Metamath Proof Explorer Home Metamath Proof Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  MPE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Metamath Proof Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular set theory book, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Color key:   Metamath Proof Explorer  Metamath Proof Explorer   Hilbert Space Explorer  Hilbert Space Explorer   User Mathboxes  User Mathboxes  

Bibliographic Cross-Reference for the Metamath Proof Explorer
Bibliographic ReferenceDescriptionMetamath Proof Explorer Page(s)
[Adamek] p. 21Definition 3.1df-cat 16931
[Adamek] p. 21Condition 3.1(b)df-cat 16931
[Adamek] p. 22Example 3.3(1)df-setc 17328
[Adamek] p. 24Example 3.3(4.c)0cat 16951
[Adamek] p. 25Definition 3.5df-oppc 16974
[Adamek] p. 28Remark 3.9oppciso 17043
[Adamek] p. 28Remark 3.12invf1o 17031  invisoinvl 17052
[Adamek] p. 28Example 3.13idinv 17051  idiso 17050
[Adamek] p. 28Corollary 3.11inveq 17036
[Adamek] p. 28Definition 3.8df-inv 17010  df-iso 17011  dfiso2 17034
[Adamek] p. 28Proposition 3.10sectcan 17017
[Adamek] p. 29Remark 3.16cicer 17068
[Adamek] p. 29Definition 3.15cic 17061  df-cic 17058
[Adamek] p. 29Definition 3.17df-func 17120
[Adamek] p. 29Proposition 3.14(1)invinv 17032
[Adamek] p. 29Proposition 3.14(2)invco 17033  isoco 17039
[Adamek] p. 30Remark 3.19df-func 17120
[Adamek] p. 30Example 3.20(1)idfucl 17143
[Adamek] p. 32Proposition 3.21funciso 17136
[Adamek] p. 33Proposition 3.23cofucl 17150
[Adamek] p. 34Remark 3.28(2)catciso 17359
[Adamek] p. 34Remark 3.28 (1)embedsetcestrc 17409
[Adamek] p. 34Definition 3.27(2)df-fth 17167
[Adamek] p. 34Definition 3.27(3)df-full 17166
[Adamek] p. 34Definition 3.27 (1)embedsetcestrc 17409
[Adamek] p. 35Corollary 3.32ffthiso 17191
[Adamek] p. 35Proposition 3.30(c)cofth 17197
[Adamek] p. 35Proposition 3.30(d)cofull 17196
[Adamek] p. 36Definition 3.33 (1)equivestrcsetc 17394
[Adamek] p. 36Definition 3.33 (2)equivestrcsetc 17394
[Adamek] p. 39Definition 3.41funcoppc 17137
[Adamek] p. 39Definition 3.44.df-catc 17347
[Adamek] p. 39Proposition 3.43(c)fthoppc 17185
[Adamek] p. 39Proposition 3.43(d)fulloppc 17184
[Adamek] p. 40Remark 3.48catccat 17356
[Adamek] p. 40Definition 3.47df-catc 17347
[Adamek] p. 48Example 4.3(1.a)0subcat 17100
[Adamek] p. 48Example 4.3(1.b)catsubcat 17101
[Adamek] p. 48Definition 4.1(2)fullsubc 17112
[Adamek] p. 48Definition 4.1(a)df-subc 17074
[Adamek] p. 49Remark 4.4(2)ressffth 17200
[Adamek] p. 83Definition 6.1df-nat 17205
[Adamek] p. 87Remark 6.14(a)fuccocl 17226
[Adamek] p. 87Remark 6.14(b)fucass 17230
[Adamek] p. 87Definition 6.15df-fuc 17206
[Adamek] p. 88Remark 6.16fuccat 17232
[Adamek] p. 101Definition 7.1df-inito 17243
[Adamek] p. 101Example 7.2 (6)irinitoringc 44693
[Adamek] p. 102Definition 7.4df-termo 17244
[Adamek] p. 102Proposition 7.3 (1)initoeu1w 17264
[Adamek] p. 102Proposition 7.3 (2)initoeu2 17268
[Adamek] p. 103Definition 7.7df-zeroo 17245
[Adamek] p. 103Example 7.9 (3)nzerooringczr 44696
[Adamek] p. 103Proposition 7.6termoeu1w 17271
[Adamek] p. 106Definition 7.19df-sect 17009
[Adamek] p. 185Section 10.67updjud 9347
[Adamek] p. 478Item Rngdf-ringc 44629
[AhoHopUll] p. 2Section 1.1df-bigo 44962
[AhoHopUll] p. 12Section 1.3df-blen 44984
[AhoHopUll] p. 318Section 9.1df-concat 13914  df-pfx 14024  df-substr 13994  df-word 13858  lencl 13876  wrd0 13882
[AkhiezerGlazman] p. 39Linear operator normdf-nmo 23314  df-nmoo 28528
[AkhiezerGlazman] p. 64Theoremhmopidmch 29936  hmopidmchi 29934
[AkhiezerGlazman] p. 65Theorem 1pjcmul1i 29984  pjcmul2i 29985
[AkhiezerGlazman] p. 72Theoremcnvunop 29701  unoplin 29703
[AkhiezerGlazman] p. 72Equation 2unopadj 29702  unopadj2 29721
[AkhiezerGlazman] p. 73Theoremelunop2 29796  lnopunii 29795
[AkhiezerGlazman] p. 80Proposition 1adjlnop 29869
[Apostol] p. 18Theorem I.1addcan 10813  addcan2d 10833  addcan2i 10823  addcand 10832  addcani 10822
[Apostol] p. 18Theorem I.2negeu 10865
[Apostol] p. 18Theorem I.3negsub 10923  negsubd 10992  negsubi 10953
[Apostol] p. 18Theorem I.4negneg 10925  negnegd 10977  negnegi 10945
[Apostol] p. 18Theorem I.5subdi 11062  subdid 11085  subdii 11078  subdir 11063  subdird 11086  subdiri 11079
[Apostol] p. 18Theorem I.6mul01 10808  mul01d 10828  mul01i 10819  mul02 10807  mul02d 10827  mul02i 10818
[Apostol] p. 18Theorem I.7mulcan 11266  mulcan2d 11263  mulcand 11262  mulcani 11268
[Apostol] p. 18Theorem I.8receu 11274  xreceu 30624
[Apostol] p. 18Theorem I.9divrec 11303  divrecd 11408  divreci 11374  divreczi 11367
[Apostol] p. 18Theorem I.10recrec 11326  recreci 11361
[Apostol] p. 18Theorem I.11mul0or 11269  mul0ord 11279  mul0ori 11277
[Apostol] p. 18Theorem I.12mul2neg 11068  mul2negd 11084  mul2negi 11077  mulneg1 11065  mulneg1d 11082  mulneg1i 11075
[Apostol] p. 18Theorem I.13divadddiv 11344  divadddivd 11449  divadddivi 11391
[Apostol] p. 18Theorem I.14divmuldiv 11329  divmuldivd 11446  divmuldivi 11389  rdivmuldivd 30913
[Apostol] p. 18Theorem I.15divdivdiv 11330  divdivdivd 11452  divdivdivi 11392
[Apostol] p. 20Axiom 7rpaddcl 12399  rpaddcld 12434  rpmulcl 12400  rpmulcld 12435
[Apostol] p. 20Axiom 8rpneg 12409
[Apostol] p. 20Axiom 90nrp 12412
[Apostol] p. 20Theorem I.17lttri 10755
[Apostol] p. 20Theorem I.18ltadd1d 11222  ltadd1dd 11240  ltadd1i 11183
[Apostol] p. 20Theorem I.19ltmul1 11479  ltmul1a 11478  ltmul1i 11547  ltmul1ii 11557  ltmul2 11480  ltmul2d 12461  ltmul2dd 12475  ltmul2i 11550
[Apostol] p. 20Theorem I.20msqgt0 11149  msqgt0d 11196  msqgt0i 11166
[Apostol] p. 20Theorem I.210lt1 11151
[Apostol] p. 20Theorem I.23lt0neg1 11135  lt0neg1d 11198  ltneg 11129  ltnegd 11207  ltnegi 11173
[Apostol] p. 20Theorem I.25lt2add 11114  lt2addd 11252  lt2addi 11191
[Apostol] p. 20Definition of positive numbersdf-rp 12378
[Apostol] p. 21Exercise 4recgt0 11475  recgt0d 11563  recgt0i 11534  recgt0ii 11535
[Apostol] p. 22Definition of integersdf-z 11970
[Apostol] p. 22Definition of positive integersdfnn3 11639
[Apostol] p. 22Definition of rationalsdf-q 12337
[Apostol] p. 24Theorem I.26supeu 8902
[Apostol] p. 26Theorem I.28nnunb 11881
[Apostol] p. 26Theorem I.29arch 11882
[Apostol] p. 28Exercise 2btwnz 12072
[Apostol] p. 28Exercise 3nnrecl 11883
[Apostol] p. 28Exercise 4rebtwnz 12335
[Apostol] p. 28Exercise 5zbtwnre 12334
[Apostol] p. 28Exercise 6qbtwnre 12580
[Apostol] p. 28Exercise 10(a)zeneo 15680  zneo 12053  zneoALTV 44187
[Apostol] p. 29Theorem I.35cxpsqrtth 25320  msqsqrtd 14792  resqrtth 14607  sqrtth 14716  sqrtthi 14722  sqsqrtd 14791
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 11628
[Apostol] p. 34Theorem I.37 (well-ordering principle)nnwo 12301
[Apostol] p. 361Remarkcrreczi 13585
[Apostol] p. 363Remarkabsgt0i 14751
[Apostol] p. 363Exampleabssubd 14805  abssubi 14755
[ApostolNT] p. 7Remarkfmtno0 44057  fmtno1 44058  fmtno2 44067  fmtno3 44068  fmtno4 44069  fmtno5fac 44099  fmtnofz04prm 44094
[ApostolNT] p. 7Definitiondf-fmtno 44045
[ApostolNT] p. 8Definitiondf-ppi 25685
[ApostolNT] p. 14Definitiondf-dvds 15600
[ApostolNT] p. 14Theorem 1.1(a)iddvds 15615
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 15638
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 15634
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 15628
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 15630
[ApostolNT] p. 14Theorem 1.1(f)1dvds 15616
[ApostolNT] p. 14Theorem 1.1(g)dvds0 15617
[ApostolNT] p. 14Theorem 1.1(h)0dvds 15622
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 15653
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 15655
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 15657
[ApostolNT] p. 15Definitiondf-gcd 15834  dfgcd2 15884
[ApostolNT] p. 16Definitionisprm2 16016
[ApostolNT] p. 16Theorem 1.5coprmdvds 15987
[ApostolNT] p. 16Theorem 1.7prminf 16241
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 15852
[ApostolNT] p. 16Theorem 1.4(b)gcdass 15885
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 15887
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 15866
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 15858
[ApostolNT] p. 17Theorem 1.8coprm 16045
[ApostolNT] p. 17Theorem 1.9euclemma 16047
[ApostolNT] p. 17Theorem 1.101arith2 16254
[ApostolNT] p. 18Theorem 1.13prmrec 16248
[ApostolNT] p. 19Theorem 1.14divalg 15744
[ApostolNT] p. 20Theorem 1.15eucalg 15921
[ApostolNT] p. 24Definitiondf-mu 25686
[ApostolNT] p. 25Definitiondf-phi 16093
[ApostolNT] p. 25Theorem 2.1musum 25776
[ApostolNT] p. 26Theorem 2.2phisum 16117
[ApostolNT] p. 28Theorem 2.5(a)phiprmpw 16103
[ApostolNT] p. 28Theorem 2.5(c)phimul 16107
[ApostolNT] p. 32Definitiondf-vma 25683
[ApostolNT] p. 32Theorem 2.9muinv 25778
[ApostolNT] p. 32Theorem 2.10vmasum 25800
[ApostolNT] p. 38Remarkdf-sgm 25687
[ApostolNT] p. 38Definitiondf-sgm 25687
[ApostolNT] p. 75Definitiondf-chp 25684  df-cht 25682
[ApostolNT] p. 104Definitioncongr 15998
[ApostolNT] p. 106Remarkdvdsval3 15603
[ApostolNT] p. 106Definitionmoddvds 15610
[ApostolNT] p. 107Example 2mod2eq0even 15687
[ApostolNT] p. 107Example 3mod2eq1n2dvds 15688
[ApostolNT] p. 107Example 4zmod1congr 13251
[ApostolNT] p. 107Theorem 5.2(b)modmul12d 13288
[ApostolNT] p. 107Theorem 5.2(c)modexp 13595
[ApostolNT] p. 108Theorem 5.3modmulconst 15633
[ApostolNT] p. 109Theorem 5.4cncongr1 16001
[ApostolNT] p. 109Theorem 5.6gcdmodi 16400
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 16003
[ApostolNT] p. 113Theorem 5.17eulerth 16110
[ApostolNT] p. 113Theorem 5.18vfermltl 16128
[ApostolNT] p. 114Theorem 5.19fermltl 16111
[ApostolNT] p. 116Theorem 5.24wilthimp 25657
[ApostolNT] p. 179Definitiondf-lgs 25879  lgsprme0 25923
[ApostolNT] p. 180Example 11lgs 25924
[ApostolNT] p. 180Theorem 9.2lgsvalmod 25900
[ApostolNT] p. 180Theorem 9.3lgsdirprm 25915
[ApostolNT] p. 181Theorem 9.4m1lgs 25972
[ApostolNT] p. 181Theorem 9.52lgs 25991  2lgsoddprm 26000
[ApostolNT] p. 182Theorem 9.6gausslemma2d 25958
[ApostolNT] p. 185Theorem 9.8lgsquad 25967
[ApostolNT] p. 188Definitiondf-lgs 25879  lgs1 25925
[ApostolNT] p. 188Theorem 9.9(a)lgsdir 25916
[ApostolNT] p. 188Theorem 9.9(b)lgsdi 25918
[ApostolNT] p. 188Theorem 9.9(c)lgsmodeq 25926
[ApostolNT] p. 188Theorem 9.9(d)lgsmulsqcoprm 25927
[Baer] p. 40Property (b)mapdord 38934
[Baer] p. 40Property (c)mapd11 38935
[Baer] p. 40Property (e)mapdin 38958  mapdlsm 38960
[Baer] p. 40Property (f)mapd0 38961
[Baer] p. 40Definition of projectivitydf-mapd 38921  mapd1o 38944
[Baer] p. 41Property (g)mapdat 38963
[Baer] p. 44Part (1)mapdpg 39002
[Baer] p. 45Part (2)hdmap1eq 39097  mapdheq 39024  mapdheq2 39025  mapdheq2biN 39026
[Baer] p. 45Part (3)baerlem3 39009
[Baer] p. 46Part (4)mapdheq4 39028  mapdheq4lem 39027
[Baer] p. 46Part (5)baerlem5a 39010  baerlem5abmN 39014  baerlem5amN 39012  baerlem5b 39011  baerlem5bmN 39013
[Baer] p. 47Part (6)hdmap1l6 39117  hdmap1l6a 39105  hdmap1l6e 39110  hdmap1l6f 39111  hdmap1l6g 39112  hdmap1l6lem1 39103  hdmap1l6lem2 39104  mapdh6N 39043  mapdh6aN 39031  mapdh6eN 39036  mapdh6fN 39037  mapdh6gN 39038  mapdh6lem1N 39029  mapdh6lem2N 39030
[Baer] p. 48Part 9hdmapval 39124
[Baer] p. 48Part 10hdmap10 39136
[Baer] p. 48Part 11hdmapadd 39139
[Baer] p. 48Part (6)hdmap1l6h 39113  mapdh6hN 39039
[Baer] p. 48Part (7)mapdh75cN 39049  mapdh75d 39050  mapdh75e 39048  mapdh75fN 39051  mapdh7cN 39045  mapdh7dN 39046  mapdh7eN 39044  mapdh7fN 39047
[Baer] p. 48Part (8)mapdh8 39084  mapdh8a 39071  mapdh8aa 39072  mapdh8ab 39073  mapdh8ac 39074  mapdh8ad 39075  mapdh8b 39076  mapdh8c 39077  mapdh8d 39079  mapdh8d0N 39078  mapdh8e 39080  mapdh8g 39081  mapdh8i 39082  mapdh8j 39083
[Baer] p. 48Part (9)mapdh9a 39085
[Baer] p. 48Equation 10mapdhvmap 39065
[Baer] p. 49Part 12hdmap11 39144  hdmapeq0 39140  hdmapf1oN 39161  hdmapneg 39142  hdmaprnN 39160  hdmaprnlem1N 39145  hdmaprnlem3N 39146  hdmaprnlem3uN 39147  hdmaprnlem4N 39149  hdmaprnlem6N 39150  hdmaprnlem7N 39151  hdmaprnlem8N 39152  hdmaprnlem9N 39153  hdmapsub 39143
[Baer] p. 49Part 14hdmap14lem1 39164  hdmap14lem10 39173  hdmap14lem1a 39162  hdmap14lem2N 39165  hdmap14lem2a 39163  hdmap14lem3 39166  hdmap14lem8 39171  hdmap14lem9 39172
[Baer] p. 50Part 14hdmap14lem11 39174  hdmap14lem12 39175  hdmap14lem13 39176  hdmap14lem14 39177  hdmap14lem15 39178  hgmapval 39183
[Baer] p. 50Part 15hgmapadd 39190  hgmapmul 39191  hgmaprnlem2N 39193  hgmapvs 39187
[Baer] p. 50Part 16hgmaprnN 39197
[Baer] p. 110Lemma 1hdmapip0com 39213
[Baer] p. 110Line 27hdmapinvlem1 39214
[Baer] p. 110Line 28hdmapinvlem2 39215
[Baer] p. 110Line 30hdmapinvlem3 39216
[Baer] p. 110Part 1.2hdmapglem5 39218  hgmapvv 39222
[Baer] p. 110Proposition 1hdmapinvlem4 39217
[Baer] p. 111Line 10hgmapvvlem1 39219
[Baer] p. 111Line 15hdmapg 39226  hdmapglem7 39225
[Bauer], p. 483Theorem 1.22irrexpq 25321  2irrexpqALT 25386
[BellMachover] p. 36Lemma 10.3idALT 23
[BellMachover] p. 97Definition 10.1df-eu 2629
[BellMachover] p. 460Notationdf-mo 2598
[BellMachover] p. 460Definitionmo3 2623
[BellMachover] p. 461Axiom Extax-ext 2770
[BellMachover] p. 462Theorem 1.1axextmo 2774
[BellMachover] p. 463Axiom Repaxrep5 5160
[BellMachover] p. 463Scheme Sepax-sep 5167
[BellMachover] p. 463Theorem 1.3(ii)bj-bm1.3ii 34481  bm1.3ii 5170
[BellMachover] p. 466Problemaxpow2 5233
[BellMachover] p. 466Axiom Powaxpow3 5234
[BellMachover] p. 466Axiom Unionaxun2 7443
[BellMachover] p. 468Definitiondf-ord 6162
[BellMachover] p. 469Theorem 2.2(i)ordirr 6177
[BellMachover] p. 469Theorem 2.2(iii)onelon 6184
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 6179
[BellMachover] p. 471Definition of Ndf-om 7561
[BellMachover] p. 471Problem 2.5(ii)uniordint 7501
[BellMachover] p. 471Definition of Limdf-lim 6164
[BellMachover] p. 472Axiom Infzfinf2 9089
[BellMachover] p. 473Theorem 2.8limom 7575
[BellMachover] p. 477Equation 3.1df-r1 9177
[BellMachover] p. 478Definitionrankval2 9231
[BellMachover] p. 478Theorem 3.3(i)r1ord3 9195  r1ord3g 9192
[BellMachover] p. 480Axiom Regzfreg 9043
[BellMachover] p. 488Axiom ACac5 9888  dfac4 9533
[BellMachover] p. 490Definition of alephalephval3 9521
[BeltramettiCassinelli] p. 98Remarkatlatmstc 36615
[BeltramettiCassinelli] p. 107Remark 10.3.5atom1d 30136
[BeltramettiCassinelli] p. 166Theorem 14.8.4chirred 30178  chirredi 30177
[BeltramettiCassinelli1] p. 400Proposition P8(ii)atoml2i 30166
[Beran] p. 3Definition of joinsshjval3 29137
[Beran] p. 39Theorem 2.3(i)cmcm2 29399  cmcm2i 29376  cmcm2ii 29381  cmt2N 36546
[Beran] p. 40Theorem 2.3(iii)lecm 29400  lecmi 29385  lecmii 29386
[Beran] p. 45Theorem 3.4cmcmlem 29374
[Beran] p. 49Theorem 4.2cm2j 29403  cm2ji 29408  cm2mi 29409
[Beran] p. 95Definitiondf-sh 28990  issh2 28992
[Beran] p. 95Lemma 3.1(S5)his5 28869
[Beran] p. 95Lemma 3.1(S6)his6 28882
[Beran] p. 95Lemma 3.1(S7)his7 28873
[Beran] p. 95Lemma 3.2(S8)ho01i 29611
[Beran] p. 95Lemma 3.2(S9)hoeq1 29613
[Beran] p. 95Lemma 3.2(S10)ho02i 29612
[Beran] p. 95Lemma 3.2(S11)hoeq2 29614
[Beran] p. 95Postulate (S1)ax-his1 28865  his1i 28883
[Beran] p. 95Postulate (S2)ax-his2 28866
[Beran] p. 95Postulate (S3)ax-his3 28867
[Beran] p. 95Postulate (S4)ax-his4 28868
[Beran] p. 96Definition of normdf-hnorm 28751  dfhnorm2 28905  normval 28907
[Beran] p. 96Definition for Cauchy sequencehcau 28967
[Beran] p. 96Definition of Cauchy sequencedf-hcau 28756
[Beran] p. 96Definition of complete subspaceisch3 29024
[Beran] p. 96Definition of convergedf-hlim 28755  hlimi 28971
[Beran] p. 97Theorem 3.3(i)norm-i-i 28916  norm-i 28912
[Beran] p. 97Theorem 3.3(ii)norm-ii-i 28920  norm-ii 28921  normlem0 28892  normlem1 28893  normlem2 28894  normlem3 28895  normlem4 28896  normlem5 28897  normlem6 28898  normlem7 28899  normlem7tALT 28902
[Beran] p. 97Theorem 3.3(iii)norm-iii-i 28922  norm-iii 28923
[Beran] p. 98Remark 3.4bcs 28964  bcsiALT 28962  bcsiHIL 28963
[Beran] p. 98Remark 3.4(B)normlem9at 28904  normpar 28938  normpari 28937
[Beran] p. 98Remark 3.4(C)normpyc 28929  normpyth 28928  normpythi 28925
[Beran] p. 99Remarklnfn0 29830  lnfn0i 29825  lnop0 29749  lnop0i 29753
[Beran] p. 99Theorem 3.5(i)nmcexi 29809  nmcfnex 29836  nmcfnexi 29834  nmcopex 29812  nmcopexi 29810
[Beran] p. 99Theorem 3.5(ii)nmcfnlb 29837  nmcfnlbi 29835  nmcoplb 29813  nmcoplbi 29811
[Beran] p. 99Theorem 3.5(iii)lnfncon 29839  lnfnconi 29838  lnopcon 29818  lnopconi 29817
[Beran] p. 100Lemma 3.6normpar2i 28939
[Beran] p. 101Lemma 3.6norm3adifi 28936  norm3adifii 28931  norm3dif 28933  norm3difi 28930
[Beran] p. 102Theorem 3.7(i)chocunii 29084  pjhth 29176  pjhtheu 29177  pjpjhth 29208  pjpjhthi 29209  pjth 24043
[Beran] p. 102Theorem 3.7(ii)ococ 29189  ococi 29188
[Beran] p. 103Remark 3.8nlelchi 29844
[Beran] p. 104Theorem 3.9riesz3i 29845  riesz4 29847  riesz4i 29846
[Beran] p. 104Theorem 3.10cnlnadj 29862  cnlnadjeu 29861  cnlnadjeui 29860  cnlnadji 29859  cnlnadjlem1 29850  nmopadjlei 29871
[Beran] p. 106Theorem 3.11(i)adjeq0 29874
[Beran] p. 106Theorem 3.11(v)nmopadji 29873
[Beran] p. 106Theorem 3.11(ii)adjmul 29875
[Beran] p. 106Theorem 3.11(iv)adjadj 29719
[Beran] p. 106Theorem 3.11(vi)nmopcoadj2i 29885  nmopcoadji 29884
[Beran] p. 106Theorem 3.11(iii)adjadd 29876
[Beran] p. 106Theorem 3.11(vii)nmopcoadj0i 29886
[Beran] p. 106Theorem 3.11(viii)adjcoi 29883  pjadj2coi 29987  pjadjcoi 29944
[Beran] p. 107Definitiondf-ch 29004  isch2 29006
[Beran] p. 107Remark 3.12choccl 29089  isch3 29024  occl 29087  ocsh 29066  shoccl 29088  shocsh 29067
[Beran] p. 107Remark 3.12(B)ococin 29191
[Beran] p. 108Theorem 3.13chintcl 29115
[Beran] p. 109Property (i)pjadj2 29970  pjadj3 29971  pjadji 29468  pjadjii 29457
[Beran] p. 109Property (ii)pjidmco 29964  pjidmcoi 29960  pjidmi 29456
[Beran] p. 110Definition of projector orderingpjordi 29956
[Beran] p. 111Remarkho0val 29533  pjch1 29453
[Beran] p. 111Definitiondf-hfmul 29517  df-hfsum 29516  df-hodif 29515  df-homul 29514  df-hosum 29513
[Beran] p. 111Lemma 4.4(i)pjo 29454
[Beran] p. 111Lemma 4.4(ii)pjch 29477  pjchi 29215
[Beran] p. 111Lemma 4.4(iii)pjoc2 29222  pjoc2i 29221
[Beran] p. 112Theorem 4.5(i)->(ii)pjss2i 29463
[Beran] p. 112Theorem 4.5(i)->(iv)pjssmi 29948  pjssmii 29464
[Beran] p. 112Theorem 4.5(i)<->(ii)pjss2coi 29947
[Beran] p. 112Theorem 4.5(i)<->(iii)pjss1coi 29946
[Beran] p. 112Theorem 4.5(i)<->(vi)pjnormssi 29951
[Beran] p. 112Theorem 4.5(iv)->(v)pjssge0i 29949  pjssge0ii 29465
[Beran] p. 112Theorem 4.5(v)<->(vi)pjdifnormi 29950  pjdifnormii 29466
[Bobzien] p. 116Statement T3stoic3 1778
[Bobzien] p. 117Statement T2stoic2a 1776
[Bobzien] p. 117Statement T4stoic4a 1779
[Bobzien] p. 117Conclusion the contradictorystoic1a 1774
[Bogachev] p. 16Definition 1.5df-oms 31660
[Bogachev] p. 17Lemma 1.5.4omssubadd 31668
[Bogachev] p. 17Example 1.5.2omsmon 31666
[Bogachev] p. 41Definition 1.11.2df-carsg 31670
[Bogachev] p. 42Theorem 1.11.4carsgsiga 31690
[Bogachev] p. 116Definition 2.3.1df-itgm 31721  df-sitm 31699
[Bogachev] p. 118Chapter 2.4.4df-itgm 31721
[Bogachev] p. 118Definition 2.4.1df-sitg 31698
[Bollobas] p. 1Section I.1df-edg 26841  isuhgrop 26863  isusgrop 26955  isuspgrop 26954
[Bollobas] p. 2Section I.1df-subgr 27058  uhgrspan1 27093  uhgrspansubgr 27081
[Bollobas] p. 3Definitionisomuspgr 44352
[Bollobas] p. 3Section I.1cusgrsize 27244  df-cusgr 27202  df-nbgr 27123  fusgrmaxsize 27254
[Bollobas] p. 4Definitiondf-upwlks 44362  df-wlks 27389
[Bollobas] p. 4Section I.1finsumvtxdg2size 27340  finsumvtxdgeven 27342  fusgr1th 27341  fusgrvtxdgonume 27344  vtxdgoddnumeven 27343
[Bollobas] p. 5Notationdf-pths 27505
[Bollobas] p. 5Definitiondf-crcts 27575  df-cycls 27576  df-trls 27482  df-wlkson 27390
[Bollobas] p. 7Section I.1df-ushgr 26852
[BourbakiAlg1] p. 1Definition 1df-clintop 44460  df-cllaw 44446  df-mgm 17844  df-mgm2 44479
[BourbakiAlg1] p. 4Definition 5df-assintop 44461  df-asslaw 44448  df-sgrp 17893  df-sgrp2 44481
[BourbakiAlg1] p. 7Definition 8df-cmgm2 44480  df-comlaw 44447
[BourbakiAlg1] p. 12Definition 2df-mnd 17904
[BourbakiAlg1] p. 92Definition 1df-ring 19292
[BourbakiAlg1] p. 93Section I.8.1df-rng0 44499
[BourbakiEns] p. Proposition 8fcof1 7021  fcofo 7022
[BourbakiTop1] p. Remarkxnegmnf 12591  xnegpnf 12590
[BourbakiTop1] p. Remark rexneg 12592
[BourbakiTop1] p. Remark 3ust0 22825  ustfilxp 22818
[BourbakiTop1] p. Axiom GT'tgpsubcn 22695
[BourbakiTop1] p. Criterionishmeo 22364
[BourbakiTop1] p. Example 1cstucnd 22890  iducn 22889  snfil 22469
[BourbakiTop1] p. Example 2neifil 22485
[BourbakiTop1] p. Theorem 1cnextcn 22672
[BourbakiTop1] p. Theorem 2ucnextcn 22910
[BourbakiTop1] p. Theorem 3df-hcmp 31310
[BourbakiTop1] p. Paragraph 3infil 22468
[BourbakiTop1] p. Definition 1df-ucn 22882  df-ust 22806  filintn0 22466  filn0 22467  istgp 22682  ucnprima 22888
[BourbakiTop1] p. Definition 2df-cfilu 22893
[BourbakiTop1] p. Definition 3df-cusp 22904  df-usp 22863  df-utop 22837  trust 22835
[BourbakiTop1] p. Definition 6df-pcmp 31209
[BourbakiTop1] p. Property V_issnei2 21721
[BourbakiTop1] p. Theorem 1(d)iscncl 21874
[BourbakiTop1] p. Condition F_Iustssel 22811
[BourbakiTop1] p. Condition U_Iustdiag 22814
[BourbakiTop1] p. Property V_iiinnei 21730
[BourbakiTop1] p. Property V_ivneiptopreu 21738  neissex 21732
[BourbakiTop1] p. Proposition 1neips 21718  neiss 21714  ucncn 22891  ustund 22827  ustuqtop 22852
[BourbakiTop1] p. Proposition 2cnpco 21872  neiptopreu 21738  utop2nei 22856  utop3cls 22857
[BourbakiTop1] p. Proposition 3fmucnd 22898  uspreg 22880  utopreg 22858
[BourbakiTop1] p. Proposition 4imasncld 22296  imasncls 22297  imasnopn 22295
[BourbakiTop1] p. Proposition 9cnpflf2 22605
[BourbakiTop1] p. Condition F_IIustincl 22813
[BourbakiTop1] p. Condition U_IIustinvel 22815
[BourbakiTop1] p. Property V_iiielnei 21716
[BourbakiTop1] p. Proposition 11cnextucn 22909
[BourbakiTop1] p. Condition F_IIbustbasel 22812
[BourbakiTop1] p. Condition U_IIIustexhalf 22816
[BourbakiTop1] p. Definition C'''df-cmp 21992
[BourbakiTop1] p. Axioms FI, FIIa, FIIb, FIII)df-fil 22451
[BourbakiTop1] p. Definition is due to Bourbaki (Def. 1df-top 21499
[BourbakiTop2] p. 195Definition 1df-ldlf 31206
[BrosowskiDeutsh] p. 89Proof follows stoweidlem62 42704
[BrosowskiDeutsh] p. 89Lemmas are written following stowei 42706  stoweid 42705
[BrosowskiDeutsh] p. 90Lemma 1stoweidlem1 42643  stoweidlem10 42652  stoweidlem14 42656  stoweidlem15 42657  stoweidlem35 42677  stoweidlem36 42678  stoweidlem37 42679  stoweidlem38 42680  stoweidlem40 42682  stoweidlem41 42683  stoweidlem43 42685  stoweidlem44 42686  stoweidlem46 42688  stoweidlem5 42647  stoweidlem50 42692  stoweidlem52 42694  stoweidlem53 42695  stoweidlem55 42697  stoweidlem56 42698
[BrosowskiDeutsh] p. 90Lemma 1 stoweidlem23 42665  stoweidlem24 42666  stoweidlem27 42669  stoweidlem28 42670  stoweidlem30 42672
[BrosowskiDeutsh] p. 91Proofstoweidlem34 42676  stoweidlem59 42701  stoweidlem60 42702
[BrosowskiDeutsh] p. 91Lemma 1stoweidlem45 42687  stoweidlem49 42691  stoweidlem7 42649
[BrosowskiDeutsh] p. 91Lemma 2stoweidlem31 42673  stoweidlem39 42681  stoweidlem42 42684  stoweidlem48 42690  stoweidlem51 42693  stoweidlem54 42696  stoweidlem57 42699  stoweidlem58 42700
[BrosowskiDeutsh] p. 91Lemma 1 stoweidlem25 42667
[BrosowskiDeutsh] p. 91Lemma proves that the function ` ` (as definedstoweidlem17 42659
[BrosowskiDeutsh] p. 92Proofstoweidlem11 42653  stoweidlem13 42655  stoweidlem26 42668  stoweidlem61 42703
[BrosowskiDeutsh] p. 92Lemma 2stoweidlem18 42660
[Bruck] p. 1Section I.1df-clintop 44460  df-mgm 17844  df-mgm2 44479
[Bruck] p. 23Section II.1df-sgrp 17893  df-sgrp2 44481
[Bruck] p. 28Theorem 3.2dfgrp3 18190
[ChoquetDD] p. 2Definition of mappingdf-mpt 5111
[Church] p. 129Section II.24df-ifp 1059  dfifp2 1060
[Clemente] p. 10Definition ITnatded 28188
[Clemente] p. 10Definition I` `m,nnatded 28188
[Clemente] p. 11Definition E=>m,nnatded 28188
[Clemente] p. 11Definition I=>m,nnatded 28188
[Clemente] p. 11Definition E` `(1)natded 28188
[Clemente] p. 11Definition E` `(2)natded 28188
[Clemente] p. 12Definition E` `m,n,pnatded 28188
[Clemente] p. 12Definition I` `n(1)natded 28188
[Clemente] p. 12Definition I` `n(2)natded 28188
[Clemente] p. 13Definition I` `m,n,pnatded 28188
[Clemente] p. 14Proof 5.11natded 28188
[Clemente] p. 14Definition E` `nnatded 28188
[Clemente] p. 15Theorem 5.2ex-natded5.2-2 28190  ex-natded5.2 28189
[Clemente] p. 16Theorem 5.3ex-natded5.3-2 28193  ex-natded5.3 28192
[Clemente] p. 18Theorem 5.5ex-natded5.5 28195
[Clemente] p. 19Theorem 5.7ex-natded5.7-2 28197  ex-natded5.7 28196
[Clemente] p. 20Theorem 5.8ex-natded5.8-2 28199  ex-natded5.8 28198
[Clemente] p. 20Theorem 5.13ex-natded5.13-2 28201  ex-natded5.13 28200
[Clemente] p. 32Definition I` `nnatded 28188
[Clemente] p. 32Definition E` `m,n,p,anatded 28188
[Clemente] p. 32Definition E` `n,tnatded 28188
[Clemente] p. 32Definition I` `n,tnatded 28188
[Clemente] p. 43Theorem 9.20ex-natded9.20 28202
[Clemente] p. 45Theorem 9.20ex-natded9.20-2 28203
[Clemente] p. 45Theorem 9.26ex-natded9.26-2 28205  ex-natded9.26 28204
[Cohen] p. 301Remarkrelogoprlem 25182
[Cohen] p. 301Property 2relogmul 25183  relogmuld 25216
[Cohen] p. 301Property 3relogdiv 25184  relogdivd 25217
[Cohen] p. 301Property 4relogexp 25187
[Cohen] p. 301Property 1alog1 25177
[Cohen] p. 301Property 1bloge 25178
[Cohen4] p. 348Observationrelogbcxpb 25373
[Cohen4] p. 349Propertyrelogbf 25377
[Cohen4] p. 352Definitionelogb 25356
[Cohen4] p. 361Property 2relogbmul 25363
[Cohen4] p. 361Property 3logbrec 25368  relogbdiv 25365
[Cohen4] p. 361Property 4relogbreexp 25361
[Cohen4] p. 361Property 6relogbexp 25366
[Cohen4] p. 361Property 1(a)logbid1 25354
[Cohen4] p. 361Property 1(b)logb1 25355
[Cohen4] p. 367Propertylogbchbase 25357
[Cohen4] p. 377Property 2logblt 25370
[Cohn] p. 4Proposition 1.1.5sxbrsigalem1 31653  sxbrsigalem4 31655
[Cohn] p. 81Section II.5acsdomd 17783  acsinfd 17782  acsinfdimd 17784  acsmap2d 17781  acsmapd 17780
[Cohn] p. 143Example 5.1.1sxbrsiga 31658
[Connell] p. 57Definitiondf-scmat 21096  df-scmatalt 44808
[CormenLeisersonRivest] p. 33Equation 2.4fldiv2 13224
[Crawley] p. 1Definition of posetdf-poset 17548
[Crawley] p. 107Theorem 13.2hlsupr 36682
[Crawley] p. 110Theorem 13.3arglem1N 37486  dalaw 37182
[Crawley] p. 111Theorem 13.4hlathil 39257
[Crawley] p. 111Definition of set Wdf-watsN 37286
[Crawley] p. 111Definition of dilationdf-dilN 37402  df-ldil 37400  isldil 37406
[Crawley] p. 111Definition of translationdf-ltrn 37401  df-trnN 37403  isltrn 37415  ltrnu 37417
[Crawley] p. 112Lemma Acdlema1N 37087  cdlema2N 37088  exatleN 36700
[Crawley] p. 112Lemma B1cvrat 36772  cdlemb 37090  cdlemb2 37337  cdlemb3 37902  idltrn 37446  l1cvat 36351  lhpat 37339  lhpat2 37341  lshpat 36352  ltrnel 37435  ltrnmw 37447
[Crawley] p. 112Lemma Ccdlemc1 37487  cdlemc2 37488  ltrnnidn 37470  trlat 37465  trljat1 37462  trljat2 37463  trljat3 37464  trlne 37481  trlnidat 37469  trlnle 37482
[Crawley] p. 112Definition of automorphismdf-pautN 37287
[Crawley] p. 113Lemma Ccdlemc 37493  cdlemc3 37489  cdlemc4 37490
[Crawley] p. 113Lemma Dcdlemd 37503  cdlemd1 37494  cdlemd2 37495  cdlemd3 37496  cdlemd4 37497  cdlemd5 37498  cdlemd6 37499  cdlemd7 37500  cdlemd8 37501  cdlemd9 37502  cdleme31sde 37681  cdleme31se 37678  cdleme31se2 37679  cdleme31snd 37682  cdleme32a 37737  cdleme32b 37738  cdleme32c 37739  cdleme32d 37740  cdleme32e 37741  cdleme32f 37742  cdleme32fva 37733  cdleme32fva1 37734  cdleme32fvcl 37736  cdleme32le 37743  cdleme48fv 37795  cdleme4gfv 37803  cdleme50eq 37837  cdleme50f 37838  cdleme50f1 37839  cdleme50f1o 37842  cdleme50laut 37843  cdleme50ldil 37844  cdleme50lebi 37836  cdleme50rn 37841  cdleme50rnlem 37840  cdlemeg49le 37807  cdlemeg49lebilem 37835
[Crawley] p. 113Lemma Ecdleme 37856  cdleme00a 37505  cdleme01N 37517  cdleme02N 37518  cdleme0a 37507  cdleme0aa 37506  cdleme0b 37508  cdleme0c 37509  cdleme0cp 37510  cdleme0cq 37511  cdleme0dN 37512  cdleme0e 37513  cdleme0ex1N 37519  cdleme0ex2N 37520  cdleme0fN 37514  cdleme0gN 37515  cdleme0moN 37521  cdleme1 37523  cdleme10 37550  cdleme10tN 37554  cdleme11 37566  cdleme11a 37556  cdleme11c 37557  cdleme11dN 37558  cdleme11e 37559  cdleme11fN 37560  cdleme11g 37561  cdleme11h 37562  cdleme11j 37563  cdleme11k 37564  cdleme11l 37565  cdleme12 37567  cdleme13 37568  cdleme14 37569  cdleme15 37574  cdleme15a 37570  cdleme15b 37571  cdleme15c 37572  cdleme15d 37573  cdleme16 37581  cdleme16aN 37555  cdleme16b 37575  cdleme16c 37576  cdleme16d 37577  cdleme16e 37578  cdleme16f 37579  cdleme16g 37580  cdleme19a 37599  cdleme19b 37600  cdleme19c 37601  cdleme19d 37602  cdleme19e 37603  cdleme19f 37604  cdleme1b 37522  cdleme2 37524  cdleme20aN 37605  cdleme20bN 37606  cdleme20c 37607  cdleme20d 37608  cdleme20e 37609  cdleme20f 37610  cdleme20g 37611  cdleme20h 37612  cdleme20i 37613  cdleme20j 37614  cdleme20k 37615  cdleme20l 37618  cdleme20l1 37616  cdleme20l2 37617  cdleme20m 37619  cdleme20y 37598  cdleme20zN 37597  cdleme21 37633  cdleme21d 37626  cdleme21e 37627  cdleme22a 37636  cdleme22aa 37635  cdleme22b 37637  cdleme22cN 37638  cdleme22d 37639  cdleme22e 37640  cdleme22eALTN 37641  cdleme22f 37642  cdleme22f2 37643  cdleme22g 37644  cdleme23a 37645  cdleme23b 37646  cdleme23c 37647  cdleme26e 37655  cdleme26eALTN 37657  cdleme26ee 37656  cdleme26f 37659  cdleme26f2 37661  cdleme26f2ALTN 37660  cdleme26fALTN 37658  cdleme27N 37665  cdleme27a 37663  cdleme27cl 37662  cdleme28c 37668  cdleme3 37533  cdleme30a 37674  cdleme31fv 37686  cdleme31fv1 37687  cdleme31fv1s 37688  cdleme31fv2 37689  cdleme31id 37690  cdleme31sc 37680  cdleme31sdnN 37683  cdleme31sn 37676  cdleme31sn1 37677  cdleme31sn1c 37684  cdleme31sn2 37685  cdleme31so 37675  cdleme35a 37744  cdleme35b 37746  cdleme35c 37747  cdleme35d 37748  cdleme35e 37749  cdleme35f 37750  cdleme35fnpq 37745  cdleme35g 37751  cdleme35h 37752  cdleme35h2 37753  cdleme35sn2aw 37754  cdleme35sn3a 37755  cdleme36a 37756  cdleme36m 37757  cdleme37m 37758  cdleme38m 37759  cdleme38n 37760  cdleme39a 37761  cdleme39n 37762  cdleme3b 37525  cdleme3c 37526  cdleme3d 37527  cdleme3e 37528  cdleme3fN 37529  cdleme3fa 37532  cdleme3g 37530  cdleme3h 37531  cdleme4 37534  cdleme40m 37763  cdleme40n 37764  cdleme40v 37765  cdleme40w 37766  cdleme41fva11 37773  cdleme41sn3aw 37770  cdleme41sn4aw 37771  cdleme41snaw 37772  cdleme42a 37767  cdleme42b 37774  cdleme42c 37768  cdleme42d 37769  cdleme42e 37775  cdleme42f 37776  cdleme42g 37777  cdleme42h 37778  cdleme42i 37779  cdleme42k 37780  cdleme42ke 37781  cdleme42keg 37782  cdleme42mN 37783  cdleme42mgN 37784  cdleme43aN 37785  cdleme43bN 37786  cdleme43cN 37787  cdleme43dN 37788  cdleme5 37536  cdleme50ex 37855  cdleme50ltrn 37853  cdleme51finvN 37852  cdleme51finvfvN 37851  cdleme51finvtrN 37854  cdleme6 37537  cdleme7 37545  cdleme7a 37539  cdleme7aa 37538  cdleme7b 37540  cdleme7c 37541  cdleme7d 37542  cdleme7e 37543  cdleme7ga 37544  cdleme8 37546  cdleme8tN 37551  cdleme9 37549  cdleme9a 37547  cdleme9b 37548  cdleme9tN 37553  cdleme9taN 37552  cdlemeda 37594  cdlemedb 37593  cdlemednpq 37595  cdlemednuN 37596  cdlemefr27cl 37699  cdlemefr32fva1 37706  cdlemefr32fvaN 37705  cdlemefrs32fva 37696  cdlemefrs32fva1 37697  cdlemefs27cl 37709  cdlemefs32fva1 37719  cdlemefs32fvaN 37718  cdlemesner 37592  cdlemeulpq 37516
[Crawley] p. 114Lemma E4atex 37372  4atexlem7 37371  cdleme0nex 37586  cdleme17a 37582  cdleme17c 37584  cdleme17d 37794  cdleme17d1 37585  cdleme17d2 37791  cdleme18a 37587  cdleme18b 37588  cdleme18c 37589  cdleme18d 37591  cdleme4a 37535
[Crawley] p. 115Lemma Ecdleme21a 37621  cdleme21at 37624  cdleme21b 37622  cdleme21c 37623  cdleme21ct 37625  cdleme21f 37628  cdleme21g 37629  cdleme21h 37630  cdleme21i 37631  cdleme22gb 37590
[Crawley] p. 116Lemma Fcdlemf 37859  cdlemf1 37857  cdlemf2 37858
[Crawley] p. 116Lemma Gcdlemftr1 37863  cdlemg16 37953  cdlemg28 38000  cdlemg28a 37989  cdlemg28b 37999  cdlemg3a 37893  cdlemg42 38025  cdlemg43 38026  cdlemg44 38029  cdlemg44a 38027  cdlemg46 38031  cdlemg47 38032  cdlemg9 37930  ltrnco 38015  ltrncom 38034  tgrpabl 38047  trlco 38023
[Crawley] p. 116Definition of Gdf-tgrp 38039
[Crawley] p. 117Lemma Gcdlemg17 37973  cdlemg17b 37958
[Crawley] p. 117Definition of Edf-edring-rN 38052  df-edring 38053
[Crawley] p. 117Definition of trace-preserving endomorphismistendo 38056
[Crawley] p. 118Remarktendopltp 38076
[Crawley] p. 118Lemma Hcdlemh 38113  cdlemh1 38111  cdlemh2 38112
[Crawley] p. 118Lemma Icdlemi 38116  cdlemi1 38114  cdlemi2 38115
[Crawley] p. 118Lemma Jcdlemj1 38117  cdlemj2 38118  cdlemj3 38119  tendocan 38120
[Crawley] p. 118Lemma Kcdlemk 38270  cdlemk1 38127  cdlemk10 38139  cdlemk11 38145  cdlemk11t 38242  cdlemk11ta 38225  cdlemk11tb 38227  cdlemk11tc 38241  cdlemk11u-2N 38185  cdlemk11u 38167  cdlemk12 38146  cdlemk12u-2N 38186  cdlemk12u 38168  cdlemk13-2N 38172  cdlemk13 38148  cdlemk14-2N 38174  cdlemk14 38150  cdlemk15-2N 38175  cdlemk15 38151  cdlemk16-2N 38176  cdlemk16 38153  cdlemk16a 38152  cdlemk17-2N 38177  cdlemk17 38154  cdlemk18-2N 38182  cdlemk18-3N 38196  cdlemk18 38164  cdlemk19-2N 38183  cdlemk19 38165  cdlemk19u 38266  cdlemk1u 38155  cdlemk2 38128  cdlemk20-2N 38188  cdlemk20 38170  cdlemk21-2N 38187  cdlemk21N 38169  cdlemk22-3 38197  cdlemk22 38189  cdlemk23-3 38198  cdlemk24-3 38199  cdlemk25-3 38200  cdlemk26-3 38202  cdlemk26b-3 38201  cdlemk27-3 38203  cdlemk28-3 38204  cdlemk29-3 38207  cdlemk3 38129  cdlemk30 38190  cdlemk31 38192  cdlemk32 38193  cdlemk33N 38205  cdlemk34 38206  cdlemk35 38208  cdlemk36 38209  cdlemk37 38210  cdlemk38 38211  cdlemk39 38212  cdlemk39u 38264  cdlemk4 38130  cdlemk41 38216  cdlemk42 38237  cdlemk42yN 38240  cdlemk43N 38259  cdlemk45 38243  cdlemk46 38244  cdlemk47 38245  cdlemk48 38246  cdlemk49 38247  cdlemk5 38132  cdlemk50 38248  cdlemk51 38249  cdlemk52 38250  cdlemk53 38253  cdlemk54 38254  cdlemk55 38257  cdlemk55u 38262  cdlemk56 38267  cdlemk5a 38131  cdlemk5auN 38156  cdlemk5u 38157  cdlemk6 38133  cdlemk6u 38158  cdlemk7 38144  cdlemk7u-2N 38184  cdlemk7u 38166  cdlemk8 38134  cdlemk9 38135  cdlemk9bN 38136  cdlemki 38137  cdlemkid 38232  cdlemkj-2N 38178  cdlemkj 38159  cdlemksat 38142  cdlemksel 38141  cdlemksv 38140  cdlemksv2 38143  cdlemkuat 38162  cdlemkuel-2N 38180  cdlemkuel-3 38194  cdlemkuel 38161  cdlemkuv-2N 38179  cdlemkuv2-2 38181  cdlemkuv2-3N 38195  cdlemkuv2 38163  cdlemkuvN 38160  cdlemkvcl 38138  cdlemky 38222  cdlemkyyN 38258  tendoex 38271
[Crawley] p. 120Remarkdva1dim 38281
[Crawley] p. 120Lemma Lcdleml1N 38272  cdleml2N 38273  cdleml3N 38274  cdleml4N 38275  cdleml5N 38276  cdleml6 38277  cdleml7 38278  cdleml8 38279  cdleml9 38280  dia1dim 38357
[Crawley] p. 120Lemma Mdia11N 38344  diaf11N 38345  dialss 38342  diaord 38343  dibf11N 38457  djajN 38433
[Crawley] p. 120Definition of isomorphism mapdiaval 38328
[Crawley] p. 121Lemma Mcdlemm10N 38414  dia2dimlem1 38360  dia2dimlem2 38361  dia2dimlem3 38362  dia2dimlem4 38363  dia2dimlem5 38364  diaf1oN 38426  diarnN 38425  dvheveccl 38408  dvhopN 38412
[Crawley] p. 121Lemma Ncdlemn 38508  cdlemn10 38502  cdlemn11 38507  cdlemn11a 38503  cdlemn11b 38504  cdlemn11c 38505  cdlemn11pre 38506  cdlemn2 38491  cdlemn2a 38492  cdlemn3 38493  cdlemn4 38494  cdlemn4a 38495  cdlemn5 38497  cdlemn5pre 38496  cdlemn6 38498  cdlemn7 38499  cdlemn8 38500  cdlemn9 38501  diclspsn 38490
[Crawley] p. 121Definition of phi(q)df-dic 38469
[Crawley] p. 122Lemma Ndih11 38561  dihf11 38563  dihjust 38513  dihjustlem 38512  dihord 38560  dihord1 38514  dihord10 38519  dihord11b 38518  dihord11c 38520  dihord2 38523  dihord2a 38515  dihord2b 38516  dihord2cN 38517  dihord2pre 38521  dihord2pre2 38522  dihordlem6 38509  dihordlem7 38510  dihordlem7b 38511
[Crawley] p. 122Definition of isomorphism mapdihffval 38526  dihfval 38527  dihval 38528
[Diestel] p. 3Section 1.1df-cusgr 27202  df-nbgr 27123
[Diestel] p. 4Section 1.1df-subgr 27058  uhgrspan1 27093  uhgrspansubgr 27081
[Diestel] p. 5Proposition 1.2.1fusgrvtxdgonume 27344  vtxdgoddnumeven 27343
[Diestel] p. 27Section 1.10df-ushgr 26852
[EGA] p. 80Notation 1.1.1rspecval 31217
[EGA] p. 80Proposition 1.1.2zartop 31229
[EGA] p. 80Proposition 1.1.2(i)zarcls0 31221  zarcls1 31222
[EGA] p. 81Corollary 1.1.8zart0 31232
[EGA], p. 82Proposition 1.1.10(ii)zarcmp 31235
[EGA], p. 83Corollary 1.2.3rhmpreimacn 31238
[Eisenberg] p. 67Definition 5.3df-dif 3884
[Eisenberg] p. 82Definition 6.3dfom3 9094
[Eisenberg] p. 125Definition 8.21df-map 8391
[Eisenberg] p. 216Example 13.2(4)omenps 9102
[Eisenberg] p. 310Theorem 19.8cardprc 9393
[Eisenberg] p. 310Corollary 19.7(2)cardsdom 9966
[Enderton] p. 18Axiom of Empty Setaxnul 5173
[Enderton] p. 19Definitiondf-tp 4530
[Enderton] p. 26Exercise 5unissb 4832
[Enderton] p. 26Exercise 10pwel 5247
[Enderton] p. 28Exercise 7(b)pwun 5423
[Enderton] p. 30Theorem "Distributive laws"iinin1 4964  iinin2 4963  iinun2 4958  iunin1 4957  iunin1f 30321  iunin2 4956  uniin1 30315  uniin2 30316
[Enderton] p. 31Theorem "De Morgan's laws"iindif2 4962  iundif2 4959
[Enderton] p. 32Exercise 20unineq 4204
[Enderton] p. 33Exercise 23iinuni 4983
[Enderton] p. 33Exercise 25iununi 4984
[Enderton] p. 33Exercise 24(a)iinpw 4991
[Enderton] p. 33Exercise 24(b)iunpw 7473  iunpwss 4992
[Enderton] p. 36Definitionopthwiener 5369
[Enderton] p. 38Exercise 6(a)unipw 5308
[Enderton] p. 38Exercise 6(b)pwuni 4837
[Enderton] p. 41Lemma 3Dopeluu 5327  rnex 7599  rnexg 7595
[Enderton] p. 41Exercise 8dmuni 5747  rnuni 5974
[Enderton] p. 42Definition of a functiondffun7 6351  dffun8 6352
[Enderton] p. 43Definition of function valuefunfv2 6726
[Enderton] p. 43Definition of single-rootedfuncnv 6393
[Enderton] p. 44Definition (d)dfima2 5898  dfima3 5899
[Enderton] p. 47Theorem 3Hfvco2 6735
[Enderton] p. 49Axiom of Choice (first form)ac7 9884  ac7g 9885  df-ac 9527  dfac2 9542  dfac2a 9540  dfac2b 9541  dfac3 9532  dfac7 9543
[Enderton] p. 50Theorem 3K(a)imauni 6983
[Enderton] p. 52Definitiondf-map 8391
[Enderton] p. 53Exercise 21coass 6085
[Enderton] p. 53Exercise 27dmco 6074
[Enderton] p. 53Exercise 14(a)funin 6400
[Enderton] p. 53Exercise 22(a)imass2 5932
[Enderton] p. 54Remarkixpf 8467  ixpssmap 8479
[Enderton] p. 54Definition of infinite Cartesian productdf-ixp 8445
[Enderton] p. 55Axiom of Choice (second form)ac9 9894  ac9s 9904
[Enderton] p. 56Theorem 3Meqvrelref 36005  erref 8292
[Enderton] p. 57Lemma 3Neqvrelthi 36008  erthi 8323
[Enderton] p. 57Definitiondf-ec 8274
[Enderton] p. 58Definitiondf-qs 8278
[Enderton] p. 61Exercise 35df-ec 8274
[Enderton] p. 65Exercise 56(a)dmun 5743
[Enderton] p. 68Definition of successordf-suc 6165
[Enderton] p. 71Definitiondf-tr 5137  dftr4 5141
[Enderton] p. 72Theorem 4Eunisuc 6235
[Enderton] p. 73Exercise 6unisuc 6235
[Enderton] p. 73Exercise 5(a)truni 5150
[Enderton] p. 73Exercise 5(b)trint 5152  trintALT 41587
[Enderton] p. 79Theorem 4I(A1)nna0 8213
[Enderton] p. 79Theorem 4I(A2)nnasuc 8215  onasuc 8136
[Enderton] p. 79Definition of operation valuedf-ov 7138
[Enderton] p. 80Theorem 4J(A1)nnm0 8214
[Enderton] p. 80Theorem 4J(A2)nnmsuc 8216  onmsuc 8137
[Enderton] p. 81Theorem 4K(1)nnaass 8231
[Enderton] p. 81Theorem 4K(2)nna0r 8218  nnacom 8226
[Enderton] p. 81Theorem 4K(3)nndi 8232
[Enderton] p. 81Theorem 4K(4)nnmass 8233
[Enderton] p. 81Theorem 4K(5)nnmcom 8235
[Enderton] p. 82Exercise 16nnm0r 8219  nnmsucr 8234
[Enderton] p. 88Exercise 23nnaordex 8247
[Enderton] p. 129Definitiondf-en 8493
[Enderton] p. 132Theorem 6B(b)canth 7090
[Enderton] p. 133Exercise 1xpomen 9426
[Enderton] p. 133Exercise 2qnnen 15558
[Enderton] p. 134Theorem (Pigeonhole Principle)php 8685
[Enderton] p. 135Corollary 6Cphp3 8687
[Enderton] p. 136Corollary 6Enneneq 8684
[Enderton] p. 136Corollary 6D(a)pssinf 8712
[Enderton] p. 136Corollary 6D(b)ominf 8714
[Enderton] p. 137Lemma 6Fpssnn 8720
[Enderton] p. 138Corollary 6Gssfi 8722
[Enderton] p. 139Theorem 6H(c)mapen 8665
[Enderton] p. 142Theorem 6I(3)xpdjuen 9590
[Enderton] p. 142Theorem 6I(4)mapdjuen 9591
[Enderton] p. 143Theorem 6Jdju0en 9586  dju1en 9582
[Enderton] p. 144Exercise 13iunfi 8796  unifi 8797  unifi2 8798
[Enderton] p. 144Corollary 6Kundif2 4383  unfi 8769  unfi2 8771
[Enderton] p. 145Figure 38ffoss 7629
[Enderton] p. 145Definitiondf-dom 8494
[Enderton] p. 146Example 1domen 8505  domeng 8506
[Enderton] p. 146Example 3nndomo 8697  nnsdom 9101  nnsdomg 8761
[Enderton] p. 149Theorem 6L(a)djudom2 9594
[Enderton] p. 149Theorem 6L(c)mapdom1 8666  xpdom1 8599  xpdom1g 8597  xpdom2g 8596
[Enderton] p. 149Theorem 6L(d)mapdom2 8672
[Enderton] p. 151Theorem 6Mzorn 9918  zorng 9915
[Enderton] p. 151Theorem 6M(4)ac8 9903  dfac5 9539
[Enderton] p. 159Theorem 6Qunictb 9986
[Enderton] p. 164Exampleinfdif 9620
[Enderton] p. 168Definitiondf-po 5438
[Enderton] p. 192Theorem 7M(a)oneli 6266
[Enderton] p. 192Theorem 7M(b)ontr1 6205
[Enderton] p. 192Theorem 7M(c)onirri 6265
[Enderton] p. 193Corollary 7N(b)0elon 6212
[Enderton] p. 193Corollary 7N(c)onsuci 7533
[Enderton] p. 193Corollary 7N(d)ssonunii 7482
[Enderton] p. 194Remarkonprc 7479
[Enderton] p. 194Exercise 16suc11 6262
[Enderton] p. 197Definitiondf-card 9352
[Enderton] p. 197Theorem 7Pcarden 9962
[Enderton] p. 200Exercise 25tfis 7549
[Enderton] p. 202Lemma 7Tr1tr 9189
[Enderton] p. 202Definitiondf-r1 9177
[Enderton] p. 202Theorem 7Qr1val1 9199
[Enderton] p. 204Theorem 7V(b)rankval4 9280
[Enderton] p. 206Theorem 7X(b)en2lp 9053
[Enderton] p. 207Exercise 30rankpr 9270  rankprb 9264  rankpw 9256  rankpwi 9236  rankuniss 9279
[Enderton] p. 207Exercise 34opthreg 9065
[Enderton] p. 208Exercise 35suc11reg 9066
[Enderton] p. 212Definition of alephalephval3 9521
[Enderton] p. 213Theorem 8A(a)alephord2 9487
[Enderton] p. 213Theorem 8A(b)cardalephex 9501
[Enderton] p. 218Theorem Schema 8Eonfununi 7961
[Enderton] p. 222Definition of kardkarden 9308  kardex 9307
[Enderton] p. 238Theorem 8Roeoa 8206
[Enderton] p. 238Theorem 8Soeoe 8208
[Enderton] p. 240Exercise 25oarec 8171
[Enderton] p. 257Definition of cofinalitycflm 9661
[FaureFrolicher] p. 57Definition 3.1.9mreexd 16905
[FaureFrolicher] p. 83Definition 4.1.1df-mri 16851
[FaureFrolicher] p. 83Proposition 4.1.3acsfiindd 17779  mrieqv2d 16902  mrieqvd 16901
[FaureFrolicher] p. 84Lemma 4.1.5mreexmrid 16906
[FaureFrolicher] p. 86Proposition 4.2.1mreexexd 16911  mreexexlem2d 16908
[FaureFrolicher] p. 87Theorem 4.2.2acsexdimd 17785  mreexfidimd 16913
[Frege1879] p. 11Statementdf3or2 40469
[Frege1879] p. 12Statementdf3an2 40470  dfxor4 40467  dfxor5 40468
[Frege1879] p. 26Axiom 1ax-frege1 40491
[Frege1879] p. 26Axiom 2ax-frege2 40492
[Frege1879] p. 26Proposition 1ax-1 6
[Frege1879] p. 26Proposition 2ax-2 7
[Frege1879] p. 29Proposition 3frege3 40496
[Frege1879] p. 31Proposition 4frege4 40500
[Frege1879] p. 32Proposition 5frege5 40501
[Frege1879] p. 33Proposition 6frege6 40507
[Frege1879] p. 34Proposition 7frege7 40509
[Frege1879] p. 35Axiom 8ax-frege8 40510  axfrege8 40508
[Frege1879] p. 35Proposition 8pm2.04 90  wl-luk-pm2.04 34862
[Frege1879] p. 35Proposition 9frege9 40513
[Frege1879] p. 36Proposition 10frege10 40521
[Frege1879] p. 36Proposition 11frege11 40515
[Frege1879] p. 37Proposition 12frege12 40514
[Frege1879] p. 37Proposition 13frege13 40523
[Frege1879] p. 37Proposition 14frege14 40524
[Frege1879] p. 38Proposition 15frege15 40527
[Frege1879] p. 38Proposition 16frege16 40517
[Frege1879] p. 39Proposition 17frege17 40522
[Frege1879] p. 39Proposition 18frege18 40519
[Frege1879] p. 39Proposition 19frege19 40525
[Frege1879] p. 40Proposition 20frege20 40529
[Frege1879] p. 40Proposition 21frege21 40528
[Frege1879] p. 41Proposition 22frege22 40520
[Frege1879] p. 42Proposition 23frege23 40526
[Frege1879] p. 42Proposition 24frege24 40516
[Frege1879] p. 42Proposition 25frege25 40518  rp-frege25 40506
[Frege1879] p. 42Proposition 26frege26 40511
[Frege1879] p. 43Axiom 28ax-frege28 40531
[Frege1879] p. 43Proposition 27frege27 40512
[Frege1879] p. 43Proposition 28con3 156
[Frege1879] p. 43Proposition 29frege29 40532
[Frege1879] p. 44Axiom 31ax-frege31 40535  axfrege31 40534
[Frege1879] p. 44Proposition 30frege30 40533
[Frege1879] p. 44Proposition 31notnotr 132
[Frege1879] p. 44Proposition 32frege32 40536
[Frege1879] p. 44Proposition 33frege33 40537
[Frege1879] p. 45Proposition 34frege34 40538
[Frege1879] p. 45Proposition 35frege35 40539
[Frege1879] p. 45Proposition 36frege36 40540
[Frege1879] p. 46Proposition 37frege37 40541
[Frege1879] p. 46Proposition 38frege38 40542
[Frege1879] p. 46Proposition 39frege39 40543
[Frege1879] p. 46Proposition 40frege40 40544
[Frege1879] p. 47Axiom 41ax-frege41 40546  axfrege41 40545
[Frege1879] p. 47Proposition 41notnot 144
[Frege1879] p. 47Proposition 42frege42 40547
[Frege1879] p. 47Proposition 43frege43 40548
[Frege1879] p. 47Proposition 44frege44 40549
[Frege1879] p. 47Proposition 45frege45 40550
[Frege1879] p. 48Proposition 46frege46 40551
[Frege1879] p. 48Proposition 47frege47 40552
[Frege1879] p. 49Proposition 48frege48 40553
[Frege1879] p. 49Proposition 49frege49 40554
[Frege1879] p. 49Proposition 50frege50 40555
[Frege1879] p. 50Axiom 52ax-frege52a 40558  ax-frege52c 40589  frege52aid 40559  frege52b 40590
[Frege1879] p. 50Axiom 54ax-frege54a 40563  ax-frege54c 40593  frege54b 40594
[Frege1879] p. 50Proposition 51frege51 40556
[Frege1879] p. 50Proposition 52dfsbcq 3722
[Frege1879] p. 50Proposition 53frege53a 40561  frege53aid 40560  frege53b 40591  frege53c 40615
[Frege1879] p. 50Proposition 54biid 264  eqid 2798
[Frege1879] p. 50Proposition 55frege55a 40569  frege55aid 40566  frege55b 40598  frege55c 40619  frege55cor1a 40570  frege55lem2a 40568  frege55lem2b 40597  frege55lem2c 40618
[Frege1879] p. 50Proposition 56frege56a 40572  frege56aid 40571  frege56b 40599  frege56c 40620
[Frege1879] p. 51Axiom 58ax-frege58a 40576  ax-frege58b 40602  frege58bid 40603  frege58c 40622
[Frege1879] p. 51Proposition 57frege57a 40574  frege57aid 40573  frege57b 40600  frege57c 40621
[Frege1879] p. 51Proposition 58spsbc 3733
[Frege1879] p. 51Proposition 59frege59a 40578  frege59b 40605  frege59c 40623
[Frege1879] p. 52Proposition 60frege60a 40579  frege60b 40606  frege60c 40624
[Frege1879] p. 52Proposition 61frege61a 40580  frege61b 40607  frege61c 40625
[Frege1879] p. 52Proposition 62frege62a 40581  frege62b 40608  frege62c 40626
[Frege1879] p. 52Proposition 63frege63a 40582  frege63b 40609  frege63c 40627
[Frege1879] p. 53Proposition 64frege64a 40583  frege64b 40610  frege64c 40628
[Frege1879] p. 53Proposition 65frege65a 40584  frege65b 40611  frege65c 40629
[Frege1879] p. 54Proposition 66frege66a 40585  frege66b 40612  frege66c 40630
[Frege1879] p. 54Proposition 67frege67a 40586  frege67b 40613  frege67c 40631
[Frege1879] p. 54Proposition 68frege68a 40587  frege68b 40614  frege68c 40632
[Frege1879] p. 55Definition 69dffrege69 40633
[Frege1879] p. 58Proposition 70frege70 40634
[Frege1879] p. 59Proposition 71frege71 40635
[Frege1879] p. 59Proposition 72frege72 40636
[Frege1879] p. 59Proposition 73frege73 40637
[Frege1879] p. 60Definition 76dffrege76 40640
[Frege1879] p. 60Proposition 74frege74 40638
[Frege1879] p. 60Proposition 75frege75 40639
[Frege1879] p. 62Proposition 77frege77 40641  frege77d 40447
[Frege1879] p. 63Proposition 78frege78 40642
[Frege1879] p. 63Proposition 79frege79 40643
[Frege1879] p. 63Proposition 80frege80 40644
[Frege1879] p. 63Proposition 81frege81 40645  frege81d 40448
[Frege1879] p. 64Proposition 82frege82 40646
[Frege1879] p. 65Proposition 83frege83 40647  frege83d 40449
[Frege1879] p. 65Proposition 84frege84 40648
[Frege1879] p. 66Proposition 85frege85 40649
[Frege1879] p. 66Proposition 86frege86 40650
[Frege1879] p. 66Proposition 87frege87 40651  frege87d 40451
[Frege1879] p. 67Proposition 88frege88 40652
[Frege1879] p. 68Proposition 89frege89 40653
[Frege1879] p. 68Proposition 90frege90 40654
[Frege1879] p. 68Proposition 91frege91 40655  frege91d 40452
[Frege1879] p. 69Proposition 92frege92 40656
[Frege1879] p. 70Proposition 93frege93 40657
[Frege1879] p. 70Proposition 94frege94 40658
[Frege1879] p. 70Proposition 95frege95 40659
[Frege1879] p. 71Definition 99dffrege99 40663
[Frege1879] p. 71Proposition 96frege96 40660  frege96d 40450
[Frege1879] p. 71Proposition 97frege97 40661  frege97d 40453
[Frege1879] p. 71Proposition 98frege98 40662  frege98d 40454
[Frege1879] p. 72Proposition 100frege100 40664
[Frege1879] p. 72Proposition 101frege101 40665
[Frege1879] p. 72Proposition 102frege102 40666  frege102d 40455
[Frege1879] p. 73Proposition 103frege103 40667
[Frege1879] p. 73Proposition 104frege104 40668
[Frege1879] p. 73Proposition 105frege105 40669
[Frege1879] p. 73Proposition 106frege106 40670  frege106d 40456
[Frege1879] p. 74Proposition 107frege107 40671
[Frege1879] p. 74Proposition 108frege108 40672  frege108d 40457
[Frege1879] p. 74Proposition 109frege109 40673  frege109d 40458
[Frege1879] p. 75Proposition 110frege110 40674
[Frege1879] p. 75Proposition 111frege111 40675  frege111d 40460
[Frege1879] p. 76Proposition 112frege112 40676
[Frege1879] p. 76Proposition 113frege113 40677
[Frege1879] p. 76Proposition 114frege114 40678  frege114d 40459
[Frege1879] p. 77Definition 115dffrege115 40679
[Frege1879] p. 77Proposition 116frege116 40680
[Frege1879] p. 78Proposition 117frege117 40681
[Frege1879] p. 78Proposition 118frege118 40682
[Frege1879] p. 78Proposition 119frege119 40683
[Frege1879] p. 78Proposition 120frege120 40684
[Frege1879] p. 79Proposition 121frege121 40685
[Frege1879] p. 79Proposition 122frege122 40686  frege122d 40461
[Frege1879] p. 79Proposition 123frege123 40687
[Frege1879] p. 80Proposition 124frege124 40688  frege124d 40462
[Frege1879] p. 81Proposition 125frege125 40689
[Frege1879] p. 81Proposition 126frege126 40690  frege126d 40463
[Frege1879] p. 82Proposition 127frege127 40691
[Frege1879] p. 83Proposition 128frege128 40692
[Frege1879] p. 83Proposition 129frege129 40693  frege129d 40464
[Frege1879] p. 84Proposition 130frege130 40694
[Frege1879] p. 85Proposition 131frege131 40695  frege131d 40465
[Frege1879] p. 86Proposition 132frege132 40696
[Frege1879] p. 86Proposition 133frege133 40697  frege133d 40466
[Fremlin1] p. 13Definition 111G (b)df-salgen 42955
[Fremlin1] p. 13Definition 111G (d)borelmbl 43275
[Fremlin1] p. 13Proposition 111G (b)salgenss 42976
[Fremlin1] p. 14Definition 112Aismea 43090
[Fremlin1] p. 15Remark 112B (d)psmeasure 43110
[Fremlin1] p. 15Property 112C (a)meadjun 43101  meadjunre 43115
[Fremlin1] p. 15Property 112C (b)meassle 43102
[Fremlin1] p. 15Property 112C (c)meaunle 43103
[Fremlin1] p. 16Property 112C (d)iundjiun 43099  meaiunle 43108  meaiunlelem 43107
[Fremlin1] p. 16Proposition 112C (e)meaiuninc 43120  meaiuninc2 43121  meaiuninc3 43124  meaiuninc3v 43123  meaiunincf 43122  meaiuninclem 43119
[Fremlin1] p. 16Proposition 112C (f)meaiininc 43126  meaiininc2 43127  meaiininclem 43125
[Fremlin1] p. 19Theorem 113Ccaragen0 43145  caragendifcl 43153  caratheodory 43167  omelesplit 43157
[Fremlin1] p. 19Definition 113Aisome 43133  isomennd 43170  isomenndlem 43169
[Fremlin1] p. 19Remark 113B (c)omeunle 43155
[Fremlin1] p. 19Definition 112Dfcaragencmpl 43174  voncmpl 43260
[Fremlin1] p. 19Definition 113A (ii)omessle 43137
[Fremlin1] p. 20Theorem 113Ccarageniuncl 43162  carageniuncllem1 43160  carageniuncllem2 43161  caragenuncl 43152  caragenuncllem 43151  caragenunicl 43163
[Fremlin1] p. 21Remark 113Dcaragenel2d 43171
[Fremlin1] p. 21Theorem 113Ccaratheodorylem1 43165  caratheodorylem2 43166
[Fremlin1] p. 21Exercise 113Xacaragencmpl 43174
[Fremlin1] p. 23Lemma 114Bhoidmv1le 43233  hoidmv1lelem1 43230  hoidmv1lelem2 43231  hoidmv1lelem3 43232
[Fremlin1] p. 25Definition 114Eisvonmbl 43277
[Fremlin1] p. 29Lemma 115Bhoidmv1le 43233  hoidmvle 43239  hoidmvlelem1 43234  hoidmvlelem2 43235  hoidmvlelem3 43236  hoidmvlelem4 43237  hoidmvlelem5 43238  hsphoidmvle2 43224  hsphoif 43215  hsphoival 43218
[Fremlin1] p. 29Definition 1135 (b)hoicvr 43187
[Fremlin1] p. 29Definition 115A (b)hoicvrrex 43195
[Fremlin1] p. 29Definition 115A (c)hoidmv0val 43222  hoidmvn0val 43223  hoidmvval 43216  hoidmvval0 43226  hoidmvval0b 43229
[Fremlin1] p. 30Lemma 115Bhoiprodp1 43227  hsphoidmvle 43225
[Fremlin1] p. 30Definition 115Cdf-ovoln 43176  df-voln 43178
[Fremlin1] p. 30Proposition 115D (a)dmovn 43243  ovn0 43205  ovn0lem 43204  ovnf 43202  ovnome 43212  ovnssle 43200  ovnsslelem 43199  ovnsupge0 43196
[Fremlin1] p. 30Proposition 115D (b)ovnhoi 43242  ovnhoilem1 43240  ovnhoilem2 43241  vonhoi 43306
[Fremlin1] p. 31Lemma 115Fhoidifhspdmvle 43259  hoidifhspf 43257  hoidifhspval 43247  hoidifhspval2 43254  hoidifhspval3 43258  hspmbl 43268  hspmbllem1 43265  hspmbllem2 43266  hspmbllem3 43267
[Fremlin1] p. 31Definition 115Evoncmpl 43260  vonmea 43213
[Fremlin1] p. 31Proposition 115D (a)(iv)ovnsubadd 43211  ovnsubadd2 43285  ovnsubadd2lem 43284  ovnsubaddlem1 43209  ovnsubaddlem2 43210
[Fremlin1] p. 32Proposition 115G (a)hoimbl 43270  hoimbl2 43304  hoimbllem 43269  hspdifhsp 43255  opnvonmbl 43273  opnvonmbllem2 43272
[Fremlin1] p. 32Proposition 115G (b)borelmbl 43275
[Fremlin1] p. 32Proposition 115G (c)iccvonmbl 43318  iccvonmbllem 43317  ioovonmbl 43316
[Fremlin1] p. 32Proposition 115G (d)vonicc 43324  vonicclem2 43323  vonioo 43321  vonioolem2 43320  vonn0icc 43327  vonn0icc2 43331  vonn0ioo 43326  vonn0ioo2 43329
[Fremlin1] p. 32Proposition 115G (e)ctvonmbl 43328  snvonmbl 43325  vonct 43332  vonsn 43330
[Fremlin1] p. 35Lemma 121Asubsalsal 42999
[Fremlin1] p. 35Lemma 121A (iii)subsaliuncl 42998  subsaliuncllem 42997
[Fremlin1] p. 35Proposition 121Bsalpreimagtge 43359  salpreimalegt 43345  salpreimaltle 43360
[Fremlin1] p. 35Proposition 121B (i)issmf 43362  issmff 43368  issmflem 43361
[Fremlin1] p. 35Proposition 121B (ii)issmfle 43379  issmflelem 43378  smfpreimale 43388
[Fremlin1] p. 35Proposition 121B (iii)issmfgt 43390  issmfgtlem 43389
[Fremlin1] p. 36Definition 121Cdf-smblfn 43335  issmf 43362  issmff 43368  issmfge 43403  issmfgelem 43402  issmfgt 43390  issmfgtlem 43389  issmfle 43379  issmflelem 43378  issmflem 43361
[Fremlin1] p. 36Proposition 121Bsalpreimagelt 43343  salpreimagtlt 43364  salpreimalelt 43363
[Fremlin1] p. 36Proposition 121B (iv)issmfge 43403  issmfgelem 43402
[Fremlin1] p. 36Proposition 121D (a)bormflebmf 43387
[Fremlin1] p. 36Proposition 121D (b)cnfrrnsmf 43385  cnfsmf 43374
[Fremlin1] p. 36Proposition 121D (c)decsmf 43400  decsmflem 43399  incsmf 43376  incsmflem 43375
[Fremlin1] p. 37Proposition 121E (a)pimconstlt0 43339  pimconstlt1 43340  smfconst 43383
[Fremlin1] p. 37Proposition 121E (b)smfadd 43398  smfaddlem1 43396  smfaddlem2 43397
[Fremlin1] p. 37Proposition 121E (c)smfmulc1 43428
[Fremlin1] p. 37Proposition 121E (d)smfmul 43427  smfmullem1 43423  smfmullem2 43424  smfmullem3 43425  smfmullem4 43426
[Fremlin1] p. 37Proposition 121E (e)smfdiv 43429
[Fremlin1] p. 37Proposition 121E (f)smfpimbor1 43432  smfpimbor1lem2 43431
[Fremlin1] p. 37Proposition 121E (g)smfco 43434
[Fremlin1] p. 37Proposition 121E (h)smfres 43422
[Fremlin1] p. 38Proposition 121E (e)smfrec 43421
[Fremlin1] p. 38Proposition 121E (f)smfpimbor1lem1 43430  smfresal 43420
[Fremlin1] p. 38Proposition 121F (a)smflim 43410  smflim2 43437  smflimlem1 43404  smflimlem2 43405  smflimlem3 43406  smflimlem4 43407  smflimlem5 43408  smflimlem6 43409  smflimmpt 43441
[Fremlin1] p. 38Proposition 121F (b)smfsup 43445  smfsuplem1 43442  smfsuplem2 43443  smfsuplem3 43444  smfsupmpt 43446  smfsupxr 43447
[Fremlin1] p. 38Proposition 121F (c)smfinf 43449  smfinflem 43448  smfinfmpt 43450
[Fremlin1] p. 39Remark 121Gsmflim 43410  smflim2 43437  smflimmpt 43441
[Fremlin1] p. 39Proposition 121Fsmfpimcc 43439
[Fremlin1] p. 39Proposition 121F (d)smflimsup 43459  smflimsuplem2 43452  smflimsuplem6 43456  smflimsuplem7 43457  smflimsuplem8 43458  smflimsupmpt 43460
[Fremlin1] p. 39Proposition 121F (e)smfliminf 43462  smfliminflem 43461  smfliminfmpt 43463
[Fremlin1] p. 80Definition 135E (b)df-smblfn 43335
[Fremlin5] p. 193Proposition 563Gbnulmbl2 24140
[Fremlin5] p. 213Lemma 565Cauniioovol 24183
[Fremlin5] p. 214Lemma 565Cauniioombl 24193
[Fremlin5] p. 218Lemma 565Ibftc1anclem6 35135
[Fremlin5] p. 220Theorem 565Maftc1anc 35138
[FreydScedrov] p. 283Axiom of Infinityax-inf 9085  inf1 9069  inf2 9070
[Gleason] p. 117Proposition 9-2.1df-enq 10322  enqer 10332
[Gleason] p. 117Proposition 9-2.2df-1nq 10327  df-nq 10323
[Gleason] p. 117Proposition 9-2.3df-plpq 10319  df-plq 10325
[Gleason] p. 119Proposition 9-2.4caovmo 7365  df-mpq 10320  df-mq 10326
[Gleason] p. 119Proposition 9-2.5df-rq 10328
[Gleason] p. 119Proposition 9-2.6ltexnq 10386
[Gleason] p. 120Proposition 9-2.6(i)halfnq 10387  ltbtwnnq 10389
[Gleason] p. 120Proposition 9-2.6(ii)ltanq 10382
[Gleason] p. 120Proposition 9-2.6(iii)ltmnq 10383
[Gleason] p. 120Proposition 9-2.6(iv)ltrnq 10390
[Gleason] p. 121Definition 9-3.1df-np 10392
[Gleason] p. 121Definition 9-3.1 (ii)prcdnq 10404
[Gleason] p. 121Definition 9-3.1(iii)prnmax 10406
[Gleason] p. 122Definitiondf-1p 10393
[Gleason] p. 122Remark (1)prub 10405
[Gleason] p. 122Lemma 9-3.4prlem934 10444
[Gleason] p. 122Proposition 9-3.2df-ltp 10396
[Gleason] p. 122Proposition 9-3.3ltsopr 10443  psslinpr 10442  supexpr 10465  suplem1pr 10463  suplem2pr 10464
[Gleason] p. 123Proposition 9-3.5addclpr 10429  addclprlem1 10427  addclprlem2 10428  df-plp 10394
[Gleason] p. 123Proposition 9-3.5(i)addasspr 10433
[Gleason] p. 123Proposition 9-3.5(ii)addcompr 10432
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 10445
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 10454  ltexprlem1 10447  ltexprlem2 10448  ltexprlem3 10449  ltexprlem4 10450  ltexprlem5 10451  ltexprlem6 10452  ltexprlem7 10453
[Gleason] p. 123Proposition 9-3.5(v)ltapr 10456  ltaprlem 10455
[Gleason] p. 123Proposition 9-3.5(vi)addcanpr 10457
[Gleason] p. 124Lemma 9-3.6prlem936 10458
[Gleason] p. 124Proposition 9-3.7df-mp 10395  mulclpr 10431  mulclprlem 10430  reclem2pr 10459
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 10440
[Gleason] p. 124Proposition 9-3.7(i)mulasspr 10435
[Gleason] p. 124Proposition 9-3.7(ii)mulcompr 10434
[Gleason] p. 124Proposition 9-3.7(iii)distrpr 10439
[Gleason] p. 124Proposition 9-3.7(v)recexpr 10462  reclem3pr 10460  reclem4pr 10461
[Gleason] p. 126Proposition 9-4.1df-enr 10466  enrer 10474
[Gleason] p. 126Proposition 9-4.2df-0r 10471  df-1r 10472  df-nr 10467
[Gleason] p. 126Proposition 9-4.3df-mr 10469  df-plr 10468  negexsr 10513  recexsr 10518  recexsrlem 10514
[Gleason] p. 127Proposition 9-4.4df-ltr 10470
[Gleason] p. 130Proposition 10-1.3creui 11620  creur 11619  cru 11617
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 10599  axcnre 10575
[Gleason] p. 132Definition 10-3.1crim 14466  crimd 14583  crimi 14544  crre 14465  crred 14582  crrei 14543
[Gleason] p. 132Definition 10-3.2remim 14468  remimd 14549
[Gleason] p. 133Definition 10.36absval2 14636  absval2d 14797  absval2i 14749
[Gleason] p. 133Proposition 10-3.4(a)cjadd 14492  cjaddd 14571  cjaddi 14539
[Gleason] p. 133Proposition 10-3.4(c)cjmul 14493  cjmuld 14572  cjmuli 14540
[Gleason] p. 133Proposition 10-3.4(e)cjcj 14491  cjcjd 14550  cjcji 14522
[Gleason] p. 133Proposition 10-3.4(f)cjre 14490  cjreb 14474  cjrebd 14553  cjrebi 14525  cjred 14577  rere 14473  rereb 14471  rerebd 14552  rerebi 14524  rered 14575
[Gleason] p. 133Proposition 10-3.4(h)addcj 14499  addcjd 14563  addcji 14534
[Gleason] p. 133Proposition 10-3.7(a)absval 14589
[Gleason] p. 133Proposition 10-3.7(b)abscj 14631  abscjd 14802  abscji 14753
[Gleason] p. 133Proposition 10-3.7(c)abs00 14641  abs00d 14798  abs00i 14750  absne0d 14799
[Gleason] p. 133Proposition 10-3.7(d)releabs 14673  releabsd 14803  releabsi 14754
[Gleason] p. 133Proposition 10-3.7(f)absmul 14646  absmuld 14806  absmuli 14756
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 14634  sqabsaddi 14757
[Gleason] p. 133Proposition 10-3.7(h)abstri 14682  abstrid 14808  abstrii 14760
[Gleason] p. 134Definition 10-4.10exp0e1 13430  df-exp 13426  exp0 13429  expp1 13432  expp1d 13507
[Gleason] p. 135Proposition 10-4.2(a)cxpadd 25270  cxpaddd 25308  expadd 13467  expaddd 13508  expaddz 13469
[Gleason] p. 135Proposition 10-4.2(b)cxpmul 25279  cxpmuld 25327  expmul 13470  expmuld 13509  expmulz 13471
[Gleason] p. 135Proposition 10-4.2(c)mulcxp 25276  mulcxpd 25319  mulexp 13464  mulexpd 13521  mulexpz 13465
[Gleason] p. 140Exercise 1znnen 15557
[Gleason] p. 141Definition 11-2.1fzval 12887
[Gleason] p. 168Proposition 12-2.1(a)climadd 14980  rlimadd 14991  rlimdiv 14994
[Gleason] p. 168Proposition 12-2.1(b)climsub 14982  rlimsub 14992
[Gleason] p. 168Proposition 12-2.1(c)climmul 14981  rlimmul 14993
[Gleason] p. 171Corollary 12-2.2climmulc2 14985
[Gleason] p. 172Corollary 12-2.5climrecl 14932
[Gleason] p. 172Proposition 12-2.4(c)climabs 14952  climcj 14953  climim 14955  climre 14954  rlimabs 14957  rlimcj 14958  rlimim 14960  rlimre 14959
[Gleason] p. 173Definition 12-3.1df-ltxr 10669  df-xr 10668  ltxr 12498
[Gleason] p. 175Definition 12-4.1df-limsup 14820  limsupval 14823
[Gleason] p. 180Theorem 12-5.1climsup 15018
[Gleason] p. 180Theorem 12-5.3caucvg 15027  caucvgb 15028  caucvgr 15024  climcau 15019
[Gleason] p. 182Exercise 3cvgcmp 15163
[Gleason] p. 182Exercise 4cvgrat 15231
[Gleason] p. 195Theorem 13-2.12abs1m 14687
[Gleason] p. 217Lemma 13-4.1btwnzge0 13193
[Gleason] p. 223Definition 14-1.1df-met 20085
[Gleason] p. 223Definition 14-1.1(a)met0 22950  xmet0 22949
[Gleason] p. 223Definition 14-1.1(b)metgt0 22966
[Gleason] p. 223Definition 14-1.1(c)metsym 22957
[Gleason] p. 223Definition 14-1.1(d)mettri 22959  mstri 23076  xmettri 22958  xmstri 23075
[Gleason] p. 225Definition 14-1.5xpsmet 22989
[Gleason] p. 230Proposition 14-2.6txlm 22253
[Gleason] p. 240Theorem 14-4.3metcnp4 23914
[Gleason] p. 240Proposition 14-4.2metcnp3 23147
[Gleason] p. 243Proposition 14-4.16addcn 23470  addcn2 14942  mulcn 23472  mulcn2 14944  subcn 23471  subcn2 14943
[Gleason] p. 295Remarkbcval3 13662  bcval4 13663
[Gleason] p. 295Equation 2bcpasc 13677
[Gleason] p. 295Definition of binomial coefficientbcval 13660  df-bc 13659
[Gleason] p. 296Remarkbcn0 13666  bcnn 13668
[Gleason] p. 296Theorem 15-2.8binom 15177
[Gleason] p. 308Equation 2ef0 15436
[Gleason] p. 308Equation 3efcj 15437
[Gleason] p. 309Corollary 15-4.3efne0 15442
[Gleason] p. 309Corollary 15-4.4efexp 15446
[Gleason] p. 310Equation 14sinadd 15509
[Gleason] p. 310Equation 15cosadd 15510
[Gleason] p. 311Equation 17sincossq 15521
[Gleason] p. 311Equation 18cosbnd 15526  sinbnd 15525
[Gleason] p. 311Lemma 15-4.7sqeqor 13574  sqeqori 13572
[Gleason] p. 311Definition of ` `df-pi 15418
[Godowski] p. 730Equation SFgoeqi 30056
[GodowskiGreechie] p. 249Equation IV3oai 29451
[Golan] p. 1Remarksrgisid 19271
[Golan] p. 1Definitiondf-srg 19249
[Golan] p. 149Definitiondf-slmd 30879
[GramKnuthPat], p. 47Definition 2.42df-fwddif 33733
[Gratzer] p. 23Section 0.6df-mre 16849
[Gratzer] p. 27Section 0.6df-mri 16851
[Hall] p. 1Section 1.1df-asslaw 44448  df-cllaw 44446  df-comlaw 44447
[Hall] p. 2Section 1.2df-clintop 44460
[Hall] p. 7Section 1.3df-sgrp2 44481
[Halmos] p. 31Theorem 17.3riesz1 29848  riesz2 29849
[Halmos] p. 41Definition of Hermitianhmopadj2 29724
[Halmos] p. 42Definition of projector orderingpjordi 29956
[Halmos] p. 43Theorem 26.1elpjhmop 29968  elpjidm 29967  pjnmopi 29931
[Halmos] p. 44Remarkpjinormi 29470  pjinormii 29459
[Halmos] p. 44Theorem 26.2elpjch 29972  pjrn 29490  pjrni 29485  pjvec 29479
[Halmos] p. 44Theorem 26.3pjnorm2 29510
[Halmos] p. 44Theorem 26.4hmopidmpj 29937  hmopidmpji 29935
[Halmos] p. 45Theorem 27.1pjinvari 29974
[Halmos] p. 45Theorem 27.3pjoci 29963  pjocvec 29480
[Halmos] p. 45Theorem 27.4pjorthcoi 29952
[Halmos] p. 48Theorem 29.2pjssposi 29955
[Halmos] p. 48Theorem 29.3pjssdif1i 29958  pjssdif2i 29957
[Halmos] p. 50Definition of spectrumdf-spec 29638
[Hamilton] p. 28Definition 2.1ax-1 6
[Hamilton] p. 31Example 2.7(a)idALT 23
[Hamilton] p. 73Rule 1ax-mp 5
[Hamilton] p. 74Rule 2ax-gen 1797
[Hatcher] p. 25Definitiondf-phtpc 23597  df-phtpy 23576
[Hatcher] p. 26Definitiondf-pco 23610  df-pi1 23613
[Hatcher] p. 26Proposition 1.2phtpcer 23600
[Hatcher] p. 26Proposition 1.3pi1grp 23655
[Hefferon] p. 240Definition 3.12df-dmat 21095  df-dmatalt 44807
[Helfgott] p. 2Theoremtgoldbach 44335
[Helfgott] p. 4Corollary 1.1wtgoldbnnsum4prm 44320
[Helfgott] p. 4Section 1.2.2ax-hgprmladder 44332  bgoldbtbnd 44327  bgoldbtbnd 44327  tgblthelfgott 44333
[Helfgott] p. 5Proposition 1.1circlevma 32023
[Helfgott] p. 69Statement 7.49circlemethhgt 32024
[Helfgott] p. 69Statement 7.50hgt750lema 32038  hgt750lemb 32037  hgt750leme 32039  hgt750lemf 32034  hgt750lemg 32035
[Helfgott] p. 70Section 7.4ax-tgoldbachgt 44329  tgoldbachgt 32044  tgoldbachgtALTV 44330  tgoldbachgtd 32043
[Helfgott] p. 70Statement 7.49ax-hgt749 32025
[Herstein] p. 54Exercise 28df-grpo 28276
[Herstein] p. 55Lemma 2.2.1(a)grpideu 18106  grpoideu 28292  mndideu 17914
[Herstein] p. 55Lemma 2.2.1(b)grpinveu 18130  grpoinveu 28302
[Herstein] p. 55Lemma 2.2.1(c)grpinvinv 18158  grpo2inv 28314
[Herstein] p. 55Lemma 2.2.1(d)grpinvadd 18169  grpoinvop 28316
[Herstein] p. 57Exercise 1dfgrp3e 18191
[Hitchcock] p. 5Rule A3mptnan 1770
[Hitchcock] p. 5Rule A4mptxor 1771
[Hitchcock] p. 5Rule A5mtpxor 1773
[Holland] p. 1519Theorem 2sumdmdi 30203
[Holland] p. 1520Lemma 5cdj1i 30216  cdj3i 30224  cdj3lem1 30217  cdjreui 30215
[Holland] p. 1524Lemma 7mddmdin0i 30214
[Holland95] p. 13Theorem 3.6hlathil 39257
[Holland95] p. 14Line 15hgmapvs 39187
[Holland95] p. 14Line 16hdmaplkr 39209
[Holland95] p. 14Line 17hdmapellkr 39210
[Holland95] p. 14Line 19hdmapglnm2 39207
[Holland95] p. 14Line 20hdmapip0com 39213
[Holland95] p. 14Theorem 3.6hdmapevec2 39132
[Holland95] p. 14Lines 24 and 25hdmapoc 39227
[Holland95] p. 204Definition of involutiondf-srng 19610
[Holland95] p. 212Definition of subspacedf-psubsp 36799
[Holland95] p. 214Lemma 3.3lclkrlem2v 38824
[Holland95] p. 214Definition 3.2df-lpolN 38777
[Holland95] p. 214Definition of nonsingularpnonsingN 37229
[Holland95] p. 215Lemma 3.3(1)dihoml4 38673  poml4N 37249
[Holland95] p. 215Lemma 3.3(2)dochexmid 38764  pexmidALTN 37274  pexmidN 37265
[Holland95] p. 218Theorem 3.6lclkr 38829
[Holland95] p. 218Definition of dual vector spacedf-ldual 36420  ldualset 36421
[Holland95] p. 222Item 1df-lines 36797  df-pointsN 36798
[Holland95] p. 222Item 2df-polarityN 37199
[Holland95] p. 223Remarkispsubcl2N 37243  omllaw4 36542  pol1N 37206  polcon3N 37213
[Holland95] p. 223Definitiondf-psubclN 37231
[Holland95] p. 223Equation for polaritypolval2N 37202
[Holmes] p. 40Definitiondf-xrn 35783
[Hughes] p. 44Equation 1.21bax-his3 28867
[Hughes] p. 47Definition of projection operatordfpjop 29965
[Hughes] p. 49Equation 1.30eighmre 29746  eigre 29618  eigrei 29617
[Hughes] p. 49Equation 1.31eighmorth 29747  eigorth 29621  eigorthi 29620
[Hughes] p. 137Remark (ii)eigposi 29619
[Huneke] p. 1Claim 1frgrncvvdeq 28094
[Huneke] p. 1Statement 1frgrncvvdeqlem7 28090
[Huneke] p. 1Statement 2frgrncvvdeqlem8 28091
[Huneke] p. 1Statement 3frgrncvvdeqlem9 28092
[Huneke] p. 2Claim 2frgrregorufr 28110  frgrregorufr0 28109  frgrregorufrg 28111
[Huneke] p. 2Claim 3frgrhash2wsp 28117  frrusgrord 28126  frrusgrord0 28125
[Huneke] p. 2Statementdf-clwwlknon 27873
[Huneke] p. 2Statement 4frgrwopreglem4 28100
[Huneke] p. 2Statement 5frgrwopreg1 28103  frgrwopreg2 28104  frgrwopregasn 28101  frgrwopregbsn 28102
[Huneke] p. 2Statement 6frgrwopreglem5 28106
[Huneke] p. 2Statement 7fusgreghash2wspv 28120
[Huneke] p. 2Statement 8fusgreghash2wsp 28123
[Huneke] p. 2Statement 9clwlksndivn 27871  numclwlk1 28156  numclwlk1lem1 28154  numclwlk1lem2 28155  numclwwlk1 28146  numclwwlk8 28177
[Huneke] p. 2Definition 3frgrwopreglem1 28097
[Huneke] p. 2Definition 4df-clwlks 27560
[Huneke] p. 2Definition 62clwwlk 28132
[Huneke] p. 2Definition 7numclwwlkovh 28158  numclwwlkovh0 28157
[Huneke] p. 2Statement 10numclwwlk2 28166
[Huneke] p. 2Statement 11rusgrnumwlkg 27763
[Huneke] p. 2Statement 12numclwwlk3 28170
[Huneke] p. 2Statement 13numclwwlk5 28173
[Huneke] p. 2Statement 14numclwwlk7 28176
[Indrzejczak] p. 33Definition ` `Enatded 28188  natded 28188
[Indrzejczak] p. 33Definition ` `Inatded 28188
[Indrzejczak] p. 34Definition ` `Enatded 28188  natded 28188
[Indrzejczak] p. 34Definition ` `Inatded 28188
[Jech] p. 4Definition of classcv 1537  cvjust 2793
[Jech] p. 42Lemma 6.1alephexp1 9990
[Jech] p. 42Equation 6.1alephadd 9988  alephmul 9989
[Jech] p. 43Lemma 6.2infmap 9987  infmap2 9629
[Jech] p. 71Lemma 9.3jech9.3 9227
[Jech] p. 72Equation 9.3scott0 9299  scottex 9298
[Jech] p. 72Exercise 9.1rankval4 9280
[Jech] p. 72Scheme "Collection Principle"cp 9304
[Jech] p. 78Noteopthprc 5580
[JonesMatijasevic] p. 694Definition 2.3rmxyval 39856
[JonesMatijasevic] p. 695Lemma 2.15jm2.15nn0 39944
[JonesMatijasevic] p. 695Lemma 2.16jm2.16nn0 39945
[JonesMatijasevic] p. 695Equation 2.7rmxadd 39868
[JonesMatijasevic] p. 695Equation 2.8rmyadd 39872
[JonesMatijasevic] p. 695Equation 2.9rmxp1 39873  rmyp1 39874
[JonesMatijasevic] p. 695Equation 2.10rmxm1 39875  rmym1 39876
[JonesMatijasevic] p. 695Equation 2.11rmx0 39866  rmx1 39867  rmxluc 39877
[JonesMatijasevic] p. 695Equation 2.12rmy0 39870  rmy1 39871  rmyluc 39878
[JonesMatijasevic] p. 695Equation 2.13rmxdbl 39880
[JonesMatijasevic] p. 695Equation 2.14rmydbl 39881
[JonesMatijasevic] p. 696Lemma 2.17jm2.17a 39901  jm2.17b 39902  jm2.17c 39903
[JonesMatijasevic] p. 696Lemma 2.19jm2.19 39934
[JonesMatijasevic] p. 696Lemma 2.20jm2.20nn 39938
[JonesMatijasevic] p. 696Theorem 2.18jm2.18 39929
[JonesMatijasevic] p. 697Lemma 2.24jm2.24 39904  jm2.24nn 39900
[JonesMatijasevic] p. 697Lemma 2.26jm2.26 39943
[JonesMatijasevic] p. 697Lemma 2.27jm2.27 39949  rmygeid 39905
[JonesMatijasevic] p. 698Lemma 3.1jm3.1 39961
[Juillerat] p. 11Section *5etransc 42925  etransclem47 42923  etransclem48 42924
[Juillerat] p. 12Equation (7)etransclem44 42920
[Juillerat] p. 12Equation *(7)etransclem46 42922
[Juillerat] p. 12Proof of the derivative calculatedetransclem32 42908
[Juillerat] p. 13Proofetransclem35 42911
[Juillerat] p. 13Part of case 2 proven inetransclem38 42914
[Juillerat] p. 13Part of case 2 provenetransclem24 42900
[Juillerat] p. 13Part of case 2: proven inetransclem41 42917
[Juillerat] p. 14Proofetransclem23 42899
[KalishMontague] p. 81Note 1ax-6 1970
[KalishMontague] p. 85Lemma 2equid 2019
[KalishMontague] p. 85Lemma 3equcomi 2024
[KalishMontague] p. 86Lemma 7cbvalivw 2014  cbvaliw 2013  wl-cbvmotv 34918  wl-motae 34920  wl-moteq 34919
[KalishMontague] p. 87Lemma 8spimvw 2002  spimw 1973
[KalishMontague] p. 87Lemma 9spfw 2040  spw 2041
[Kalmbach] p. 14Definition of latticechabs1 29299  chabs1i 29301  chabs2 29300  chabs2i 29302  chjass 29316  chjassi 29269  latabs1 17689  latabs2 17690
[Kalmbach] p. 15Definition of atomdf-at 30121  ela 30122
[Kalmbach] p. 15Definition of coverscvbr2 30066  cvrval2 36570
[Kalmbach] p. 16Definitiondf-ol 36474  df-oml 36475
[Kalmbach] p. 20Definition of commutescmbr 29367  cmbri 29373  cmtvalN 36507  df-cm 29366  df-cmtN 36473
[Kalmbach] p. 22Remarkomllaw5N 36543  pjoml5 29396  pjoml5i 29371
[Kalmbach] p. 22Definitionpjoml2 29394  pjoml2i 29368
[Kalmbach] p. 22Theorem 2(v)cmcm 29397  cmcmi 29375  cmcmii 29380  cmtcomN 36545
[Kalmbach] p. 22Theorem 2(ii)omllaw3 36541  omlsi 29187  pjoml 29219  pjomli 29218
[Kalmbach] p. 22Definition of OML lawomllaw2N 36540
[Kalmbach] p. 23Remarkcmbr2i 29379  cmcm3 29398  cmcm3i 29377  cmcm3ii 29382  cmcm4i 29378  cmt3N 36547  cmt4N 36548  cmtbr2N 36549
[Kalmbach] p. 23Lemma 3cmbr3 29391  cmbr3i 29383  cmtbr3N 36550
[Kalmbach] p. 25Theorem 5fh1 29401  fh1i 29404  fh2 29402  fh2i 29405  omlfh1N 36554
[Kalmbach] p. 65Remarkchjatom 30140  chslej 29281  chsleji 29241  shslej 29163  shsleji 29153
[Kalmbach] p. 65Proposition 1chocin 29278  chocini 29237  chsupcl 29123  chsupval2 29193  h0elch 29038  helch 29026  hsupval2 29192  ocin 29079  ococss 29076  shococss 29077
[Kalmbach] p. 65Definition of subspace sumshsval 29095
[Kalmbach] p. 66Remarkdf-pjh 29178  pjssmi 29948  pjssmii 29464
[Kalmbach] p. 67Lemma 3osum 29428  osumi 29425
[Kalmbach] p. 67Lemma 4pjci 29983
[Kalmbach] p. 103Exercise 6atmd2 30183
[Kalmbach] p. 103Exercise 12mdsl0 30093
[Kalmbach] p. 140Remarkhatomic 30143  hatomici 30142  hatomistici 30145
[Kalmbach] p. 140Proposition 1atlatmstc 36615
[Kalmbach] p. 140Proposition 1(i)atexch 30164  lsatexch 36339
[Kalmbach] p. 140Proposition 1(ii)chcv1 30138  cvlcvr1 36635  cvr1 36706
[Kalmbach] p. 140Proposition 1(iii)cvexch 30157  cvexchi 30152  cvrexch 36716
[Kalmbach] p. 149Remark 2chrelati 30147  hlrelat 36698  hlrelat5N 36697  lrelat 36310
[Kalmbach] p. 153Exercise 5lsmcv 19906  lsmsatcv 36306  spansncv 29436  spansncvi 29435
[Kalmbach] p. 153Proposition 1(ii)lsmcv2 36325  spansncv2 30076
[Kalmbach] p. 266Definitiondf-st 29994
[Kalmbach2] p. 8Definition of adjointdf-adjh 29632
[KanamoriPincus] p. 415Theorem 1.1fpwwe 10057  fpwwe2 10054
[KanamoriPincus] p. 416Corollary 1.3canth4 10058
[KanamoriPincus] p. 417Corollary 1.6canthp1 10065
[KanamoriPincus] p. 417Corollary 1.4(a)canthnum 10060
[KanamoriPincus] p. 417Corollary 1.4(b)canthwe 10062
[KanamoriPincus] p. 418Proposition 1.7pwfseq 10075
[KanamoriPincus] p. 419Lemma 2.2gchdjuidm 10079  gchxpidm 10080
[KanamoriPincus] p. 419Theorem 2.1gchacg 10091  gchhar 10090
[KanamoriPincus] p. 420Lemma 2.3pwdjudom 9627  unxpwdom 9037
[KanamoriPincus] p. 421Proposition 3.1gchpwdom 10081
[Kreyszig] p. 3Property M1metcl 22939  xmetcl 22938
[Kreyszig] p. 4Property M2meteq0 22946
[Kreyszig] p. 8Definition 1.1-8dscmet 23179
[Kreyszig] p. 12Equation 5conjmul 11346  muleqadd 11273
[Kreyszig] p. 18Definition 1.3-2mopnval 23045
[Kreyszig] p. 19Remarkmopntopon 23046
[Kreyszig] p. 19Theorem T1mopn0 23105  mopnm 23051
[Kreyszig] p. 19Theorem T2unimopn 23103
[Kreyszig] p. 19Definition of neighborhoodneibl 23108
[Kreyszig] p. 20Definition 1.3-3metcnp2 23149
[Kreyszig] p. 25Definition 1.4-1lmbr 21863  lmmbr 23862  lmmbr2 23863
[Kreyszig] p. 26Lemma 1.4-2(a)lmmo 21985
[Kreyszig] p. 28Theorem 1.4-5lmcau 23917
[Kreyszig] p. 28Definition 1.4-3iscau 23880  iscmet2 23898
[Kreyszig] p. 30Theorem 1.4-7cmetss 23920
[Kreyszig] p. 30Theorem 1.4-6(a)1stcelcls 22066  metelcls 23909
[Kreyszig] p. 30Theorem 1.4-6(b)metcld 23910  metcld2 23911
[Kreyszig] p. 51Equation 2clmvneg1 23704  lmodvneg1 19670  nvinv 28422  vcm 28359
[Kreyszig] p. 51Equation 1aclm0vs 23700  lmod0vs 19660  slmd0vs 30902  vc0 28357
[Kreyszig] p. 51Equation 1blmodvs0 19661  slmdvs0 30903  vcz 28358
[Kreyszig] p. 58Definition 2.2-1imsmet 28474  ngpmet 23209  nrmmetd 23181
[Kreyszig] p. 59Equation 1imsdval 28469  imsdval2 28470  ncvspds 23766  ngpds 23210
[Kreyszig] p. 63Problem 1nmval 23196  nvnd 28471
[Kreyszig] p. 64Problem 2nmeq0 23224  nmge0 23223  nvge0 28456  nvz 28452
[Kreyszig] p. 64Problem 3nmrtri 23230  nvabs 28455
[Kreyszig] p. 91Definition 2.7-1isblo3i 28584
[Kreyszig] p. 92Equation 2df-nmoo 28528
[Kreyszig] p. 97Theorem 2.7-9(a)blocn 28590  blocni 28588
[Kreyszig] p. 97Theorem 2.7-9(b)lnocni 28589
[Kreyszig] p. 129Definition 3.1-1cphipeq0 23809  ipeq0 20327  ipz 28502
[Kreyszig] p. 135Problem 2pythi 28633
[Kreyszig] p. 137Lemma 3-2.1(a)sii 28637
[Kreyszig] p. 144Equation 4supcvg 15203
[Kreyszig] p. 144Theorem 3.3-1minvec 24040  minveco 28667
[Kreyszig] p. 196Definition 3.9-1df-aj 28533
[Kreyszig] p. 247Theorem 4.7-2bcth 23933
[Kreyszig] p. 249Theorem 4.7-3ubth 28656
[Kreyszig] p. 470Definition of positive operator orderingleop 29906  leopg 29905
[Kreyszig] p. 476Theorem 9.4-2opsqrlem2 29924
[Kreyszig] p. 525Theorem 10.1-1htth 28701
[Kulpa] p. 547Theorempoimir 35090
[Kulpa] p. 547Equation (1)poimirlem32 35089
[Kulpa] p. 547Equation (2)poimirlem31 35088
[Kulpa] p. 548Theorembroucube 35091
[Kulpa] p. 548Equation (6)poimirlem26 35083
[Kulpa] p. 548Equation (7)poimirlem27 35084
[Kunen] p. 10Axiom 0ax6e 2390  axnul 5173
[Kunen] p. 11Axiom 3axnul 5173
[Kunen] p. 12Axiom 6zfrep6 7638
[Kunen] p. 24Definition 10.24mapval 8401  mapvalg 8399
[Kunen] p. 30Lemma 10.20fodomg 9933
[Kunen] p. 31Definition 10.24mapex 8395
[Kunen] p. 95Definition 2.1df-r1 9177
[Kunen] p. 97Lemma 2.10r1elss 9219  r1elssi 9218
[Kunen] p. 107Exercise 4rankop 9271  rankopb 9265  rankuni 9276  rankxplim 9292  rankxpsuc 9295
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 4893
[Lang] , p. 225Corollary 1.3finexttrb 31140
[Lang] p. Definitiondf-rn 5530
[Lang] p. 3Statementlidrideqd 17871  mndbn0 17919
[Lang] p. 3Definitiondf-mnd 17904
[Lang] p. 4Definition of a (finite) productgsumsplit1r 17889
[Lang] p. 4Property of composites. Second formulagsumccat 17998
[Lang] p. 5Equationgsumreidx 19030
[Lang] p. 5Definition of an (infinite) productgsumfsupp 44442
[Lang] p. 6Examplenn0mnd 44439
[Lang] p. 6Equationgsumxp2 19093
[Lang] p. 6Statementcycsubm 18337
[Lang] p. 6Definitionmulgnn0gsum 18226
[Lang] p. 6Observationmndlsmidm 18788
[Lang] p. 7Definitiondfgrp2e 18121
[Lang] p. 30Definitiondf-tocyc 30799
[Lang] p. 32Property (a)cyc3genpm 30844
[Lang] p. 32Property (b)cyc3conja 30849  cycpmconjv 30834
[Lang] p. 53Definitiondf-cat 16931
[Lang] p. 54Definitiondf-iso 17011
[Lang] p. 57Definitiondf-inito 17243  df-termo 17244
[Lang] p. 58Exampleirinitoringc 44693
[Lang] p. 58Statementinitoeu1 17263  termoeu1 17270
[Lang] p. 62Definitiondf-func 17120
[Lang] p. 65Definitiondf-nat 17205
[Lang] p. 91Notedf-ringc 44629
[Lang] p. 92Statementmxidlprm 31048
[Lang] p. 92Definitionisprmidlc 31031
[Lang] p. 128Remarkdsmmlmod 20434
[Lang] p. 129Prooflincscm 44839  lincscmcl 44841  lincsum 44838  lincsumcl 44840
[Lang] p. 129Statementlincolss 44843
[Lang] p. 129Observationdsmmfi 20427
[Lang] p. 141Theorem 5.3dimkerim 31111  qusdimsum 31112
[Lang] p. 141Corollary 5.4lssdimle 31094
[Lang] p. 147Definitionsnlindsntor 44880
[Lang] p. 504Statementmat1 21052  matring 21048
[Lang] p. 504Definitiondf-mamu 20991
[Lang] p. 505Statementmamuass 21007  mamutpos 21063  matassa 21049  mattposvs 21060  tposmap 21062
[Lang] p. 513Definitionmdet1 21206  mdetf 21200
[Lang] p. 513Theorem 4.4cramer 21296
[Lang] p. 514Proposition 4.6mdetleib 21192
[Lang] p. 514Proposition 4.8mdettpos 21216
[Lang] p. 515Definitiondf-minmar1 21240  smadiadetr 21280
[Lang] p. 515Corollary 4.9mdetero 21215  mdetralt 21213
[Lang] p. 517Proposition 4.15mdetmul 21228
[Lang] p. 518Definitiondf-madu 21239
[Lang] p. 518Proposition 4.16madulid 21250  madurid 21249  matinv 21282
[Lang] p. 561Theorem 3.1cayleyhamilton 21495
[Lang], p. 224Proposition 1.2extdgmul 31139  fedgmul 31115
[Lang], p. 561Remarkchpmatply1 21437
[Lang], p. 561Definitiondf-chpmat 21432
[LarsonHostetlerEdwards] p. 278Section 4.1dvconstbi 41038
[LarsonHostetlerEdwards] p. 311Example 1alhe4.4ex1a 41033
[LarsonHostetlerEdwards] p. 375Theorem 5.1expgrowth 41039
[LeBlanc] p. 277Rule R2axnul 5173
[Levy] p. 12Axiom 4.3.1df-clab 2777
[Levy] p. 338Axiomdf-clel 2870  df-cleq 2791
[Levy] p. 357Proof sketch of conservativity; for details see Appendixdf-clel 2870  df-cleq 2791
[Levy] p. 357Statements yield an eliminable and weakly (that is, object-level) conservative extension of FOL= plus ~ ax-ext , see Appendixdf-clab 2777
[Levy] p. 358Axiomdf-clab 2777
[Levy58] p. 2Definition Iisfin1-3 9797
[Levy58] p. 2Definition IIdf-fin2 9697
[Levy58] p. 2Definition Iadf-fin1a 9696
[Levy58] p. 2Definition IIIdf-fin3 9699
[Levy58] p. 3Definition Vdf-fin5 9700
[Levy58] p. 3Definition IVdf-fin4 9698
[Levy58] p. 4Definition VIdf-fin6 9701
[Levy58] p. 4Definition VIIdf-fin7 9702
[Levy58], p. 3Theorem 1fin1a2 9826
[Lipparini] p. 3Lemma 2.1.1nosepssdm 33303
[Lipparini] p. 3Lemma 2.1.4noresle 33313
[Lipparini] p. 6Proposition 4.2nosupbnd1 33327
[Lipparini] p. 6Proposition 4.3nosupbnd2 33329
[Lipparini] p. 7Theorem 5.1noetalem2 33331  noetalem3 33332
[Lopez-Astorga] p. 12Rule 1mptnan 1770
[Lopez-Astorga] p. 12Rule 2mptxor 1771
[Lopez-Astorga] p. 12Rule 3mtpxor 1773
[Maeda] p. 167Theorem 1(d) to (e)mdsymlem6 30191
[Maeda] p. 168Lemma 5mdsym 30195  mdsymi 30194
[Maeda] p. 168Lemma 4(i)mdsymlem4 30189  mdsymlem6 30191  mdsymlem7 30192
[Maeda] p. 168Lemma 4(ii)mdsymlem8 30193
[MaedaMaeda] p. 1Remarkssdmd1 30096  ssdmd2 30097  ssmd1 30094  ssmd2 30095
[MaedaMaeda] p. 1Lemma 1.2mddmd2 30092
[MaedaMaeda] p. 1Definition 1.1df-dmd 30064  df-md 30063  mdbr 30077
[MaedaMaeda] p. 2Lemma 1.3mdsldmd1i 30114  mdslj1i 30102  mdslj2i 30103  mdslle1i 30100  mdslle2i 30101  mdslmd1i 30112  mdslmd2i 30113
[MaedaMaeda] p. 2Lemma 1.4mdsl1i 30104  mdsl2bi 30106  mdsl2i 30105
[MaedaMaeda] p. 2Lemma 1.6mdexchi 30118
[MaedaMaeda] p. 2Lemma 1.5.1mdslmd3i 30115
[MaedaMaeda] p. 2Lemma 1.5.2mdslmd4i 30116
[MaedaMaeda] p. 2Lemma 1.5.3mdsl0 30093
[MaedaMaeda] p. 2Theorem 1.3dmdsl3 30098  mdsl3 30099
[MaedaMaeda] p. 3Theorem 1.9.1csmdsymi 30117
[MaedaMaeda] p. 4Theorem 1.14mdcompli 30212
[MaedaMaeda] p. 30Lemma 7.2atlrelat1 36617  hlrelat1 36696
[MaedaMaeda] p. 31Lemma 7.5lcvexch 36335
[MaedaMaeda] p. 31Lemma 7.5.1cvmd 30119  cvmdi 30107  cvnbtwn4 30072  cvrnbtwn4 36575
[MaedaMaeda] p. 31Lemma 7.5.2cvdmd 30120
[MaedaMaeda] p. 31Definition 7.4cvlcvrp 36636  cvp 30158  cvrp 36712  lcvp 36336
[MaedaMaeda] p. 31Theorem 7.6(b)atmd 30182
[MaedaMaeda] p. 31Theorem 7.6(c)atdmd 30181
[MaedaMaeda] p. 32Definition 7.8cvlexch4N 36629  hlexch4N 36688
[MaedaMaeda] p. 34Exercise 7.1atabsi 30184
[MaedaMaeda] p. 41Lemma 9.2(delta)cvrat4 36739
[MaedaMaeda] p. 61Definition 15.10psubN 37045  atpsubN 37049  df-pointsN 36798  pointpsubN 37047
[MaedaMaeda] p. 62Theorem 15.5df-pmap 36800  pmap11 37058  pmaple 37057  pmapsub 37064  pmapval 37053
[MaedaMaeda] p. 62Theorem 15.5.1pmap0 37061  pmap1N 37063
[MaedaMaeda] p. 62Theorem 15.5.2pmapglb 37066  pmapglb2N 37067  pmapglb2xN 37068  pmapglbx 37065
[MaedaMaeda] p. 63Equation 15.5.3pmapjoin 37148
[MaedaMaeda] p. 67Postulate PS1ps-1 36773
[MaedaMaeda] p. 68Lemma 16.2df-padd 37092  paddclN 37138  paddidm 37137
[MaedaMaeda] p. 68Condition PS2ps-2 36774
[MaedaMaeda] p. 68Equation 16.2.1paddass 37134
[MaedaMaeda] p. 69Lemma 16.4ps-1 36773
[MaedaMaeda] p. 69Theorem 16.4ps-2 36774
[MaedaMaeda] p. 70Theorem 16.9lsmmod 18793  lsmmod2 18794  lssats 36308  shatomici 30141  shatomistici 30144  shmodi 29173  shmodsi 29172
[MaedaMaeda] p. 130Remark 29.6dmdmd 30083  mdsymlem7 30192
[MaedaMaeda] p. 132Theorem 29.13(e)pjoml6i 29372
[MaedaMaeda] p. 136Lemma 31.1.5shjshseli 29276
[MaedaMaeda] p. 139Remarksumdmdii 30198
[Margaris] p. 40Rule Cexlimiv 1931
[Margaris] p. 49Axiom A1ax-1 6
[Margaris] p. 49Axiom A2ax-2 7
[Margaris] p. 49Axiom A3ax-3 8
[Margaris] p. 49Definitiondf-an 400  df-ex 1782  df-or 845  dfbi2 478
[Margaris] p. 51Theorem 1idALT 23
[Margaris] p. 56Theorem 3conventions 28185
[Margaris] p. 59Section 14notnotrALTVD 41621
[Margaris] p. 60Theorem 8jcn 165
[Margaris] p. 60Section 14con3ALTVD 41622
[Margaris] p. 79Rule Cexinst01 41331  exinst11 41332
[Margaris] p. 89Theorem 19.219.2 1981  19.2g 2185  r19.2z 4398
[Margaris] p. 89Theorem 19.319.3 2200  rr19.3v 3607
[Margaris] p. 89Theorem 19.5alcom 2160
[Margaris] p. 89Theorem 19.6alex 1827
[Margaris] p. 89Theorem 19.7alnex 1783
[Margaris] p. 89Theorem 19.819.8a 2178
[Margaris] p. 89Theorem 19.919.9 2203  19.9h 2290  exlimd 2216  exlimdh 2294
[Margaris] p. 89Theorem 19.11excom 2166  excomim 2167
[Margaris] p. 89Theorem 19.1219.12 2335
[Margaris] p. 90Section 19conventions-labels 28186  conventions-labels 28186  conventions-labels 28186  conventions-labels 28186
[Margaris] p. 90Theorem 19.14exnal 1828
[Margaris] p. 90Theorem 19.152albi 41082  albi 1820
[Margaris] p. 90Theorem 19.1619.16 2225
[Margaris] p. 90Theorem 19.1719.17 2226
[Margaris] p. 90Theorem 19.182exbi 41084  exbi 1848
[Margaris] p. 90Theorem 19.1919.19 2229
[Margaris] p. 90Theorem 19.202alim 41081  2alimdv 1919  alimd 2210  alimdh 1819  alimdv 1917  ax-4 1811  ralimdaa 3181  ralimdv 3145  ralimdva 3144  ralimdvva 3146  sbcimdv 3789
[Margaris] p. 90Theorem 19.2119.21 2205  19.21h 2291  19.21t 2204  19.21vv 41080  alrimd 2213  alrimdd 2212  alrimdh 1864  alrimdv 1930  alrimi 2211  alrimih 1825  alrimiv 1928  alrimivv 1929  hbralrimi 3147  r19.21be 3174  r19.21bi 3173  ralrimd 3182  ralrimdv 3153  ralrimdva 3154  ralrimdvv 3158  ralrimdvva 3159  ralrimi 3180  ralrimia 41767  ralrimiv 3148  ralrimiva 3149  ralrimivv 3155  ralrimivva 3156  ralrimivvva 3157  ralrimivw 3150
[Margaris] p. 90Theorem 19.222exim 41083  2eximdv 1920  exim 1835  eximd 2214  eximdh 1865  eximdv 1918  rexim 3204  reximd2a 3271  reximdai 3270  reximdd 41789  reximddv 3234  reximddv2 3237  reximddv3 41788  reximdv 3232  reximdv2 3230  reximdva 3233  reximdvai 3231  reximdvva 3236  reximi2 3207
[Margaris] p. 90Theorem 19.2319.23 2209  19.23bi 2188  19.23h 2292  19.23t 2208  exlimdv 1934  exlimdvv 1935  exlimexi 41230  exlimiv 1931  exlimivv 1933  rexlimd3 41781  rexlimdv 3242  rexlimdv3a 3245  rexlimdva 3243  rexlimdva2 3246  rexlimdvaa 3244  rexlimdvv 3252  rexlimdvva 3253  rexlimdvw 3249  rexlimiv 3239  rexlimiva 3240  rexlimivv 3251
[Margaris] p. 90Theorem 19.2419.24 1992
[Margaris] p. 90Theorem 19.2519.25 1881
[Margaris] p. 90Theorem 19.2619.26 1871
[Margaris] p. 90Theorem 19.2719.27 2227  r19.27z 4408  r19.27zv 4409
[Margaris] p. 90Theorem 19.2819.28 2228  19.28vv 41090  r19.28z 4401  r19.28zv 4404  rr19.28v 3608
[Margaris] p. 90Theorem 19.2919.29 1874  r19.29d2r 3291  r19.29imd 3218
[Margaris] p. 90Theorem 19.3019.30 1882
[Margaris] p. 90Theorem 19.3119.31 2234  19.31vv 41088
[Margaris] p. 90Theorem 19.3219.32 2233  r19.32 43653
[Margaris] p. 90Theorem 19.3319.33-2 41086  19.33 1885
[Margaris] p. 90Theorem 19.3419.34 1993
[Margaris] p. 90Theorem 19.3519.35 1878
[Margaris] p. 90Theorem 19.3619.36 2230  19.36vv 41087  r19.36zv 4410
[Margaris] p. 90Theorem 19.3719.37 2232  19.37vv 41089  r19.37zv 4405
[Margaris] p. 90Theorem 19.3819.38 1840
[Margaris] p. 90Theorem 19.3919.39 1991
[Margaris] p. 90Theorem 19.4019.40-2 1888  19.40 1887  r19.40 3299
[Margaris] p. 90Theorem 19.4119.41 2235  19.41rg 41256
[Margaris] p. 90Theorem 19.4219.42 2236
[Margaris] p. 90Theorem 19.4319.43 1883
[Margaris] p. 90Theorem 19.4419.44 2237  r19.44zv 4407
[Margaris] p. 90Theorem 19.4519.45 2238  r19.45zv 4406
[Margaris] p. 110Exercise 2(b)eu1 2671
[Mayet] p. 370Remarkjpi 30053  largei 30050  stri 30040
[Mayet3] p. 9Definition of CH-statesdf-hst 29995  ishst 29997
[Mayet3] p. 10Theoremhstrbi 30049  hstri 30048
[Mayet3] p. 1223Theorem 4.1mayete3i 29511
[Mayet3] p. 1240Theorem 7.1mayetes3i 29512
[MegPav2000] p. 2344Theorem 3.3stcltrthi 30061
[MegPav2000] p. 2345Definition 3.4-1chintcl 29115  chsupcl 29123
[MegPav2000] p. 2345Definition 3.4-2hatomic 30143
[MegPav2000] p. 2345Definition 3.4-3(a)superpos 30137
[MegPav2000] p. 2345Definition 3.4-3(b)atexch 30164
[MegPav2000] p. 2366Figure 7pl42N 37279
[MegPav2002] p. 362Lemma 2.2latj31 17701  latj32 17699  latjass 17697
[Megill] p. 444Axiom C5ax-5 1911  ax5ALT 36203
[Megill] p. 444Section 7conventions 28185
[Megill] p. 445Lemma L12aecom-o 36197  ax-c11n 36184  axc11n 2437
[Megill] p. 446Lemma L17equtrr 2029
[Megill] p. 446Lemma L18ax6fromc10 36192
[Megill] p. 446Lemma L19hbnae-o 36224  hbnae 2443
[Megill] p. 447Remark 9.1dfsb1 2499  sbid 2254  sbidd-misc 45245  sbidd 45244
[Megill] p. 448Remark 9.6axc14 2475
[Megill] p. 448Scheme C4'ax-c4 36180
[Megill] p. 448Scheme C5'ax-c5 36179  sp 2180
[Megill] p. 448Scheme C6'ax-11 2158
[Megill] p. 448Scheme C7'ax-c7 36181
[Megill] p. 448Scheme C8'ax-7 2015
[Megill] p. 448Scheme C9'ax-c9 36186
[Megill] p. 448Scheme C10'ax-6 1970  ax-c10 36182
[Megill] p. 448Scheme C11'ax-c11 36183
[Megill] p. 448Scheme C12'ax-8 2113
[Megill] p. 448Scheme C13'ax-9 2121
[Megill] p. 448Scheme C14'ax-c14 36187
[Megill] p. 448Scheme C15'ax-c15 36185
[Megill] p. 448Scheme C16'ax-c16 36188
[Megill] p. 448Theorem 9.4dral1-o 36200  dral1 2450  dral2-o 36226  dral2 2449  drex1 2452  drex2 2453  drsb1 2513  drsb2 2264
[Megill] p. 449Theorem 9.7sbcom2 2165  sbequ 2088  sbid2v 2528
[Megill] p. 450Example in Appendixhba1-o 36193  hba1 2297
[Mendelson] p. 35Axiom A3hirstL-ax3 43485
[Mendelson] p. 36Lemma 1.8idALT 23
[Mendelson] p. 69Axiom 4rspsbc 3808  rspsbca 3809  stdpc4 2073
[Mendelson] p. 69Axiom 5ax-c4 36180  ra4 3815  stdpc5 2206
[Mendelson] p. 81Rule Cexlimiv 1931
[Mendelson] p. 95Axiom 6stdpc6 2035
[Mendelson] p. 95Axiom 7stdpc7 2249
[Mendelson] p. 225Axiom system NBGru 3719
[Mendelson] p. 230Exercise 4.8(b)opthwiener 5369
[Mendelson] p. 231Exercise 4.10(k)inv1 4302
[Mendelson] p. 231Exercise 4.10(l)unv 4303
[Mendelson] p. 231Exercise 4.10(n)dfin3 4193
[Mendelson] p. 231Exercise 4.10(o)df-nul 4244
[Mendelson] p. 231Exercise 4.10(q)dfin4 4194
[Mendelson] p. 231Exercise 4.10(s)ddif 4064
[Mendelson] p. 231Definition of uniondfun3 4192
[Mendelson] p. 235Exercise 4.12(c)univ 5309
[Mendelson] p. 235Exercise 4.12(d)pwv 4797
[Mendelson] p. 235Exercise 4.12(j)pwin 5419
[Mendelson] p. 235Exercise 4.12(k)pwunss 4517
[Mendelson] p. 235Exercise 4.12(l)pwssun 5421
[Mendelson] p. 235Exercise 4.12(n)uniin 4824
[Mendelson] p. 235Exercise 4.12(p)reli 5662
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 6088
[Mendelson] p. 244Proposition 4.8(g)epweon 7477
[Mendelson] p. 246Definition of successordf-suc 6165
[Mendelson] p. 250Exercise 4.36oelim2 8204
[Mendelson] p. 254Proposition 4.22(b)xpen 8664
[Mendelson] p. 254Proposition 4.22(c)xpsnen 8584  xpsneng 8585
[Mendelson] p. 254Proposition 4.22(d)xpcomen 8591  xpcomeng 8592
[Mendelson] p. 254Proposition 4.22(e)xpassen 8594
[Mendelson] p. 255Definitionbrsdom 8515
[Mendelson] p. 255Exercise 4.39endisj 8587
[Mendelson] p. 255Exercise 4.41mapprc 8393
[Mendelson] p. 255Exercise 4.43mapsnen 8572  mapsnend 8571
[Mendelson] p. 255Exercise 4.45mapunen 8670
[Mendelson] p. 255Exercise 4.47xpmapen 8669
[Mendelson] p. 255Exercise 4.42(a)map0e 8429
[Mendelson] p. 255Exercise 4.42(b)map1 8575
[Mendelson] p. 257Proposition 4.24(a)undom 8588
[Mendelson] p. 258Exercise 4.56(c)djuassen 9589  djucomen 9588
[Mendelson] p. 258Exercise 4.56(f)djudom1 9593
[Mendelson] p. 258Exercise 4.56(g)xp2dju 9587
[Mendelson] p. 266Proposition 4.34(a)oa1suc 8139
[Mendelson] p. 266Proposition 4.34(f)oaordex 8167
[Mendelson] p. 275Proposition 4.42(d)entri3 9970
[Mendelson] p. 281Definitiondf-r1 9177
[Mendelson] p. 281Proposition 4.45 (b) to (a)unir1 9226
[Mendelson] p. 287Axiom system MKru 3719
[MertziosUnger] p. 152Definitiondf-frgr 28044
[MertziosUnger] p. 153Remark 1frgrconngr 28079
[MertziosUnger] p. 153Remark 2vdgn1frgrv2 28081  vdgn1frgrv3 28082
[MertziosUnger] p. 153Remark 3vdgfrgrgt2 28083
[MertziosUnger] p. 153Proposition 1(a)n4cyclfrgr 28076
[MertziosUnger] p. 153Proposition 1(b)2pthfrgr 28069  2pthfrgrrn 28067  2pthfrgrrn2 28068
[Mittelstaedt] p. 9Definitiondf-oc 29035
[Monk1] p. 22Remarkconventions 28185
[Monk1] p. 22Theorem 3.1conventions 28185
[Monk1] p. 26Theorem 2.8(vii)ssin 4157
[Monk1] p. 33Theorem 3.2(i)ssrel 5621  ssrelf 30379
[Monk1] p. 33Theorem 3.2(ii)eqrel 5622
[Monk1] p. 34Definition 3.3df-opab 5093
[Monk1] p. 36Theorem 3.7(i)coi1 6082  coi2 6083
[Monk1] p. 36Theorem 3.8(v)dm0 5754  rn0 5760
[Monk1] p. 36Theorem 3.7(ii)cnvi 5967
[Monk1] p. 37Theorem 3.13(i)relxp 5537
[Monk1] p. 37Theorem 3.13(x)dmxp 5763  rnxp 5994
[Monk1] p. 37Theorem 3.13(ii)0xp 5613  xp0 5982
[Monk1] p. 38Theorem 3.16(ii)ima0 5912
[Monk1] p. 38Theorem 3.16(viii)imai 5909
[Monk1] p. 39Theorem 3.17imaex 7603  imaexALTV 35747  imaexg 7602
[Monk1] p. 39Theorem 3.16(xi)imassrn 5907
[Monk1] p. 41Theorem 4.3(i)fnopfv 6820  funfvop 6797
[Monk1] p. 42Theorem 4.3(ii)funopfvb 6696
[Monk1] p. 42Theorem 4.4(iii)fvelima 6706
[Monk1] p. 43Theorem 4.6funun 6370
[Monk1] p. 43Theorem 4.8(iv)dff13 6991  dff13f 6992
[Monk1] p. 46Theorem 4.15(v)funex 6959  funrnex 7637
[Monk1] p. 50Definition 5.4fniunfv 6984
[Monk1] p. 52Theorem 5.12(ii)op2ndb 6051
[Monk1] p. 52Theorem 5.11(viii)ssint 4854
[Monk1] p. 52Definition 5.13 (i)1stval2 7688  df-1st 7671
[Monk1] p. 52Definition 5.13 (ii)2ndval2 7689  df-2nd 7672
[Monk1] p. 112Theorem 15.17(v)ranksn 9267  ranksnb 9240
[Monk1] p. 112Theorem 15.17(iv)rankuni2 9268
[Monk1] p. 112Theorem 15.17(iii)rankun 9269  rankunb 9263
[Monk1] p. 113Theorem 15.18r1val3 9251
[Monk1] p. 113Definition 15.19df-r1 9177  r1val2 9250
[Monk1] p. 117Lemmazorn2 9917  zorn2g 9914
[Monk1] p. 133Theorem 18.11cardom 9399
[Monk1] p. 133Theorem 18.12canth3 9972
[Monk1] p. 133Theorem 18.14carduni 9394
[Monk2] p. 105Axiom C4ax-4 1811
[Monk2] p. 105Axiom C7ax-7 2015
[Monk2] p. 105Axiom C8ax-12 2175  ax-c15 36185  ax12v2 2177
[Monk2] p. 108Lemma 5ax-c4 36180
[Monk2] p. 109Lemma 12ax-11 2158
[Monk2] p. 109Lemma 15equvini 2466  equvinv 2036  eqvinop 5343
[Monk2] p. 113Axiom C5-1ax-5 1911  ax5ALT 36203
[Monk2] p. 113Axiom C5-2ax-10 2142
[Monk2] p. 113Axiom C5-3ax-11 2158
[Monk2] p. 114Lemma 21sp 2180
[Monk2] p. 114Lemma 22axc4 2329  hba1-o 36193  hba1 2297
[Monk2] p. 114Lemma 23nfia1 2154
[Monk2] p. 114Lemma 24nfa2 2174  nfra2 3192  nfra2w 3191
[Moore] p. 53Part Idf-mre 16849
[Munkres] p. 77Example 2distop 21600  indistop 21607  indistopon 21606
[Munkres] p. 77Example 3fctop 21609  fctop2 21610
[Munkres] p. 77Example 4cctop 21611
[Munkres] p. 78Definition of basisdf-bases 21551  isbasis3g 21554
[Munkres] p. 78Definition of a topology generated by a basisdf-topgen 16709  tgval2 21561
[Munkres] p. 79Remarktgcl 21574
[Munkres] p. 80Lemma 2.1tgval3 21568
[Munkres] p. 80Lemma 2.2tgss2 21592  tgss3 21591
[Munkres] p. 81Lemma 2.3basgen 21593  basgen2 21594
[Munkres] p. 83Exercise 3topdifinf 34766  topdifinfeq 34767  topdifinffin 34765  topdifinfindis 34763
[Munkres] p. 89Definition of subspace topologyresttop 21765
[Munkres] p. 93Theorem 6.1(1)0cld 21643  topcld 21640
[Munkres] p. 93Theorem 6.1(2)iincld 21644
[Munkres] p. 93Theorem 6.1(3)uncld 21646
[Munkres] p. 94Definition of closureclsval 21642
[Munkres] p. 94Definition of interiorntrval 21641
[Munkres] p. 95Theorem 6.5(a)clsndisj 21680  elcls 21678
[Munkres] p. 95Theorem 6.5(b)elcls3 21688
[Munkres] p. 97Theorem 6.6clslp 21753  neindisj 21722
[Munkres] p. 97Corollary 6.7cldlp 21755
[Munkres] p. 97Definition of limit pointislp2 21750  lpval 21744
[Munkres] p. 98Definition of Hausdorff spacedf-haus 21920
[Munkres] p. 102Definition of continuous functiondf-cn 21832  iscn 21840  iscn2 21843
[Munkres] p. 107Theorem 7.2(g)cncnp 21885  cncnp2 21886  cncnpi 21883  df-cnp 21833  iscnp 21842  iscnp2 21844
[Munkres] p. 127Theorem 10.1metcn 23150
[Munkres] p. 128Theorem 10.3metcn4 23915
[Nathanson] p. 123Remarkreprgt 32002  reprinfz1 32003  reprlt 32000
[Nathanson] p. 123Definitiondf-repr 31990
[Nathanson] p. 123Chapter 5.1circlemethnat 32022
[Nathanson] p. 123Propositionbreprexp 32014  breprexpnat 32015  itgexpif 31987
[NielsenChuang] p. 195Equation 4.73unierri 29887
[OeSilva] p. 2042Section 2ax-bgbltosilva 44328
[Pfenning] p. 17Definition XMnatded 28188
[Pfenning] p. 17Definition NNCnatded 28188  notnotrd 135
[Pfenning] p. 17Definition ` `Cnatded 28188
[Pfenning] p. 18Rule"natded 28188
[Pfenning] p. 18Definition /\Inatded 28188
[Pfenning] p. 18Definition ` `Enatded 28188  natded 28188  natded 28188  natded 28188  natded 28188
[Pfenning] p. 18Definition ` `Inatded 28188  natded 28188  natded 28188  natded 28188  natded 28188
[Pfenning] p. 18Definition ` `ELnatded 28188
[Pfenning] p. 18Definition ` `ERnatded 28188
[Pfenning] p. 18Definition ` `Ea,unatded 28188
[Pfenning] p. 18Definition ` `IRnatded 28188
[Pfenning] p. 18Definition ` `Ianatded 28188
[Pfenning] p. 127Definition =Enatded 28188
[Pfenning] p. 127Definition =Inatded 28188
[Ponnusamy] p. 361Theorem 6.44cphip0l 23807  df-dip 28484  dip0l 28501  ip0l 20325
[Ponnusamy] p. 361Equation 6.45cphipval 23847  ipval 28486
[Ponnusamy] p. 362Equation I1dipcj 28497  ipcj 20323
[Ponnusamy] p. 362Equation I3cphdir 23810  dipdir 28625  ipdir 20328  ipdiri 28613
[Ponnusamy] p. 362Equation I4ipidsq 28493  nmsq 23799
[Ponnusamy] p. 362Equation 6.46ip0i 28608
[Ponnusamy] p. 362Equation 6.47ip1i 28610
[Ponnusamy] p. 362Equation 6.48ip2i 28611
[Ponnusamy] p. 363Equation I2cphass 23816  dipass 28628  ipass 20334  ipassi 28624
[Prugovecki] p. 186Definition of brabraval 29727  df-bra 29633
[Prugovecki] p. 376Equation 8.1df-kb 29634  kbval 29737
[PtakPulmannova] p. 66Proposition 3.2.17atomli 30165
[PtakPulmannova] p. 68Lemma 3.1.4df-pclN 37184
[PtakPulmannova] p. 68Lemma 3.2.20atcvat3i 30179  atcvat4i 30180  cvrat3 36738  cvrat4 36739  lsatcvat3 36348
[PtakPulmannova] p. 68Definition 3.2.18cvbr 30065  cvrval 36565  df-cv 30062  df-lcv 36315  lspsncv0 19911
[PtakPulmannova] p. 72Lemma 3.3.6pclfinN 37196
[PtakPulmannova] p. 74Lemma 3.3.10pclcmpatN 37197
[Quine] p. 16Definition 2.1df-clab 2777  rabid 3331
[Quine] p. 17Definition 2.1''dfsb7 2281
[Quine] p. 18Definition 2.7df-cleq 2791
[Quine] p. 19Definition 2.9conventions 28185  df-v 3443
[Quine] p. 34Theorem 5.1abeq2 2922
[Quine] p. 35Theorem 5.2abid1 2931  abid2f 2984
[Quine] p. 40Theorem 6.1sb5 2273
[Quine] p. 40Theorem 6.2sb56 2274  sb6 2090
[Quine] p. 41Theorem 6.3df-clel 2870
[Quine] p. 41Theorem 6.4eqid 2798  eqid1 28252
[Quine] p. 41Theorem 6.5eqcom 2805
[Quine] p. 42Theorem 6.6df-sbc 3721
[Quine] p. 42Theorem 6.7dfsbcq 3722  dfsbcq2 3723
[Quine] p. 43Theorem 6.8vex 3444
[Quine] p. 43Theorem 6.9isset 3453
[Quine] p. 44Theorem 7.3spcgf 3538  spcgv 3543  spcimgf 3536
[Quine] p. 44Theorem 6.11spsbc 3733  spsbcd 3734
[Quine] p. 44Theorem 6.12elex 3459
[Quine] p. 44Theorem 6.13elab 3615  elabg 3614  elabgf 3610
[Quine] p. 44Theorem 6.14noel 4247
[Quine] p. 48Theorem 7.2snprc 4613
[Quine] p. 48Definition 7.1df-pr 4528  df-sn 4526
[Quine] p. 49Theorem 7.4snss 4679  snssg 4678
[Quine] p. 49Theorem 7.5prss 4713  prssg 4712
[Quine] p. 49Theorem 7.6prid1 4658  prid1g 4656  prid2 4659  prid2g 4657  snid 4561  snidg 4559
[Quine] p. 51Theorem 7.12snex 5297
[Quine] p. 51Theorem 7.13prex 5298
[Quine] p. 53Theorem 8.2unisn 4820  unisnALT 41632  unisng 4819
[Quine] p. 53Theorem 8.3uniun 4823
[Quine] p. 54Theorem 8.6elssuni 4830
[Quine] p. 54Theorem 8.7uni0 4828
[Quine] p. 56Theorem 8.17uniabio 6297
[Quine] p. 56Definition 8.18dfaiota2 43643  dfiota2 6284
[Quine] p. 57Theorem 8.19aiotaval 43650  iotaval 6298
[Quine] p. 57Theorem 8.22iotanul 6302
[Quine] p. 58Theorem 8.23iotaex 6304
[Quine] p. 58Definition 9.1df-op 4532
[Quine] p. 61Theorem 9.5opabid 5378  opabidw 5377  opelopab 5394  opelopaba 5388  opelopabaf 5396  opelopabf 5397  opelopabg 5390  opelopabga 5385  opelopabgf 5392  oprabid 7167  oprabidw 7166
[Quine] p. 64Definition 9.11df-xp 5525
[Quine] p. 64Definition 9.12df-cnv 5527
[Quine] p. 64Definition 9.15df-id 5425
[Quine] p. 65Theorem 10.3fun0 6389
[Quine] p. 65Theorem 10.4funi 6356
[Quine] p. 65Theorem 10.5funsn 6377  funsng 6375
[Quine] p. 65Definition 10.1df-fun 6326
[Quine] p. 65Definition 10.2args 5924  dffv4 6642
[Quine] p. 68Definition 10.11conventions 28185  df-fv 6332  fv2 6640
[Quine] p. 124Theorem 17.3nn0opth2 13628  nn0opth2i 13627  nn0opthi 13626  omopthi 8267
[Quine] p. 177Definition 25.2df-rdg 8029
[Quine] p. 232Equation icarddom 9965
[Quine] p. 284Axiom 39(vi)funimaex 6411  funimaexg 6410
[Quine] p. 331Axiom system NFru 3719
[ReedSimon] p. 36Definition (iii)ax-his3 28867
[ReedSimon] p. 63Exercise 4(a)df-dip 28484  polid 28942  polid2i 28940  polidi 28941
[ReedSimon] p. 63Exercise 4(b)df-ph 28596
[ReedSimon] p. 195Remarklnophm 29802  lnophmi 29801
[Retherford] p. 49Exercise 1(i)leopadd 29915
[Retherford] p. 49Exercise 1(ii)leopmul 29917  leopmuli 29916
[Retherford] p. 49Exercise 1(iv)leoptr 29920
[Retherford] p. 49Definition VI.1df-leop 29635  leoppos 29909
[Retherford] p. 49Exercise 1(iii)leoptri 29919
[Retherford] p. 49Definition of operator orderingleop3 29908
[Roman] p. 4Definitiondf-dmat 21095  df-dmatalt 44807
[Roman] p. 18Part Preliminariesdf-rng0 44499
[Roman] p. 19Part Preliminariesdf-ring 19292
[Roman] p. 46Theorem 1.6isldepslvec2 44894
[Roman] p. 112Noteisldepslvec2 44894  ldepsnlinc 44917  zlmodzxznm 44906
[Roman] p. 112Examplezlmodzxzequa 44905  zlmodzxzequap 44908  zlmodzxzldep 44913
[Roman] p. 170Theorem 7.8cayleyhamilton 21495
[Rosenlicht] p. 80Theoremheicant 35092
[Rosser] p. 281Definitiondf-op 4532
[RosserSchoenfeld] p. 71Theorem 12.ax-ros335 32026
[RosserSchoenfeld] p. 71Theorem 13.ax-ros336 32027
[Rotman] p. 28Remarkpgrpgt2nabl 44768  pmtr3ncom 18595
[Rotman] p. 31Theorem 3.4symggen2 18591
[Rotman] p. 42Theorem 3.15cayley 18534  cayleyth 18535
[Rudin] p. 164Equation 27efcan 15441
[Rudin] p. 164Equation 30efzval 15447
[Rudin] p. 167Equation 48absefi 15541
[Sanford] p. 39Remarkax-mp 5  mto 200
[Sanford] p. 39Rule 3mtpxor 1773
[Sanford] p. 39Rule 4mptxor 1771
[Sanford] p. 40Rule 1mptnan 1770
[Schechter] p. 51Definition of antisymmetryintasym 5942
[Schechter] p. 51Definition of irreflexivityintirr 5945
[Schechter] p. 51Definition of symmetrycnvsym 5941
[Schechter] p. 51Definition of transitivitycotr 5939
[Schechter] p. 78Definition of Moore collection of setsdf-mre 16849
[Schechter] p. 79Definition of Moore closuredf-mrc 16850
[Schechter] p. 82Section 4.5df-mrc 16850
[Schechter] p. 84Definition (A) of an algebraic closure systemdf-acs 16852
[Schechter] p. 139Definition AC3dfac9 9547
[Schechter] p. 141Definition (MC)dfac11 40006
[Schechter] p. 149Axiom DC1ax-dc 9857  axdc3 9865
[Schechter] p. 187Definition of ring with unitisring 19294  isrngo 35335
[Schechter] p. 276Remark 11.6.espan0 29325
[Schechter] p. 276Definition of spandf-span 29092  spanval 29116
[Schechter] p. 428Definition 15.35bastop1 21598
[Schwabhauser] p. 10Axiom A1axcgrrflx 26708  axtgcgrrflx 26256
[Schwabhauser] p. 10Axiom A2axcgrtr 26709
[Schwabhauser] p. 10Axiom A3axcgrid 26710  axtgcgrid 26257
[Schwabhauser] p. 10Axioms A1 to A3df-trkgc 26242
[Schwabhauser] p. 11Axiom A4axsegcon 26721  axtgsegcon 26258  df-trkgcb 26244
[Schwabhauser] p. 11Axiom A5ax5seg 26732  axtg5seg 26259  df-trkgcb 26244
[Schwabhauser] p. 11Axiom A6axbtwnid 26733  axtgbtwnid 26260  df-trkgb 26243
[Schwabhauser] p. 12Axiom A7axpasch 26735  axtgpasch 26261  df-trkgb 26243
[Schwabhauser] p. 12Axiom A8axlowdim2 26754  df-trkg2d 32046
[Schwabhauser] p. 13Axiom A8axtglowdim2 26264
[Schwabhauser] p. 13Axiom A9axtgupdim2 26265  df-trkg2d 32046
[Schwabhauser] p. 13Axiom A10axeuclid 26757  axtgeucl 26266  df-trkge 26245
[Schwabhauser] p. 13Axiom A11axcont 26770  axtgcont 26263  axtgcont1 26262  df-trkgb 26243
[Schwabhauser] p. 27Theorem 2.1cgrrflx 33561
[Schwabhauser] p. 27Theorem 2.2cgrcomim 33563
[Schwabhauser] p. 27Theorem 2.3cgrtr 33566
[Schwabhauser] p. 27Theorem 2.4cgrcoml 33570
[Schwabhauser] p. 27Theorem 2.5cgrcomr 33571  tgcgrcomimp 26271  tgcgrcoml 26273  tgcgrcomr 26272
[Schwabhauser] p. 28Theorem 2.8cgrtriv 33576  tgcgrtriv 26278
[Schwabhauser] p. 28Theorem 2.105segofs 33580  tg5segofs 32054
[Schwabhauser] p. 28Definition 2.10df-afs 32051  df-ofs 33557
[Schwabhauser] p. 29Theorem 2.11cgrextend 33582  tgcgrextend 26279
[Schwabhauser] p. 29Theorem 2.12segconeq 33584  tgsegconeq 26280
[Schwabhauser] p. 30Theorem 3.1btwnouttr2 33596  btwntriv2 33586  tgbtwntriv2 26281
[Schwabhauser] p. 30Theorem 3.2btwncomim 33587  tgbtwncom 26282
[Schwabhauser] p. 30Theorem 3.3btwntriv1 33590  tgbtwntriv1 26285
[Schwabhauser] p. 30Theorem 3.4btwnswapid 33591  tgbtwnswapid 26286
[Schwabhauser] p. 30Theorem 3.5btwnexch2 33597  btwnintr 33593  tgbtwnexch2 26290  tgbtwnintr 26287
[Schwabhauser] p. 30Theorem 3.6btwnexch 33599  btwnexch3 33594  tgbtwnexch 26292  tgbtwnexch3 26288
[Schwabhauser] p. 30Theorem 3.7btwnouttr 33598  tgbtwnouttr 26291  tgbtwnouttr2 26289
[Schwabhauser] p. 32Theorem 3.13axlowdim1 26753
[Schwabhauser] p. 32Theorem 3.14btwndiff 33601  tgbtwndiff 26300
[Schwabhauser] p. 33Theorem 3.17tgtrisegint 26293  trisegint 33602
[Schwabhauser] p. 34Theorem 4.2ifscgr 33618  tgifscgr 26302
[Schwabhauser] p. 34Theorem 4.11colcom 26352  colrot1 26353  colrot2 26354  lncom 26416  lnrot1 26417  lnrot2 26418
[Schwabhauser] p. 34Definition 4.1df-ifs 33614
[Schwabhauser] p. 35Theorem 4.3cgrsub 33619  tgcgrsub 26303
[Schwabhauser] p. 35Theorem 4.5cgrxfr 33629  tgcgrxfr 26312
[Schwabhauser] p. 35Statement 4.4ercgrg 26311
[Schwabhauser] p. 35Definition 4.4df-cgr3 33615  df-cgrg 26305
[Schwabhauser] p. 35Definition instead (givendf-cgrg 26305
[Schwabhauser] p. 36Theorem 4.6btwnxfr 33630  tgbtwnxfr 26324
[Schwabhauser] p. 36Theorem 4.11colinearperm1 33636  colinearperm2 33638  colinearperm3 33637  colinearperm4 33639  colinearperm5 33640
[Schwabhauser] p. 36Definition 4.8df-ismt 26327
[Schwabhauser] p. 36Definition 4.10df-colinear 33613  tgellng 26347  tglng 26340
[Schwabhauser] p. 37Theorem 4.12colineartriv1 33641
[Schwabhauser] p. 37Theorem 4.13colinearxfr 33649  lnxfr 26360
[Schwabhauser] p. 37Theorem 4.14lineext 33650  lnext 26361
[Schwabhauser] p. 37Theorem 4.16fscgr 33654  tgfscgr 26362
[Schwabhauser] p. 37Theorem 4.17linecgr 33655  lncgr 26363
[Schwabhauser] p. 37Definition 4.15df-fs 33616
[Schwabhauser] p. 38Theorem 4.18lineid 33657  lnid 26364
[Schwabhauser] p. 38Theorem 4.19idinside 33658  tgidinside 26365
[Schwabhauser] p. 39Theorem 5.1btwnconn1 33675  tgbtwnconn1 26369
[Schwabhauser] p. 41Theorem 5.2btwnconn2 33676  tgbtwnconn2 26370
[Schwabhauser] p. 41Theorem 5.3btwnconn3 33677  tgbtwnconn3 26371
[Schwabhauser] p. 41Theorem 5.5brsegle2 33683
[Schwabhauser] p. 41Definition 5.4df-segle 33681  legov 26379
[Schwabhauser] p. 41Definition 5.5legov2 26380
[Schwabhauser] p. 42Remark 5.13legso 26393
[Schwabhauser] p. 42Theorem 5.6seglecgr12im 33684
[Schwabhauser] p. 42Theorem 5.7seglerflx 33686
[Schwabhauser] p. 42Theorem 5.8segletr 33688
[Schwabhauser] p. 42Theorem 5.9segleantisym 33689
[Schwabhauser] p. 42Theorem 5.10seglelin 33690
[Schwabhauser] p. 42Theorem 5.11seglemin 33687
[Schwabhauser] p. 42Theorem 5.12colinbtwnle 33692
[Schwabhauser] p. 42Proposition 5.7legid 26381
[Schwabhauser] p. 42Proposition 5.8legtrd 26383
[Schwabhauser] p. 42Proposition 5.9legtri3 26384
[Schwabhauser] p. 42Proposition 5.10legtrid 26385
[Schwabhauser] p. 42Proposition 5.11leg0 26386
[Schwabhauser] p. 43Theorem 6.2btwnoutside 33699
[Schwabhauser] p. 43Theorem 6.3broutsideof3 33700
[Schwabhauser] p. 43Theorem 6.4broutsideof 33695  df-outsideof 33694
[Schwabhauser] p. 43Definition 6.1broutsideof2 33696  ishlg 26396
[Schwabhauser] p. 44Theorem 6.4hlln 26401
[Schwabhauser] p. 44Theorem 6.5hlid 26403  outsideofrflx 33701
[Schwabhauser] p. 44Theorem 6.6hlcomb 26397  hlcomd 26398  outsideofcom 33702
[Schwabhauser] p. 44Theorem 6.7hltr 26404  outsideoftr 33703
[Schwabhauser] p. 44Theorem 6.11hlcgreu 26412  outsideofeu 33705
[Schwabhauser] p. 44Definition 6.8df-ray 33712
[Schwabhauser] p. 45Part 2df-lines2 33713
[Schwabhauser] p. 45Theorem 6.13outsidele 33706
[Schwabhauser] p. 45Theorem 6.15lineunray 33721
[Schwabhauser] p. 45Theorem 6.16lineelsb2 33722  tglineelsb2 26426
[Schwabhauser] p. 45Theorem 6.17linecom 33724  linerflx1 33723  linerflx2 33725  tglinecom 26429  tglinerflx1 26427  tglinerflx2 26428
[Schwabhauser] p. 45Theorem 6.18linethru 33727  tglinethru 26430
[Schwabhauser] p. 45Definition 6.14df-line2 33711  tglng 26340
[Schwabhauser] p. 45Proposition 6.13legbtwn 26388
[Schwabhauser] p. 46Theorem 6.19linethrueu 33730  tglinethrueu 26433
[Schwabhauser] p. 46Theorem 6.21lineintmo 33731  tglineineq 26437  tglineinteq 26439  tglineintmo 26436
[Schwabhauser] p. 46Theorem 6.23colline 26443
[Schwabhauser] p. 46Theorem 6.24tglowdim2l 26444
[Schwabhauser] p. 46Theorem 6.25tglowdim2ln 26445
[Schwabhauser] p. 49Theorem 7.3mirinv 26460
[Schwabhauser] p. 49Theorem 7.7mirmir 26456
[Schwabhauser] p. 49Theorem 7.8mirreu3 26448
[Schwabhauser] p. 49Definition 7.5df-mir 26447  ismir 26453  mirbtwn 26452  mircgr 26451  mirfv 26450  mirval 26449
[Schwabhauser] p. 50Theorem 7.8mirreu 26458
[Schwabhauser] p. 50Theorem 7.9mireq 26459
[Schwabhauser] p. 50Theorem 7.10mirinv 26460
[Schwabhauser] p. 50Theorem 7.11mirf1o 26463
[Schwabhauser] p. 50Theorem 7.13miriso 26464
[Schwabhauser] p. 51Theorem 7.14mirmot 26469
[Schwabhauser] p. 51Theorem 7.15mirbtwnb 26466  mirbtwni 26465
[Schwabhauser] p. 51Theorem 7.16mircgrs 26467
[Schwabhauser] p. 51Theorem 7.17miduniq 26479
[Schwabhauser] p. 52Lemma 7.21symquadlem 26483
[Schwabhauser] p. 52Theorem 7.18miduniq1 26480
[Schwabhauser] p. 52Theorem 7.19miduniq2 26481
[Schwabhauser] p. 52Theorem 7.20colmid 26482
[Schwabhauser] p. 53Lemma 7.22krippen 26485
[Schwabhauser] p. 55Lemma 7.25midexlem 26486
[Schwabhauser] p. 57Theorem 8.2ragcom 26492
[Schwabhauser] p. 57Definition 8.1df-rag 26488  israg 26491
[Schwabhauser] p. 58Theorem 8.3ragcol 26493
[Schwabhauser] p. 58Theorem 8.4ragmir 26494
[Schwabhauser] p. 58Theorem 8.5ragtrivb 26496
[Schwabhauser] p. 58Theorem 8.6ragflat2 26497
[Schwabhauser] p. 58Theorem 8.7ragflat 26498
[Schwabhauser] p. 58Theorem 8.8ragtriva 26499
[Schwabhauser] p. 58Theorem 8.9ragflat3 26500  ragncol 26503
[Schwabhauser] p. 58Theorem 8.10ragcgr 26501
[Schwabhauser] p. 59Theorem 8.12perpcom 26507
[Schwabhauser] p. 59Theorem 8.13ragperp 26511
[Schwabhauser] p. 59Theorem 8.14perpneq 26508
[Schwabhauser] p. 59Definition 8.11df-perpg 26490  isperp 26506
[Schwabhauser] p. 59Definition 8.13isperp2 26509
[Schwabhauser] p. 60Theorem 8.18foot 26516
[Schwabhauser] p. 62Lemma 8.20colperpexlem1 26524  colperpexlem2 26525
[Schwabhauser] p. 63Theorem 8.21colperpex 26527  colperpexlem3 26526
[Schwabhauser] p. 64Theorem 8.22mideu 26532  midex 26531
[Schwabhauser] p. 66Lemma 8.24opphllem 26529
[Schwabhauser] p. 67Theorem 9.2oppcom 26538
[Schwabhauser] p. 67Definition 9.1islnopp 26533
[Schwabhauser] p. 68Lemma 9.3opphllem2 26542
[Schwabhauser] p. 68Lemma 9.4opphllem5 26545  opphllem6 26546
[Schwabhauser] p. 69Theorem 9.5opphl 26548
[Schwabhauser] p. 69Theorem 9.6axtgpasch 26261
[Schwabhauser] p. 70Theorem 9.6outpasch 26549
[Schwabhauser] p. 71Theorem 9.8lnopp2hpgb 26557
[Schwabhauser] p. 71Definition 9.7df-hpg 26552  hpgbr 26554
[Schwabhauser] p. 72Lemma 9.10hpgerlem 26559
[Schwabhauser] p. 72Theorem 9.9lnoppnhpg 26558
[Schwabhauser] p. 72Theorem 9.11hpgid 26560
[Schwabhauser] p. 72Theorem 9.12hpgcom 26561
[Schwabhauser] p. 72Theorem 9.13hpgtr 26562
[Schwabhauser] p. 73Theorem 9.18colopp 26563
[Schwabhauser] p. 73Theorem 9.19colhp 26564
[Schwabhauser] p. 88Theorem 10.2lmieu 26578
[Schwabhauser] p. 88Definition 10.1df-mid 26568
[Schwabhauser] p. 89Theorem 10.4lmicom 26582
[Schwabhauser] p. 89Theorem 10.5lmilmi 26583
[Schwabhauser] p. 89Theorem 10.6lmireu 26584
[Schwabhauser] p. 89Theorem 10.7lmieq 26585
[Schwabhauser] p. 89Theorem 10.8lmiinv 26586
[Schwabhauser] p. 89Theorem 10.9lmif1o 26589
[Schwabhauser] p. 89Theorem 10.10lmiiso 26591
[Schwabhauser] p. 89Definition 10.3df-lmi 26569
[Schwabhauser] p. 90Theorem 10.11lmimot 26592
[Schwabhauser] p. 91Theorem 10.12hypcgr 26595
[Schwabhauser] p. 92Theorem 10.14lmiopp 26596
[Schwabhauser] p. 92Theorem 10.15lnperpex 26597
[Schwabhauser] p. 92Theorem 10.16trgcopy 26598  trgcopyeu 26600
[Schwabhauser] p. 95Definition 11.2dfcgra2 26624
[Schwabhauser] p. 95Definition 11.3iscgra 26603
[Schwabhauser] p. 95Proposition 11.4cgracgr 26612
[Schwabhauser] p. 95Proposition 11.10cgrahl1 26610  cgrahl2 26611
[Schwabhauser] p. 96Theorem 11.6cgraid 26613
[Schwabhauser] p. 96Theorem 11.9cgraswap 26614
[Schwabhauser] p. 97Theorem 11.7cgracom 26616
[Schwabhauser] p. 97Theorem 11.8cgratr 26617
[Schwabhauser] p. 97Theorem 11.21cgrabtwn 26620  cgrahl 26621
[Schwabhauser] p. 98Theorem 11.13sacgr 26625
[Schwabhauser] p. 98Theorem 11.14oacgr 26626
[Schwabhauser] p. 98Theorem 11.15acopy 26627  acopyeu 26628
[Schwabhauser] p. 101Theorem 11.24inagswap 26635
[Schwabhauser] p. 101Theorem 11.25inaghl 26639
[Schwabhauser] p. 101Definition 11.23isinag 26632
[Schwabhauser] p. 102Lemma 11.28cgrg3col4 26647
[Schwabhauser] p. 102Definition 11.27df-leag 26640  isleag 26641
[Schwabhauser] p. 107Theorem 11.49tgsas 26649  tgsas1 26648  tgsas2 26650  tgsas3 26651
[Schwabhauser] p. 108Theorem 11.50tgasa 26653  tgasa1 26652
[Schwabhauser] p. 109Theorem 11.51tgsss1 26654  tgsss2 26655  tgsss3 26656
[Shapiro] p. 230Theorem 6.5.1dchrhash 25855  dchrsum 25853  dchrsum2 25852  sumdchr 25856
[Shapiro] p. 232Theorem 6.5.2dchr2sum 25857  sum2dchr 25858
[Shapiro], p. 199Lemma 6.1C.2ablfacrp 19181  ablfacrp2 19182
[Shapiro], p. 328Equation 9.2.4vmasum 25800
[Shapiro], p. 329Equation 9.2.7logfac2 25801
[Shapiro], p. 329Equation 9.2.9logfacrlim 25808
[Shapiro], p. 331Equation 9.2.13vmadivsum 26066
[Shapiro], p. 331Equation 9.2.14rplogsumlem2 26069
[Shapiro], p. 336Exercise 9.1.7vmalogdivsum 26123  vmalogdivsum2 26122
[Shapiro], p. 375Theorem 9.4.1dirith 26113  dirith2 26112
[Shapiro], p. 375Equation 9.4.3rplogsum 26111  rpvmasum 26110  rpvmasum2 26096
[Shapiro], p. 376Equation 9.4.7rpvmasumlem 26071
[Shapiro], p. 376Equation 9.4.8dchrvmasum 26109
[Shapiro], p. 377Lemma 9.4.1dchrisum 26076  dchrisumlem1 26073  dchrisumlem2 26074  dchrisumlem3 26075  dchrisumlema 26072
[Shapiro], p. 377Equation 9.4.11dchrvmasumlem1 26079
[Shapiro], p. 379Equation 9.4.16dchrmusum 26108  dchrmusumlem 26106  dchrvmasumlem 26107
[Shapiro], p. 380Lemma 9.4.2dchrmusum2 26078
[Shapiro], p. 380Lemma 9.4.3dchrvmasum2lem 26080
[Shapiro], p. 382Lemma 9.4.4dchrisum0 26104  dchrisum0re 26097  dchrisumn0 26105
[Shapiro], p. 382Equation 9.4.27dchrisum0fmul 26090
[Shapiro], p. 382Equation 9.4.29dchrisum0flb 26094
[Shapiro], p. 383Equation 9.4.30dchrisum0fno1 26095
[Shapiro], p. 403Equation 10.1.16pntrsumbnd 26150  pntrsumbnd2 26151  pntrsumo1 26149
[Shapiro], p. 405Equation 10.2.1mudivsum 26114
[Shapiro], p. 406Equation 10.2.6mulogsum 26116
[Shapiro], p. 407Equation 10.2.7mulog2sumlem1 26118
[Shapiro], p. 407Equation 10.2.8mulog2sum 26121
[Shapiro], p. 418Equation 10.4.6logsqvma 26126
[Shapiro], p. 418Equation 10.4.8logsqvma2 26127
[Shapiro], p. 419Equation 10.4.10selberg 26132
[Shapiro], p. 420Equation 10.4.12selberg2lem 26134
[Shapiro], p. 420Equation 10.4.14selberg2 26135
[Shapiro], p. 422Equation 10.6.7selberg3 26143
[Shapiro], p. 422Equation 10.4.20selberg4lem1 26144
[Shapiro], p. 422Equation 10.4.21selberg3lem1 26141  selberg3lem2 26142
[Shapiro], p. 422Equation 10.4.23selberg4 26145
[Shapiro], p. 427Theorem 10.5.2chpdifbnd 26139
[Shapiro], p. 428Equation 10.6.2selbergr 26152
[Shapiro], p. 429Equation 10.6.8selberg3r 26153
[Shapiro], p. 430Equation 10.6.11selberg4r 26154
[Shapiro], p. 431Equation 10.6.15pntrlog2bnd 26168
[Shapiro], p. 434Equation 10.6.27pntlema 26180  pntlemb 26181  pntlemc 26179  pntlemd 26178  pntlemg 26182
[Shapiro], p. 435Equation 10.6.29pntlema 26180
[Shapiro], p. 436Lemma 10.6.1pntpbnd 26172
[Shapiro], p. 436Lemma 10.6.2pntibnd 26177
[Shapiro], p. 436Equation 10.6.34pntlema 26180
[Shapiro], p. 436Equation 10.6.35pntlem3 26193  pntleml 26195
[Stoll] p. 13Definition corresponds to dfsymdif3 4221
[Stoll] p. 16Exercise 4.40dif 4309  dif0 4286
[Stoll] p. 16Exercise 4.8difdifdir 4395
[Stoll] p. 17Theorem 5.1(5)unvdif 4381
[Stoll] p. 19Theorem 5.2(13)undm 4212
[Stoll] p. 19Theorem 5.2(13')indm 4213
[Stoll] p. 20Remarkinvdif 4195
[Stoll] p. 25Definition of ordered tripledf-ot 4534
[Stoll] p. 43Definitionuniiun 4945
[Stoll] p. 44Definitionintiin 4946
[Stoll] p. 45Definitiondf-iin 4884
[Stoll] p. 45Definition indexed uniondf-iun 4883
[Stoll] p. 176Theorem 3.4(27)iman 405
[Stoll] p. 262Example 4.1dfsymdif3 4221
[Strang] p. 242Section 6.3expgrowth 41039
[Suppes] p. 22Theorem 2eq0 4258  eq0f 4255
[Suppes] p. 22Theorem 4eqss 3930  eqssd 3932  eqssi 3931
[Suppes] p. 23Theorem 5ss0 4306  ss0b 4305
[Suppes] p. 23Theorem 6sstr 3923  sstrALT2 41541
[Suppes] p. 23Theorem 7pssirr 4028
[Suppes] p. 23Theorem 8pssn2lp 4029
[Suppes] p. 23Theorem 9psstr 4032
[Suppes] p. 23Theorem 10pssss 4023
[Suppes] p. 25Theorem 12elin 3897  elun 4076
[Suppes] p. 26Theorem 15inidm 4145
[Suppes] p. 26Theorem 16in0 4299
[Suppes] p. 27Theorem 23unidm 4079
[Suppes] p. 27Theorem 24un0 4298
[Suppes] p. 27Theorem 25ssun1 4099
[Suppes] p. 27Theorem 26ssequn1 4107
[Suppes] p. 27Theorem 27unss 4111
[Suppes] p. 27Theorem 28indir 4202
[Suppes] p. 27Theorem 29undir 4203
[Suppes] p. 28Theorem 32difid 4284
[Suppes] p. 29Theorem 33difin 4188
[Suppes] p. 29Theorem 34indif 4196
[Suppes] p. 29Theorem 35undif1 4382
[Suppes] p. 29Theorem 36difun2 4387
[Suppes] p. 29Theorem 37difin0 4380
[Suppes] p. 29Theorem 38disjdif 4379
[Suppes] p. 29Theorem 39difundi 4206
[Suppes] p. 29Theorem 40difindi 4208
[Suppes] p. 30Theorem 41nalset 5181
[Suppes] p. 39Theorem 61uniss 4808
[Suppes] p. 39Theorem 65uniop 5370
[Suppes] p. 41Theorem 70intsn 4874
[Suppes] p. 42Theorem 71intpr 4871  intprg 4872
[Suppes] p. 42Theorem 73op1stb 5328
[Suppes] p. 42Theorem 78intun 4870
[Suppes] p. 44Definition 15(a)dfiun2 4920  dfiun2g 4917
[Suppes] p. 44Definition 15(b)dfiin2 4921
[Suppes] p. 47Theorem 86elpw 4501  elpw2 5212  elpw2g 5211  elpwg 4500  elpwgdedVD 41623
[Suppes] p. 47Theorem 87pwid 4521
[Suppes] p. 47Theorem 89pw0 4705
[Suppes] p. 48Theorem 90pwpw0 4706
[Suppes] p. 52Theorem 101xpss12 5534
[Suppes] p. 52Theorem 102xpindi 5668  xpindir 5669
[Suppes] p. 52Theorem 103xpundi 5584  xpundir 5585
[Suppes] p. 54Theorem 105elirrv 9044
[Suppes] p. 58Theorem 2relss 5620
[Suppes] p. 59Theorem 4eldm 5733  eldm2 5734  eldm2g 5732  eldmg 5731
[Suppes] p. 59Definition 3df-dm 5529
[Suppes] p. 60Theorem 6dmin 5744
[Suppes] p. 60Theorem 8rnun 5971
[Suppes] p. 60Theorem 9rnin 5972
[Suppes] p. 60Definition 4dfrn2 5723
[Suppes] p. 61Theorem 11brcnv 5717  brcnvg 5714
[Suppes] p. 62Equation 5elcnv 5711  elcnv2 5712
[Suppes] p. 62Theorem 12relcnv 5934
[Suppes] p. 62Theorem 15cnvin 5970
[Suppes] p. 62Theorem 16cnvun 5968
[Suppes] p. 63Definitiondftrrels2 35971
[Suppes] p. 63Theorem 20co02 6080
[Suppes] p. 63Theorem 21dmcoss 5807
[Suppes] p. 63Definition 7df-co 5528
[Suppes] p. 64Theorem 26cnvco 5720
[Suppes] p. 64Theorem 27coass 6085
[Suppes] p. 65Theorem 31resundi 5832
[Suppes] p. 65Theorem 34elima 5901  elima2 5902  elima3 5903  elimag 5900
[Suppes] p. 65Theorem 35imaundi 5975
[Suppes] p. 66Theorem 40dminss 5977
[Suppes] p. 66Theorem 41imainss 5978
[Suppes] p. 67Exercise 11cnvxp 5981
[Suppes] p. 81Definition 34dfec2 8275
[Suppes] p. 82Theorem 72elec 8316  elecALTV 35687  elecg 8315
[Suppes] p. 82Theorem 73eqvrelth 36006  erth 8321  erth2 8322
[Suppes] p. 83Theorem 74eqvreldisj 36009  erdisj 8324
[Suppes] p. 89Theorem 96map0b 8430
[Suppes] p. 89Theorem 97map0 8434  map0g 8431
[Suppes] p. 89Theorem 98mapsn 8435  mapsnd 8433
[Suppes] p. 89Theorem 99mapss 8436
[Suppes] p. 91Definition 12(ii)alephsuc 9479
[Suppes] p. 91Definition 12(iii)alephlim 9478
[Suppes] p. 92Theorem 1enref 8525  enrefg 8524
[Suppes] p. 92Theorem 2ensym 8541  ensymb 8540  ensymi 8542
[Suppes] p. 92Theorem 3entr 8544
[Suppes] p. 92Theorem 4unen 8579
[Suppes] p. 94Theorem 15endom 8519
[Suppes] p. 94Theorem 16ssdomg 8538
[Suppes] p. 94Theorem 17domtr 8545
[Suppes] p. 95Theorem 18sbth 8621
[Suppes] p. 97Theorem 23canth2 8654  canth2g 8655
[Suppes] p. 97Definition 3brsdom2 8625  df-sdom 8495  dfsdom2 8624
[Suppes] p. 97Theorem 21(i)sdomirr 8638
[Suppes] p. 97Theorem 22(i)domnsym 8627
[Suppes] p. 97Theorem 21(ii)sdomnsym 8626
[Suppes] p. 97Theorem 22(ii)domsdomtr 8636
[Suppes] p. 97Theorem 22(iv)brdom2 8522
[Suppes] p. 97Theorem 21(iii)sdomtr 8639
[Suppes] p. 97Theorem 22(iii)sdomdomtr 8634
[Suppes] p. 98Exercise 4fundmen 8566  fundmeng 8567
[Suppes] p. 98Exercise 6xpdom3 8598
[Suppes] p. 98Exercise 11sdomentr 8635
[Suppes] p. 104Theorem 37fofi 8794
[Suppes] p. 104Theorem 38pwfi 8803
[Suppes] p. 105Theorem 40pwfi 8803
[Suppes] p. 111Axiom for cardinal numberscarden 9962
[Suppes] p. 130Definition 3df-tr 5137
[Suppes] p. 132Theorem 9ssonuni 7481
[Suppes] p. 134Definition 6df-suc 6165
[Suppes] p. 136Theorem Schema 22findes 7593  finds 7589  finds1 7592  finds2 7591
[Suppes] p. 151Theorem 42isfinite 9099  isfinite2 8760  isfiniteg 8762  unbnn 8758
[Suppes] p. 162Definition 5df-ltnq 10329  df-ltpq 10321
[Suppes] p. 197Theorem Schema 4tfindes 7557  tfinds 7554  tfinds2 7558
[Suppes] p. 209Theorem 18oaord1 8160
[Suppes] p. 209Theorem 21oaword2 8162
[Suppes] p. 211Theorem 25oaass 8170
[Suppes] p. 225Definition 8iscard2 9389
[Suppes] p. 227Theorem 56ondomon 9974
[Suppes] p. 228Theorem 59harcard 9391
[Suppes] p. 228Definition 12(i)aleph0 9477
[Suppes] p. 228Theorem Schema 61onintss 6209
[Suppes] p. 228Theorem Schema 62onminesb 7493  onminsb 7494
[Suppes] p. 229Theorem 64alephval2 9983
[Suppes] p. 229Theorem 65alephcard 9481
[Suppes] p. 229Theorem 66alephord2i 9488
[Suppes] p. 229Theorem 67alephnbtwn 9482
[Suppes] p. 229Definition 12df-aleph 9353
[Suppes] p. 242Theorem 6weth 9906
[Suppes] p. 242Theorem 8entric 9968
[Suppes] p. 242Theorem 9carden 9962
[TakeutiZaring] p. 8Axiom 1ax-ext 2770
[TakeutiZaring] p. 13Definition 4.5df-cleq 2791
[TakeutiZaring] p. 13Proposition 4.6df-clel 2870
[TakeutiZaring] p. 13Proposition 4.9cvjust 2793
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2818
[TakeutiZaring] p. 14Definition 4.16df-oprab 7139
[TakeutiZaring] p. 14Proposition 4.14ru 3719
[TakeutiZaring] p. 15Axiom 2zfpair 5287
[TakeutiZaring] p. 15Exercise 1elpr 4548  elpr2 4550  elpr2g 4549  elprg 4546
[TakeutiZaring] p. 15Exercise 2elsn 4540  elsn2 4564  elsn2g 4563  elsng 4539  velsn 4541
[TakeutiZaring] p. 15Exercise 3elop 5324
[TakeutiZaring] p. 15Exercise 4sneq 4535  sneqr 4731
[TakeutiZaring] p. 15Definition 5.1dfpr2 4544  dfsn2 4538  dfsn2ALT 4545
[TakeutiZaring] p. 16Axiom 3uniex 7447
[TakeutiZaring] p. 16Exercise 6opth 5333
[TakeutiZaring] p. 16Exercise 7opex 5321
[TakeutiZaring] p. 16Exercise 8rext 5306
[TakeutiZaring] p. 16Corollary 5.8unex 7449  unexg 7452
[TakeutiZaring] p. 16Definition 5.3dftp2 4587
[TakeutiZaring] p. 16Definition 5.5df-uni 4801
[TakeutiZaring] p. 16Definition 5.6df-in 3888  df-un 3886
[TakeutiZaring] p. 16Proposition 5.7unipr 4817  uniprg 4818
[TakeutiZaring] p. 17Axiom 4vpwex 5243
[TakeutiZaring] p. 17Exercise 1eltp 4586
[TakeutiZaring] p. 17Exercise 5elsuc 6228  elsucg 6226  sstr2 3922
[TakeutiZaring] p. 17Exercise 6uncom 4080
[TakeutiZaring] p. 17Exercise 7incom 4128
[TakeutiZaring] p. 17Exercise 8unass 4093
[TakeutiZaring] p. 17Exercise 9inass 4146
[TakeutiZaring] p. 17Exercise 10indi 4200
[TakeutiZaring] p. 17Exercise 11undi 4201
[TakeutiZaring] p. 17Definition 5.9df-pss 3900  dfss2 3901
[TakeutiZaring] p. 17Definition 5.10df-pw 4499
[TakeutiZaring] p. 18Exercise 7unss2 4108
[TakeutiZaring] p. 18Exercise 9df-ss 3898  sseqin2 4142
[TakeutiZaring] p. 18Exercise 10ssid 3937
[TakeutiZaring] p. 18Exercise 12inss1 4155  inss2 4156
[TakeutiZaring] p. 18Exercise 13nss 3977
[TakeutiZaring] p. 18Exercise 15unieq 4811
[TakeutiZaring] p. 18Exercise 18sspwb 5307  sspwimp 41624  sspwimpALT 41631  sspwimpALT2 41634  sspwimpcf 41626
[TakeutiZaring] p. 18Exercise 19pweqb 5314
[TakeutiZaring] p. 19Axiom 5ax-rep 5154
[TakeutiZaring] p. 20Definitiondf-rab 3115  df-wl-rab 35025
[TakeutiZaring] p. 20Corollary 5.160ex 5175
[TakeutiZaring] p. 20Definition 5.12df-dif 3884
[TakeutiZaring] p. 20Definition 5.14dfnul2 4245
[TakeutiZaring] p. 20Proposition 5.15difid 4284
[TakeutiZaring] p. 20Proposition 5.17(1)n0 4260  n0f 4257  neq0 4259  neq0f 4256
[TakeutiZaring] p. 21Axiom 6zfreg 9043
[TakeutiZaring] p. 21Axiom 6'zfregs 9158
[TakeutiZaring] p. 21Theorem 5.22setind 9160
[TakeutiZaring] p. 21Definition 5.20df-v 3443
[TakeutiZaring] p. 21Proposition 5.21vprc 5183
[TakeutiZaring] p. 22Exercise 10ss 4304
[TakeutiZaring] p. 22Exercise 3ssex 5189  ssexg 5191
[TakeutiZaring] p. 22Exercise 4inex1 5185
[TakeutiZaring] p. 22Exercise 5ruv 9050
[TakeutiZaring] p. 22Exercise 6elirr 9045
[TakeutiZaring] p. 22Exercise 7ssdif0 4277
[TakeutiZaring] p. 22Exercise 11difdif 4058
[TakeutiZaring] p. 22Exercise 13undif3 4215  undif3VD 41588
[TakeutiZaring] p. 22Exercise 14difss 4059
[TakeutiZaring] p. 22Exercise 15sscon 4066
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 3111
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 3112
[TakeutiZaring] p. 23Proposition 6.2xpex 7456  xpexg 7453
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 5526
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 6395
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 6559  fun11 6398
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 6336  svrelfun 6396
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 5722
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 5724
[TakeutiZaring] p. 24Definition 6.6(1)df-res 5531
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 5532
[TakeutiZaring] p. 24Definition 6.6(3)df-co 5528
[TakeutiZaring] p. 25Exercise 2cnvcnvss 6018  dfrel2 6013
[TakeutiZaring] p. 25Exercise 3xpss 5535
[TakeutiZaring] p. 25Exercise 5relun 5648
[TakeutiZaring] p. 25Exercise 6reluni 5655
[TakeutiZaring] p. 25Exercise 9inxp 5667
[TakeutiZaring] p. 25Exercise 12relres 5847
[TakeutiZaring] p. 25Exercise 13opelres 5824  opelresi 5826
[TakeutiZaring] p. 25Exercise 14dmres 5840
[TakeutiZaring] p. 25Exercise 15resss 5843
[TakeutiZaring] p. 25Exercise 17resabs1 5848
[TakeutiZaring] p. 25Exercise 18funres 6366
[TakeutiZaring] p. 25Exercise 24relco 6064
[TakeutiZaring] p. 25Exercise 29funco 6364
[TakeutiZaring] p. 25Exercise 30f1co 6560
[TakeutiZaring] p. 26Definition 6.10eu2 2670
[TakeutiZaring] p. 26Definition 6.11conventions 28185  df-fv 6332  fv3 6663
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 7612  cnvexg 7611
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 7598  dmexg 7594
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 7599  rnexg 7595
[TakeutiZaring] p. 26Corollary 6.9(1)xpexb 41158
[TakeutiZaring] p. 26Corollary 6.9(2)xpexcnv 7607
[TakeutiZaring] p. 27Corollary 6.13fvex 6658
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1-afv 43730  tz6.12-1-afv2 43797  tz6.12-1 6667  tz6.12-afv 43729  tz6.12-afv2 43796  tz6.12 6668  tz6.12c-afv2 43798  tz6.12c 6670
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2-afv2 43793  tz6.12-2 6635  tz6.12i-afv2 43799  tz6.12i 6671
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 6327
[TakeutiZaring] p. 27Definition 6.15(3)df-f 6328
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 6330  wfo 6322
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 6329  wf1 6321
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 6331  wf1o 6323
[TakeutiZaring] p. 28Exercise 4eqfnfv 6779  eqfnfv2 6780  eqfnfv2f 6783
[TakeutiZaring] p. 28Exercise 5fvco 6736
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 6957
[TakeutiZaring] p. 28Proposition 6.17resfunexg 6955
[TakeutiZaring] p. 29Exercise 9funimaex 6411  funimaexg 6410
[TakeutiZaring] p. 29Definition 6.18df-br 5031
[TakeutiZaring] p. 29Definition 6.19(1)df-so 5439
[TakeutiZaring] p. 30Definition 6.21dffr2 5484  dffr3 5929  eliniseg 5925  iniseg 5927
[TakeutiZaring] p. 30Definition 6.22df-eprel 5430
[TakeutiZaring] p. 30Proposition 6.23fr2nr 5497  fr3nr 7474  frirr 5496
[TakeutiZaring] p. 30Definition 6.24(1)df-fr 5478
[TakeutiZaring] p. 30Definition 6.24(2)dfwe2 7476
[TakeutiZaring] p. 31Exercise 1frss 5486
[TakeutiZaring] p. 31Exercise 4wess 5506
[TakeutiZaring] p. 31Proposition 6.26tz6.26 6147  tz6.26i 6148  wefrc 5513  wereu2 5516
[TakeutiZaring] p. 32Theorem 6.27wfi 6149  wfii 6150
[TakeutiZaring] p. 32Definition 6.28df-isom 6333
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 7061
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 7062
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 7068
[TakeutiZaring] p. 33Proposition 6.31(1)isomin 7069
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 7070
[TakeutiZaring] p. 33Proposition 6.32(1)isofr 7074
[TakeutiZaring] p. 33Proposition 6.32(3)isowe 7081
[TakeutiZaring] p. 34Proposition 6.33f1oiso 7083
[TakeutiZaring] p. 35Notationwtr 5136
[TakeutiZaring] p. 35Theorem 7.2trelpss 41159  tz7.2 5503
[TakeutiZaring] p. 35Definition 7.1dftr3 5140
[TakeutiZaring] p. 36Proposition 7.4ordwe 6172
[TakeutiZaring] p. 36Proposition 7.5tz7.5 6180
[TakeutiZaring] p. 36Proposition 7.6ordelord 6181  ordelordALT 41243  ordelordALTVD 41573
[TakeutiZaring] p. 37Corollary 7.8ordelpss 6187  ordelssne 6186
[TakeutiZaring] p. 37Proposition 7.7tz7.7 6185
[TakeutiZaring] p. 37Proposition 7.9ordin 6189
[TakeutiZaring] p. 38Corollary 7.14ordeleqon 7483
[TakeutiZaring] p. 38Corollary 7.15ordsson 7484
[TakeutiZaring] p. 38Definition 7.11df-on 6163
[TakeutiZaring] p. 38Proposition 7.10ordtri3or 6191
[TakeutiZaring] p. 38Proposition 7.12onfrALT 41255  ordon 7478
[TakeutiZaring] p. 38Proposition 7.13onprc 7479
[TakeutiZaring] p. 39Theorem 7.17tfi 7548
[TakeutiZaring] p. 40Exercise 3ontr2 6206
[TakeutiZaring] p. 40Exercise 7dftr2 5138
[TakeutiZaring] p. 40Exercise 9onssmin 7492
[TakeutiZaring] p. 40Exercise 11unon 7526
[TakeutiZaring] p. 40Exercise 12ordun 6260
[TakeutiZaring] p. 40Exercise 14ordequn 6259
[TakeutiZaring] p. 40Proposition 7.19ssorduni 7480
[TakeutiZaring] p. 40Proposition 7.20elssuni 4830
[TakeutiZaring] p. 41Definition 7.22df-suc 6165
[TakeutiZaring] p. 41Proposition 7.23sssucid 6236  sucidg 6237
[TakeutiZaring] p. 41Proposition 7.24suceloni 7508
[TakeutiZaring] p. 41Proposition 7.25onnbtwn 6250  ordnbtwn 6249
[TakeutiZaring] p. 41Proposition 7.26onsucuni 7523
[TakeutiZaring] p. 42Exercise 1df-lim 6164
[TakeutiZaring] p. 42Exercise 4omssnlim 7574
[TakeutiZaring] p. 42Exercise 7ssnlim 7579
[TakeutiZaring] p. 42Exercise 8onsucssi 7536  ordelsuc 7515
[TakeutiZaring] p. 42Exercise 9ordsucelsuc 7517
[TakeutiZaring] p. 42Definition 7.27nlimon 7546
[TakeutiZaring] p. 42Definition 7.28dfom2 7562
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 7581
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 7582
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 7583
[TakeutiZaring] p. 43Remarkomon 7571
[TakeutiZaring] p. 43Axiom 7inf3 9082  omex 9090
[TakeutiZaring] p. 43Theorem 7.32ordom 7569
[TakeutiZaring] p. 43Corollary 7.31find 7587
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 7584
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 7585
[TakeutiZaring] p. 44Exercise 1limomss 7565
[TakeutiZaring] p. 44Exercise 2int0 4852
[TakeutiZaring] p. 44Exercise 3trintss 5153
[TakeutiZaring] p. 44Exercise 4intss1 4853
[TakeutiZaring] p. 44Exercise 5intex 5204
[TakeutiZaring] p. 44Exercise 6oninton 7495
[TakeutiZaring] p. 44Exercise 11ordintdif 6208
[TakeutiZaring] p. 44Definition 7.35df-int 4839
[TakeutiZaring] p. 44Proposition 7.34noinfep 9107
[TakeutiZaring] p. 45Exercise 4onint 7490
[TakeutiZaring] p. 47Lemma 1tfrlem1 7995
[TakeutiZaring] p. 47Theorem 7.41(1)tfr1 8016
[TakeutiZaring] p. 47Theorem 7.41(2)tfr2 8017
[TakeutiZaring] p. 47Theorem 7.41(3)tfr3 8018
[TakeutiZaring] p. 49Theorem 7.44tz7.44-1 8025  tz7.44-2 8026  tz7.44-3 8027
[TakeutiZaring] p. 50Exercise 1smogt 7987
[TakeutiZaring] p. 50Exercise 3smoiso 7982
[TakeutiZaring] p. 50Definition 7.46df-smo 7966
[TakeutiZaring] p. 51Proposition 7.49tz7.49 8064  tz7.49c 8065
[TakeutiZaring] p. 51Proposition 7.48(1)tz7.48-1 8062
[TakeutiZaring] p. 51Proposition 7.48(2)tz7.48-2 8061
[TakeutiZaring] p. 51Proposition 7.48(3)tz7.48-3 8063
[TakeutiZaring] p. 53Proposition 7.532eu5 2717
[TakeutiZaring] p. 54Proposition 7.56(1)leweon 9422
[TakeutiZaring] p. 54Proposition 7.58(1)r0weon 9423
[TakeutiZaring] p. 56Definition 8.1oalim 8140  oasuc 8132
[TakeutiZaring] p. 57Remarktfindsg 7555
[TakeutiZaring] p. 57Proposition 8.2oacl 8143
[TakeutiZaring] p. 57Proposition 8.3oa0 8124  oa0r 8146
[TakeutiZaring] p. 57Proposition 8.16omcl 8144
[TakeutiZaring] p. 58Corollary 8.5oacan 8157
[TakeutiZaring] p. 58Proposition 8.4nnaord 8228  nnaordi 8227  oaord 8156  oaordi 8155
[TakeutiZaring] p. 59Proposition 8.6iunss2 4936  uniss2 4833
[TakeutiZaring] p. 59Proposition 8.7oawordri 8159
[TakeutiZaring] p. 59Proposition 8.8oawordeu 8164  oawordex 8166
[TakeutiZaring] p. 59Proposition 8.9nnacl 8220
[TakeutiZaring] p. 59Proposition 8.10oaabs 8254
[TakeutiZaring] p. 60Remarkoancom 9098
[TakeutiZaring] p. 60Proposition 8.11oalimcl 8169
[TakeutiZaring] p. 62Exercise 1nnarcl 8225
[TakeutiZaring] p. 62Exercise 5oaword1 8161
[TakeutiZaring] p. 62Definition 8.15om0x 8127  omlim 8141  omsuc 8134
[TakeutiZaring] p. 62Definition 8.15(a)om0 8125
[TakeutiZaring] p. 63Proposition 8.17nnecl 8222  nnmcl 8221
[TakeutiZaring] p. 63Proposition 8.19nnmord 8241  nnmordi 8240  omord 8177  omordi 8175
[TakeutiZaring] p. 63Proposition 8.20omcan 8178
[TakeutiZaring] p. 63Proposition 8.21nnmwordri 8245  omwordri 8181
[TakeutiZaring] p. 63Proposition 8.18(1)om0r 8147
[TakeutiZaring] p. 63Proposition 8.18(2)om1 8151  om1r 8152
[TakeutiZaring] p. 64Proposition 8.22om00 8184
[TakeutiZaring] p. 64Proposition 8.23omordlim 8186
[TakeutiZaring] p. 64Proposition 8.24omlimcl 8187
[TakeutiZaring] p. 64Proposition 8.25odi 8188
[TakeutiZaring] p. 65Theorem 8.26omass 8189
[TakeutiZaring] p. 67Definition 8.30nnesuc 8217  oe0 8130  oelim 8142  oesuc 8135  onesuc 8138
[TakeutiZaring] p. 67Proposition 8.31oe0m0 8128
[TakeutiZaring] p. 67Proposition 8.32oen0 8195
[TakeutiZaring] p. 67Proposition 8.33oeordi 8196
[TakeutiZaring] p. 67Proposition 8.31(2)oe0m1 8129
[TakeutiZaring] p. 67Proposition 8.31(3)oe1m 8154
[TakeutiZaring] p. 68Corollary 8.34oeord 8197
[TakeutiZaring] p. 68Corollary 8.36oeordsuc 8203
[TakeutiZaring] p. 68Proposition 8.35oewordri 8201
[TakeutiZaring] p. 68Proposition 8.37oeworde 8202
[TakeutiZaring] p. 69Proposition 8.41oeoa 8206
[TakeutiZaring] p. 70Proposition 8.42oeoe 8208
[TakeutiZaring] p. 73Theorem 9.1trcl 9154  tz9.1 9155
[TakeutiZaring] p. 76Definition 9.9df-r1 9177  r10 9181  r1lim 9185  r1limg 9184  r1suc 9183  r1sucg 9182
[TakeutiZaring] p. 77Proposition 9.10(2)r1ord 9193  r1ord2 9194  r1ordg 9191
[TakeutiZaring] p. 78Proposition 9.12tz9.12 9203
[TakeutiZaring] p. 78Proposition 9.13rankwflem 9228  tz9.13 9204  tz9.13g 9205
[TakeutiZaring] p. 79Definition 9.14df-rank 9178  rankval 9229  rankvalb 9210  rankvalg 9230
[TakeutiZaring] p. 79Proposition 9.16rankel 9252  rankelb 9237
[TakeutiZaring] p. 79Proposition 9.17rankuni2b 9266  rankval3 9253  rankval3b 9239
[TakeutiZaring] p. 79Proposition 9.18rankonid 9242
[TakeutiZaring] p. 79Proposition 9.15(1)rankon 9208
[TakeutiZaring] p. 79Proposition 9.15(2)rankr1 9247  rankr1c 9234  rankr1g 9245
[TakeutiZaring] p. 79Proposition 9.15(3)ssrankr1 9248
[TakeutiZaring] p. 80Exercise 1rankss 9262  rankssb 9261
[TakeutiZaring] p. 80Exercise 2unbndrank 9255
[TakeutiZaring] p. 80Proposition 9.19bndrank 9254
[TakeutiZaring] p. 83Axiom of Choiceac4 9886  dfac3 9532
[TakeutiZaring] p. 84Theorem 10.3dfac8a 9441  numth 9883  numth2 9882
[TakeutiZaring] p. 85Definition 10.4cardval 9957
[TakeutiZaring] p. 85Proposition 10.5cardid 9958  cardid2 9366
[TakeutiZaring] p. 85Proposition 10.9oncard 9373
[TakeutiZaring] p. 85Proposition 10.10carden 9962
[TakeutiZaring] p. 85Proposition 10.11cardidm 9372
[TakeutiZaring] p. 85Proposition 10.6(1)cardon 9357
[TakeutiZaring] p. 85Proposition 10.6(2)cardne 9378
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 9370
[TakeutiZaring] p. 87Proposition 10.15pwen 8674
[TakeutiZaring] p. 88Exercise 1en0 8555
[TakeutiZaring] p. 88Exercise 7infensuc 8679
[TakeutiZaring] p. 89Exercise 10omxpen 8602
[TakeutiZaring] p. 90Corollary 10.23cardnn 9376
[TakeutiZaring] p. 90Definition 10.27alephiso 9509
[TakeutiZaring] p. 90Proposition 10.20nneneq 8684
[TakeutiZaring] p. 90Proposition 10.22onomeneq 8693
[TakeutiZaring] p. 90Proposition 10.26alephprc 9510
[TakeutiZaring] p. 90Corollary 10.21(1)php5 8689
[TakeutiZaring] p. 91Exercise 2alephle 9499
[TakeutiZaring] p. 91Exercise 3aleph0 9477
[TakeutiZaring] p. 91Exercise 4cardlim 9385
[TakeutiZaring] p. 91Exercise 7infpss 9628
[TakeutiZaring] p. 91Exercise 8infcntss 8776
[TakeutiZaring] p. 91Definition 10.29df-fin 8496  isfi 8516
[TakeutiZaring] p. 92Proposition 10.32onfin 8694
[TakeutiZaring] p. 92Proposition 10.34imadomg 9945
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 8595
[TakeutiZaring] p. 93Proposition 10.35fodomb 9937
[TakeutiZaring] p. 93Proposition 10.36djuxpdom 9596  unxpdom 8709
[TakeutiZaring] p. 93Proposition 10.37cardsdomel 9387  cardsdomelir 9386
[TakeutiZaring] p. 93Proposition 10.38sucxpdom 8711
[TakeutiZaring] p. 94Proposition 10.39infxpen 9425
[TakeutiZaring] p. 95Definition 10.42df-map 8391
[TakeutiZaring] p. 95Proposition 10.40infxpidm 9973  infxpidm2 9428
[TakeutiZaring] p. 95Proposition 10.41infdju 9619  infxp 9626
[TakeutiZaring] p. 96Proposition 10.44pw2en 8607  pw2f1o 8605
[TakeutiZaring] p. 96Proposition 10.45mapxpen 8667
[TakeutiZaring] p. 97Theorem 10.46ac6s3 9898
[TakeutiZaring] p. 98Theorem 10.46ac6c5 9893  ac6s5 9902
[TakeutiZaring] p. 98Theorem 10.47unidom 9954
[TakeutiZaring] p. 99Theorem 10.48uniimadom 9955  uniimadomf 9956
[TakeutiZaring] p. 100Definition 11.1cfcof 9685
[TakeutiZaring] p. 101Proposition 11.7cofsmo 9680
[TakeutiZaring] p. 102Exercise 1cfle 9665
[TakeutiZaring] p. 102Exercise 2cf0 9662
[TakeutiZaring] p. 102Exercise 3cfsuc 9668
[TakeutiZaring] p. 102Exercise 4cfom 9675
[TakeutiZaring] p. 102Proposition 11.9coftr 9684
[TakeutiZaring] p. 103Theorem 11.15alephreg 9993
[TakeutiZaring] p. 103Proposition 11.11cardcf 9663
[TakeutiZaring] p. 103Proposition 11.13alephsing 9687
[TakeutiZaring] p. 104Corollary 11.17cardinfima 9508
[TakeutiZaring] p. 104Proposition 11.16carduniima 9507
[TakeutiZaring] p. 104Proposition 11.18alephfp 9519  alephfp2 9520
[TakeutiZaring] p. 106Theorem 11.20gchina 10110
[TakeutiZaring] p. 106Theorem 11.21mappwen 9523
[TakeutiZaring] p. 107Theorem 11.26konigth 9980
[TakeutiZaring] p. 108Theorem 11.28pwcfsdom 9994
[TakeutiZaring] p. 108Theorem 11.29cfpwsdom 9995
[Tarski] p. 67Axiom B5ax-c5 36179
[Tarski] p. 67Scheme B5sp 2180
[Tarski] p. 68Lemma 6avril1 28248  equid 2019
[Tarski] p. 69Lemma 7equcomi 2024
[Tarski] p. 70Lemma 14spim 2394  spime 2396  spimew 1974
[Tarski] p. 70Lemma 16ax-12 2175  ax-c15 36185  ax12i 1969
[Tarski] p. 70Lemmas 16 and 17sb6 2090
[Tarski] p. 75Axiom B7ax6v 1971
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-5 1911  ax5ALT 36203
[Tarski], p. 75Scheme B8 of system S2ax-7 2015  ax-8 2113  ax-9 2121
[Tarski1999] p. 178Axiom 4axtgsegcon 26258
[Tarski1999] p. 178Axiom 5axtg5seg 26259
[Tarski1999] p. 179Axiom 7axtgpasch 26261
[Tarski1999] p. 180Axiom 7.1axtgpasch 26261
[Tarski1999] p. 185Axiom 11axtgcont1 26262
[Truss] p. 114Theorem 5.18ruc 15588
[Viaclovsky7] p. 3Corollary 0.3mblfinlem3 35096
[Viaclovsky8] p. 3Proposition 7ismblfin 35098
[Weierstrass] p. 272Definitiondf-mdet 21190  mdetuni 21227
[WhiteheadRussell] p. 96Axiom *1.2pm1.2 901
[WhiteheadRussell] p. 96Axiom *1.3olc 865
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 866
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 917
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 965
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 192
[WhiteheadRussell] p. 100Theorem *2.02ax-1 6
[WhiteheadRussell] p. 100Theorem *2.03con2 137
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 90  wl-luk-pm2.04 34862
[WhiteheadRussell] p. 100Theorem *2.05frege5 40501  imim2 58  wl-luk-imim2 34857
[WhiteheadRussell] p. 100Theorem *2.06adh-minimp-imim1 43612  imim1 83
[WhiteheadRussell] p. 101Theorem *2.1pm2.1 894
[WhiteheadRussell] p. 101Theorem *2.06barbara 2725  syl 17
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 900
[WhiteheadRussell] p. 101Theorem *2.08id 22  wl-luk-id 34860
[WhiteheadRussell] p. 101Theorem *2.11exmid 892
[WhiteheadRussell] p. 101Theorem *2.12notnot 144
[WhiteheadRussell] p. 101Theorem *2.13pm2.13 895
[WhiteheadRussell] p. 102Theorem *2.14notnotr 132  notnotrALT2 41633  wl-luk-notnotr 34861
[WhiteheadRussell] p. 102Theorem *2.15con1 148
[WhiteheadRussell] p. 103Theorem *2.16ax-frege28 40531  axfrege28 40530  con3 156
[WhiteheadRussell] p. 103Theorem *2.17ax-3 8
[WhiteheadRussell] p. 103Theorem *2.18pm2.18 128
[WhiteheadRussell] p. 104Theorem *2.2orc 864
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 922
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 123  wl-luk-pm2.21 34854
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 124
[WhiteheadRussell] p. 104Theorem *2.25pm2.25 887
[WhiteheadRussell] p. 104Theorem *2.26pm2.26 937
[WhiteheadRussell] p. 104Theorem *2.27conventions-labels 28186  pm2.27 42  wl-luk-pm2.27 34852
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 920
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 921
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 967
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 968
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 966
[WhiteheadRussell] p. 105Definition *2.33df-3or 1085
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 904
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 905
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 940
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 56
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 879
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 880
[WhiteheadRussell] p. 107Theorem *2.5pm2.5 172  pm2.5g 171
[WhiteheadRussell] p. 107Theorem *2.6pm2.6 194
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 881
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 882
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 883
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 175
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 176
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 848
[WhiteheadRussell] p. 107Theorem *2.54pm2.54 849
[WhiteheadRussell] p. 107Theorem *2.55orel1 886
[WhiteheadRussell] p. 107Theorem *2.56orel2 888
[WhiteheadRussell] p. 107Theorem *2.61pm2.61 195
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 897
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 938
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 939
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 196
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 889  pm2.67 890
[WhiteheadRussell] p. 107Theorem *2.521pm2.521 179  pm2.521g 177  pm2.521g2 178
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 896
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 970
[WhiteheadRussell] p. 108Theorem *2.68pm2.68 898
[WhiteheadRussell] p. 108Theorem *2.69looinv 206
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 971
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 972
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 931
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 929
[WhiteheadRussell] p. 108Theorem *2.77ax-2 7
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 969
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 973
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 84
[WhiteheadRussell] p. 108Theorem *2.85pm2.85 930
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 109
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 989
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 473  pm3.2im 163
[WhiteheadRussell] p. 111Theorem *3.11pm3.11 990
[WhiteheadRussell] p. 111Theorem *3.12pm3.12 991
[WhiteheadRussell] p. 111Theorem *3.13pm3.13 992
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 993
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 475
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 463
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 406
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 802
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 452
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 453
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 486  simplim 170
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 488  simprim 169
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 764
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 765
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 807
[WhiteheadRussell] p. 113Fact)pm3.45 624
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 809
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 496
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 497
[WhiteheadRussell] p. 113Theorem *3.44jao 958  pm3.44 957
[WhiteheadRussell] p. 113Theorem *3.47anim12 808
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 477
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 961
[WhiteheadRussell] p. 116Theorem *4.1con34b 319
[WhiteheadRussell] p. 117Theorem *4.2biid 264
[WhiteheadRussell] p. 117Theorem *4.11notbi 322
[WhiteheadRussell] p. 117Theorem *4.12con2bi 357
[WhiteheadRussell] p. 117Theorem *4.13notnotb 318
[WhiteheadRussell] p. 117Theorem *4.14pm4.14 806
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 831
[WhiteheadRussell] p. 117Theorem *4.21bicom 225
[WhiteheadRussell] p. 117Theorem *4.22biantr 805  bitr 804
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 567
[WhiteheadRussell] p. 117Theorem *4.25oridm 902  pm4.25 903
[WhiteheadRussell] p. 118Theorem *4.3ancom 464
[WhiteheadRussell] p. 118Theorem *4.4andi 1005
[WhiteheadRussell] p. 118Theorem *4.31orcom 867
[WhiteheadRussell] p. 118Theorem *4.32anass 472
[WhiteheadRussell] p. 118Theorem *4.33orass 919
[WhiteheadRussell] p. 118Theorem *4.36anbi1 634
[WhiteheadRussell] p. 118Theorem *4.37orbi1 915
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 637
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 974
[WhiteheadRussell] p. 118Definition *4.34df-3an 1086
[WhiteheadRussell] p. 119Theorem *4.41ordi 1003
[WhiteheadRussell] p. 119Theorem *4.42pm4.42 1049
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 1020
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 994
[WhiteheadRussell] p. 119Theorem *4.45orabs 996  pm4.45 995  pm4.45im 826
[WhiteheadRussell] p. 120Theorem *4.5anor 980
[WhiteheadRussell] p. 120Theorem *4.6imor 850
[WhiteheadRussell] p. 120Theorem *4.7anclb 549
[WhiteheadRussell] p. 120Theorem *4.51ianor 979
[WhiteheadRussell] p. 120Theorem *4.52pm4.52 982
[WhiteheadRussell] p. 120Theorem *4.53pm4.53 983
[WhiteheadRussell] p. 120Theorem *4.54pm4.54 984
[WhiteheadRussell] p. 120Theorem *4.55pm4.55 985
[WhiteheadRussell] p. 120Theorem *4.56ioran 981  pm4.56 986
[WhiteheadRussell] p. 120Theorem *4.57oran 987  pm4.57 988
[WhiteheadRussell] p. 120Theorem *4.61pm4.61 408
[WhiteheadRussell] p. 120Theorem *4.62pm4.62 853
[WhiteheadRussell] p. 120Theorem *4.63pm4.63 401
[WhiteheadRussell] p. 120Theorem *4.64pm4.64 846
[WhiteheadRussell] p. 120Theorem *4.65pm4.65 409
[WhiteheadRussell] p. 120Theorem *4.66pm4.66 847
[WhiteheadRussell] p. 120Theorem *4.67pm4.67 402
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 561  pm4.71d 565  pm4.71i 563  pm4.71r 562  pm4.71rd 566  pm4.71ri 564
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 947
[WhiteheadRussell] p. 121Theorem *4.73iba 531
[WhiteheadRussell] p. 121Theorem *4.74biorf 934
[WhiteheadRussell] p. 121Theorem *4.76jcab 521  pm4.76 522
[WhiteheadRussell] p. 121Theorem *4.77jaob 959  pm4.77 960
[WhiteheadRussell] p. 121Theorem *4.78pm4.78 932
[WhiteheadRussell] p. 121Theorem *4.79pm4.79 1001
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 396
[WhiteheadRussell] p. 122Theorem *4.81pm4.81 397
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 1021
[WhiteheadRussell] p. 122Theorem *4.83pm4.83 1022
[WhiteheadRussell] p. 122Theorem *4.84imbi1 351
[WhiteheadRussell] p. 122Theorem *4.85imbi2 352
[WhiteheadRussell] p. 122Theorem *4.86bibi1 355
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 392  impexp 454  pm4.87 840
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 822
[WhiteheadRussell] p. 123Theorem *5.11pm5.11 942  pm5.11g 941
[WhiteheadRussell] p. 123Theorem *5.12pm5.12 943
[WhiteheadRussell] p. 123Theorem *5.13pm5.13 945
[WhiteheadRussell] p. 123Theorem *5.14pm5.14 944
[WhiteheadRussell] p. 124Theorem *5.15pm5.15 1010
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 1011
[WhiteheadRussell] p. 124Theorem *5.17pm5.17 1009
[WhiteheadRussell] p. 124Theorem *5.18nbbn 388  pm5.18 386
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 391
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 823
[WhiteheadRussell] p. 124Theorem *5.22xor 1012
[WhiteheadRussell] p. 124Theorem *5.23dfbi3 1045
[WhiteheadRussell] p. 124Theorem *5.24pm5.24 1046
[WhiteheadRussell] p. 124Theorem *5.25dfor2 899
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 576
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 393
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 365
[WhiteheadRussell] p. 125Theorem *5.6pm5.6 999
[WhiteheadRussell] p. 125Theorem *5.7pm5.7 951
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 829
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 577
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 834
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 824
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 832
[WhiteheadRussell] p. 125Theorem *5.41imdi 394  pm5.41 395
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 547
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 546
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 1002
[WhiteheadRussell] p. 125Theorem *5.54pm5.54 1015
[WhiteheadRussell] p. 125Theorem *5.55pm5.55 946
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 998
[WhiteheadRussell] p. 125Theorem *5.62pm5.62 1016
[WhiteheadRussell] p. 125Theorem *5.63pm5.63 1017
[WhiteheadRussell] p. 125Theorem *5.71pm5.71 1025
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 370
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 273
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 1026
[WhiteheadRussell] p. 146Theorem *10.12pm10.12 41062
[WhiteheadRussell] p. 146Theorem *10.14pm10.14 41063
[WhiteheadRussell] p. 147Theorem *10.2219.26 1871
[WhiteheadRussell] p. 149Theorem *10.251pm10.251 41064
[WhiteheadRussell] p. 149Theorem *10.252pm10.252 41065
[WhiteheadRussell] p. 149Theorem *10.253pm10.253 41066
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1894
[WhiteheadRussell] p. 151Theorem *10.301albitr 41067
[WhiteheadRussell] p. 155Theorem *10.42pm10.42 41068
[WhiteheadRussell] p. 155Theorem *10.52pm10.52 41069
[WhiteheadRussell] p. 155Theorem *10.53pm10.53 41070
[WhiteheadRussell] p. 155Theorem *10.541pm10.541 41071
[WhiteheadRussell] p. 156Theorem *10.55pm10.55 41073
[WhiteheadRussell] p. 156Theorem *10.56pm10.56 41074
[WhiteheadRussell] p. 156Theorem *10.57pm10.57 41075
[WhiteheadRussell] p. 156Theorem *10.542pm10.542 41072
[WhiteheadRussell] p. 159Axiom *11.07pm11.07 2097
[WhiteheadRussell] p. 159Theorem *11.11pm11.11 41078
[WhiteheadRussell] p. 159Theorem *11.12pm11.12 41079
[WhiteheadRussell] p. 159Theorem PM*11.12stdpc4 2075
[WhiteheadRussell] p. 160Theorem *11.21alrot3 2161
[WhiteheadRussell] p. 160Theorem *11.222exnaln 1830
[WhiteheadRussell] p. 160Theorem *11.252nexaln 1831
[WhiteheadRussell] p. 161Theorem *11.319.21vv 41080
[WhiteheadRussell] p. 162Theorem *11.322alim 41081
[WhiteheadRussell] p. 162Theorem *11.332albi 41082
[WhiteheadRussell] p. 162Theorem *11.342exim 41083
[WhiteheadRussell] p. 162Theorem *11.36spsbce-2 41085
[WhiteheadRussell] p. 162Theorem *11.3412exbi 41084
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1888
[WhiteheadRussell] p. 163Theorem *11.4319.36vv 41087
[WhiteheadRussell] p. 163Theorem *11.4419.31vv 41088
[WhiteheadRussell] p. 163Theorem *11.42119.33-2 41086
[WhiteheadRussell] p. 164Theorem *11.52nalexn 1829
[WhiteheadRussell] p. 164Theorem *11.4619.37vv 41089
[WhiteheadRussell] p. 164Theorem *11.4719.28vv 41090
[WhiteheadRussell] p. 164Theorem *11.512exnexn 1847
[WhiteheadRussell] p. 164Theorem *11.52pm11.52 41091
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 2356
[WhiteheadRussell] p. 164Theorem *11.5212exanali 1861
[WhiteheadRussell] p. 165Theorem *11.6pm11.6 41096
[WhiteheadRussell] p. 165Theorem *11.56aaanv 41092
[WhiteheadRussell] p. 165Theorem *11.57pm11.57 41093
[WhiteheadRussell] p. 165Theorem *11.58pm11.58 41094
[WhiteheadRussell] p. 165Theorem *11.59pm11.59 41095
[WhiteheadRussell] p. 166Theorem *11.7pm11.7 41100
[WhiteheadRussell] p. 166Theorem *11.61pm11.61 41097
[WhiteheadRussell] p. 166Theorem *11.62pm11.62 41098
[WhiteheadRussell] p. 166Theorem *11.63pm11.63 41099
[WhiteheadRussell] p. 166Theorem *11.71pm11.71 41101
[WhiteheadRussell] p. 175Definition *14.02df-eu 2629
[WhiteheadRussell] p. 178Theorem *13.13pm13.13a 41111  pm13.13b 41112
[WhiteheadRussell] p. 178Theorem *13.14pm13.14 41113
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 3068
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 3069
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 3606
[WhiteheadRussell] p. 179Theorem *13.212sbc6g 41119
[WhiteheadRussell] p. 179Theorem *13.222sbc5g 41120
[WhiteheadRussell] p. 179Theorem *13.192pm13.192 41114
[WhiteheadRussell] p. 179Theorem *13.1932pm13.193 41258  pm13.193 41115
[WhiteheadRussell] p. 179Theorem *13.194pm13.194 41116
[WhiteheadRussell] p. 179Theorem *13.195pm13.195 41117
[WhiteheadRussell] p. 179Theorem *13.196pm13.196a 41118
[WhiteheadRussell] p. 184Theorem *14.12pm14.12 41125
[WhiteheadRussell] p. 184Theorem *14.111iotasbc2 41124
[WhiteheadRussell] p. 184Definition *14.01iotasbc 41123
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 3783
[WhiteheadRussell] p. 185Theorem *14.122pm14.122a 41126  pm14.122b 41127  pm14.122c 41128
[WhiteheadRussell] p. 185Theorem *14.123pm14.123a 41129  pm14.123b 41130  pm14.123c 41131
[WhiteheadRussell] p. 189Theorem *14.2iotaequ 41133
[WhiteheadRussell] p. 189Theorem *14.18pm14.18 41132
[WhiteheadRussell] p. 189Theorem *14.202iotavalb 41134
[WhiteheadRussell] p. 190Theorem *14.22iota4 6305
[WhiteheadRussell] p. 190Theorem *14.205iotasbc5 41135
[WhiteheadRussell] p. 191Theorem *14.23iota4an 6306
[WhiteheadRussell] p. 191Theorem *14.24pm14.24 41136
[WhiteheadRussell] p. 192Theorem *14.25sbiota1 41138
[WhiteheadRussell] p. 192Theorem *14.26eupick 2695  eupickbi 2698  sbaniota 41139
[WhiteheadRussell] p. 192Theorem *14.242iotavalsb 41137
[WhiteheadRussell] p. 192Theorem *14.271eubi 2644
[WhiteheadRussell] p. 193Theorem *14.272iotasbcq 41141
[WhiteheadRussell] p. 235Definition *30.01conventions 28185  df-fv 6332
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 9414  pm54.43lem 9413
[Young] p. 141Definition of operator orderingleop2 29907
[Young] p. 142Example 12.2(i)0leop 29913  idleop 29914
[vandenDries] p. 42Lemma 61irrapx1 39769
[vandenDries] p. 43Theorem 62pellex 39776  pellexlem1 39770

This page was last updated on 26-Jul-2024.
Copyright terms: Public domain