mrc 17212
[Schechter] p. 82Section 4.5df-mrc 17212
[Schechter] p. 84Definition (A) of an algebraic closure systemdf-acs 17214
[Schechter] p. 139Definition AC3dfac9 9822
[Schechter] p. 141Definition (MC)dfac11 40795
[Schechter] p. 149Axiom DC1ax-dc 10132  axdc3 10140
[Schechter] p. 187Definition of ring with unitisring 19701  isrngo 35981
[Schechter] p. 276Remark 11.6.espan0 29804
[Schechter] p. 276Definition of spandf-span 29571  spanval 29595
[Schechter] p. 428Definition 15.35bastop1 22050
[Schwabhauser] p. 10Axiom A1axcgrrflx 27184  axtgcgrrflx 26726
[Schwabhauser] p. 10Axiom A2axcgrtr 27185
[Schwabhauser] p. 10Axiom A3axcgrid 27186  axtgcgrid 26727
[Schwabhauser] p. 10Axioms A1 to A3df-trkgc 26712
[Schwabhauser] p. 11Axiom A4axsegcon 27197  axtgsegcon 26728  df-trkgcb 26714
[Schwabhauser] p. 11Axiom A5ax5seg 27208  axtg5seg 26729  df-trkgcb 26714
[Schwabhauser] p. 11Axiom A6axbtwnid 27209  axtgbtwnid 26730  df-trkgb 26713
[Schwabhauser] p. 12Axiom A7axpasch 27211  axtgpasch 26731  df-trkgb 26713
[Schwabhauser] p. 12Axiom A8axlowdim2 27230  df-trkg2d 32544
[Schwabhauser] p. 13Axiom A8axtglowdim2 26734
[Schwabhauser] p. 13Axiom A9axtgupdim2 26735  df-trkg2d 32544
[Schwabhauser] p. 13Axiom A10axeuclid 27233  axtgeucl 26736  df-trkge 26715
[Schwabhauser] p. 13Axiom A11axcont 27246  axtgcont 26733  axtgcont1 26732  df-trkgb 26713
[Schwabhauser] p. 27Theorem 2.1cgrrflx 34215
[Schwabhauser] p. 27Theorem 2.2cgrcomim 34217
[Schwabhauser] p. 27Theorem 2.3cgrtr 34220
[Schwabhauser] p. 27Theorem 2.4cgrcoml 34224
[Schwabhauser] p. 27Theorem 2.5cgrcomr 34225  tgcgrcomimp 26741  tgcgrcoml 26743  tgcgrcomr 26742
[Schwabhauser] p. 28Theorem 2.8cgrtriv 34230  tgcgrtriv 26748
[Schwabhauser] p. 28Theorem 2.105segofs 34234  tg5segofs 32552
[Schwabhauser] p. 28Definition 2.10df-afs 32549  df-ofs 34211
[Schwabhauser] p. 29Theorem 2.11cgrextend 34236  tgcgrextend 26749
[Schwabhauser] p. 29Theorem 2.12segconeq 34238  tgsegconeq 26750
[Schwabhauser] p. 30Theorem 3.1btwnouttr2 34250  btwntriv2 34240  tgbtwntriv2 26751
[Schwabhauser] p. 30Theorem 3.2btwncomim 34241  tgbtwncom 26752
[Schwabhauser] p. 30Theorem 3.3btwntriv1 34244  tgbtwntriv1 26755
[Schwabhauser] p. 30Theorem 3.4btwnswapid 34245  tgbtwnswapid 26756
[Schwabhauser] p. 30Theorem 3.5btwnexch2 34251  btwnintr 34247  tgbtwnexch2 26760  tgbtwnintr 26757
[Schwabhauser] p. 30Theorem 3.6btwnexch 34253  btwnexch3 34248  tgbtwnexch 26762  tgbtwnexch3 26758
[Schwabhauser] p. 30Theorem 3.7btwnouttr 34252  tgbtwnouttr 26761  tgbtwnouttr2 26759
[Schwabhauser] p. 32Theorem 3.13axlowdim1 27229
[Schwabhauser] p. 32Theorem 3.14btwndiff 34255  tgbtwndiff 26770
[Schwabhauser] p. 33Theorem 3.17tgtrisegint 26763  trisegint 34256
[Schwabhauser] p. 34Theorem 4.2ifscgr 34272  tgifscgr 26772
[Schwabhauser] p. 34Theorem 4.11colcom 26822  colrot1 26823  colrot2 26824  lncom 26886  lnrot1 26887  lnrot2 26888
[Schwabhauser] p. 34Definition 4.1df-ifs 34268
[Schwabhauser] p. 35Theorem 4.3cgrsub 34273  tgcgrsub 26773
[Schwabhauser] p. 35Theorem 4.5cgrxfr 34283  tgcgrxfr 26782
[Schwabhauser] p. 35Statement 4.4ercgrg 26781
[Schwabhauser] p. 35Definition 4.4df-cgr3 34269  df-cgrg 26775
[Schwabhauser] p. 35Definition instead (givendf-cgrg 26775
[Schwabhauser] p. 36Theorem 4.6btwnxfr 34284  tgbtwnxfr 26794
[Schwabhauser] p. 36Theorem 4.11colinearperm1 34290  colinearperm2 34292  colinearperm3 34291  colinearperm4 34293  colinearperm5 34294
[Schwabhauser] p. 36Definition 4.8df-ismt 26797
[Schwabhauser] p. 36Definition 4.10df-colinear 34267  tgellng 26817  tglng 26810
[Schwabhauser] p. 37Theorem 4.12colineartriv1 34295
[Schwabhauser] p. 37Theorem 4.13colinearxfr 34303  lnxfr 26830
[Schwabhauser] p. 37Theorem 4.14lineext 34304  lnext 26831
[Schwabhauser] p. 37Theorem 4.16fscgr 34308  tgfscgr 26832
[Schwabhauser] p. 37Theorem 4.17linecgr 34309  lncgr 26833
[Schwabhauser] p. 37Definition 4.15df-fs 34270
[Schwabhauser] p. 38Theorem 4.18lineid 34311  lnid 26834
[Schwabhauser] p. 38Theorem 4.19idinside 34312  tgidinside 26835
[Schwabhauser] p. 39Theorem 5.1btwnconn1 34329  tgbtwnconn1 26839
[Schwabhauser] p. 41Theorem 5.2btwnconn2 34330  tgbtwnconn2 26840
[Schwabhauser] p. 41Theorem 5.3btwnconn3 34331  tgbtwnconn3 26841
[Schwabhauser] p. 41Theorem 5.5brsegle2 34337
[Schwabhauser] p. 41Definition 5.4df-segle 34335  legov 26849
[Schwabhauser] p. 41Definition 5.5legov2 26850
[Schwabhauser] p. 42Remark 5.13legso 26863
[Schwabhauser] p. 42Theorem 5.6seglecgr12im 34338
[Schwabhauser] p. 42Theorem 5.7seglerflx 34340
[Schwabhauser] p. 42Theorem 5.8segletr 34342
[Schwabhauser] p. 42Theorem 5.9segleantisym 34343
[Schwabhauser] p. 42Theorem 5.10seglelin 34344
[Schwabhauser] p. 42Theorem 5.11seglemin 34341
[Schwabhauser] p. 42Theorem 5.12colinbtwnle 34346
[Schwabhauser] p. 42Proposition 5.7legid 26851
[Schwabhauser] p. 42Proposition 5.8legtrd 26853
[Schwabhauser] p. 42Proposition 5.9legtri3 26854
[Schwabhauser] p. 42Proposition 5.10legtrid 26855
[Schwabhauser] p. 42Proposition 5.11leg0 26856
[Schwabhauser] p. 43Theorem 6.2btwnoutside 34353
[Schwabhauser] p. 43Theorem 6.3broutsideof3 34354
[Schwabhauser] p. 43Theorem 6.4broutsideof 34349  df-outsideof 34348
[Schwabhauser] p. 43Definition 6.1broutsideof2 34350  ishlg 26866
[Schwabhauser] p. 44Theorem 6.4hlln 26871
[Schwabhauser] p. 44Theorem 6.5hlid 26873  outsideofrflx 34355
[Schwabhauser] p. 44Theorem 6.6hlcomb 26867  hlcomd 26868  outsideofcom 34356
[Schwabhauser] p. 44Theorem 6.7hltr 26874  outsideoftr 34357
[Schwabhauser] p. 44Theorem 6.11hlcgreu 26882  outsideofeu 34359
[Schwabhauser] p. 44Definition 6.8df-ray 34366
[Schwabhauser] p. 45Part 2df-lines2 34367
[Schwabhauser] p. 45Theorem 6.13outsidele 34360
[Schwabhauser] p. 45Theorem 6.15lineunray 34375
[Schwabhauser] p. 45Theorem 6.16lineelsb2 34376  tglineelsb2 26896
[Schwabhauser] p. 45Theorem 6.17linecom 34378  linerflx1 34377  linerflx2 34379  tglinecom 26899  tglinerflx1 26897  tglinerflx2 26898
[Schwabhauser] p. 45Theorem 6.18linethru 34381  tglinethru 26900
[Schwabhauser] p. 45Definition 6.14df-line2 34365  tglng 26810
[Schwabhauser] p. 45Proposition 6.13legbtwn 26858
[Schwabhauser] p. 46Theorem 6.19linethrueu 34384  tglinethrueu 26903
[Schwabhauser] p. 46Theorem 6.21lineintmo 34385  tglineineq 26907  tglineinteq 26909  tglineintmo 26906
[Schwabhauser] p. 46Theorem 6.23colline 26913
[Schwabhauser] p. 46Theorem 6.24tglowdim2l 26914
[Schwabhauser] p. 46Theorem 6.25tglowdim2ln 26915
[Schwabhauser] p. 49Theorem 7.3mirinv 26930
[Schwabhauser] p. 49Theorem 7.7mirmir 26926
[Schwabhauser] p. 49Theorem 7.8mirreu3 26918
[Schwabhauser] p. 49Definition 7.5df-mir 26917  ismir 26923  mirbtwn 26922  mircgr 26921  mirfv 26920  mirval 26919
[Schwabhauser] p. 50Theorem 7.8mirreu 26928
[Schwabhauser] p. 50Theorem 7.9mireq 26929
[Schwabhauser] p. 50Theorem 7.10mirinv 26930
[Schwabhauser] p. 50Theorem 7.11mirf1o 26933
[Schwabhauser] p. 50Theorem 7.13miriso 26934
[Schwabhauser] p. 51Theorem 7.14mirmot 26939
[Schwabhauser] p. 51Theorem 7.15mirbtwnb 26936  mirbtwni 26935
[Schwabhauser] p. 51Theorem 7.16mircgrs 26937
[Schwabhauser] p. 51Theorem 7.17miduniq 26949
[Schwabhauser] p. 52Lemma 7.21symquadlem 26953
[Schwabhauser] p. 52Theorem 7.18miduniq1 26950
[Schwabhauser] p. 52Theorem 7.19miduniq2 26951
[Schwabhauser] p. 52Theorem 7.20colmid 26952
[Schwabhauser] p. 53Lemma 7.22krippen 26955
[Schwabhauser] p. 55Lemma 7.25midexlem 26956
[Schwabhauser] p. 57Theorem 8.2ragcom 26962
[Schwabhauser] p. 57Definition 8.1df-rag 26958  israg 26961
[Schwabhauser] p. 58Theorem 8.3ragcol 26963
[Schwabhauser] p. 58Theorem 8.4ragmir 26964
[Schwabhauser] p. 58Theorem 8.5ragtrivb 26966
[Schwabhauser] p. 58Theorem 8.6ragflat2 26967
[Schwabhauser] p. 58Theorem 8.7ragflat 26968
[Schwabhauser] p. 58Theorem 8.8ragtriva 26969
[Schwabhauser] p. 58Theorem 8.9ragflat3 26970  ragncol 26973
[Schwabhauser] p. 58Theorem 8.10ragcgr 26971
[Schwabhauser] p. 59Theorem 8.12perpcom 26977
[Schwabhauser] p. 59Theorem 8.13ragperp 26981
[Schwabhauser] p. 59Theorem 8.14perpneq 26978
[Schwabhauser] p. 59Definition 8.11df-perpg 26960  isperp 26976
[Schwabhauser] p. 59Definition 8.13isperp2 26979
[Schwabhauser] p. 60Theorem 8.18foot 26986
[Schwabhauser] p. 62Lemma 8.20colperpexlem1 26994  colperpexlem2 26995
[Schwabhauser] p. 63Theorem 8.21colperpex 26997  colperpexlem3 26996
[Schwabhauser] p. 64Theorem 8.22mideu 27002  midex 27001
[Schwabhauser] p. 66Lemma 8.24opphllem 26999
[Schwabhauser] p. 67Theorem 9.2oppcom 27008
[Schwabhauser] p. 67Definition 9.1islnopp 27003
[Schwabhauser] p. 68Lemma 9.3opphllem2 27012
[Schwabhauser] p. 68Lemma 9.4opphllem5 27015  opphllem6 27016
[Schwabhauser] p. 69Theorem 9.5opphl 27018
[Schwabhauser] p. 69Theorem 9.6axtgpasch 26731
[Schwabhauser] p. 70Theorem 9.6outpasch 27019
[Schwabhauser] p. 71Theorem 9.8lnopp2hpgb 27027
[Schwabhauser] p. 71Definition 9.7df-hpg 27022  hpgbr 27024
[Schwabhauser] p. 72Lemma 9.10hpgerlem 27029
[Schwabhauser] p. 72Theorem 9.9lnoppnhpg 27028
[Schwabhauser] p. 72Theorem 9.11hpgid 27030
[Schwabhauser] p. 72Theorem 9.12hpgcom 27031
[Schwabhauser] p. 72Theorem 9.13hpgtr 27032
[Schwabhauser] p. 73Theorem 9.18colopp 27033
[Schwabhauser] p. 73Theorem 9.19colhp 27034
[Schwabhauser] p. 88Theorem 10.2lmieu 27048
[Schwabhauser] p. 88Definition 10.1df-mid 27038
[Schwabhauser] p. 89Theorem 10.4lmicom 27052
[Schwabhauser] p. 89Theorem 10.5lmilmi 27053
[Schwabhauser] p. 89Theorem 10.6lmireu 27054
[Schwabhauser] p. 89Theorem 10.7lmieq 27055
[Schwabhauser] p. 89Theorem 10.8lmiinv 27056
[Schwabhauser] p. 89Theorem 10.9lmif1o 27059
[Schwabhauser] p. 89Theorem 10.10lmiiso 27061
[Schwabhauser] p. 89Definition 10.3df-lmi 27039
[Schwabhauser] p. 90Theorem 10.11lmimot 27062
[Schwabhauser] p. 91Theorem 10.12hypcgr 27065
[Schwabhauser] p. 92Theorem 10.14lmiopp 27066
[Schwabhauser] p. 92Theorem 10.15lnperpex 27067
[Schwabhauser] p. 92Theorem 10.16trgcopy 27068  trgcopyeu 27070
[Schwabhauser] p. 95Definition 11.2dfcgra2 27094
[Schwabhauser] p. 95Definition 11.3iscgra 27073
[Schwabhauser] p. 95Proposition 11.4cgracgr 27082
[Schwabhauser] p. 95Proposition 11.10cgrahl1 27080  cgrahl2 27081
[Schwabhauser] p. 96Theorem 11.6cgraid 27083
[Schwabhauser] p. 96Theorem 11.9cgraswap 27084
[Schwabhauser] p. 97Theorem 11.7cgracom 27086
[Schwabhauser] p. 97Theorem 11.8cgratr 27087
[Schwabhauser] p. 97Theorem 11.21cgrabtwn 27090  cgrahl 27091
[Schwabhauser] p. 98Theorem 11.13sacgr 27095
[Schwabhauser] p. 98Theorem 11.14oacgr 27096
[Schwabhauser] p. 98Theorem 11.15acopy 27097  acopyeu 27098
[Schwabhauser] p. 101Theorem 11.24inagswap 27105
[Schwabhauser] p. 101Theorem 11.25inaghl 27109
[Schwabhauser] p. 101Definition 11.23isinag 27102
[Schwabhauser] p. 102Lemma 11.28cgrg3col4 27117
[Schwabhauser] p. 102Definition 11.27df-leag 27110  isleag 27111
[Schwabhauser] p. 107Theorem 11.49tgsas 27119  tgsas1 27118  tgsas2 27120  tgsas3 27121
[Schwabhauser] p. 108Theorem 11.50tgasa 27123  tgasa1 27122
[Schwabhauser] p. 109Theorem 11.51tgsss1 27124  tgsss2 27125  tgsss3 27126
[Shapiro] p. 230Theorem 6.5.1dchrhash 26323  dchrsum 26321  dchrsum2 26320  sumdchr 26324
[Shapiro] p. 232Theorem 6.5.2dchr2sum 26325  sum2dchr 26326
[Shapiro], p. 199Lemma 6.1C.2ablfacrp 19583  ablfacrp2 19584
[Shapiro], p. 328Equation 9.2.4vmasum 26268
[Shapiro], p. 329Equation 9.2.7logfac2 26269
[Shapiro], p. 329Equation 9.2.9logfacrlim 26276
[Shapiro], p. 331Equation 9.2.13vmadivsum 26534
[Shapiro], p. 331Equation 9.2.14rplogsumlem2 26537
[Shapiro], p. 336Exercise 9.1.7vmalogdivsum 26591  vmalogdivsum2 26590
[Shapiro], p. 375Theorem 9.4.1dirith 26581  dirith2 26580
[Shapiro], p. 375Equation 9.4.3rplogsum 26579  rpvmasum 26578  rpvmasum2 26564
[Shapiro], p. 376Equation 9.4.7rpvmasumlem 26539
[Shapiro], p. 376Equation 9.4.8dchrvmasum 26577
[Shapiro], p. 377Lemma 9.4.1dchrisum 26544  dchrisumlem1 26541  dchrisumlem2 26542  dchrisumlem3 26543  dchrisumlema 26540
[Shapiro], p. 377Equation 9.4.11dchrvmasumlem1 26547
[Shapiro], p. 379Equation 9.4.16dchrmusum 26576  dchrmusumlem 26574  dchrvmasumlem 26575
[Shapiro], p. 380Lemma 9.4.2dchrmusum2 26546
[Shapiro], p. 380Lemma 9.4.3dchrvmasum2lem 26548
[Shapiro], p. 382Lemma 9.4.4dchrisum0 26572  dchrisum0re 26565  dchrisumn0 26573
[Shapiro], p. 382Equation 9.4.27dchrisum0fmul 26558
[Shapiro], p. 382Equation 9.4.29dchrisum0flb 26562
[Shapiro], p. 383Equation 9.4.30dchrisum0fno1 26563
[Shapiro], p. 403Equation 10.1.16pntrsumbnd 26618  pntrsumbnd2 26619  pntrsumo1 26617
[Shapiro], p. 405Equation 10.2.1mudivsum 26582
[Shapiro], p. 406Equation 10.2.6mulogsum 26584
[Shapiro], p. 407Equation 10.2.7mulog2sumlem1 26586
[Shapiro], p. 407Equation 10.2.8mulog2sum 26589
[Shapiro], p. 418Equation 10.4.6logsqvma 26594
[Shapiro], p. 418Equation 10.4.8logsqvma2 26595
[Shapiro], p. 419Equation 10.4.10selberg 26600
[Shapiro], p. 420Equation 10.4.12selberg2lem 26602
[Shapiro], p. 420Equation 10.4.14selberg2 26603
[Shapiro], p. 422Equation 10.6.7selberg3 26611
[Shapiro], p. 422Equation 10.4.20selberg4lem1 26612
[Shapiro], p. 422Equation 10.4.21selberg3lem1 26609  selberg3lem2 26610
[Shapiro], p. 422Equation 10.4.23selberg4 26613
[Shapiro], p. 427Theorem 10.5.2chpdifbnd 26607
[Shapiro], p. 428Equation 10.6.2selbergr 26620
[Shapiro], p. 429Equation 10.6.8selberg3r 26621
[Shapiro], p. 430Equation 10.6.11selberg4r 26622
[Shapiro], p. 431Equation 10.6.15pntrlog2bnd 26636
[Shapiro], p. 434Equation 10.6.27pntlema 26648  pntlemb 26649  pntlemc 26647  pntlemd 26646  pntlemg 26650
[Shapiro], p. 435Equation 10.6.29pntlema 26648
[Shapiro], p. 436Lemma 10.6.1pntpbnd 26640
[Shapiro], p. 436Lemma 10.6.2pntibnd 26645
[Shapiro], p. 436Equation 10.6.34pntlema 26648
[Shapiro], p. 436Equation 10.6.35pntlem3 26661  pntleml 26663
[Stoll] p. 13Definition corresponds to dfsymdif3 4228
[Stoll] p. 16Exercise 4.40dif 4333  dif0 4304
[Stoll] p. 16Exercise 4.8difdifdir 4420
[Stoll] p. 17Theorem 5.1(5)unvdif 4406
[Stoll] p. 19Theorem 5.2(13)undm 4219
[Stoll] p. 19Theorem 5.2(13')indm 4220
[Stoll] p. 20Remarkinvdif 4200
[Stoll] p. 25Definition of ordered tripledf-ot 4568
[Stoll] p. 43Definitionuniiun 4985
[Stoll] p. 44Definitionintiin 4986
[Stoll] p. 45Definitiondf-iin 4925
[Stoll] p. 45Definition indexed uniondf-iun 4924
[Stoll] p. 176Theorem 3.4(27)iman 405
[Stoll] p. 262Example 4.1dfsymdif3 4228
[Strang] p. 242Section 6.3expgrowth 41834
[Suppes] p. 22Theorem 2eq0 4275  eq0f 4272
[Suppes] p. 22Theorem 4eqss 3933  eqssd 3935  eqssi 3934
[Suppes] p. 23Theorem 5ss0 4330  ss0b 4329
[Suppes] p. 23Theorem 6sstr 3926  sstrALT2 42336
[Suppes] p. 23Theorem 7pssirr 4032
[Suppes] p. 23Theorem 8pssn2lp 4033
[Suppes] p. 23Theorem 9psstr 4036
[Suppes] p. 23Theorem 10pssss 4027
[Suppes] p. 25Theorem 12elin 3900  elun 4080
[Suppes] p. 26Theorem 15inidm 4150
[Suppes] p. 26Theorem 16in0 4323
[Suppes] p. 27Theorem 23unidm 4083
[Suppes] p. 27Theorem 24un0 4322
[Suppes] p. 27Theorem 25ssun1 4103
[Suppes] p. 27Theorem 26ssequn1 4111
[Suppes] p. 27Theorem 27unss 4115
[Suppes] p. 27Theorem 28indir 4207
[Suppes] p. 27Theorem 29undir 4208
[Suppes] p. 28Theorem 32difid 4302
[Suppes] p. 29Theorem 33difin 4193
[Suppes] p. 29Theorem 34indif 4201
[Suppes] p. 29Theorem 35undif1 4407
[Suppes] p. 29Theorem 36difun2 4412
[Suppes] p. 29Theorem 37difin0 4405
[Suppes] p. 29Theorem 38disjdif 4403
[Suppes] p. 29Theorem 39difundi 4211
[Suppes] p. 29Theorem 40difindi 4213
[Suppes] p. 30Theorem 41nalset 5231
[Suppes] p. 39Theorem 61uniss 4845
[Suppes] p. 39Theorem 65uniop 5423
[Suppes] p. 41Theorem 70intsn 4915
[Suppes] p. 42Theorem 71intpr 4911  intprg 4910
[Suppes] p. 42Theorem 73op1stb 5380
[Suppes] p. 42Theorem 78intun 4909
[Suppes] p. 44Definition 15(a)dfiun2 4960  dfiun2g 4958
[Suppes] p. 44Definition 15(b)dfiin2 4961
[Suppes] p. 47Theorem 86elpw 4535  elpw2 5263  elpw2g 5262  elpwg 4534  elpwgdedVD 42418
[Suppes] p. 47Theorem 87pwid 4555
[Suppes] p. 47Theorem 89pw0 4743
[Suppes] p. 48Theorem 90pwpw0 4744
[Suppes] p. 52Theorem 101xpss12 5595
[Suppes] p. 52Theorem 102xpindi 5731  xpindir 5732
[Suppes] p. 52Theorem 103xpundi 5646  xpundir 5647
[Suppes] p. 54Theorem 105elirrv 9284
[Suppes] p. 58Theorem 2relss 5682
[Suppes] p. 59Theorem 4eldm 5798  eldm2 5799  eldm2g 5797  eldmg 5796
[Suppes] p. 59Definition 3df-dm 5590
[Suppes] p. 60Theorem 6dmin 5809
[Suppes] p. 60Theorem 8rnun 6038
[Suppes] p. 60Theorem 9rnin 6039
[Suppes] p. 60Definition 4dfrn2 5786
[Suppes] p. 61Theorem 11brcnv 5780  brcnvg 5777
[Suppes] p. 62Equation 5elcnv 5774  elcnv2 5775
[Suppes] p. 62Theorem 12relcnv 6001
[Suppes] p. 62Theorem 15cnvin 6037
[Suppes] p. 62Theorem 16cnvun 6035
[Suppes] p. 63Definitiondftrrels2 36615
[Suppes] p. 63Theorem 20co02 6153
[Suppes] p. 63Theorem 21dmcoss 5869
[Suppes] p. 63Definition 7df-co 5589
[Suppes] p. 64Theorem 26cnvco 5783
[Suppes] p. 64Theorem 27coass 6158
[Suppes] p. 65Theorem 31resundi 5894
[Suppes] p. 65Theorem 34elima 5963  elima2 5964  elima3 5965  elimag 5962
[Suppes] p. 65Theorem 35imaundi 6042
[Suppes] p. 66Theorem 40dminss 6045
[Suppes] p. 66Theorem 41imainss 6046
[Suppes] p. 67Exercise 11cnvxp 6049
[Suppes] p. 81Definition 34dfec2 8460
[Suppes] p. 82Theorem 72elec 8501  elecALTV 36331  elecg 8500
[Suppes] p. 82Theorem 73eqvrelth 36650  erth 8506  erth2 8507
[Suppes] p. 83Theorem 74eqvreldisj 36653  erdisj 8509
[Suppes] p. 89Theorem 96map0b 8630
[Suppes] p. 89Theorem 97map0 8634  map0g 8631
[Suppes] p. 89Theorem 98mapsn 8635  mapsnd 8633
[Suppes] p. 89Theorem 99mapss 8636
[Suppes] p. 91Definition 12(ii)alephsuc 9754
[Suppes] p. 91Definition 12(iii)alephlim 9753
[Suppes] p. 92Theorem 1enref 8729  enrefg 8728
[Suppes] p. 92Theorem 2ensym 8745  ensymb 8744  ensymi 8746
[Suppes] p. 92Theorem 3entr 8748
[Suppes] p. 92Theorem 4unen 8791
[Suppes] p. 94Theorem 15endom 8723
[Suppes] p. 94Theorem 16ssdomg 8742
[Suppes] p. 94Theorem 17domtr 8749
[Suppes] p. 95Theorem 18sbth 8834
[Suppes] p. 97Theorem 23canth2 8867  canth2g 8868
[Suppes] p. 97Definition 3brsdom2 8838  df-sdom 8695  dfsdom2 8837
[Suppes] p. 97Theorem 21(i)sdomirr 8851
[Suppes] p. 97Theorem 22(i)domnsym 8840
[Suppes] p. 97Theorem 21(ii)sdomnsym 8839
[Suppes] p. 97Theorem 22(ii)domsdomtr 8849
[Suppes] p. 97Theorem 22(iv)brdom2 8726
[Suppes] p. 97Theorem 21(iii)sdomtr 8852
[Suppes] p. 97Theorem 22(iii)sdomdomtr 8847
[Suppes] p. 98Exercise 4fundmen 8776  fundmeng 8777
[Suppes] p. 98Exercise 6xpdom3 8811
[Suppes] p. 98Exercise 11sdomentr 8848
[Suppes] p. 104Theorem 37fofi 9034
[Suppes] p. 104Theorem 38pwfi 8924
[Suppes] p. 105Theorem 40pwfi 8924
[Suppes] p. 111Axiom for cardinal numberscarden 10237
[Suppes] p. 130Definition 3df-tr 5187
[Suppes] p. 132Theorem 9ssonuni 7607
[Suppes] p. 134Definition 6df-suc 6257
[Suppes] p. 136Theorem Schema 22findes 7723  finds 7719  finds1 7722  finds2 7721
[Suppes] p. 151Theorem 42isfinite 9339  isfinite2 9001  isfiniteg 9003  unbnn 8999
[Suppes] p. 162Definition 5df-ltnq 10604  df-ltpq 10596
[Suppes] p. 197Theorem Schema 4tfindes 7684  tfinds 7681  tfinds2 7685
[Suppes] p. 209Theorem 18oaord1 8345
[Suppes] p. 209Theorem 21oaword2 8347
[Suppes] p. 211Theorem 25oaass 8355
[Suppes] p. 225Definition 8iscard2 9664
[Suppes] p. 227Theorem 56ondomon 10249
[Suppes] p. 228Theorem 59harcard 9666
[Suppes] p. 228Definition 12(i)aleph0 9752
[Suppes] p. 228Theorem Schema 61onintss 6301
[Suppes] p. 228Theorem Schema 62onminesb 7620  onminsb 7621
[Suppes] p. 229Theorem 64alephval2 10258
[Suppes] p. 229Theorem 65alephcard 9756
[Suppes] p. 229Theorem 66alephord2i 9763
[Suppes] p. 229Theorem 67alephnbtwn 9757
[Suppes] p. 229Definition 12df-aleph 9628
[Suppes] p. 242Theorem 6weth 10181
[Suppes] p. 242Theorem 8entric 10243
[Suppes] p. 242Theorem 9carden 10237
[TakeutiZaring] p. 8Axiom 1ax-ext 2710
[TakeutiZaring] p. 13Definition 4.5df-cleq 2731
[TakeutiZaring] p. 13Proposition 4.6df-clel 2818
[TakeutiZaring] p. 13Proposition 4.9cvjust 2733
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2762
[TakeutiZaring] p. 14Definition 4.16df-oprab 7259
[TakeutiZaring] p. 14Proposition 4.14ru 3711
[TakeutiZaring] p. 15Axiom 2zfpair 5339
[TakeutiZaring] p. 15Exercise 1elpr 4582  elpr2 4584  elpr2g 4583  elprg 4580
[TakeutiZaring] p. 15Exercise 2elsn 4574  elsn2 4598  elsn2g 4597  elsng 4573  velsn 4575
[TakeutiZaring] p. 15Exercise 3elop 5376
[TakeutiZaring] p. 15Exercise 4sneq 4569  sneqr 4769
[TakeutiZaring] p. 15Definition 5.1dfpr2 4578  dfsn2 4572  dfsn2ALT 4579
[TakeutiZaring] p. 16Axiom 3uniex 7572
[TakeutiZaring] p. 16Exercise 6opth 5385
[TakeutiZaring] p. 16Exercise 7opex 5373
[TakeutiZaring] p. 16Exercise 8rext 5358
[TakeutiZaring] p. 16Corollary 5.8unex 7574  unexg 7577
[TakeutiZaring] p. 16Definition 5.3dftp2 4623
[TakeutiZaring] p. 16Definition 5.5df-uni 4838
[TakeutiZaring] p. 16Definition 5.6df-in 3891  df-un 3889
[TakeutiZaring] p. 16Proposition 5.7unipr 4855  uniprg 4854
[TakeutiZaring] p. 17Axiom 4vpwex 5295
[TakeutiZaring] p. 17Exercise 1eltp 4622
[TakeutiZaring] p. 17Exercise 5elsuc 6320  elsucg 6318  sstr2 3925
[TakeutiZaring] p. 17Exercise 6uncom 4084
[TakeutiZaring] p. 17Exercise 7incom 4132
[TakeutiZaring] p. 17Exercise 8unass 4097
[TakeutiZaring] p. 17Exercise 9inass 4151
[TakeutiZaring] p. 17Exercise 10indi 4205
[TakeutiZaring] p. 17Exercise 11undi 4206
[TakeutiZaring] p. 17Definition 5.9df-pss 3903  dfss2 3904
[TakeutiZaring] p. 17Definition 5.10df-pw 4533
[TakeutiZaring] p. 18Exercise 7unss2 4112
[TakeutiZaring] p. 18Exercise 9df-ss 3901  sseqin2 4147
[TakeutiZaring] p. 18Exercise 10ssid 3940
[TakeutiZaring] p. 18Exercise 12inss1 4160  inss2 4161
[TakeutiZaring] p. 18Exercise 13nss 3980
[TakeutiZaring] p. 18Exercise 15unieq 4848
[TakeutiZaring] p. 18Exercise 18sspwb 5359  sspwimp 42419  sspwimpALT 42426  sspwimpALT2 42429  sspwimpcf 42421
[TakeutiZaring] p. 18Exercise 19pweqb 5366
[TakeutiZaring] p. 19Axiom 5ax-rep 5204
[TakeutiZaring] p. 20Definitiondf-rab 3073
[TakeutiZaring] p. 20Corollary 5.160ex 5225
[TakeutiZaring] p. 20Definition 5.12df-dif 3887
[TakeutiZaring] p. 20Definition 5.14dfnul2 4257
[TakeutiZaring] p. 20Proposition 5.15difid 4302
[TakeutiZaring] p. 20Proposition 5.17(1)n0 4278  n0f 4274  neq0 4277  neq0f 4273
[TakeutiZaring] p. 21Axiom 6zfreg 9283
[TakeutiZaring] p. 21Axiom 6'zfregs 9420
[TakeutiZaring] p. 21Theorem 5.22setind 9422
[TakeutiZaring] p. 21Definition 5.20df-v 3425
[TakeutiZaring] p. 21Proposition 5.21vprc 5233
[TakeutiZaring] p. 22Exercise 10ss 4328
[TakeutiZaring] p. 22Exercise 3ssex 5239  ssexg 5241
[TakeutiZaring] p. 22Exercise 4inex1 5235
[TakeutiZaring] p. 22Exercise 5ruv 9290
[TakeutiZaring] p. 22Exercise 6elirr 9285
[TakeutiZaring] p. 22Exercise 7ssdif0 4295
[TakeutiZaring] p. 22Exercise 11difdif 4062
[TakeutiZaring] p. 22Exercise 13undif3 4222  undif3VD 42383
[TakeutiZaring] p. 22Exercise 14difss 4063
[TakeutiZaring] p. 22Exercise 15sscon 4070
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 3069
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 3070
[TakeutiZaring] p. 23Proposition 6.2xpex 7581  xpexg 7578
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 5587
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 6489
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 6664  fun11 6492
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 6430  svrelfun 6490
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 5785
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 5787
[TakeutiZaring] p. 24Definition 6.6(1)df-res 5592
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 5593
[TakeutiZaring] p. 24Definition 6.6(3)df-co 5589
[TakeutiZaring] p. 25Exercise 2cnvcnvss 6086  dfrel2 6081
[TakeutiZaring] p. 25Exercise 3xpss 5596
[TakeutiZaring] p. 25Exercise 5relun 5710
[TakeutiZaring] p. 25Exercise 6reluni 5717
[TakeutiZaring] p. 25Exercise 9inxp 5730
[TakeutiZaring] p. 25Exercise 12relres 5909
[TakeutiZaring] p. 25Exercise 13opelres 5886  opelresi 5888
[TakeutiZaring] p. 25Exercise 14dmres 5902
[TakeutiZaring] p. 25Exercise 15resss 5905
[TakeutiZaring] p. 25Exercise 17resabs1 5910
[TakeutiZaring] p. 25Exercise 18funres 6460
[TakeutiZaring] p. 25Exercise 24relco 6137
[TakeutiZaring] p. 25Exercise 29funco 6458
[TakeutiZaring] p. 25Exercise 30f1co 6666
[TakeutiZaring] p. 26Definition 6.10eu2 2612
[TakeutiZaring] p. 26Definition 6.11conventions 28664  df-fv 6426  fv3 6774
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 7746  cnvexg 7745
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 7732  dmexg 7724
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 7733  rnexg 7725
[TakeutiZaring] p. 26Corollary 6.9(1)xpexb 41953
[TakeutiZaring] p. 26Corollary 6.9(2)xpexcnv 7741
[TakeutiZaring] p. 27Corollary 6.13fvex 6769
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1-afv 44545  tz6.12-1-afv2 44612  tz6.12-1 6778  tz6.12-afv 44544  tz6.12-afv2 44611  tz6.12 6779  tz6.12c-afv2 44613  tz6.12c 6781
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2-afv2 44608  tz6.12-2 6745  tz6.12i-afv2 44614  tz6.12i 6782
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 6421
[TakeutiZaring] p. 27Definition 6.15(3)df-f 6422
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 6424  wfo 6416
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 6423  wf1 6415
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 6425  wf1o 6417
[TakeutiZaring] p. 28Exercise 4eqfnfv 6891  eqfnfv2 6892  eqfnfv2f 6895
[TakeutiZaring] p. 28Exercise 5fvco 6848
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 7075
[TakeutiZaring] p. 28Proposition 6.17resfunexg 7073
[TakeutiZaring] p. 29Exercise 9funimaex 6505  funimaexg 6504
[TakeutiZaring] p. 29Definition 6.18df-br 5072
[TakeutiZaring] p. 29Definition 6.19(1)df-so 5495
[TakeutiZaring] p. 30Definition 6.21dffr2 5544  dffr3 5996  eliniseg 5991  iniseg 5994
[TakeutiZaring] p. 30Definition 6.22df-eprel 5486
[TakeutiZaring] p. 30Proposition 6.23fr2nr 5558  fr3nr 7600  frirr 5557
[TakeutiZaring] p. 30Definition 6.24(1)df-fr 5535
[TakeutiZaring] p. 30Definition 6.24(2)dfwe2 7602
[TakeutiZaring] p. 31Exercise 1frss 5547
[TakeutiZaring] p. 31Exercise 4wess 5567
[TakeutiZaring] p. 31Proposition 6.26tz6.26 6235  tz6.26i 6237  wefrc 5574  wereu2 5577
[TakeutiZaring] p. 32Theorem 6.27wfi 6238  wfii 6240
[TakeutiZaring] p. 32Definition 6.28df-isom 6427
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 7180
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 7181
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 7187
[TakeutiZaring] p. 33Proposition 6.31(1)isomin 7188
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 7189
[TakeutiZaring] p. 33Proposition 6.32(1)isofr 7193
[TakeutiZaring] p. 33Proposition 6.32(3)isowe 7200
[TakeutiZaring] p. 34Proposition 6.33f1oiso 7202
[TakeutiZaring] p. 35Notationwtr 5186
[TakeutiZaring] p. 35Theorem 7.2trelpss 41954  tz7.2 5564
[TakeutiZaring] p. 35Definition 7.1dftr3 5190
[TakeutiZaring] p. 36Proposition 7.4ordwe 6264
[TakeutiZaring] p. 36Proposition 7.5tz7.5 6272
[TakeutiZaring] p. 36Proposition 7.6ordelord 6273  ordelordALT 42038  ordelordALTVD 42368
[TakeutiZaring] p. 37Corollary 7.8ordelpss 6279  ordelssne 6278
[TakeutiZaring] p. 37Proposition 7.7tz7.7 6277
[TakeutiZaring] p. 37Proposition 7.9ordin 6281
[TakeutiZaring] p. 38Corollary 7.14ordeleqon 7609
[TakeutiZaring] p. 38Corollary 7.15ordsson 7610
[TakeutiZaring] p. 38Definition 7.11df-on 6255
[TakeutiZaring] p. 38Proposition 7.10ordtri3or 6283
[TakeutiZaring] p. 38Proposition 7.12onfrALT 42050  ordon 7604
[TakeutiZaring] p. 38Proposition 7.13onprc 7605
[TakeutiZaring] p. 39Theorem 7.17tfi 7675
[TakeutiZaring] p. 40Exercise 3ontr2 6298
[TakeutiZaring] p. 40Exercise 7dftr2 5188
[TakeutiZaring] p. 40Exercise 9onssmin 7619
[TakeutiZaring] p. 40Exercise 11unon 7653
[TakeutiZaring] p. 40Exercise 12ordun 6352
[TakeutiZaring] p. 40Exercise 14ordequn 6351
[TakeutiZaring] p. 40Proposition 7.19ssorduni 7606
[TakeutiZaring] p. 40Proposition 7.20elssuni 4869
[TakeutiZaring] p. 41Definition 7.22df-suc 6257
[TakeutiZaring] p. 41Proposition 7.23sssucid 6328  sucidg 6329
[TakeutiZaring] p. 41Proposition 7.24suceloni 7635
[TakeutiZaring] p. 41Proposition 7.25onnbtwn 6342  ordnbtwn 6341
[TakeutiZaring] p. 41Proposition 7.26onsucuni 7650
[TakeutiZaring] p. 42Exercise 1df-lim 6256
[TakeutiZaring] p. 42Exercise 4omssnlim 7702
[TakeutiZaring] p. 42Exercise 7ssnlim 7707
[TakeutiZaring] p. 42Exercise 8onsucssi 7663  ordelsuc 7642
[TakeutiZaring] p. 42Exercise 9ordsucelsuc 7644
[TakeutiZaring] p. 42Definition 7.27nlimon 7673
[TakeutiZaring] p. 42Definition 7.28dfom2 7689
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 7710
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 7711
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 7712
[TakeutiZaring] p. 43Remarkomon 7699
[TakeutiZaring] p. 43Axiom 7inf3 9322  omex 9330
[TakeutiZaring] p. 43Theorem 7.32ordom 7697
[TakeutiZaring] p. 43Corollary 7.31find 7717
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 7713
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 7714
[TakeutiZaring] p. 44Exercise 1limomss 7692
[TakeutiZaring] p. 44Exercise 2int0 4891
[TakeutiZaring] p. 44Exercise 3trintss 5203
[TakeutiZaring] p. 44Exercise 4intss1 4892
[TakeutiZaring] p. 44Exercise 5intex 5255
[TakeutiZaring] p. 44Exercise 6oninton 7622
[TakeutiZaring] p. 44Exercise 11ordintdif 6300
[TakeutiZaring] p. 44Definition 7.35df-int 4878
[TakeutiZaring] p. 44Proposition 7.34noinfep 9347
[TakeutiZaring] p. 45Exercise 4onint 7617
[TakeutiZaring] p. 47Lemma 1tfrlem1 8178
[TakeutiZaring] p. 47Theorem 7.41(1)tfr1 8199
[TakeutiZaring] p. 47Theorem 7.41(2)tfr2 8200
[TakeutiZaring] p. 47Theorem 7.41(3)tfr3 8201
[TakeutiZaring] p. 49Theorem 7.44tz7.44-1 8208  tz7.44-2 8209  tz7.44-3 8210
[TakeutiZaring] p. 50Exercise 1smogt 8169
[TakeutiZaring] p. 50Exercise 3smoiso 8164
[TakeutiZaring] p. 50Definition 7.46df-smo 8148
[TakeutiZaring] p. 51Proposition 7.49tz7.49 8247  tz7.49c 8248
[TakeutiZaring] p. 51Proposition 7.48(1)tz7.48-1 8245
[TakeutiZaring] p. 51Proposition 7.48(2)tz7.48-2 8244
[TakeutiZaring] p. 51Proposition 7.48(3)tz7.48-3 8246
[TakeutiZaring] p. 53Proposition 7.532eu5 2658
[TakeutiZaring] p. 54Proposition 7.56(1)leweon 9697
[TakeutiZaring] p. 54Proposition 7.58(1)r0weon 9698
[TakeutiZaring] p. 56Definition 8.1oalim 8325  oasuc 8317
[TakeutiZaring] p. 57Remarktfindsg 7682
[TakeutiZaring] p. 57Proposition 8.2oacl 8328
[TakeutiZaring] p. 57Proposition 8.3oa0 8309  oa0r 8331
[TakeutiZaring] p. 57Proposition 8.16omcl 8329
[TakeutiZaring] p. 58Corollary 8.5oacan 8342
[TakeutiZaring] p. 58Proposition 8.4nnaord 8413  nnaordi 8412  oaord 8341  oaordi 8340
[TakeutiZaring] p. 59Proposition 8.6iunss2 4976  uniss2 4872
[TakeutiZaring] p. 59Proposition 8.7oawordri 8344
[TakeutiZaring] p. 59Proposition 8.8oawordeu 8349  oawordex 8351
[TakeutiZaring] p. 59Proposition 8.9nnacl 8405
[TakeutiZaring] p. 59Proposition 8.10oaabs 8439
[TakeutiZaring] p. 60Remarkoancom 9338
[TakeutiZaring] p. 60Proposition 8.11oalimcl 8354
[TakeutiZaring] p. 62Exercise 1nnarcl 8410
[TakeutiZaring] p. 62Exercise 5oaword1 8346
[TakeutiZaring] p. 62Definition 8.15om0x 8312  omlim 8326  omsuc 8319
[TakeutiZaring] p. 62Definition 8.15(a)om0 8310
[TakeutiZaring] p. 63Proposition 8.17nnecl 8407  nnmcl 8406
[TakeutiZaring] p. 63Proposition 8.19nnmord 8426  nnmordi 8425  omord 8362  omordi 8360
[TakeutiZaring] p. 63Proposition 8.20omcan 8363
[TakeutiZaring] p. 63Proposition 8.21nnmwordri 8430  omwordri 8366
[TakeutiZaring] p. 63Proposition 8.18(1)om0r 8332
[TakeutiZaring] p. 63Proposition 8.18(2)om1 8336  om1r 8337
[TakeutiZaring] p. 64Proposition 8.22om00 8369
[TakeutiZaring] p. 64Proposition 8.23omordlim 8371
[TakeutiZaring] p. 64Proposition 8.24omlimcl 8372
[TakeutiZaring] p. 64Proposition 8.25odi 8373
[TakeutiZaring] p. 65Theorem 8.26omass 8374
[TakeutiZaring] p. 67Definition 8.30nnesuc 8402  oe0 8315  oelim 8327  oesuc 8320  onesuc 8323
[TakeutiZaring] p. 67Proposition 8.31oe0m0 8313
[TakeutiZaring] p. 67Proposition 8.32oen0 8380
[TakeutiZaring] p. 67Proposition 8.33oeordi 8381
[TakeutiZaring] p. 67Proposition 8.31(2)oe0m1 8314
[TakeutiZaring] p. 67Proposition 8.31(3)oe1m 8339
[TakeutiZaring] p. 68Corollary 8.34oeord 8382
[TakeutiZaring] p. 68Corollary 8.36oeordsuc 8388
[TakeutiZaring] p. 68Proposition 8.35oewordri 8386
[TakeutiZaring] p. 68Proposition 8.37oeworde 8387
[TakeutiZaring] p. 69Proposition 8.41oeoa 8391
[TakeutiZaring] p. 70Proposition 8.42oeoe 8393
[TakeutiZaring] p. 73Theorem 9.1trcl 9416  tz9.1 9417
[TakeutiZaring] p. 76Definition 9.9df-r1 9452  r10 9456  r1lim 9460  r1limg 9459  r1suc 9458  r1sucg 9457
[TakeutiZaring] p. 77Proposition 9.10(2)r1ord 9468  r1ord2 9469  r1ordg 9466
[TakeutiZaring] p. 78Proposition 9.12tz9.12 9478
[TakeutiZaring] p. 78Proposition 9.13rankwflem 9503  tz9.13 9479  tz9.13g 9480
[TakeutiZaring] p. 79Definition 9.14df-rank 9453  rankval 9504  rankvalb 9485  rankvalg 9505
[TakeutiZaring] p. 79Proposition 9.16rankel 9527  rankelb 9512
[TakeutiZaring] p. 79Proposition 9.17rankuni2b 9541  rankval3 9528  rankval3b 9514
[TakeutiZaring] p. 79Proposition 9.18rankonid 9517
[TakeutiZaring] p. 79Proposition 9.15(1)rankon 9483
[TakeutiZaring] p. 79Proposition 9.15(2)rankr1 9522  rankr1c 9509  rankr1g 9520
[TakeutiZaring] p. 79Proposition 9.15(3)ssrankr1 9523
[TakeutiZaring] p. 80Exercise 1rankss 9537  rankssb 9536
[TakeutiZaring] p. 80Exercise 2unbndrank 9530
[TakeutiZaring] p. 80Proposition 9.19bndrank 9529
[TakeutiZaring] p. 83Axiom of Choiceac4 10161  dfac3 9807
[TakeutiZaring] p. 84Theorem 10.3dfac8a 9716  numth 10158  numth2 10157
[TakeutiZaring] p. 85Definition 10.4cardval 10232
[TakeutiZaring] p. 85Proposition 10.5cardid 10233  cardid2 9641
[TakeutiZaring] p. 85Proposition 10.9oncard 9648
[TakeutiZaring] p. 85Proposition 10.10carden 10237
[TakeutiZaring] p. 85Proposition 10.11cardidm 9647
[TakeutiZaring] p. 85Proposition 10.6(1)cardon 9632
[TakeutiZaring] p. 85Proposition 10.6(2)cardne 9653
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 9645
[TakeutiZaring] p. 87Proposition 10.15pwen 8887
[TakeutiZaring] p. 88Exercise 1en0 8759
[TakeutiZaring] p. 88Exercise 7infensuc 8892
[TakeutiZaring] p. 89Exercise 10omxpen 8815
[TakeutiZaring] p. 90Corollary 10.23cardnn 9651
[TakeutiZaring] p. 90Definition 10.27alephiso 9784
[TakeutiZaring] p. 90Proposition 10.20nneneq 8897
[TakeutiZaring] p. 90Proposition 10.22onomeneq 8941
[TakeutiZaring] p. 90Proposition 10.26alephprc 9785
[TakeutiZaring] p. 90Corollary 10.21(1)php5 8902
[TakeutiZaring] p. 91Exercise 2alephle 9774
[TakeutiZaring] p. 91Exercise 3aleph0 9752
[TakeutiZaring] p. 91Exercise 4cardlim 9660
[TakeutiZaring] p. 91Exercise 7infpss 9903
[TakeutiZaring] p. 91Exercise 8infcntss 9017
[TakeutiZaring] p. 91Definition 10.29df-fin 8696  isfi 8720
[TakeutiZaring] p. 92Proposition 10.32onfin 8942
[TakeutiZaring] p. 92Proposition 10.34imadomg 10220
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 8808
[TakeutiZaring] p. 93Proposition 10.35fodomb 10212
[TakeutiZaring] p. 93Proposition 10.36djuxpdom 9871  unxpdom 8957
[TakeutiZaring] p. 93Proposition 10.37cardsdomel 9662  cardsdomelir 9661
[TakeutiZaring] p. 93Proposition 10.38sucxpdom 8959
[TakeutiZaring] p. 94Proposition 10.39infxpen 9700
[TakeutiZaring] p. 95Definition 10.42df-map 8576
[TakeutiZaring] p. 95Proposition 10.40infxpidm 10248  infxpidm2 9703
[TakeutiZaring] p. 95Proposition 10.41infdju 9894  infxp 9901
[TakeutiZaring] p. 96Proposition 10.44pw2en 8820  pw2f1o 8818
[TakeutiZaring] p. 96Proposition 10.45mapxpen 8880
[TakeutiZaring] p. 97Theorem 10.46ac6s3 10173
[TakeutiZaring] p. 98Theorem 10.46ac6c5 10168  ac6s5 10177
[TakeutiZaring] p. 98Theorem 10.47unidom 10229
[TakeutiZaring] p. 99Theorem 10.48uniimadom 10230  uniimadomf 10231
[TakeutiZaring] p. 100Definition 11.1cfcof 9960
[TakeutiZaring] p. 101Proposition 11.7cofsmo 9955
[TakeutiZaring] p. 102Exercise 1cfle 9940
[TakeutiZaring] p. 102Exercise 2cf0 9937
[TakeutiZaring] p. 102Exercise 3cfsuc 9943
[TakeutiZaring] p. 102Exercise 4cfom 9950
[TakeutiZaring] p. 102Proposition 11.9coftr 9959
[TakeutiZaring] p. 103Theorem 11.15alephreg 10268
[TakeutiZaring] p. 103Proposition 11.11cardcf 9938
[TakeutiZaring] p. 103Proposition 11.13alephsing 9962
[TakeutiZaring] p. 104Corollary 11.17cardinfima 9783
[TakeutiZaring] p. 104Proposition 11.16carduniima 9782
[TakeutiZaring] p. 104Proposition 11.18alephfp 9794  alephfp2 9795
[TakeutiZaring] p. 106Theorem 11.20gchina 10385
[TakeutiZaring] p. 106Theorem 11.21mappwen 9798
[TakeutiZaring] p. 107Theorem 11.26konigth 10255
[TakeutiZaring] p. 108Theorem 11.28pwcfsdom 10269
[TakeutiZaring] p. 108Theorem 11.29cfpwsdom 10270
[Tarski] p. 67Axiom B5ax-c5 36823
[Tarski] p. 67Scheme B5sp 2182
[Tarski] p. 68Lemma 6avril1 28727  equid 2020
[Tarski] p. 69Lemma 7equcomi 2025
[Tarski] p. 70Lemma 14spim 2388  spime 2390  spimew 1980
[Tarski] p. 70Lemma 16ax-12 2177  ax-c15 36829  ax12i 1975
[Tarski] p. 70Lemmas 16 and 17sb6 2093
[Tarski] p. 75Axiom B7ax6v 1977
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-5 1918  ax5ALT 36847
[Tarski], p. 75Scheme B8 of system S2ax-7 2016  ax-8 2114  ax-9 2122
[Tarski1999] p. 178Axiom 4axtgsegcon 26728
[Tarski1999] p. 178Axiom 5axtg5seg 26729
[Tarski1999] p. 179Axiom 7axtgpasch 26731
[Tarski1999] p. 180Axiom 7.1axtgpasch 26731
[Tarski1999] p. 185Axiom 11axtgcont1 26732
[Truss] p. 114Theorem 5.18ruc 15879
[Viaclovsky7] p. 3Corollary 0.3mblfinlem3 35742
[Viaclovsky8] p. 3Proposition 7ismblfin 35744
[Weierstrass] p. 272Definitiondf-mdet 21641  mdetuni 21678
[WhiteheadRussell] p. 96Axiom *1.2pm1.2 904
[WhiteheadRussell] p. 96Axiom *1.3olc 868
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 869
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 920
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 968
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 192
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 137
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 90  wl-luk-pm2.04 35542
[WhiteheadRussell] p. 100Theorem *2.05frege5 41289  imim2 58  wl-luk-imim2 35537
[WhiteheadRussell] p. 100Theorem *2.06adh-minimp-imim1 44393  imim1 83
[WhiteheadRussell] p. 101Theorem *2.1pm2.1 897
[WhiteheadRussell] p. 101Theorem *2.06barbara 2665  syl 17
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 903
[WhiteheadRussell] p. 101Theorem *2.08id 22  wl-luk-id 35540
[WhiteheadRussell] p. 101Theorem *2.11exmid 895
[WhiteheadRussell] p. 101Theorem *2.12notnot 144
[WhiteheadRussell] p. 101Theorem *2.13pm2.13 898
[WhiteheadRussell] p. 102Theorem *2.14notnotr 132  notnotrALT2 42428  wl-luk-notnotr 35541
[WhiteheadRussell] p. 102Theorem *2.15con1 148
[WhiteheadRussell] p. 103Theorem *2.16ax-frege28 41319  axfrege28 41318  con3 156
[WhiteheadRussell] p. 103Theorem *2.17ax-3 8
[WhiteheadRussell] p. 103Theorem *2.18pm2.18 128
[WhiteheadRussell] p. 104Theorem *2.2orc 867
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 925
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 123  wl-luk-pm2.21 35534
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 124
[WhiteheadRussell] p. 104Theorem *2.25pm2.25 890
[WhiteheadRussell] p. 104Theorem *2.26pm2.26 940
[WhiteheadRussell] p. 104Theorem *2.27conventions-labels 28665  pm2.27 42  wl-luk-pm2.27 35532
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 923
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 924
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 970
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 971
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 969
[WhiteheadRussell] p. 105Definition *2.33df-3or 1090
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 907
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 908
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 943
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 56
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 882
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 883
[WhiteheadRussell] p. 107Theorem *2.5pm2.5 172  pm2.5g 171
[WhiteheadRussell] p. 107Theorem *2.6pm2.6 194
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 884
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 885
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 886
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 175
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 176
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 851
[WhiteheadRussell] p. 107Theorem *2.54pm2.54 852
[WhiteheadRussell] p. 107Theorem *2.55orel1 889
[WhiteheadRussell] p. 107Theorem *2.56orel2 891
[WhiteheadRussell] p. 107Theorem *2.61pm2.61 195
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 900
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 941
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 942
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 196
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 892  pm2.67 893
[WhiteheadRussell] p. 107Theorem *2.521pm2.521 179  pm2.521g 177  pm2.521g2 178
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 899
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 973
[WhiteheadRussell] p. 108Theorem *2.68pm2.68 901
[WhiteheadRussell] p. 108Theorem *2.69looinv 206
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 974
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 975
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 934
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 932
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 972
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 976
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 84
[WhiteheadRussell] p. 108Theorem *2.85pm2.85 933
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 109
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 992
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 473  pm3.2im 163
[WhiteheadRussell] p. 111Theorem *3.11pm3.11 993
[WhiteheadRussell] p. 111Theorem *3.12pm3.12 994
[WhiteheadRussell] p. 111Theorem *3.13pm3.13 995
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 996
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 475
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 463
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 406
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 803
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 452
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 453
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 486  simplim 170
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 488  simprim 169
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 765
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 766
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 808
[WhiteheadRussell] p. 113Fact)pm3.45 625
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 810
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 496
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 497
[WhiteheadRussell] p. 113Theorem *3.44jao 961  pm3.44 960
[WhiteheadRussell] p. 113Theorem *3.47anim12 809
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 477
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 964
[WhiteheadRussell] p. 116Theorem *4.1con34b 319
[WhiteheadRussell] p. 117Theorem *4.2biid 264
[WhiteheadRussell] p. 117Theorem *4.11notbi 322
[WhiteheadRussell] p. 117Theorem *4.12con2bi 357
[WhiteheadRussell] p. 117Theorem *4.13notnotb 318
[WhiteheadRussell] p. 117Theorem *4.14pm4.14 807
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 833
[WhiteheadRussell] p. 117Theorem *4.21bicom 225
[WhiteheadRussell] p. 117Theorem *4.22biantr 806  bitr 805
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 567
[WhiteheadRussell] p. 117Theorem *4.25oridm 905  pm4.25 906
[WhiteheadRussell] p. 118Theorem *4.3ancom 464
[WhiteheadRussell] p. 118Theorem *4.4andi 1008
[WhiteheadRussell] p. 118Theorem *4.31orcom 870
[WhiteheadRussell] p. 118Theorem *4.32anass 472
[WhiteheadRussell] p. 118Theorem *4.33orass 922
[WhiteheadRussell] p. 118Theorem *4.36anbi1 635
[WhiteheadRussell] p. 118Theorem *4.37orbi1 918
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 638
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 977
[WhiteheadRussell] p. 118Definition *4.34df-3an 1091
[WhiteheadRussell] p. 119Theorem *4.41ordi 1006
[WhiteheadRussell] p. 119Theorem *4.42pm4.42 1054
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 1023
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 997
[WhiteheadRussell] p. 119Theorem *4.45orabs 999  pm4.45 998  pm4.45im 828
[WhiteheadRussell] p. 120Theorem *4.5anor 983
[WhiteheadRussell] p. 120Theorem *4.6imor 853
[WhiteheadRussell] p. 120Theorem *4.7anclb 549
[WhiteheadRussell] p. 120Theorem *4.51ianor 982
[WhiteheadRussell] p. 120Theorem *4.52pm4.52 985
[WhiteheadRussell] p. 120Theorem *4.53pm4.53 986
[WhiteheadRussell] p. 120Theorem *4.54pm4.54 987
[WhiteheadRussell] p. 120Theorem *4.55pm4.55 988
[WhiteheadRussell] p. 120Theorem *4.56ioran 984  pm4.56 989
[WhiteheadRussell] p. 120Theorem *4.57oran 990  pm4.57 991
[WhiteheadRussell] p. 120Theorem *4.61pm4.61 408
[WhiteheadRussell] p. 120Theorem *4.62pm4.62 856
[WhiteheadRussell] p. 120Theorem *4.63pm4.63 401
[WhiteheadRussell] p. 120Theorem *4.64pm4.64 849
[WhiteheadRussell] p. 120Theorem *4.65pm4.65 409
[WhiteheadRussell] p. 120Theorem *4.66pm4.66 850
[WhiteheadRussell] p. 120Theorem *4.67pm4.67 402
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 561  pm4.71d 565  pm4.71i 563  pm4.71r 562  pm4.71rd 566  pm4.71ri 564
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 950
[WhiteheadRussell] p. 121Theorem *4.73iba 531
[WhiteheadRussell] p. 121Theorem *4.74biorf 937
[WhiteheadRussell] p. 121Theorem *4.76jcab 521  pm4.76 522
[WhiteheadRussell] p. 121Theorem *4.77jaob 962  pm4.77 963
[WhiteheadRussell] p. 121Theorem *4.78pm4.78 935
[WhiteheadRussell] p. 121Theorem *4.79pm4.79 1004
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 396
[WhiteheadRussell] p. 122Theorem *4.81pm4.81 397
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 1024
[WhiteheadRussell] p. 122Theorem *4.83pm4.83 1025
[WhiteheadRussell] p. 122Theorem *4.84imbi1 351
[WhiteheadRussell] p. 122Theorem *4.85imbi2 352
[WhiteheadRussell] p. 122Theorem *4.86bibi1 355
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 392  impexp 454  pm4.87 843
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 824
[WhiteheadRussell] p. 123Theorem *5.11pm5.11 945  pm5.11g 944
[WhiteheadRussell] p. 123Theorem *5.12pm5.12 946
[WhiteheadRussell] p. 123Theorem *5.13pm5.13 948
[WhiteheadRussell] p. 123Theorem *5.14pm5.14 947
[WhiteheadRussell] p. 124Theorem *5.15pm5.15 1013
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 1014
[WhiteheadRussell] p. 124Theorem *5.17pm5.17 1012
[WhiteheadRussell] p. 124Theorem *5.18nbbn 388  pm5.18 386
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 391
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 825
[WhiteheadRussell] p. 124Theorem *5.22xor 1015
[WhiteheadRussell] p. 124Theorem *5.23dfbi3 1050
[WhiteheadRussell] p. 124Theorem *5.24pm5.24 1051
[WhiteheadRussell] p. 124Theorem *5.25dfor2 902
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 576
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 393
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 365
[WhiteheadRussell] p. 125Theorem *5.6pm5.6 1002
[WhiteheadRussell] p. 125Theorem *5.7pm5.7 954
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 831
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 577
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 836
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 826
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 834
[WhiteheadRussell] p. 125Theorem *5.41imdi 394  pm5.41 395
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 547
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 546
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 1005
[WhiteheadRussell] p. 125Theorem *5.54pm5.54 1018
[WhiteheadRussell] p. 125Theorem *5.55pm5.55 949
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 1001
[WhiteheadRussell] p. 125Theorem *5.62pm5.62 1019
[WhiteheadRussell] p. 125Theorem *5.63pm5.63 1020
[WhiteheadRussell] p. 125Theorem *5.71pm5.71 1028
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 370
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 273
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 1029
[WhiteheadRussell] p. 146Theorem *10.12pm10.12 41857
[WhiteheadRussell] p. 146Theorem *10.14pm10.14 41858
[WhiteheadRussell] p. 147Theorem *10.2219.26 1878
[WhiteheadRussell] p. 149Theorem *10.251pm10.251 41859
[WhiteheadRussell] p. 149Theorem *10.252pm10.252 41860
[WhiteheadRussell] p. 149Theorem *10.253pm10.253 41861
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1901
[WhiteheadRussell] p. 151Theorem *10.301albitr 41862
[WhiteheadRussell] p. 155Theorem *10.42pm10.42 41863
[WhiteheadRussell] p. 155Theorem *10.52pm10.52 41864
[WhiteheadRussell] p. 155Theorem *10.53pm10.53 41865
[WhiteheadRussell] p. 155Theorem *10.541pm10.541 41866
[WhiteheadRussell] p. 156Theorem *10.55pm10.55 41868
[WhiteheadRussell] p. 156Theorem *10.56pm10.56 41869
[WhiteheadRussell] p. 156Theorem *10.57pm10.57 41870
[WhiteheadRussell] p. 156Theorem *10.542pm10.542 41867
[WhiteheadRussell] p. 159Axiom *11.07pm11.07 2098
[WhiteheadRussell] p. 159Theorem *11.11pm11.11 41873
[WhiteheadRussell] p. 159Theorem *11.12pm11.12 41874
[WhiteheadRussell] p. 159Theorem PM*11.12stdpc4 2078
[WhiteheadRussell] p. 160Theorem *11.21alrot3 2163
[WhiteheadRussell] p. 160Theorem *11.222exnaln 1836
[WhiteheadRussell] p. 160Theorem *11.252nexaln 1837
[WhiteheadRussell] p. 161Theorem *11.319.21vv 41875
[WhiteheadRussell] p. 162Theorem *11.322alim 41876
[WhiteheadRussell] p. 162Theorem *11.332albi 41877
[WhiteheadRussell] p. 162Theorem *11.342exim 41878
[WhiteheadRussell] p. 162Theorem *11.36spsbce-2 41880
[WhiteheadRussell] p. 162Theorem *11.3412exbi 41879
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1895
[WhiteheadRussell] p. 163Theorem *11.4319.36vv 41882
[WhiteheadRussell] p. 163Theorem *11.4419.31vv 41883
[WhiteheadRussell] p. 163Theorem *11.42119.33-2 41881
[WhiteheadRussell] p. 164Theorem *11.52nalexn 1835
[WhiteheadRussell] p. 164Theorem *11.4619.37vv 41884
[WhiteheadRussell] p. 164Theorem *11.4719.28vv 41885
[WhiteheadRussell] p. 164Theorem *11.512exnexn 1853
[WhiteheadRussell] p. 164Theorem *11.52pm11.52 41886
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 2349
[WhiteheadRussell] p. 164Theorem *11.5212exanali 1868
[WhiteheadRussell] p. 165Theorem *11.6pm11.6 41891
[WhiteheadRussell] p. 165Theorem *11.56aaanv 41887
[WhiteheadRussell] p. 165Theorem *11.57pm11.57 41888
[WhiteheadRussell] p. 165Theorem *11.58pm11.58 41889
[WhiteheadRussell] p. 165Theorem *11.59pm11.59 41890
[WhiteheadRussell] p. 166Theorem *11.7pm11.7 41895
[WhiteheadRussell] p. 166Theorem *11.61pm11.61 41892
[WhiteheadRussell] p. 166Theorem *11.62pm11.62 41893
[WhiteheadRussell] p. 166Theorem *11.63pm11.63 41894
[WhiteheadRussell] p. 166Theorem *11.71pm11.71 41896
[WhiteheadRussell] p. 175Definition *14.02df-eu 2570
[WhiteheadRussell] p. 178Theorem *13.13pm13.13a 41906  pm13.13b 41907
[WhiteheadRussell] p. 178Theorem *13.14pm13.14 41908
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 3025
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 3026
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 3591
[WhiteheadRussell] p. 179Theorem *13.212sbc6g 41914
[WhiteheadRussell] p. 179Theorem *13.222sbc5g 41915
[WhiteheadRussell] p. 179Theorem *13.192pm13.192 41909
[WhiteheadRussell] p. 179Theorem *13.1932pm13.193 42053  pm13.193 41910
[WhiteheadRussell] p. 179Theorem *13.194pm13.194 41911
[WhiteheadRussell] p. 179Theorem *13.195pm13.195 41912
[WhiteheadRussell] p. 179Theorem *13.196pm13.196a 41913
[WhiteheadRussell] p. 184Theorem *14.12pm14.12 41920
[WhiteheadRussell] p. 184Theorem *14.111iotasbc2 41919
[WhiteheadRussell] p. 184Definition *14.01iotasbc 41918
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3781
[WhiteheadRussell] p. 185Theorem *14.122pm14.122a 41921  pm14.122b 41922  pm14.122c 41923
[WhiteheadRussell] p. 185Theorem *14.123pm14.123a 41924  pm14.123b 41925  pm14.123c 41926
[WhiteheadRussell] p. 189Theorem *14.2iotaequ 41928
[WhiteheadRussell] p. 189Theorem *14.18pm14.18 41927
[WhiteheadRussell] p. 189Theorem *14.202iotavalb 41929
[WhiteheadRussell] p. 190Theorem *14.22iota4 6399
[WhiteheadRussell] p. 190Theorem *14.205iotasbc5 41930
[WhiteheadRussell] p. 191Theorem *14.23iota4an 6400
[WhiteheadRussell] p. 191Theorem *14.24pm14.24 41931
[WhiteheadRussell] p. 192Theorem *14.25sbiota1 41933
[WhiteheadRussell] p. 192Theorem *14.26eupick 2636  eupickbi 2639  sbaniota 41934
[WhiteheadRussell] p. 192Theorem *14.242iotavalsb 41932
[WhiteheadRussell] p. 192Theorem *14.271eubi 2585
[WhiteheadRussell] p. 193Theorem *14.272iotasbcq 41936
[WhiteheadRussell] p. 235Definition *30.01conventions 28664  df-fv 6426
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 9689  pm54.43lem 9688
[Young] p. 141Definition of operator orderingleop2 30386
[Young] p. 142Example 12.2(i)0leop 30392  idleop 30393
[vandenDries] p. 42Lemma 61irrapx1 40558
[vandenDries] p. 43Theorem 62pellex 40565  pellexlem1 40559

This page was last updated on 20-Nov-2024.
Copyright terms: Public domain