MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
idi 1 (_Note_: This inference r...
a1ii 2 (_Note_: This inference r...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, sometimes ca...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
jarri 107 Inference associated with ...
pm2.86d 108 Deduction associated with ...
pm2.86 109 Converse of Axiom ~ ax-2 ....
pm2.86i 110 Inference associated with ...
loolin 111 The Linearity Axiom of the...
loowoz 112 An alternate for the Linea...
con4 113 Alias for ~ ax-3 to be use...
con4i 114 Inference associated with ...
con4d 115 Deduction associated with ...
mt4 116 The rule of modus tollens....
mt4d 117 Modus tollens deduction. ...
mt4i 118 Modus tollens inference. ...
pm2.21i 119 A contradiction implies an...
pm2.24ii 120 A contradiction implies an...
pm2.21d 121 A contradiction implies an...
pm2.21ddALT 122 Alternate proof of ~ pm2.2...
pm2.21 123 From a wff and its negatio...
pm2.24 124 Theorem *2.24 of [Whitehea...
jarl 125 Elimination of a nested an...
jarli 126 Inference associated with ...
pm2.18d 127 Deduction form of the Clav...
pm2.18 128 Clavius law, or "consequen...
pm2.18i 129 Inference associated with ...
notnotr 130 Double negation eliminatio...
notnotri 131 Inference associated with ...
notnotriALT 132 Alternate proof of ~ notno...
notnotrd 133 Deduction associated with ...
con2d 134 A contraposition deduction...
con2 135 Contraposition. Theorem *...
mt2d 136 Modus tollens deduction. ...
mt2i 137 Modus tollens inference. ...
nsyl3 138 A negated syllogism infere...
con2i 139 A contraposition inference...
nsyl 140 A negated syllogism infere...
nsyl2 141 A negated syllogism infere...
notnot 142 Double negation introducti...
notnoti 143 Inference associated with ...
notnotd 144 Deduction associated with ...
con1d 145 A contraposition deduction...
con1 146 Contraposition. Theorem *...
con1i 147 A contraposition inference...
mt3d 148 Modus tollens deduction. ...
mt3i 149 Modus tollens inference. ...
pm2.24i 150 Inference associated with ...
pm2.24d 151 Deduction form of ~ pm2.24...
con3d 152 A contraposition deduction...
con3 153 Contraposition. Theorem *...
con3i 154 A contraposition inference...
con3rr3 155 Rotate through consequent ...
nsyld 156 A negated syllogism deduct...
nsyli 157 A negated syllogism infere...
nsyl4 158 A negated syllogism infere...
nsyl5 159 A negated syllogism infere...
pm3.2im 160 Theorem *3.2 of [Whitehead...
jc 161 Deduction joining the cons...
jcn 162 Theorem joining the conseq...
jcnd 163 Deduction joining the cons...
impi 164 An importation inference. ...
expi 165 An exportation inference. ...
simprim 166 Simplification. Similar t...
simplim 167 Simplification. Similar t...
pm2.5g 168 General instance of Theore...
pm2.5 169 Theorem *2.5 of [Whitehead...
conax1 170 Contrapositive of ~ ax-1 ....
conax1k 171 Weakening of ~ conax1 . G...
pm2.51 172 Theorem *2.51 of [Whitehea...
pm2.52 173 Theorem *2.52 of [Whitehea...
pm2.521g 174 A general instance of Theo...
pm2.521g2 175 A general instance of Theo...
pm2.521 176 Theorem *2.521 of [Whitehe...
expt 177 Exportation theorem ~ pm3....
impt 178 Importation theorem ~ pm3....
pm2.61d 179 Deduction eliminating an a...
pm2.61d1 180 Inference eliminating an a...
pm2.61d2 181 Inference eliminating an a...
pm2.61i 182 Inference eliminating an a...
pm2.61ii 183 Inference eliminating two ...
pm2.61nii 184 Inference eliminating two ...
pm2.61iii 185 Inference eliminating thre...
ja 186 Inference joining the ante...
jad 187 Deduction form of ~ ja . ...
pm2.01 188 Weak Clavius law. If a fo...
pm2.01d 189 Deduction based on reducti...
pm2.6 190 Theorem *2.6 of [Whitehead...
pm2.61 191 Theorem *2.61 of [Whitehea...
pm2.65 192 Theorem *2.65 of [Whitehea...
pm2.65i 193 Inference for proof by con...
pm2.21dd 194 A contradiction implies an...
pm2.65d 195 Deduction for proof by con...
mto 196 The rule of modus tollens....
mtod 197 Modus tollens deduction. ...
mtoi 198 Modus tollens inference. ...
mt2 199 A rule similar to modus to...
mt3 200 A rule similar to modus to...
peirce 201 Peirce's axiom. A non-int...
looinv 202 The Inversion Axiom of the...
bijust0 203 A self-implication (see ~ ...
bijust 204 Theorem used to justify th...
impbi 207 Property of the biconditio...
impbii 208 Infer an equivalence from ...
impbidd 209 Deduce an equivalence from...
impbid21d 210 Deduce an equivalence from...
impbid 211 Deduce an equivalence from...
dfbi1 212 Relate the biconditional c...
dfbi1ALT 213 Alternate proof of ~ dfbi1...
biimp 214 Property of the biconditio...
biimpi 215 Infer an implication from ...
sylbi 216 A mixed syllogism inferenc...
sylib 217 A mixed syllogism inferenc...
sylbb 218 A mixed syllogism inferenc...
biimpr 219 Property of the biconditio...
bicom1 220 Commutative law for the bi...
bicom 221 Commutative law for the bi...
bicomd 222 Commute two sides of a bic...
bicomi 223 Inference from commutative...
impbid1 224 Infer an equivalence from ...
impbid2 225 Infer an equivalence from ...
impcon4bid 226 A variation on ~ impbid wi...
biimpri 227 Infer a converse implicati...
biimpd 228 Deduce an implication from...
mpbi 229 An inference from a bicond...
mpbir 230 An inference from a bicond...
mpbid 231 A deduction from a bicondi...
mpbii 232 An inference from a nested...
sylibr 233 A mixed syllogism inferenc...
sylbir 234 A mixed syllogism inferenc...
sylbbr 235 A mixed syllogism inferenc...
sylbb1 236 A mixed syllogism inferenc...
sylbb2 237 A mixed syllogism inferenc...
sylibd 238 A syllogism deduction. (C...
sylbid 239 A syllogism deduction. (C...
mpbidi 240 A deduction from a bicondi...
biimtrid 241 A mixed syllogism inferenc...
biimtrrid 242 A mixed syllogism inferenc...
imbitrid 243 A mixed syllogism inferenc...
syl5ibcom 244 A mixed syllogism inferenc...
imbitrrid 245 A mixed syllogism inferenc...
syl5ibrcom 246 A mixed syllogism inferenc...
biimprd 247 Deduce a converse implicat...
biimpcd 248 Deduce a commuted implicat...
biimprcd 249 Deduce a converse commuted...
imbitrdi 250 A mixed syllogism inferenc...
imbitrrdi 251 A mixed syllogism inferenc...
biimtrdi 252 A mixed syllogism inferenc...
syl6bi 253 A mixed syllogism inferenc...
syl6bir 254 A mixed syllogism inferenc...
syl7bi 255 A mixed syllogism inferenc...
syl8ib 256 A syllogism rule of infere...
mpbird 257 A deduction from a bicondi...
mpbiri 258 An inference from a nested...
sylibrd 259 A syllogism deduction. (C...
sylbird 260 A syllogism deduction. (C...
biid 261 Principle of identity for ...
biidd 262 Principle of identity with...
pm5.1im 263 Two propositions are equiv...
2th 264 Two truths are equivalent....
2thd 265 Two truths are equivalent....
monothetic 266 Two self-implications (see...
ibi 267 Inference that converts a ...
ibir 268 Inference that converts a ...
ibd 269 Deduction that converts a ...
pm5.74 270 Distribution of implicatio...
pm5.74i 271 Distribution of implicatio...
pm5.74ri 272 Distribution of implicatio...
pm5.74d 273 Distribution of implicatio...
pm5.74rd 274 Distribution of implicatio...
bitri 275 An inference from transiti...
bitr2i 276 An inference from transiti...
bitr3i 277 An inference from transiti...
bitr4i 278 An inference from transiti...
bitrd 279 Deduction form of ~ bitri ...
bitr2d 280 Deduction form of ~ bitr2i...
bitr3d 281 Deduction form of ~ bitr3i...
bitr4d 282 Deduction form of ~ bitr4i...
bitrid 283 A syllogism inference from...
bitr2id 284 A syllogism inference from...
bitr3id 285 A syllogism inference from...
bitr3di 286 A syllogism inference from...
bitrdi 287 A syllogism inference from...
bitr2di 288 A syllogism inference from...
bitr4di 289 A syllogism inference from...
bitr4id 290 A syllogism inference from...
3imtr3i 291 A mixed syllogism inferenc...
3imtr4i 292 A mixed syllogism inferenc...
3imtr3d 293 More general version of ~ ...
3imtr4d 294 More general version of ~ ...
3imtr3g 295 More general version of ~ ...
3imtr4g 296 More general version of ~ ...
3bitri 297 A chained inference from t...
3bitrri 298 A chained inference from t...
3bitr2i 299 A chained inference from t...
3bitr2ri 300 A chained inference from t...
3bitr3i 301 A chained inference from t...
3bitr3ri 302 A chained inference from t...
3bitr4i 303 A chained inference from t...
3bitr4ri 304 A chained inference from t...
3bitrd 305 Deduction from transitivit...
3bitrrd 306 Deduction from transitivit...
3bitr2d 307 Deduction from transitivit...
3bitr2rd 308 Deduction from transitivit...
3bitr3d 309 Deduction from transitivit...
3bitr3rd 310 Deduction from transitivit...
3bitr4d 311 Deduction from transitivit...
3bitr4rd 312 Deduction from transitivit...
3bitr3g 313 More general version of ~ ...
3bitr4g 314 More general version of ~ ...
notnotb 315 Double negation. Theorem ...
con34b 316 A biconditional form of co...
con4bid 317 A contraposition deduction...
notbid 318 Deduction negating both si...
notbi 319 Contraposition. Theorem *...
notbii 320 Negate both sides of a log...
con4bii 321 A contraposition inference...
mtbi 322 An inference from a bicond...
mtbir 323 An inference from a bicond...
mtbid 324 A deduction from a bicondi...
mtbird 325 A deduction from a bicondi...
mtbii 326 An inference from a bicond...
mtbiri 327 An inference from a bicond...
sylnib 328 A mixed syllogism inferenc...
sylnibr 329 A mixed syllogism inferenc...
sylnbi 330 A mixed syllogism inferenc...
sylnbir 331 A mixed syllogism inferenc...
xchnxbi 332 Replacement of a subexpres...
xchnxbir 333 Replacement of a subexpres...
xchbinx 334 Replacement of a subexpres...
xchbinxr 335 Replacement of a subexpres...
imbi2i 336 Introduce an antecedent to...
bibi2i 337 Inference adding a bicondi...
bibi1i 338 Inference adding a bicondi...
bibi12i 339 The equivalence of two equ...
imbi2d 340 Deduction adding an antece...
imbi1d 341 Deduction adding a consequ...
bibi2d 342 Deduction adding a bicondi...
bibi1d 343 Deduction adding a bicondi...
imbi12d 344 Deduction joining two equi...
bibi12d 345 Deduction joining two equi...
imbi12 346 Closed form of ~ imbi12i ....
imbi1 347 Theorem *4.84 of [Whitehea...
imbi2 348 Theorem *4.85 of [Whitehea...
imbi1i 349 Introduce a consequent to ...
imbi12i 350 Join two logical equivalen...
bibi1 351 Theorem *4.86 of [Whitehea...
bitr3 352 Closed nested implication ...
con2bi 353 Contraposition. Theorem *...
con2bid 354 A contraposition deduction...
con1bid 355 A contraposition deduction...
con1bii 356 A contraposition inference...
con2bii 357 A contraposition inference...
con1b 358 Contraposition. Bidirecti...
con2b 359 Contraposition. Bidirecti...
biimt 360 A wff is equivalent to its...
pm5.5 361 Theorem *5.5 of [Whitehead...
a1bi 362 Inference introducing a th...
mt2bi 363 A false consequent falsifi...
mtt 364 Modus-tollens-like theorem...
imnot 365 If a proposition is false,...
pm5.501 366 Theorem *5.501 of [Whitehe...
ibib 367 Implication in terms of im...
ibibr 368 Implication in terms of im...
tbt 369 A wff is equivalent to its...
nbn2 370 The negation of a wff is e...
bibif 371 Transfer negation via an e...
nbn 372 The negation of a wff is e...
nbn3 373 Transfer falsehood via equ...
pm5.21im 374 Two propositions are equiv...
2false 375 Two falsehoods are equival...
2falsed 376 Two falsehoods are equival...
pm5.21ni 377 Two propositions implying ...
pm5.21nii 378 Eliminate an antecedent im...
pm5.21ndd 379 Eliminate an antecedent im...
bija 380 Combine antecedents into a...
pm5.18 381 Theorem *5.18 of [Whitehea...
xor3 382 Two ways to express "exclu...
nbbn 383 Move negation outside of b...
biass 384 Associative law for the bi...
biluk 385 Lukasiewicz's shortest axi...
pm5.19 386 Theorem *5.19 of [Whitehea...
bi2.04 387 Logical equivalence of com...
pm5.4 388 Antecedent absorption impl...
imdi 389 Distributive law for impli...
pm5.41 390 Theorem *5.41 of [Whitehea...
imbibi 391 The antecedent of one side...
pm4.8 392 Theorem *4.8 of [Whitehead...
pm4.81 393 A formula is equivalent to...
imim21b 394 Simplify an implication be...
pm4.63 397 Theorem *4.63 of [Whitehea...
pm4.67 398 Theorem *4.67 of [Whitehea...
imnan 399 Express an implication in ...
imnani 400 Infer an implication from ...
iman 401 Implication in terms of co...
pm3.24 402 Law of noncontradiction. ...
annim 403 Express a conjunction in t...
pm4.61 404 Theorem *4.61 of [Whitehea...
pm4.65 405 Theorem *4.65 of [Whitehea...
imp 406 Importation inference. (C...
impcom 407 Importation inference with...
con3dimp 408 Variant of ~ con3d with im...
mpnanrd 409 Eliminate the right side o...
impd 410 Importation deduction. (C...
impcomd 411 Importation deduction with...
ex 412 Exportation inference. (T...
expcom 413 Exportation inference with...
expdcom 414 Commuted form of ~ expd . ...
expd 415 Exportation deduction. (C...
expcomd 416 Deduction form of ~ expcom...
imp31 417 An importation inference. ...
imp32 418 An importation inference. ...
exp31 419 An exportation inference. ...
exp32 420 An exportation inference. ...
imp4b 421 An importation inference. ...
imp4a 422 An importation inference. ...
imp4c 423 An importation inference. ...
imp4d 424 An importation inference. ...
imp41 425 An importation inference. ...
imp42 426 An importation inference. ...
imp43 427 An importation inference. ...
imp44 428 An importation inference. ...
imp45 429 An importation inference. ...
exp4b 430 An exportation inference. ...
exp4a 431 An exportation inference. ...
exp4c 432 An exportation inference. ...
exp4d 433 An exportation inference. ...
exp41 434 An exportation inference. ...
exp42 435 An exportation inference. ...
exp43 436 An exportation inference. ...
exp44 437 An exportation inference. ...
exp45 438 An exportation inference. ...
imp5d 439 An importation inference. ...
imp5a 440 An importation inference. ...
imp5g 441 An importation inference. ...
imp55 442 An importation inference. ...
imp511 443 An importation inference. ...
exp5c 444 An exportation inference. ...
exp5j 445 An exportation inference. ...
exp5l 446 An exportation inference. ...
exp53 447 An exportation inference. ...
pm3.3 448 Theorem *3.3 (Exp) of [Whi...
pm3.31 449 Theorem *3.31 (Imp) of [Wh...
impexp 450 Import-export theorem. Pa...
impancom 451 Mixed importation/commutat...
expdimp 452 A deduction version of exp...
expimpd 453 Exportation followed by a ...
impr 454 Import a wff into a right ...
impl 455 Export a wff from a left c...
expr 456 Export a wff from a right ...
expl 457 Export a wff from a left c...
ancoms 458 Inference commuting conjun...
pm3.22 459 Theorem *3.22 of [Whitehea...
ancom 460 Commutative law for conjun...
ancomd 461 Commutation of conjuncts i...
biancomi 462 Commuting conjunction in a...
biancomd 463 Commuting conjunction in a...
ancomst 464 Closed form of ~ ancoms . ...
ancomsd 465 Deduction commuting conjun...
anasss 466 Associative law for conjun...
anassrs 467 Associative law for conjun...
anass 468 Associative law for conjun...
pm3.2 469 Join antecedents with conj...
pm3.2i 470 Infer conjunction of premi...
pm3.21 471 Join antecedents with conj...
pm3.43i 472 Nested conjunction of ante...
pm3.43 473 Theorem *3.43 (Comp) of [W...
dfbi2 474 A theorem similar to the s...
dfbi 475 Definition ~ df-bi rewritt...
biimpa 476 Importation inference from...
biimpar 477 Importation inference from...
biimpac 478 Importation inference from...
biimparc 479 Importation inference from...
adantr 480 Inference adding a conjunc...
adantl 481 Inference adding a conjunc...
simpl 482 Elimination of a conjunct....
simpli 483 Inference eliminating a co...
simpr 484 Elimination of a conjunct....
simpri 485 Inference eliminating a co...
intnan 486 Introduction of conjunct i...
intnanr 487 Introduction of conjunct i...
intnand 488 Introduction of conjunct i...
intnanrd 489 Introduction of conjunct i...
adantld 490 Deduction adding a conjunc...
adantrd 491 Deduction adding a conjunc...
pm3.41 492 Theorem *3.41 of [Whitehea...
pm3.42 493 Theorem *3.42 of [Whitehea...
simpld 494 Deduction eliminating a co...
simprd 495 Deduction eliminating a co...
simprbi 496 Deduction eliminating a co...
simplbi 497 Deduction eliminating a co...
simprbda 498 Deduction eliminating a co...
simplbda 499 Deduction eliminating a co...
simplbi2 500 Deduction eliminating a co...
simplbi2comt 501 Closed form of ~ simplbi2c...
simplbi2com 502 A deduction eliminating a ...
simpl2im 503 Implication from an elimin...
simplbiim 504 Implication from an elimin...
impel 505 An inference for implicati...
mpan9 506 Modus ponens conjoining di...
sylan9 507 Nested syllogism inference...
sylan9r 508 Nested syllogism inference...
sylan9bb 509 Nested syllogism inference...
sylan9bbr 510 Nested syllogism inference...
jca 511 Deduce conjunction of the ...
jcad 512 Deduction conjoining the c...
jca2 513 Inference conjoining the c...
jca31 514 Join three consequents. (...
jca32 515 Join three consequents. (...
jcai 516 Deduction replacing implic...
jcab 517 Distributive law for impli...
pm4.76 518 Theorem *4.76 of [Whitehea...
jctil 519 Inference conjoining a the...
jctir 520 Inference conjoining a the...
jccir 521 Inference conjoining a con...
jccil 522 Inference conjoining a con...
jctl 523 Inference conjoining a the...
jctr 524 Inference conjoining a the...
jctild 525 Deduction conjoining a the...
jctird 526 Deduction conjoining a the...
iba 527 Introduction of antecedent...
ibar 528 Introduction of antecedent...
biantru 529 A wff is equivalent to its...
biantrur 530 A wff is equivalent to its...
biantrud 531 A wff is equivalent to its...
biantrurd 532 A wff is equivalent to its...
bianfi 533 A wff conjoined with false...
bianfd 534 A wff conjoined with false...
baib 535 Move conjunction outside o...
baibr 536 Move conjunction outside o...
rbaibr 537 Move conjunction outside o...
rbaib 538 Move conjunction outside o...
baibd 539 Move conjunction outside o...
rbaibd 540 Move conjunction outside o...
bianabs 541 Absorb a hypothesis into t...
pm5.44 542 Theorem *5.44 of [Whitehea...
pm5.42 543 Theorem *5.42 of [Whitehea...
ancl 544 Conjoin antecedent to left...
anclb 545 Conjoin antecedent to left...
ancr 546 Conjoin antecedent to righ...
ancrb 547 Conjoin antecedent to righ...
ancli 548 Deduction conjoining antec...
ancri 549 Deduction conjoining antec...
ancld 550 Deduction conjoining antec...
ancrd 551 Deduction conjoining antec...
impac 552 Importation with conjuncti...
anc2l 553 Conjoin antecedent to left...
anc2r 554 Conjoin antecedent to righ...
anc2li 555 Deduction conjoining antec...
anc2ri 556 Deduction conjoining antec...
pm4.71 557 Implication in terms of bi...
pm4.71r 558 Implication in terms of bi...
pm4.71i 559 Inference converting an im...
pm4.71ri 560 Inference converting an im...
pm4.71d 561 Deduction converting an im...
pm4.71rd 562 Deduction converting an im...
pm4.24 563 Theorem *4.24 of [Whitehea...
anidm 564 Idempotent law for conjunc...
anidmdbi 565 Conjunction idempotence wi...
anidms 566 Inference from idempotent ...
imdistan 567 Distribution of implicatio...
imdistani 568 Distribution of implicatio...
imdistanri 569 Distribution of implicatio...
imdistand 570 Distribution of implicatio...
imdistanda 571 Distribution of implicatio...
pm5.3 572 Theorem *5.3 of [Whitehead...
pm5.32 573 Distribution of implicatio...
pm5.32i 574 Distribution of implicatio...
pm5.32ri 575 Distribution of implicatio...
pm5.32d 576 Distribution of implicatio...
pm5.32rd 577 Distribution of implicatio...
pm5.32da 578 Distribution of implicatio...
sylan 579 A syllogism inference. (C...
sylanb 580 A syllogism inference. (C...
sylanbr 581 A syllogism inference. (C...
sylanbrc 582 Syllogism inference. (Con...
syl2anc 583 Syllogism inference combin...
syl2anc2 584 Double syllogism inference...
sylancl 585 Syllogism inference combin...
sylancr 586 Syllogism inference combin...
sylancom 587 Syllogism inference with c...
sylanblc 588 Syllogism inference combin...
sylanblrc 589 Syllogism inference combin...
syldan 590 A syllogism deduction with...
sylbida 591 A syllogism deduction. (C...
sylan2 592 A syllogism inference. (C...
sylan2b 593 A syllogism inference. (C...
sylan2br 594 A syllogism inference. (C...
syl2an 595 A double syllogism inferen...
syl2anr 596 A double syllogism inferen...
syl2anb 597 A double syllogism inferen...
syl2anbr 598 A double syllogism inferen...
sylancb 599 A syllogism inference comb...
sylancbr 600 A syllogism inference comb...
syldanl 601 A syllogism deduction with...
syland 602 A syllogism deduction. (C...
sylani 603 A syllogism inference. (C...
sylan2d 604 A syllogism deduction. (C...
sylan2i 605 A syllogism inference. (C...
syl2ani 606 A syllogism inference. (C...
syl2and 607 A syllogism deduction. (C...
anim12d 608 Conjoin antecedents and co...
anim12d1 609 Variant of ~ anim12d where...
anim1d 610 Add a conjunct to right of...
anim2d 611 Add a conjunct to left of ...
anim12i 612 Conjoin antecedents and co...
anim12ci 613 Variant of ~ anim12i with ...
anim1i 614 Introduce conjunct to both...
anim1ci 615 Introduce conjunct to both...
anim2i 616 Introduce conjunct to both...
anim12ii 617 Conjoin antecedents and co...
anim12dan 618 Conjoin antecedents and co...
im2anan9 619 Deduction joining nested i...
im2anan9r 620 Deduction joining nested i...
pm3.45 621 Theorem *3.45 (Fact) of [W...
anbi2i 622 Introduce a left conjunct ...
anbi1i 623 Introduce a right conjunct...
anbi2ci 624 Variant of ~ anbi2i with c...
anbi1ci 625 Variant of ~ anbi1i with c...
anbi12i 626 Conjoin both sides of two ...
anbi12ci 627 Variant of ~ anbi12i with ...
anbi2d 628 Deduction adding a left co...
anbi1d 629 Deduction adding a right c...
anbi12d 630 Deduction joining two equi...
anbi1 631 Introduce a right conjunct...
anbi2 632 Introduce a left conjunct ...
anbi1cd 633 Introduce a proposition as...
bianbi 634 Exchanging conjunction in ...
an2anr 635 Double commutation in conj...
pm4.38 636 Theorem *4.38 of [Whitehea...
bi2anan9 637 Deduction joining two equi...
bi2anan9r 638 Deduction joining two equi...
bi2bian9 639 Deduction joining two bico...
anbiim 640 Adding biconditional when ...
bianass 641 An inference to merge two ...
bianassc 642 An inference to merge two ...
an21 643 Swap two conjuncts. (Cont...
an12 644 Swap two conjuncts. Note ...
an32 645 A rearrangement of conjunc...
an13 646 A rearrangement of conjunc...
an31 647 A rearrangement of conjunc...
an12s 648 Swap two conjuncts in ante...
ancom2s 649 Inference commuting a nest...
an13s 650 Swap two conjuncts in ante...
an32s 651 Swap two conjuncts in ante...
ancom1s 652 Inference commuting a nest...
an31s 653 Swap two conjuncts in ante...
anass1rs 654 Commutative-associative la...
an4 655 Rearrangement of 4 conjunc...
an42 656 Rearrangement of 4 conjunc...
an43 657 Rearrangement of 4 conjunc...
an3 658 A rearrangement of conjunc...
an4s 659 Inference rearranging 4 co...
an42s 660 Inference rearranging 4 co...
anabs1 661 Absorption into embedded c...
anabs5 662 Absorption into embedded c...
anabs7 663 Absorption into embedded c...
anabsan 664 Absorption of antecedent w...
anabss1 665 Absorption of antecedent i...
anabss4 666 Absorption of antecedent i...
anabss5 667 Absorption of antecedent i...
anabsi5 668 Absorption of antecedent i...
anabsi6 669 Absorption of antecedent i...
anabsi7 670 Absorption of antecedent i...
anabsi8 671 Absorption of antecedent i...
anabss7 672 Absorption of antecedent i...
anabsan2 673 Absorption of antecedent w...
anabss3 674 Absorption of antecedent i...
anandi 675 Distribution of conjunctio...
anandir 676 Distribution of conjunctio...
anandis 677 Inference that undistribut...
anandirs 678 Inference that undistribut...
sylanl1 679 A syllogism inference. (C...
sylanl2 680 A syllogism inference. (C...
sylanr1 681 A syllogism inference. (C...
sylanr2 682 A syllogism inference. (C...
syl6an 683 A syllogism deduction comb...
syl2an2r 684 ~ syl2anr with antecedents...
syl2an2 685 ~ syl2an with antecedents ...
mpdan 686 An inference based on modu...
mpancom 687 An inference based on modu...
mpidan 688 A deduction which "stacks"...
mpan 689 An inference based on modu...
mpan2 690 An inference based on modu...
mp2an 691 An inference based on modu...
mp4an 692 An inference based on modu...
mpan2d 693 A deduction based on modus...
mpand 694 A deduction based on modus...
mpani 695 An inference based on modu...
mpan2i 696 An inference based on modu...
mp2ani 697 An inference based on modu...
mp2and 698 A deduction based on modus...
mpanl1 699 An inference based on modu...
mpanl2 700 An inference based on modu...
mpanl12 701 An inference based on modu...
mpanr1 702 An inference based on modu...
mpanr2 703 An inference based on modu...
mpanr12 704 An inference based on modu...
mpanlr1 705 An inference based on modu...
mpbirand 706 Detach truth from conjunct...
mpbiran2d 707 Detach truth from conjunct...
mpbiran 708 Detach truth from conjunct...
mpbiran2 709 Detach truth from conjunct...
mpbir2an 710 Detach a conjunction of tr...
mpbi2and 711 Detach a conjunction of tr...
mpbir2and 712 Detach a conjunction of tr...
adantll 713 Deduction adding a conjunc...
adantlr 714 Deduction adding a conjunc...
adantrl 715 Deduction adding a conjunc...
adantrr 716 Deduction adding a conjunc...
adantlll 717 Deduction adding a conjunc...
adantllr 718 Deduction adding a conjunc...
adantlrl 719 Deduction adding a conjunc...
adantlrr 720 Deduction adding a conjunc...
adantrll 721 Deduction adding a conjunc...
adantrlr 722 Deduction adding a conjunc...
adantrrl 723 Deduction adding a conjunc...
adantrrr 724 Deduction adding a conjunc...
ad2antrr 725 Deduction adding two conju...
ad2antlr 726 Deduction adding two conju...
ad2antrl 727 Deduction adding two conju...
ad2antll 728 Deduction adding conjuncts...
ad3antrrr 729 Deduction adding three con...
ad3antlr 730 Deduction adding three con...
ad4antr 731 Deduction adding 4 conjunc...
ad4antlr 732 Deduction adding 4 conjunc...
ad5antr 733 Deduction adding 5 conjunc...
ad5antlr 734 Deduction adding 5 conjunc...
ad6antr 735 Deduction adding 6 conjunc...
ad6antlr 736 Deduction adding 6 conjunc...
ad7antr 737 Deduction adding 7 conjunc...
ad7antlr 738 Deduction adding 7 conjunc...
ad8antr 739 Deduction adding 8 conjunc...
ad8antlr 740 Deduction adding 8 conjunc...
ad9antr 741 Deduction adding 9 conjunc...
ad9antlr 742 Deduction adding 9 conjunc...
ad10antr 743 Deduction adding 10 conjun...
ad10antlr 744 Deduction adding 10 conjun...
ad2ant2l 745 Deduction adding two conju...
ad2ant2r 746 Deduction adding two conju...
ad2ant2lr 747 Deduction adding two conju...
ad2ant2rl 748 Deduction adding two conju...
adantl3r 749 Deduction adding 1 conjunc...
ad4ant13 750 Deduction adding conjuncts...
ad4ant14 751 Deduction adding conjuncts...
ad4ant23 752 Deduction adding conjuncts...
ad4ant24 753 Deduction adding conjuncts...
adantl4r 754 Deduction adding 1 conjunc...
ad5ant12 755 Deduction adding conjuncts...
ad5ant13 756 Deduction adding conjuncts...
ad5ant14 757 Deduction adding conjuncts...
ad5ant15 758 Deduction adding conjuncts...
ad5ant23 759 Deduction adding conjuncts...
ad5ant24 760 Deduction adding conjuncts...
ad5ant25 761 Deduction adding conjuncts...
adantl5r 762 Deduction adding 1 conjunc...
adantl6r 763 Deduction adding 1 conjunc...
pm3.33 764 Theorem *3.33 (Syll) of [W...
pm3.34 765 Theorem *3.34 (Syll) of [W...
simpll 766 Simplification of a conjun...
simplld 767 Deduction form of ~ simpll...
simplr 768 Simplification of a conjun...
simplrd 769 Deduction eliminating a do...
simprl 770 Simplification of a conjun...
simprld 771 Deduction eliminating a do...
simprr 772 Simplification of a conjun...
simprrd 773 Deduction form of ~ simprr...
simplll 774 Simplification of a conjun...
simpllr 775 Simplification of a conjun...
simplrl 776 Simplification of a conjun...
simplrr 777 Simplification of a conjun...
simprll 778 Simplification of a conjun...
simprlr 779 Simplification of a conjun...
simprrl 780 Simplification of a conjun...
simprrr 781 Simplification of a conjun...
simp-4l 782 Simplification of a conjun...
simp-4r 783 Simplification of a conjun...
simp-5l 784 Simplification of a conjun...
simp-5r 785 Simplification of a conjun...
simp-6l 786 Simplification of a conjun...
simp-6r 787 Simplification of a conjun...
simp-7l 788 Simplification of a conjun...
simp-7r 789 Simplification of a conjun...
simp-8l 790 Simplification of a conjun...
simp-8r 791 Simplification of a conjun...
simp-9l 792 Simplification of a conjun...
simp-9r 793 Simplification of a conjun...
simp-10l 794 Simplification of a conjun...
simp-10r 795 Simplification of a conjun...
simp-11l 796 Simplification of a conjun...
simp-11r 797 Simplification of a conjun...
pm2.01da 798 Deduction based on reducti...
pm2.18da 799 Deduction based on reducti...
impbida 800 Deduce an equivalence from...
pm5.21nd 801 Eliminate an antecedent im...
pm3.35 802 Conjunctive detachment. T...
pm5.74da 803 Distribution of implicatio...
bitr 804 Theorem *4.22 of [Whitehea...
biantr 805 A transitive law of equiva...
pm4.14 806 Theorem *4.14 of [Whitehea...
pm3.37 807 Theorem *3.37 (Transp) of ...
anim12 808 Conjoin antecedents and co...
pm3.4 809 Conjunction implies implic...
exbiri 810 Inference form of ~ exbir ...
pm2.61ian 811 Elimination of an antecede...
pm2.61dan 812 Elimination of an antecede...
pm2.61ddan 813 Elimination of two anteced...
pm2.61dda 814 Elimination of two anteced...
mtand 815 A modus tollens deduction....
pm2.65da 816 Deduction for proof by con...
condan 817 Proof by contradiction. (...
biadan 818 An implication is equivale...
biadani 819 Inference associated with ...
biadaniALT 820 Alternate proof of ~ biada...
biadanii 821 Inference associated with ...
biadanid 822 Deduction associated with ...
pm5.1 823 Two propositions are equiv...
pm5.21 824 Two propositions are equiv...
pm5.35 825 Theorem *5.35 of [Whitehea...
abai 826 Introduce one conjunct as ...
pm4.45im 827 Conjunction with implicati...
impimprbi 828 An implication and its rev...
nan 829 Theorem to move a conjunct...
pm5.31 830 Theorem *5.31 of [Whitehea...
pm5.31r 831 Variant of ~ pm5.31 . (Co...
pm4.15 832 Theorem *4.15 of [Whitehea...
pm5.36 833 Theorem *5.36 of [Whitehea...
annotanannot 834 A conjunction with a negat...
pm5.33 835 Theorem *5.33 of [Whitehea...
syl12anc 836 Syllogism combined with co...
syl21anc 837 Syllogism combined with co...
syl22anc 838 Syllogism combined with co...
syl1111anc 839 Four-hypothesis eliminatio...
syldbl2 840 Stacked hypotheseis implie...
mpsyl4anc 841 An elimination deduction. ...
pm4.87 842 Theorem *4.87 of [Whitehea...
bimsc1 843 Removal of conjunct from o...
a2and 844 Deduction distributing a c...
animpimp2impd 845 Deduction deriving nested ...
pm4.64 848 Theorem *4.64 of [Whitehea...
pm4.66 849 Theorem *4.66 of [Whitehea...
pm2.53 850 Theorem *2.53 of [Whitehea...
pm2.54 851 Theorem *2.54 of [Whitehea...
imor 852 Implication in terms of di...
imori 853 Infer disjunction from imp...
imorri 854 Infer implication from dis...
pm4.62 855 Theorem *4.62 of [Whitehea...
jaoi 856 Inference disjoining the a...
jao1i 857 Add a disjunct in the ante...
jaod 858 Deduction disjoining the a...
mpjaod 859 Eliminate a disjunction in...
ori 860 Infer implication from dis...
orri 861 Infer disjunction from imp...
orrd 862 Deduce disjunction from im...
ord 863 Deduce implication from di...
orci 864 Deduction introducing a di...
olci 865 Deduction introducing a di...
orc 866 Introduction of a disjunct...
olc 867 Introduction of a disjunct...
pm1.4 868 Axiom *1.4 of [WhiteheadRu...
orcom 869 Commutative law for disjun...
orcomd 870 Commutation of disjuncts i...
orcoms 871 Commutation of disjuncts i...
orcd 872 Deduction introducing a di...
olcd 873 Deduction introducing a di...
orcs 874 Deduction eliminating disj...
olcs 875 Deduction eliminating disj...
olcnd 876 A lemma for Conjunctive No...
orcnd 877 A lemma for Conjunctive No...
mtord 878 A modus tollens deduction ...
pm3.2ni 879 Infer negated disjunction ...
pm2.45 880 Theorem *2.45 of [Whitehea...
pm2.46 881 Theorem *2.46 of [Whitehea...
pm2.47 882 Theorem *2.47 of [Whitehea...
pm2.48 883 Theorem *2.48 of [Whitehea...
pm2.49 884 Theorem *2.49 of [Whitehea...
norbi 885 If neither of two proposit...
nbior 886 If two propositions are no...
orel1 887 Elimination of disjunction...
pm2.25 888 Theorem *2.25 of [Whitehea...
orel2 889 Elimination of disjunction...
pm2.67-2 890 Slight generalization of T...
pm2.67 891 Theorem *2.67 of [Whitehea...
curryax 892 A non-intuitionistic posit...
exmid 893 Law of excluded middle, al...
exmidd 894 Law of excluded middle in ...
pm2.1 895 Theorem *2.1 of [Whitehead...
pm2.13 896 Theorem *2.13 of [Whitehea...
pm2.621 897 Theorem *2.621 of [Whitehe...
pm2.62 898 Theorem *2.62 of [Whitehea...
pm2.68 899 Theorem *2.68 of [Whitehea...
dfor2 900 Logical 'or' expressed in ...
pm2.07 901 Theorem *2.07 of [Whitehea...
pm1.2 902 Axiom *1.2 of [WhiteheadRu...
oridm 903 Idempotent law for disjunc...
pm4.25 904 Theorem *4.25 of [Whitehea...
pm2.4 905 Theorem *2.4 of [Whitehead...
pm2.41 906 Theorem *2.41 of [Whitehea...
orim12i 907 Disjoin antecedents and co...
orim1i 908 Introduce disjunct to both...
orim2i 909 Introduce disjunct to both...
orim12dALT 910 Alternate proof of ~ orim1...
orbi2i 911 Inference adding a left di...
orbi1i 912 Inference adding a right d...
orbi12i 913 Infer the disjunction of t...
orbi2d 914 Deduction adding a left di...
orbi1d 915 Deduction adding a right d...
orbi1 916 Theorem *4.37 of [Whitehea...
orbi12d 917 Deduction joining two equi...
pm1.5 918 Axiom *1.5 (Assoc) of [Whi...
or12 919 Swap two disjuncts. (Cont...
orass 920 Associative law for disjun...
pm2.31 921 Theorem *2.31 of [Whitehea...
pm2.32 922 Theorem *2.32 of [Whitehea...
pm2.3 923 Theorem *2.3 of [Whitehead...
or32 924 A rearrangement of disjunc...
or4 925 Rearrangement of 4 disjunc...
or42 926 Rearrangement of 4 disjunc...
orordi 927 Distribution of disjunctio...
orordir 928 Distribution of disjunctio...
orimdi 929 Disjunction distributes ov...
pm2.76 930 Theorem *2.76 of [Whitehea...
pm2.85 931 Theorem *2.85 of [Whitehea...
pm2.75 932 Theorem *2.75 of [Whitehea...
pm4.78 933 Implication distributes ov...
biort 934 A disjunction with a true ...
biorf 935 A wff is equivalent to its...
biortn 936 A wff is equivalent to its...
biorfi 937 A wff is equivalent to its...
pm2.26 938 Theorem *2.26 of [Whitehea...
pm2.63 939 Theorem *2.63 of [Whitehea...
pm2.64 940 Theorem *2.64 of [Whitehea...
pm2.42 941 Theorem *2.42 of [Whitehea...
pm5.11g 942 A general instance of Theo...
pm5.11 943 Theorem *5.11 of [Whitehea...
pm5.12 944 Theorem *5.12 of [Whitehea...
pm5.14 945 Theorem *5.14 of [Whitehea...
pm5.13 946 Theorem *5.13 of [Whitehea...
pm5.55 947 Theorem *5.55 of [Whitehea...
pm4.72 948 Implication in terms of bi...
imimorb 949 Simplify an implication be...
oibabs 950 Absorption of disjunction ...
orbidi 951 Disjunction distributes ov...
pm5.7 952 Disjunction distributes ov...
jaao 953 Inference conjoining and d...
jaoa 954 Inference disjoining and c...
jaoian 955 Inference disjoining the a...
jaodan 956 Deduction disjoining the a...
mpjaodan 957 Eliminate a disjunction in...
pm3.44 958 Theorem *3.44 of [Whitehea...
jao 959 Disjunction of antecedents...
jaob 960 Disjunction of antecedents...
pm4.77 961 Theorem *4.77 of [Whitehea...
pm3.48 962 Theorem *3.48 of [Whitehea...
orim12d 963 Disjoin antecedents and co...
orim1d 964 Disjoin antecedents and co...
orim2d 965 Disjoin antecedents and co...
orim2 966 Axiom *1.6 (Sum) of [White...
pm2.38 967 Theorem *2.38 of [Whitehea...
pm2.36 968 Theorem *2.36 of [Whitehea...
pm2.37 969 Theorem *2.37 of [Whitehea...
pm2.81 970 Theorem *2.81 of [Whitehea...
pm2.8 971 Theorem *2.8 of [Whitehead...
pm2.73 972 Theorem *2.73 of [Whitehea...
pm2.74 973 Theorem *2.74 of [Whitehea...
pm2.82 974 Theorem *2.82 of [Whitehea...
pm4.39 975 Theorem *4.39 of [Whitehea...
animorl 976 Conjunction implies disjun...
animorr 977 Conjunction implies disjun...
animorlr 978 Conjunction implies disjun...
animorrl 979 Conjunction implies disjun...
ianor 980 Negated conjunction in ter...
anor 981 Conjunction in terms of di...
ioran 982 Negated disjunction in ter...
pm4.52 983 Theorem *4.52 of [Whitehea...
pm4.53 984 Theorem *4.53 of [Whitehea...
pm4.54 985 Theorem *4.54 of [Whitehea...
pm4.55 986 Theorem *4.55 of [Whitehea...
pm4.56 987 Theorem *4.56 of [Whitehea...
oran 988 Disjunction in terms of co...
pm4.57 989 Theorem *4.57 of [Whitehea...
pm3.1 990 Theorem *3.1 of [Whitehead...
pm3.11 991 Theorem *3.11 of [Whitehea...
pm3.12 992 Theorem *3.12 of [Whitehea...
pm3.13 993 Theorem *3.13 of [Whitehea...
pm3.14 994 Theorem *3.14 of [Whitehea...
pm4.44 995 Theorem *4.44 of [Whitehea...
pm4.45 996 Theorem *4.45 of [Whitehea...
orabs 997 Absorption of redundant in...
oranabs 998 Absorb a disjunct into a c...
pm5.61 999 Theorem *5.61 of [Whitehea...
pm5.6 1000 Conjunction in antecedent ...
orcanai 1001 Change disjunction in cons...
pm4.79 1002 Theorem *4.79 of [Whitehea...
pm5.53 1003 Theorem *5.53 of [Whitehea...
ordi 1004 Distributive law for disju...
ordir 1005 Distributive law for disju...
andi 1006 Distributive law for conju...
andir 1007 Distributive law for conju...
orddi 1008 Double distributive law fo...
anddi 1009 Double distributive law fo...
pm5.17 1010 Theorem *5.17 of [Whitehea...
pm5.15 1011 Theorem *5.15 of [Whitehea...
pm5.16 1012 Theorem *5.16 of [Whitehea...
xor 1013 Two ways to express exclus...
nbi2 1014 Two ways to express "exclu...
xordi 1015 Conjunction distributes ov...
pm5.54 1016 Theorem *5.54 of [Whitehea...
pm5.62 1017 Theorem *5.62 of [Whitehea...
pm5.63 1018 Theorem *5.63 of [Whitehea...
niabn 1019 Miscellaneous inference re...
ninba 1020 Miscellaneous inference re...
pm4.43 1021 Theorem *4.43 of [Whitehea...
pm4.82 1022 Theorem *4.82 of [Whitehea...
pm4.83 1023 Theorem *4.83 of [Whitehea...
pclem6 1024 Negation inferred from emb...
bigolden 1025 Dijkstra-Scholten's Golden...
pm5.71 1026 Theorem *5.71 of [Whitehea...
pm5.75 1027 Theorem *5.75 of [Whitehea...
ecase2d 1028 Deduction for elimination ...
ecase2dOLD 1029 Obsolete version of ~ ecas...
ecase3 1030 Inference for elimination ...
ecase 1031 Inference for elimination ...
ecase3d 1032 Deduction for elimination ...
ecased 1033 Deduction for elimination ...
ecase3ad 1034 Deduction for elimination ...
ecase3adOLD 1035 Obsolete version of ~ ecas...
ccase 1036 Inference for combining ca...
ccased 1037 Deduction for combining ca...
ccase2 1038 Inference for combining ca...
4cases 1039 Inference eliminating two ...
4casesdan 1040 Deduction eliminating two ...
cases 1041 Case disjunction according...
dedlem0a 1042 Lemma for an alternate ver...
dedlem0b 1043 Lemma for an alternate ver...
dedlema 1044 Lemma for weak deduction t...
dedlemb 1045 Lemma for weak deduction t...
cases2 1046 Case disjunction according...
cases2ALT 1047 Alternate proof of ~ cases...
dfbi3 1048 An alternate definition of...
pm5.24 1049 Theorem *5.24 of [Whitehea...
4exmid 1050 The disjunction of the fou...
consensus 1051 The consensus theorem. Th...
pm4.42 1052 Theorem *4.42 of [Whitehea...
prlem1 1053 A specialized lemma for se...
prlem2 1054 A specialized lemma for se...
oplem1 1055 A specialized lemma for se...
dn1 1056 A single axiom for Boolean...
bianir 1057 A closed form of ~ mpbir ,...
jaoi2 1058 Inference removing a negat...
jaoi3 1059 Inference separating a dis...
ornld 1060 Selecting one statement fr...
dfifp2 1063 Alternate definition of th...
dfifp3 1064 Alternate definition of th...
dfifp4 1065 Alternate definition of th...
dfifp5 1066 Alternate definition of th...
dfifp6 1067 Alternate definition of th...
dfifp7 1068 Alternate definition of th...
ifpdfbi 1069 Define the biconditional a...
anifp 1070 The conditional operator i...
ifpor 1071 The conditional operator i...
ifpn 1072 Conditional operator for t...
ifptru 1073 Value of the conditional o...
ifpfal 1074 Value of the conditional o...
ifpid 1075 Value of the conditional o...
casesifp 1076 Version of ~ cases express...
ifpbi123d 1077 Equivalence deduction for ...
ifpbi23d 1078 Equivalence deduction for ...
ifpimpda 1079 Separation of the values o...
1fpid3 1080 The value of the condition...
elimh 1081 Hypothesis builder for the...
dedt 1082 The weak deduction theorem...
con3ALT 1083 Proof of ~ con3 from its a...
3orass 1088 Associative law for triple...
3orel1 1089 Partial elimination of a t...
3orrot 1090 Rotation law for triple di...
3orcoma 1091 Commutation law for triple...
3orcomb 1092 Commutation law for triple...
3anass 1093 Associative law for triple...
3anan12 1094 Convert triple conjunction...
3anan32 1095 Convert triple conjunction...
3ancoma 1096 Commutation law for triple...
3ancomb 1097 Commutation law for triple...
3anrot 1098 Rotation law for triple co...
3anrev 1099 Reversal law for triple co...
anandi3 1100 Distribution of triple con...
anandi3r 1101 Distribution of triple con...
3anidm 1102 Idempotent law for conjunc...
3an4anass 1103 Associative law for four c...
3ioran 1104 Negated triple disjunction...
3ianor 1105 Negated triple conjunction...
3anor 1106 Triple conjunction express...
3oran 1107 Triple disjunction in term...
3impa 1108 Importation from double to...
3imp 1109 Importation inference. (C...
3imp31 1110 The importation inference ...
3imp231 1111 Importation inference. (C...
3imp21 1112 The importation inference ...
3impb 1113 Importation from double to...
3impib 1114 Importation to triple conj...
3impia 1115 Importation to triple conj...
3expa 1116 Exportation from triple to...
3exp 1117 Exportation inference. (C...
3expb 1118 Exportation from triple to...
3expia 1119 Exportation from triple co...
3expib 1120 Exportation from triple co...
3com12 1121 Commutation in antecedent....
3com13 1122 Commutation in antecedent....
3comr 1123 Commutation in antecedent....
3com23 1124 Commutation in antecedent....
3coml 1125 Commutation in antecedent....
3jca 1126 Join consequents with conj...
3jcad 1127 Deduction conjoining the c...
3adant1 1128 Deduction adding a conjunc...
3adant2 1129 Deduction adding a conjunc...
3adant3 1130 Deduction adding a conjunc...
3ad2ant1 1131 Deduction adding conjuncts...
3ad2ant2 1132 Deduction adding conjuncts...
3ad2ant3 1133 Deduction adding conjuncts...
simp1 1134 Simplification of triple c...
simp2 1135 Simplification of triple c...
simp3 1136 Simplification of triple c...
simp1i 1137 Infer a conjunct from a tr...
simp2i 1138 Infer a conjunct from a tr...
simp3i 1139 Infer a conjunct from a tr...
simp1d 1140 Deduce a conjunct from a t...
simp2d 1141 Deduce a conjunct from a t...
simp3d 1142 Deduce a conjunct from a t...
simp1bi 1143 Deduce a conjunct from a t...
simp2bi 1144 Deduce a conjunct from a t...
simp3bi 1145 Deduce a conjunct from a t...
3simpa 1146 Simplification of triple c...
3simpb 1147 Simplification of triple c...
3simpc 1148 Simplification of triple c...
3anim123i 1149 Join antecedents and conse...
3anim1i 1150 Add two conjuncts to antec...
3anim2i 1151 Add two conjuncts to antec...
3anim3i 1152 Add two conjuncts to antec...
3anbi123i 1153 Join 3 biconditionals with...
3orbi123i 1154 Join 3 biconditionals with...
3anbi1i 1155 Inference adding two conju...
3anbi2i 1156 Inference adding two conju...
3anbi3i 1157 Inference adding two conju...
syl3an 1158 A triple syllogism inferen...
syl3anb 1159 A triple syllogism inferen...
syl3anbr 1160 A triple syllogism inferen...
syl3an1 1161 A syllogism inference. (C...
syl3an2 1162 A syllogism inference. (C...
syl3an3 1163 A syllogism inference. (C...
3adantl1 1164 Deduction adding a conjunc...
3adantl2 1165 Deduction adding a conjunc...
3adantl3 1166 Deduction adding a conjunc...
3adantr1 1167 Deduction adding a conjunc...
3adantr2 1168 Deduction adding a conjunc...
3adantr3 1169 Deduction adding a conjunc...
ad4ant123 1170 Deduction adding conjuncts...
ad4ant124 1171 Deduction adding conjuncts...
ad4ant134 1172 Deduction adding conjuncts...
ad4ant234 1173 Deduction adding conjuncts...
3adant1l 1174 Deduction adding a conjunc...
3adant1r 1175 Deduction adding a conjunc...
3adant2l 1176 Deduction adding a conjunc...
3adant2r 1177 Deduction adding a conjunc...
3adant3l 1178 Deduction adding a conjunc...
3adant3r 1179 Deduction adding a conjunc...
3adant3r1 1180 Deduction adding a conjunc...
3adant3r2 1181 Deduction adding a conjunc...
3adant3r3 1182 Deduction adding a conjunc...
3ad2antl1 1183 Deduction adding conjuncts...
3ad2antl2 1184 Deduction adding conjuncts...
3ad2antl3 1185 Deduction adding conjuncts...
3ad2antr1 1186 Deduction adding conjuncts...
3ad2antr2 1187 Deduction adding conjuncts...
3ad2antr3 1188 Deduction adding conjuncts...
simpl1 1189 Simplification of conjunct...
simpl2 1190 Simplification of conjunct...
simpl3 1191 Simplification of conjunct...
simpr1 1192 Simplification of conjunct...
simpr2 1193 Simplification of conjunct...
simpr3 1194 Simplification of conjunct...
simp1l 1195 Simplification of triple c...
simp1r 1196 Simplification of triple c...
simp2l 1197 Simplification of triple c...
simp2r 1198 Simplification of triple c...
simp3l 1199 Simplification of triple c...
simp3r 1200 Simplification of triple c...
simp11 1201 Simplification of doubly t...
simp12 1202 Simplification of doubly t...
simp13 1203 Simplification of doubly t...
simp21 1204 Simplification of doubly t...
simp22 1205 Simplification of doubly t...
simp23 1206 Simplification of doubly t...
simp31 1207 Simplification of doubly t...
simp32 1208 Simplification of doubly t...
simp33 1209 Simplification of doubly t...
simpll1 1210 Simplification of conjunct...
simpll2 1211 Simplification of conjunct...
simpll3 1212 Simplification of conjunct...
simplr1 1213 Simplification of conjunct...
simplr2 1214 Simplification of conjunct...
simplr3 1215 Simplification of conjunct...
simprl1 1216 Simplification of conjunct...
simprl2 1217 Simplification of conjunct...
simprl3 1218 Simplification of conjunct...
simprr1 1219 Simplification of conjunct...
simprr2 1220 Simplification of conjunct...
simprr3 1221 Simplification of conjunct...
simpl1l 1222 Simplification of conjunct...
simpl1r 1223 Simplification of conjunct...
simpl2l 1224 Simplification of conjunct...
simpl2r 1225 Simplification of conjunct...
simpl3l 1226 Simplification of conjunct...
simpl3r 1227 Simplification of conjunct...
simpr1l 1228 Simplification of conjunct...
simpr1r 1229 Simplification of conjunct...
simpr2l 1230 Simplification of conjunct...
simpr2r 1231 Simplification of conjunct...
simpr3l 1232 Simplification of conjunct...
simpr3r 1233 Simplification of conjunct...
simp1ll 1234 Simplification of conjunct...
simp1lr 1235 Simplification of conjunct...
simp1rl 1236 Simplification of conjunct...
simp1rr 1237 Simplification of conjunct...
simp2ll 1238 Simplification of conjunct...
simp2lr 1239 Simplification of conjunct...
simp2rl 1240 Simplification of conjunct...
simp2rr 1241 Simplification of conjunct...
simp3ll 1242 Simplification of conjunct...
simp3lr 1243 Simplification of conjunct...
simp3rl 1244 Simplification of conjunct...
simp3rr 1245 Simplification of conjunct...
simpl11 1246 Simplification of conjunct...
simpl12 1247 Simplification of conjunct...
simpl13 1248 Simplification of conjunct...
simpl21 1249 Simplification of conjunct...
simpl22 1250 Simplification of conjunct...
simpl23 1251 Simplification of conjunct...
simpl31 1252 Simplification of conjunct...
simpl32 1253 Simplification of conjunct...
simpl33 1254 Simplification of conjunct...
simpr11 1255 Simplification of conjunct...
simpr12 1256 Simplification of conjunct...
simpr13 1257 Simplification of conjunct...
simpr21 1258 Simplification of conjunct...
simpr22 1259 Simplification of conjunct...
simpr23 1260 Simplification of conjunct...
simpr31 1261 Simplification of conjunct...
simpr32 1262 Simplification of conjunct...
simpr33 1263 Simplification of conjunct...
simp1l1 1264 Simplification of conjunct...
simp1l2 1265 Simplification of conjunct...
simp1l3 1266 Simplification of conjunct...
simp1r1 1267 Simplification of conjunct...
simp1r2 1268 Simplification of conjunct...
simp1r3 1269 Simplification of conjunct...
simp2l1 1270 Simplification of conjunct...
simp2l2 1271 Simplification of conjunct...
simp2l3 1272 Simplification of conjunct...
simp2r1 1273 Simplification of conjunct...
simp2r2 1274 Simplification of conjunct...
simp2r3 1275 Simplification of conjunct...
simp3l1 1276 Simplification of conjunct...
simp3l2 1277 Simplification of conjunct...
simp3l3 1278 Simplification of conjunct...
simp3r1 1279 Simplification of conjunct...
simp3r2 1280 Simplification of conjunct...
simp3r3 1281 Simplification of conjunct...
simp11l 1282 Simplification of conjunct...
simp11r 1283 Simplification of conjunct...
simp12l 1284 Simplification of conjunct...
simp12r 1285 Simplification of conjunct...
simp13l 1286 Simplification of conjunct...
simp13r 1287 Simplification of conjunct...
simp21l 1288 Simplification of conjunct...
simp21r 1289 Simplification of conjunct...
simp22l 1290 Simplification of conjunct...
simp22r 1291 Simplification of conjunct...
simp23l 1292 Simplification of conjunct...
simp23r 1293 Simplification of conjunct...
simp31l 1294 Simplification of conjunct...
simp31r 1295 Simplification of conjunct...
simp32l 1296 Simplification of conjunct...
simp32r 1297 Simplification of conjunct...
simp33l 1298 Simplification of conjunct...
simp33r 1299 Simplification of conjunct...
simp111 1300 Simplification of conjunct...
simp112 1301 Simplification of conjunct...
simp113 1302 Simplification of conjunct...
simp121 1303 Simplification of conjunct...
simp122 1304 Simplification of conjunct...
simp123 1305 Simplification of conjunct...
simp131 1306 Simplification of conjunct...
simp132 1307 Simplification of conjunct...
simp133 1308 Simplification of conjunct...
simp211 1309 Simplification of conjunct...
simp212 1310 Simplification of conjunct...
simp213 1311 Simplification of conjunct...
simp221 1312 Simplification of conjunct...
simp222 1313 Simplification of conjunct...
simp223 1314 Simplification of conjunct...
simp231 1315 Simplification of conjunct...
simp232 1316 Simplification of conjunct...
simp233 1317 Simplification of conjunct...
simp311 1318 Simplification of conjunct...
simp312 1319 Simplification of conjunct...
simp313 1320 Simplification of conjunct...
simp321 1321 Simplification of conjunct...
simp322 1322 Simplification of conjunct...
simp323 1323 Simplification of conjunct...
simp331 1324 Simplification of conjunct...
simp332 1325 Simplification of conjunct...
simp333 1326 Simplification of conjunct...
3anibar 1327 Remove a hypothesis from t...
3mix1 1328 Introduction in triple dis...
3mix2 1329 Introduction in triple dis...
3mix3 1330 Introduction in triple dis...
3mix1i 1331 Introduction in triple dis...
3mix2i 1332 Introduction in triple dis...
3mix3i 1333 Introduction in triple dis...
3mix1d 1334 Deduction introducing trip...
3mix2d 1335 Deduction introducing trip...
3mix3d 1336 Deduction introducing trip...
3pm3.2i 1337 Infer conjunction of premi...
pm3.2an3 1338 Version of ~ pm3.2 for a t...
mpbir3an 1339 Detach a conjunction of tr...
mpbir3and 1340 Detach a conjunction of tr...
syl3anbrc 1341 Syllogism inference. (Con...
syl21anbrc 1342 Syllogism inference. (Con...
3imp3i2an 1343 An elimination deduction. ...
ex3 1344 Apply ~ ex to a hypothesis...
3imp1 1345 Importation to left triple...
3impd 1346 Importation deduction for ...
3imp2 1347 Importation to right tripl...
3impdi 1348 Importation inference (und...
3impdir 1349 Importation inference (und...
3exp1 1350 Exportation from left trip...
3expd 1351 Exportation deduction for ...
3exp2 1352 Exportation from right tri...
exp5o 1353 A triple exportation infer...
exp516 1354 A triple exportation infer...
exp520 1355 A triple exportation infer...
3impexp 1356 Version of ~ impexp for a ...
3an1rs 1357 Swap conjuncts. (Contribu...
3anassrs 1358 Associative law for conjun...
ad5ant245 1359 Deduction adding conjuncts...
ad5ant234 1360 Deduction adding conjuncts...
ad5ant235 1361 Deduction adding conjuncts...
ad5ant123 1362 Deduction adding conjuncts...
ad5ant124 1363 Deduction adding conjuncts...
ad5ant125 1364 Deduction adding conjuncts...
ad5ant134 1365 Deduction adding conjuncts...
ad5ant135 1366 Deduction adding conjuncts...
ad5ant145 1367 Deduction adding conjuncts...
ad5ant2345 1368 Deduction adding conjuncts...
syl3anc 1369 Syllogism combined with co...
syl13anc 1370 Syllogism combined with co...
syl31anc 1371 Syllogism combined with co...
syl112anc 1372 Syllogism combined with co...
syl121anc 1373 Syllogism combined with co...
syl211anc 1374 Syllogism combined with co...
syl23anc 1375 Syllogism combined with co...
syl32anc 1376 Syllogism combined with co...
syl122anc 1377 Syllogism combined with co...
syl212anc 1378 Syllogism combined with co...
syl221anc 1379 Syllogism combined with co...
syl113anc 1380 Syllogism combined with co...
syl131anc 1381 Syllogism combined with co...
syl311anc 1382 Syllogism combined with co...
syl33anc 1383 Syllogism combined with co...
syl222anc 1384 Syllogism combined with co...
syl123anc 1385 Syllogism combined with co...
syl132anc 1386 Syllogism combined with co...
syl213anc 1387 Syllogism combined with co...
syl231anc 1388 Syllogism combined with co...
syl312anc 1389 Syllogism combined with co...
syl321anc 1390 Syllogism combined with co...
syl133anc 1391 Syllogism combined with co...
syl313anc 1392 Syllogism combined with co...
syl331anc 1393 Syllogism combined with co...
syl223anc 1394 Syllogism combined with co...
syl232anc 1395 Syllogism combined with co...
syl322anc 1396 Syllogism combined with co...
syl233anc 1397 Syllogism combined with co...
syl323anc 1398 Syllogism combined with co...
syl332anc 1399 Syllogism combined with co...
syl333anc 1400 A syllogism inference comb...
syl3an1b 1401 A syllogism inference. (C...
syl3an2b 1402 A syllogism inference. (C...
syl3an3b 1403 A syllogism inference. (C...
syl3an1br 1404 A syllogism inference. (C...
syl3an2br 1405 A syllogism inference. (C...
syl3an3br 1406 A syllogism inference. (C...
syld3an3 1407 A syllogism inference. (C...
syld3an1 1408 A syllogism inference. (C...
syld3an2 1409 A syllogism inference. (C...
syl3anl1 1410 A syllogism inference. (C...
syl3anl2 1411 A syllogism inference. (C...
syl3anl3 1412 A syllogism inference. (C...
syl3anl 1413 A triple syllogism inferen...
syl3anr1 1414 A syllogism inference. (C...
syl3anr2 1415 A syllogism inference. (C...
syl3anr3 1416 A syllogism inference. (C...
3anidm12 1417 Inference from idempotent ...
3anidm13 1418 Inference from idempotent ...
3anidm23 1419 Inference from idempotent ...
syl2an3an 1420 ~ syl3an with antecedents ...
syl2an23an 1421 Deduction related to ~ syl...
3ori 1422 Infer implication from tri...
3jao 1423 Disjunction of three antec...
3jaob 1424 Disjunction of three antec...
3jaoi 1425 Disjunction of three antec...
3jaod 1426 Disjunction of three antec...
3jaoian 1427 Disjunction of three antec...
3jaodan 1428 Disjunction of three antec...
mpjao3dan 1429 Eliminate a three-way disj...
3jaao 1430 Inference conjoining and d...
syl3an9b 1431 Nested syllogism inference...
3orbi123d 1432 Deduction joining 3 equiva...
3anbi123d 1433 Deduction joining 3 equiva...
3anbi12d 1434 Deduction conjoining and a...
3anbi13d 1435 Deduction conjoining and a...
3anbi23d 1436 Deduction conjoining and a...
3anbi1d 1437 Deduction adding conjuncts...
3anbi2d 1438 Deduction adding conjuncts...
3anbi3d 1439 Deduction adding conjuncts...
3anim123d 1440 Deduction joining 3 implic...
3orim123d 1441 Deduction joining 3 implic...
an6 1442 Rearrangement of 6 conjunc...
3an6 1443 Analogue of ~ an4 for trip...
3or6 1444 Analogue of ~ or4 for trip...
mp3an1 1445 An inference based on modu...
mp3an2 1446 An inference based on modu...
mp3an3 1447 An inference based on modu...
mp3an12 1448 An inference based on modu...
mp3an13 1449 An inference based on modu...
mp3an23 1450 An inference based on modu...
mp3an1i 1451 An inference based on modu...
mp3anl1 1452 An inference based on modu...
mp3anl2 1453 An inference based on modu...
mp3anl3 1454 An inference based on modu...
mp3anr1 1455 An inference based on modu...
mp3anr2 1456 An inference based on modu...
mp3anr3 1457 An inference based on modu...
mp3an 1458 An inference based on modu...
mpd3an3 1459 An inference based on modu...
mpd3an23 1460 An inference based on modu...
mp3and 1461 A deduction based on modus...
mp3an12i 1462 ~ mp3an with antecedents i...
mp3an2i 1463 ~ mp3an with antecedents i...
mp3an3an 1464 ~ mp3an with antecedents i...
mp3an2ani 1465 An elimination deduction. ...
biimp3a 1466 Infer implication from a l...
biimp3ar 1467 Infer implication from a l...
3anandis 1468 Inference that undistribut...
3anandirs 1469 Inference that undistribut...
ecase23d 1470 Deduction for elimination ...
3ecase 1471 Inference for elimination ...
3bior1fd 1472 A disjunction is equivalen...
3bior1fand 1473 A disjunction is equivalen...
3bior2fd 1474 A wff is equivalent to its...
3biant1d 1475 A conjunction is equivalen...
intn3an1d 1476 Introduction of a triple c...
intn3an2d 1477 Introduction of a triple c...
intn3an3d 1478 Introduction of a triple c...
an3andi 1479 Distribution of conjunctio...
an33rean 1480 Rearrange a 9-fold conjunc...
3orel2 1481 Partial elimination of a t...
3orel3 1482 Partial elimination of a t...
3orel13 1483 Elimination of two disjunc...
3pm3.2ni 1484 Triple negated disjunction...
nanan 1487 Conjunction in terms of al...
dfnan2 1488 Alternative denial in term...
nanor 1489 Alternative denial in term...
nancom 1490 Alternative denial is comm...
nannan 1491 Nested alternative denials...
nanim 1492 Implication in terms of al...
nannot 1493 Negation in terms of alter...
nanbi 1494 Biconditional in terms of ...
nanbi1 1495 Introduce a right anti-con...
nanbi2 1496 Introduce a left anti-conj...
nanbi12 1497 Join two logical equivalen...
nanbi1i 1498 Introduce a right anti-con...
nanbi2i 1499 Introduce a left anti-conj...
nanbi12i 1500 Join two logical equivalen...
nanbi1d 1501 Introduce a right anti-con...
nanbi2d 1502 Introduce a left anti-conj...
nanbi12d 1503 Join two logical equivalen...
nanass 1504 A characterization of when...
xnor 1507 Two ways to write XNOR (ex...
xorcom 1508 The connector ` \/_ ` is c...
xorass 1509 The connector ` \/_ ` is a...
excxor 1510 This tautology shows that ...
xor2 1511 Two ways to express "exclu...
xoror 1512 Exclusive disjunction impl...
xornan 1513 Exclusive disjunction impl...
xornan2 1514 XOR implies NAND (written ...
xorneg2 1515 The connector ` \/_ ` is n...
xorneg1 1516 The connector ` \/_ ` is n...
xorneg 1517 The connector ` \/_ ` is u...
xorbi12i 1518 Equality property for excl...
xorbi12d 1519 Equality property for excl...
anxordi 1520 Conjunction distributes ov...
xorexmid 1521 Exclusive-or variant of th...
norcom 1524 The connector ` -\/ ` is c...
nornot 1525 ` -. ` is expressible via ...
noran 1526 ` /\ ` is expressible via ...
noror 1527 ` \/ ` is expressible via ...
norasslem1 1528 This lemma shows the equiv...
norasslem2 1529 This lemma specializes ~ b...
norasslem3 1530 This lemma specializes ~ b...
norass 1531 A characterization of when...
trujust 1536 Soundness justification th...
tru 1538 The truth value ` T. ` is ...
dftru2 1539 An alternate definition of...
trut 1540 A proposition is equivalen...
mptru 1541 Eliminate ` T. ` as an ant...
tbtru 1542 A proposition is equivalen...
bitru 1543 A theorem is equivalent to...
trud 1544 Anything implies ` T. ` . ...
truan 1545 True can be removed from a...
fal 1548 The truth value ` F. ` is ...
nbfal 1549 The negation of a proposit...
bifal 1550 A contradiction is equival...
falim 1551 The truth value ` F. ` imp...
falimd 1552 The truth value ` F. ` imp...
dfnot 1553 Given falsum ` F. ` , we c...
inegd 1554 Negation introduction rule...
efald 1555 Deduction based on reducti...
pm2.21fal 1556 If a wff and its negation ...
truimtru 1557 A ` -> ` identity. (Contr...
truimfal 1558 A ` -> ` identity. (Contr...
falimtru 1559 A ` -> ` identity. (Contr...
falimfal 1560 A ` -> ` identity. (Contr...
nottru 1561 A ` -. ` identity. (Contr...
notfal 1562 A ` -. ` identity. (Contr...
trubitru 1563 A ` <-> ` identity. (Cont...
falbitru 1564 A ` <-> ` identity. (Cont...
trubifal 1565 A ` <-> ` identity. (Cont...
falbifal 1566 A ` <-> ` identity. (Cont...
truantru 1567 A ` /\ ` identity. (Contr...
truanfal 1568 A ` /\ ` identity. (Contr...
falantru 1569 A ` /\ ` identity. (Contr...
falanfal 1570 A ` /\ ` identity. (Contr...
truortru 1571 A ` \/ ` identity. (Contr...
truorfal 1572 A ` \/ ` identity. (Contr...
falortru 1573 A ` \/ ` identity. (Contr...
falorfal 1574 A ` \/ ` identity. (Contr...
trunantru 1575 A ` -/\ ` identity. (Cont...
trunanfal 1576 A ` -/\ ` identity. (Cont...
falnantru 1577 A ` -/\ ` identity. (Cont...
falnanfal 1578 A ` -/\ ` identity. (Cont...
truxortru 1579 A ` \/_ ` identity. (Cont...
truxorfal 1580 A ` \/_ ` identity. (Cont...
falxortru 1581 A ` \/_ ` identity. (Cont...
falxorfal 1582 A ` \/_ ` identity. (Cont...
trunortru 1583 A ` -\/ ` identity. (Cont...
trunorfal 1584 A ` -\/ ` identity. (Cont...
falnortru 1585 A ` -\/ ` identity. (Cont...
falnorfal 1586 A ` -\/ ` identity. (Cont...
hadbi123d 1589 Equality theorem for the a...
hadbi123i 1590 Equality theorem for the a...
hadass 1591 Associative law for the ad...
hadbi 1592 The adder sum is the same ...
hadcoma 1593 Commutative law for the ad...
hadcomb 1594 Commutative law for the ad...
hadrot 1595 Rotation law for the adder...
hadnot 1596 The adder sum distributes ...
had1 1597 If the first input is true...
had0 1598 If the first input is fals...
hadifp 1599 The value of the adder sum...
cador 1602 The adder carry in disjunc...
cadan 1603 The adder carry in conjunc...
cadbi123d 1604 Equality theorem for the a...
cadbi123i 1605 Equality theorem for the a...
cadcoma 1606 Commutative law for the ad...
cadcomb 1607 Commutative law for the ad...
cadrot 1608 Rotation law for the adder...
cadnot 1609 The adder carry distribute...
cad11 1610 If (at least) two inputs a...
cad1 1611 If one input is true, then...
cad0 1612 If one input is false, the...
cad0OLD 1613 Obsolete version of ~ cad0...
cadifp 1614 The value of the carry is,...
cadtru 1615 The adder carry is true as...
minimp 1616 A single axiom for minimal...
minimp-syllsimp 1617 Derivation of Syll-Simp ( ...
minimp-ax1 1618 Derivation of ~ ax-1 from ...
minimp-ax2c 1619 Derivation of a commuted f...
minimp-ax2 1620 Derivation of ~ ax-2 from ...
minimp-pm2.43 1621 Derivation of ~ pm2.43 (al...
impsingle 1622 The shortest single axiom ...
impsingle-step4 1623 Derivation of impsingle-st...
impsingle-step8 1624 Derivation of impsingle-st...
impsingle-ax1 1625 Derivation of impsingle-ax...
impsingle-step15 1626 Derivation of impsingle-st...
impsingle-step18 1627 Derivation of impsingle-st...
impsingle-step19 1628 Derivation of impsingle-st...
impsingle-step20 1629 Derivation of impsingle-st...
impsingle-step21 1630 Derivation of impsingle-st...
impsingle-step22 1631 Derivation of impsingle-st...
impsingle-step25 1632 Derivation of impsingle-st...
impsingle-imim1 1633 Derivation of impsingle-im...
impsingle-peirce 1634 Derivation of impsingle-pe...
tarski-bernays-ax2 1635 Derivation of ~ ax-2 from ...
meredith 1636 Carew Meredith's sole axio...
merlem1 1637 Step 3 of Meredith's proof...
merlem2 1638 Step 4 of Meredith's proof...
merlem3 1639 Step 7 of Meredith's proof...
merlem4 1640 Step 8 of Meredith's proof...
merlem5 1641 Step 11 of Meredith's proo...
merlem6 1642 Step 12 of Meredith's proo...
merlem7 1643 Between steps 14 and 15 of...
merlem8 1644 Step 15 of Meredith's proo...
merlem9 1645 Step 18 of Meredith's proo...
merlem10 1646 Step 19 of Meredith's proo...
merlem11 1647 Step 20 of Meredith's proo...
merlem12 1648 Step 28 of Meredith's proo...
merlem13 1649 Step 35 of Meredith's proo...
luk-1 1650 1 of 3 axioms for proposit...
luk-2 1651 2 of 3 axioms for proposit...
luk-3 1652 3 of 3 axioms for proposit...
luklem1 1653 Used to rederive standard ...
luklem2 1654 Used to rederive standard ...
luklem3 1655 Used to rederive standard ...
luklem4 1656 Used to rederive standard ...
luklem5 1657 Used to rederive standard ...
luklem6 1658 Used to rederive standard ...
luklem7 1659 Used to rederive standard ...
luklem8 1660 Used to rederive standard ...
ax1 1661 Standard propositional axi...
ax2 1662 Standard propositional axi...
ax3 1663 Standard propositional axi...
nic-dfim 1664 This theorem "defines" imp...
nic-dfneg 1665 This theorem "defines" neg...
nic-mp 1666 Derive Nicod's rule of mod...
nic-mpALT 1667 A direct proof of ~ nic-mp...
nic-ax 1668 Nicod's axiom derived from...
nic-axALT 1669 A direct proof of ~ nic-ax...
nic-imp 1670 Inference for ~ nic-mp usi...
nic-idlem1 1671 Lemma for ~ nic-id . (Con...
nic-idlem2 1672 Lemma for ~ nic-id . Infe...
nic-id 1673 Theorem ~ id expressed wit...
nic-swap 1674 The connector ` -/\ ` is s...
nic-isw1 1675 Inference version of ~ nic...
nic-isw2 1676 Inference for swapping nes...
nic-iimp1 1677 Inference version of ~ nic...
nic-iimp2 1678 Inference version of ~ nic...
nic-idel 1679 Inference to remove the tr...
nic-ich 1680 Chained inference. (Contr...
nic-idbl 1681 Double the terms. Since d...
nic-bijust 1682 Biconditional justificatio...
nic-bi1 1683 Inference to extract one s...
nic-bi2 1684 Inference to extract the o...
nic-stdmp 1685 Derive the standard modus ...
nic-luk1 1686 Proof of ~ luk-1 from ~ ni...
nic-luk2 1687 Proof of ~ luk-2 from ~ ni...
nic-luk3 1688 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1689 This alternative axiom for...
lukshefth1 1690 Lemma for ~ renicax . (Co...
lukshefth2 1691 Lemma for ~ renicax . (Co...
renicax 1692 A rederivation of ~ nic-ax...
tbw-bijust 1693 Justification for ~ tbw-ne...
tbw-negdf 1694 The definition of negation...
tbw-ax1 1695 The first of four axioms i...
tbw-ax2 1696 The second of four axioms ...
tbw-ax3 1697 The third of four axioms i...
tbw-ax4 1698 The fourth of four axioms ...
tbwsyl 1699 Used to rederive the Lukas...
tbwlem1 1700 Used to rederive the Lukas...
tbwlem2 1701 Used to rederive the Lukas...
tbwlem3 1702 Used to rederive the Lukas...
tbwlem4 1703 Used to rederive the Lukas...
tbwlem5 1704 Used to rederive the Lukas...
re1luk1 1705 ~ luk-1 derived from the T...
re1luk2 1706 ~ luk-2 derived from the T...
re1luk3 1707 ~ luk-3 derived from the T...
merco1 1708 A single axiom for proposi...
merco1lem1 1709 Used to rederive the Tarsk...
retbwax4 1710 ~ tbw-ax4 rederived from ~...
retbwax2 1711 ~ tbw-ax2 rederived from ~...
merco1lem2 1712 Used to rederive the Tarsk...
merco1lem3 1713 Used to rederive the Tarsk...
merco1lem4 1714 Used to rederive the Tarsk...
merco1lem5 1715 Used to rederive the Tarsk...
merco1lem6 1716 Used to rederive the Tarsk...
merco1lem7 1717 Used to rederive the Tarsk...
retbwax3 1718 ~ tbw-ax3 rederived from ~...
merco1lem8 1719 Used to rederive the Tarsk...
merco1lem9 1720 Used to rederive the Tarsk...
merco1lem10 1721 Used to rederive the Tarsk...
merco1lem11 1722 Used to rederive the Tarsk...
merco1lem12 1723 Used to rederive the Tarsk...
merco1lem13 1724 Used to rederive the Tarsk...
merco1lem14 1725 Used to rederive the Tarsk...
merco1lem15 1726 Used to rederive the Tarsk...
merco1lem16 1727 Used to rederive the Tarsk...
merco1lem17 1728 Used to rederive the Tarsk...
merco1lem18 1729 Used to rederive the Tarsk...
retbwax1 1730 ~ tbw-ax1 rederived from ~...
merco2 1731 A single axiom for proposi...
mercolem1 1732 Used to rederive the Tarsk...
mercolem2 1733 Used to rederive the Tarsk...
mercolem3 1734 Used to rederive the Tarsk...
mercolem4 1735 Used to rederive the Tarsk...
mercolem5 1736 Used to rederive the Tarsk...
mercolem6 1737 Used to rederive the Tarsk...
mercolem7 1738 Used to rederive the Tarsk...
mercolem8 1739 Used to rederive the Tarsk...
re1tbw1 1740 ~ tbw-ax1 rederived from ~...
re1tbw2 1741 ~ tbw-ax2 rederived from ~...
re1tbw3 1742 ~ tbw-ax3 rederived from ~...
re1tbw4 1743 ~ tbw-ax4 rederived from ~...
rb-bijust 1744 Justification for ~ rb-imd...
rb-imdf 1745 The definition of implicat...
anmp 1746 Modus ponens for ` { \/ , ...
rb-ax1 1747 The first of four axioms i...
rb-ax2 1748 The second of four axioms ...
rb-ax3 1749 The third of four axioms i...
rb-ax4 1750 The fourth of four axioms ...
rbsyl 1751 Used to rederive the Lukas...
rblem1 1752 Used to rederive the Lukas...
rblem2 1753 Used to rederive the Lukas...
rblem3 1754 Used to rederive the Lukas...
rblem4 1755 Used to rederive the Lukas...
rblem5 1756 Used to rederive the Lukas...
rblem6 1757 Used to rederive the Lukas...
rblem7 1758 Used to rederive the Lukas...
re1axmp 1759 ~ ax-mp derived from Russe...
re2luk1 1760 ~ luk-1 derived from Russe...
re2luk2 1761 ~ luk-2 derived from Russe...
re2luk3 1762 ~ luk-3 derived from Russe...
mptnan 1763 Modus ponendo tollens 1, o...
mptxor 1764 Modus ponendo tollens 2, o...
mtpor 1765 Modus tollendo ponens (inc...
mtpxor 1766 Modus tollendo ponens (ori...
stoic1a 1767 Stoic logic Thema 1 (part ...
stoic1b 1768 Stoic logic Thema 1 (part ...
stoic2a 1769 Stoic logic Thema 2 versio...
stoic2b 1770 Stoic logic Thema 2 versio...
stoic3 1771 Stoic logic Thema 3. Stat...
stoic4a 1772 Stoic logic Thema 4 versio...
stoic4b 1773 Stoic logic Thema 4 versio...
alnex 1776 Universal quantification o...
eximal 1777 An equivalence between an ...
nf2 1780 Alternate definition of no...
nf3 1781 Alternate definition of no...
nf4 1782 Alternate definition of no...
nfi 1783 Deduce that ` x ` is not f...
nfri 1784 Consequence of the definit...
nfd 1785 Deduce that ` x ` is not f...
nfrd 1786 Consequence of the definit...
nftht 1787 Closed form of ~ nfth . (...
nfntht 1788 Closed form of ~ nfnth . ...
nfntht2 1789 Closed form of ~ nfnth . ...
gen2 1791 Generalization applied twi...
mpg 1792 Modus ponens combined with...
mpgbi 1793 Modus ponens on biconditio...
mpgbir 1794 Modus ponens on biconditio...
nex 1795 Generalization rule for ne...
nfth 1796 No variable is (effectivel...
nfnth 1797 No variable is (effectivel...
hbth 1798 No variable is (effectivel...
nftru 1799 The true constant has no f...
nffal 1800 The false constant has no ...
sptruw 1801 Version of ~ sp when ` ph ...
altru 1802 For all sets, ` T. ` is tr...
alfal 1803 For all sets, ` -. F. ` is...
alim 1805 Restatement of Axiom ~ ax-...
alimi 1806 Inference quantifying both...
2alimi 1807 Inference doubly quantifyi...
ala1 1808 Add an antecedent in a uni...
al2im 1809 Closed form of ~ al2imi . ...
al2imi 1810 Inference quantifying ante...
alanimi 1811 Variant of ~ al2imi with c...
alimdh 1812 Deduction form of Theorem ...
albi 1813 Theorem 19.15 of [Margaris...
albii 1814 Inference adding universal...
2albii 1815 Inference adding two unive...
3albii 1816 Inference adding three uni...
sylgt 1817 Closed form of ~ sylg . (...
sylg 1818 A syllogism combined with ...
alrimih 1819 Inference form of Theorem ...
hbxfrbi 1820 A utility lemma to transfe...
alex 1821 Universal quantifier in te...
exnal 1822 Existential quantification...
2nalexn 1823 Part of theorem *11.5 in [...
2exnaln 1824 Theorem *11.22 in [Whitehe...
2nexaln 1825 Theorem *11.25 in [Whitehe...
alimex 1826 An equivalence between an ...
aleximi 1827 A variant of ~ al2imi : in...
alexbii 1828 Biconditional form of ~ al...
exim 1829 Theorem 19.22 of [Margaris...
eximi 1830 Inference adding existenti...
2eximi 1831 Inference adding two exist...
eximii 1832 Inference associated with ...
exa1 1833 Add an antecedent in an ex...
19.38 1834 Theorem 19.38 of [Margaris...
19.38a 1835 Under a nonfreeness hypoth...
19.38b 1836 Under a nonfreeness hypoth...
imnang 1837 Quantified implication in ...
alinexa 1838 A transformation of quanti...
exnalimn 1839 Existential quantification...
alexn 1840 A relationship between two...
2exnexn 1841 Theorem *11.51 in [Whitehe...
exbi 1842 Theorem 19.18 of [Margaris...
exbii 1843 Inference adding existenti...
2exbii 1844 Inference adding two exist...
3exbii 1845 Inference adding three exi...
nfbiit 1846 Equivalence theorem for th...
nfbii 1847 Equality theorem for the n...
nfxfr 1848 A utility lemma to transfe...
nfxfrd 1849 A utility lemma to transfe...
nfnbi 1850 A variable is nonfree in a...
nfnbiOLD 1851 Obsolete version of ~ nfnb...
nfnt 1852 If a variable is nonfree i...
nfn 1853 Inference associated with ...
nfnd 1854 Deduction associated with ...
exanali 1855 A transformation of quanti...
2exanali 1856 Theorem *11.521 in [Whiteh...
exancom 1857 Commutation of conjunction...
exan 1858 Place a conjunct in the sc...
alrimdh 1859 Deduction form of Theorem ...
eximdh 1860 Deduction from Theorem 19....
nexdh 1861 Deduction for generalizati...
albidh 1862 Formula-building rule for ...
exbidh 1863 Formula-building rule for ...
exsimpl 1864 Simplification of an exist...
exsimpr 1865 Simplification of an exist...
19.26 1866 Theorem 19.26 of [Margaris...
19.26-2 1867 Theorem ~ 19.26 with two q...
19.26-3an 1868 Theorem ~ 19.26 with tripl...
19.29 1869 Theorem 19.29 of [Margaris...
19.29r 1870 Variation of ~ 19.29 . (C...
19.29r2 1871 Variation of ~ 19.29r with...
19.29x 1872 Variation of ~ 19.29 with ...
19.35 1873 Theorem 19.35 of [Margaris...
19.35i 1874 Inference associated with ...
19.35ri 1875 Inference associated with ...
19.25 1876 Theorem 19.25 of [Margaris...
19.30 1877 Theorem 19.30 of [Margaris...
19.43 1878 Theorem 19.43 of [Margaris...
19.43OLD 1879 Obsolete proof of ~ 19.43 ...
19.33 1880 Theorem 19.33 of [Margaris...
19.33b 1881 The antecedent provides a ...
19.40 1882 Theorem 19.40 of [Margaris...
19.40-2 1883 Theorem *11.42 in [Whitehe...
19.40b 1884 The antecedent provides a ...
albiim 1885 Split a biconditional and ...
2albiim 1886 Split a biconditional and ...
exintrbi 1887 Add/remove a conjunct in t...
exintr 1888 Introduce a conjunct in th...
alsyl 1889 Universally quantified and...
nfimd 1890 If in a context ` x ` is n...
nfimt 1891 Closed form of ~ nfim and ...
nfim 1892 If ` x ` is not free in ` ...
nfand 1893 If in a context ` x ` is n...
nf3and 1894 Deduction form of bound-va...
nfan 1895 If ` x ` is not free in ` ...
nfnan 1896 If ` x ` is not free in ` ...
nf3an 1897 If ` x ` is not free in ` ...
nfbid 1898 If in a context ` x ` is n...
nfbi 1899 If ` x ` is not free in ` ...
nfor 1900 If ` x ` is not free in ` ...
nf3or 1901 If ` x ` is not free in ` ...
empty 1902 Two characterizations of t...
emptyex 1903 On the empty domain, any e...
emptyal 1904 On the empty domain, any u...
emptynf 1905 On the empty domain, any v...
ax5d 1907 Version of ~ ax-5 with ant...
ax5e 1908 A rephrasing of ~ ax-5 usi...
ax5ea 1909 If a formula holds for som...
nfv 1910 If ` x ` is not present in...
nfvd 1911 ~ nfv with antecedent. Us...
alimdv 1912 Deduction form of Theorem ...
eximdv 1913 Deduction form of Theorem ...
2alimdv 1914 Deduction form of Theorem ...
2eximdv 1915 Deduction form of Theorem ...
albidv 1916 Formula-building rule for ...
exbidv 1917 Formula-building rule for ...
nfbidv 1918 An equality theorem for no...
2albidv 1919 Formula-building rule for ...
2exbidv 1920 Formula-building rule for ...
3exbidv 1921 Formula-building rule for ...
4exbidv 1922 Formula-building rule for ...
alrimiv 1923 Inference form of Theorem ...
alrimivv 1924 Inference form of Theorem ...
alrimdv 1925 Deduction form of Theorem ...
exlimiv 1926 Inference form of Theorem ...
exlimiiv 1927 Inference (Rule C) associa...
exlimivv 1928 Inference form of Theorem ...
exlimdv 1929 Deduction form of Theorem ...
exlimdvv 1930 Deduction form of Theorem ...
exlimddv 1931 Existential elimination ru...
nexdv 1932 Deduction for generalizati...
2ax5 1933 Quantification of two vari...
stdpc5v 1934 Version of ~ stdpc5 with a...
19.21v 1935 Version of ~ 19.21 with a ...
19.32v 1936 Version of ~ 19.32 with a ...
19.31v 1937 Version of ~ 19.31 with a ...
19.23v 1938 Version of ~ 19.23 with a ...
19.23vv 1939 Theorem ~ 19.23v extended ...
pm11.53v 1940 Version of ~ pm11.53 with ...
19.36imv 1941 One direction of ~ 19.36v ...
19.36imvOLD 1942 Obsolete version of ~ 19.3...
19.36iv 1943 Inference associated with ...
19.37imv 1944 One direction of ~ 19.37v ...
19.37iv 1945 Inference associated with ...
19.41v 1946 Version of ~ 19.41 with a ...
19.41vv 1947 Version of ~ 19.41 with tw...
19.41vvv 1948 Version of ~ 19.41 with th...
19.41vvvv 1949 Version of ~ 19.41 with fo...
19.42v 1950 Version of ~ 19.42 with a ...
exdistr 1951 Distribution of existentia...
exdistrv 1952 Distribute a pair of exist...
4exdistrv 1953 Distribute two pairs of ex...
19.42vv 1954 Version of ~ 19.42 with tw...
exdistr2 1955 Distribution of existentia...
19.42vvv 1956 Version of ~ 19.42 with th...
3exdistr 1957 Distribution of existentia...
4exdistr 1958 Distribution of existentia...
weq 1959 Extend wff definition to i...
speimfw 1960 Specialization, with addit...
speimfwALT 1961 Alternate proof of ~ speim...
spimfw 1962 Specialization, with addit...
ax12i 1963 Inference that has ~ ax-12...
ax6v 1965 Axiom B7 of [Tarski] p. 75...
ax6ev 1966 At least one individual ex...
spimw 1967 Specialization. Lemma 8 o...
spimew 1968 Existential introduction, ...
speiv 1969 Inference from existential...
speivw 1970 Version of ~ spei with a d...
exgen 1971 Rule of existential genera...
extru 1972 There exists a variable su...
19.2 1973 Theorem 19.2 of [Margaris]...
19.2d 1974 Deduction associated with ...
19.8w 1975 Weak version of ~ 19.8a an...
spnfw 1976 Weak version of ~ sp . Us...
spvw 1977 Version of ~ sp when ` x `...
19.3v 1978 Version of ~ 19.3 with a d...
19.8v 1979 Version of ~ 19.8a with a ...
19.9v 1980 Version of ~ 19.9 with a d...
19.39 1981 Theorem 19.39 of [Margaris...
19.24 1982 Theorem 19.24 of [Margaris...
19.34 1983 Theorem 19.34 of [Margaris...
19.36v 1984 Version of ~ 19.36 with a ...
19.12vvv 1985 Version of ~ 19.12vv with ...
19.27v 1986 Version of ~ 19.27 with a ...
19.28v 1987 Version of ~ 19.28 with a ...
19.37v 1988 Version of ~ 19.37 with a ...
19.44v 1989 Version of ~ 19.44 with a ...
19.45v 1990 Version of ~ 19.45 with a ...
spimevw 1991 Existential introduction, ...
spimvw 1992 A weak form of specializat...
spvv 1993 Specialization, using impl...
spfalw 1994 Version of ~ sp when ` ph ...
chvarvv 1995 Implicit substitution of `...
equs4v 1996 Version of ~ equs4 with a ...
alequexv 1997 Version of ~ equs4v with i...
exsbim 1998 One direction of the equiv...
equsv 1999 If a formula does not cont...
equsalvw 2000 Version of ~ equsalv with ...
equsexvw 2001 Version of ~ equsexv with ...
cbvaliw 2002 Change bound variable. Us...
cbvalivw 2003 Change bound variable. Us...
ax7v 2005 Weakened version of ~ ax-7...
ax7v1 2006 First of two weakened vers...
ax7v2 2007 Second of two weakened ver...
equid 2008 Identity law for equality....
nfequid 2009 Bound-variable hypothesis ...
equcomiv 2010 Weaker form of ~ equcomi w...
ax6evr 2011 A commuted form of ~ ax6ev...
ax7 2012 Proof of ~ ax-7 from ~ ax7...
equcomi 2013 Commutative law for equali...
equcom 2014 Commutative law for equali...
equcomd 2015 Deduction form of ~ equcom...
equcoms 2016 An inference commuting equ...
equtr 2017 A transitive law for equal...
equtrr 2018 A transitive law for equal...
equeuclr 2019 Commuted version of ~ eque...
equeucl 2020 Equality is a left-Euclide...
equequ1 2021 An equivalence law for equ...
equequ2 2022 An equivalence law for equ...
equtr2 2023 Equality is a left-Euclide...
stdpc6 2024 One of the two equality ax...
equvinv 2025 A variable introduction la...
equvinva 2026 A modified version of the ...
equvelv 2027 A biconditional form of ~ ...
ax13b 2028 An equivalence between two...
spfw 2029 Weak version of ~ sp . Us...
spw 2030 Weak version of the specia...
cbvalw 2031 Change bound variable. Us...
cbvalvw 2032 Change bound variable. Us...
cbvexvw 2033 Change bound variable. Us...
cbvaldvaw 2034 Rule used to change the bo...
cbvexdvaw 2035 Rule used to change the bo...
cbval2vw 2036 Rule used to change bound ...
cbvex2vw 2037 Rule used to change bound ...
cbvex4vw 2038 Rule used to change bound ...
alcomiw 2039 Weak version of ~ ax-11 . ...
alcomw 2040 Weak version of ~ alcom an...
hbn1fw 2041 Weak version of ~ ax-10 fr...
hbn1w 2042 Weak version of ~ hbn1 . ...
hba1w 2043 Weak version of ~ hba1 . ...
hbe1w 2044 Weak version of ~ hbe1 . ...
hbalw 2045 Weak version of ~ hbal . ...
19.8aw 2046 If a formula is true, then...
exexw 2047 Existential quantification...
spaev 2048 A special instance of ~ sp...
cbvaev 2049 Change bound variable in a...
aevlem0 2050 Lemma for ~ aevlem . Inst...
aevlem 2051 Lemma for ~ aev and ~ axc1...
aeveq 2052 The antecedent ` A. x x = ...
aev 2053 A "distinctor elimination"...
aev2 2054 A version of ~ aev with tw...
hbaev 2055 All variables are effectiv...
naev 2056 If some set variables can ...
naev2 2057 Generalization of ~ hbnaev...
hbnaev 2058 Any variable is free in ` ...
sbjust 2059 Justification theorem for ...
sbt 2062 A substitution into a theo...
sbtru 2063 The result of substituting...
stdpc4 2064 The specialization axiom o...
sbtALT 2065 Alternate proof of ~ sbt ,...
2stdpc4 2066 A double specialization us...
sbi1 2067 Distribute substitution ov...
spsbim 2068 Distribute substitution ov...
spsbbi 2069 Biconditional property for...
sbimi 2070 Distribute substitution ov...
sb2imi 2071 Distribute substitution ov...
sbbii 2072 Infer substitution into bo...
2sbbii 2073 Infer double substitution ...
sbimdv 2074 Deduction substituting bot...
sbbidv 2075 Deduction substituting bot...
sban 2076 Conjunction inside and out...
sb3an 2077 Threefold conjunction insi...
spsbe 2078 Existential generalization...
sbequ 2079 Equality property for subs...
sbequi 2080 An equality theorem for su...
sb6 2081 Alternate definition of su...
2sb6 2082 Equivalence for double sub...
sb1v 2083 One direction of ~ sb5 , p...
sbv 2084 Substitution for a variabl...
sbcom4 2085 Commutativity law for subs...
pm11.07 2086 Axiom *11.07 in [Whitehead...
sbrimvw 2087 Substitution in an implica...
sbievw 2088 Conversion of implicit sub...
sbiedvw 2089 Conversion of implicit sub...
2sbievw 2090 Conversion of double impli...
sbcom3vv 2091 Substituting ` y ` for ` x...
sbievw2 2092 ~ sbievw applied twice, av...
sbco2vv 2093 A composition law for subs...
equsb3 2094 Substitution in an equalit...
equsb3r 2095 Substitution applied to th...
equsb1v 2096 Substitution applied to an...
nsb 2097 Any substitution in an alw...
sbn1 2098 One direction of ~ sbn , u...
wel 2100 Extend wff definition to i...
ax8v 2102 Weakened version of ~ ax-8...
ax8v1 2103 First of two weakened vers...
ax8v2 2104 Second of two weakened ver...
ax8 2105 Proof of ~ ax-8 from ~ ax8...
elequ1 2106 An identity law for the no...
elsb1 2107 Substitution for the first...
cleljust 2108 When the class variables i...
ax9v 2110 Weakened version of ~ ax-9...
ax9v1 2111 First of two weakened vers...
ax9v2 2112 Second of two weakened ver...
ax9 2113 Proof of ~ ax-9 from ~ ax9...
elequ2 2114 An identity law for the no...
elequ2g 2115 A form of ~ elequ2 with a ...
elsb2 2116 Substitution for the secon...
ax6dgen 2117 Tarski's system uses the w...
ax10w 2118 Weak version of ~ ax-10 fr...
ax11w 2119 Weak version of ~ ax-11 fr...
ax11dgen 2120 Degenerate instance of ~ a...
ax12wlem 2121 Lemma for weak version of ...
ax12w 2122 Weak version of ~ ax-12 fr...
ax12dgen 2123 Degenerate instance of ~ a...
ax12wdemo 2124 Example of an application ...
ax13w 2125 Weak version (principal in...
ax13dgen1 2126 Degenerate instance of ~ a...
ax13dgen2 2127 Degenerate instance of ~ a...
ax13dgen3 2128 Degenerate instance of ~ a...
ax13dgen4 2129 Degenerate instance of ~ a...
hbn1 2131 Alias for ~ ax-10 to be us...
hbe1 2132 The setvar ` x ` is not fr...
hbe1a 2133 Dual statement of ~ hbe1 ....
nf5-1 2134 One direction of ~ nf5 can...
nf5i 2135 Deduce that ` x ` is not f...
nf5dh 2136 Deduce that ` x ` is not f...
nf5dv 2137 Apply the definition of no...
nfnaew 2138 All variables are effectiv...
nfnaewOLD 2139 Obsolete version of ~ nfna...
nfe1 2140 The setvar ` x ` is not fr...
nfa1 2141 The setvar ` x ` is not fr...
nfna1 2142 A convenience theorem part...
nfia1 2143 Lemma 23 of [Monk2] p. 114...
nfnf1 2144 The setvar ` x ` is not fr...
modal5 2145 The analogue in our predic...
nfs1v 2146 The setvar ` x ` is not fr...
alcoms 2148 Swap quantifiers in an ant...
alcom 2149 Theorem 19.5 of [Margaris]...
alrot3 2150 Theorem *11.21 in [Whitehe...
alrot4 2151 Rotate four universal quan...
sbal 2152 Move universal quantifier ...
sbalv 2153 Quantify with new variable...
sbcom2 2154 Commutativity law for subs...
excom 2155 Theorem 19.11 of [Margaris...
excomim 2156 One direction of Theorem 1...
excom13 2157 Swap 1st and 3rd existenti...
exrot3 2158 Rotate existential quantif...
exrot4 2159 Rotate existential quantif...
hbal 2160 If ` x ` is not free in ` ...
hbald 2161 Deduction form of bound-va...
hbsbw 2162 If ` z ` is not free in ` ...
nfa2 2163 Lemma 24 of [Monk2] p. 114...
ax12v 2165 This is essentially Axiom ...
ax12v2 2166 It is possible to remove a...
19.8a 2167 If a wff is true, it is tr...
19.8ad 2168 If a wff is true, it is tr...
sp 2169 Specialization. A univers...
spi 2170 Inference rule of universa...
sps 2171 Generalization of antecede...
2sp 2172 A double specialization (s...
spsd 2173 Deduction generalizing ant...
19.2g 2174 Theorem 19.2 of [Margaris]...
19.21bi 2175 Inference form of ~ 19.21 ...
19.21bbi 2176 Inference removing two uni...
19.23bi 2177 Inference form of Theorem ...
nexr 2178 Inference associated with ...
qexmid 2179 Quantified excluded middle...
nf5r 2180 Consequence of the definit...
nf5ri 2181 Consequence of the definit...
nf5rd 2182 Consequence of the definit...
spimedv 2183 Deduction version of ~ spi...
spimefv 2184 Version of ~ spime with a ...
nfim1 2185 A closed form of ~ nfim . ...
nfan1 2186 A closed form of ~ nfan . ...
19.3t 2187 Closed form of ~ 19.3 and ...
19.3 2188 A wff may be quantified wi...
19.9d 2189 A deduction version of one...
19.9t 2190 Closed form of ~ 19.9 and ...
19.9 2191 A wff may be existentially...
19.21t 2192 Closed form of Theorem 19....
19.21 2193 Theorem 19.21 of [Margaris...
stdpc5 2194 An axiom scheme of standar...
19.21-2 2195 Version of ~ 19.21 with tw...
19.23t 2196 Closed form of Theorem 19....
19.23 2197 Theorem 19.23 of [Margaris...
alimd 2198 Deduction form of Theorem ...
alrimi 2199 Inference form of Theorem ...
alrimdd 2200 Deduction form of Theorem ...
alrimd 2201 Deduction form of Theorem ...
eximd 2202 Deduction form of Theorem ...
exlimi 2203 Inference associated with ...
exlimd 2204 Deduction form of Theorem ...
exlimimdd 2205 Existential elimination ru...
exlimdd 2206 Existential elimination ru...
nexd 2207 Deduction for generalizati...
albid 2208 Formula-building rule for ...
exbid 2209 Formula-building rule for ...
nfbidf 2210 An equality theorem for ef...
19.16 2211 Theorem 19.16 of [Margaris...
19.17 2212 Theorem 19.17 of [Margaris...
19.27 2213 Theorem 19.27 of [Margaris...
19.28 2214 Theorem 19.28 of [Margaris...
19.19 2215 Theorem 19.19 of [Margaris...
19.36 2216 Theorem 19.36 of [Margaris...
19.36i 2217 Inference associated with ...
19.37 2218 Theorem 19.37 of [Margaris...
19.32 2219 Theorem 19.32 of [Margaris...
19.31 2220 Theorem 19.31 of [Margaris...
19.41 2221 Theorem 19.41 of [Margaris...
19.42 2222 Theorem 19.42 of [Margaris...
19.44 2223 Theorem 19.44 of [Margaris...
19.45 2224 Theorem 19.45 of [Margaris...
spimfv 2225 Specialization, using impl...
chvarfv 2226 Implicit substitution of `...
cbv3v2 2227 Version of ~ cbv3 with two...
sbalex 2228 Equivalence of two ways to...
sb4av 2229 Version of ~ sb4a with a d...
sbimd 2230 Deduction substituting bot...
sbbid 2231 Deduction substituting bot...
2sbbid 2232 Deduction doubly substitut...
sbequ1 2233 An equality theorem for su...
sbequ2 2234 An equality theorem for su...
stdpc7 2235 One of the two equality ax...
sbequ12 2236 An equality theorem for su...
sbequ12r 2237 An equality theorem for su...
sbelx 2238 Elimination of substitutio...
sbequ12a 2239 An equality theorem for su...
sbid 2240 An identity theorem for su...
sbcov 2241 A composition law for subs...
sb6a 2242 Equivalence for substituti...
sbid2vw 2243 Reverting substitution yie...
axc16g 2244 Generalization of ~ axc16 ...
axc16 2245 Proof of older axiom ~ ax-...
axc16gb 2246 Biconditional strengthenin...
axc16nf 2247 If ~ dtru is false, then t...
axc11v 2248 Version of ~ axc11 with a ...
axc11rv 2249 Version of ~ axc11r with a...
drsb2 2250 Formula-building lemma for...
equsalv 2251 An equivalence related to ...
equsexv 2252 An equivalence related to ...
equsexvOLD 2253 Obsolete version of ~ equs...
sbft 2254 Substitution has no effect...
sbf 2255 Substitution for a variabl...
sbf2 2256 Substitution has no effect...
sbh 2257 Substitution for a variabl...
hbs1 2258 The setvar ` x ` is not fr...
nfs1f 2259 If ` x ` is not free in ` ...
sb5 2260 Alternate definition of su...
sb5OLD 2261 Obsolete version of ~ sb5 ...
sb56OLD 2262 Obsolete version of ~ sbal...
equs5av 2263 A property related to subs...
2sb5 2264 Equivalence for double sub...
sbco4lem 2265 Lemma for ~ sbco4 . It re...
sbco4lemOLD 2266 Obsolete version of ~ sbco...
sbco4 2267 Two ways of exchanging two...
dfsb7 2268 An alternate definition of...
sbn 2269 Negation inside and outsid...
sbex 2270 Move existential quantifie...
nf5 2271 Alternate definition of ~ ...
nf6 2272 An alternate definition of...
nf5d 2273 Deduce that ` x ` is not f...
nf5di 2274 Since the converse holds b...
19.9h 2275 A wff may be existentially...
19.21h 2276 Theorem 19.21 of [Margaris...
19.23h 2277 Theorem 19.23 of [Margaris...
exlimih 2278 Inference associated with ...
exlimdh 2279 Deduction form of Theorem ...
equsalhw 2280 Version of ~ equsalh with ...
equsexhv 2281 An equivalence related to ...
hba1 2282 The setvar ` x ` is not fr...
hbnt 2283 Closed theorem version of ...
hbn 2284 If ` x ` is not free in ` ...
hbnd 2285 Deduction form of bound-va...
hbim1 2286 A closed form of ~ hbim . ...
hbimd 2287 Deduction form of bound-va...
hbim 2288 If ` x ` is not free in ` ...
hban 2289 If ` x ` is not free in ` ...
hb3an 2290 If ` x ` is not free in ` ...
sbi2 2291 Introduction of implicatio...
sbim 2292 Implication inside and out...
sbrim 2293 Substitution in an implica...
sbrimOLD 2294 Obsolete version of ~ sbri...
sblim 2295 Substitution in an implica...
sbor 2296 Disjunction inside and out...
sbbi 2297 Equivalence inside and out...
sblbis 2298 Introduce left bicondition...
sbrbis 2299 Introduce right biconditio...
sbrbif 2300 Introduce right biconditio...
sbnf 2301 Move nonfree predicate in ...
sbnfOLD 2302 Obsolete version of ~ sbnf...
sbiev 2303 Conversion of implicit sub...
sbiedw 2304 Conversion of implicit sub...
axc7 2305 Show that the original axi...
axc7e 2306 Abbreviated version of ~ a...
modal-b 2307 The analogue in our predic...
19.9ht 2308 A closed version of ~ 19.9...
axc4 2309 Show that the original axi...
axc4i 2310 Inference version of ~ axc...
nfal 2311 If ` x ` is not free in ` ...
nfex 2312 If ` x ` is not free in ` ...
hbex 2313 If ` x ` is not free in ` ...
nfnf 2314 If ` x ` is not free in ` ...
19.12 2315 Theorem 19.12 of [Margaris...
nfald 2316 Deduction form of ~ nfal ....
nfexd 2317 If ` x ` is not free in ` ...
nfsbv 2318 If ` z ` is not free in ` ...
nfsbvOLD 2319 Obsolete version of ~ nfsb...
hbsbwOLD 2320 Obsolete version of ~ hbsb...
sbco2v 2321 A composition law for subs...
aaan 2322 Distribute universal quant...
aaanOLD 2323 Obsolete version of ~ aaan...
eeor 2324 Distribute existential qua...
eeorOLD 2325 Obsolete version of ~ eeor...
cbv3v 2326 Rule used to change bound ...
cbv1v 2327 Rule used to change bound ...
cbv2w 2328 Rule used to change bound ...
cbvaldw 2329 Deduction used to change b...
cbvexdw 2330 Deduction used to change b...
cbv3hv 2331 Rule used to change bound ...
cbvalv1 2332 Rule used to change bound ...
cbvexv1 2333 Rule used to change bound ...
cbval2v 2334 Rule used to change bound ...
cbvex2v 2335 Rule used to change bound ...
dvelimhw 2336 Proof of ~ dvelimh without...
pm11.53 2337 Theorem *11.53 in [Whitehe...
19.12vv 2338 Special case of ~ 19.12 wh...
eean 2339 Distribute existential qua...
eeanv 2340 Distribute a pair of exist...
eeeanv 2341 Distribute three existenti...
ee4anv 2342 Distribute two pairs of ex...
sb8v 2343 Substitution of variable i...
sb8f 2344 Substitution of variable i...
sb8fOLD 2345 Obsolete version of ~ sb8f...
sb8ef 2346 Substitution of variable i...
2sb8ef 2347 An equivalent expression f...
sb6rfv 2348 Reversed substitution. Ve...
sbnf2 2349 Two ways of expressing " `...
exsb 2350 An equivalent expression f...
2exsb 2351 An equivalent expression f...
sbbib 2352 Reversal of substitution. ...
sbbibvv 2353 Reversal of substitution. ...
cbvsbv 2354 Change the bound variable ...
cbvsbvf 2355 Change the bound variable ...
cleljustALT 2356 Alternate proof of ~ clelj...
cleljustALT2 2357 Alternate proof of ~ clelj...
equs5aALT 2358 Alternate proof of ~ equs5...
equs5eALT 2359 Alternate proof of ~ equs5...
axc11r 2360 Same as ~ axc11 but with r...
dral1v 2361 Formula-building lemma for...
dral1vOLD 2362 Obsolete version of ~ dral...
drex1v 2363 Formula-building lemma for...
drnf1v 2364 Formula-building lemma for...
drnf1vOLD 2365 Obsolete version of ~ drnf...
ax13v 2367 A weaker version of ~ ax-1...
ax13lem1 2368 A version of ~ ax13v with ...
ax13 2369 Derive ~ ax-13 from ~ ax13...
ax13lem2 2370 Lemma for ~ nfeqf2 . This...
nfeqf2 2371 An equation between setvar...
dveeq2 2372 Quantifier introduction wh...
nfeqf1 2373 An equation between setvar...
dveeq1 2374 Quantifier introduction wh...
nfeqf 2375 A variable is effectively ...
axc9 2376 Derive set.mm's original ~...
ax6e 2377 At least one individual ex...
ax6 2378 Theorem showing that ~ ax-...
axc10 2379 Show that the original axi...
spimt 2380 Closed theorem form of ~ s...
spim 2381 Specialization, using impl...
spimed 2382 Deduction version of ~ spi...
spime 2383 Existential introduction, ...
spimv 2384 A version of ~ spim with a...
spimvALT 2385 Alternate proof of ~ spimv...
spimev 2386 Distinct-variable version ...
spv 2387 Specialization, using impl...
spei 2388 Inference from existential...
chvar 2389 Implicit substitution of `...
chvarv 2390 Implicit substitution of `...
cbv3 2391 Rule used to change bound ...
cbval 2392 Rule used to change bound ...
cbvex 2393 Rule used to change bound ...
cbvalv 2394 Rule used to change bound ...
cbvexv 2395 Rule used to change bound ...
cbv1 2396 Rule used to change bound ...
cbv2 2397 Rule used to change bound ...
cbv3h 2398 Rule used to change bound ...
cbv1h 2399 Rule used to change bound ...
cbv2h 2400 Rule used to change bound ...
cbvald 2401 Deduction used to change b...
cbvexd 2402 Deduction used to change b...
cbvaldva 2403 Rule used to change the bo...
cbvexdva 2404 Rule used to change the bo...
cbval2 2405 Rule used to change bound ...
cbvex2 2406 Rule used to change bound ...
cbval2vv 2407 Rule used to change bound ...
cbvex2vv 2408 Rule used to change bound ...
cbvex4v 2409 Rule used to change bound ...
equs4 2410 Lemma used in proofs of im...
equsal 2411 An equivalence related to ...
equsex 2412 An equivalence related to ...
equsexALT 2413 Alternate proof of ~ equse...
equsalh 2414 An equivalence related to ...
equsexh 2415 An equivalence related to ...
axc15 2416 Derivation of set.mm's ori...
ax12 2417 Rederivation of Axiom ~ ax...
ax12b 2418 A bidirectional version of...
ax13ALT 2419 Alternate proof of ~ ax13 ...
axc11n 2420 Derive set.mm's original ~...
aecom 2421 Commutation law for identi...
aecoms 2422 A commutation rule for ide...
naecoms 2423 A commutation rule for dis...
axc11 2424 Show that ~ ax-c11 can be ...
hbae 2425 All variables are effectiv...
hbnae 2426 All variables are effectiv...
nfae 2427 All variables are effectiv...
nfnae 2428 All variables are effectiv...
hbnaes 2429 Rule that applies ~ hbnae ...
axc16i 2430 Inference with ~ axc16 as ...
axc16nfALT 2431 Alternate proof of ~ axc16...
dral2 2432 Formula-building lemma for...
dral1 2433 Formula-building lemma for...
dral1ALT 2434 Alternate proof of ~ dral1...
drex1 2435 Formula-building lemma for...
drex2 2436 Formula-building lemma for...
drnf1 2437 Formula-building lemma for...
drnf2 2438 Formula-building lemma for...
nfald2 2439 Variation on ~ nfald which...
nfexd2 2440 Variation on ~ nfexd which...
exdistrf 2441 Distribution of existentia...
dvelimf 2442 Version of ~ dvelimv witho...
dvelimdf 2443 Deduction form of ~ dvelim...
dvelimh 2444 Version of ~ dvelim withou...
dvelim 2445 This theorem can be used t...
dvelimv 2446 Similar to ~ dvelim with f...
dvelimnf 2447 Version of ~ dvelim using ...
dveeq2ALT 2448 Alternate proof of ~ dveeq...
equvini 2449 A variable introduction la...
equvel 2450 A variable elimination law...
equs5a 2451 A property related to subs...
equs5e 2452 A property related to subs...
equs45f 2453 Two ways of expressing sub...
equs5 2454 Lemma used in proofs of su...
dveel1 2455 Quantifier introduction wh...
dveel2 2456 Quantifier introduction wh...
axc14 2457 Axiom ~ ax-c14 is redundan...
sb6x 2458 Equivalence involving subs...
sbequ5 2459 Substitution does not chan...
sbequ6 2460 Substitution does not chan...
sb5rf 2461 Reversed substitution. Us...
sb6rf 2462 Reversed substitution. Fo...
ax12vALT 2463 Alternate proof of ~ ax12v...
2ax6elem 2464 We can always find values ...
2ax6e 2465 We can always find values ...
2sb5rf 2466 Reversed double substituti...
2sb6rf 2467 Reversed double substituti...
sbel2x 2468 Elimination of double subs...
sb4b 2469 Simplified definition of s...
sb3b 2470 Simplified definition of s...
sb3 2471 One direction of a simplif...
sb1 2472 One direction of a simplif...
sb2 2473 One direction of a simplif...
sb4a 2474 A version of one implicati...
dfsb1 2475 Alternate definition of su...
hbsb2 2476 Bound-variable hypothesis ...
nfsb2 2477 Bound-variable hypothesis ...
hbsb2a 2478 Special case of a bound-va...
sb4e 2479 One direction of a simplif...
hbsb2e 2480 Special case of a bound-va...
hbsb3 2481 If ` y ` is not free in ` ...
nfs1 2482 If ` y ` is not free in ` ...
axc16ALT 2483 Alternate proof of ~ axc16...
axc16gALT 2484 Alternate proof of ~ axc16...
equsb1 2485 Substitution applied to an...
equsb2 2486 Substitution applied to an...
dfsb2 2487 An alternate definition of...
dfsb3 2488 An alternate definition of...
drsb1 2489 Formula-building lemma for...
sb2ae 2490 In the case of two success...
sb6f 2491 Equivalence for substituti...
sb5f 2492 Equivalence for substituti...
nfsb4t 2493 A variable not free in a p...
nfsb4 2494 A variable not free in a p...
sbequ8 2495 Elimination of equality fr...
sbie 2496 Conversion of implicit sub...
sbied 2497 Conversion of implicit sub...
sbiedv 2498 Conversion of implicit sub...
2sbiev 2499 Conversion of double impli...
sbcom3 2500 Substituting ` y ` for ` x...
sbco 2501 A composition law for subs...
sbid2 2502 An identity law for substi...
sbid2v 2503 An identity law for substi...
sbidm 2504 An idempotent law for subs...
sbco2 2505 A composition law for subs...
sbco2d 2506 A composition law for subs...
sbco3 2507 A composition law for subs...
sbcom 2508 A commutativity law for su...
sbtrt 2509 Partially closed form of ~...
sbtr 2510 A partial converse to ~ sb...
sb8 2511 Substitution of variable i...
sb8e 2512 Substitution of variable i...
sb9 2513 Commutation of quantificat...
sb9i 2514 Commutation of quantificat...
sbhb 2515 Two ways of expressing " `...
nfsbd 2516 Deduction version of ~ nfs...
nfsb 2517 If ` z ` is not free in ` ...
hbsb 2518 If ` z ` is not free in ` ...
sb7f 2519 This version of ~ dfsb7 do...
sb7h 2520 This version of ~ dfsb7 do...
sb10f 2521 Hao Wang's identity axiom ...
sbal1 2522 Check out ~ sbal for a ver...
sbal2 2523 Move quantifier in and out...
2sb8e 2524 An equivalent expression f...
dfmoeu 2525 An elementary proof of ~ m...
dfeumo 2526 An elementary proof showin...
mojust 2528 Soundness justification th...
nexmo 2530 Nonexistence implies uniqu...
exmo 2531 Any proposition holds for ...
moabs 2532 Absorption of existence co...
moim 2533 The at-most-one quantifier...
moimi 2534 The at-most-one quantifier...
moimdv 2535 The at-most-one quantifier...
mobi 2536 Equivalence theorem for th...
mobii 2537 Formula-building rule for ...
mobidv 2538 Formula-building rule for ...
mobid 2539 Formula-building rule for ...
moa1 2540 If an implication holds fo...
moan 2541 "At most one" is still the...
moani 2542 "At most one" is still tru...
moor 2543 "At most one" is still the...
mooran1 2544 "At most one" imports disj...
mooran2 2545 "At most one" exports disj...
nfmo1 2546 Bound-variable hypothesis ...
nfmod2 2547 Bound-variable hypothesis ...
nfmodv 2548 Bound-variable hypothesis ...
nfmov 2549 Bound-variable hypothesis ...
nfmod 2550 Bound-variable hypothesis ...
nfmo 2551 Bound-variable hypothesis ...
mof 2552 Version of ~ df-mo with di...
mo3 2553 Alternate definition of th...
mo 2554 Equivalent definitions of ...
mo4 2555 At-most-one quantifier exp...
mo4f 2556 At-most-one quantifier exp...
eu3v 2559 An alternate way to expres...
eujust 2560 Soundness justification th...
eujustALT 2561 Alternate proof of ~ eujus...
eu6lem 2562 Lemma of ~ eu6im . A diss...
eu6 2563 Alternate definition of th...
eu6im 2564 One direction of ~ eu6 nee...
euf 2565 Version of ~ eu6 with disj...
euex 2566 Existential uniqueness imp...
eumo 2567 Existential uniqueness imp...
eumoi 2568 Uniqueness inferred from e...
exmoeub 2569 Existence implies that uni...
exmoeu 2570 Existence is equivalent to...
moeuex 2571 Uniqueness implies that ex...
moeu 2572 Uniqueness is equivalent t...
eubi 2573 Equivalence theorem for th...
eubii 2574 Introduce unique existenti...
eubidv 2575 Formula-building rule for ...
eubid 2576 Formula-building rule for ...
nfeu1 2577 Bound-variable hypothesis ...
nfeu1ALT 2578 Alternate proof of ~ nfeu1...
nfeud2 2579 Bound-variable hypothesis ...
nfeudw 2580 Bound-variable hypothesis ...
nfeud 2581 Bound-variable hypothesis ...
nfeuw 2582 Bound-variable hypothesis ...
nfeu 2583 Bound-variable hypothesis ...
dfeu 2584 Rederive ~ df-eu from the ...
dfmo 2585 Rederive ~ df-mo from the ...
euequ 2586 There exists a unique set ...
sb8eulem 2587 Lemma. Factor out the com...
sb8euv 2588 Variable substitution in u...
sb8eu 2589 Variable substitution in u...
sb8mo 2590 Variable substitution for ...
cbvmovw 2591 Change bound variable. Us...
cbvmow 2592 Rule used to change bound ...
cbvmowOLD 2593 Obsolete version of ~ cbvm...
cbvmo 2594 Rule used to change bound ...
cbveuvw 2595 Change bound variable. Us...
cbveuw 2596 Version of ~ cbveu with a ...
cbveuwOLD 2597 Obsolete version of ~ cbve...
cbveu 2598 Rule used to change bound ...
cbveuALT 2599 Alternative proof of ~ cbv...
eu2 2600 An alternate way of defini...
eu1 2601 An alternate way to expres...
euor 2602 Introduce a disjunct into ...
euorv 2603 Introduce a disjunct into ...
euor2 2604 Introduce or eliminate a d...
sbmo 2605 Substitution into an at-mo...
eu4 2606 Uniqueness using implicit ...
euimmo 2607 Existential uniqueness imp...
euim 2608 Add unique existential qua...
moanimlem 2609 Factor out the common proo...
moanimv 2610 Introduction of a conjunct...
moanim 2611 Introduction of a conjunct...
euan 2612 Introduction of a conjunct...
moanmo 2613 Nested at-most-one quantif...
moaneu 2614 Nested at-most-one and uni...
euanv 2615 Introduction of a conjunct...
mopick 2616 "At most one" picks a vari...
moexexlem 2617 Factor out the proof skele...
2moexv 2618 Double quantification with...
moexexvw 2619 "At most one" double quant...
2moswapv 2620 A condition allowing to sw...
2euswapv 2621 A condition allowing to sw...
2euexv 2622 Double quantification with...
2exeuv 2623 Double existential uniquen...
eupick 2624 Existential uniqueness "pi...
eupicka 2625 Version of ~ eupick with c...
eupickb 2626 Existential uniqueness "pi...
eupickbi 2627 Theorem *14.26 in [Whitehe...
mopick2 2628 "At most one" can show the...
moexex 2629 "At most one" double quant...
moexexv 2630 "At most one" double quant...
2moex 2631 Double quantification with...
2euex 2632 Double quantification with...
2eumo 2633 Nested unique existential ...
2eu2ex 2634 Double existential uniquen...
2moswap 2635 A condition allowing to sw...
2euswap 2636 A condition allowing to sw...
2exeu 2637 Double existential uniquen...
2mo2 2638 Two ways of expressing "th...
2mo 2639 Two ways of expressing "th...
2mos 2640 Double "there exists at mo...
2eu1 2641 Double existential uniquen...
2eu1v 2642 Double existential uniquen...
2eu2 2643 Double existential uniquen...
2eu3 2644 Double existential uniquen...
2eu4 2645 This theorem provides us w...
2eu5 2646 An alternate definition of...
2eu6 2647 Two equivalent expressions...
2eu7 2648 Two equivalent expressions...
2eu8 2649 Two equivalent expressions...
euae 2650 Two ways to express "exact...
exists1 2651 Two ways to express "exact...
exists2 2652 A condition implying that ...
barbara 2653 "Barbara", one of the fund...
celarent 2654 "Celarent", one of the syl...
darii 2655 "Darii", one of the syllog...
dariiALT 2656 Alternate proof of ~ darii...
ferio 2657 "Ferio" ("Ferioque"), one ...
barbarilem 2658 Lemma for ~ barbari and th...
barbari 2659 "Barbari", one of the syll...
barbariALT 2660 Alternate proof of ~ barba...
celaront 2661 "Celaront", one of the syl...
cesare 2662 "Cesare", one of the syllo...
camestres 2663 "Camestres", one of the sy...
festino 2664 "Festino", one of the syll...
festinoALT 2665 Alternate proof of ~ festi...
baroco 2666 "Baroco", one of the syllo...
barocoALT 2667 Alternate proof of ~ festi...
cesaro 2668 "Cesaro", one of the syllo...
camestros 2669 "Camestros", one of the sy...
datisi 2670 "Datisi", one of the syllo...
disamis 2671 "Disamis", one of the syll...
ferison 2672 "Ferison", one of the syll...
bocardo 2673 "Bocardo", one of the syll...
darapti 2674 "Darapti", one of the syll...
daraptiALT 2675 Alternate proof of ~ darap...
felapton 2676 "Felapton", one of the syl...
calemes 2677 "Calemes", one of the syll...
dimatis 2678 "Dimatis", one of the syll...
fresison 2679 "Fresison", one of the syl...
calemos 2680 "Calemos", one of the syll...
fesapo 2681 "Fesapo", one of the syllo...
bamalip 2682 "Bamalip", one of the syll...
axia1 2683 Left 'and' elimination (in...
axia2 2684 Right 'and' elimination (i...
axia3 2685 'And' introduction (intuit...
axin1 2686 'Not' introduction (intuit...
axin2 2687 'Not' elimination (intuiti...
axio 2688 Definition of 'or' (intuit...
axi4 2689 Specialization (intuitioni...
axi5r 2690 Converse of ~ axc4 (intuit...
axial 2691 The setvar ` x ` is not fr...
axie1 2692 The setvar ` x ` is not fr...
axie2 2693 A key property of existent...
axi9 2694 Axiom of existence (intuit...
axi10 2695 Axiom of Quantifier Substi...
axi12 2696 Axiom of Quantifier Introd...
axbnd 2697 Axiom of Bundling (intuiti...
axexte 2699 The axiom of extensionalit...
axextg 2700 A generalization of the ax...
axextb 2701 A bidirectional version of...
axextmo 2702 There exists at most one s...
nulmo 2703 There exists at most one e...
eleq1ab 2706 Extension (in the sense of...
cleljustab 2707 Extension of ~ cleljust fr...
abid 2708 Simplification of class ab...
vexwt 2709 A standard theorem of pred...
vexw 2710 If ` ph ` is a theorem, th...
vextru 2711 Every setvar is a member o...
nfsab1 2712 Bound-variable hypothesis ...
hbab1 2713 Bound-variable hypothesis ...
hbab1OLD 2714 Obsolete version of ~ hbab...
hbab 2715 Bound-variable hypothesis ...
hbabg 2716 Bound-variable hypothesis ...
nfsab 2717 Bound-variable hypothesis ...
nfsabg 2718 Bound-variable hypothesis ...
dfcleq 2720 The defining characterizat...
cvjust 2721 Every set is a class. Pro...
ax9ALT 2722 Proof of ~ ax-9 from Tarsk...
eleq2w2 2723 A weaker version of ~ eleq...
eqriv 2724 Infer equality of classes ...
eqrdv 2725 Deduce equality of classes...
eqrdav 2726 Deduce equality of classes...
eqid 2727 Law of identity (reflexivi...
eqidd 2728 Class identity law with an...
eqeq1d 2729 Deduction from equality to...
eqeq1dALT 2730 Alternate proof of ~ eqeq1...
eqeq1 2731 Equality implies equivalen...
eqeq1i 2732 Inference from equality to...
eqcomd 2733 Deduction from commutative...
eqcom 2734 Commutative law for class ...
eqcoms 2735 Inference applying commuta...
eqcomi 2736 Inference from commutative...
neqcomd 2737 Commute an inequality. (C...
eqeq2d 2738 Deduction from equality to...
eqeq2 2739 Equality implies equivalen...
eqeq2i 2740 Inference from equality to...
eqeqan12d 2741 A useful inference for sub...
eqeqan12rd 2742 A useful inference for sub...
eqeq12d 2743 A useful inference for sub...
eqeq12 2744 Equality relationship amon...
eqeq12i 2745 A useful inference for sub...
eqeq12OLD 2746 Obsolete version of ~ eqeq...
eqeq12dOLD 2747 Obsolete version of ~ eqeq...
eqeqan12dOLD 2748 Obsolete version of ~ eqeq...
eqeqan12dALT 2749 Alternate proof of ~ eqeqa...
eqtr 2750 Transitive law for class e...
eqtr2 2751 A transitive law for class...
eqtr2OLD 2752 Obsolete version of eqtr2 ...
eqtr3 2753 A transitive law for class...
eqtr3OLD 2754 Obsolete version of ~ eqtr...
eqtri 2755 An equality transitivity i...
eqtr2i 2756 An equality transitivity i...
eqtr3i 2757 An equality transitivity i...
eqtr4i 2758 An equality transitivity i...
3eqtri 2759 An inference from three ch...
3eqtrri 2760 An inference from three ch...
3eqtr2i 2761 An inference from three ch...
3eqtr2ri 2762 An inference from three ch...
3eqtr3i 2763 An inference from three ch...
3eqtr3ri 2764 An inference from three ch...
3eqtr4i 2765 An inference from three ch...
3eqtr4ri 2766 An inference from three ch...
eqtrd 2767 An equality transitivity d...
eqtr2d 2768 An equality transitivity d...
eqtr3d 2769 An equality transitivity e...
eqtr4d 2770 An equality transitivity e...
3eqtrd 2771 A deduction from three cha...
3eqtrrd 2772 A deduction from three cha...
3eqtr2d 2773 A deduction from three cha...
3eqtr2rd 2774 A deduction from three cha...
3eqtr3d 2775 A deduction from three cha...
3eqtr3rd 2776 A deduction from three cha...
3eqtr4d 2777 A deduction from three cha...
3eqtr4rd 2778 A deduction from three cha...
eqtrid 2779 An equality transitivity d...
eqtr2id 2780 An equality transitivity d...
eqtr3id 2781 An equality transitivity d...
eqtr3di 2782 An equality transitivity d...
eqtrdi 2783 An equality transitivity d...
eqtr2di 2784 An equality transitivity d...
eqtr4di 2785 An equality transitivity d...
eqtr4id 2786 An equality transitivity d...
sylan9eq 2787 An equality transitivity d...
sylan9req 2788 An equality transitivity d...
sylan9eqr 2789 An equality transitivity d...
3eqtr3g 2790 A chained equality inferen...
3eqtr3a 2791 A chained equality inferen...
3eqtr4g 2792 A chained equality inferen...
3eqtr4a 2793 A chained equality inferen...
eq2tri 2794 A compound transitive infe...
abbi 2795 Equivalent formulas yield ...
abbidv 2796 Equivalent wff's yield equ...
abbii 2797 Equivalent wff's yield equ...
abbid 2798 Equivalent wff's yield equ...
abbib 2799 Equal class abstractions r...
cbvabv 2800 Rule used to change bound ...
cbvabw 2801 Rule used to change bound ...
cbvabwOLD 2802 Obsolete version of ~ cbva...
cbvab 2803 Rule used to change bound ...
eqabbw 2804 Version of ~ eqabb using i...
dfclel 2806 Characterization of the el...
elex2 2807 If a class contains anothe...
issetlem 2808 Lemma for ~ elisset and ~ ...
elissetv 2809 An element of a class exis...
elisset 2810 An element of a class exis...
eleq1w 2811 Weaker version of ~ eleq1 ...
eleq2w 2812 Weaker version of ~ eleq2 ...
eleq1d 2813 Deduction from equality to...
eleq2d 2814 Deduction from equality to...
eleq2dALT 2815 Alternate proof of ~ eleq2...
eleq1 2816 Equality implies equivalen...
eleq2 2817 Equality implies equivalen...
eleq12 2818 Equality implies equivalen...
eleq1i 2819 Inference from equality to...
eleq2i 2820 Inference from equality to...
eleq12i 2821 Inference from equality to...
eleq12d 2822 Deduction from equality to...
eleq1a 2823 A transitive-type law rela...
eqeltri 2824 Substitution of equal clas...
eqeltrri 2825 Substitution of equal clas...
eleqtri 2826 Substitution of equal clas...
eleqtrri 2827 Substitution of equal clas...
eqeltrd 2828 Substitution of equal clas...
eqeltrrd 2829 Deduction that substitutes...
eleqtrd 2830 Deduction that substitutes...
eleqtrrd 2831 Deduction that substitutes...
eqeltrid 2832 A membership and equality ...
eqeltrrid 2833 A membership and equality ...
eleqtrid 2834 A membership and equality ...
eleqtrrid 2835 A membership and equality ...
eqeltrdi 2836 A membership and equality ...
eqeltrrdi 2837 A membership and equality ...
eleqtrdi 2838 A membership and equality ...
eleqtrrdi 2839 A membership and equality ...
3eltr3i 2840 Substitution of equal clas...
3eltr4i 2841 Substitution of equal clas...
3eltr3d 2842 Substitution of equal clas...
3eltr4d 2843 Substitution of equal clas...
3eltr3g 2844 Substitution of equal clas...
3eltr4g 2845 Substitution of equal clas...
eleq2s 2846 Substitution of equal clas...
eqneltri 2847 If a class is not an eleme...
eqneltrd 2848 If a class is not an eleme...
eqneltrrd 2849 If a class is not an eleme...
neleqtrd 2850 If a class is not an eleme...
neleqtrrd 2851 If a class is not an eleme...
nelneq 2852 A way of showing two class...
nelneq2 2853 A way of showing two class...
eqsb1 2854 Substitution for the left-...
clelsb1 2855 Substitution for the first...
clelsb2 2856 Substitution for the secon...
clelsb2OLD 2857 Obsolete version of ~ clel...
cleqh 2858 Establish equality between...
hbxfreq 2859 A utility lemma to transfe...
hblem 2860 Change the free variable o...
hblemg 2861 Change the free variable o...
eqabdv 2862 Deduction from a wff to a ...
eqabcdv 2863 Deduction from a wff to a ...
eqabi 2864 Equality of a class variab...
abid1 2865 Every class is equal to a ...
abid2 2866 A simplification of class ...
eqab 2867 One direction of ~ eqabb i...
eqabb 2868 Equality of a class variab...
eqabbOLD 2869 Obsolete version of ~ eqab...
eqabcb 2870 Equality of a class variab...
eqabrd 2871 Equality of a class variab...
eqabri 2872 Equality of a class variab...
eqabcri 2873 Equality of a class variab...
clelab 2874 Membership of a class vari...
clelabOLD 2875 Obsolete version of ~ clel...
clabel 2876 Membership of a class abst...
sbab 2877 The right-hand side of the...
nfcjust 2879 Justification theorem for ...
nfci 2881 Deduce that a class ` A ` ...
nfcii 2882 Deduce that a class ` A ` ...
nfcr 2883 Consequence of the not-fre...
nfcrALT 2884 Alternate version of ~ nfc...
nfcri 2885 Consequence of the not-fre...
nfcd 2886 Deduce that a class ` A ` ...
nfcrd 2887 Consequence of the not-fre...
nfcriOLD 2888 Obsolete version of ~ nfcr...
nfcriOLDOLD 2889 Obsolete version of ~ nfcr...
nfcrii 2890 Consequence of the not-fre...
nfcriiOLD 2891 Obsolete version of ~ nfcr...
nfcriOLDOLDOLD 2892 Obsolete version of ~ nfcr...
nfceqdf 2893 An equality theorem for ef...
nfceqdfOLD 2894 Obsolete version of ~ nfce...
nfceqi 2895 Equality theorem for class...
nfcxfr 2896 A utility lemma to transfe...
nfcxfrd 2897 A utility lemma to transfe...
nfcv 2898 If ` x ` is disjoint from ...
nfcvd 2899 If ` x ` is disjoint from ...
nfab1 2900 Bound-variable hypothesis ...
nfnfc1 2901 The setvar ` x ` is bound ...
clelsb1fw 2902 Substitution for the first...
clelsb1f 2903 Substitution for the first...
nfab 2904 Bound-variable hypothesis ...
nfabg 2905 Bound-variable hypothesis ...
nfaba1 2906 Bound-variable hypothesis ...
nfaba1g 2907 Bound-variable hypothesis ...
nfeqd 2908 Hypothesis builder for equ...
nfeld 2909 Hypothesis builder for ele...
nfnfc 2910 Hypothesis builder for ` F...
nfeq 2911 Hypothesis builder for equ...
nfel 2912 Hypothesis builder for ele...
nfeq1 2913 Hypothesis builder for equ...
nfel1 2914 Hypothesis builder for ele...
nfeq2 2915 Hypothesis builder for equ...
nfel2 2916 Hypothesis builder for ele...
drnfc1 2917 Formula-building lemma for...
drnfc1OLD 2918 Obsolete version of ~ drnf...
drnfc2 2919 Formula-building lemma for...
drnfc2OLD 2920 Obsolete version of ~ drnf...
nfabdw 2921 Bound-variable hypothesis ...
nfabdwOLD 2922 Obsolete version of ~ nfab...
nfabd 2923 Bound-variable hypothesis ...
nfabd2 2924 Bound-variable hypothesis ...
dvelimdc 2925 Deduction form of ~ dvelim...
dvelimc 2926 Version of ~ dvelim for cl...
nfcvf 2927 If ` x ` and ` y ` are dis...
nfcvf2 2928 If ` x ` and ` y ` are dis...
cleqf 2929 Establish equality between...
eqabf 2930 Equality of a class variab...
abid2f 2931 A simplification of class ...
abid2fOLD 2932 Obsolete version of ~ abid...
sbabel 2933 Theorem to move a substitu...
sbabelOLD 2934 Obsolete version of ~ sbab...
neii 2937 Inference associated with ...
neir 2938 Inference associated with ...
nne 2939 Negation of inequality. (...
neneqd 2940 Deduction eliminating ineq...
neneq 2941 From inequality to non-equ...
neqned 2942 If it is not the case that...
neqne 2943 From non-equality to inequ...
neirr 2944 No class is unequal to its...
exmidne 2945 Excluded middle with equal...
eqneqall 2946 A contradiction concerning...
nonconne 2947 Law of noncontradiction wi...
necon3ad 2948 Contrapositive law deducti...
necon3bd 2949 Contrapositive law deducti...
necon2ad 2950 Contrapositive inference f...
necon2bd 2951 Contrapositive inference f...
necon1ad 2952 Contrapositive deduction f...
necon1bd 2953 Contrapositive deduction f...
necon4ad 2954 Contrapositive inference f...
necon4bd 2955 Contrapositive inference f...
necon3d 2956 Contrapositive law deducti...
necon1d 2957 Contrapositive law deducti...
necon2d 2958 Contrapositive inference f...
necon4d 2959 Contrapositive inference f...
necon3ai 2960 Contrapositive inference f...
necon3aiOLD 2961 Obsolete version of ~ neco...
necon3bi 2962 Contrapositive inference f...
necon1ai 2963 Contrapositive inference f...
necon1bi 2964 Contrapositive inference f...
necon2ai 2965 Contrapositive inference f...
necon2bi 2966 Contrapositive inference f...
necon4ai 2967 Contrapositive inference f...
necon3i 2968 Contrapositive inference f...
necon1i 2969 Contrapositive inference f...
necon2i 2970 Contrapositive inference f...
necon4i 2971 Contrapositive inference f...
necon3abid 2972 Deduction from equality to...
necon3bbid 2973 Deduction from equality to...
necon1abid 2974 Contrapositive deduction f...
necon1bbid 2975 Contrapositive inference f...
necon4abid 2976 Contrapositive law deducti...
necon4bbid 2977 Contrapositive law deducti...
necon2abid 2978 Contrapositive deduction f...
necon2bbid 2979 Contrapositive deduction f...
necon3bid 2980 Deduction from equality to...
necon4bid 2981 Contrapositive law deducti...
necon3abii 2982 Deduction from equality to...
necon3bbii 2983 Deduction from equality to...
necon1abii 2984 Contrapositive inference f...
necon1bbii 2985 Contrapositive inference f...
necon2abii 2986 Contrapositive inference f...
necon2bbii 2987 Contrapositive inference f...
necon3bii 2988 Inference from equality to...
necom 2989 Commutation of inequality....
necomi 2990 Inference from commutative...
necomd 2991 Deduction from commutative...
nesym 2992 Characterization of inequa...
nesymi 2993 Inference associated with ...
nesymir 2994 Inference associated with ...
neeq1d 2995 Deduction for inequality. ...
neeq2d 2996 Deduction for inequality. ...
neeq12d 2997 Deduction for inequality. ...
neeq1 2998 Equality theorem for inequ...
neeq2 2999 Equality theorem for inequ...
neeq1i 3000 Inference for inequality. ...
neeq2i 3001 Inference for inequality. ...
neeq12i 3002 Inference for inequality. ...
eqnetrd 3003 Substitution of equal clas...
eqnetrrd 3004 Substitution of equal clas...
neeqtrd 3005 Substitution of equal clas...
eqnetri 3006 Substitution of equal clas...
eqnetrri 3007 Substitution of equal clas...
neeqtri 3008 Substitution of equal clas...
neeqtrri 3009 Substitution of equal clas...
neeqtrrd 3010 Substitution of equal clas...
eqnetrrid 3011 A chained equality inferen...
3netr3d 3012 Substitution of equality i...
3netr4d 3013 Substitution of equality i...
3netr3g 3014 Substitution of equality i...
3netr4g 3015 Substitution of equality i...
nebi 3016 Contraposition law for ine...
pm13.18 3017 Theorem *13.18 in [Whitehe...
pm13.181 3018 Theorem *13.181 in [Whiteh...
pm13.181OLD 3019 Obsolete version of ~ pm13...
pm2.61ine 3020 Inference eliminating an i...
pm2.21ddne 3021 A contradiction implies an...
pm2.61ne 3022 Deduction eliminating an i...
pm2.61dne 3023 Deduction eliminating an i...
pm2.61dane 3024 Deduction eliminating an i...
pm2.61da2ne 3025 Deduction eliminating two ...
pm2.61da3ne 3026 Deduction eliminating thre...
pm2.61iine 3027 Equality version of ~ pm2....
mteqand 3028 A modus tollens deduction ...
neor 3029 Logical OR with an equalit...
neanior 3030 A De Morgan's law for ineq...
ne3anior 3031 A De Morgan's law for ineq...
neorian 3032 A De Morgan's law for ineq...
nemtbir 3033 An inference from an inequ...
nelne1 3034 Two classes are different ...
nelne2 3035 Two classes are different ...
nelelne 3036 Two classes are different ...
neneor 3037 If two classes are differe...
nfne 3038 Bound-variable hypothesis ...
nfned 3039 Bound-variable hypothesis ...
nabbib 3040 Not equivalent wff's corre...
neli 3043 Inference associated with ...
nelir 3044 Inference associated with ...
nelcon3d 3045 Contrapositive law deducti...
neleq12d 3046 Equality theorem for negat...
neleq1 3047 Equality theorem for negat...
neleq2 3048 Equality theorem for negat...
nfnel 3049 Bound-variable hypothesis ...
nfneld 3050 Bound-variable hypothesis ...
nnel 3051 Negation of negated member...
elnelne1 3052 Two classes are different ...
elnelne2 3053 Two classes are different ...
pm2.24nel 3054 A contradiction concerning...
pm2.61danel 3055 Deduction eliminating an e...
rgen 3058 Generalization rule for re...
ralel 3059 All elements of a class ar...
rgenw 3060 Generalization rule for re...
rgen2w 3061 Generalization rule for re...
mprg 3062 Modus ponens combined with...
mprgbir 3063 Modus ponens on biconditio...
raln 3064 Restricted universally qua...
ralnex 3067 Relationship between restr...
dfrex2 3068 Relationship between restr...
nrex 3069 Inference adding restricte...
alral 3070 Universal quantification i...
rexex 3071 Restricted existence impli...
rextru 3072 Two ways of expressing tha...
ralimi2 3073 Inference quantifying both...
reximi2 3074 Inference quantifying both...
ralimia 3075 Inference quantifying both...
reximia 3076 Inference quantifying both...
ralimiaa 3077 Inference quantifying both...
ralimi 3078 Inference quantifying both...
reximi 3079 Inference quantifying both...
ral2imi 3080 Inference quantifying ante...
ralim 3081 Distribution of restricted...
rexim 3082 Theorem 19.22 of [Margaris...
reximiaOLD 3083 Obsolete version of ~ rexi...
ralbii2 3084 Inference adding different...
rexbii2 3085 Inference adding different...
ralbiia 3086 Inference adding restricte...
rexbiia 3087 Inference adding restricte...
ralbii 3088 Inference adding restricte...
rexbii 3089 Inference adding restricte...
ralanid 3090 Cancellation law for restr...
rexanid 3091 Cancellation law for restr...
ralcom3 3092 A commutation law for rest...
ralcom3OLD 3093 Obsolete version of ~ ralc...
dfral2 3094 Relationship between restr...
rexnal 3095 Relationship between restr...
ralinexa 3096 A transformation of restri...
rexanali 3097 A transformation of restri...
ralbi 3098 Distribute a restricted un...
rexbi 3099 Distribute restricted quan...
rexbiOLD 3100 Obsolete version of ~ rexb...
ralrexbid 3101 Formula-building rule for ...
ralrexbidOLD 3102 Obsolete version of ~ ralr...
r19.35 3103 Restricted quantifier vers...
r19.35OLD 3104 Obsolete version of ~ 19.3...
r19.26m 3105 Version of ~ 19.26 and ~ r...
r19.26 3106 Restricted quantifier vers...
r19.26-3 3107 Version of ~ r19.26 with t...
ralbiim 3108 Split a biconditional and ...
r19.29 3109 Restricted quantifier vers...
r19.29OLD 3110 Obsolete version of ~ r19....
r19.29r 3111 Restricted quantifier vers...
r19.29rOLD 3112 Obsolete version of ~ r19....
r19.29imd 3113 Theorem 19.29 of [Margaris...
r19.40 3114 Restricted quantifier vers...
r19.30 3115 Restricted quantifier vers...
r19.30OLD 3116 Obsolete version of ~ 19.3...
r19.43 3117 Restricted quantifier vers...
2ralimi 3118 Inference quantifying both...
3ralimi 3119 Inference quantifying both...
4ralimi 3120 Inference quantifying both...
5ralimi 3121 Inference quantifying both...
6ralimi 3122 Inference quantifying both...
2ralbii 3123 Inference adding two restr...
2rexbii 3124 Inference adding two restr...
3ralbii 3125 Inference adding three res...
4ralbii 3126 Inference adding four rest...
2ralbiim 3127 Split a biconditional and ...
ralnex2 3128 Relationship between two r...
ralnex3 3129 Relationship between three...
rexnal2 3130 Relationship between two r...
rexnal3 3131 Relationship between three...
nrexralim 3132 Negation of a complex pred...
r19.26-2 3133 Restricted quantifier vers...
2r19.29 3134 Theorem ~ r19.29 with two ...
r19.29d2r 3135 Theorem 19.29 of [Margaris...
r19.29d2rOLD 3136 Obsolete version of ~ r19....
r2allem 3137 Lemma factoring out common...
r2exlem 3138 Lemma factoring out common...
hbralrimi 3139 Inference from Theorem 19....
ralrimiv 3140 Inference from Theorem 19....
ralrimiva 3141 Inference from Theorem 19....
rexlimiva 3142 Inference from Theorem 19....
rexlimiv 3143 Inference from Theorem 19....
nrexdv 3144 Deduction adding restricte...
ralrimivw 3145 Inference from Theorem 19....
rexlimivw 3146 Weaker version of ~ rexlim...
ralrimdv 3147 Inference from Theorem 19....
rexlimdv 3148 Inference from Theorem 19....
ralrimdva 3149 Inference from Theorem 19....
rexlimdva 3150 Inference from Theorem 19....
rexlimdvaa 3151 Inference from Theorem 19....
rexlimdva2 3152 Inference from Theorem 19....
r19.29an 3153 A commonly used pattern in...
rexlimdv3a 3154 Inference from Theorem 19....
rexlimdvw 3155 Inference from Theorem 19....
rexlimddv 3156 Restricted existential eli...
r19.29a 3157 A commonly used pattern in...
ralimdv2 3158 Inference quantifying both...
reximdv2 3159 Deduction quantifying both...
reximdvai 3160 Deduction quantifying both...
reximdvaiOLD 3161 Obsolete version of ~ rexi...
ralimdva 3162 Deduction quantifying both...
reximdva 3163 Deduction quantifying both...
ralimdv 3164 Deduction quantifying both...
reximdv 3165 Deduction from Theorem 19....
reximddv 3166 Deduction from Theorem 19....
reximssdv 3167 Derivation of a restricted...
ralbidv2 3168 Formula-building rule for ...
rexbidv2 3169 Formula-building rule for ...
ralbidva 3170 Formula-building rule for ...
rexbidva 3171 Formula-building rule for ...
ralbidv 3172 Formula-building rule for ...
rexbidv 3173 Formula-building rule for ...
r19.21v 3174 Restricted quantifier vers...
r19.21vOLD 3175 Obsolete version of ~ r19....
r19.37v 3176 Restricted quantifier vers...
r19.23v 3177 Restricted quantifier vers...
r19.36v 3178 Restricted quantifier vers...
rexlimivOLD 3179 Obsolete version of ~ rexl...
rexlimivaOLD 3180 Obsolete version of ~ rexl...
rexlimivwOLD 3181 Obsolete version of ~ rexl...
r19.27v 3182 Restricted quantitifer ver...
r19.41v 3183 Restricted quantifier vers...
r19.28v 3184 Restricted quantifier vers...
r19.42v 3185 Restricted quantifier vers...
r19.32v 3186 Restricted quantifier vers...
r19.45v 3187 Restricted quantifier vers...
r19.44v 3188 One direction of a restric...
r2al 3189 Double restricted universa...
r2ex 3190 Double restricted existent...
r3al 3191 Triple restricted universa...
rgen2 3192 Generalization rule for re...
ralrimivv 3193 Inference from Theorem 19....
rexlimivv 3194 Inference from Theorem 19....
ralrimivva 3195 Inference from Theorem 19....
ralrimdvv 3196 Inference from Theorem 19....
rgen3 3197 Generalization rule for re...
ralrimivvva 3198 Inference from Theorem 19....
ralimdvva 3199 Deduction doubly quantifyi...
reximdvva 3200 Deduction doubly quantifyi...
ralimdvv 3201 Deduction doubly quantifyi...
ralimd4v 3202 Deduction quadrupally quan...
ralimd6v 3203 Deduction sextupally quant...
ralrimdvva 3204 Inference from Theorem 19....
rexlimdvv 3205 Inference from Theorem 19....
rexlimdvva 3206 Inference from Theorem 19....
reximddv2 3207 Double deduction from Theo...
r19.29vva 3208 A commonly used pattern ba...
r19.29vvaOLD 3209 Obsolete version of ~ r19....
2rexbiia 3210 Inference adding two restr...
2ralbidva 3211 Formula-building rule for ...
2rexbidva 3212 Formula-building rule for ...
2ralbidv 3213 Formula-building rule for ...
2rexbidv 3214 Formula-building rule for ...
rexralbidv 3215 Formula-building rule for ...
3ralbidv 3216 Formula-building rule for ...
4ralbidv 3217 Formula-building rule for ...
6ralbidv 3218 Formula-building rule for ...
r19.41vv 3219 Version of ~ r19.41v with ...
reeanlem 3220 Lemma factoring out common...
reeanv 3221 Rearrange restricted exist...
3reeanv 3222 Rearrange three restricted...
2ralor 3223 Distribute restricted univ...
2ralorOLD 3224 Obsolete version of ~ 2ral...
risset 3225 Two ways to say " ` A ` be...
nelb 3226 A definition of ` -. A e. ...
nelbOLD 3227 Obsolete version of ~ nelb...
rspw 3228 Restricted specialization....
cbvralvw 3229 Change the bound variable ...
cbvrexvw 3230 Change the bound variable ...
cbvraldva 3231 Rule used to change the bo...
cbvrexdva 3232 Rule used to change the bo...
cbvral2vw 3233 Change bound variables of ...
cbvrex2vw 3234 Change bound variables of ...
cbvral3vw 3235 Change bound variables of ...
cbvral4vw 3236 Change bound variables of ...
cbvral6vw 3237 Change bound variables of ...
cbvral8vw 3238 Change bound variables of ...
rsp 3239 Restricted specialization....
rspa 3240 Restricted specialization....
rspe 3241 Restricted specialization....
rspec 3242 Specialization rule for re...
r19.21bi 3243 Inference from Theorem 19....
r19.21be 3244 Inference from Theorem 19....
r19.21t 3245 Restricted quantifier vers...
r19.21 3246 Restricted quantifier vers...
r19.23t 3247 Closed theorem form of ~ r...
r19.23 3248 Restricted quantifier vers...
ralrimi 3249 Inference from Theorem 19....
ralrimia 3250 Inference from Theorem 19....
rexlimi 3251 Restricted quantifier vers...
ralimdaa 3252 Deduction quantifying both...
reximdai 3253 Deduction from Theorem 19....
r19.37 3254 Restricted quantifier vers...
r19.41 3255 Restricted quantifier vers...
ralrimd 3256 Inference from Theorem 19....
rexlimd2 3257 Version of ~ rexlimd with ...
rexlimd 3258 Deduction form of ~ rexlim...
r19.29af2 3259 A commonly used pattern ba...
r19.29af 3260 A commonly used pattern ba...
reximd2a 3261 Deduction quantifying both...
ralbida 3262 Formula-building rule for ...
ralbidaOLD 3263 Obsolete version of ~ ralb...
rexbida 3264 Formula-building rule for ...
ralbid 3265 Formula-building rule for ...
rexbid 3266 Formula-building rule for ...
rexbidvALT 3267 Alternate proof of ~ rexbi...
rexbidvaALT 3268 Alternate proof of ~ rexbi...
rsp2 3269 Restricted specialization,...
rsp2e 3270 Restricted specialization....
rspec2 3271 Specialization rule for re...
rspec3 3272 Specialization rule for re...
r2alf 3273 Double restricted universa...
r2exf 3274 Double restricted existent...
2ralbida 3275 Formula-building rule for ...
nfra1 3276 The setvar ` x ` is not fr...
nfre1 3277 The setvar ` x ` is not fr...
ralcom4 3278 Commutation of restricted ...
ralcom4OLD 3279 Obsolete version of ~ ralc...
rexcom4 3280 Commutation of restricted ...
ralcom 3281 Commutation of restricted ...
rexcom 3282 Commutation of restricted ...
rexcomOLD 3283 Obsolete version of ~ rexc...
rexcom4a 3284 Specialized existential co...
ralrot3 3285 Rotate three restricted un...
ralcom13 3286 Swap first and third restr...
ralcom13OLD 3287 Obsolete version of ~ ralc...
rexcom13 3288 Swap first and third restr...
rexrot4 3289 Rotate four restricted exi...
2ex2rexrot 3290 Rotate two existential qua...
nfra2w 3291 Similar to Lemma 24 of [Mo...
nfra2wOLD 3292 Obsolete version of ~ nfra...
hbra1 3293 The setvar ` x ` is not fr...
ralcomf 3294 Commutation of restricted ...
rexcomf 3295 Commutation of restricted ...
cbvralfw 3296 Rule used to change bound ...
cbvrexfw 3297 Rule used to change bound ...
cbvralw 3298 Rule used to change bound ...
cbvrexw 3299 Rule used to change bound ...
hbral 3300 Bound-variable hypothesis ...
nfraldw 3301 Deduction version of ~ nfr...
nfrexdw 3302 Deduction version of ~ nfr...
nfralw 3303 Bound-variable hypothesis ...
nfralwOLD 3304 Obsolete version of ~ nfra...
nfrexw 3305 Bound-variable hypothesis ...
r19.12 3306 Restricted quantifier vers...
r19.12OLD 3307 Obsolete version of ~ 19.1...
reean 3308 Rearrange restricted exist...
cbvralsvw 3309 Change bound variable by u...
cbvrexsvw 3310 Change bound variable by u...
cbvralsvwOLD 3311 Obsolete version of ~ cbvr...
cbvrexsvwOLD 3312 Obsolete version of ~ cbvr...
nfraldwOLD 3313 Obsolete version of ~ nfra...
nfra2wOLDOLD 3314 Obsolete version of ~ nfra...
cbvralfwOLD 3315 Obsolete version of ~ cbvr...
rexeq 3316 Equality theorem for restr...
raleq 3317 Equality theorem for restr...
raleqi 3318 Equality inference for res...
rexeqi 3319 Equality inference for res...
raleqdv 3320 Equality deduction for res...
rexeqdv 3321 Equality deduction for res...
raleqbidva 3322 Equality deduction for res...
rexeqbidva 3323 Equality deduction for res...
raleqbidvv 3324 Version of ~ raleqbidv wit...
raleqbidvvOLD 3325 Obsolete version of ~ rale...
rexeqbidvv 3326 Version of ~ rexeqbidv wit...
rexeqbidvvOLD 3327 Obsolete version of ~ rexe...
raleqbi1dv 3328 Equality deduction for res...
rexeqbi1dv 3329 Equality deduction for res...
raleqOLD 3330 Obsolete version of ~ rale...
rexeqOLD 3331 Obsolete version of ~ rale...
raleleq 3332 All elements of a class ar...
raleqbii 3333 Equality deduction for res...
rexeqbii 3334 Equality deduction for res...
raleleqOLD 3335 Obsolete version of ~ rale...
raleleqALT 3336 Alternate proof of ~ ralel...
raleqbidv 3337 Equality deduction for res...
rexeqbidv 3338 Equality deduction for res...
cbvraldva2 3339 Rule used to change the bo...
cbvrexdva2 3340 Rule used to change the bo...
cbvrexdva2OLD 3341 Obsolete version of ~ cbvr...
cbvraldvaOLD 3342 Obsolete version of ~ cbvr...
cbvrexdvaOLD 3343 Obsolete version of ~ cbvr...
raleqf 3344 Equality theorem for restr...
rexeqf 3345 Equality theorem for restr...
rexeqfOLD 3346 Obsolete version of ~ rexe...
raleqbid 3347 Equality deduction for res...
rexeqbid 3348 Equality deduction for res...
sbralie 3349 Implicit to explicit subst...
sbralieALT 3350 Alternative shorter proof ...
cbvralf 3351 Rule used to change bound ...
cbvrexf 3352 Rule used to change bound ...
cbvral 3353 Rule used to change bound ...
cbvrex 3354 Rule used to change bound ...
cbvralv 3355 Change the bound variable ...
cbvrexv 3356 Change the bound variable ...
cbvralsv 3357 Change bound variable by u...
cbvrexsv 3358 Change bound variable by u...
cbvral2v 3359 Change bound variables of ...
cbvrex2v 3360 Change bound variables of ...
cbvral3v 3361 Change bound variables of ...
rgen2a 3362 Generalization rule for re...
nfrald 3363 Deduction version of ~ nfr...
nfrexd 3364 Deduction version of ~ nfr...
nfral 3365 Bound-variable hypothesis ...
nfrex 3366 Bound-variable hypothesis ...
nfra2 3367 Similar to Lemma 24 of [Mo...
ralcom2 3368 Commutation of restricted ...
reu5 3373 Restricted uniqueness in t...
reurmo 3374 Restricted existential uni...
reurex 3375 Restricted unique existenc...
mormo 3376 Unrestricted "at most one"...
rmobiia 3377 Formula-building rule for ...
reubiia 3378 Formula-building rule for ...
rmobii 3379 Formula-building rule for ...
reubii 3380 Formula-building rule for ...
rmoanid 3381 Cancellation law for restr...
reuanid 3382 Cancellation law for restr...
rmoanidOLD 3383 Obsolete version of ~ rmoa...
reuanidOLD 3384 Obsolete version of ~ reua...
2reu2rex 3385 Double restricted existent...
rmobidva 3386 Formula-building rule for ...
reubidva 3387 Formula-building rule for ...
rmobidv 3388 Formula-building rule for ...
reubidv 3389 Formula-building rule for ...
reueubd 3390 Restricted existential uni...
rmo5 3391 Restricted "at most one" i...
nrexrmo 3392 Nonexistence implies restr...
moel 3393 "At most one" element in a...
cbvrmovw 3394 Change the bound variable ...
cbvreuvw 3395 Change the bound variable ...
moelOLD 3396 Obsolete version of ~ moel...
rmobida 3397 Formula-building rule for ...
reubida 3398 Formula-building rule for ...
rmobidvaOLD 3399 Obsolete version of ~ rmob...
cbvrmow 3400 Change the bound variable ...
cbvreuw 3401 Change the bound variable ...
nfrmo1 3402 The setvar ` x ` is not fr...
nfreu1 3403 The setvar ` x ` is not fr...
nfrmow 3404 Bound-variable hypothesis ...
nfreuw 3405 Bound-variable hypothesis ...
cbvrmowOLD 3406 Obsolete version of ~ cbvr...
cbvreuwOLD 3407 Obsolete version of ~ cbvr...
cbvreuvwOLD 3408 Obsolete version of ~ cbvr...
rmoeq1 3409 Equality theorem for restr...
reueq1 3410 Equality theorem for restr...
rmoeq1OLD 3411 Obsolete version of ~ rmoe...
reueq1OLD 3412 Obsolete version of ~ reue...
rmoeqd 3413 Equality deduction for res...
reueqd 3414 Equality deduction for res...
rmoeq1f 3415 Equality theorem for restr...
reueq1f 3416 Equality theorem for restr...
nfreuwOLD 3417 Obsolete version of ~ nfre...
nfrmowOLD 3418 Obsolete version of ~ nfrm...
cbvreu 3419 Change the bound variable ...
cbvrmo 3420 Change the bound variable ...
cbvrmov 3421 Change the bound variable ...
cbvreuv 3422 Change the bound variable ...
nfrmod 3423 Deduction version of ~ nfr...
nfreud 3424 Deduction version of ~ nfr...
nfrmo 3425 Bound-variable hypothesis ...
nfreu 3426 Bound-variable hypothesis ...
rabbidva2 3429 Equivalent wff's yield equ...
rabbia2 3430 Equivalent wff's yield equ...
rabbiia 3431 Equivalent formulas yield ...
rabbiiaOLD 3432 Obsolete version of ~ rabb...
rabbii 3433 Equivalent wff's correspon...
rabbidva 3434 Equivalent wff's yield equ...
rabbidv 3435 Equivalent wff's yield equ...
rabswap 3436 Swap with a membership rel...
cbvrabv 3437 Rule to change the bound v...
rabeqcda 3438 When ` ps ` is always true...
rabeqc 3439 A restricted class abstrac...
rabeqi 3440 Equality theorem for restr...
rabeq 3441 Equality theorem for restr...
rabeqdv 3442 Equality of restricted cla...
rabeqbidva 3443 Equality of restricted cla...
rabeqbidv 3444 Equality of restricted cla...
rabrabi 3445 Abstract builder restricte...
nfrab1 3446 The abstraction variable i...
rabid 3447 An "identity" law of concr...
rabidim1 3448 Membership in a restricted...
reqabi 3449 Inference from equality of...
rabrab 3450 Abstract builder restricte...
rabrabiOLD 3451 Obsolete version of ~ rabr...
rabbida4 3452 Version of ~ rabbidva2 wit...
rabbida 3453 Equivalent wff's yield equ...
rabbid 3454 Version of ~ rabbidv with ...
rabeqd 3455 Deduction form of ~ rabeq ...
rabeqbida 3456 Version of ~ rabeqbidva wi...
rabbi 3457 Equivalent wff's correspon...
rabid2f 3458 An "identity" law for rest...
rabid2 3459 An "identity" law for rest...
rabid2OLD 3460 Obsolete version of ~ rabi...
rabeqf 3461 Equality theorem for restr...
cbvrabw 3462 Rule to change the bound v...
nfrabw 3463 A variable not free in a w...
nfrabwOLD 3464 Obsolete version of ~ nfra...
rabbidaOLD 3465 Obsolete version of ~ rabb...
rabeqiOLD 3466 Obsolete version of ~ rabe...
nfrab 3467 A variable not free in a w...
cbvrab 3468 Rule to change the bound v...
vjust 3470 Justification theorem for ...
dfv2 3472 Alternate definition of th...
vex 3473 All setvar variables are s...
vexOLD 3474 Obsolete version of ~ vex ...
elv 3475 If a proposition is implie...
elvd 3476 If a proposition is implie...
el2v 3477 If a proposition is implie...
eqv 3478 The universe contains ever...
eqvf 3479 The universe contains ever...
abv 3480 The class of sets verifyin...
abvALT 3481 Alternate proof of ~ abv ,...
isset 3482 Two ways to express that "...
issetft 3483 Closed theorem form of ~ i...
issetf 3484 A version of ~ isset that ...
isseti 3485 A way to say " ` A ` is a ...
issetri 3486 A way to say " ` A ` is a ...
eqvisset 3487 A class equal to a variabl...
elex 3488 If a class is a member of ...
elexi 3489 If a class is a member of ...
elexd 3490 If a class is a member of ...
elex2OLD 3491 Obsolete version of ~ elex...
elex22 3492 If two classes each contai...
prcnel 3493 A proper class doesn't bel...
ralv 3494 A universal quantifier res...
rexv 3495 An existential quantifier ...
reuv 3496 A unique existential quant...
rmov 3497 An at-most-one quantifier ...
rabab 3498 A class abstraction restri...
rexcom4b 3499 Specialized existential co...
ceqsal1t 3500 One direction of ~ ceqsalt...
ceqsalt 3501 Closed theorem version of ...
ceqsralt 3502 Restricted quantifier vers...
ceqsalg 3503 A representation of explic...
ceqsalgALT 3504 Alternate proof of ~ ceqsa...
ceqsal 3505 A representation of explic...
ceqsalALT 3506 A representation of explic...
ceqsalv 3507 A representation of explic...
ceqsalvOLD 3508 Obsolete version of ~ ceqs...
ceqsralv 3509 Restricted quantifier vers...
ceqsralvOLD 3510 Obsolete version of ~ ceqs...
gencl 3511 Implicit substitution for ...
2gencl 3512 Implicit substitution for ...
3gencl 3513 Implicit substitution for ...
cgsexg 3514 Implicit substitution infe...
cgsex2g 3515 Implicit substitution infe...
cgsex4g 3516 An implicit substitution i...
cgsex4gOLD 3517 Obsolete version of ~ cgse...
cgsex4gOLDOLD 3518 Obsolete version of ~ cgse...
ceqsex 3519 Elimination of an existent...
ceqsexOLD 3520 Obsolete version of ~ ceqs...
ceqsexv 3521 Elimination of an existent...
ceqsexvOLD 3522 Obsolete version of ~ ceqs...
ceqsexvOLDOLD 3523 Obsolete version of ~ ceqs...
ceqsexv2d 3524 Elimination of an existent...
ceqsex2 3525 Elimination of two existen...
ceqsex2v 3526 Elimination of two existen...
ceqsex3v 3527 Elimination of three exist...
ceqsex4v 3528 Elimination of four existe...
ceqsex6v 3529 Elimination of six existen...
ceqsex8v 3530 Elimination of eight exist...
gencbvex 3531 Change of bound variable u...
gencbvex2 3532 Restatement of ~ gencbvex ...
gencbval 3533 Change of bound variable u...
sbhypf 3534 Introduce an explicit subs...
sbhypfOLD 3535 Obsolete version of ~ sbhy...
vtoclgft 3536 Closed theorem form of ~ v...
vtocleg 3537 Implicit substitution of a...
vtoclg 3538 Implicit substitution of a...
vtocle 3539 Implicit substitution of a...
vtoclbg 3540 Implicit substitution of a...
vtocl 3541 Implicit substitution of a...
vtocldf 3542 Implicit substitution of a...
vtocld 3543 Implicit substitution of a...
vtocldOLD 3544 Obsolete version of ~ vtoc...
vtocl2d 3545 Implicit substitution of t...
vtoclef 3546 Implicit substitution of a...
vtoclf 3547 Implicit substitution of a...
vtoclfOLD 3548 Obsolete version of ~ vtoc...
vtoclALT 3549 Alternate proof of ~ vtocl...
vtocl2 3550 Implicit substitution of c...
vtocl3 3551 Implicit substitution of c...
vtoclb 3552 Implicit substitution of a...
vtoclgf 3553 Implicit substitution of a...
vtoclg1f 3554 Version of ~ vtoclgf with ...
vtoclgOLD 3555 Obsolete version of ~ vtoc...
vtocl2gf 3556 Implicit substitution of a...
vtocl3gf 3557 Implicit substitution of a...
vtocl2g 3558 Implicit substitution of 2...
vtocl3g 3559 Implicit substitution of a...
vtoclgaf 3560 Implicit substitution of a...
vtoclga 3561 Implicit substitution of a...
vtocl2ga 3562 Implicit substitution of 2...
vtocl2gaf 3563 Implicit substitution of 2...
vtocl3gaf 3564 Implicit substitution of 3...
vtocl3ga 3565 Implicit substitution of 3...
vtocl3gaOLD 3566 Obsolete version of ~ vtoc...
vtocl4g 3567 Implicit substitution of 4...
vtocl4ga 3568 Implicit substitution of 4...
vtoclegft 3569 Implicit substitution of a...
vtoclegftOLD 3570 Obsolete version of ~ vtoc...
vtoclri 3571 Implicit substitution of a...
spcimgft 3572 A closed version of ~ spci...
spcgft 3573 A closed version of ~ spcg...
spcimgf 3574 Rule of specialization, us...
spcimegf 3575 Existential specialization...
spcgf 3576 Rule of specialization, us...
spcegf 3577 Existential specialization...
spcimdv 3578 Restricted specialization,...
spcdv 3579 Rule of specialization, us...
spcimedv 3580 Restricted existential spe...
spcgv 3581 Rule of specialization, us...
spcegv 3582 Existential specialization...
spcedv 3583 Existential specialization...
spc2egv 3584 Existential specialization...
spc2gv 3585 Specialization with two qu...
spc2ed 3586 Existential specialization...
spc2d 3587 Specialization with 2 quan...
spc3egv 3588 Existential specialization...
spc3gv 3589 Specialization with three ...
spcv 3590 Rule of specialization, us...
spcev 3591 Existential specialization...
spc2ev 3592 Existential specialization...
rspct 3593 A closed version of ~ rspc...
rspcdf 3594 Restricted specialization,...
rspc 3595 Restricted specialization,...
rspce 3596 Restricted existential spe...
rspcimdv 3597 Restricted specialization,...
rspcimedv 3598 Restricted existential spe...
rspcdv 3599 Restricted specialization,...
rspcedv 3600 Restricted existential spe...
rspcebdv 3601 Restricted existential spe...
rspcdv2 3602 Restricted specialization,...
rspcv 3603 Restricted specialization,...
rspccv 3604 Restricted specialization,...
rspcva 3605 Restricted specialization,...
rspccva 3606 Restricted specialization,...
rspcev 3607 Restricted existential spe...
rspcdva 3608 Restricted specialization,...
rspcedvd 3609 Restricted existential spe...
rspcedvdw 3610 Version of ~ rspcedvd wher...
rspceb2dv 3611 Restricted existential spe...
rspcime 3612 Prove a restricted existen...
rspceaimv 3613 Restricted existential spe...
rspcedeq1vd 3614 Restricted existential spe...
rspcedeq2vd 3615 Restricted existential spe...
rspc2 3616 Restricted specialization ...
rspc2gv 3617 Restricted specialization ...
rspc2v 3618 2-variable restricted spec...
rspc2va 3619 2-variable restricted spec...
rspc2ev 3620 2-variable restricted exis...
2rspcedvdw 3621 Double application of ~ rs...
rspc2dv 3622 2-variable restricted spec...
rspc3v 3623 3-variable restricted spec...
rspc3ev 3624 3-variable restricted exis...
rspc3dv 3625 3-variable restricted spec...
rspc4v 3626 4-variable restricted spec...
rspc6v 3627 6-variable restricted spec...
rspc8v 3628 8-variable restricted spec...
rspceeqv 3629 Restricted existential spe...
ralxpxfr2d 3630 Transfer a universal quant...
rexraleqim 3631 Statement following from e...
eqvincg 3632 A variable introduction la...
eqvinc 3633 A variable introduction la...
eqvincf 3634 A variable introduction la...
alexeqg 3635 Two ways to express substi...
ceqex 3636 Equality implies equivalen...
ceqsexg 3637 A representation of explic...
ceqsexgv 3638 Elimination of an existent...
ceqsrexv 3639 Elimination of a restricte...
ceqsrexbv 3640 Elimination of a restricte...
ceqsralbv 3641 Elimination of a restricte...
ceqsrex2v 3642 Elimination of a restricte...
clel2g 3643 Alternate definition of me...
clel2gOLD 3644 Obsolete version of ~ clel...
clel2 3645 Alternate definition of me...
clel3g 3646 Alternate definition of me...
clel3 3647 Alternate definition of me...
clel4g 3648 Alternate definition of me...
clel4 3649 Alternate definition of me...
clel4OLD 3650 Obsolete version of ~ clel...
clel5 3651 Alternate definition of cl...
pm13.183 3652 Compare theorem *13.183 in...
rr19.3v 3653 Restricted quantifier vers...
rr19.28v 3654 Restricted quantifier vers...
elab6g 3655 Membership in a class abst...
elabd2 3656 Membership in a class abst...
elabd3 3657 Membership in a class abst...
elabgt 3658 Membership in a class abst...
elabgtOLD 3659 Obsolete version of ~ elab...
elabgtOLDOLD 3660 Obsolete version of ~ elab...
elabgf 3661 Membership in a class abst...
elabf 3662 Membership in a class abst...
elabg 3663 Membership in a class abst...
elabgOLD 3664 Obsolete version of ~ elab...
elab 3665 Membership in a class abst...
elabOLD 3666 Obsolete version of ~ elab...
elab2g 3667 Membership in a class abst...
elabd 3668 Explicit demonstration the...
elab2 3669 Membership in a class abst...
elab4g 3670 Membership in a class abst...
elab3gf 3671 Membership in a class abst...
elab3g 3672 Membership in a class abst...
elab3 3673 Membership in a class abst...
elrabi 3674 Implication for the member...
elrabiOLD 3675 Obsolete version of ~ elra...
elrabf 3676 Membership in a restricted...
rabtru 3677 Abstract builder using the...
rabeqcOLD 3678 Obsolete version of ~ rabe...
elrab3t 3679 Membership in a restricted...
elrab 3680 Membership in a restricted...
elrab3 3681 Membership in a restricted...
elrabd 3682 Membership in a restricted...
elrab2 3683 Membership in a restricted...
ralab 3684 Universal quantification o...
ralabOLD 3685 Obsolete version of ~ rala...
ralrab 3686 Universal quantification o...
rexab 3687 Existential quantification...
rexabOLD 3688 Obsolete version of ~ rexa...
rexrab 3689 Existential quantification...
ralab2 3690 Universal quantification o...
ralrab2 3691 Universal quantification o...
rexab2 3692 Existential quantification...
rexrab2 3693 Existential quantification...
reurab 3694 Restricted existential uni...
abidnf 3695 Identity used to create cl...
dedhb 3696 A deduction theorem for co...
class2seteq 3697 Writing a set as a class a...
nelrdva 3698 Deduce negative membership...
eqeu 3699 A condition which implies ...
moeq 3700 There exists at most one s...
eueq 3701 A class is a set if and on...
eueqi 3702 There exists a unique set ...
eueq2 3703 Equality has existential u...
eueq3 3704 Equality has existential u...
moeq3 3705 "At most one" property of ...
mosub 3706 "At most one" remains true...
mo2icl 3707 Theorem for inferring "at ...
mob2 3708 Consequence of "at most on...
moi2 3709 Consequence of "at most on...
mob 3710 Equality implied by "at mo...
moi 3711 Equality implied by "at mo...
morex 3712 Derive membership from uni...
euxfr2w 3713 Transfer existential uniqu...
euxfrw 3714 Transfer existential uniqu...
euxfr2 3715 Transfer existential uniqu...
euxfr 3716 Transfer existential uniqu...
euind 3717 Existential uniqueness via...
reu2 3718 A way to express restricte...
reu6 3719 A way to express restricte...
reu3 3720 A way to express restricte...
reu6i 3721 A condition which implies ...
eqreu 3722 A condition which implies ...
rmo4 3723 Restricted "at most one" u...
reu4 3724 Restricted uniqueness usin...
reu7 3725 Restricted uniqueness usin...
reu8 3726 Restricted uniqueness usin...
rmo3f 3727 Restricted "at most one" u...
rmo4f 3728 Restricted "at most one" u...
reu2eqd 3729 Deduce equality from restr...
reueq 3730 Equality has existential u...
rmoeq 3731 Equality's restricted exis...
rmoan 3732 Restricted "at most one" s...
rmoim 3733 Restricted "at most one" i...
rmoimia 3734 Restricted "at most one" i...
rmoimi 3735 Restricted "at most one" i...
rmoimi2 3736 Restricted "at most one" i...
2reu5a 3737 Double restricted existent...
reuimrmo 3738 Restricted uniqueness impl...
2reuswap 3739 A condition allowing swap ...
2reuswap2 3740 A condition allowing swap ...
reuxfrd 3741 Transfer existential uniqu...
reuxfr 3742 Transfer existential uniqu...
reuxfr1d 3743 Transfer existential uniqu...
reuxfr1ds 3744 Transfer existential uniqu...
reuxfr1 3745 Transfer existential uniqu...
reuind 3746 Existential uniqueness via...
2rmorex 3747 Double restricted quantifi...
2reu5lem1 3748 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3749 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3750 Lemma for ~ 2reu5 . This ...
2reu5 3751 Double restricted existent...
2reurmo 3752 Double restricted quantifi...
2reurex 3753 Double restricted quantifi...
2rmoswap 3754 A condition allowing to sw...
2rexreu 3755 Double restricted existent...
cdeqi 3758 Deduce conditional equalit...
cdeqri 3759 Property of conditional eq...
cdeqth 3760 Deduce conditional equalit...
cdeqnot 3761 Distribute conditional equ...
cdeqal 3762 Distribute conditional equ...
cdeqab 3763 Distribute conditional equ...
cdeqal1 3764 Distribute conditional equ...
cdeqab1 3765 Distribute conditional equ...
cdeqim 3766 Distribute conditional equ...
cdeqcv 3767 Conditional equality for s...
cdeqeq 3768 Distribute conditional equ...
cdeqel 3769 Distribute conditional equ...
nfcdeq 3770 If we have a conditional e...
nfccdeq 3771 Variation of ~ nfcdeq for ...
rru 3772 Relative version of Russel...
ru 3773 Russell's Paradox. Propos...
dfsbcq 3776 Proper substitution of a c...
dfsbcq2 3777 This theorem, which is sim...
sbsbc 3778 Show that ~ df-sb and ~ df...
sbceq1d 3779 Equality theorem for class...
sbceq1dd 3780 Equality theorem for class...
sbceqbid 3781 Equality theorem for class...
sbc8g 3782 This is the closest we can...
sbc2or 3783 The disjunction of two equ...
sbcex 3784 By our definition of prope...
sbceq1a 3785 Equality theorem for class...
sbceq2a 3786 Equality theorem for class...
spsbc 3787 Specialization: if a formu...
spsbcd 3788 Specialization: if a formu...
sbcth 3789 A substitution into a theo...
sbcthdv 3790 Deduction version of ~ sbc...
sbcid 3791 An identity theorem for su...
nfsbc1d 3792 Deduction version of ~ nfs...
nfsbc1 3793 Bound-variable hypothesis ...
nfsbc1v 3794 Bound-variable hypothesis ...
nfsbcdw 3795 Deduction version of ~ nfs...
nfsbcw 3796 Bound-variable hypothesis ...
sbccow 3797 A composition law for clas...
nfsbcd 3798 Deduction version of ~ nfs...
nfsbc 3799 Bound-variable hypothesis ...
sbcco 3800 A composition law for clas...
sbcco2 3801 A composition law for clas...
sbc5 3802 An equivalence for class s...
sbc5ALT 3803 Alternate proof of ~ sbc5 ...
sbc6g 3804 An equivalence for class s...
sbc6gOLD 3805 Obsolete version of ~ sbc6...
sbc6 3806 An equivalence for class s...
sbc7 3807 An equivalence for class s...
cbvsbcw 3808 Change bound variables in ...
cbvsbcvw 3809 Change the bound variable ...
cbvsbc 3810 Change bound variables in ...
cbvsbcv 3811 Change the bound variable ...
sbciegft 3812 Conversion of implicit sub...
sbciegf 3813 Conversion of implicit sub...
sbcieg 3814 Conversion of implicit sub...
sbciegOLD 3815 Obsolete version of ~ sbci...
sbcie2g 3816 Conversion of implicit sub...
sbcie 3817 Conversion of implicit sub...
sbciedf 3818 Conversion of implicit sub...
sbcied 3819 Conversion of implicit sub...
sbciedOLD 3820 Obsolete version of ~ sbci...
sbcied2 3821 Conversion of implicit sub...
elrabsf 3822 Membership in a restricted...
eqsbc1 3823 Substitution for the left-...
sbcng 3824 Move negation in and out o...
sbcimg 3825 Distribution of class subs...
sbcan 3826 Distribution of class subs...
sbcor 3827 Distribution of class subs...
sbcbig 3828 Distribution of class subs...
sbcn1 3829 Move negation in and out o...
sbcim1 3830 Distribution of class subs...
sbcim1OLD 3831 Obsolete version of ~ sbci...
sbcbid 3832 Formula-building deduction...
sbcbidv 3833 Formula-building deduction...
sbcbii 3834 Formula-building inference...
sbcbi1 3835 Distribution of class subs...
sbcbi2 3836 Substituting into equivale...
sbcal 3837 Move universal quantifier ...
sbcex2 3838 Move existential quantifie...
sbceqal 3839 Class version of one impli...
sbceqalOLD 3840 Obsolete version of ~ sbce...
sbeqalb 3841 Theorem *14.121 in [Whiteh...
eqsbc2 3842 Substitution for the right...
sbc3an 3843 Distribution of class subs...
sbcel1v 3844 Class substitution into a ...
sbcel2gv 3845 Class substitution into a ...
sbcel21v 3846 Class substitution into a ...
sbcimdv 3847 Substitution analogue of T...
sbcimdvOLD 3848 Obsolete version of ~ sbci...
sbctt 3849 Substitution for a variabl...
sbcgf 3850 Substitution for a variabl...
sbc19.21g 3851 Substitution for a variabl...
sbcg 3852 Substitution for a variabl...
sbcgOLD 3853 Obsolete version of ~ sbcg...
sbcgfi 3854 Substitution for a variabl...
sbc2iegf 3855 Conversion of implicit sub...
sbc2ie 3856 Conversion of implicit sub...
sbc2ieOLD 3857 Obsolete version of ~ sbc2...
sbc2iedv 3858 Conversion of implicit sub...
sbc3ie 3859 Conversion of implicit sub...
sbccomlem 3860 Lemma for ~ sbccom . (Con...
sbccom 3861 Commutative law for double...
sbcralt 3862 Interchange class substitu...
sbcrext 3863 Interchange class substitu...
sbcralg 3864 Interchange class substitu...
sbcrex 3865 Interchange class substitu...
sbcreu 3866 Interchange class substitu...
reu8nf 3867 Restricted uniqueness usin...
sbcabel 3868 Interchange class substitu...
rspsbc 3869 Restricted quantifier vers...
rspsbca 3870 Restricted quantifier vers...
rspesbca 3871 Existence form of ~ rspsbc...
spesbc 3872 Existence form of ~ spsbc ...
spesbcd 3873 form of ~ spsbc . (Contri...
sbcth2 3874 A substitution into a theo...
ra4v 3875 Version of ~ ra4 with a di...
ra4 3876 Restricted quantifier vers...
rmo2 3877 Alternate definition of re...
rmo2i 3878 Condition implying restric...
rmo3 3879 Restricted "at most one" u...
rmob 3880 Consequence of "at most on...
rmoi 3881 Consequence of "at most on...
rmob2 3882 Consequence of "restricted...
rmoi2 3883 Consequence of "restricted...
rmoanim 3884 Introduction of a conjunct...
rmoanimALT 3885 Alternate proof of ~ rmoan...
reuan 3886 Introduction of a conjunct...
2reu1 3887 Double restricted existent...
2reu2 3888 Double restricted existent...
csb2 3891 Alternate expression for t...
csbeq1 3892 Analogue of ~ dfsbcq for p...
csbeq1d 3893 Equality deduction for pro...
csbeq2 3894 Substituting into equivale...
csbeq2d 3895 Formula-building deduction...
csbeq2dv 3896 Formula-building deduction...
csbeq2i 3897 Formula-building inference...
csbeq12dv 3898 Formula-building inference...
cbvcsbw 3899 Change bound variables in ...
cbvcsb 3900 Change bound variables in ...
cbvcsbv 3901 Change the bound variable ...
csbid 3902 Analogue of ~ sbid for pro...
csbeq1a 3903 Equality theorem for prope...
csbcow 3904 Composition law for chaine...
csbco 3905 Composition law for chaine...
csbtt 3906 Substitution doesn't affec...
csbconstgf 3907 Substitution doesn't affec...
csbconstg 3908 Substitution doesn't affec...
csbconstgOLD 3909 Obsolete version of ~ csbc...
csbgfi 3910 Substitution for a variabl...
csbconstgi 3911 The proper substitution of...
nfcsb1d 3912 Bound-variable hypothesis ...
nfcsb1 3913 Bound-variable hypothesis ...
nfcsb1v 3914 Bound-variable hypothesis ...
nfcsbd 3915 Deduction version of ~ nfc...
nfcsbw 3916 Bound-variable hypothesis ...
nfcsb 3917 Bound-variable hypothesis ...
csbhypf 3918 Introduce an explicit subs...
csbiebt 3919 Conversion of implicit sub...
csbiedf 3920 Conversion of implicit sub...
csbieb 3921 Bidirectional conversion b...
csbiebg 3922 Bidirectional conversion b...
csbiegf 3923 Conversion of implicit sub...
csbief 3924 Conversion of implicit sub...
csbie 3925 Conversion of implicit sub...
csbieOLD 3926 Obsolete version of ~ csbi...
csbied 3927 Conversion of implicit sub...
csbiedOLD 3928 Obsolete version of ~ csbi...
csbied2 3929 Conversion of implicit sub...
csbie2t 3930 Conversion of implicit sub...
csbie2 3931 Conversion of implicit sub...
csbie2g 3932 Conversion of implicit sub...
cbvrabcsfw 3933 Version of ~ cbvrabcsf wit...
cbvralcsf 3934 A more general version of ...
cbvrexcsf 3935 A more general version of ...
cbvreucsf 3936 A more general version of ...
cbvrabcsf 3937 A more general version of ...
cbvralv2 3938 Rule used to change the bo...
cbvrexv2 3939 Rule used to change the bo...
rspc2vd 3940 Deduction version of 2-var...
difjust 3946 Soundness justification th...
unjust 3948 Soundness justification th...
injust 3950 Soundness justification th...
dfin5 3952 Alternate definition for t...
dfdif2 3953 Alternate definition of cl...
eldif 3954 Expansion of membership in...
eldifd 3955 If a class is in one class...
eldifad 3956 If a class is in the diffe...
eldifbd 3957 If a class is in the diffe...
elneeldif 3958 The elements of a set diff...
velcomp 3959 Characterization of setvar...
elin 3960 Expansion of membership in...
dfss 3962 Variant of subclass defini...
dfss2 3964 Alternate definition of th...
dfss2OLD 3965 Obsolete version of ~ dfss...
dfss3 3966 Alternate definition of su...
dfss6 3967 Alternate definition of su...
dfss2f 3968 Equivalence for subclass r...
dfss3f 3969 Equivalence for subclass r...
nfss 3970 If ` x ` is not free in ` ...
ssel 3971 Membership relationships f...
sselOLD 3972 Obsolete version of ~ ssel...
ssel2 3973 Membership relationships f...
sseli 3974 Membership implication fro...
sselii 3975 Membership inference from ...
sselid 3976 Membership inference from ...
sseld 3977 Membership deduction from ...
sselda 3978 Membership deduction from ...
sseldd 3979 Membership inference from ...
ssneld 3980 If a class is not in anoth...
ssneldd 3981 If an element is not in a ...
ssriv 3982 Inference based on subclas...
ssrd 3983 Deduction based on subclas...
ssrdv 3984 Deduction based on subclas...
sstr2 3985 Transitivity of subclass r...
sstr 3986 Transitivity of subclass r...
sstri 3987 Subclass transitivity infe...
sstrd 3988 Subclass transitivity dedu...
sstrid 3989 Subclass transitivity dedu...
sstrdi 3990 Subclass transitivity dedu...
sylan9ss 3991 A subclass transitivity de...
sylan9ssr 3992 A subclass transitivity de...
eqss 3993 The subclass relationship ...
eqssi 3994 Infer equality from two su...
eqssd 3995 Equality deduction from tw...
sssseq 3996 If a class is a subclass o...
eqrd 3997 Deduce equality of classes...
eqri 3998 Infer equality of classes ...
eqelssd 3999 Equality deduction from su...
ssid 4000 Any class is a subclass of...
ssidd 4001 Weakening of ~ ssid . (Co...
ssv 4002 Any class is a subclass of...
sseq1 4003 Equality theorem for subcl...
sseq2 4004 Equality theorem for the s...
sseq12 4005 Equality theorem for the s...
sseq1i 4006 An equality inference for ...
sseq2i 4007 An equality inference for ...
sseq12i 4008 An equality inference for ...
sseq1d 4009 An equality deduction for ...
sseq2d 4010 An equality deduction for ...
sseq12d 4011 An equality deduction for ...
eqsstri 4012 Substitution of equality i...
eqsstrri 4013 Substitution of equality i...
sseqtri 4014 Substitution of equality i...
sseqtrri 4015 Substitution of equality i...
eqsstrd 4016 Substitution of equality i...
eqsstrrd 4017 Substitution of equality i...
sseqtrd 4018 Substitution of equality i...
sseqtrrd 4019 Substitution of equality i...
3sstr3i 4020 Substitution of equality i...
3sstr4i 4021 Substitution of equality i...
3sstr3g 4022 Substitution of equality i...
3sstr4g 4023 Substitution of equality i...
3sstr3d 4024 Substitution of equality i...
3sstr4d 4025 Substitution of equality i...
eqsstrid 4026 A chained subclass and equ...
eqsstrrid 4027 A chained subclass and equ...
sseqtrdi 4028 A chained subclass and equ...
sseqtrrdi 4029 A chained subclass and equ...
sseqtrid 4030 Subclass transitivity dedu...
sseqtrrid 4031 Subclass transitivity dedu...
eqsstrdi 4032 A chained subclass and equ...
eqsstrrdi 4033 A chained subclass and equ...
eqimssd 4034 Equality implies inclusion...
eqimsscd 4035 Equality implies inclusion...
eqimss 4036 Equality implies inclusion...
eqimss2 4037 Equality implies inclusion...
eqimssi 4038 Infer subclass relationshi...
eqimss2i 4039 Infer subclass relationshi...
nssne1 4040 Two classes are different ...
nssne2 4041 Two classes are different ...
nss 4042 Negation of subclass relat...
nelss 4043 Demonstrate by witnesses t...
ssrexf 4044 Restricted existential qua...
ssrmof 4045 "At most one" existential ...
ssralv 4046 Quantification restricted ...
ssrexv 4047 Existential quantification...
ss2ralv 4048 Two quantifications restri...
ss2rexv 4049 Two existential quantifica...
ralss 4050 Restricted universal quant...
rexss 4051 Restricted existential qua...
ss2ab 4052 Class abstractions in a su...
abss 4053 Class abstraction in a sub...
ssab 4054 Subclass of a class abstra...
ssabral 4055 The relation for a subclas...
ss2abdv 4056 Deduction of abstraction s...
ss2abdvALT 4057 Alternate proof of ~ ss2ab...
ss2abdvOLD 4058 Obsolete version of ~ ss2a...
ss2abi 4059 Inference of abstraction s...
ss2abiOLD 4060 Obsolete version of ~ ss2a...
abssdv 4061 Deduction of abstraction s...
abssdvOLD 4062 Obsolete version of ~ abss...
abssi 4063 Inference of abstraction s...
ss2rab 4064 Restricted abstraction cla...
rabss 4065 Restricted class abstracti...
ssrab 4066 Subclass of a restricted c...
ssrabdv 4067 Subclass of a restricted c...
rabssdv 4068 Subclass of a restricted c...
ss2rabdv 4069 Deduction of restricted ab...
ss2rabi 4070 Inference of restricted ab...
rabss2 4071 Subclass law for restricte...
ssab2 4072 Subclass relation for the ...
ssrab2 4073 Subclass relation for a re...
ssrab2OLD 4074 Obsolete version of ~ ssra...
rabss3d 4075 Subclass law for restricte...
ssrab3 4076 Subclass relation for a re...
rabssrabd 4077 Subclass of a restricted c...
ssrabeq 4078 If the restricting class o...
rabssab 4079 A restricted class is a su...
uniiunlem 4080 A subset relationship usef...
dfpss2 4081 Alternate definition of pr...
dfpss3 4082 Alternate definition of pr...
psseq1 4083 Equality theorem for prope...
psseq2 4084 Equality theorem for prope...
psseq1i 4085 An equality inference for ...
psseq2i 4086 An equality inference for ...
psseq12i 4087 An equality inference for ...
psseq1d 4088 An equality deduction for ...
psseq2d 4089 An equality deduction for ...
psseq12d 4090 An equality deduction for ...
pssss 4091 A proper subclass is a sub...
pssne 4092 Two classes in a proper su...
pssssd 4093 Deduce subclass from prope...
pssned 4094 Proper subclasses are uneq...
sspss 4095 Subclass in terms of prope...
pssirr 4096 Proper subclass is irrefle...
pssn2lp 4097 Proper subclass has no 2-c...
sspsstri 4098 Two ways of stating tricho...
ssnpss 4099 Partial trichotomy law for...
psstr 4100 Transitive law for proper ...
sspsstr 4101 Transitive law for subclas...
psssstr 4102 Transitive law for subclas...
psstrd 4103 Proper subclass inclusion ...
sspsstrd 4104 Transitivity involving sub...
psssstrd 4105 Transitivity involving sub...
npss 4106 A class is not a proper su...
ssnelpss 4107 A subclass missing a membe...
ssnelpssd 4108 Subclass inclusion with on...
ssexnelpss 4109 If there is an element of ...
dfdif3 4110 Alternate definition of cl...
difeq1 4111 Equality theorem for class...
difeq2 4112 Equality theorem for class...
difeq12 4113 Equality theorem for class...
difeq1i 4114 Inference adding differenc...
difeq2i 4115 Inference adding differenc...
difeq12i 4116 Equality inference for cla...
difeq1d 4117 Deduction adding differenc...
difeq2d 4118 Deduction adding differenc...
difeq12d 4119 Equality deduction for cla...
difeqri 4120 Inference from membership ...
nfdif 4121 Bound-variable hypothesis ...
eldifi 4122 Implication of membership ...
eldifn 4123 Implication of membership ...
elndif 4124 A set does not belong to a...
neldif 4125 Implication of membership ...
difdif 4126 Double class difference. ...
difss 4127 Subclass relationship for ...
difssd 4128 A difference of two classe...
difss2 4129 If a class is contained in...
difss2d 4130 If a class is contained in...
ssdifss 4131 Preservation of a subclass...
ddif 4132 Double complement under un...
ssconb 4133 Contraposition law for sub...
sscon 4134 Contraposition law for sub...
ssdif 4135 Difference law for subsets...
ssdifd 4136 If ` A ` is contained in `...
sscond 4137 If ` A ` is contained in `...
ssdifssd 4138 If ` A ` is contained in `...
ssdif2d 4139 If ` A ` is contained in `...
raldifb 4140 Restricted universal quant...
rexdifi 4141 Restricted existential qua...
complss 4142 Complementation reverses i...
compleq 4143 Two classes are equal if a...
elun 4144 Expansion of membership in...
elunnel1 4145 A member of a union that i...
elunnel2 4146 A member of a union that i...
uneqri 4147 Inference from membership ...
unidm 4148 Idempotent law for union o...
uncom 4149 Commutative law for union ...
equncom 4150 If a class equals the unio...
equncomi 4151 Inference form of ~ equnco...
uneq1 4152 Equality theorem for the u...
uneq2 4153 Equality theorem for the u...
uneq12 4154 Equality theorem for the u...
uneq1i 4155 Inference adding union to ...
uneq2i 4156 Inference adding union to ...
uneq12i 4157 Equality inference for the...
uneq1d 4158 Deduction adding union to ...
uneq2d 4159 Deduction adding union to ...
uneq12d 4160 Equality deduction for the...
nfun 4161 Bound-variable hypothesis ...
unass 4162 Associative law for union ...
un12 4163 A rearrangement of union. ...
un23 4164 A rearrangement of union. ...
un4 4165 A rearrangement of the uni...
unundi 4166 Union distributes over its...
unundir 4167 Union distributes over its...
ssun1 4168 Subclass relationship for ...
ssun2 4169 Subclass relationship for ...
ssun3 4170 Subclass law for union of ...
ssun4 4171 Subclass law for union of ...
elun1 4172 Membership law for union o...
elun2 4173 Membership law for union o...
elunant 4174 A statement is true for ev...
unss1 4175 Subclass law for union of ...
ssequn1 4176 A relationship between sub...
unss2 4177 Subclass law for union of ...
unss12 4178 Subclass law for union of ...
ssequn2 4179 A relationship between sub...
unss 4180 The union of two subclasse...
unssi 4181 An inference showing the u...
unssd 4182 A deduction showing the un...
unssad 4183 If ` ( A u. B ) ` is conta...
unssbd 4184 If ` ( A u. B ) ` is conta...
ssun 4185 A condition that implies i...
rexun 4186 Restricted existential qua...
ralunb 4187 Restricted quantification ...
ralun 4188 Restricted quantification ...
elini 4189 Membership in an intersect...
elind 4190 Deduce membership in an in...
elinel1 4191 Membership in an intersect...
elinel2 4192 Membership in an intersect...
elin2 4193 Membership in a class defi...
elin1d 4194 Elementhood in the first s...
elin2d 4195 Elementhood in the first s...
elin3 4196 Membership in a class defi...
incom 4197 Commutative law for inters...
ineqcom 4198 Two ways of expressing tha...
ineqcomi 4199 Two ways of expressing tha...
ineqri 4200 Inference from membership ...
ineq1 4201 Equality theorem for inter...
ineq2 4202 Equality theorem for inter...
ineq12 4203 Equality theorem for inter...
ineq1i 4204 Equality inference for int...
ineq2i 4205 Equality inference for int...
ineq12i 4206 Equality inference for int...
ineq1d 4207 Equality deduction for int...
ineq2d 4208 Equality deduction for int...
ineq12d 4209 Equality deduction for int...
ineqan12d 4210 Equality deduction for int...
sseqin2 4211 A relationship between sub...
nfin 4212 Bound-variable hypothesis ...
rabbi2dva 4213 Deduction from a wff to a ...
inidm 4214 Idempotent law for interse...
inass 4215 Associative law for inters...
in12 4216 A rearrangement of interse...
in32 4217 A rearrangement of interse...
in13 4218 A rearrangement of interse...
in31 4219 A rearrangement of interse...
inrot 4220 Rotate the intersection of...
in4 4221 Rearrangement of intersect...
inindi 4222 Intersection distributes o...
inindir 4223 Intersection distributes o...
inss1 4224 The intersection of two cl...
inss2 4225 The intersection of two cl...
ssin 4226 Subclass of intersection. ...
ssini 4227 An inference showing that ...
ssind 4228 A deduction showing that a...
ssrin 4229 Add right intersection to ...
sslin 4230 Add left intersection to s...
ssrind 4231 Add right intersection to ...
ss2in 4232 Intersection of subclasses...
ssinss1 4233 Intersection preserves sub...
inss 4234 Inclusion of an intersecti...
rexin 4235 Restricted existential qua...
dfss7 4236 Alternate definition of su...
symdifcom 4239 Symmetric difference commu...
symdifeq1 4240 Equality theorem for symme...
symdifeq2 4241 Equality theorem for symme...
nfsymdif 4242 Hypothesis builder for sym...
elsymdif 4243 Membership in a symmetric ...
dfsymdif4 4244 Alternate definition of th...
elsymdifxor 4245 Membership in a symmetric ...
dfsymdif2 4246 Alternate definition of th...
symdifass 4247 Symmetric difference is as...
difsssymdif 4248 The symmetric difference c...
difsymssdifssd 4249 If the symmetric differenc...
unabs 4250 Absorption law for union. ...
inabs 4251 Absorption law for interse...
nssinpss 4252 Negation of subclass expre...
nsspssun 4253 Negation of subclass expre...
dfss4 4254 Subclass defined in terms ...
dfun2 4255 An alternate definition of...
dfin2 4256 An alternate definition of...
difin 4257 Difference with intersecti...
ssdifim 4258 Implication of a class dif...
ssdifsym 4259 Symmetric class difference...
dfss5 4260 Alternate definition of su...
dfun3 4261 Union defined in terms of ...
dfin3 4262 Intersection defined in te...
dfin4 4263 Alternate definition of th...
invdif 4264 Intersection with universa...
indif 4265 Intersection with class di...
indif2 4266 Bring an intersection in a...
indif1 4267 Bring an intersection in a...
indifcom 4268 Commutation law for inters...
indi 4269 Distributive law for inter...
undi 4270 Distributive law for union...
indir 4271 Distributive law for inter...
undir 4272 Distributive law for union...
unineq 4273 Infer equality from equali...
uneqin 4274 Equality of union and inte...
difundi 4275 Distributive law for class...
difundir 4276 Distributive law for class...
difindi 4277 Distributive law for class...
difindir 4278 Distributive law for class...
indifdi 4279 Distribute intersection ov...
indifdir 4280 Distribute intersection ov...
indifdirOLD 4281 Obsolete version of ~ indi...
difdif2 4282 Class difference by a clas...
undm 4283 De Morgan's law for union....
indm 4284 De Morgan's law for inters...
difun1 4285 A relationship involving d...
undif3 4286 An equality involving clas...
difin2 4287 Represent a class differen...
dif32 4288 Swap second and third argu...
difabs 4289 Absorption-like law for cl...
sscon34b 4290 Relative complementation r...
rcompleq 4291 Two subclasses are equal i...
dfsymdif3 4292 Alternate definition of th...
unabw 4293 Union of two class abstrac...
unab 4294 Union of two class abstrac...
inab 4295 Intersection of two class ...
difab 4296 Difference of two class ab...
abanssl 4297 A class abstraction with a...
abanssr 4298 A class abstraction with a...
notabw 4299 A class abstraction define...
notab 4300 A class abstraction define...
unrab 4301 Union of two restricted cl...
inrab 4302 Intersection of two restri...
inrab2 4303 Intersection with a restri...
difrab 4304 Difference of two restrict...
dfrab3 4305 Alternate definition of re...
dfrab2 4306 Alternate definition of re...
notrab 4307 Complementation of restric...
dfrab3ss 4308 Restricted class abstracti...
rabun2 4309 Abstraction restricted to ...
reuun2 4310 Transfer uniqueness to a s...
reuss2 4311 Transfer uniqueness to a s...
reuss 4312 Transfer uniqueness to a s...
reuun1 4313 Transfer uniqueness to a s...
reupick 4314 Restricted uniqueness "pic...
reupick3 4315 Restricted uniqueness "pic...
reupick2 4316 Restricted uniqueness "pic...
euelss 4317 Transfer uniqueness of an ...
dfnul4 4320 Alternate definition of th...
dfnul2 4321 Alternate definition of th...
dfnul3 4322 Alternate definition of th...
dfnul2OLD 4323 Obsolete version of ~ dfnu...
dfnul3OLD 4324 Obsolete version of ~ dfnu...
dfnul4OLD 4325 Obsolete version of ~ dfnu...
noel 4326 The empty set has no eleme...
noelOLD 4327 Obsolete version of ~ noel...
nel02 4328 The empty set has no eleme...
n0i 4329 If a class has elements, t...
ne0i 4330 If a class has elements, t...
ne0d 4331 Deduction form of ~ ne0i ....
n0ii 4332 If a class has elements, t...
ne0ii 4333 If a class has elements, t...
vn0 4334 The universal class is not...
vn0ALT 4335 Alternate proof of ~ vn0 ....
eq0f 4336 A class is equal to the em...
neq0f 4337 A class is not empty if an...
n0f 4338 A class is nonempty if and...
eq0 4339 A class is equal to the em...
eq0ALT 4340 Alternate proof of ~ eq0 ....
neq0 4341 A class is not empty if an...
n0 4342 A class is nonempty if and...
eq0OLDOLD 4343 Obsolete version of ~ eq0 ...
neq0OLD 4344 Obsolete version of ~ neq0...
n0OLD 4345 Obsolete version of ~ n0 a...
nel0 4346 From the general negation ...
reximdva0 4347 Restricted existence deduc...
rspn0 4348 Specialization for restric...
rspn0OLD 4349 Obsolete version of ~ rspn...
n0rex 4350 There is an element in a n...
ssn0rex 4351 There is an element in a c...
n0moeu 4352 A case of equivalence of "...
rex0 4353 Vacuous restricted existen...
reu0 4354 Vacuous restricted uniquen...
rmo0 4355 Vacuous restricted at-most...
0el 4356 Membership of the empty se...
n0el 4357 Negated membership of the ...
eqeuel 4358 A condition which implies ...
ssdif0 4359 Subclass expressed in term...
difn0 4360 If the difference of two s...
pssdifn0 4361 A proper subclass has a no...
pssdif 4362 A proper subclass has a no...
ndisj 4363 Express that an intersecti...
difin0ss 4364 Difference, intersection, ...
inssdif0 4365 Intersection, subclass, an...
difid 4366 The difference between a c...
difidALT 4367 Alternate proof of ~ difid...
dif0 4368 The difference between a c...
ab0w 4369 The class of sets verifyin...
ab0 4370 The class of sets verifyin...
ab0OLD 4371 Obsolete version of ~ ab0 ...
ab0ALT 4372 Alternate proof of ~ ab0 ,...
dfnf5 4373 Characterization of nonfre...
ab0orv 4374 The class abstraction defi...
ab0orvALT 4375 Alternate proof of ~ ab0or...
abn0 4376 Nonempty class abstraction...
abn0OLD 4377 Obsolete version of ~ abn0...
rab0 4378 Any restricted class abstr...
rabeq0w 4379 Condition for a restricted...
rabeq0 4380 Condition for a restricted...
rabn0 4381 Nonempty restricted class ...
rabxm 4382 Law of excluded middle, in...
rabnc 4383 Law of noncontradiction, i...
elneldisj 4384 The set of elements ` s ` ...
elnelun 4385 The union of the set of el...
un0 4386 The union of a class with ...
in0 4387 The intersection of a clas...
0un 4388 The union of the empty set...
0in 4389 The intersection of the em...
inv1 4390 The intersection of a clas...
unv 4391 The union of a class with ...
0ss 4392 The null set is a subset o...
ss0b 4393 Any subset of the empty se...
ss0 4394 Any subset of the empty se...
sseq0 4395 A subclass of an empty cla...
ssn0 4396 A class with a nonempty su...
0dif 4397 The difference between the...
abf 4398 A class abstraction determ...
abfOLD 4399 Obsolete version of ~ abf ...
eq0rdv 4400 Deduction for equality to ...
eq0rdvALT 4401 Alternate proof of ~ eq0rd...
csbprc 4402 The proper substitution of...
csb0 4403 The proper substitution of...
sbcel12 4404 Distribute proper substitu...
sbceqg 4405 Distribute proper substitu...
sbceqi 4406 Distribution of class subs...
sbcnel12g 4407 Distribute proper substitu...
sbcne12 4408 Distribute proper substitu...
sbcel1g 4409 Move proper substitution i...
sbceq1g 4410 Move proper substitution t...
sbcel2 4411 Move proper substitution i...
sbceq2g 4412 Move proper substitution t...
csbcom 4413 Commutative law for double...
sbcnestgfw 4414 Nest the composition of tw...
csbnestgfw 4415 Nest the composition of tw...
sbcnestgw 4416 Nest the composition of tw...
csbnestgw 4417 Nest the composition of tw...
sbcco3gw 4418 Composition of two substit...
sbcnestgf 4419 Nest the composition of tw...
csbnestgf 4420 Nest the composition of tw...
sbcnestg 4421 Nest the composition of tw...
csbnestg 4422 Nest the composition of tw...
sbcco3g 4423 Composition of two substit...
csbco3g 4424 Composition of two class s...
csbnest1g 4425 Nest the composition of tw...
csbidm 4426 Idempotent law for class s...
csbvarg 4427 The proper substitution of...
csbvargi 4428 The proper substitution of...
sbccsb 4429 Substitution into a wff ex...
sbccsb2 4430 Substitution into a wff ex...
rspcsbela 4431 Special case related to ~ ...
sbnfc2 4432 Two ways of expressing " `...
csbab 4433 Move substitution into a c...
csbun 4434 Distribution of class subs...
csbin 4435 Distribute proper substitu...
csbie2df 4436 Conversion of implicit sub...
2nreu 4437 If there are two different...
un00 4438 Two classes are empty iff ...
vss 4439 Only the universal class h...
0pss 4440 The null set is a proper s...
npss0 4441 No set is a proper subset ...
pssv 4442 Any non-universal class is...
disj 4443 Two ways of saying that tw...
disjOLD 4444 Obsolete version of ~ disj...
disjr 4445 Two ways of saying that tw...
disj1 4446 Two ways of saying that tw...
reldisj 4447 Two ways of saying that tw...
reldisjOLD 4448 Obsolete version of ~ reld...
disj3 4449 Two ways of saying that tw...
disjne 4450 Members of disjoint sets a...
disjeq0 4451 Two disjoint sets are equa...
disjel 4452 A set can't belong to both...
disj2 4453 Two ways of saying that tw...
disj4 4454 Two ways of saying that tw...
ssdisj 4455 Intersection with a subcla...
disjpss 4456 A class is a proper subset...
undisj1 4457 The union of disjoint clas...
undisj2 4458 The union of disjoint clas...
ssindif0 4459 Subclass expressed in term...
inelcm 4460 The intersection of classe...
minel 4461 A minimum element of a cla...
undif4 4462 Distribute union over diff...
disjssun 4463 Subset relation for disjoi...
vdif0 4464 Universal class equality i...
difrab0eq 4465 If the difference between ...
pssnel 4466 A proper subclass has a me...
disjdif 4467 A class and its relative c...
disjdifr 4468 A class and its relative c...
difin0 4469 The difference of a class ...
unvdif 4470 The union of a class and i...
undif1 4471 Absorption of difference b...
undif2 4472 Absorption of difference b...
undifabs 4473 Absorption of difference b...
inundif 4474 The intersection and class...
disjdif2 4475 The difference of a class ...
difun2 4476 Absorption of union by dif...
undif 4477 Union of complementary par...
undifr 4478 Union of complementary par...
undifrOLD 4479 Obsolete version of ~ undi...
undif5 4480 An equality involving clas...
ssdifin0 4481 A subset of a difference d...
ssdifeq0 4482 A class is a subclass of i...
ssundif 4483 A condition equivalent to ...
difcom 4484 Swap the arguments of a cl...
pssdifcom1 4485 Two ways to express overla...
pssdifcom2 4486 Two ways to express non-co...
difdifdir 4487 Distributive law for class...
uneqdifeq 4488 Two ways to say that ` A `...
raldifeq 4489 Equality theorem for restr...
r19.2z 4490 Theorem 19.2 of [Margaris]...
r19.2zb 4491 A response to the notion t...
r19.3rz 4492 Restricted quantification ...
r19.28z 4493 Restricted quantifier vers...
r19.3rzv 4494 Restricted quantification ...
r19.9rzv 4495 Restricted quantification ...
r19.28zv 4496 Restricted quantifier vers...
r19.37zv 4497 Restricted quantifier vers...
r19.45zv 4498 Restricted version of Theo...
r19.44zv 4499 Restricted version of Theo...
r19.27z 4500 Restricted quantifier vers...
r19.27zv 4501 Restricted quantifier vers...
r19.36zv 4502 Restricted quantifier vers...
ralidmw 4503 Idempotent law for restric...
rzal 4504 Vacuous quantification is ...
rzalALT 4505 Alternate proof of ~ rzal ...
rexn0 4506 Restricted existential qua...
ralidm 4507 Idempotent law for restric...
ral0 4508 Vacuous universal quantifi...
ralf0 4509 The quantification of a fa...
rexn0OLD 4510 Obsolete version of ~ rexn...
ralidmOLD 4511 Obsolete version of ~ rali...
ral0OLD 4512 Obsolete version of ~ ral0...
ralf0OLD 4513 Obsolete version of ~ ralf...
ralnralall 4514 A contradiction concerning...
falseral0 4515 A false statement can only...
raaan 4516 Rearrange restricted quant...
raaanv 4517 Rearrange restricted quant...
sbss 4518 Set substitution into the ...
sbcssg 4519 Distribute proper substitu...
raaan2 4520 Rearrange restricted quant...
2reu4lem 4521 Lemma for ~ 2reu4 . (Cont...
2reu4 4522 Definition of double restr...
csbdif 4523 Distribution of class subs...
dfif2 4526 An alternate definition of...
dfif6 4527 An alternate definition of...
ifeq1 4528 Equality theorem for condi...
ifeq2 4529 Equality theorem for condi...
iftrue 4530 Value of the conditional o...
iftruei 4531 Inference associated with ...
iftrued 4532 Value of the conditional o...
iffalse 4533 Value of the conditional o...
iffalsei 4534 Inference associated with ...
iffalsed 4535 Value of the conditional o...
ifnefalse 4536 When values are unequal, b...
ifsb 4537 Distribute a function over...
dfif3 4538 Alternate definition of th...
dfif4 4539 Alternate definition of th...
dfif5 4540 Alternate definition of th...
ifssun 4541 A conditional class is inc...
ifeq12 4542 Equality theorem for condi...
ifeq1d 4543 Equality deduction for con...
ifeq2d 4544 Equality deduction for con...
ifeq12d 4545 Equality deduction for con...
ifbi 4546 Equivalence theorem for co...
ifbid 4547 Equivalence deduction for ...
ifbieq1d 4548 Equivalence/equality deduc...
ifbieq2i 4549 Equivalence/equality infer...
ifbieq2d 4550 Equivalence/equality deduc...
ifbieq12i 4551 Equivalence deduction for ...
ifbieq12d 4552 Equivalence deduction for ...
nfifd 4553 Deduction form of ~ nfif ....
nfif 4554 Bound-variable hypothesis ...
ifeq1da 4555 Conditional equality. (Co...
ifeq2da 4556 Conditional equality. (Co...
ifeq12da 4557 Equivalence deduction for ...
ifbieq12d2 4558 Equivalence deduction for ...
ifclda 4559 Conditional closure. (Con...
ifeqda 4560 Separation of the values o...
elimif 4561 Elimination of a condition...
ifbothda 4562 A wff ` th ` containing a ...
ifboth 4563 A wff ` th ` containing a ...
ifid 4564 Identical true and false a...
eqif 4565 Expansion of an equality w...
ifval 4566 Another expression of the ...
elif 4567 Membership in a conditiona...
ifel 4568 Membership of a conditiona...
ifcl 4569 Membership (closure) of a ...
ifcld 4570 Membership (closure) of a ...
ifcli 4571 Inference associated with ...
ifexd 4572 Existence of the condition...
ifexg 4573 Existence of the condition...
ifex 4574 Existence of the condition...
ifeqor 4575 The possible values of a c...
ifnot 4576 Negating the first argumen...
ifan 4577 Rewrite a conjunction in a...
ifor 4578 Rewrite a disjunction in a...
2if2 4579 Resolve two nested conditi...
ifcomnan 4580 Commute the conditions in ...
csbif 4581 Distribute proper substitu...
dedth 4582 Weak deduction theorem tha...
dedth2h 4583 Weak deduction theorem eli...
dedth3h 4584 Weak deduction theorem eli...
dedth4h 4585 Weak deduction theorem eli...
dedth2v 4586 Weak deduction theorem for...
dedth3v 4587 Weak deduction theorem for...
dedth4v 4588 Weak deduction theorem for...
elimhyp 4589 Eliminate a hypothesis con...
elimhyp2v 4590 Eliminate a hypothesis con...
elimhyp3v 4591 Eliminate a hypothesis con...
elimhyp4v 4592 Eliminate a hypothesis con...
elimel 4593 Eliminate a membership hyp...
elimdhyp 4594 Version of ~ elimhyp where...
keephyp 4595 Transform a hypothesis ` p...
keephyp2v 4596 Keep a hypothesis containi...
keephyp3v 4597 Keep a hypothesis containi...
pwjust 4599 Soundness justification th...
elpwg 4601 Membership in a power clas...
elpw 4602 Membership in a power clas...
velpw 4603 Setvar variable membership...
elpwd 4604 Membership in a power clas...
elpwi 4605 Subset relation implied by...
elpwb 4606 Characterization of the el...
elpwid 4607 An element of a power clas...
elelpwi 4608 If ` A ` belongs to a part...
sspw 4609 The powerclass preserves i...
sspwi 4610 The powerclass preserves i...
sspwd 4611 The powerclass preserves i...
pweq 4612 Equality theorem for power...
pweqALT 4613 Alternate proof of ~ pweq ...
pweqi 4614 Equality inference for pow...
pweqd 4615 Equality deduction for pow...
pwunss 4616 The power class of the uni...
nfpw 4617 Bound-variable hypothesis ...
pwidg 4618 A set is an element of its...
pwidb 4619 A class is an element of i...
pwid 4620 A set is a member of its p...
pwss 4621 Subclass relationship for ...
pwundif 4622 Break up the power class o...
snjust 4623 Soundness justification th...
sneq 4634 Equality theorem for singl...
sneqi 4635 Equality inference for sin...
sneqd 4636 Equality deduction for sin...
dfsn2 4637 Alternate definition of si...
elsng 4638 There is exactly one eleme...
elsn 4639 There is exactly one eleme...
velsn 4640 There is only one element ...
elsni 4641 There is at most one eleme...
absn 4642 Condition for a class abst...
dfpr2 4643 Alternate definition of a ...
dfsn2ALT 4644 Alternate definition of si...
elprg 4645 A member of a pair of clas...
elpri 4646 If a class is an element o...
elpr 4647 A member of a pair of clas...
elpr2g 4648 A member of a pair of sets...
elpr2 4649 A member of a pair of sets...
elpr2OLD 4650 Obsolete version of ~ elpr...
nelpr2 4651 If a class is not an eleme...
nelpr1 4652 If a class is not an eleme...
nelpri 4653 If an element doesn't matc...
prneli 4654 If an element doesn't matc...
nelprd 4655 If an element doesn't matc...
eldifpr 4656 Membership in a set with t...
rexdifpr 4657 Restricted existential qua...
snidg 4658 A set is a member of its s...
snidb 4659 A class is a set iff it is...
snid 4660 A set is a member of its s...
vsnid 4661 A setvar variable is a mem...
elsn2g 4662 There is exactly one eleme...
elsn2 4663 There is exactly one eleme...
nelsn 4664 If a class is not equal to...
rabeqsn 4665 Conditions for a restricte...
rabsssn 4666 Conditions for a restricte...
rabeqsnd 4667 Conditions for a restricte...
ralsnsg 4668 Substitution expressed in ...
rexsns 4669 Restricted existential qua...
rexsngf 4670 Restricted existential qua...
ralsngf 4671 Restricted universal quant...
reusngf 4672 Restricted existential uni...
ralsng 4673 Substitution expressed in ...
rexsng 4674 Restricted existential qua...
reusng 4675 Restricted existential uni...
2ralsng 4676 Substitution expressed in ...
ralsngOLD 4677 Obsolete version of ~ rals...
rexsngOLD 4678 Obsolete version of ~ rexs...
rexreusng 4679 Restricted existential uni...
exsnrex 4680 There is a set being the e...
ralsn 4681 Convert a universal quanti...
rexsn 4682 Convert an existential qua...
elpwunsn 4683 Membership in an extension...
eqoreldif 4684 An element of a set is eit...
eltpg 4685 Members of an unordered tr...
eldiftp 4686 Membership in a set with t...
eltpi 4687 A member of an unordered t...
eltp 4688 A member of an unordered t...
dftp2 4689 Alternate definition of un...
nfpr 4690 Bound-variable hypothesis ...
ifpr 4691 Membership of a conditiona...
ralprgf 4692 Convert a restricted unive...
rexprgf 4693 Convert a restricted exist...
ralprg 4694 Convert a restricted unive...
ralprgOLD 4695 Obsolete version of ~ ralp...
rexprg 4696 Convert a restricted exist...
rexprgOLD 4697 Obsolete version of ~ rexp...
raltpg 4698 Convert a restricted unive...
rextpg 4699 Convert a restricted exist...
ralpr 4700 Convert a restricted unive...
rexpr 4701 Convert a restricted exist...
reuprg0 4702 Convert a restricted exist...
reuprg 4703 Convert a restricted exist...
reurexprg 4704 Convert a restricted exist...
raltp 4705 Convert a universal quanti...
rextp 4706 Convert an existential qua...
nfsn 4707 Bound-variable hypothesis ...
csbsng 4708 Distribute proper substitu...
csbprg 4709 Distribute proper substitu...
elinsn 4710 If the intersection of two...
disjsn 4711 Intersection with the sing...
disjsn2 4712 Two distinct singletons ar...
disjpr2 4713 Two completely distinct un...
disjprsn 4714 The disjoint intersection ...
disjtpsn 4715 The disjoint intersection ...
disjtp2 4716 Two completely distinct un...
snprc 4717 The singleton of a proper ...
snnzb 4718 A singleton is nonempty if...
rmosn 4719 A restricted at-most-one q...
r19.12sn 4720 Special case of ~ r19.12 w...
rabsn 4721 Condition where a restrict...
rabsnifsb 4722 A restricted class abstrac...
rabsnif 4723 A restricted class abstrac...
rabrsn 4724 A restricted class abstrac...
euabsn2 4725 Another way to express exi...
euabsn 4726 Another way to express exi...
reusn 4727 A way to express restricte...
absneu 4728 Restricted existential uni...
rabsneu 4729 Restricted existential uni...
eusn 4730 Two ways to express " ` A ...
rabsnt 4731 Truth implied by equality ...
prcom 4732 Commutative law for unorde...
preq1 4733 Equality theorem for unord...
preq2 4734 Equality theorem for unord...
preq12 4735 Equality theorem for unord...
preq1i 4736 Equality inference for uno...
preq2i 4737 Equality inference for uno...
preq12i 4738 Equality inference for uno...
preq1d 4739 Equality deduction for uno...
preq2d 4740 Equality deduction for uno...
preq12d 4741 Equality deduction for uno...
tpeq1 4742 Equality theorem for unord...
tpeq2 4743 Equality theorem for unord...
tpeq3 4744 Equality theorem for unord...
tpeq1d 4745 Equality theorem for unord...
tpeq2d 4746 Equality theorem for unord...
tpeq3d 4747 Equality theorem for unord...
tpeq123d 4748 Equality theorem for unord...
tprot 4749 Rotation of the elements o...
tpcoma 4750 Swap 1st and 2nd members o...
tpcomb 4751 Swap 2nd and 3rd members o...
tpass 4752 Split off the first elemen...
qdass 4753 Two ways to write an unord...
qdassr 4754 Two ways to write an unord...
tpidm12 4755 Unordered triple ` { A , A...
tpidm13 4756 Unordered triple ` { A , B...
tpidm23 4757 Unordered triple ` { A , B...
tpidm 4758 Unordered triple ` { A , A...
tppreq3 4759 An unordered triple is an ...
prid1g 4760 An unordered pair contains...
prid2g 4761 An unordered pair contains...
prid1 4762 An unordered pair contains...
prid2 4763 An unordered pair contains...
ifpprsnss 4764 An unordered pair is a sin...
prprc1 4765 A proper class vanishes in...
prprc2 4766 A proper class vanishes in...
prprc 4767 An unordered pair containi...
tpid1 4768 One of the three elements ...
tpid1g 4769 Closed theorem form of ~ t...
tpid2 4770 One of the three elements ...
tpid2g 4771 Closed theorem form of ~ t...
tpid3g 4772 Closed theorem form of ~ t...
tpid3 4773 One of the three elements ...
snnzg 4774 The singleton of a set is ...
snn0d 4775 The singleton of a set is ...
snnz 4776 The singleton of a set is ...
prnz 4777 A pair containing a set is...
prnzg 4778 A pair containing a set is...
tpnz 4779 An unordered triple contai...
tpnzd 4780 An unordered triple contai...
raltpd 4781 Convert a universal quanti...
snssb 4782 Characterization of the in...
snssg 4783 The singleton formed on a ...
snssgOLD 4784 Obsolete version of ~ snss...
snss 4785 The singleton of an elemen...
eldifsn 4786 Membership in a set with a...
ssdifsn 4787 Subset of a set with an el...
elpwdifsn 4788 A subset of a set is an el...
eldifsni 4789 Membership in a set with a...
eldifsnneq 4790 An element of a difference...
neldifsn 4791 The class ` A ` is not in ...
neldifsnd 4792 The class ` A ` is not in ...
rexdifsn 4793 Restricted existential qua...
raldifsni 4794 Rearrangement of a propert...
raldifsnb 4795 Restricted universal quant...
eldifvsn 4796 A set is an element of the...
difsn 4797 An element not in a set ca...
difprsnss 4798 Removal of a singleton fro...
difprsn1 4799 Removal of a singleton fro...
difprsn2 4800 Removal of a singleton fro...
diftpsn3 4801 Removal of a singleton fro...
difpr 4802 Removing two elements as p...
tpprceq3 4803 An unordered triple is an ...
tppreqb 4804 An unordered triple is an ...
difsnb 4805 ` ( B \ { A } ) ` equals `...
difsnpss 4806 ` ( B \ { A } ) ` is a pro...
snssi 4807 The singleton of an elemen...
snssd 4808 The singleton of an elemen...
difsnid 4809 If we remove a single elem...
eldifeldifsn 4810 An element of a difference...
pw0 4811 Compute the power set of t...
pwpw0 4812 Compute the power set of t...
snsspr1 4813 A singleton is a subset of...
snsspr2 4814 A singleton is a subset of...
snsstp1 4815 A singleton is a subset of...
snsstp2 4816 A singleton is a subset of...
snsstp3 4817 A singleton is a subset of...
prssg 4818 A pair of elements of a cl...
prss 4819 A pair of elements of a cl...
prssi 4820 A pair of elements of a cl...
prssd 4821 Deduction version of ~ prs...
prsspwg 4822 An unordered pair belongs ...
ssprss 4823 A pair as subset of a pair...
ssprsseq 4824 A proper pair is a subset ...
sssn 4825 The subsets of a singleton...
ssunsn2 4826 The property of being sand...
ssunsn 4827 Possible values for a set ...
eqsn 4828 Two ways to express that a...
issn 4829 A sufficient condition for...
n0snor2el 4830 A nonempty set is either a...
ssunpr 4831 Possible values for a set ...
sspr 4832 The subsets of a pair. (C...
sstp 4833 The subsets of an unordere...
tpss 4834 An unordered triple of ele...
tpssi 4835 An unordered triple of ele...
sneqrg 4836 Closed form of ~ sneqr . ...
sneqr 4837 If the singletons of two s...
snsssn 4838 If a singleton is a subset...
mosneq 4839 There exists at most one s...
sneqbg 4840 Two singletons of sets are...
snsspw 4841 The singleton of a class i...
prsspw 4842 An unordered pair belongs ...
preq1b 4843 Biconditional equality lem...
preq2b 4844 Biconditional equality lem...
preqr1 4845 Reverse equality lemma for...
preqr2 4846 Reverse equality lemma for...
preq12b 4847 Equality relationship for ...
opthpr 4848 An unordered pair has the ...
preqr1g 4849 Reverse equality lemma for...
preq12bg 4850 Closed form of ~ preq12b ....
prneimg 4851 Two pairs are not equal if...
prnebg 4852 A (proper) pair is not equ...
pr1eqbg 4853 A (proper) pair is equal t...
pr1nebg 4854 A (proper) pair is not equ...
preqsnd 4855 Equivalence for a pair equ...
prnesn 4856 A proper unordered pair is...
prneprprc 4857 A proper unordered pair is...
preqsn 4858 Equivalence for a pair equ...
preq12nebg 4859 Equality relationship for ...
prel12g 4860 Equality of two unordered ...
opthprneg 4861 An unordered pair has the ...
elpreqprlem 4862 Lemma for ~ elpreqpr . (C...
elpreqpr 4863 Equality and membership ru...
elpreqprb 4864 A set is an element of an ...
elpr2elpr 4865 For an element ` A ` of an...
dfopif 4866 Rewrite ~ df-op using ` if...
dfopg 4867 Value of the ordered pair ...
dfop 4868 Value of an ordered pair w...
opeq1 4869 Equality theorem for order...
opeq2 4870 Equality theorem for order...
opeq12 4871 Equality theorem for order...
opeq1i 4872 Equality inference for ord...
opeq2i 4873 Equality inference for ord...
opeq12i 4874 Equality inference for ord...
opeq1d 4875 Equality deduction for ord...
opeq2d 4876 Equality deduction for ord...
opeq12d 4877 Equality deduction for ord...
oteq1 4878 Equality theorem for order...
oteq2 4879 Equality theorem for order...
oteq3 4880 Equality theorem for order...
oteq1d 4881 Equality deduction for ord...
oteq2d 4882 Equality deduction for ord...
oteq3d 4883 Equality deduction for ord...
oteq123d 4884 Equality deduction for ord...
nfop 4885 Bound-variable hypothesis ...
nfopd 4886 Deduction version of bound...
csbopg 4887 Distribution of class subs...
opidg 4888 The ordered pair ` <. A , ...
opid 4889 The ordered pair ` <. A , ...
ralunsn 4890 Restricted quantification ...
2ralunsn 4891 Double restricted quantifi...
opprc 4892 Expansion of an ordered pa...
opprc1 4893 Expansion of an ordered pa...
opprc2 4894 Expansion of an ordered pa...
oprcl 4895 If an ordered pair has an ...
pwsn 4896 The power set of a singlet...
pwpr 4897 The power set of an unorde...
pwtp 4898 The power set of an unorde...
pwpwpw0 4899 Compute the power set of t...
pwv 4900 The power class of the uni...
prproe 4901 For an element of a proper...
3elpr2eq 4902 If there are three element...
dfuni2 4905 Alternate definition of cl...
eluni 4906 Membership in class union....
eluni2 4907 Membership in class union....
elunii 4908 Membership in class union....
nfunid 4909 Deduction version of ~ nfu...
nfuni 4910 Bound-variable hypothesis ...
uniss 4911 Subclass relationship for ...
unissi 4912 Subclass relationship for ...
unissd 4913 Subclass relationship for ...
unieq 4914 Equality theorem for class...
unieqi 4915 Inference of equality of t...
unieqd 4916 Deduction of equality of t...
eluniab 4917 Membership in union of a c...
elunirab 4918 Membership in union of a c...
uniprg 4919 The union of a pair is the...
unipr 4920 The union of a pair is the...
uniprOLD 4921 Obsolete version of ~ unip...
uniprgOLD 4922 Obsolete version of ~ unip...
unisng 4923 A set equals the union of ...
unisn 4924 A set equals the union of ...
unisnv 4925 A set equals the union of ...
unisn3 4926 Union of a singleton in th...
dfnfc2 4927 An alternative statement o...
uniun 4928 The class union of the uni...
uniin 4929 The class union of the int...
ssuni 4930 Subclass relationship for ...
uni0b 4931 The union of a set is empt...
uni0c 4932 The union of a set is empt...
uni0 4933 The union of the empty set...
csbuni 4934 Distribute proper substitu...
elssuni 4935 An element of a class is a...
unissel 4936 Condition turning a subcla...
unissb 4937 Relationship involving mem...
unissbOLD 4938 Obsolete version of ~ unis...
uniss2 4939 A subclass condition on th...
unidif 4940 If the difference ` A \ B ...
ssunieq 4941 Relationship implying unio...
unimax 4942 Any member of a class is t...
pwuni 4943 A class is a subclass of t...
dfint2 4946 Alternate definition of cl...
inteq 4947 Equality law for intersect...
inteqi 4948 Equality inference for cla...
inteqd 4949 Equality deduction for cla...
elint 4950 Membership in class inters...
elint2 4951 Membership in class inters...
elintg 4952 Membership in class inters...
elinti 4953 Membership in class inters...
nfint 4954 Bound-variable hypothesis ...
elintabg 4955 Two ways of saying a set i...
elintab 4956 Membership in the intersec...
elintabOLD 4957 Obsolete version of ~ elin...
elintrab 4958 Membership in the intersec...
elintrabg 4959 Membership in the intersec...
int0 4960 The intersection of the em...
intss1 4961 An element of a class incl...
ssint 4962 Subclass of a class inters...
ssintab 4963 Subclass of the intersecti...
ssintub 4964 Subclass of the least uppe...
ssmin 4965 Subclass of the minimum va...
intmin 4966 Any member of a class is t...
intss 4967 Intersection of subclasses...
intssuni 4968 The intersection of a none...
ssintrab 4969 Subclass of the intersecti...
unissint 4970 If the union of a class is...
intssuni2 4971 Subclass relationship for ...
intminss 4972 Under subset ordering, the...
intmin2 4973 Any set is the smallest of...
intmin3 4974 Under subset ordering, the...
intmin4 4975 Elimination of a conjunct ...
intab 4976 The intersection of a spec...
int0el 4977 The intersection of a clas...
intun 4978 The class intersection of ...
intprg 4979 The intersection of a pair...
intpr 4980 The intersection of a pair...
intprOLD 4981 Obsolete version of ~ intp...
intprgOLD 4982 Obsolete version of ~ intp...
intsng 4983 Intersection of a singleto...
intsn 4984 The intersection of a sing...
uniintsn 4985 Two ways to express " ` A ...
uniintab 4986 The union and the intersec...
intunsn 4987 Theorem joining a singleto...
rint0 4988 Relative intersection of a...
elrint 4989 Membership in a restricted...
elrint2 4990 Membership in a restricted...
eliun 4995 Membership in indexed unio...
eliin 4996 Membership in indexed inte...
eliuni 4997 Membership in an indexed u...
iuncom 4998 Commutation of indexed uni...
iuncom4 4999 Commutation of union with ...
iunconst 5000 Indexed union of a constan...
iinconst 5001 Indexed intersection of a ...
iuneqconst 5002 Indexed union of identical...
iuniin 5003 Law combining indexed unio...
iinssiun 5004 An indexed intersection is...
iunss1 5005 Subclass theorem for index...
iinss1 5006 Subclass theorem for index...
iuneq1 5007 Equality theorem for index...
iineq1 5008 Equality theorem for index...
ss2iun 5009 Subclass theorem for index...
iuneq2 5010 Equality theorem for index...
iineq2 5011 Equality theorem for index...
iuneq2i 5012 Equality inference for ind...
iineq2i 5013 Equality inference for ind...
iineq2d 5014 Equality deduction for ind...
iuneq2dv 5015 Equality deduction for ind...
iineq2dv 5016 Equality deduction for ind...
iuneq12df 5017 Equality deduction for ind...
iuneq1d 5018 Equality theorem for index...
iuneq12d 5019 Equality deduction for ind...
iuneq2d 5020 Equality deduction for ind...
nfiun 5021 Bound-variable hypothesis ...
nfiin 5022 Bound-variable hypothesis ...
nfiung 5023 Bound-variable hypothesis ...
nfiing 5024 Bound-variable hypothesis ...
nfiu1 5025 Bound-variable hypothesis ...
nfii1 5026 Bound-variable hypothesis ...
dfiun2g 5027 Alternate definition of in...
dfiun2gOLD 5028 Obsolete version of ~ dfiu...
dfiin2g 5029 Alternate definition of in...
dfiun2 5030 Alternate definition of in...
dfiin2 5031 Alternate definition of in...
dfiunv2 5032 Define double indexed unio...
cbviun 5033 Rule used to change the bo...
cbviin 5034 Change bound variables in ...
cbviung 5035 Rule used to change the bo...
cbviing 5036 Change bound variables in ...
cbviunv 5037 Rule used to change the bo...
cbviinv 5038 Change bound variables in ...
cbviunvg 5039 Rule used to change the bo...
cbviinvg 5040 Change bound variables in ...
iunssf 5041 Subset theorem for an inde...
iunss 5042 Subset theorem for an inde...
ssiun 5043 Subset implication for an ...
ssiun2 5044 Identity law for subset of...
ssiun2s 5045 Subset relationship for an...
iunss2 5046 A subclass condition on th...
iunssd 5047 Subset theorem for an inde...
iunab 5048 The indexed union of a cla...
iunrab 5049 The indexed union of a res...
iunxdif2 5050 Indexed union with a class...
ssiinf 5051 Subset theorem for an inde...
ssiin 5052 Subset theorem for an inde...
iinss 5053 Subset implication for an ...
iinss2 5054 An indexed intersection is...
uniiun 5055 Class union in terms of in...
intiin 5056 Class intersection in term...
iunid 5057 An indexed union of single...
iunidOLD 5058 Obsolete version of ~ iuni...
iun0 5059 An indexed union of the em...
0iun 5060 An empty indexed union is ...
0iin 5061 An empty indexed intersect...
viin 5062 Indexed intersection with ...
iunsn 5063 Indexed union of a singlet...
iunn0 5064 There is a nonempty class ...
iinab 5065 Indexed intersection of a ...
iinrab 5066 Indexed intersection of a ...
iinrab2 5067 Indexed intersection of a ...
iunin2 5068 Indexed union of intersect...
iunin1 5069 Indexed union of intersect...
iinun2 5070 Indexed intersection of un...
iundif2 5071 Indexed union of class dif...
iindif1 5072 Indexed intersection of cl...
2iunin 5073 Rearrange indexed unions o...
iindif2 5074 Indexed intersection of cl...
iinin2 5075 Indexed intersection of in...
iinin1 5076 Indexed intersection of in...
iinvdif 5077 The indexed intersection o...
elriin 5078 Elementhood in a relative ...
riin0 5079 Relative intersection of a...
riinn0 5080 Relative intersection of a...
riinrab 5081 Relative intersection of a...
symdif0 5082 Symmetric difference with ...
symdifv 5083 The symmetric difference w...
symdifid 5084 The symmetric difference o...
iinxsng 5085 A singleton index picks ou...
iinxprg 5086 Indexed intersection with ...
iunxsng 5087 A singleton index picks ou...
iunxsn 5088 A singleton index picks ou...
iunxsngf 5089 A singleton index picks ou...
iunun 5090 Separate a union in an ind...
iunxun 5091 Separate a union in the in...
iunxdif3 5092 An indexed union where som...
iunxprg 5093 A pair index picks out two...
iunxiun 5094 Separate an indexed union ...
iinuni 5095 A relationship involving u...
iununi 5096 A relationship involving u...
sspwuni 5097 Subclass relationship for ...
pwssb 5098 Two ways to express a coll...
elpwpw 5099 Characterization of the el...
pwpwab 5100 The double power class wri...
pwpwssunieq 5101 The class of sets whose un...
elpwuni 5102 Relationship for power cla...
iinpw 5103 The power class of an inte...
iunpwss 5104 Inclusion of an indexed un...
intss2 5105 A nonempty intersection of...
rintn0 5106 Relative intersection of a...
dfdisj2 5109 Alternate definition for d...
disjss2 5110 If each element of a colle...
disjeq2 5111 Equality theorem for disjo...
disjeq2dv 5112 Equality deduction for dis...
disjss1 5113 A subset of a disjoint col...
disjeq1 5114 Equality theorem for disjo...
disjeq1d 5115 Equality theorem for disjo...
disjeq12d 5116 Equality theorem for disjo...
cbvdisj 5117 Change bound variables in ...
cbvdisjv 5118 Change bound variables in ...
nfdisjw 5119 Bound-variable hypothesis ...
nfdisj 5120 Bound-variable hypothesis ...
nfdisj1 5121 Bound-variable hypothesis ...
disjor 5122 Two ways to say that a col...
disjors 5123 Two ways to say that a col...
disji2 5124 Property of a disjoint col...
disji 5125 Property of a disjoint col...
invdisj 5126 If there is a function ` C...
invdisjrabw 5127 Version of ~ invdisjrab wi...
invdisjrab 5128 The restricted class abstr...
disjiun 5129 A disjoint collection yiel...
disjord 5130 Conditions for a collectio...
disjiunb 5131 Two ways to say that a col...
disjiund 5132 Conditions for a collectio...
sndisj 5133 Any collection of singleto...
0disj 5134 Any collection of empty se...
disjxsn 5135 A singleton collection is ...
disjx0 5136 An empty collection is dis...
disjprgw 5137 Version of ~ disjprg with ...
disjprg 5138 A pair collection is disjo...
disjxiun 5139 An indexed union of a disj...
disjxun 5140 The union of two disjoint ...
disjss3 5141 Expand a disjoint collecti...
breq 5144 Equality theorem for binar...
breq1 5145 Equality theorem for a bin...
breq2 5146 Equality theorem for a bin...
breq12 5147 Equality theorem for a bin...
breqi 5148 Equality inference for bin...
breq1i 5149 Equality inference for a b...
breq2i 5150 Equality inference for a b...
breq12i 5151 Equality inference for a b...
breq1d 5152 Equality deduction for a b...
breqd 5153 Equality deduction for a b...
breq2d 5154 Equality deduction for a b...
breq12d 5155 Equality deduction for a b...
breq123d 5156 Equality deduction for a b...
breqdi 5157 Equality deduction for a b...
breqan12d 5158 Equality deduction for a b...
breqan12rd 5159 Equality deduction for a b...
eqnbrtrd 5160 Substitution of equal clas...
nbrne1 5161 Two classes are different ...
nbrne2 5162 Two classes are different ...
eqbrtri 5163 Substitution of equal clas...
eqbrtrd 5164 Substitution of equal clas...
eqbrtrri 5165 Substitution of equal clas...
eqbrtrrd 5166 Substitution of equal clas...
breqtri 5167 Substitution of equal clas...
breqtrd 5168 Substitution of equal clas...
breqtrri 5169 Substitution of equal clas...
breqtrrd 5170 Substitution of equal clas...
3brtr3i 5171 Substitution of equality i...
3brtr4i 5172 Substitution of equality i...
3brtr3d 5173 Substitution of equality i...
3brtr4d 5174 Substitution of equality i...
3brtr3g 5175 Substitution of equality i...
3brtr4g 5176 Substitution of equality i...
eqbrtrid 5177 A chained equality inferen...
eqbrtrrid 5178 A chained equality inferen...
breqtrid 5179 A chained equality inferen...
breqtrrid 5180 A chained equality inferen...
eqbrtrdi 5181 A chained equality inferen...
eqbrtrrdi 5182 A chained equality inferen...
breqtrdi 5183 A chained equality inferen...
breqtrrdi 5184 A chained equality inferen...
ssbrd 5185 Deduction from a subclass ...
ssbr 5186 Implication from a subclas...
ssbri 5187 Inference from a subclass ...
nfbrd 5188 Deduction version of bound...
nfbr 5189 Bound-variable hypothesis ...
brab1 5190 Relationship between a bin...
br0 5191 The empty binary relation ...
brne0 5192 If two sets are in a binar...
brun 5193 The union of two binary re...
brin 5194 The intersection of two re...
brdif 5195 The difference of two bina...
sbcbr123 5196 Move substitution in and o...
sbcbr 5197 Move substitution in and o...
sbcbr12g 5198 Move substitution in and o...
sbcbr1g 5199 Move substitution in and o...
sbcbr2g 5200 Move substitution in and o...
brsymdif 5201 Characterization of the sy...
brralrspcev 5202 Restricted existential spe...
brimralrspcev 5203 Restricted existential spe...
opabss 5206 The collection of ordered ...
opabbid 5207 Equivalent wff's yield equ...
opabbidv 5208 Equivalent wff's yield equ...
opabbii 5209 Equivalent wff's yield equ...
nfopabd 5210 Bound-variable hypothesis ...
nfopab 5211 Bound-variable hypothesis ...
nfopab1 5212 The first abstraction vari...
nfopab2 5213 The second abstraction var...
cbvopab 5214 Rule used to change bound ...
cbvopabv 5215 Rule used to change bound ...
cbvopabvOLD 5216 Obsolete version of ~ cbvo...
cbvopab1 5217 Change first bound variabl...
cbvopab1g 5218 Change first bound variabl...
cbvopab2 5219 Change second bound variab...
cbvopab1s 5220 Change first bound variabl...
cbvopab1v 5221 Rule used to change the fi...
cbvopab1vOLD 5222 Obsolete version of ~ cbvo...
cbvopab2v 5223 Rule used to change the se...
unopab 5224 Union of two ordered pair ...
mpteq12da 5227 An equality inference for ...
mpteq12df 5228 An equality inference for ...
mpteq12dfOLD 5229 Obsolete version of ~ mpte...
mpteq12f 5230 An equality theorem for th...
mpteq12dva 5231 An equality inference for ...
mpteq12dvaOLD 5232 Obsolete version of ~ mpte...
mpteq12dv 5233 An equality inference for ...
mpteq12 5234 An equality theorem for th...
mpteq1 5235 An equality theorem for th...
mpteq1OLD 5236 Obsolete version of ~ mpte...
mpteq1d 5237 An equality theorem for th...
mpteq1i 5238 An equality theorem for th...
mpteq1iOLD 5239 Obsolete version of ~ mpte...
mpteq2da 5240 Slightly more general equa...
mpteq2daOLD 5241 Obsolete version of ~ mpte...
mpteq2dva 5242 Slightly more general equa...
mpteq2dvaOLD 5243 Obsolete version of ~ mpte...
mpteq2dv 5244 An equality inference for ...
mpteq2ia 5245 An equality inference for ...
mpteq2iaOLD 5246 Obsolete version of ~ mpte...
mpteq2i 5247 An equality inference for ...
mpteq12i 5248 An equality inference for ...
nfmpt 5249 Bound-variable hypothesis ...
nfmpt1 5250 Bound-variable hypothesis ...
cbvmptf 5251 Rule to change the bound v...
cbvmptfg 5252 Rule to change the bound v...
cbvmpt 5253 Rule to change the bound v...
cbvmptg 5254 Rule to change the bound v...
cbvmptv 5255 Rule to change the bound v...
cbvmptvOLD 5256 Obsolete version of ~ cbvm...
cbvmptvg 5257 Rule to change the bound v...
mptv 5258 Function with universal do...
dftr2 5261 An alternate way of defini...
dftr2c 5262 Variant of ~ dftr2 with co...
dftr5 5263 An alternate way of defini...
dftr5OLD 5264 Obsolete version of ~ dftr...
dftr3 5265 An alternate way of defini...
dftr4 5266 An alternate way of defini...
treq 5267 Equality theorem for the t...
trel 5268 In a transitive class, the...
trel3 5269 In a transitive class, the...
trss 5270 An element of a transitive...
trin 5271 The intersection of transi...
tr0 5272 The empty set is transitiv...
trv 5273 The universe is transitive...
triun 5274 An indexed union of a clas...
truni 5275 The union of a class of tr...
triin 5276 An indexed intersection of...
trint 5277 The intersection of a clas...
trintss 5278 Any nonempty transitive cl...
axrep1 5280 The version of the Axiom o...
axreplem 5281 Lemma for ~ axrep2 and ~ a...
axrep2 5282 Axiom of Replacement expre...
axrep3 5283 Axiom of Replacement sligh...
axrep4 5284 A more traditional version...
axrep5 5285 Axiom of Replacement (simi...
axrep6 5286 A condensed form of ~ ax-r...
axrep6g 5287 ~ axrep6 in class notation...
zfrepclf 5288 An inference based on the ...
zfrep3cl 5289 An inference based on the ...
zfrep4 5290 A version of Replacement u...
axsepgfromrep 5291 A more general version ~ a...
axsep 5292 Axiom scheme of separation...
axsepg 5294 A more general version of ...
zfauscl 5295 Separation Scheme (Aussond...
bm1.3ii 5296 Convert implication to equ...
ax6vsep 5297 Derive ~ ax6v (a weakened ...
axnulALT 5298 Alternate proof of ~ axnul...
axnul 5299 The Null Set Axiom of ZF s...
0ex 5301 The Null Set Axiom of ZF s...
al0ssb 5302 The empty set is the uniqu...
sseliALT 5303 Alternate proof of ~ sseli...
csbexg 5304 The existence of proper su...
csbex 5305 The existence of proper su...
unisn2 5306 A version of ~ unisn witho...
nalset 5307 No set contains all sets. ...
vnex 5308 The universal class does n...
vprc 5309 The universal class is not...
nvel 5310 The universal class does n...
inex1 5311 Separation Scheme (Aussond...
inex2 5312 Separation Scheme (Aussond...
inex1g 5313 Closed-form, generalized S...
inex2g 5314 Sufficient condition for a...
ssex 5315 The subset of a set is als...
ssexi 5316 The subset of a set is als...
ssexg 5317 The subset of a set is als...
ssexd 5318 A subclass of a set is a s...
abexd 5319 Conditions for a class abs...
abex 5320 Conditions for a class abs...
prcssprc 5321 The superclass of a proper...
sselpwd 5322 Elementhood to a power set...
difexg 5323 Existence of a difference....
difexi 5324 Existence of a difference,...
difexd 5325 Existence of a difference....
zfausab 5326 Separation Scheme (Aussond...
rabexg 5327 Separation Scheme in terms...
rabex 5328 Separation Scheme in terms...
rabexd 5329 Separation Scheme in terms...
rabex2 5330 Separation Scheme in terms...
rab2ex 5331 A class abstraction based ...
elssabg 5332 Membership in a class abst...
intex 5333 The intersection of a none...
intnex 5334 If a class intersection is...
intexab 5335 The intersection of a none...
intexrab 5336 The intersection of a none...
iinexg 5337 The existence of a class i...
intabs 5338 Absorption of a redundant ...
inuni 5339 The intersection of a unio...
elpw2g 5340 Membership in a power clas...
elpw2 5341 Membership in a power clas...
elpwi2 5342 Membership in a power clas...
elpwi2OLD 5343 Obsolete version of ~ elpw...
axpweq 5344 Two equivalent ways to exp...
pwnss 5345 The power set of a set is ...
pwne 5346 No set equals its power se...
difelpw 5347 A difference is an element...
rabelpw 5348 A restricted class abstrac...
class2set 5349 The class of elements of `...
0elpw 5350 Every power class contains...
pwne0 5351 A power class is never emp...
0nep0 5352 The empty set and its powe...
0inp0 5353 Something cannot be equal ...
unidif0 5354 The removal of the empty s...
eqsnuniex 5355 If a class is equal to the...
iin0 5356 An indexed intersection of...
notzfaus 5357 In the Separation Scheme ~...
intv 5358 The intersection of the un...
zfpow 5360 Axiom of Power Sets expres...
axpow2 5361 A variant of the Axiom of ...
axpow3 5362 A variant of the Axiom of ...
elALT2 5363 Alternate proof of ~ el us...
dtruALT2 5364 Alternate proof of ~ dtru ...
dtrucor 5365 Corollary of ~ dtru . Thi...
dtrucor2 5366 The theorem form of the de...
dvdemo1 5367 Demonstration of a theorem...
dvdemo2 5368 Demonstration of a theorem...
nfnid 5369 A setvar variable is not f...
nfcvb 5370 The "distinctor" expressio...
vpwex 5371 Power set axiom: the power...
pwexg 5372 Power set axiom expressed ...
pwexd 5373 Deduction version of the p...
pwex 5374 Power set axiom expressed ...
pwel 5375 Quantitative version of ~ ...
abssexg 5376 Existence of a class of su...
snexALT 5377 Alternate proof of ~ snex ...
p0ex 5378 The power set of the empty...
p0exALT 5379 Alternate proof of ~ p0ex ...
pp0ex 5380 The power set of the power...
ord3ex 5381 The ordinal number 3 is a ...
dtruALT 5382 Alternate proof of ~ dtru ...
axc16b 5383 This theorem shows that Ax...
eunex 5384 Existential uniqueness imp...
eusv1 5385 Two ways to express single...
eusvnf 5386 Even if ` x ` is free in `...
eusvnfb 5387 Two ways to say that ` A (...
eusv2i 5388 Two ways to express single...
eusv2nf 5389 Two ways to express single...
eusv2 5390 Two ways to express single...
reusv1 5391 Two ways to express single...
reusv2lem1 5392 Lemma for ~ reusv2 . (Con...
reusv2lem2 5393 Lemma for ~ reusv2 . (Con...
reusv2lem3 5394 Lemma for ~ reusv2 . (Con...
reusv2lem4 5395 Lemma for ~ reusv2 . (Con...
reusv2lem5 5396 Lemma for ~ reusv2 . (Con...
reusv2 5397 Two ways to express single...
reusv3i 5398 Two ways of expressing exi...
reusv3 5399 Two ways to express single...
eusv4 5400 Two ways to express single...
alxfr 5401 Transfer universal quantif...
ralxfrd 5402 Transfer universal quantif...
rexxfrd 5403 Transfer universal quantif...
ralxfr2d 5404 Transfer universal quantif...
rexxfr2d 5405 Transfer universal quantif...
ralxfrd2 5406 Transfer universal quantif...
rexxfrd2 5407 Transfer existence from a ...
ralxfr 5408 Transfer universal quantif...
ralxfrALT 5409 Alternate proof of ~ ralxf...
rexxfr 5410 Transfer existence from a ...
rabxfrd 5411 Membership in a restricted...
rabxfr 5412 Membership in a restricted...
reuhypd 5413 A theorem useful for elimi...
reuhyp 5414 A theorem useful for elimi...
zfpair 5415 The Axiom of Pairing of Ze...
axprALT 5416 Alternate proof of ~ axpr ...
axprlem1 5417 Lemma for ~ axpr . There ...
axprlem2 5418 Lemma for ~ axpr . There ...
axprlem3 5419 Lemma for ~ axpr . Elimin...
axprlem4 5420 Lemma for ~ axpr . The fi...
axprlem5 5421 Lemma for ~ axpr . The se...
axpr 5422 Unabbreviated version of t...
zfpair2 5424 Derive the abbreviated ver...
vsnex 5425 A singleton built on a set...
snexg 5426 A singleton built on a set...
snex 5427 A singleton is a set. The...
prex 5428 The Axiom of Pairing using...
exel 5429 There exist two sets, one ...
exexneq 5430 There exist two different ...
exneq 5431 Given any set (the " ` y `...
dtru 5432 Given any set (the " ` y `...
el 5433 Any set is an element of s...
sels 5434 If a class is a set, then ...
selsALT 5435 Alternate proof of ~ sels ...
elALT 5436 Alternate proof of ~ el , ...
dtruOLD 5437 Obsolete proof of ~ dtru a...
snelpwg 5438 A singleton of a set is a ...
snelpwi 5439 If a set is a member of a ...
snelpwiOLD 5440 Obsolete version of ~ snel...
snelpw 5441 A singleton of a set is a ...
prelpw 5442 An unordered pair of two s...
prelpwi 5443 If two sets are members of...
rext 5444 A theorem similar to exten...
sspwb 5445 The powerclass constructio...
unipw 5446 A class equals the union o...
univ 5447 The union of the universe ...
pwtr 5448 A class is transitive iff ...
ssextss 5449 An extensionality-like pri...
ssext 5450 An extensionality-like pri...
nssss 5451 Negation of subclass relat...
pweqb 5452 Classes are equal if and o...
intidg 5453 The intersection of all se...
intidOLD 5454 Obsolete version of ~ inti...
moabex 5455 "At most one" existence im...
rmorabex 5456 Restricted "at most one" e...
euabex 5457 The abstraction of a wff w...
nnullss 5458 A nonempty class (even if ...
exss 5459 Restricted existence in a ...
opex 5460 An ordered pair of classes...
otex 5461 An ordered triple of class...
elopg 5462 Characterization of the el...
elop 5463 Characterization of the el...
opi1 5464 One of the two elements in...
opi2 5465 One of the two elements of...
opeluu 5466 Each member of an ordered ...
op1stb 5467 Extract the first member o...
brv 5468 Two classes are always in ...
opnz 5469 An ordered pair is nonempt...
opnzi 5470 An ordered pair is nonempt...
opth1 5471 Equality of the first memb...
opth 5472 The ordered pair theorem. ...
opthg 5473 Ordered pair theorem. ` C ...
opth1g 5474 Equality of the first memb...
opthg2 5475 Ordered pair theorem. (Co...
opth2 5476 Ordered pair theorem. (Co...
opthneg 5477 Two ordered pairs are not ...
opthne 5478 Two ordered pairs are not ...
otth2 5479 Ordered triple theorem, wi...
otth 5480 Ordered triple theorem. (...
otthg 5481 Ordered triple theorem, cl...
otthne 5482 Contrapositive of the orde...
eqvinop 5483 A variable introduction la...
sbcop1 5484 The proper substitution of...
sbcop 5485 The proper substitution of...
copsexgw 5486 Version of ~ copsexg with ...
copsexg 5487 Substitution of class ` A ...
copsex2t 5488 Closed theorem form of ~ c...
copsex2g 5489 Implicit substitution infe...
copsex2gOLD 5490 Obsolete version of ~ cops...
copsex4g 5491 An implicit substitution i...
0nelop 5492 A property of ordered pair...
opwo0id 5493 An ordered pair is equal t...
opeqex 5494 Equivalence of existence i...
oteqex2 5495 Equivalence of existence i...
oteqex 5496 Equivalence of existence i...
opcom 5497 An ordered pair commutes i...
moop2 5498 "At most one" property of ...
opeqsng 5499 Equivalence for an ordered...
opeqsn 5500 Equivalence for an ordered...
opeqpr 5501 Equivalence for an ordered...
snopeqop 5502 Equivalence for an ordered...
propeqop 5503 Equivalence for an ordered...
propssopi 5504 If a pair of ordered pairs...
snopeqopsnid 5505 Equivalence for an ordered...
mosubopt 5506 "At most one" remains true...
mosubop 5507 "At most one" remains true...
euop2 5508 Transfer existential uniqu...
euotd 5509 Prove existential uniquene...
opthwiener 5510 Justification theorem for ...
uniop 5511 The union of an ordered pa...
uniopel 5512 Ordered pair membership is...
opthhausdorff 5513 Justification theorem for ...
opthhausdorff0 5514 Justification theorem for ...
otsndisj 5515 The singletons consisting ...
otiunsndisj 5516 The union of singletons co...
iunopeqop 5517 Implication of an ordered ...
brsnop 5518 Binary relation for an ord...
brtp 5519 A necessary and sufficient...
opabidw 5520 The law of concretion. Sp...
opabid 5521 The law of concretion. Sp...
elopabw 5522 Membership in a class abst...
elopab 5523 Membership in a class abst...
rexopabb 5524 Restricted existential qua...
vopelopabsb 5525 The law of concretion in t...
opelopabsb 5526 The law of concretion in t...
brabsb 5527 The law of concretion in t...
opelopabt 5528 Closed theorem form of ~ o...
opelopabga 5529 The law of concretion. Th...
brabga 5530 The law of concretion for ...
opelopab2a 5531 Ordered pair membership in...
opelopaba 5532 The law of concretion. Th...
braba 5533 The law of concretion for ...
opelopabg 5534 The law of concretion. Th...
brabg 5535 The law of concretion for ...
opelopabgf 5536 The law of concretion. Th...
opelopab2 5537 Ordered pair membership in...
opelopab 5538 The law of concretion. Th...
brab 5539 The law of concretion for ...
opelopabaf 5540 The law of concretion. Th...
opelopabf 5541 The law of concretion. Th...
ssopab2 5542 Equivalence of ordered pai...
ssopab2bw 5543 Equivalence of ordered pai...
eqopab2bw 5544 Equivalence of ordered pai...
ssopab2b 5545 Equivalence of ordered pai...
ssopab2i 5546 Inference of ordered pair ...
ssopab2dv 5547 Inference of ordered pair ...
eqopab2b 5548 Equivalence of ordered pai...
opabn0 5549 Nonempty ordered pair clas...
opab0 5550 Empty ordered pair class a...
csbopab 5551 Move substitution into a c...
csbopabgALT 5552 Move substitution into a c...
csbmpt12 5553 Move substitution into a m...
csbmpt2 5554 Move substitution into the...
iunopab 5555 Move indexed union inside ...
iunopabOLD 5556 Obsolete version of ~ iuno...
elopabr 5557 Membership in an ordered-p...
elopabran 5558 Membership in an ordered-p...
elopabrOLD 5559 Obsolete version of ~ elop...
rbropapd 5560 Properties of a pair in an...
rbropap 5561 Properties of a pair in a ...
2rbropap 5562 Properties of a pair in a ...
0nelopab 5563 The empty set is never an ...
0nelopabOLD 5564 Obsolete version of ~ 0nel...
brabv 5565 If two classes are in a re...
pwin 5566 The power class of the int...
pwssun 5567 The power class of the uni...
pwun 5568 The power class of the uni...
dfid4 5571 The identity function expr...
dfid2 5572 Alternate definition of th...
dfid3 5573 A stronger version of ~ df...
dfid2OLD 5574 Obsolete version of ~ dfid...
epelg 5577 The membership relation an...
epeli 5578 The membership relation an...
epel 5579 The membership relation an...
0sn0ep 5580 An example for the members...
epn0 5581 The membership relation is...
poss 5586 Subset theorem for the par...
poeq1 5587 Equality theorem for parti...
poeq2 5588 Equality theorem for parti...
nfpo 5589 Bound-variable hypothesis ...
nfso 5590 Bound-variable hypothesis ...
pocl 5591 Characteristic properties ...
poclOLD 5592 Obsolete version of ~ pocl...
ispod 5593 Sufficient conditions for ...
swopolem 5594 Perform the substitutions ...
swopo 5595 A strict weak order is a p...
poirr 5596 A partial order is irrefle...
potr 5597 A partial order is a trans...
po2nr 5598 A partial order has no 2-c...
po3nr 5599 A partial order has no 3-c...
po2ne 5600 Two sets related by a part...
po0 5601 Any relation is a partial ...
pofun 5602 The inverse image of a par...
sopo 5603 A strict linear order is a...
soss 5604 Subset theorem for the str...
soeq1 5605 Equality theorem for the s...
soeq2 5606 Equality theorem for the s...
sonr 5607 A strict order relation is...
sotr 5608 A strict order relation is...
solin 5609 A strict order relation is...
so2nr 5610 A strict order relation ha...
so3nr 5611 A strict order relation ha...
sotric 5612 A strict order relation sa...
sotrieq 5613 Trichotomy law for strict ...
sotrieq2 5614 Trichotomy law for strict ...
soasym 5615 Asymmetry law for strict o...
sotr2 5616 A transitivity relation. ...
issod 5617 An irreflexive, transitive...
issoi 5618 An irreflexive, transitive...
isso2i 5619 Deduce strict ordering fro...
so0 5620 Any relation is a strict o...
somo 5621 A totally ordered set has ...
sotrine 5622 Trichotomy law for strict ...
sotr3 5623 Transitivity law for stric...
dffr6 5630 Alternate definition of ~ ...
frd 5631 A nonempty subset of an ` ...
fri 5632 A nonempty subset of an ` ...
friOLD 5633 Obsolete version of ~ fri ...
seex 5634 The ` R ` -preimage of an ...
exse 5635 Any relation on a set is s...
dffr2 5636 Alternate definition of we...
dffr2ALT 5637 Alternate proof of ~ dffr2...
frc 5638 Property of well-founded r...
frss 5639 Subset theorem for the wel...
sess1 5640 Subset theorem for the set...
sess2 5641 Subset theorem for the set...
freq1 5642 Equality theorem for the w...
freq2 5643 Equality theorem for the w...
seeq1 5644 Equality theorem for the s...
seeq2 5645 Equality theorem for the s...
nffr 5646 Bound-variable hypothesis ...
nfse 5647 Bound-variable hypothesis ...
nfwe 5648 Bound-variable hypothesis ...
frirr 5649 A well-founded relation is...
fr2nr 5650 A well-founded relation ha...
fr0 5651 Any relation is well-found...
frminex 5652 If an element of a well-fo...
efrirr 5653 A well-founded class does ...
efrn2lp 5654 A well-founded class conta...
epse 5655 The membership relation is...
tz7.2 5656 Similar to Theorem 7.2 of ...
dfepfr 5657 An alternate way of saying...
epfrc 5658 A subset of a well-founded...
wess 5659 Subset theorem for the wel...
weeq1 5660 Equality theorem for the w...
weeq2 5661 Equality theorem for the w...
wefr 5662 A well-ordering is well-fo...
weso 5663 A well-ordering is a stric...
wecmpep 5664 The elements of a class we...
wetrep 5665 On a class well-ordered by...
wefrc 5666 A nonempty subclass of a c...
we0 5667 Any relation is a well-ord...
wereu 5668 A nonempty subset of an ` ...
wereu2 5669 A nonempty subclass of an ...
xpeq1 5686 Equality theorem for Carte...
xpss12 5687 Subset theorem for Cartesi...
xpss 5688 A Cartesian product is inc...
inxpssres 5689 Intersection with a Cartes...
relxp 5690 A Cartesian product is a r...
xpss1 5691 Subset relation for Cartes...
xpss2 5692 Subset relation for Cartes...
xpeq2 5693 Equality theorem for Carte...
elxpi 5694 Membership in a Cartesian ...
elxp 5695 Membership in a Cartesian ...
elxp2 5696 Membership in a Cartesian ...
xpeq12 5697 Equality theorem for Carte...
xpeq1i 5698 Equality inference for Car...
xpeq2i 5699 Equality inference for Car...
xpeq12i 5700 Equality inference for Car...
xpeq1d 5701 Equality deduction for Car...
xpeq2d 5702 Equality deduction for Car...
xpeq12d 5703 Equality deduction for Car...
sqxpeqd 5704 Equality deduction for a C...
nfxp 5705 Bound-variable hypothesis ...
0nelxp 5706 The empty set is not a mem...
0nelelxp 5707 A member of a Cartesian pr...
opelxp 5708 Ordered pair membership in...
opelxpi 5709 Ordered pair membership in...
opelxpii 5710 Ordered pair membership in...
opelxpd 5711 Ordered pair membership in...
opelvv 5712 Ordered pair membership in...
opelvvg 5713 Ordered pair membership in...
opelxp1 5714 The first member of an ord...
opelxp2 5715 The second member of an or...
otelxp 5716 Ordered triple membership ...
otelxp1 5717 The first member of an ord...
otel3xp 5718 An ordered triple is an el...
opabssxpd 5719 An ordered-pair class abst...
rabxp 5720 Class abstraction restrict...
brxp 5721 Binary relation on a Carte...
pwvrel 5722 A set is a binary relation...
pwvabrel 5723 The powerclass of the cart...
brrelex12 5724 Two classes related by a b...
brrelex1 5725 If two classes are related...
brrelex2 5726 If two classes are related...
brrelex12i 5727 Two classes that are relat...
brrelex1i 5728 The first argument of a bi...
brrelex2i 5729 The second argument of a b...
nprrel12 5730 Proper classes are not rel...
nprrel 5731 No proper class is related...
0nelrel0 5732 A binary relation does not...
0nelrel 5733 A binary relation does not...
fconstmpt 5734 Representation of a consta...
vtoclr 5735 Variable to class conversi...
opthprc 5736 Justification theorem for ...
brel 5737 Two things in a binary rel...
elxp3 5738 Membership in a Cartesian ...
opeliunxp 5739 Membership in a union of C...
xpundi 5740 Distributive law for Carte...
xpundir 5741 Distributive law for Carte...
xpiundi 5742 Distributive law for Carte...
xpiundir 5743 Distributive law for Carte...
iunxpconst 5744 Membership in a union of C...
xpun 5745 The Cartesian product of t...
elvv 5746 Membership in universal cl...
elvvv 5747 Membership in universal cl...
elvvuni 5748 An ordered pair contains i...
brinxp2 5749 Intersection of binary rel...
brinxp 5750 Intersection of binary rel...
opelinxp 5751 Ordered pair element in an...
poinxp 5752 Intersection of partial or...
soinxp 5753 Intersection of total orde...
frinxp 5754 Intersection of well-found...
seinxp 5755 Intersection of set-like r...
weinxp 5756 Intersection of well-order...
posn 5757 Partial ordering of a sing...
sosn 5758 Strict ordering on a singl...
frsn 5759 Founded relation on a sing...
wesn 5760 Well-ordering of a singlet...
elopaelxp 5761 Membership in an ordered-p...
elopaelxpOLD 5762 Obsolete version of ~ elop...
bropaex12 5763 Two classes related by an ...
opabssxp 5764 An abstraction relation is...
brab2a 5765 The law of concretion for ...
optocl 5766 Implicit substitution of c...
2optocl 5767 Implicit substitution of c...
3optocl 5768 Implicit substitution of c...
opbrop 5769 Ordered pair membership in...
0xp 5770 The Cartesian product with...
csbxp 5771 Distribute proper substitu...
releq 5772 Equality theorem for the r...
releqi 5773 Equality inference for the...
releqd 5774 Equality deduction for the...
nfrel 5775 Bound-variable hypothesis ...
sbcrel 5776 Distribute proper substitu...
relss 5777 Subclass theorem for relat...
ssrel 5778 A subclass relationship de...
ssrelOLD 5779 Obsolete version of ~ ssre...
eqrel 5780 Extensionality principle f...
ssrel2 5781 A subclass relationship de...
ssrel3 5782 Subclass relation in anoth...
relssi 5783 Inference from subclass pr...
relssdv 5784 Deduction from subclass pr...
eqrelriv 5785 Inference from extensional...
eqrelriiv 5786 Inference from extensional...
eqbrriv 5787 Inference from extensional...
eqrelrdv 5788 Deduce equality of relatio...
eqbrrdv 5789 Deduction from extensional...
eqbrrdiv 5790 Deduction from extensional...
eqrelrdv2 5791 A version of ~ eqrelrdv . ...
ssrelrel 5792 A subclass relationship de...
eqrelrel 5793 Extensionality principle f...
elrel 5794 A member of a relation is ...
rel0 5795 The empty set is a relatio...
nrelv 5796 The universal class is not...
relsng 5797 A singleton is a relation ...
relsnb 5798 An at-most-singleton is a ...
relsnopg 5799 A singleton of an ordered ...
relsn 5800 A singleton is a relation ...
relsnop 5801 A singleton of an ordered ...
copsex2gb 5802 Implicit substitution infe...
copsex2ga 5803 Implicit substitution infe...
elopaba 5804 Membership in an ordered-p...
xpsspw 5805 A Cartesian product is inc...
unixpss 5806 The double class union of ...
relun 5807 The union of two relations...
relin1 5808 The intersection with a re...
relin2 5809 The intersection with a re...
relinxp 5810 Intersection with a Cartes...
reldif 5811 A difference cutting down ...
reliun 5812 An indexed union is a rela...
reliin 5813 An indexed intersection is...
reluni 5814 The union of a class is a ...
relint 5815 The intersection of a clas...
relopabiv 5816 A class of ordered pairs i...
relopabv 5817 A class of ordered pairs i...
relopabi 5818 A class of ordered pairs i...
relopabiALT 5819 Alternate proof of ~ relop...
relopab 5820 A class of ordered pairs i...
mptrel 5821 The maps-to notation alway...
reli 5822 The identity relation is a...
rele 5823 The membership relation is...
opabid2 5824 A relation expressed as an...
inopab 5825 Intersection of two ordere...
difopab 5826 Difference of two ordered-...
difopabOLD 5827 Obsolete version of ~ difo...
inxp 5828 Intersection of two Cartes...
inxpOLD 5829 Obsolete version of ~ inxp...
xpindi 5830 Distributive law for Carte...
xpindir 5831 Distributive law for Carte...
xpiindi 5832 Distributive law for Carte...
xpriindi 5833 Distributive law for Carte...
eliunxp 5834 Membership in a union of C...
opeliunxp2 5835 Membership in a union of C...
raliunxp 5836 Write a double restricted ...
rexiunxp 5837 Write a double restricted ...
ralxp 5838 Universal quantification r...
rexxp 5839 Existential quantification...
exopxfr 5840 Transfer ordered-pair exis...
exopxfr2 5841 Transfer ordered-pair exis...
djussxp 5842 Disjoint union is a subset...
ralxpf 5843 Version of ~ ralxp with bo...
rexxpf 5844 Version of ~ rexxp with bo...
iunxpf 5845 Indexed union on a Cartesi...
opabbi2dv 5846 Deduce equality of a relat...
relop 5847 A necessary and sufficient...
ideqg 5848 For sets, the identity rel...
ideq 5849 For sets, the identity rel...
ididg 5850 A set is identical to itse...
issetid 5851 Two ways of expressing set...
coss1 5852 Subclass theorem for compo...
coss2 5853 Subclass theorem for compo...
coeq1 5854 Equality theorem for compo...
coeq2 5855 Equality theorem for compo...
coeq1i 5856 Equality inference for com...
coeq2i 5857 Equality inference for com...
coeq1d 5858 Equality deduction for com...
coeq2d 5859 Equality deduction for com...
coeq12i 5860 Equality inference for com...
coeq12d 5861 Equality deduction for com...
nfco 5862 Bound-variable hypothesis ...
brcog 5863 Ordered pair membership in...
opelco2g 5864 Ordered pair membership in...
brcogw 5865 Ordered pair membership in...
eqbrrdva 5866 Deduction from extensional...
brco 5867 Binary relation on a compo...
opelco 5868 Ordered pair membership in...
cnvss 5869 Subset theorem for convers...
cnveq 5870 Equality theorem for conve...
cnveqi 5871 Equality inference for con...
cnveqd 5872 Equality deduction for con...
elcnv 5873 Membership in a converse r...
elcnv2 5874 Membership in a converse r...
nfcnv 5875 Bound-variable hypothesis ...
brcnvg 5876 The converse of a binary r...
opelcnvg 5877 Ordered-pair membership in...
opelcnv 5878 Ordered-pair membership in...
brcnv 5879 The converse of a binary r...
csbcnv 5880 Move class substitution in...
csbcnvgALT 5881 Move class substitution in...
cnvco 5882 Distributive law of conver...
cnvuni 5883 The converse of a class un...
dfdm3 5884 Alternate definition of do...
dfrn2 5885 Alternate definition of ra...
dfrn3 5886 Alternate definition of ra...
elrn2g 5887 Membership in a range. (C...
elrng 5888 Membership in a range. (C...
elrn2 5889 Membership in a range. (C...
elrn 5890 Membership in a range. (C...
ssrelrn 5891 If a relation is a subset ...
dfdm4 5892 Alternate definition of do...
dfdmf 5893 Definition of domain, usin...
csbdm 5894 Distribute proper substitu...
eldmg 5895 Domain membership. Theore...
eldm2g 5896 Domain membership. Theore...
eldm 5897 Membership in a domain. T...
eldm2 5898 Membership in a domain. T...
dmss 5899 Subset theorem for domain....
dmeq 5900 Equality theorem for domai...
dmeqi 5901 Equality inference for dom...
dmeqd 5902 Equality deduction for dom...
opeldmd 5903 Membership of first of an ...
opeldm 5904 Membership of first of an ...
breldm 5905 Membership of first of a b...
breldmg 5906 Membership of first of a b...
dmun 5907 The domain of a union is t...
dmin 5908 The domain of an intersect...
breldmd 5909 Membership of first of a b...
dmiun 5910 The domain of an indexed u...
dmuni 5911 The domain of a union. Pa...
dmopab 5912 The domain of a class of o...
dmopabelb 5913 A set is an element of the...
dmopab2rex 5914 The domain of an ordered p...
dmopabss 5915 Upper bound for the domain...
dmopab3 5916 The domain of a restricted...
dm0 5917 The domain of the empty se...
dmi 5918 The domain of the identity...
dmv 5919 The domain of the universe...
dmep 5920 The domain of the membersh...
dm0rn0 5921 An empty domain is equival...
rn0 5922 The range of the empty set...
rnep 5923 The range of the membershi...
reldm0 5924 A relation is empty iff it...
dmxp 5925 The domain of a Cartesian ...
dmxpid 5926 The domain of a Cartesian ...
dmxpin 5927 The domain of the intersec...
xpid11 5928 The Cartesian square is a ...
dmcnvcnv 5929 The domain of the double c...
rncnvcnv 5930 The range of the double co...
elreldm 5931 The first member of an ord...
rneq 5932 Equality theorem for range...
rneqi 5933 Equality inference for ran...
rneqd 5934 Equality deduction for ran...
rnss 5935 Subset theorem for range. ...
rnssi 5936 Subclass inference for ran...
brelrng 5937 The second argument of a b...
brelrn 5938 The second argument of a b...
opelrn 5939 Membership of second membe...
releldm 5940 The first argument of a bi...
relelrn 5941 The second argument of a b...
releldmb 5942 Membership in a domain. (...
relelrnb 5943 Membership in a range. (C...
releldmi 5944 The first argument of a bi...
relelrni 5945 The second argument of a b...
dfrnf 5946 Definition of range, using...
nfdm 5947 Bound-variable hypothesis ...
nfrn 5948 Bound-variable hypothesis ...
dmiin 5949 Domain of an intersection....
rnopab 5950 The range of a class of or...
rnmpt 5951 The range of a function in...
elrnmpt 5952 The range of a function in...
elrnmpt1s 5953 Elementhood in an image se...
elrnmpt1 5954 Elementhood in an image se...
elrnmptg 5955 Membership in the range of...
elrnmpti 5956 Membership in the range of...
elrnmptd 5957 The range of a function in...
elrnmpt1d 5958 Elementhood in an image se...
elrnmptdv 5959 Elementhood in the range o...
elrnmpt2d 5960 Elementhood in the range o...
dfiun3g 5961 Alternate definition of in...
dfiin3g 5962 Alternate definition of in...
dfiun3 5963 Alternate definition of in...
dfiin3 5964 Alternate definition of in...
riinint 5965 Express a relative indexed...
relrn0 5966 A relation is empty iff it...
dmrnssfld 5967 The domain and range of a ...
dmcoss 5968 Domain of a composition. ...
rncoss 5969 Range of a composition. (...
dmcosseq 5970 Domain of a composition. ...
dmcoeq 5971 Domain of a composition. ...
rncoeq 5972 Range of a composition. (...
reseq1 5973 Equality theorem for restr...
reseq2 5974 Equality theorem for restr...
reseq1i 5975 Equality inference for res...
reseq2i 5976 Equality inference for res...
reseq12i 5977 Equality inference for res...
reseq1d 5978 Equality deduction for res...
reseq2d 5979 Equality deduction for res...
reseq12d 5980 Equality deduction for res...
nfres 5981 Bound-variable hypothesis ...
csbres 5982 Distribute proper substitu...
res0 5983 A restriction to the empty...
dfres3 5984 Alternate definition of re...
opelres 5985 Ordered pair elementhood i...
brres 5986 Binary relation on a restr...
opelresi 5987 Ordered pair membership in...
brresi 5988 Binary relation on a restr...
opres 5989 Ordered pair membership in...
resieq 5990 A restricted identity rela...
opelidres 5991 ` <. A , A >. ` belongs to...
resres 5992 The restriction of a restr...
resundi 5993 Distributive law for restr...
resundir 5994 Distributive law for restr...
resindi 5995 Class restriction distribu...
resindir 5996 Class restriction distribu...
inres 5997 Move intersection into cla...
resdifcom 5998 Commutative law for restri...
resiun1 5999 Distribution of restrictio...
resiun2 6000 Distribution of restrictio...
dmres 6001 The domain of a restrictio...
ssdmres 6002 A domain restricted to a s...
dmresexg 6003 The domain of a restrictio...
resss 6004 A class includes its restr...
rescom 6005 Commutative law for restri...
ssres 6006 Subclass theorem for restr...
ssres2 6007 Subclass theorem for restr...
relres 6008 A restriction is a relatio...
resabs1 6009 Absorption law for restric...
resabs1d 6010 Absorption law for restric...
resabs2 6011 Absorption law for restric...
residm 6012 Idempotent law for restric...
resima 6013 A restriction to an image....
resima2 6014 Image under a restricted c...
rnresss 6015 The range of a restriction...
xpssres 6016 Restriction of a constant ...
elinxp 6017 Membership in an intersect...
elres 6018 Membership in a restrictio...
elsnres 6019 Membership in restriction ...
relssres 6020 Simplification law for res...
dmressnsn 6021 The domain of a restrictio...
eldmressnsn 6022 The element of the domain ...
eldmeldmressn 6023 An element of the domain (...
resdm 6024 A relation restricted to i...
resexg 6025 The restriction of a set i...
resexd 6026 The restriction of a set i...
resex 6027 The restriction of a set i...
resindm 6028 When restricting a relatio...
resdmdfsn 6029 Restricting a relation to ...
reldisjun 6030 Split a relation into two ...
relresdm1 6031 Restriction of a disjoint ...
resopab 6032 Restriction of a class abs...
iss 6033 A subclass of the identity...
resopab2 6034 Restriction of a class abs...
resmpt 6035 Restriction of the mapping...
resmpt3 6036 Unconditional restriction ...
resmptf 6037 Restriction of the mapping...
resmptd 6038 Restriction of the mapping...
dfres2 6039 Alternate definition of th...
mptss 6040 Sufficient condition for i...
elidinxp 6041 Characterization of the el...
elidinxpid 6042 Characterization of the el...
elrid 6043 Characterization of the el...
idinxpres 6044 The intersection of the id...
idinxpresid 6045 The intersection of the id...
idssxp 6046 A diagonal set as a subset...
opabresid 6047 The restricted identity re...
mptresid 6048 The restricted identity re...
dmresi 6049 The domain of a restricted...
restidsing 6050 Restriction of the identit...
iresn0n0 6051 The identity function rest...
imaeq1 6052 Equality theorem for image...
imaeq2 6053 Equality theorem for image...
imaeq1i 6054 Equality theorem for image...
imaeq2i 6055 Equality theorem for image...
imaeq1d 6056 Equality theorem for image...
imaeq2d 6057 Equality theorem for image...
imaeq12d 6058 Equality theorem for image...
dfima2 6059 Alternate definition of im...
dfima3 6060 Alternate definition of im...
elimag 6061 Membership in an image. T...
elima 6062 Membership in an image. T...
elima2 6063 Membership in an image. T...
elima3 6064 Membership in an image. T...
nfima 6065 Bound-variable hypothesis ...
nfimad 6066 Deduction version of bound...
imadmrn 6067 The image of the domain of...
imassrn 6068 The image of a class is a ...
mptima 6069 Image of a function in map...
mptimass 6070 Image of a function in map...
imai 6071 Image under the identity r...
rnresi 6072 The range of the restricte...
resiima 6073 The image of a restriction...
ima0 6074 Image of the empty set. T...
0ima 6075 Image under the empty rela...
csbima12 6076 Move class substitution in...
imadisj 6077 A class whose image under ...
imadisjlnd 6078 Deduction form of one nega...
cnvimass 6079 A preimage under any class...
cnvimarndm 6080 The preimage of the range ...
imasng 6081 The image of a singleton. ...
relimasn 6082 The image of a singleton. ...
elrelimasn 6083 Elementhood in the image o...
elimasng1 6084 Membership in an image of ...
elimasn1 6085 Membership in an image of ...
elimasng 6086 Membership in an image of ...
elimasn 6087 Membership in an image of ...
elimasngOLD 6088 Obsolete version of ~ elim...
elimasni 6089 Membership in an image of ...
args 6090 Two ways to express the cl...
elinisegg 6091 Membership in the inverse ...
eliniseg 6092 Membership in the inverse ...
epin 6093 Any set is equal to its pr...
epini 6094 Any set is equal to its pr...
iniseg 6095 An idiom that signifies an...
inisegn0 6096 Nonemptiness of an initial...
dffr3 6097 Alternate definition of we...
dfse2 6098 Alternate definition of se...
imass1 6099 Subset theorem for image. ...
imass2 6100 Subset theorem for image. ...
ndmima 6101 The image of a singleton o...
relcnv 6102 A converse is a relation. ...
relbrcnvg 6103 When ` R ` is a relation, ...
eliniseg2 6104 Eliminate the class existe...
relbrcnv 6105 When ` R ` is a relation, ...
relco 6106 A composition is a relatio...
cotrg 6107 Two ways of saying that th...
cotrgOLD 6108 Obsolete version of ~ cotr...
cotrgOLDOLD 6109 Obsolete version of ~ cotr...
cotr 6110 Two ways of saying a relat...
idrefALT 6111 Alternate proof of ~ idref...
cnvsym 6112 Two ways of saying a relat...
cnvsymOLD 6113 Obsolete proof of ~ cnvsym...
cnvsymOLDOLD 6114 Obsolete proof of ~ cnvsym...
intasym 6115 Two ways of saying a relat...
asymref 6116 Two ways of saying a relat...
asymref2 6117 Two ways of saying a relat...
intirr 6118 Two ways of saying a relat...
brcodir 6119 Two ways of saying that tw...
codir 6120 Two ways of saying a relat...
qfto 6121 A quantifier-free way of e...
xpidtr 6122 A Cartesian square is a tr...
trin2 6123 The intersection of two tr...
poirr2 6124 A partial order is irrefle...
trinxp 6125 The relation induced by a ...
soirri 6126 A strict order relation is...
sotri 6127 A strict order relation is...
son2lpi 6128 A strict order relation ha...
sotri2 6129 A transitivity relation. ...
sotri3 6130 A transitivity relation. ...
poleloe 6131 Express "less than or equa...
poltletr 6132 Transitive law for general...
somin1 6133 Property of a minimum in a...
somincom 6134 Commutativity of minimum i...
somin2 6135 Property of a minimum in a...
soltmin 6136 Being less than a minimum,...
cnvopab 6137 The converse of a class ab...
mptcnv 6138 The converse of a mapping ...
cnv0 6139 The converse of the empty ...
cnvi 6140 The converse of the identi...
cnvun 6141 The converse of a union is...
cnvdif 6142 Distributive law for conve...
cnvin 6143 Distributive law for conve...
rnun 6144 Distributive law for range...
rnin 6145 The range of an intersecti...
rniun 6146 The range of an indexed un...
rnuni 6147 The range of a union. Par...
imaundi 6148 Distributive law for image...
imaundir 6149 The image of a union. (Co...
cnvimassrndm 6150 The preimage of a superset...
dminss 6151 An upper bound for interse...
imainss 6152 An upper bound for interse...
inimass 6153 The image of an intersecti...
inimasn 6154 The intersection of the im...
cnvxp 6155 The converse of a Cartesia...
xp0 6156 The Cartesian product with...
xpnz 6157 The Cartesian product of n...
xpeq0 6158 At least one member of an ...
xpdisj1 6159 Cartesian products with di...
xpdisj2 6160 Cartesian products with di...
xpsndisj 6161 Cartesian products with tw...
difxp 6162 Difference of Cartesian pr...
difxp1 6163 Difference law for Cartesi...
difxp2 6164 Difference law for Cartesi...
djudisj 6165 Disjoint unions with disjo...
xpdifid 6166 The set of distinct couple...
resdisj 6167 A double restriction to di...
rnxp 6168 The range of a Cartesian p...
dmxpss 6169 The domain of a Cartesian ...
rnxpss 6170 The range of a Cartesian p...
rnxpid 6171 The range of a Cartesian s...
ssxpb 6172 A Cartesian product subcla...
xp11 6173 The Cartesian product of n...
xpcan 6174 Cancellation law for Carte...
xpcan2 6175 Cancellation law for Carte...
ssrnres 6176 Two ways to express surjec...
rninxp 6177 Two ways to express surjec...
dminxp 6178 Two ways to express totali...
imainrect 6179 Image by a restricted and ...
xpima 6180 Direct image by a Cartesia...
xpima1 6181 Direct image by a Cartesia...
xpima2 6182 Direct image by a Cartesia...
xpimasn 6183 Direct image of a singleto...
sossfld 6184 The base set of a strict o...
sofld 6185 The base set of a nonempty...
cnvcnv3 6186 The set of all ordered pai...
dfrel2 6187 Alternate definition of re...
dfrel4v 6188 A relation can be expresse...
dfrel4 6189 A relation can be expresse...
cnvcnv 6190 The double converse of a c...
cnvcnv2 6191 The double converse of a c...
cnvcnvss 6192 The double converse of a c...
cnvrescnv 6193 Two ways to express the co...
cnveqb 6194 Equality theorem for conve...
cnveq0 6195 A relation empty iff its c...
dfrel3 6196 Alternate definition of re...
elid 6197 Characterization of the el...
dmresv 6198 The domain of a universal ...
rnresv 6199 The range of a universal r...
dfrn4 6200 Range defined in terms of ...
csbrn 6201 Distribute proper substitu...
rescnvcnv 6202 The restriction of the dou...
cnvcnvres 6203 The double converse of the...
imacnvcnv 6204 The image of the double co...
dmsnn0 6205 The domain of a singleton ...
rnsnn0 6206 The range of a singleton i...
dmsn0 6207 The domain of the singleto...
cnvsn0 6208 The converse of the single...
dmsn0el 6209 The domain of a singleton ...
relsn2 6210 A singleton is a relation ...
dmsnopg 6211 The domain of a singleton ...
dmsnopss 6212 The domain of a singleton ...
dmpropg 6213 The domain of an unordered...
dmsnop 6214 The domain of a singleton ...
dmprop 6215 The domain of an unordered...
dmtpop 6216 The domain of an unordered...
cnvcnvsn 6217 Double converse of a singl...
dmsnsnsn 6218 The domain of the singleto...
rnsnopg 6219 The range of a singleton o...
rnpropg 6220 The range of a pair of ord...
cnvsng 6221 Converse of a singleton of...
rnsnop 6222 The range of a singleton o...
op1sta 6223 Extract the first member o...
cnvsn 6224 Converse of a singleton of...
op2ndb 6225 Extract the second member ...
op2nda 6226 Extract the second member ...
opswap 6227 Swap the members of an ord...
cnvresima 6228 An image under the convers...
resdm2 6229 A class restricted to its ...
resdmres 6230 Restriction to the domain ...
resresdm 6231 A restriction by an arbitr...
imadmres 6232 The image of the domain of...
resdmss 6233 Subset relationship for th...
resdifdi 6234 Distributive law for restr...
resdifdir 6235 Distributive law for restr...
mptpreima 6236 The preimage of a function...
mptiniseg 6237 Converse singleton image o...
dmmpt 6238 The domain of the mapping ...
dmmptss 6239 The domain of a mapping is...
dmmptg 6240 The domain of the mapping ...
rnmpt0f 6241 The range of a function in...
rnmptn0 6242 The range of a function in...
dfco2 6243 Alternate definition of a ...
dfco2a 6244 Generalization of ~ dfco2 ...
coundi 6245 Class composition distribu...
coundir 6246 Class composition distribu...
cores 6247 Restricted first member of...
resco 6248 Associative law for the re...
imaco 6249 Image of the composition o...
rnco 6250 The range of the compositi...
rnco2 6251 The range of the compositi...
dmco 6252 The domain of a compositio...
coeq0 6253 A composition of two relat...
coiun 6254 Composition with an indexe...
cocnvcnv1 6255 A composition is not affec...
cocnvcnv2 6256 A composition is not affec...
cores2 6257 Absorption of a reverse (p...
co02 6258 Composition with the empty...
co01 6259 Composition with the empty...
coi1 6260 Composition with the ident...
coi2 6261 Composition with the ident...
coires1 6262 Composition with a restric...
coass 6263 Associative law for class ...
relcnvtrg 6264 General form of ~ relcnvtr...
relcnvtr 6265 A relation is transitive i...
relssdmrn 6266 A relation is included in ...
relssdmrnOLD 6267 Obsolete version of ~ rels...
resssxp 6268 If the ` R ` -image of a c...
cnvssrndm 6269 The converse is a subset o...
cossxp 6270 Composition as a subset of...
relrelss 6271 Two ways to describe the s...
unielrel 6272 The membership relation fo...
relfld 6273 The double union of a rela...
relresfld 6274 Restriction of a relation ...
relcoi2 6275 Composition with the ident...
relcoi1 6276 Composition with the ident...
unidmrn 6277 The double union of the co...
relcnvfld 6278 if ` R ` is a relation, it...
dfdm2 6279 Alternate definition of do...
unixp 6280 The double class union of ...
unixp0 6281 A Cartesian product is emp...
unixpid 6282 Field of a Cartesian squar...
ressn 6283 Restriction of a class to ...
cnviin 6284 The converse of an interse...
cnvpo 6285 The converse of a partial ...
cnvso 6286 The converse of a strict o...
xpco 6287 Composition of two Cartesi...
xpcoid 6288 Composition of two Cartesi...
elsnxp 6289 Membership in a Cartesian ...
reu3op 6290 There is a unique ordered ...
reuop 6291 There is a unique ordered ...
opreu2reurex 6292 There is a unique ordered ...
opreu2reu 6293 If there is a unique order...
dfpo2 6294 Quantifier-free definition...
csbcog 6295 Distribute proper substitu...
snres0 6296 Condition for restriction ...
imaindm 6297 The image is unaffected by...
predeq123 6300 Equality theorem for the p...
predeq1 6301 Equality theorem for the p...
predeq2 6302 Equality theorem for the p...
predeq3 6303 Equality theorem for the p...
nfpred 6304 Bound-variable hypothesis ...
csbpredg 6305 Move class substitution in...
predpredss 6306 If ` A ` is a subset of ` ...
predss 6307 The predecessor class of `...
sspred 6308 Another subset/predecessor...
dfpred2 6309 An alternate definition of...
dfpred3 6310 An alternate definition of...
dfpred3g 6311 An alternate definition of...
elpredgg 6312 Membership in a predecesso...
elpredg 6313 Membership in a predecesso...
elpredimg 6314 Membership in a predecesso...
elpredim 6315 Membership in a predecesso...
elpred 6316 Membership in a predecesso...
predexg 6317 The predecessor class exis...
predasetexOLD 6318 Obsolete form of ~ predexg...
dffr4 6319 Alternate definition of we...
predel 6320 Membership in the predeces...
predbrg 6321 Closed form of ~ elpredim ...
predtrss 6322 If ` R ` is transitive ove...
predpo 6323 Property of the predecesso...
predso 6324 Property of the predecesso...
setlikespec 6325 If ` R ` is set-like in ` ...
predidm 6326 Idempotent law for the pre...
predin 6327 Intersection law for prede...
predun 6328 Union law for predecessor ...
preddif 6329 Difference law for predece...
predep 6330 The predecessor under the ...
trpred 6331 The class of predecessors ...
preddowncl 6332 A property of classes that...
predpoirr 6333 Given a partial ordering, ...
predfrirr 6334 Given a well-founded relat...
pred0 6335 The predecessor class over...
dfse3 6336 Alternate definition of se...
predrelss 6337 Subset carries from relati...
predprc 6338 The predecessor of a prope...
predres 6339 Predecessor class is unaff...
frpomin 6340 Every nonempty (possibly p...
frpomin2 6341 Every nonempty (possibly p...
frpoind 6342 The principle of well-foun...
frpoinsg 6343 Well-Founded Induction Sch...
frpoins2fg 6344 Well-Founded Induction sch...
frpoins2g 6345 Well-Founded Induction sch...
frpoins3g 6346 Well-Founded Induction sch...
tz6.26 6347 All nonempty subclasses of...
tz6.26OLD 6348 Obsolete proof of ~ tz6.26...
tz6.26i 6349 All nonempty subclasses of...
wfi 6350 The Principle of Well-Orde...
wfiOLD 6351 Obsolete proof of ~ wfi as...
wfii 6352 The Principle of Well-Orde...
wfisg 6353 Well-Ordered Induction Sch...
wfisgOLD 6354 Obsolete version of ~ wfis...
wfis 6355 Well-Ordered Induction Sch...
wfis2fg 6356 Well-Ordered Induction Sch...
wfis2fgOLD 6357 Obsolete version of ~ wfis...
wfis2f 6358 Well-Ordered Induction sch...
wfis2g 6359 Well-Ordered Induction Sch...
wfis2 6360 Well-Ordered Induction sch...
wfis3 6361 Well-Ordered Induction sch...
ordeq 6370 Equality theorem for the o...
elong 6371 An ordinal number is an or...
elon 6372 An ordinal number is an or...
eloni 6373 An ordinal number has the ...
elon2 6374 An ordinal number is an or...
limeq 6375 Equality theorem for the l...
ordwe 6376 Membership well-orders eve...
ordtr 6377 An ordinal class is transi...
ordfr 6378 Membership is well-founded...
ordelss 6379 An element of an ordinal c...
trssord 6380 A transitive subclass of a...
ordirr 6381 No ordinal class is a memb...
nordeq 6382 A member of an ordinal cla...
ordn2lp 6383 An ordinal class cannot be...
tz7.5 6384 A nonempty subclass of an ...
ordelord 6385 An element of an ordinal c...
tron 6386 The class of all ordinal n...
ordelon 6387 An element of an ordinal c...
onelon 6388 An element of an ordinal n...
tz7.7 6389 A transitive class belongs...
ordelssne 6390 For ordinal classes, membe...
ordelpss 6391 For ordinal classes, membe...
ordsseleq 6392 For ordinal classes, inclu...
ordin 6393 The intersection of two or...
onin 6394 The intersection of two or...
ordtri3or 6395 A trichotomy law for ordin...
ordtri1 6396 A trichotomy law for ordin...
ontri1 6397 A trichotomy law for ordin...
ordtri2 6398 A trichotomy law for ordin...
ordtri3 6399 A trichotomy law for ordin...
ordtri4 6400 A trichotomy law for ordin...
orddisj 6401 An ordinal class and its s...
onfr 6402 The ordinal class is well-...
onelpss 6403 Relationship between membe...
onsseleq 6404 Relationship between subse...
onelss 6405 An element of an ordinal n...
ordtr1 6406 Transitive law for ordinal...
ordtr2 6407 Transitive law for ordinal...
ordtr3 6408 Transitive law for ordinal...
ontr1 6409 Transitive law for ordinal...
ontr2 6410 Transitive law for ordinal...
onelssex 6411 Ordinal less than is equiv...
ordunidif 6412 The union of an ordinal st...
ordintdif 6413 If ` B ` is smaller than `...
onintss 6414 If a property is true for ...
oneqmini 6415 A way to show that an ordi...
ord0 6416 The empty set is an ordina...
0elon 6417 The empty set is an ordina...
ord0eln0 6418 A nonempty ordinal contain...
on0eln0 6419 An ordinal number contains...
dflim2 6420 An alternate definition of...
inton 6421 The intersection of the cl...
nlim0 6422 The empty set is not a lim...
limord 6423 A limit ordinal is ordinal...
limuni 6424 A limit ordinal is its own...
limuni2 6425 The union of a limit ordin...
0ellim 6426 A limit ordinal contains t...
limelon 6427 A limit ordinal class that...
onn0 6428 The class of all ordinal n...
suceq 6429 Equality of successors. (...
elsuci 6430 Membership in a successor....
elsucg 6431 Membership in a successor....
elsuc2g 6432 Variant of membership in a...
elsuc 6433 Membership in a successor....
elsuc2 6434 Membership in a successor....
nfsuc 6435 Bound-variable hypothesis ...
elelsuc 6436 Membership in a successor....
sucel 6437 Membership of a successor ...
suc0 6438 The successor of the empty...
sucprc 6439 A proper class is its own ...
unisucs 6440 The union of the successor...
unisucg 6441 A transitive class is equa...
unisuc 6442 A transitive class is equa...
sssucid 6443 A class is included in its...
sucidg 6444 Part of Proposition 7.23 o...
sucid 6445 A set belongs to its succe...
nsuceq0 6446 No successor is empty. (C...
eqelsuc 6447 A set belongs to the succe...
iunsuc 6448 Inductive definition for t...
suctr 6449 The successor of a transit...
trsuc 6450 A set whose successor belo...
trsucss 6451 A member of the successor ...
ordsssuc 6452 An ordinal is a subset of ...
onsssuc 6453 A subset of an ordinal num...
ordsssuc2 6454 An ordinal subset of an or...
onmindif 6455 When its successor is subt...
ordnbtwn 6456 There is no set between an...
onnbtwn 6457 There is no set between an...
sucssel 6458 A set whose successor is a...
orddif 6459 Ordinal derived from its s...
orduniss 6460 An ordinal class includes ...
ordtri2or 6461 A trichotomy law for ordin...
ordtri2or2 6462 A trichotomy law for ordin...
ordtri2or3 6463 A consequence of total ord...
ordelinel 6464 The intersection of two or...
ordssun 6465 Property of a subclass of ...
ordequn 6466 The maximum (i.e. union) o...
ordun 6467 The maximum (i.e., union) ...
onunel 6468 The union of two ordinals ...
ordunisssuc 6469 A subclass relationship fo...
suc11 6470 The successor operation be...
onun2 6471 The union of two ordinals ...
ontr 6472 An ordinal number is a tra...
onunisuc 6473 An ordinal number is equal...
onordi 6474 An ordinal number is an or...
ontrciOLD 6475 Obsolete version of ~ ontr...
onirri 6476 An ordinal number is not a...
oneli 6477 A member of an ordinal num...
onelssi 6478 A member of an ordinal num...
onssneli 6479 An ordering law for ordina...
onssnel2i 6480 An ordering law for ordina...
onelini 6481 An element of an ordinal n...
oneluni 6482 An ordinal number equals i...
onunisuci 6483 An ordinal number is equal...
onsseli 6484 Subset is equivalent to me...
onun2i 6485 The union of two ordinal n...
unizlim 6486 An ordinal equal to its ow...
on0eqel 6487 An ordinal number either e...
snsn0non 6488 The singleton of the singl...
onxpdisj 6489 Ordinal numbers and ordere...
onnev 6490 The class of ordinal numbe...
onnevOLD 6491 Obsolete version of ~ onne...
iotajust 6493 Soundness justification th...
dfiota2 6495 Alternate definition for d...
nfiota1 6496 Bound-variable hypothesis ...
nfiotadw 6497 Deduction version of ~ nfi...
nfiotaw 6498 Bound-variable hypothesis ...
nfiotad 6499 Deduction version of ~ nfi...
nfiota 6500 Bound-variable hypothesis ...
cbviotaw 6501 Change bound variables in ...
cbviotavw 6502 Change bound variables in ...
cbviotavwOLD 6503 Obsolete version of ~ cbvi...
cbviota 6504 Change bound variables in ...
cbviotav 6505 Change bound variables in ...
sb8iota 6506 Variable substitution in d...
iotaeq 6507 Equality theorem for descr...
iotabi 6508 Equivalence theorem for de...
uniabio 6509 Part of Theorem 8.17 in [Q...
iotaval2 6510 Version of ~ iotaval using...
iotauni2 6511 Version of ~ iotauni using...
iotanul2 6512 Version of ~ iotanul using...
iotaval 6513 Theorem 8.19 in [Quine] p....
iotassuni 6514 The ` iota ` class is a su...
iotaex 6515 Theorem 8.23 in [Quine] p....
iotavalOLD 6516 Obsolete version of ~ iota...
iotauni 6517 Equivalence between two di...
iotaint 6518 Equivalence between two di...
iota1 6519 Property of iota. (Contri...
iotanul 6520 Theorem 8.22 in [Quine] p....
iotassuniOLD 6521 Obsolete version of ~ iota...
iotaexOLD 6522 Obsolete version of ~ iota...
iota4 6523 Theorem *14.22 in [Whitehe...
iota4an 6524 Theorem *14.23 in [Whitehe...
iota5 6525 A method for computing iot...
iotabidv 6526 Formula-building deduction...
iotabii 6527 Formula-building deduction...
iotacl 6528 Membership law for descrip...
iota2df 6529 A condition that allows to...
iota2d 6530 A condition that allows to...
iota2 6531 The unique element such th...
iotan0 6532 Representation of "the uni...
sniota 6533 A class abstraction with a...
dfiota4 6534 The ` iota ` operation usi...
csbiota 6535 Class substitution within ...
dffun2 6552 Alternate definition of a ...
dffun2OLD 6553 Obsolete version of ~ dffu...
dffun2OLDOLD 6554 Obsolete version of ~ dffu...
dffun6 6555 Alternate definition of a ...
dffun3 6556 Alternate definition of fu...
dffun3OLD 6557 Obsolete version of ~ dffu...
dffun4 6558 Alternate definition of a ...
dffun5 6559 Alternate definition of fu...
dffun6f 6560 Definition of function, us...
dffun6OLD 6561 Obsolete version of ~ dffu...
funmo 6562 A function has at most one...
funmoOLD 6563 Obsolete version of ~ funm...
funrel 6564 A function is a relation. ...
0nelfun 6565 A function does not contai...
funss 6566 Subclass theorem for funct...
funeq 6567 Equality theorem for funct...
funeqi 6568 Equality inference for the...
funeqd 6569 Equality deduction for the...
nffun 6570 Bound-variable hypothesis ...
sbcfung 6571 Distribute proper substitu...
funeu 6572 There is exactly one value...
funeu2 6573 There is exactly one value...
dffun7 6574 Alternate definition of a ...
dffun8 6575 Alternate definition of a ...
dffun9 6576 Alternate definition of a ...
funfn 6577 A class is a function if a...
funfnd 6578 A function is a function o...
funi 6579 The identity relation is a...
nfunv 6580 The universal class is not...
funopg 6581 A Kuratowski ordered pair ...
funopab 6582 A class of ordered pairs i...
funopabeq 6583 A class of ordered pairs o...
funopab4 6584 A class of ordered pairs o...
funmpt 6585 A function in maps-to nota...
funmpt2 6586 Functionality of a class g...
funco 6587 The composition of two fun...
funresfunco 6588 Composition of two functio...
funres 6589 A restriction of a functio...
funresd 6590 A restriction of a functio...
funssres 6591 The restriction of a funct...
fun2ssres 6592 Equality of restrictions o...
funun 6593 The union of functions wit...
fununmo 6594 If the union of classes is...
fununfun 6595 If the union of classes is...
fundif 6596 A function with removed el...
funcnvsn 6597 The converse singleton of ...
funsng 6598 A singleton of an ordered ...
fnsng 6599 Functionality and domain o...
funsn 6600 A singleton of an ordered ...
funprg 6601 A set of two pairs is a fu...
funtpg 6602 A set of three pairs is a ...
funpr 6603 A function with a domain o...
funtp 6604 A function with a domain o...
fnsn 6605 Functionality and domain o...
fnprg 6606 Function with a domain of ...
fntpg 6607 Function with a domain of ...
fntp 6608 A function with a domain o...
funcnvpr 6609 The converse pair of order...
funcnvtp 6610 The converse triple of ord...
funcnvqp 6611 The converse quadruple of ...
fun0 6612 The empty set is a functio...
funcnv0 6613 The converse of the empty ...
funcnvcnv 6614 The double converse of a f...
funcnv2 6615 A simpler equivalence for ...
funcnv 6616 The converse of a class is...
funcnv3 6617 A condition showing a clas...
fun2cnv 6618 The double converse of a c...
svrelfun 6619 A single-valued relation i...
fncnv 6620 Single-rootedness (see ~ f...
fun11 6621 Two ways of stating that `...
fununi 6622 The union of a chain (with...
funin 6623 The intersection with a fu...
funres11 6624 The restriction of a one-t...
funcnvres 6625 The converse of a restrict...
cnvresid 6626 Converse of a restricted i...
funcnvres2 6627 The converse of a restrict...
funimacnv 6628 The image of the preimage ...
funimass1 6629 A kind of contraposition l...
funimass2 6630 A kind of contraposition l...
imadif 6631 The image of a difference ...
imain 6632 The image of an intersecti...
funimaexg 6633 Axiom of Replacement using...
funimaexgOLD 6634 Obsolete version of ~ funi...
funimaex 6635 The image of a set under a...
isarep1 6636 Part of a study of the Axi...
isarep1OLD 6637 Obsolete version of ~ isar...
isarep2 6638 Part of a study of the Axi...
fneq1 6639 Equality theorem for funct...
fneq2 6640 Equality theorem for funct...
fneq1d 6641 Equality deduction for fun...
fneq2d 6642 Equality deduction for fun...
fneq12d 6643 Equality deduction for fun...
fneq12 6644 Equality theorem for funct...
fneq1i 6645 Equality inference for fun...
fneq2i 6646 Equality inference for fun...
nffn 6647 Bound-variable hypothesis ...
fnfun 6648 A function with domain is ...
fnfund 6649 A function with domain is ...
fnrel 6650 A function with domain is ...
fndm 6651 The domain of a function. ...
fndmi 6652 The domain of a function. ...
fndmd 6653 The domain of a function. ...
funfni 6654 Inference to convert a fun...
fndmu 6655 A function has a unique do...
fnbr 6656 The first argument of bina...
fnop 6657 The first argument of an o...
fneu 6658 There is exactly one value...
fneu2 6659 There is exactly one value...
fnunres1 6660 Restriction of a disjoint ...
fnunres2 6661 Restriction of a disjoint ...
fnun 6662 The union of two functions...
fnund 6663 The union of two functions...
fnunop 6664 Extension of a function wi...
fncofn 6665 Composition of a function ...
fnco 6666 Composition of two functio...
fncoOLD 6667 Obsolete version of ~ fnco...
fnresdm 6668 A function does not change...
fnresdisj 6669 A function restricted to a...
2elresin 6670 Membership in two function...
fnssresb 6671 Restriction of a function ...
fnssres 6672 Restriction of a function ...
fnssresd 6673 Restriction of a function ...
fnresin1 6674 Restriction of a function'...
fnresin2 6675 Restriction of a function'...
fnres 6676 An equivalence for functio...
idfn 6677 The identity relation is a...
fnresi 6678 The restricted identity re...
fnima 6679 The image of a function's ...
fn0 6680 A function with empty doma...
fnimadisj 6681 A class that is disjoint w...
fnimaeq0 6682 Images under a function ne...
dfmpt3 6683 Alternate definition for t...
mptfnf 6684 The maps-to notation defin...
fnmptf 6685 The maps-to notation defin...
fnopabg 6686 Functionality and domain o...
fnopab 6687 Functionality and domain o...
mptfng 6688 The maps-to notation defin...
fnmpt 6689 The maps-to notation defin...
fnmptd 6690 The maps-to notation defin...
mpt0 6691 A mapping operation with e...
fnmpti 6692 Functionality and domain o...
dmmpti 6693 Domain of the mapping oper...
dmmptd 6694 The domain of the mapping ...
mptun 6695 Union of mappings which ar...
partfun 6696 Rewrite a function defined...
feq1 6697 Equality theorem for funct...
feq2 6698 Equality theorem for funct...
feq3 6699 Equality theorem for funct...
feq23 6700 Equality theorem for funct...
feq1d 6701 Equality deduction for fun...
feq2d 6702 Equality deduction for fun...
feq3d 6703 Equality deduction for fun...
feq12d 6704 Equality deduction for fun...
feq123d 6705 Equality deduction for fun...
feq123 6706 Equality theorem for funct...
feq1i 6707 Equality inference for fun...
feq2i 6708 Equality inference for fun...
feq12i 6709 Equality inference for fun...
feq23i 6710 Equality inference for fun...
feq23d 6711 Equality deduction for fun...
nff 6712 Bound-variable hypothesis ...
sbcfng 6713 Distribute proper substitu...
sbcfg 6714 Distribute proper substitu...
elimf 6715 Eliminate a mapping hypoth...
ffn 6716 A mapping is a function wi...
ffnd 6717 A mapping is a function wi...
dffn2 6718 Any function is a mapping ...
ffun 6719 A mapping is a function. ...
ffund 6720 A mapping is a function, d...
frel 6721 A mapping is a relation. ...
freld 6722 A mapping is a relation. ...
frn 6723 The range of a mapping. (...
frnd 6724 Deduction form of ~ frn . ...
fdm 6725 The domain of a mapping. ...
fdmOLD 6726 Obsolete version of ~ fdm ...
fdmd 6727 Deduction form of ~ fdm . ...
fdmi 6728 Inference associated with ...
dffn3 6729 A function maps to its ran...
ffrn 6730 A function maps to its ran...
ffrnb 6731 Characterization of a func...
ffrnbd 6732 A function maps to its ran...
fss 6733 Expanding the codomain of ...
fssd 6734 Expanding the codomain of ...
fssdmd 6735 Expressing that a class is...
fssdm 6736 Expressing that a class is...
fimass 6737 The image of a class under...
fimassd 6738 The image of a class is a ...
fimacnv 6739 The preimage of the codoma...
fcof 6740 Composition of a function ...
fco 6741 Composition of two functio...
fcoOLD 6742 Obsolete version of ~ fco ...
fcod 6743 Composition of two mapping...
fco2 6744 Functionality of a composi...
fssxp 6745 A mapping is a class of or...
funssxp 6746 Two ways of specifying a p...
ffdm 6747 A mapping is a partial fun...
ffdmd 6748 The domain of a function. ...
fdmrn 6749 A different way to write `...
funcofd 6750 Composition of two functio...
fco3OLD 6751 Obsolete version of ~ func...
opelf 6752 The members of an ordered ...
fun 6753 The union of two functions...
fun2 6754 The union of two functions...
fun2d 6755 The union of functions wit...
fnfco 6756 Composition of two functio...
fssres 6757 Restriction of a function ...
fssresd 6758 Restriction of a function ...
fssres2 6759 Restriction of a restricte...
fresin 6760 An identity for the mappin...
resasplit 6761 If two functions agree on ...
fresaun 6762 The union of two functions...
fresaunres2 6763 From the union of two func...
fresaunres1 6764 From the union of two func...
fcoi1 6765 Composition of a mapping a...
fcoi2 6766 Composition of restricted ...
feu 6767 There is exactly one value...
fcnvres 6768 The converse of a restrict...
fimacnvdisj 6769 The preimage of a class di...
fint 6770 Function into an intersect...
fin 6771 Mapping into an intersecti...
f0 6772 The empty function. (Cont...
f00 6773 A class is a function with...
f0bi 6774 A function with empty doma...
f0dom0 6775 A function is empty iff it...
f0rn0 6776 If there is no element in ...
fconst 6777 A Cartesian product with a...
fconstg 6778 A Cartesian product with a...
fnconstg 6779 A Cartesian product with a...
fconst6g 6780 Constant function with loo...
fconst6 6781 A constant function as a m...
f1eq1 6782 Equality theorem for one-t...
f1eq2 6783 Equality theorem for one-t...
f1eq3 6784 Equality theorem for one-t...
nff1 6785 Bound-variable hypothesis ...
dff12 6786 Alternate definition of a ...
f1f 6787 A one-to-one mapping is a ...
f1fn 6788 A one-to-one mapping is a ...
f1fun 6789 A one-to-one mapping is a ...
f1rel 6790 A one-to-one onto mapping ...
f1dm 6791 The domain of a one-to-one...
f1dmOLD 6792 Obsolete version of ~ f1dm...
f1ss 6793 A function that is one-to-...
f1ssr 6794 A function that is one-to-...
f1ssres 6795 A function that is one-to-...
f1resf1 6796 The restriction of an inje...
f1cnvcnv 6797 Two ways to express that a...
f1cof1 6798 Composition of two one-to-...
f1co 6799 Composition of one-to-one ...
f1coOLD 6800 Obsolete version of ~ f1co...
foeq1 6801 Equality theorem for onto ...
foeq2 6802 Equality theorem for onto ...
foeq3 6803 Equality theorem for onto ...
nffo 6804 Bound-variable hypothesis ...
fof 6805 An onto mapping is a mappi...
fofun 6806 An onto mapping is a funct...
fofn 6807 An onto mapping is a funct...
forn 6808 The codomain of an onto fu...
dffo2 6809 Alternate definition of an...
foima 6810 The image of the domain of...
dffn4 6811 A function maps onto its r...
funforn 6812 A function maps its domain...
fodmrnu 6813 An onto function has uniqu...
fimadmfo 6814 A function is a function o...
fores 6815 Restriction of an onto fun...
fimadmfoALT 6816 Alternate proof of ~ fimad...
focnvimacdmdm 6817 The preimage of the codoma...
focofo 6818 Composition of onto functi...
foco 6819 Composition of onto functi...
foconst 6820 A nonzero constant functio...
f1oeq1 6821 Equality theorem for one-t...
f1oeq2 6822 Equality theorem for one-t...
f1oeq3 6823 Equality theorem for one-t...
f1oeq23 6824 Equality theorem for one-t...
f1eq123d 6825 Equality deduction for one...
foeq123d 6826 Equality deduction for ont...
f1oeq123d 6827 Equality deduction for one...
f1oeq1d 6828 Equality deduction for one...
f1oeq2d 6829 Equality deduction for one...
f1oeq3d 6830 Equality deduction for one...
nff1o 6831 Bound-variable hypothesis ...
f1of1 6832 A one-to-one onto mapping ...
f1of 6833 A one-to-one onto mapping ...
f1ofn 6834 A one-to-one onto mapping ...
f1ofun 6835 A one-to-one onto mapping ...
f1orel 6836 A one-to-one onto mapping ...
f1odm 6837 The domain of a one-to-one...
dff1o2 6838 Alternate definition of on...
dff1o3 6839 Alternate definition of on...
f1ofo 6840 A one-to-one onto function...
dff1o4 6841 Alternate definition of on...
dff1o5 6842 Alternate definition of on...
f1orn 6843 A one-to-one function maps...
f1f1orn 6844 A one-to-one function maps...
f1ocnv 6845 The converse of a one-to-o...
f1ocnvb 6846 A relation is a one-to-one...
f1ores 6847 The restriction of a one-t...
f1orescnv 6848 The converse of a one-to-o...
f1imacnv 6849 Preimage of an image. (Co...
foimacnv 6850 A reverse version of ~ f1i...
foun 6851 The union of two onto func...
f1oun 6852 The union of two one-to-on...
f1un 6853 The union of two one-to-on...
resdif 6854 The restriction of a one-t...
resin 6855 The restriction of a one-t...
f1oco 6856 Composition of one-to-one ...
f1cnv 6857 The converse of an injecti...
funcocnv2 6858 Composition with the conve...
fococnv2 6859 The composition of an onto...
f1ococnv2 6860 The composition of a one-t...
f1cocnv2 6861 Composition of an injectiv...
f1ococnv1 6862 The composition of a one-t...
f1cocnv1 6863 Composition of an injectiv...
funcoeqres 6864 Express a constraint on a ...
f1ssf1 6865 A subset of an injective f...
f10 6866 The empty set maps one-to-...
f10d 6867 The empty set maps one-to-...
f1o00 6868 One-to-one onto mapping of...
fo00 6869 Onto mapping of the empty ...
f1o0 6870 One-to-one onto mapping of...
f1oi 6871 A restriction of the ident...
f1ovi 6872 The identity relation is a...
f1osn 6873 A singleton of an ordered ...
f1osng 6874 A singleton of an ordered ...
f1sng 6875 A singleton of an ordered ...
fsnd 6876 A singleton of an ordered ...
f1oprswap 6877 A two-element swap is a bi...
f1oprg 6878 An unordered pair of order...
tz6.12-2 6879 Function value when ` F ` ...
fveu 6880 The value of a function at...
brprcneu 6881 If ` A ` is a proper class...
brprcneuALT 6882 Alternate proof of ~ brprc...
fvprc 6883 A function's value at a pr...
fvprcALT 6884 Alternate proof of ~ fvprc...
rnfvprc 6885 The range of a function va...
fv2 6886 Alternate definition of fu...
dffv3 6887 A definition of function v...
dffv4 6888 The previous definition of...
elfv 6889 Membership in a function v...
fveq1 6890 Equality theorem for funct...
fveq2 6891 Equality theorem for funct...
fveq1i 6892 Equality inference for fun...
fveq1d 6893 Equality deduction for fun...
fveq2i 6894 Equality inference for fun...
fveq2d 6895 Equality deduction for fun...
2fveq3 6896 Equality theorem for neste...
fveq12i 6897 Equality deduction for fun...
fveq12d 6898 Equality deduction for fun...
fveqeq2d 6899 Equality deduction for fun...
fveqeq2 6900 Equality deduction for fun...
nffv 6901 Bound-variable hypothesis ...
nffvmpt1 6902 Bound-variable hypothesis ...
nffvd 6903 Deduction version of bound...
fvex 6904 The value of a class exist...
fvexi 6905 The value of a class exist...
fvexd 6906 The value of a class exist...
fvif 6907 Move a conditional outside...
iffv 6908 Move a conditional outside...
fv3 6909 Alternate definition of th...
fvres 6910 The value of a restricted ...
fvresd 6911 The value of a restricted ...
funssfv 6912 The value of a member of t...
tz6.12c 6913 Corollary of Theorem 6.12(...
tz6.12-1 6914 Function value. Theorem 6...
tz6.12-1OLD 6915 Obsolete version of ~ tz6....
tz6.12 6916 Function value. Theorem 6...
tz6.12f 6917 Function value, using boun...
tz6.12cOLD 6918 Obsolete version of ~ tz6....
tz6.12i 6919 Corollary of Theorem 6.12(...
fvbr0 6920 Two possibilities for the ...
fvrn0 6921 A function value is a memb...
fvn0fvelrn 6922 If the value of a function...
elfvunirn 6923 A function value is a subs...
fvssunirn 6924 The result of a function v...
fvssunirnOLD 6925 Obsolete version of ~ fvss...
ndmfv 6926 The value of a class outsi...
ndmfvrcl 6927 Reverse closure law for fu...
elfvdm 6928 If a function value has a ...
elfvex 6929 If a function value has a ...
elfvexd 6930 If a function value has a ...
eliman0 6931 A nonempty function value ...
nfvres 6932 The value of a non-member ...
nfunsn 6933 If the restriction of a cl...
fvfundmfvn0 6934 If the "value of a class" ...
0fv 6935 Function value of the empt...
fv2prc 6936 A function value of a func...
elfv2ex 6937 If a function value of a f...
fveqres 6938 Equal values imply equal v...
csbfv12 6939 Move class substitution in...
csbfv2g 6940 Move class substitution in...
csbfv 6941 Substitution for a functio...
funbrfv 6942 The second argument of a b...
funopfv 6943 The second element in an o...
fnbrfvb 6944 Equivalence of function va...
fnopfvb 6945 Equivalence of function va...
funbrfvb 6946 Equivalence of function va...
funopfvb 6947 Equivalence of function va...
fnbrfvb2 6948 Version of ~ fnbrfvb for f...
fdmeu 6949 There is exactly one codom...
funbrfv2b 6950 Function value in terms of...
dffn5 6951 Representation of a functi...
fnrnfv 6952 The range of a function ex...
fvelrnb 6953 A member of a function's r...
foelcdmi 6954 A member of a surjective f...
dfimafn 6955 Alternate definition of th...
dfimafn2 6956 Alternate definition of th...
funimass4 6957 Membership relation for th...
fvelima 6958 Function value in an image...
funimassd 6959 Sufficient condition for t...
fvelimad 6960 Function value in an image...
feqmptd 6961 Deduction form of ~ dffn5 ...
feqresmpt 6962 Express a restricted funct...
feqmptdf 6963 Deduction form of ~ dffn5f...
dffn5f 6964 Representation of a functi...
fvelimab 6965 Function value in an image...
fvelimabd 6966 Deduction form of ~ fvelim...
unima 6967 Image of a union. (Contri...
fvi 6968 The value of the identity ...
fviss 6969 The value of the identity ...
fniinfv 6970 The indexed intersection o...
fnsnfv 6971 Singleton of function valu...
fnsnfvOLD 6972 Obsolete version of ~ fnsn...
opabiotafun 6973 Define a function whose va...
opabiotadm 6974 Define a function whose va...
opabiota 6975 Define a function whose va...
fnimapr 6976 The image of a pair under ...
ssimaex 6977 The existence of a subimag...
ssimaexg 6978 The existence of a subimag...
funfv 6979 A simplified expression fo...
funfv2 6980 The value of a function. ...
funfv2f 6981 The value of a function. ...
fvun 6982 Value of the union of two ...
fvun1 6983 The value of a union when ...
fvun2 6984 The value of a union when ...
fvun1d 6985 The value of a union when ...
fvun2d 6986 The value of a union when ...
dffv2 6987 Alternate definition of fu...
dmfco 6988 Domains of a function comp...
fvco2 6989 Value of a function compos...
fvco 6990 Value of a function compos...
fvco3 6991 Value of a function compos...
fvco3d 6992 Value of a function compos...
fvco4i 6993 Conditions for a compositi...
fvopab3g 6994 Value of a function given ...
fvopab3ig 6995 Value of a function given ...
brfvopabrbr 6996 The binary relation of a f...
fvmptg 6997 Value of a function given ...
fvmpti 6998 Value of a function given ...
fvmpt 6999 Value of a function given ...
fvmpt2f 7000 Value of a function given ...
fvtresfn 7001 Functionality of a tuple-r...
fvmpts 7002 Value of a function given ...
fvmpt3 7003 Value of a function given ...
fvmpt3i 7004 Value of a function given ...
fvmptdf 7005 Deduction version of ~ fvm...
fvmptd 7006 Deduction version of ~ fvm...
fvmptd2 7007 Deduction version of ~ fvm...
mptrcl 7008 Reverse closure for a mapp...
fvmpt2i 7009 Value of a function given ...
fvmpt2 7010 Value of a function given ...
fvmptss 7011 If all the values of the m...
fvmpt2d 7012 Deduction version of ~ fvm...
fvmptex 7013 Express a function ` F ` w...
fvmptd3f 7014 Alternate deduction versio...
fvmptd2f 7015 Alternate deduction versio...
fvmptdv 7016 Alternate deduction versio...
fvmptdv2 7017 Alternate deduction versio...
mpteqb 7018 Bidirectional equality the...
fvmptt 7019 Closed theorem form of ~ f...
fvmptf 7020 Value of a function given ...
fvmptnf 7021 The value of a function gi...
fvmptd3 7022 Deduction version of ~ fvm...
fvmptd4 7023 Deduction version of ~ fvm...
fvmptn 7024 This somewhat non-intuitiv...
fvmptss2 7025 A mapping always evaluates...
elfvmptrab1w 7026 Implications for the value...
elfvmptrab1 7027 Implications for the value...
elfvmptrab 7028 Implications for the value...
fvopab4ndm 7029 Value of a function given ...
fvmptndm 7030 Value of a function given ...
fvmptrabfv 7031 Value of a function mappin...
fvopab5 7032 The value of a function th...
fvopab6 7033 Value of a function given ...
eqfnfv 7034 Equality of functions is d...
eqfnfv2 7035 Equality of functions is d...
eqfnfv3 7036 Derive equality of functio...
eqfnfvd 7037 Deduction for equality of ...
eqfnfv2f 7038 Equality of functions is d...
eqfunfv 7039 Equality of functions is d...
eqfnun 7040 Two functions on ` A u. B ...
fvreseq0 7041 Equality of restricted fun...
fvreseq1 7042 Equality of a function res...
fvreseq 7043 Equality of restricted fun...
fnmptfvd 7044 A function with a given do...
fndmdif 7045 Two ways to express the lo...
fndmdifcom 7046 The difference set between...
fndmdifeq0 7047 The difference set of two ...
fndmin 7048 Two ways to express the lo...
fneqeql 7049 Two functions are equal if...
fneqeql2 7050 Two functions are equal if...
fnreseql 7051 Two functions are equal on...
chfnrn 7052 The range of a choice func...
funfvop 7053 Ordered pair with function...
funfvbrb 7054 Two ways to say that ` A `...
fvimacnvi 7055 A member of a preimage is ...
fvimacnv 7056 The argument of a function...
funimass3 7057 A kind of contraposition l...
funimass5 7058 A subclass of a preimage i...
funconstss 7059 Two ways of specifying tha...
fvimacnvALT 7060 Alternate proof of ~ fvima...
elpreima 7061 Membership in the preimage...
elpreimad 7062 Membership in the preimage...
fniniseg 7063 Membership in the preimage...
fncnvima2 7064 Inverse images under funct...
fniniseg2 7065 Inverse point images under...
unpreima 7066 Preimage of a union. (Con...
inpreima 7067 Preimage of an intersectio...
difpreima 7068 Preimage of a difference. ...
respreima 7069 The preimage of a restrict...
cnvimainrn 7070 The preimage of the inters...
sspreima 7071 The preimage of a subset i...
iinpreima 7072 Preimage of an intersectio...
intpreima 7073 Preimage of an intersectio...
fimacnvOLD 7074 Obsolete version of ~ fima...
fimacnvinrn 7075 Taking the converse image ...
fimacnvinrn2 7076 Taking the converse image ...
rescnvimafod 7077 The restriction of a funct...
fvn0ssdmfun 7078 If a class' function value...
fnopfv 7079 Ordered pair with function...
fvelrn 7080 A function's value belongs...
nelrnfvne 7081 A function value cannot be...
fveqdmss 7082 If the empty set is not co...
fveqressseq 7083 If the empty set is not co...
fnfvelrn 7084 A function's value belongs...
ffvelcdm 7085 A function's value belongs...
fnfvelrnd 7086 A function's value belongs...
ffvelcdmi 7087 A function's value belongs...
ffvelcdmda 7088 A function's value belongs...
ffvelcdmd 7089 A function's value belongs...
feldmfvelcdm 7090 A class is an element of t...
rexrn 7091 Restricted existential qua...
ralrn 7092 Restricted universal quant...
elrnrexdm 7093 For any element in the ran...
elrnrexdmb 7094 For any element in the ran...
eldmrexrn 7095 For any element in the dom...
eldmrexrnb 7096 For any element in the dom...
fvcofneq 7097 The values of two function...
ralrnmptw 7098 A restricted quantifier ov...
rexrnmptw 7099 A restricted quantifier ov...
ralrnmpt 7100 A restricted quantifier ov...
rexrnmpt 7101 A restricted quantifier ov...
f0cli 7102 Unconditional closure of a...
dff2 7103 Alternate definition of a ...
dff3 7104 Alternate definition of a ...
dff4 7105 Alternate definition of a ...
dffo3 7106 An onto mapping expressed ...
dffo4 7107 Alternate definition of an...
dffo5 7108 Alternate definition of an...
exfo 7109 A relation equivalent to t...
dffo3f 7110 An onto mapping expressed ...
foelrn 7111 Property of a surjective f...
foelrnf 7112 Property of a surjective f...
foco2 7113 If a composition of two fu...
fmpt 7114 Functionality of the mappi...
f1ompt 7115 Express bijection for a ma...
fmpti 7116 Functionality of the mappi...
fvmptelcdm 7117 The value of a function at...
fmptd 7118 Domain and codomain of the...
fmpttd 7119 Version of ~ fmptd with in...
fmpt3d 7120 Domain and codomain of the...
fmptdf 7121 A version of ~ fmptd using...
fompt 7122 Express being onto for a m...
ffnfv 7123 A function maps to a class...
ffnfvf 7124 A function maps to a class...
fnfvrnss 7125 An upper bound for range d...
fcdmssb 7126 A function is a function i...
rnmptss 7127 The range of an operation ...
fmpt2d 7128 Domain and codomain of the...
ffvresb 7129 A necessary and sufficient...
f1oresrab 7130 Build a bijection between ...
f1ossf1o 7131 Restricting a bijection, w...
fmptco 7132 Composition of two functio...
fmptcof 7133 Version of ~ fmptco where ...
fmptcos 7134 Composition of two functio...
cofmpt 7135 Express composition of a m...
fcompt 7136 Express composition of two...
fcoconst 7137 Composition with a constan...
fsn 7138 A function maps a singleto...
fsn2 7139 A function that maps a sin...
fsng 7140 A function maps a singleto...
fsn2g 7141 A function that maps a sin...
xpsng 7142 The Cartesian product of t...
xpprsng 7143 The Cartesian product of a...
xpsn 7144 The Cartesian product of t...
f1o2sn 7145 A singleton consisting in ...
residpr 7146 Restriction of the identit...
dfmpt 7147 Alternate definition for t...
fnasrn 7148 A function expressed as th...
idref 7149 Two ways to state that a r...
funiun 7150 A function is a union of s...
funopsn 7151 If a function is an ordere...
funop 7152 An ordered pair is a funct...
funopdmsn 7153 The domain of a function w...
funsndifnop 7154 A singleton of an ordered ...
funsneqopb 7155 A singleton of an ordered ...
ressnop0 7156 If ` A ` is not in ` C ` ,...
fpr 7157 A function with a domain o...
fprg 7158 A function with a domain o...
ftpg 7159 A function with a domain o...
ftp 7160 A function with a domain o...
fnressn 7161 A function restricted to a...
funressn 7162 A function restricted to a...
fressnfv 7163 The value of a function re...
fvrnressn 7164 If the value of a function...
fvressn 7165 The value of a function re...
fvn0fvelrnOLD 7166 Obsolete version of ~ fvn0...
fvconst 7167 The value of a constant fu...
fnsnr 7168 If a class belongs to a fu...
fnsnb 7169 A function whose domain is...
fmptsn 7170 Express a singleton functi...
fmptsng 7171 Express a singleton functi...
fmptsnd 7172 Express a singleton functi...
fmptap 7173 Append an additional value...
fmptapd 7174 Append an additional value...
fmptpr 7175 Express a pair function in...
fvresi 7176 The value of a restricted ...
fninfp 7177 Express the class of fixed...
fnelfp 7178 Property of a fixed point ...
fndifnfp 7179 Express the class of non-f...
fnelnfp 7180 Property of a non-fixed po...
fnnfpeq0 7181 A function is the identity...
fvunsn 7182 Remove an ordered pair not...
fvsng 7183 The value of a singleton o...
fvsn 7184 The value of a singleton o...
fvsnun1 7185 The value of a function wi...
fvsnun2 7186 The value of a function wi...
fnsnsplit 7187 Split a function into a si...
fsnunf 7188 Adjoining a point to a fun...
fsnunf2 7189 Adjoining a point to a pun...
fsnunfv 7190 Recover the added point fr...
fsnunres 7191 Recover the original funct...
funresdfunsn 7192 Restricting a function to ...
fvpr1g 7193 The value of a function wi...
fvpr2g 7194 The value of a function wi...
fvpr2gOLD 7195 Obsolete version of ~ fvpr...
fvpr1 7196 The value of a function wi...
fvpr1OLD 7197 Obsolete version of ~ fvpr...
fvpr2 7198 The value of a function wi...
fvpr2OLD 7199 Obsolete version of ~ fvpr...
fprb 7200 A condition for functionho...
fvtp1 7201 The first value of a funct...
fvtp2 7202 The second value of a func...
fvtp3 7203 The third value of a funct...
fvtp1g 7204 The value of a function wi...
fvtp2g 7205 The value of a function wi...
fvtp3g 7206 The value of a function wi...
tpres 7207 An unordered triple of ord...
fvconst2g 7208 The value of a constant fu...
fconst2g 7209 A constant function expres...
fvconst2 7210 The value of a constant fu...
fconst2 7211 A constant function expres...
fconst5 7212 Two ways to express that a...
rnmptc 7213 Range of a constant functi...
fnprb 7214 A function whose domain ha...
fntpb 7215 A function whose domain ha...
fnpr2g 7216 A function whose domain ha...
fpr2g 7217 A function that maps a pai...
fconstfv 7218 A constant function expres...
fconst3 7219 Two ways to express a cons...
fconst4 7220 Two ways to express a cons...
resfunexg 7221 The restriction of a funct...
resiexd 7222 The restriction of the ide...
fnex 7223 If the domain of a functio...
fnexd 7224 If the domain of a functio...
funex 7225 If the domain of a functio...
opabex 7226 Existence of a function ex...
mptexg 7227 If the domain of a functio...
mptexgf 7228 If the domain of a functio...
mptex 7229 If the domain of a functio...
mptexd 7230 If the domain of a functio...
mptrabex 7231 If the domain of a functio...
fex 7232 If the domain of a mapping...
fexd 7233 If the domain of a mapping...
mptfvmpt 7234 A function in maps-to nota...
eufnfv 7235 A function is uniquely det...
funfvima 7236 A function's value in a pr...
funfvima2 7237 A function's value in an i...
funfvima2d 7238 A function's value in a pr...
fnfvima 7239 The function value of an o...
fnfvimad 7240 A function's value belongs...
resfvresima 7241 The value of the function ...
funfvima3 7242 A class including a functi...
rexima 7243 Existential quantification...
ralima 7244 Universal quantification u...
fvclss 7245 Upper bound for the class ...
elabrex 7246 Elementhood in an image se...
elabrexg 7247 Elementhood in an image se...
abrexco 7248 Composition of two image m...
imaiun 7249 The image of an indexed un...
imauni 7250 The image of a union is th...
fniunfv 7251 The indexed union of a fun...
funiunfv 7252 The indexed union of a fun...
funiunfvf 7253 The indexed union of a fun...
eluniima 7254 Membership in the union of...
elunirn 7255 Membership in the union of...
elunirnALT 7256 Alternate proof of ~ eluni...
elunirn2OLD 7257 Obsolete version of ~ elfv...
fnunirn 7258 Membership in a union of s...
dff13 7259 A one-to-one function in t...
dff13f 7260 A one-to-one function in t...
f1veqaeq 7261 If the values of a one-to-...
f1cofveqaeq 7262 If the values of a composi...
f1cofveqaeqALT 7263 Alternate proof of ~ f1cof...
2f1fvneq 7264 If two one-to-one function...
f1mpt 7265 Express injection for a ma...
f1fveq 7266 Equality of function value...
f1elima 7267 Membership in the image of...
f1imass 7268 Taking images under a one-...
f1imaeq 7269 Taking images under a one-...
f1imapss 7270 Taking images under a one-...
fpropnf1 7271 A function, given by an un...
f1dom3fv3dif 7272 The function values for a ...
f1dom3el3dif 7273 The codomain of a 1-1 func...
dff14a 7274 A one-to-one function in t...
dff14b 7275 A one-to-one function in t...
f12dfv 7276 A one-to-one function with...
f13dfv 7277 A one-to-one function with...
dff1o6 7278 A one-to-one onto function...
f1ocnvfv1 7279 The converse value of the ...
f1ocnvfv2 7280 The value of the converse ...
f1ocnvfv 7281 Relationship between the v...
f1ocnvfvb 7282 Relationship between the v...
nvof1o 7283 An involution is a bijecti...
nvocnv 7284 The converse of an involut...
f1cdmsn 7285 If a one-to-one function w...
fsnex 7286 Relate a function with a s...
f1prex 7287 Relate a one-to-one functi...
f1ocnvdm 7288 The value of the converse ...
f1ocnvfvrneq 7289 If the values of a one-to-...
fcof1 7290 An application is injectiv...
fcofo 7291 An application is surjecti...
cbvfo 7292 Change bound variable betw...
cbvexfo 7293 Change bound variable betw...
cocan1 7294 An injection is left-cance...
cocan2 7295 A surjection is right-canc...
fcof1oinvd 7296 Show that a function is th...
fcof1od 7297 A function is bijective if...
2fcoidinvd 7298 Show that a function is th...
fcof1o 7299 Show that two functions ar...
2fvcoidd 7300 Show that the composition ...
2fvidf1od 7301 A function is bijective if...
2fvidinvd 7302 Show that two functions ar...
foeqcnvco 7303 Condition for function equ...
f1eqcocnv 7304 Condition for function equ...
f1eqcocnvOLD 7305 Obsolete version of ~ f1eq...
fveqf1o 7306 Given a bijection ` F ` , ...
nf1const 7307 A constant function from a...
nf1oconst 7308 A constant function from a...
f1ofvswap 7309 Swapping two values in a b...
fliftrel 7310 ` F ` , a function lift, i...
fliftel 7311 Elementhood in the relatio...
fliftel1 7312 Elementhood in the relatio...
fliftcnv 7313 Converse of the relation `...
fliftfun 7314 The function ` F ` is the ...
fliftfund 7315 The function ` F ` is the ...
fliftfuns 7316 The function ` F ` is the ...
fliftf 7317 The domain and range of th...
fliftval 7318 The value of the function ...
isoeq1 7319 Equality theorem for isomo...
isoeq2 7320 Equality theorem for isomo...
isoeq3 7321 Equality theorem for isomo...
isoeq4 7322 Equality theorem for isomo...
isoeq5 7323 Equality theorem for isomo...
nfiso 7324 Bound-variable hypothesis ...
isof1o 7325 An isomorphism is a one-to...
isof1oidb 7326 A function is a bijection ...
isof1oopb 7327 A function is a bijection ...
isorel 7328 An isomorphism connects bi...
soisores 7329 Express the condition of i...
soisoi 7330 Infer isomorphism from one...
isoid 7331 Identity law for isomorphi...
isocnv 7332 Converse law for isomorphi...
isocnv2 7333 Converse law for isomorphi...
isocnv3 7334 Complementation law for is...
isores2 7335 An isomorphism from one we...
isores1 7336 An isomorphism from one we...
isores3 7337 Induced isomorphism on a s...
isotr 7338 Composition (transitive) l...
isomin 7339 Isomorphisms preserve mini...
isoini 7340 Isomorphisms preserve init...
isoini2 7341 Isomorphisms are isomorphi...
isofrlem 7342 Lemma for ~ isofr . (Cont...
isoselem 7343 Lemma for ~ isose . (Cont...
isofr 7344 An isomorphism preserves w...
isose 7345 An isomorphism preserves s...
isofr2 7346 A weak form of ~ isofr tha...
isopolem 7347 Lemma for ~ isopo . (Cont...
isopo 7348 An isomorphism preserves t...
isosolem 7349 Lemma for ~ isoso . (Cont...
isoso 7350 An isomorphism preserves t...
isowe 7351 An isomorphism preserves t...
isowe2 7352 A weak form of ~ isowe tha...
f1oiso 7353 Any one-to-one onto functi...
f1oiso2 7354 Any one-to-one onto functi...
f1owe 7355 Well-ordering of isomorphi...
weniso 7356 A set-like well-ordering h...
weisoeq 7357 Thus, there is at most one...
weisoeq2 7358 Thus, there is at most one...
knatar 7359 The Knaster-Tarski theorem...
fvresval 7360 The value of a restricted ...
funeldmb 7361 If ` (/) ` is not part of ...
eqfunresadj 7362 Law for adjoining an eleme...
eqfunressuc 7363 Law for equality of restri...
fnssintima 7364 Condition for subset of an...
imaeqsexv 7365 Substitute a function valu...
imaeqsalv 7366 Substitute a function valu...
canth 7367 No set ` A ` is equinumero...
ncanth 7368 Cantor's theorem fails for...
riotaeqdv 7371 Formula-building deduction...
riotabidv 7372 Formula-building deduction...
riotaeqbidv 7373 Equality deduction for res...
riotaex 7374 Restricted iota is a set. ...
riotav 7375 An iota restricted to the ...
riotauni 7376 Restricted iota in terms o...
nfriota1 7377 The abstraction variable i...
nfriotadw 7378 Deduction version of ~ nfr...
cbvriotaw 7379 Change bound variable in a...
cbvriotavw 7380 Change bound variable in a...
cbvriotavwOLD 7381 Obsolete version of ~ cbvr...
nfriotad 7382 Deduction version of ~ nfr...
nfriota 7383 A variable not free in a w...
cbvriota 7384 Change bound variable in a...
cbvriotav 7385 Change bound variable in a...
csbriota 7386 Interchange class substitu...
riotacl2 7387 Membership law for "the un...
riotacl 7388 Closure of restricted iota...
riotasbc 7389 Substitution law for descr...
riotabidva 7390 Equivalent wff's yield equ...
riotabiia 7391 Equivalent wff's yield equ...
riota1 7392 Property of restricted iot...
riota1a 7393 Property of iota. (Contri...
riota2df 7394 A deduction version of ~ r...
riota2f 7395 This theorem shows a condi...
riota2 7396 This theorem shows a condi...
riotaeqimp 7397 If two restricted iota des...
riotaprop 7398 Properties of a restricted...
riota5f 7399 A method for computing res...
riota5 7400 A method for computing res...
riotass2 7401 Restriction of a unique el...
riotass 7402 Restriction of a unique el...
moriotass 7403 Restriction of a unique el...
snriota 7404 A restricted class abstrac...
riotaxfrd 7405 Change the variable ` x ` ...
eusvobj2 7406 Specify the same property ...
eusvobj1 7407 Specify the same object in...
f1ofveu 7408 There is one domain elemen...
f1ocnvfv3 7409 Value of the converse of a...
riotaund 7410 Restricted iota equals the...
riotassuni 7411 The restricted iota class ...
riotaclb 7412 Bidirectional closure of r...
riotarab 7413 Restricted iota of a restr...
oveq 7420 Equality theorem for opera...
oveq1 7421 Equality theorem for opera...
oveq2 7422 Equality theorem for opera...
oveq12 7423 Equality theorem for opera...
oveq1i 7424 Equality inference for ope...
oveq2i 7425 Equality inference for ope...
oveq12i 7426 Equality inference for ope...
oveqi 7427 Equality inference for ope...
oveq123i 7428 Equality inference for ope...
oveq1d 7429 Equality deduction for ope...
oveq2d 7430 Equality deduction for ope...
oveqd 7431 Equality deduction for ope...
oveq12d 7432 Equality deduction for ope...
oveqan12d 7433 Equality deduction for ope...
oveqan12rd 7434 Equality deduction for ope...
oveq123d 7435 Equality deduction for ope...
fvoveq1d 7436 Equality deduction for nes...
fvoveq1 7437 Equality theorem for neste...
ovanraleqv 7438 Equality theorem for a con...
imbrov2fvoveq 7439 Equality theorem for neste...
ovrspc2v 7440 If an operation value is e...
oveqrspc2v 7441 Restricted specialization ...
oveqdr 7442 Equality of two operations...
nfovd 7443 Deduction version of bound...
nfov 7444 Bound-variable hypothesis ...
oprabidw 7445 The law of concretion. Sp...
oprabid 7446 The law of concretion. Sp...
ovex 7447 The result of an operation...
ovexi 7448 The result of an operation...
ovexd 7449 The result of an operation...
ovssunirn 7450 The result of an operation...
0ov 7451 Operation value of the emp...
ovprc 7452 The value of an operation ...
ovprc1 7453 The value of an operation ...
ovprc2 7454 The value of an operation ...
ovrcl 7455 Reverse closure for an ope...
csbov123 7456 Move class substitution in...
csbov 7457 Move class substitution in...
csbov12g 7458 Move class substitution in...
csbov1g 7459 Move class substitution in...
csbov2g 7460 Move class substitution in...
rspceov 7461 A frequently used special ...
elovimad 7462 Elementhood of the image s...
fnbrovb 7463 Value of a binary operatio...
fnotovb 7464 Equivalence of operation v...
opabbrex 7465 A collection of ordered pa...
opabresex2 7466 Restrictions of a collecti...
opabresex2d 7467 Obsolete version of ~ opab...
fvmptopab 7468 The function value of a ma...
fvmptopabOLD 7469 Obsolete version of ~ fvmp...
f1opr 7470 Condition for an operation...
brfvopab 7471 The classes involved in a ...
dfoprab2 7472 Class abstraction for oper...
reloprab 7473 An operation class abstrac...
oprabv 7474 If a pair and a class are ...
nfoprab1 7475 The abstraction variables ...
nfoprab2 7476 The abstraction variables ...
nfoprab3 7477 The abstraction variables ...
nfoprab 7478 Bound-variable hypothesis ...
oprabbid 7479 Equivalent wff's yield equ...
oprabbidv 7480 Equivalent wff's yield equ...
oprabbii 7481 Equivalent wff's yield equ...
ssoprab2 7482 Equivalence of ordered pai...
ssoprab2b 7483 Equivalence of ordered pai...
eqoprab2bw 7484 Equivalence of ordered pai...
eqoprab2b 7485 Equivalence of ordered pai...
mpoeq123 7486 An equality theorem for th...
mpoeq12 7487 An equality theorem for th...
mpoeq123dva 7488 An equality deduction for ...
mpoeq123dv 7489 An equality deduction for ...
mpoeq123i 7490 An equality inference for ...
mpoeq3dva 7491 Slightly more general equa...
mpoeq3ia 7492 An equality inference for ...
mpoeq3dv 7493 An equality deduction for ...
nfmpo1 7494 Bound-variable hypothesis ...
nfmpo2 7495 Bound-variable hypothesis ...
nfmpo 7496 Bound-variable hypothesis ...
0mpo0 7497 A mapping operation with e...
mpo0v 7498 A mapping operation with e...
mpo0 7499 A mapping operation with e...
oprab4 7500 Two ways to state the doma...
cbvoprab1 7501 Rule used to change first ...
cbvoprab2 7502 Change the second bound va...
cbvoprab12 7503 Rule used to change first ...
cbvoprab12v 7504 Rule used to change first ...
cbvoprab3 7505 Rule used to change the th...
cbvoprab3v 7506 Rule used to change the th...
cbvmpox 7507 Rule to change the bound v...
cbvmpo 7508 Rule to change the bound v...
cbvmpov 7509 Rule to change the bound v...
elimdelov 7510 Eliminate a hypothesis whi...
brif1 7511 Move a relation inside and...
ovif 7512 Move a conditional outside...
ovif2 7513 Move a conditional outside...
ovif12 7514 Move a conditional outside...
ifov 7515 Move a conditional outside...
dmoprab 7516 The domain of an operation...
dmoprabss 7517 The domain of an operation...
rnoprab 7518 The range of an operation ...
rnoprab2 7519 The range of a restricted ...
reldmoprab 7520 The domain of an operation...
oprabss 7521 Structure of an operation ...
eloprabga 7522 The law of concretion for ...
eloprabgaOLD 7523 Obsolete version of ~ elop...
eloprabg 7524 The law of concretion for ...
ssoprab2i 7525 Inference of operation cla...
mpov 7526 Operation with universal d...
mpomptx 7527 Express a two-argument fun...
mpompt 7528 Express a two-argument fun...
mpodifsnif 7529 A mapping with two argumen...
mposnif 7530 A mapping with two argumen...
fconstmpo 7531 Representation of a consta...
resoprab 7532 Restriction of an operatio...
resoprab2 7533 Restriction of an operator...
resmpo 7534 Restriction of the mapping...
funoprabg 7535 "At most one" is a suffici...
funoprab 7536 "At most one" is a suffici...
fnoprabg 7537 Functionality and domain o...
mpofun 7538 The maps-to notation for a...
mpofunOLD 7539 Obsolete version of ~ mpof...
fnoprab 7540 Functionality and domain o...
ffnov 7541 An operation maps to a cla...
fovcld 7542 Closure law for an operati...
fovcl 7543 Closure law for an operati...
eqfnov 7544 Equality of two operations...
eqfnov2 7545 Two operators with the sam...
fnov 7546 Representation of a functi...
mpo2eqb 7547 Bidirectional equality the...
rnmpo 7548 The range of an operation ...
reldmmpo 7549 The domain of an operation...
elrnmpog 7550 Membership in the range of...
elrnmpo 7551 Membership in the range of...
elimampo 7552 Membership in the image of...
elrnmpores 7553 Membership in the range of...
ralrnmpo 7554 A restricted quantifier ov...
rexrnmpo 7555 A restricted quantifier ov...
ovid 7556 The value of an operation ...
ovidig 7557 The value of an operation ...
ovidi 7558 The value of an operation ...
ov 7559 The value of an operation ...
ovigg 7560 The value of an operation ...
ovig 7561 The value of an operation ...
ovmpt4g 7562 Value of a function given ...
ovmpos 7563 Value of a function given ...
ov2gf 7564 The value of an operation ...
ovmpodxf 7565 Value of an operation give...
ovmpodx 7566 Value of an operation give...
ovmpod 7567 Value of an operation give...
ovmpox 7568 The value of an operation ...
ovmpoga 7569 Value of an operation give...
ovmpoa 7570 Value of an operation give...
ovmpodf 7571 Alternate deduction versio...
ovmpodv 7572 Alternate deduction versio...
ovmpodv2 7573 Alternate deduction versio...
ovmpog 7574 Value of an operation give...
ovmpo 7575 Value of an operation give...
ovmpot 7576 The value of an operation ...
fvmpopr2d 7577 Value of an operation give...
ov3 7578 The value of an operation ...
ov6g 7579 The value of an operation ...
ovg 7580 The value of an operation ...
ovres 7581 The value of a restricted ...
ovresd 7582 Lemma for converting metri...
oprres 7583 The restriction of an oper...
oprssov 7584 The value of a member of t...
fovcdm 7585 An operation's value belon...
fovcdmda 7586 An operation's value belon...
fovcdmd 7587 An operation's value belon...
fnrnov 7588 The range of an operation ...
foov 7589 An onto mapping of an oper...
fnovrn 7590 An operation's value belon...
ovelrn 7591 A member of an operation's...
funimassov 7592 Membership relation for th...
ovelimab 7593 Operation value in an imag...
ovima0 7594 An operation value is a me...
ovconst2 7595 The value of a constant op...
oprssdm 7596 Domain of closure of an op...
nssdmovg 7597 The value of an operation ...
ndmovg 7598 The value of an operation ...
ndmov 7599 The value of an operation ...
ndmovcl 7600 The closure of an operatio...
ndmovrcl 7601 Reverse closure law, when ...
ndmovcom 7602 Any operation is commutati...
ndmovass 7603 Any operation is associati...
ndmovdistr 7604 Any operation is distribut...
ndmovord 7605 Elimination of redundant a...
ndmovordi 7606 Elimination of redundant a...
caovclg 7607 Convert an operation closu...
caovcld 7608 Convert an operation closu...
caovcl 7609 Convert an operation closu...
caovcomg 7610 Convert an operation commu...
caovcomd 7611 Convert an operation commu...
caovcom 7612 Convert an operation commu...
caovassg 7613 Convert an operation assoc...
caovassd 7614 Convert an operation assoc...
caovass 7615 Convert an operation assoc...
caovcang 7616 Convert an operation cance...
caovcand 7617 Convert an operation cance...
caovcanrd 7618 Commute the arguments of a...
caovcan 7619 Convert an operation cance...
caovordig 7620 Convert an operation order...
caovordid 7621 Convert an operation order...
caovordg 7622 Convert an operation order...
caovordd 7623 Convert an operation order...
caovord2d 7624 Operation ordering law wit...
caovord3d 7625 Ordering law. (Contribute...
caovord 7626 Convert an operation order...
caovord2 7627 Operation ordering law wit...
caovord3 7628 Ordering law. (Contribute...
caovdig 7629 Convert an operation distr...
caovdid 7630 Convert an operation distr...
caovdir2d 7631 Convert an operation distr...
caovdirg 7632 Convert an operation rever...
caovdird 7633 Convert an operation distr...
caovdi 7634 Convert an operation distr...
caov32d 7635 Rearrange arguments in a c...
caov12d 7636 Rearrange arguments in a c...
caov31d 7637 Rearrange arguments in a c...
caov13d 7638 Rearrange arguments in a c...
caov4d 7639 Rearrange arguments in a c...
caov411d 7640 Rearrange arguments in a c...
caov42d 7641 Rearrange arguments in a c...
caov32 7642 Rearrange arguments in a c...
caov12 7643 Rearrange arguments in a c...
caov31 7644 Rearrange arguments in a c...
caov13 7645 Rearrange arguments in a c...
caov4 7646 Rearrange arguments in a c...
caov411 7647 Rearrange arguments in a c...
caov42 7648 Rearrange arguments in a c...
caovdir 7649 Reverse distributive law. ...
caovdilem 7650 Lemma used by real number ...
caovlem2 7651 Lemma used in real number ...
caovmo 7652 Uniqueness of inverse elem...
imaeqexov 7653 Substitute an operation va...
imaeqalov 7654 Substitute an operation va...
mpondm0 7655 The value of an operation ...
elmpocl 7656 If a two-parameter class i...
elmpocl1 7657 If a two-parameter class i...
elmpocl2 7658 If a two-parameter class i...
elovmpod 7659 Utility lemma for two-para...
elovmpo 7660 Utility lemma for two-para...
elovmporab 7661 Implications for the value...
elovmporab1w 7662 Implications for the value...
elovmporab1 7663 Implications for the value...
2mpo0 7664 If the operation value of ...
relmptopab 7665 Any function to sets of or...
f1ocnvd 7666 Describe an implicit one-t...
f1od 7667 Describe an implicit one-t...
f1ocnv2d 7668 Describe an implicit one-t...
f1o2d 7669 Describe an implicit one-t...
f1opw2 7670 A one-to-one mapping induc...
f1opw 7671 A one-to-one mapping induc...
elovmpt3imp 7672 If the value of a function...
ovmpt3rab1 7673 The value of an operation ...
ovmpt3rabdm 7674 If the value of a function...
elovmpt3rab1 7675 Implications for the value...
elovmpt3rab 7676 Implications for the value...
ofeqd 7681 Equality theorem for funct...
ofeq 7682 Equality theorem for funct...
ofreq 7683 Equality theorem for funct...
ofexg 7684 A function operation restr...
nfof 7685 Hypothesis builder for fun...
nfofr 7686 Hypothesis builder for fun...
ofrfvalg 7687 Value of a relation applie...
offval 7688 Value of an operation appl...
ofrfval 7689 Value of a relation applie...
ofval 7690 Evaluate a function operat...
ofrval 7691 Exhibit a function relatio...
offn 7692 The function operation pro...
offun 7693 The function operation pro...
offval2f 7694 The function operation exp...
ofmresval 7695 Value of a restriction of ...
fnfvof 7696 Function value of a pointw...
off 7697 The function operation pro...
ofres 7698 Restrict the operands of a...
offval2 7699 The function operation exp...
ofrfval2 7700 The function relation acti...
ofmpteq 7701 Value of a pointwise opera...
ofco 7702 The composition of a funct...
offveq 7703 Convert an identity of the...
offveqb 7704 Equivalent expressions for...
ofc1 7705 Left operation by a consta...
ofc2 7706 Right operation by a const...
ofc12 7707 Function operation on two ...
caofref 7708 Transfer a reflexive law t...
caofinvl 7709 Transfer a left inverse la...
caofid0l 7710 Transfer a left identity l...
caofid0r 7711 Transfer a right identity ...
caofid1 7712 Transfer a right absorptio...
caofid2 7713 Transfer a right absorptio...
caofcom 7714 Transfer a commutative law...
caofrss 7715 Transfer a relation subset...
caofass 7716 Transfer an associative la...
caoftrn 7717 Transfer a transitivity la...
caofdi 7718 Transfer a distributive la...
caofdir 7719 Transfer a reverse distrib...
caonncan 7720 Transfer ~ nncan -shaped l...
relrpss 7723 The proper subset relation...
brrpssg 7724 The proper subset relation...
brrpss 7725 The proper subset relation...
porpss 7726 Every class is partially o...
sorpss 7727 Express strict ordering un...
sorpssi 7728 Property of a chain of set...
sorpssun 7729 A chain of sets is closed ...
sorpssin 7730 A chain of sets is closed ...
sorpssuni 7731 In a chain of sets, a maxi...
sorpssint 7732 In a chain of sets, a mini...
sorpsscmpl 7733 The componentwise compleme...
zfun 7735 Axiom of Union expressed w...
axun2 7736 A variant of the Axiom of ...
uniex2 7737 The Axiom of Union using t...
vuniex 7738 The union of a setvar is a...
uniexg 7739 The ZF Axiom of Union in c...
uniex 7740 The Axiom of Union in clas...
uniexd 7741 Deduction version of the Z...
unex 7742 The union of two sets is a...
tpex 7743 An unordered triple of cla...
unexb 7744 Existence of union is equi...
unexg 7745 A union of two sets is a s...
xpexg 7746 The Cartesian product of t...
xpexd 7747 The Cartesian product of t...
3xpexg 7748 The Cartesian product of t...
xpex 7749 The Cartesian product of t...
unexd 7750 The union of two sets is a...
sqxpexg 7751 The Cartesian square of a ...
abnexg 7752 Sufficient condition for a...
abnex 7753 Sufficient condition for a...
snnex 7754 The class of all singleton...
pwnex 7755 The class of all power set...
difex2 7756 If the subtrahend of a cla...
difsnexi 7757 If the difference of a cla...
uniuni 7758 Expression for double unio...
uniexr 7759 Converse of the Axiom of U...
uniexb 7760 The Axiom of Union and its...
pwexr 7761 Converse of the Axiom of P...
pwexb 7762 The Axiom of Power Sets an...
elpwpwel 7763 A class belongs to a doubl...
eldifpw 7764 Membership in a power clas...
elpwun 7765 Membership in the power cl...
pwuncl 7766 Power classes are closed u...
iunpw 7767 An indexed union of a powe...
fr3nr 7768 A well-founded relation ha...
epne3 7769 A well-founded class conta...
dfwe2 7770 Alternate definition of we...
epweon 7771 The membership relation we...
epweonALT 7772 Alternate proof of ~ epweo...
ordon 7773 The class of all ordinal n...
onprc 7774 No set contains all ordina...
ssorduni 7775 The union of a class of or...
ssonuni 7776 The union of a set of ordi...
ssonunii 7777 The union of a set of ordi...
ordeleqon 7778 A way to express the ordin...
ordsson 7779 Any ordinal class is a sub...
dford5 7780 A class is ordinal iff it ...
onss 7781 An ordinal number is a sub...
predon 7782 The predecessor of an ordi...
predonOLD 7783 Obsolete version of ~ pred...
ssonprc 7784 Two ways of saying a class...
onuni 7785 The union of an ordinal nu...
orduni 7786 The union of an ordinal cl...
onint 7787 The intersection (infimum)...
onint0 7788 The intersection of a clas...
onssmin 7789 A nonempty class of ordina...
onminesb 7790 If a property is true for ...
onminsb 7791 If a property is true for ...
oninton 7792 The intersection of a none...
onintrab 7793 The intersection of a clas...
onintrab2 7794 An existence condition equ...
onnmin 7795 No member of a set of ordi...
onnminsb 7796 An ordinal number smaller ...
oneqmin 7797 A way to show that an ordi...
uniordint 7798 The union of a set of ordi...
onminex 7799 If a wff is true for an or...
sucon 7800 The class of all ordinal n...
sucexb 7801 A successor exists iff its...
sucexg 7802 The successor of a set is ...
sucex 7803 The successor of a set is ...
onmindif2 7804 The minimum of a class of ...
ordsuci 7805 The successor of an ordina...
sucexeloni 7806 If the successor of an ord...
sucexeloniOLD 7807 Obsolete version of ~ suce...
onsuc 7808 The successor of an ordina...
suceloniOLD 7809 Obsolete version of ~ onsu...
ordsuc 7810 A class is ordinal if and ...
ordsucOLD 7811 Obsolete version of ~ ords...
ordpwsuc 7812 The collection of ordinals...
onpwsuc 7813 The collection of ordinal ...
onsucb 7814 A class is an ordinal numb...
ordsucss 7815 The successor of an elemen...
onpsssuc 7816 An ordinal number is a pro...
ordelsuc 7817 A set belongs to an ordina...
onsucmin 7818 The successor of an ordina...
ordsucelsuc 7819 Membership is inherited by...
ordsucsssuc 7820 The subclass relationship ...
ordsucuniel 7821 Given an element ` A ` of ...
ordsucun 7822 The successor of the maxim...
ordunpr 7823 The maximum of two ordinal...
ordunel 7824 The maximum of two ordinal...
onsucuni 7825 A class of ordinal numbers...
ordsucuni 7826 An ordinal class is a subc...
orduniorsuc 7827 An ordinal class is either...
unon 7828 The class of all ordinal n...
ordunisuc 7829 An ordinal class is equal ...
orduniss2 7830 The union of the ordinal s...
onsucuni2 7831 A successor ordinal is the...
0elsuc 7832 The successor of an ordina...
limon 7833 The class of ordinal numbe...
onuniorsuc 7834 An ordinal number is eithe...
onssi 7835 An ordinal number is a sub...
onsuci 7836 The successor of an ordina...
onuniorsuciOLD 7837 Obsolete version of ~ onun...
onuninsuci 7838 An ordinal is equal to its...
onsucssi 7839 A set belongs to an ordina...
nlimsucg 7840 A successor is not a limit...
orduninsuc 7841 An ordinal class is equal ...
ordunisuc2 7842 An ordinal equal to its un...
ordzsl 7843 An ordinal is zero, a succ...
onzsl 7844 An ordinal number is zero,...
dflim3 7845 An alternate definition of...
dflim4 7846 An alternate definition of...
limsuc 7847 The successor of a member ...
limsssuc 7848 A class includes a limit o...
nlimon 7849 Two ways to express the cl...
limuni3 7850 The union of a nonempty cl...
tfi 7851 The Principle of Transfini...
tfisg 7852 A closed form of ~ tfis . ...
tfis 7853 Transfinite Induction Sche...
tfis2f 7854 Transfinite Induction Sche...
tfis2 7855 Transfinite Induction Sche...
tfis3 7856 Transfinite Induction Sche...
tfisi 7857 A transfinite induction sc...
tfinds 7858 Principle of Transfinite I...
tfindsg 7859 Transfinite Induction (inf...
tfindsg2 7860 Transfinite Induction (inf...
tfindes 7861 Transfinite Induction with...
tfinds2 7862 Transfinite Induction (inf...
tfinds3 7863 Principle of Transfinite I...
dfom2 7866 An alternate definition of...
elom 7867 Membership in omega. The ...
omsson 7868 Omega is a subset of ` On ...
limomss 7869 The class of natural numbe...
nnon 7870 A natural number is an ord...
nnoni 7871 A natural number is an ord...
nnord 7872 A natural number is ordina...
trom 7873 The class of finite ordina...
ordom 7874 The class of finite ordina...
elnn 7875 A member of a natural numb...
omon 7876 The class of natural numbe...
omelon2 7877 Omega is an ordinal number...
nnlim 7878 A natural number is not a ...
omssnlim 7879 The class of natural numbe...
limom 7880 Omega is a limit ordinal. ...
peano2b 7881 A class belongs to omega i...
nnsuc 7882 A nonzero natural number i...
omsucne 7883 A natural number is not th...
ssnlim 7884 An ordinal subclass of non...
omsinds 7885 Strong (or "total") induct...
omsindsOLD 7886 Obsolete version of ~ omsi...
omun 7887 The union of two finite or...
peano1 7888 Zero is a natural number. ...
peano1OLD 7889 Obsolete version of ~ pean...
peano2 7890 The successor of any natur...
peano3 7891 The successor of any natur...
peano4 7892 Two natural numbers are eq...
peano5 7893 The induction postulate: a...
peano5OLD 7894 Obsolete version of ~ pean...
nn0suc 7895 A natural number is either...
find 7896 The Principle of Finite In...
findOLD 7897 Obsolete version of ~ find...
finds 7898 Principle of Finite Induct...
findsg 7899 Principle of Finite Induct...
finds2 7900 Principle of Finite Induct...
finds1 7901 Principle of Finite Induct...
findes 7902 Finite induction with expl...
dmexg 7903 The domain of a set is a s...
rnexg 7904 The range of a set is a se...
dmexd 7905 The domain of a set is a s...
fndmexd 7906 If a function is a set, it...
dmfex 7907 If a mapping is a set, its...
fndmexb 7908 The domain of a function i...
fdmexb 7909 The domain of a function i...
dmfexALT 7910 Alternate proof of ~ dmfex...
dmex 7911 The domain of a set is a s...
rnex 7912 The range of a set is a se...
iprc 7913 The identity function is a...
resiexg 7914 The existence of a restric...
imaexg 7915 The image of a set is a se...
imaex 7916 The image of a set is a se...
rnexd 7917 The range of a set is a se...
imaexd 7918 The image of a set is a se...
exse2 7919 Any set relation is set-li...
xpexr 7920 If a Cartesian product is ...
xpexr2 7921 If a nonempty Cartesian pr...
xpexcnv 7922 A condition where the conv...
soex 7923 If the relation in a stric...
elxp4 7924 Membership in a Cartesian ...
elxp5 7925 Membership in a Cartesian ...
cnvexg 7926 The converse of a set is a...
cnvex 7927 The converse of a set is a...
relcnvexb 7928 A relation is a set iff it...
f1oexrnex 7929 If the range of a 1-1 onto...
f1oexbi 7930 There is a one-to-one onto...
coexg 7931 The composition of two set...
coex 7932 The composition of two set...
funcnvuni 7933 The union of a chain (with...
fun11uni 7934 The union of a chain (with...
fex2 7935 A function with bounded do...
fabexg 7936 Existence of a set of func...
fabex 7937 Existence of a set of func...
f1oabexg 7938 The class of all 1-1-onto ...
fiunlem 7939 Lemma for ~ fiun and ~ f1i...
fiun 7940 The union of a chain (with...
f1iun 7941 The union of a chain (with...
fviunfun 7942 The function value of an i...
ffoss 7943 Relationship between a map...
f11o 7944 Relationship between one-t...
resfunexgALT 7945 Alternate proof of ~ resfu...
cofunexg 7946 Existence of a composition...
cofunex2g 7947 Existence of a composition...
fnexALT 7948 Alternate proof of ~ fnex ...
funexw 7949 Weak version of ~ funex th...
mptexw 7950 Weak version of ~ mptex th...
funrnex 7951 If the domain of a functio...
zfrep6 7952 A version of the Axiom of ...
focdmex 7953 If the domain of an onto f...
f1dmex 7954 If the codomain of a one-t...
f1ovv 7955 The codomain/range of a 1-...
fvclex 7956 Existence of the class of ...
fvresex 7957 Existence of the class of ...
abrexexg 7958 Existence of a class abstr...
abrexexgOLD 7959 Obsolete version of ~ abre...
abrexex 7960 Existence of a class abstr...
iunexg 7961 The existence of an indexe...
abrexex2g 7962 Existence of an existentia...
opabex3d 7963 Existence of an ordered pa...
opabex3rd 7964 Existence of an ordered pa...
opabex3 7965 Existence of an ordered pa...
iunex 7966 The existence of an indexe...
abrexex2 7967 Existence of an existentia...
abexssex 7968 Existence of a class abstr...
abexex 7969 A condition where a class ...
f1oweALT 7970 Alternate proof of ~ f1owe...
wemoiso 7971 Thus, there is at most one...
wemoiso2 7972 Thus, there is at most one...
oprabexd 7973 Existence of an operator a...
oprabex 7974 Existence of an operation ...
oprabex3 7975 Existence of an operation ...
oprabrexex2 7976 Existence of an existentia...
ab2rexex 7977 Existence of a class abstr...
ab2rexex2 7978 Existence of an existentia...
xpexgALT 7979 Alternate proof of ~ xpexg...
offval3 7980 General value of ` ( F oF ...
offres 7981 Pointwise combination comm...
ofmres 7982 Equivalent expressions for...
ofmresex 7983 Existence of a restriction...
mptcnfimad 7984 The converse of a mapping ...
1stval 7989 The value of the function ...
2ndval 7990 The value of the function ...
1stnpr 7991 Value of the first-member ...
2ndnpr 7992 Value of the second-member...
1st0 7993 The value of the first-mem...
2nd0 7994 The value of the second-me...
op1st 7995 Extract the first member o...
op2nd 7996 Extract the second member ...
op1std 7997 Extract the first member o...
op2ndd 7998 Extract the second member ...
op1stg 7999 Extract the first member o...
op2ndg 8000 Extract the second member ...
ot1stg 8001 Extract the first member o...
ot2ndg 8002 Extract the second member ...
ot3rdg 8003 Extract the third member o...
1stval2 8004 Alternate value of the fun...
2ndval2 8005 Alternate value of the fun...
oteqimp 8006 The components of an order...
fo1st 8007 The ` 1st ` function maps ...
fo2nd 8008 The ` 2nd ` function maps ...
br1steqg 8009 Uniqueness condition for t...
br2ndeqg 8010 Uniqueness condition for t...
f1stres 8011 Mapping of a restriction o...
f2ndres 8012 Mapping of a restriction o...
fo1stres 8013 Onto mapping of a restrict...
fo2ndres 8014 Onto mapping of a restrict...
1st2val 8015 Value of an alternate defi...
2nd2val 8016 Value of an alternate defi...
1stcof 8017 Composition of the first m...
2ndcof 8018 Composition of the second ...
xp1st 8019 Location of the first elem...
xp2nd 8020 Location of the second ele...
elxp6 8021 Membership in a Cartesian ...
elxp7 8022 Membership in a Cartesian ...
eqopi 8023 Equality with an ordered p...
xp2 8024 Representation of Cartesia...
unielxp 8025 The membership relation fo...
1st2nd2 8026 Reconstruction of a member...
1st2ndb 8027 Reconstruction of an order...
xpopth 8028 An ordered pair theorem fo...
eqop 8029 Two ways to express equali...
eqop2 8030 Two ways to express equali...
op1steq 8031 Two ways of expressing tha...
opreuopreu 8032 There is a unique ordered ...
el2xptp 8033 A member of a nested Carte...
el2xptp0 8034 A member of a nested Carte...
el2xpss 8035 Version of ~ elrel for tri...
2nd1st 8036 Swap the members of an ord...
1st2nd 8037 Reconstruction of a member...
1stdm 8038 The first ordered pair com...
2ndrn 8039 The second ordered pair co...
1st2ndbr 8040 Express an element of a re...
releldm2 8041 Two ways of expressing mem...
reldm 8042 An expression for the doma...
releldmdifi 8043 One way of expressing memb...
funfv1st2nd 8044 The function value for the...
funelss 8045 If the first component of ...
funeldmdif 8046 Two ways of expressing mem...
sbcopeq1a 8047 Equality theorem for subst...
csbopeq1a 8048 Equality theorem for subst...
sbcoteq1a 8049 Equality theorem for subst...
dfopab2 8050 A way to define an ordered...
dfoprab3s 8051 A way to define an operati...
dfoprab3 8052 Operation class abstractio...
dfoprab4 8053 Operation class abstractio...
dfoprab4f 8054 Operation class abstractio...
opabex2 8055 Condition for an operation...
opabn1stprc 8056 An ordered-pair class abst...
opiota 8057 The property of a uniquely...
cnvoprab 8058 The converse of a class ab...
dfxp3 8059 Define the Cartesian produ...
elopabi 8060 A consequence of membershi...
eloprabi 8061 A consequence of membershi...
mpomptsx 8062 Express a two-argument fun...
mpompts 8063 Express a two-argument fun...
dmmpossx 8064 The domain of a mapping is...
fmpox 8065 Functionality, domain and ...
fmpo 8066 Functionality, domain and ...
fnmpo 8067 Functionality and domain o...
fnmpoi 8068 Functionality and domain o...
dmmpo 8069 Domain of a class given by...
ovmpoelrn 8070 An operation's value belon...
dmmpoga 8071 Domain of an operation giv...
dmmpogaOLD 8072 Obsolete version of ~ dmmp...
dmmpog 8073 Domain of an operation giv...
mpoexxg 8074 Existence of an operation ...
mpoexg 8075 Existence of an operation ...
mpoexga 8076 If the domain of an operat...
mpoexw 8077 Weak version of ~ mpoex th...
mpoex 8078 If the domain of an operat...
mptmpoopabbrd 8079 The operation value of a f...
mptmpoopabbrdOLD 8080 Obsolete version of ~ mptm...
mptmpoopabovd 8081 The operation value of a f...
mptmpoopabbrdOLDOLD 8082 Obsolete version of ~ mptm...
mptmpoopabovdOLD 8083 Obsolete version of ~ mptm...
el2mpocsbcl 8084 If the operation value of ...
el2mpocl 8085 If the operation value of ...
fnmpoovd 8086 A function with a Cartesia...
offval22 8087 The function operation exp...
brovpreldm 8088 If a binary relation holds...
bropopvvv 8089 If a binary relation holds...
bropfvvvvlem 8090 Lemma for ~ bropfvvvv . (...
bropfvvvv 8091 If a binary relation holds...
ovmptss 8092 If all the values of the m...
relmpoopab 8093 Any function to sets of or...
fmpoco 8094 Composition of two functio...
oprabco 8095 Composition of a function ...
oprab2co 8096 Composition of operator ab...
df1st2 8097 An alternate possible defi...
df2nd2 8098 An alternate possible defi...
1stconst 8099 The mapping of a restricti...
2ndconst 8100 The mapping of a restricti...
dfmpo 8101 Alternate definition for t...
mposn 8102 An operation (in maps-to n...
curry1 8103 Composition with ` ``' ( 2...
curry1val 8104 The value of a curried fun...
curry1f 8105 Functionality of a curried...
curry2 8106 Composition with ` ``' ( 1...
curry2f 8107 Functionality of a curried...
curry2val 8108 The value of a curried fun...
cnvf1olem 8109 Lemma for ~ cnvf1o . (Con...
cnvf1o 8110 Describe a function that m...
fparlem1 8111 Lemma for ~ fpar . (Contr...
fparlem2 8112 Lemma for ~ fpar . (Contr...
fparlem3 8113 Lemma for ~ fpar . (Contr...
fparlem4 8114 Lemma for ~ fpar . (Contr...
fpar 8115 Merge two functions in par...
fsplit 8116 A function that can be use...
fsplitfpar 8117 Merge two functions with a...
offsplitfpar 8118 Express the function opera...
f2ndf 8119 The ` 2nd ` (second compon...
fo2ndf 8120 The ` 2nd ` (second compon...
f1o2ndf1 8121 The ` 2nd ` (second compon...
opco1 8122 Value of an operation prec...
opco2 8123 Value of an operation prec...
opco1i 8124 Inference form of ~ opco1 ...
frxp 8125 A lexicographical ordering...
xporderlem 8126 Lemma for lexicographical ...
poxp 8127 A lexicographical ordering...
soxp 8128 A lexicographical ordering...
wexp 8129 A lexicographical ordering...
fnwelem 8130 Lemma for ~ fnwe . (Contr...
fnwe 8131 A variant on lexicographic...
fnse 8132 Condition for the well-ord...
fvproj 8133 Value of a function on ord...
fimaproj 8134 Image of a cartesian produ...
ralxpes 8135 A version of ~ ralxp with ...
ralxp3f 8136 Restricted for all over a ...
ralxp3 8137 Restricted for all over a ...
ralxp3es 8138 Restricted for-all over a ...
frpoins3xpg 8139 Special case of founded pa...
frpoins3xp3g 8140 Special case of founded pa...
xpord2lem 8141 Lemma for Cartesian produc...
poxp2 8142 Another way of partially o...
frxp2 8143 Another way of giving a we...
xpord2pred 8144 Calculate the predecessor ...
sexp2 8145 Condition for the relation...
xpord2indlem 8146 Induction over the Cartesi...
xpord2ind 8147 Induction over the Cartesi...
xpord3lem 8148 Lemma for triple ordering....
poxp3 8149 Triple Cartesian product p...
frxp3 8150 Give well-foundedness over...
xpord3pred 8151 Calculate the predecsessor...
sexp3 8152 Show that the triple order...
xpord3inddlem 8153 Induction over the triple ...
xpord3indd 8154 Induction over the triple ...
xpord3ind 8155 Induction over the triple ...
orderseqlem 8156 Lemma for ~ poseq and ~ so...
poseq 8157 A partial ordering of ordi...
soseq 8158 A linear ordering of ordin...
suppval 8161 The value of the operation...
supp0prc 8162 The support of a class is ...
suppvalbr 8163 The value of the operation...
supp0 8164 The support of the empty s...
suppval1 8165 The value of the operation...
suppvalfng 8166 The value of the operation...
suppvalfn 8167 The value of the operation...
elsuppfng 8168 An element of the support ...
elsuppfn 8169 An element of the support ...
cnvimadfsn 8170 The support of functions "...
suppimacnvss 8171 The support of functions "...
suppimacnv 8172 Support sets of functions ...
fsuppeq 8173 Two ways of writing the su...
fsuppeqg 8174 Version of ~ fsuppeq avoid...
suppssdm 8175 The support of a function ...
suppsnop 8176 The support of a singleton...
snopsuppss 8177 The support of a singleton...
fvn0elsupp 8178 If the function value for ...
fvn0elsuppb 8179 The function value for a g...
rexsupp 8180 Existential quantification...
ressuppss 8181 The support of the restric...
suppun 8182 The support of a class/fun...
ressuppssdif 8183 The support of the restric...
mptsuppdifd 8184 The support of a function ...
mptsuppd 8185 The support of a function ...
extmptsuppeq 8186 The support of an extended...
suppfnss 8187 The support of a function ...
funsssuppss 8188 The support of a function ...
fnsuppres 8189 Two ways to express restri...
fnsuppeq0 8190 The support of a function ...
fczsupp0 8191 The support of a constant ...
suppss 8192 Show that the support of a...
suppssOLD 8193 Obsolete version of ~ supp...
suppssr 8194 A function is zero outside...
suppssrg 8195 A function is zero outside...
suppssov1 8196 Formula building theorem f...
suppssov2 8197 Formula building theorem f...
suppssof1 8198 Formula building theorem f...
suppss2 8199 Show that the support of a...
suppsssn 8200 Show that the support of a...
suppssfv 8201 Formula building theorem f...
suppofssd 8202 Condition for the support ...
suppofss1d 8203 Condition for the support ...
suppofss2d 8204 Condition for the support ...
suppco 8205 The support of the composi...
suppcoss 8206 The support of the composi...
supp0cosupp0 8207 The support of the composi...
imacosupp 8208 The image of the support o...
opeliunxp2f 8209 Membership in a union of C...
mpoxeldm 8210 If there is an element of ...
mpoxneldm 8211 If the first argument of a...
mpoxopn0yelv 8212 If there is an element of ...
mpoxopynvov0g 8213 If the second argument of ...
mpoxopxnop0 8214 If the first argument of a...
mpoxopx0ov0 8215 If the first argument of a...
mpoxopxprcov0 8216 If the components of the f...
mpoxopynvov0 8217 If the second argument of ...
mpoxopoveq 8218 Value of an operation give...
mpoxopovel 8219 Element of the value of an...
mpoxopoveqd 8220 Value of an operation give...
brovex 8221 A binary relation of the v...
brovmpoex 8222 A binary relation of the v...
sprmpod 8223 The extension of a binary ...
tposss 8226 Subset theorem for transpo...
tposeq 8227 Equality theorem for trans...
tposeqd 8228 Equality theorem for trans...
tposssxp 8229 The transposition is a sub...
reltpos 8230 The transposition is a rel...
brtpos2 8231 Value of the transposition...
brtpos0 8232 The behavior of ` tpos ` w...
reldmtpos 8233 Necessary and sufficient c...
brtpos 8234 The transposition swaps ar...
ottpos 8235 The transposition swaps th...
relbrtpos 8236 The transposition swaps ar...
dmtpos 8237 The domain of ` tpos F ` w...
rntpos 8238 The range of ` tpos F ` wh...
tposexg 8239 The transposition of a set...
ovtpos 8240 The transposition swaps th...
tposfun 8241 The transposition of a fun...
dftpos2 8242 Alternate definition of ` ...
dftpos3 8243 Alternate definition of ` ...
dftpos4 8244 Alternate definition of ` ...
tpostpos 8245 Value of the double transp...
tpostpos2 8246 Value of the double transp...
tposfn2 8247 The domain of a transposit...
tposfo2 8248 Condition for a surjective...
tposf2 8249 The domain and codomain of...
tposf12 8250 Condition for an injective...
tposf1o2 8251 Condition of a bijective t...
tposfo 8252 The domain and codomain/ra...
tposf 8253 The domain and codomain of...
tposfn 8254 Functionality of a transpo...
tpos0 8255 Transposition of the empty...
tposco 8256 Transposition of a composi...
tpossym 8257 Two ways to say a function...
tposeqi 8258 Equality theorem for trans...
tposex 8259 A transposition is a set. ...
nftpos 8260 Hypothesis builder for tra...
tposoprab 8261 Transposition of a class o...
tposmpo 8262 Transposition of a two-arg...
tposconst 8263 The transposition of a con...
mpocurryd 8268 The currying of an operati...
mpocurryvald 8269 The value of a curried ope...
fvmpocurryd 8270 The value of the value of ...
pwuninel2 8273 Direct proof of ~ pwuninel...
pwuninel 8274 The power set of the union...
undefval 8275 Value of the undefined val...
undefnel2 8276 The undefined value genera...
undefnel 8277 The undefined value genera...
undefne0 8278 The undefined value genera...
frecseq123 8281 Equality theorem for the w...
nffrecs 8282 Bound-variable hypothesis ...
csbfrecsg 8283 Move class substitution in...
fpr3g 8284 Functions defined by well-...
frrlem1 8285 Lemma for well-founded rec...
frrlem2 8286 Lemma for well-founded rec...
frrlem3 8287 Lemma for well-founded rec...
frrlem4 8288 Lemma for well-founded rec...
frrlem5 8289 Lemma for well-founded rec...
frrlem6 8290 Lemma for well-founded rec...
frrlem7 8291 Lemma for well-founded rec...
frrlem8 8292 Lemma for well-founded rec...
frrlem9 8293 Lemma for well-founded rec...
frrlem10 8294 Lemma for well-founded rec...
frrlem11 8295 Lemma for well-founded rec...
frrlem12 8296 Lemma for well-founded rec...
frrlem13 8297 Lemma for well-founded rec...
frrlem14 8298 Lemma for well-founded rec...
fprlem1 8299 Lemma for well-founded rec...
fprlem2 8300 Lemma for well-founded rec...
fpr2a 8301 Weak version of ~ fpr2 whi...
fpr1 8302 Law of well-founded recurs...
fpr2 8303 Law of well-founded recurs...
fpr3 8304 Law of well-founded recurs...
frrrel 8305 Show without using the axi...
frrdmss 8306 Show without using the axi...
frrdmcl 8307 Show without using the axi...
fprfung 8308 A "function" defined by we...
fprresex 8309 The restriction of a funct...
dfwrecsOLD 8312 Obsolete definition of the...
wrecseq123 8313 General equality theorem f...
wrecseq123OLD 8314 Obsolete version of ~ wrec...
nfwrecs 8315 Bound-variable hypothesis ...
nfwrecsOLD 8316 Obsolete proof of ~ nfwrec...
wrecseq1 8317 Equality theorem for the w...
wrecseq2 8318 Equality theorem for the w...
wrecseq3 8319 Equality theorem for the w...
csbwrecsg 8320 Move class substitution in...
wfr3g 8321 Functions defined by well-...
wfrlem1OLD 8322 Lemma for well-ordered rec...
wfrlem2OLD 8323 Lemma for well-ordered rec...
wfrlem3OLD 8324 Lemma for well-ordered rec...
wfrlem3OLDa 8325 Lemma for well-ordered rec...
wfrlem4OLD 8326 Lemma for well-ordered rec...
wfrlem5OLD 8327 Lemma for well-ordered rec...
wfrrelOLD 8328 Obsolete proof of ~ wfrrel...
wfrdmssOLD 8329 Obsolete proof of ~ wfrdms...
wfrlem8OLD 8330 Lemma for well-ordered rec...
wfrdmclOLD 8331 Obsolete version of ~ wfrd...
wfrlem10OLD 8332 Lemma for well-ordered rec...
wfrfunOLD 8333 Obsolete proof of ~ wfrfun...
wfrlem12OLD 8334 Lemma for well-ordered rec...
wfrlem13OLD 8335 Lemma for well-ordered rec...
wfrlem14OLD 8336 Lemma for well-ordered rec...
wfrlem15OLD 8337 Lemma for well-ordered rec...
wfrlem16OLD 8338 Lemma for well-ordered rec...
wfrlem17OLD 8339 Without using ~ ax-rep , s...
wfr2aOLD 8340 Obsolete version of ~ wfr2...
wfr1OLD 8341 Obsolete version of ~ wfr1...
wfr2OLD 8342 Obsolete version of ~ wfr2...
wfrrel 8343 The well-ordered recursion...
wfrdmss 8344 The domain of the well-ord...
wfrdmcl 8345 The predecessor class of a...
wfrfun 8346 The "function" generated b...
wfrresex 8347 Show without using the axi...
wfr2a 8348 A weak version of ~ wfr2 w...
wfr1 8349 The Principle of Well-Orde...
wfr2 8350 The Principle of Well-Orde...
wfr3 8351 The principle of Well-Orde...
wfr3OLD 8352 Obsolete form of ~ wfr3 as...
iunon 8353 The indexed union of a set...
iinon 8354 The nonempty indexed inter...
onfununi 8355 A property of functions on...
onovuni 8356 A variant of ~ onfununi fo...
onoviun 8357 A variant of ~ onovuni wit...
onnseq 8358 There are no length ` _om ...
dfsmo2 8361 Alternate definition of a ...
issmo 8362 Conditions for which ` A `...
issmo2 8363 Alternate definition of a ...
smoeq 8364 Equality theorem for stric...
smodm 8365 The domain of a strictly m...
smores 8366 A strictly monotone functi...
smores3 8367 A strictly monotone functi...
smores2 8368 A strictly monotone ordina...
smodm2 8369 The domain of a strictly m...
smofvon2 8370 The function values of a s...
iordsmo 8371 The identity relation rest...
smo0 8372 The null set is a strictly...
smofvon 8373 If ` B ` is a strictly mon...
smoel 8374 If ` x ` is less than ` y ...
smoiun 8375 The value of a strictly mo...
smoiso 8376 If ` F ` is an isomorphism...
smoel2 8377 A strictly monotone ordina...
smo11 8378 A strictly monotone ordina...
smoord 8379 A strictly monotone ordina...
smoword 8380 A strictly monotone ordina...
smogt 8381 A strictly monotone ordina...
smocdmdom 8382 The codomain of a strictly...
smoiso2 8383 The strictly monotone ordi...
dfrecs3 8386 The old definition of tran...
dfrecs3OLD 8387 Obsolete version of ~ dfre...
recseq 8388 Equality theorem for ` rec...
nfrecs 8389 Bound-variable hypothesis ...
tfrlem1 8390 A technical lemma for tran...
tfrlem3a 8391 Lemma for transfinite recu...
tfrlem3 8392 Lemma for transfinite recu...
tfrlem4 8393 Lemma for transfinite recu...
tfrlem5 8394 Lemma for transfinite recu...
recsfval 8395 Lemma for transfinite recu...
tfrlem6 8396 Lemma for transfinite recu...
tfrlem7 8397 Lemma for transfinite recu...
tfrlem8 8398 Lemma for transfinite recu...
tfrlem9 8399 Lemma for transfinite recu...
tfrlem9a 8400 Lemma for transfinite recu...
tfrlem10 8401 Lemma for transfinite recu...
tfrlem11 8402 Lemma for transfinite recu...
tfrlem12 8403 Lemma for transfinite recu...
tfrlem13 8404 Lemma for transfinite recu...
tfrlem14 8405 Lemma for transfinite recu...
tfrlem15 8406 Lemma for transfinite recu...
tfrlem16 8407 Lemma for finite recursion...
tfr1a 8408 A weak version of ~ tfr1 w...
tfr2a 8409 A weak version of ~ tfr2 w...
tfr2b 8410 Without assuming ~ ax-rep ...
tfr1 8411 Principle of Transfinite R...
tfr2 8412 Principle of Transfinite R...
tfr3 8413 Principle of Transfinite R...
tfr1ALT 8414 Alternate proof of ~ tfr1 ...
tfr2ALT 8415 Alternate proof of ~ tfr2 ...
tfr3ALT 8416 Alternate proof of ~ tfr3 ...
recsfnon 8417 Strong transfinite recursi...
recsval 8418 Strong transfinite recursi...
tz7.44lem1 8419 The ordered pair abstracti...
tz7.44-1 8420 The value of ` F ` at ` (/...
tz7.44-2 8421 The value of ` F ` at a su...
tz7.44-3 8422 The value of ` F ` at a li...
rdgeq1 8425 Equality theorem for the r...
rdgeq2 8426 Equality theorem for the r...
rdgeq12 8427 Equality theorem for the r...
nfrdg 8428 Bound-variable hypothesis ...
rdglem1 8429 Lemma used with the recurs...
rdgfun 8430 The recursive definition g...
rdgdmlim 8431 The domain of the recursiv...
rdgfnon 8432 The recursive definition g...
rdgvalg 8433 Value of the recursive def...
rdgval 8434 Value of the recursive def...
rdg0 8435 The initial value of the r...
rdgseg 8436 The initial segments of th...
rdgsucg 8437 The value of the recursive...
rdgsuc 8438 The value of the recursive...
rdglimg 8439 The value of the recursive...
rdglim 8440 The value of the recursive...
rdg0g 8441 The initial value of the r...
rdgsucmptf 8442 The value of the recursive...
rdgsucmptnf 8443 The value of the recursive...
rdgsucmpt2 8444 This version of ~ rdgsucmp...
rdgsucmpt 8445 The value of the recursive...
rdglim2 8446 The value of the recursive...
rdglim2a 8447 The value of the recursive...
rdg0n 8448 If ` A ` is a proper class...
frfnom 8449 The function generated by ...
fr0g 8450 The initial value resultin...
frsuc 8451 The successor value result...
frsucmpt 8452 The successor value result...
frsucmptn 8453 The value of the finite re...
frsucmpt2 8454 The successor value result...
tz7.48lem 8455 A way of showing an ordina...
tz7.48-2 8456 Proposition 7.48(2) of [Ta...
tz7.48-1 8457 Proposition 7.48(1) of [Ta...
tz7.48-3 8458 Proposition 7.48(3) of [Ta...
tz7.49 8459 Proposition 7.49 of [Takeu...
tz7.49c 8460 Corollary of Proposition 7...
seqomlem0 8463 Lemma for ` seqom ` . Cha...
seqomlem1 8464 Lemma for ` seqom ` . The...
seqomlem2 8465 Lemma for ` seqom ` . (Co...
seqomlem3 8466 Lemma for ` seqom ` . (Co...
seqomlem4 8467 Lemma for ` seqom ` . (Co...
seqomeq12 8468 Equality theorem for ` seq...
fnseqom 8469 An index-aware recursive d...
seqom0g 8470 Value of an index-aware re...
seqomsuc 8471 Value of an index-aware re...
omsucelsucb 8472 Membership is inherited by...
df1o2 8487 Expanded value of the ordi...
df2o3 8488 Expanded value of the ordi...
df2o2 8489 Expanded value of the ordi...
1oex 8490 Ordinal 1 is a set. (Cont...
2oex 8491 ` 2o ` is a set. (Contrib...
1on 8492 Ordinal 1 is an ordinal nu...
1onOLD 8493 Obsolete version of ~ 1on ...
2on 8494 Ordinal 2 is an ordinal nu...
2onOLD 8495 Obsolete version of ~ 2on ...
2on0 8496 Ordinal two is not zero. ...
ord3 8497 Ordinal 3 is an ordinal cl...
3on 8498 Ordinal 3 is an ordinal nu...
4on 8499 Ordinal 4 is an ordinal nu...
1oexOLD 8500 Obsolete version of ~ 1oex...
2oexOLD 8501 Obsolete version of ~ 2oex...
1n0 8502 Ordinal one is not equal t...
nlim1 8503 1 is not a limit ordinal. ...
nlim2 8504 2 is not a limit ordinal. ...
xp01disj 8505 Cartesian products with th...
xp01disjl 8506 Cartesian products with th...
ordgt0ge1 8507 Two ways to express that a...
ordge1n0 8508 An ordinal greater than or...
el1o 8509 Membership in ordinal one....
ord1eln01 8510 An ordinal that is not 0 o...
ord2eln012 8511 An ordinal that is not 0, ...
1ellim 8512 A limit ordinal contains 1...
2ellim 8513 A limit ordinal contains 2...
dif1o 8514 Two ways to say that ` A `...
ondif1 8515 Two ways to say that ` A `...
ondif2 8516 Two ways to say that ` A `...
2oconcl 8517 Closure of the pair swappi...
0lt1o 8518 Ordinal zero is less than ...
dif20el 8519 An ordinal greater than on...
0we1 8520 The empty set is a well-or...
brwitnlem 8521 Lemma for relations which ...
fnoa 8522 Functionality and domain o...
fnom 8523 Functionality and domain o...
fnoe 8524 Functionality and domain o...
oav 8525 Value of ordinal addition....
omv 8526 Value of ordinal multiplic...
oe0lem 8527 A helper lemma for ~ oe0 a...
oev 8528 Value of ordinal exponenti...
oevn0 8529 Value of ordinal exponenti...
oa0 8530 Addition with zero. Propo...
om0 8531 Ordinal multiplication wit...
oe0m 8532 Value of zero raised to an...
om0x 8533 Ordinal multiplication wit...
oe0m0 8534 Ordinal exponentiation wit...
oe0m1 8535 Ordinal exponentiation wit...
oe0 8536 Ordinal exponentiation wit...
oev2 8537 Alternate value of ordinal...
oasuc 8538 Addition with successor. ...
oesuclem 8539 Lemma for ~ oesuc . (Cont...
omsuc 8540 Multiplication with succes...
oesuc 8541 Ordinal exponentiation wit...
onasuc 8542 Addition with successor. ...
onmsuc 8543 Multiplication with succes...
onesuc 8544 Exponentiation with a succ...
oa1suc 8545 Addition with 1 is same as...
oalim 8546 Ordinal addition with a li...
omlim 8547 Ordinal multiplication wit...
oelim 8548 Ordinal exponentiation wit...
oacl 8549 Closure law for ordinal ad...
omcl 8550 Closure law for ordinal mu...
oecl 8551 Closure law for ordinal ex...
oa0r 8552 Ordinal addition with zero...
om0r 8553 Ordinal multiplication wit...
o1p1e2 8554 1 + 1 = 2 for ordinal numb...
o2p2e4 8555 2 + 2 = 4 for ordinal numb...
om1 8556 Ordinal multiplication wit...
om1r 8557 Ordinal multiplication wit...
oe1 8558 Ordinal exponentiation wit...
oe1m 8559 Ordinal exponentiation wit...
oaordi 8560 Ordering property of ordin...
oaord 8561 Ordering property of ordin...
oacan 8562 Left cancellation law for ...
oaword 8563 Weak ordering property of ...
oawordri 8564 Weak ordering property of ...
oaord1 8565 An ordinal is less than it...
oaword1 8566 An ordinal is less than or...
oaword2 8567 An ordinal is less than or...
oawordeulem 8568 Lemma for ~ oawordex . (C...
oawordeu 8569 Existence theorem for weak...
oawordexr 8570 Existence theorem for weak...
oawordex 8571 Existence theorem for weak...
oaordex 8572 Existence theorem for orde...
oa00 8573 An ordinal sum is zero iff...
oalimcl 8574 The ordinal sum with a lim...
oaass 8575 Ordinal addition is associ...
oarec 8576 Recursive definition of or...
oaf1o 8577 Left addition by a constan...
oacomf1olem 8578 Lemma for ~ oacomf1o . (C...
oacomf1o 8579 Define a bijection from ` ...
omordi 8580 Ordering property of ordin...
omord2 8581 Ordering property of ordin...
omord 8582 Ordering property of ordin...
omcan 8583 Left cancellation law for ...
omword 8584 Weak ordering property of ...
omwordi 8585 Weak ordering property of ...
omwordri 8586 Weak ordering property of ...
omword1 8587 An ordinal is less than or...
omword2 8588 An ordinal is less than or...
om00 8589 The product of two ordinal...
om00el 8590 The product of two nonzero...
omordlim 8591 Ordering involving the pro...
omlimcl 8592 The product of any nonzero...
odi 8593 Distributive law for ordin...
omass 8594 Multiplication of ordinal ...
oneo 8595 If an ordinal number is ev...
omeulem1 8596 Lemma for ~ omeu : existen...
omeulem2 8597 Lemma for ~ omeu : uniquen...
omopth2 8598 An ordered pair-like theor...
omeu 8599 The division algorithm for...
oen0 8600 Ordinal exponentiation wit...
oeordi 8601 Ordering law for ordinal e...
oeord 8602 Ordering property of ordin...
oecan 8603 Left cancellation law for ...
oeword 8604 Weak ordering property of ...
oewordi 8605 Weak ordering property of ...
oewordri 8606 Weak ordering property of ...
oeworde 8607 Ordinal exponentiation com...
oeordsuc 8608 Ordering property of ordin...
oelim2 8609 Ordinal exponentiation wit...
oeoalem 8610 Lemma for ~ oeoa . (Contr...
oeoa 8611 Sum of exponents law for o...
oeoelem 8612 Lemma for ~ oeoe . (Contr...
oeoe 8613 Product of exponents law f...
oelimcl 8614 The ordinal exponential wi...
oeeulem 8615 Lemma for ~ oeeu . (Contr...
oeeui 8616 The division algorithm for...
oeeu 8617 The division algorithm for...
nna0 8618 Addition with zero. Theor...
nnm0 8619 Multiplication with zero. ...
nnasuc 8620 Addition with successor. ...
nnmsuc 8621 Multiplication with succes...
nnesuc 8622 Exponentiation with a succ...
nna0r 8623 Addition to zero. Remark ...
nnm0r 8624 Multiplication with zero. ...
nnacl 8625 Closure of addition of nat...
nnmcl 8626 Closure of multiplication ...
nnecl 8627 Closure of exponentiation ...
nnacli 8628 ` _om ` is closed under ad...
nnmcli 8629 ` _om ` is closed under mu...
nnarcl 8630 Reverse closure law for ad...
nnacom 8631 Addition of natural number...
nnaordi 8632 Ordering property of addit...
nnaord 8633 Ordering property of addit...
nnaordr 8634 Ordering property of addit...
nnawordi 8635 Adding to both sides of an...
nnaass 8636 Addition of natural number...
nndi 8637 Distributive law for natur...
nnmass 8638 Multiplication of natural ...
nnmsucr 8639 Multiplication with succes...
nnmcom 8640 Multiplication of natural ...
nnaword 8641 Weak ordering property of ...
nnacan 8642 Cancellation law for addit...
nnaword1 8643 Weak ordering property of ...
nnaword2 8644 Weak ordering property of ...
nnmordi 8645 Ordering property of multi...
nnmord 8646 Ordering property of multi...
nnmword 8647 Weak ordering property of ...
nnmcan 8648 Cancellation law for multi...
nnmwordi 8649 Weak ordering property of ...
nnmwordri 8650 Weak ordering property of ...
nnawordex 8651 Equivalence for weak order...
nnaordex 8652 Equivalence for ordering. ...
nnaordex2 8653 Equivalence for ordering. ...
1onn 8654 The ordinal 1 is a natural...
1onnALT 8655 Shorter proof of ~ 1onn us...
2onn 8656 The ordinal 2 is a natural...
2onnALT 8657 Shorter proof of ~ 2onn us...
3onn 8658 The ordinal 3 is a natural...
4onn 8659 The ordinal 4 is a natural...
1one2o 8660 Ordinal one is not ordinal...
oaabslem 8661 Lemma for ~ oaabs . (Cont...
oaabs 8662 Ordinal addition absorbs a...
oaabs2 8663 The absorption law ~ oaabs...
omabslem 8664 Lemma for ~ omabs . (Cont...
omabs 8665 Ordinal multiplication is ...
nnm1 8666 Multiply an element of ` _...
nnm2 8667 Multiply an element of ` _...
nn2m 8668 Multiply an element of ` _...
nnneo 8669 If a natural number is eve...
nneob 8670 A natural number is even i...
omsmolem 8671 Lemma for ~ omsmo . (Cont...
omsmo 8672 A strictly monotonic ordin...
omopthlem1 8673 Lemma for ~ omopthi . (Co...
omopthlem2 8674 Lemma for ~ omopthi . (Co...
omopthi 8675 An ordered pair theorem fo...
omopth 8676 An ordered pair theorem fo...
nnasmo 8677 There is at most one left ...
eldifsucnn 8678 Condition for membership i...
on2recsfn 8681 Show that double recursion...
on2recsov 8682 Calculate the value of the...
on2ind 8683 Double induction over ordi...
on3ind 8684 Triple induction over ordi...
coflton 8685 Cofinality theorem for ord...
cofon1 8686 Cofinality theorem for ord...
cofon2 8687 Cofinality theorem for ord...
cofonr 8688 Inverse cofinality law for...
naddfn 8689 Natural addition is a func...
naddcllem 8690 Lemma for ordinal addition...
naddcl 8691 Closure law for natural ad...
naddov 8692 The value of natural addit...
naddov2 8693 Alternate expression for n...
naddov3 8694 Alternate expression for n...
naddf 8695 Function statement for nat...
naddcom 8696 Natural addition commutes....
naddrid 8697 Ordinal zero is the additi...
naddlid 8698 Ordinal zero is the additi...
naddssim 8699 Ordinal less-than-or-equal...
naddelim 8700 Ordinal less-than is prese...
naddel1 8701 Ordinal less-than is not a...
naddel2 8702 Ordinal less-than is not a...
naddss1 8703 Ordinal less-than-or-equal...
naddss2 8704 Ordinal less-than-or-equal...
naddword1 8705 Weak-ordering principle fo...
naddword2 8706 Weak-ordering principle fo...
naddunif 8707 Uniformity theorem for nat...
naddasslem1 8708 Lemma for ~ naddass . Exp...
naddasslem2 8709 Lemma for ~ naddass . Exp...
naddass 8710 Natural ordinal addition i...
nadd32 8711 Commutative/associative la...
nadd4 8712 Rearragement of terms in a...
nadd42 8713 Rearragement of terms in a...
naddel12 8714 Natural addition to both s...
dfer2 8719 Alternate definition of eq...
dfec2 8721 Alternate definition of ` ...
ecexg 8722 An equivalence class modul...
ecexr 8723 A nonempty equivalence cla...
ereq1 8725 Equality theorem for equiv...
ereq2 8726 Equality theorem for equiv...
errel 8727 An equivalence relation is...
erdm 8728 The domain of an equivalen...
ercl 8729 Elementhood in the field o...
ersym 8730 An equivalence relation is...
ercl2 8731 Elementhood in the field o...
ersymb 8732 An equivalence relation is...
ertr 8733 An equivalence relation is...
ertrd 8734 A transitivity relation fo...
ertr2d 8735 A transitivity relation fo...
ertr3d 8736 A transitivity relation fo...
ertr4d 8737 A transitivity relation fo...
erref 8738 An equivalence relation is...
ercnv 8739 The converse of an equival...
errn 8740 The range and domain of an...
erssxp 8741 An equivalence relation is...
erex 8742 An equivalence relation is...
erexb 8743 An equivalence relation is...
iserd 8744 A reflexive, symmetric, tr...
iseri 8745 A reflexive, symmetric, tr...
iseriALT 8746 Alternate proof of ~ iseri...
brdifun 8747 Evaluate the incomparabili...
swoer 8748 Incomparability under a st...
swoord1 8749 The incomparability equiva...
swoord2 8750 The incomparability equiva...
swoso 8751 If the incomparability rel...
eqerlem 8752 Lemma for ~ eqer . (Contr...
eqer 8753 Equivalence relation invol...
ider 8754 The identity relation is a...
0er 8755 The empty set is an equiva...
eceq1 8756 Equality theorem for equiv...
eceq1d 8757 Equality theorem for equiv...
eceq2 8758 Equality theorem for equiv...
eceq2i 8759 Equality theorem for the `...
eceq2d 8760 Equality theorem for the `...
elecg 8761 Membership in an equivalen...
ecref 8762 All elements are in their ...
elec 8763 Membership in an equivalen...
relelec 8764 Membership in an equivalen...
ecss 8765 An equivalence class is a ...
ecdmn0 8766 A representative of a none...
ereldm 8767 Equality of equivalence cl...
erth 8768 Basic property of equivale...
erth2 8769 Basic property of equivale...
erthi 8770 Basic property of equivale...
erdisj 8771 Equivalence classes do not...
ecidsn 8772 An equivalence class modul...
qseq1 8773 Equality theorem for quoti...
qseq2 8774 Equality theorem for quoti...
qseq2i 8775 Equality theorem for quoti...
qseq2d 8776 Equality theorem for quoti...
qseq12 8777 Equality theorem for quoti...
elqsg 8778 Closed form of ~ elqs . (...
elqs 8779 Membership in a quotient s...
elqsi 8780 Membership in a quotient s...
elqsecl 8781 Membership in a quotient s...
ecelqsg 8782 Membership of an equivalen...
ecelqsi 8783 Membership of an equivalen...
ecopqsi 8784 "Closure" law for equivale...
qsexg 8785 A quotient set exists. (C...
qsex 8786 A quotient set exists. (C...
uniqs 8787 The union of a quotient se...
qsss 8788 A quotient set is a set of...
uniqs2 8789 The union of a quotient se...
snec 8790 The singleton of an equiva...
ecqs 8791 Equivalence class in terms...
ecid 8792 A set is equal to its cose...
qsid 8793 A set is equal to its quot...
ectocld 8794 Implicit substitution of c...
ectocl 8795 Implicit substitution of c...
elqsn0 8796 A quotient set does not co...
ecelqsdm 8797 Membership of an equivalen...
xpider 8798 A Cartesian square is an e...
iiner 8799 The intersection of a none...
riiner 8800 The relative intersection ...
erinxp 8801 A restricted equivalence r...
ecinxp 8802 Restrict the relation in a...
qsinxp 8803 Restrict the equivalence r...
qsdisj 8804 Members of a quotient set ...
qsdisj2 8805 A quotient set is a disjoi...
qsel 8806 If an element of a quotien...
uniinqs 8807 Class union distributes ov...
qliftlem 8808 Lemma for theorems about a...
qliftrel 8809 ` F ` , a function lift, i...
qliftel 8810 Elementhood in the relatio...
qliftel1 8811 Elementhood in the relatio...
qliftfun 8812 The function ` F ` is the ...
qliftfund 8813 The function ` F ` is the ...
qliftfuns 8814 The function ` F ` is the ...
qliftf 8815 The domain and codomain of...
qliftval 8816 The value of the function ...
ecoptocl 8817 Implicit substitution of c...
2ecoptocl 8818 Implicit substitution of c...
3ecoptocl 8819 Implicit substitution of c...
brecop 8820 Binary relation on a quoti...
brecop2 8821 Binary relation on a quoti...
eroveu 8822 Lemma for ~ erov and ~ ero...
erovlem 8823 Lemma for ~ erov and ~ ero...
erov 8824 The value of an operation ...
eroprf 8825 Functionality of an operat...
erov2 8826 The value of an operation ...
eroprf2 8827 Functionality of an operat...
ecopoveq 8828 This is the first of sever...
ecopovsym 8829 Assuming the operation ` F...
ecopovtrn 8830 Assuming that operation ` ...
ecopover 8831 Assuming that operation ` ...
eceqoveq 8832 Equality of equivalence re...
ecovcom 8833 Lemma used to transfer a c...
ecovass 8834 Lemma used to transfer an ...
ecovdi 8835 Lemma used to transfer a d...
mapprc 8840 When ` A ` is a proper cla...
pmex 8841 The class of all partial f...
mapex 8842 The class of all functions...
fnmap 8843 Set exponentiation has a u...
fnpm 8844 Partial function exponenti...
reldmmap 8845 Set exponentiation is a we...
mapvalg 8846 The value of set exponenti...
pmvalg 8847 The value of the partial m...
mapval 8848 The value of set exponenti...
elmapg 8849 Membership relation for se...
elmapd 8850 Deduction form of ~ elmapg...
elmapdd 8851 Deduction associated with ...
mapdm0 8852 The empty set is the only ...
elpmg 8853 The predicate "is a partia...
elpm2g 8854 The predicate "is a partia...
elpm2r 8855 Sufficient condition for b...
elpmi 8856 A partial function is a fu...
pmfun 8857 A partial function is a fu...
elmapex 8858 Eliminate antecedent for m...
elmapi 8859 A mapping is a function, f...
mapfset 8860 If ` B ` is a set, the val...
mapssfset 8861 The value of the set expon...
mapfoss 8862 The value of the set expon...
fsetsspwxp 8863 The class of all functions...
fset0 8864 The set of functions from ...
fsetdmprc0 8865 The set of functions with ...
fsetex 8866 The set of functions betwe...
f1setex 8867 The set of injections betw...
fosetex 8868 The set of surjections bet...
f1osetex 8869 The set of bijections betw...
fsetfcdm 8870 The class of functions wit...
fsetfocdm 8871 The class of functions wit...
fsetprcnex 8872 The class of all functions...
fsetcdmex 8873 The class of all functions...
fsetexb 8874 The class of all functions...
elmapfn 8875 A mapping is a function wi...
elmapfun 8876 A mapping is always a func...
elmapssres 8877 A restricted mapping is a ...
fpmg 8878 A total function is a part...
pmss12g 8879 Subset relation for the se...
pmresg 8880 Elementhood of a restricte...
elmap 8881 Membership relation for se...
mapval2 8882 Alternate expression for t...
elpm 8883 The predicate "is a partia...
elpm2 8884 The predicate "is a partia...
fpm 8885 A total function is a part...
mapsspm 8886 Set exponentiation is a su...
pmsspw 8887 Partial maps are a subset ...
mapsspw 8888 Set exponentiation is a su...
mapfvd 8889 The value of a function th...
elmapresaun 8890 ~ fresaun transposed to ma...
fvmptmap 8891 Special case of ~ fvmpt fo...
map0e 8892 Set exponentiation with an...
map0b 8893 Set exponentiation with an...
map0g 8894 Set exponentiation is empt...
0map0sn0 8895 The set of mappings of the...
mapsnd 8896 The value of set exponenti...
map0 8897 Set exponentiation is empt...
mapsn 8898 The value of set exponenti...
mapss 8899 Subset inheritance for set...
fdiagfn 8900 Functionality of the diago...
fvdiagfn 8901 Functionality of the diago...
mapsnconst 8902 Every singleton map is a c...
mapsncnv 8903 Expression for the inverse...
mapsnf1o2 8904 Explicit bijection between...
mapsnf1o3 8905 Explicit bijection in the ...
ralxpmap 8906 Quantification over functi...
dfixp 8909 Eliminate the expression `...
ixpsnval 8910 The value of an infinite C...
elixp2 8911 Membership in an infinite ...
fvixp 8912 Projection of a factor of ...
ixpfn 8913 A nuple is a function. (C...
elixp 8914 Membership in an infinite ...
elixpconst 8915 Membership in an infinite ...
ixpconstg 8916 Infinite Cartesian product...
ixpconst 8917 Infinite Cartesian product...
ixpeq1 8918 Equality theorem for infin...
ixpeq1d 8919 Equality theorem for infin...
ss2ixp 8920 Subclass theorem for infin...
ixpeq2 8921 Equality theorem for infin...
ixpeq2dva 8922 Equality theorem for infin...
ixpeq2dv 8923 Equality theorem for infin...
cbvixp 8924 Change bound variable in a...
cbvixpv 8925 Change bound variable in a...
nfixpw 8926 Bound-variable hypothesis ...
nfixp 8927 Bound-variable hypothesis ...
nfixp1 8928 The index variable in an i...
ixpprc 8929 A cartesian product of pro...
ixpf 8930 A member of an infinite Ca...
uniixp 8931 The union of an infinite C...
ixpexg 8932 The existence of an infini...
ixpin 8933 The intersection of two in...
ixpiin 8934 The indexed intersection o...
ixpint 8935 The intersection of a coll...
ixp0x 8936 An infinite Cartesian prod...
ixpssmap2g 8937 An infinite Cartesian prod...
ixpssmapg 8938 An infinite Cartesian prod...
0elixp 8939 Membership of the empty se...
ixpn0 8940 The infinite Cartesian pro...
ixp0 8941 The infinite Cartesian pro...
ixpssmap 8942 An infinite Cartesian prod...
resixp 8943 Restriction of an element ...
undifixp 8944 Union of two projections o...
mptelixpg 8945 Condition for an explicit ...
resixpfo 8946 Restriction of elements of...
elixpsn 8947 Membership in a class of s...
ixpsnf1o 8948 A bijection between a clas...
mapsnf1o 8949 A bijection between a set ...
boxriin 8950 A rectangular subset of a ...
boxcutc 8951 The relative complement of...
relen 8960 Equinumerosity is a relati...
reldom 8961 Dominance is a relation. ...
relsdom 8962 Strict dominance is a rela...
encv 8963 If two classes are equinum...
breng 8964 Equinumerosity relation. ...
bren 8965 Equinumerosity relation. ...
brenOLD 8966 Obsolete version of ~ bren...
brdom2g 8967 Dominance relation. This ...
brdomg 8968 Dominance relation. (Cont...
brdomgOLD 8969 Obsolete version of ~ brdo...
brdomi 8970 Dominance relation. (Cont...
brdomiOLD 8971 Obsolete version of ~ brdo...
brdom 8972 Dominance relation. (Cont...
domen 8973 Dominance in terms of equi...
domeng 8974 Dominance in terms of equi...
ctex 8975 A countable set is a set. ...
f1oen4g 8976 The domain and range of a ...
f1dom4g 8977 The domain of a one-to-one...
f1oen3g 8978 The domain and range of a ...
f1dom3g 8979 The domain of a one-to-one...
f1oen2g 8980 The domain and range of a ...
f1dom2g 8981 The domain of a one-to-one...
f1dom2gOLD 8982 Obsolete version of ~ f1do...
f1oeng 8983 The domain and range of a ...
f1domg 8984 The domain of a one-to-one...
f1oen 8985 The domain and range of a ...
f1dom 8986 The domain of a one-to-one...
brsdom 8987 Strict dominance relation,...
isfi 8988 Express " ` A ` is finite"...
enssdom 8989 Equinumerosity implies dom...
dfdom2 8990 Alternate definition of do...
endom 8991 Equinumerosity implies dom...
sdomdom 8992 Strict dominance implies d...
sdomnen 8993 Strict dominance implies n...
brdom2 8994 Dominance in terms of stri...
bren2 8995 Equinumerosity expressed i...
enrefg 8996 Equinumerosity is reflexiv...
enref 8997 Equinumerosity is reflexiv...
eqeng 8998 Equality implies equinumer...
domrefg 8999 Dominance is reflexive. (...
en2d 9000 Equinumerosity inference f...
en3d 9001 Equinumerosity inference f...
en2i 9002 Equinumerosity inference f...
en3i 9003 Equinumerosity inference f...
dom2lem 9004 A mapping (first hypothesi...
dom2d 9005 A mapping (first hypothesi...
dom3d 9006 A mapping (first hypothesi...
dom2 9007 A mapping (first hypothesi...
dom3 9008 A mapping (first hypothesi...
idssen 9009 Equality implies equinumer...
domssl 9010 If ` A ` is a subset of ` ...
domssr 9011 If ` C ` is a superset of ...
ssdomg 9012 A set dominates its subset...
ener 9013 Equinumerosity is an equiv...
ensymb 9014 Symmetry of equinumerosity...
ensym 9015 Symmetry of equinumerosity...
ensymi 9016 Symmetry of equinumerosity...
ensymd 9017 Symmetry of equinumerosity...
entr 9018 Transitivity of equinumero...
domtr 9019 Transitivity of dominance ...
entri 9020 A chained equinumerosity i...
entr2i 9021 A chained equinumerosity i...
entr3i 9022 A chained equinumerosity i...
entr4i 9023 A chained equinumerosity i...
endomtr 9024 Transitivity of equinumero...
domentr 9025 Transitivity of dominance ...
f1imaeng 9026 If a function is one-to-on...
f1imaen2g 9027 If a function is one-to-on...
f1imaen 9028 If a function is one-to-on...
en0 9029 The empty set is equinumer...
en0OLD 9030 Obsolete version of ~ en0 ...
en0ALT 9031 Shorter proof of ~ en0 , d...
en0r 9032 The empty set is equinumer...
ensn1 9033 A singleton is equinumerou...
ensn1OLD 9034 Obsolete version of ~ ensn...
ensn1g 9035 A singleton is equinumerou...
enpr1g 9036 ` { A , A } ` has only one...
en1 9037 A set is equinumerous to o...
en1OLD 9038 Obsolete version of ~ en1 ...
en1b 9039 A set is equinumerous to o...
en1bOLD 9040 Obsolete version of ~ en1b...
reuen1 9041 Two ways to express "exact...
euen1 9042 Two ways to express "exact...
euen1b 9043 Two ways to express " ` A ...
en1uniel 9044 A singleton contains its s...
en1unielOLD 9045 Obsolete version of ~ en1u...
2dom 9046 A set that dominates ordin...
fundmen 9047 A function is equinumerous...
fundmeng 9048 A function is equinumerous...
cnven 9049 A relational set is equinu...
cnvct 9050 If a set is countable, so ...
fndmeng 9051 A function is equinumerate...
mapsnend 9052 Set exponentiation to a si...
mapsnen 9053 Set exponentiation to a si...
snmapen 9054 Set exponentiation: a sing...
snmapen1 9055 Set exponentiation: a sing...
map1 9056 Set exponentiation: ordina...
en2sn 9057 Two singletons are equinum...
en2snOLD 9058 Obsolete version of ~ en2s...
en2snOLDOLD 9059 Obsolete version of ~ en2s...
snfi 9060 A singleton is finite. (C...
fiprc 9061 The class of finite sets i...
unen 9062 Equinumerosity of union of...
enrefnn 9063 Equinumerosity is reflexiv...
en2prd 9064 Two unordered pairs are eq...
enpr2d 9065 A pair with distinct eleme...
enpr2dOLD 9066 Obsolete version of ~ enpr...
ssct 9067 Any subset of a countable ...
ssctOLD 9068 Obsolete version of ~ ssct...
difsnen 9069 All decrements of a set ar...
domdifsn 9070 Dominance over a set with ...
xpsnen 9071 A set is equinumerous to i...
xpsneng 9072 A set is equinumerous to i...
xp1en 9073 One times a cardinal numbe...
endisj 9074 Any two sets are equinumer...
undom 9075 Dominance law for union. ...
undomOLD 9076 Obsolete version of ~ undo...
xpcomf1o 9077 The canonical bijection fr...
xpcomco 9078 Composition with the bijec...
xpcomen 9079 Commutative law for equinu...
xpcomeng 9080 Commutative law for equinu...
xpsnen2g 9081 A set is equinumerous to i...
xpassen 9082 Associative law for equinu...
xpdom2 9083 Dominance law for Cartesia...
xpdom2g 9084 Dominance law for Cartesia...
xpdom1g 9085 Dominance law for Cartesia...
xpdom3 9086 A set is dominated by its ...
xpdom1 9087 Dominance law for Cartesia...
domunsncan 9088 A singleton cancellation l...
omxpenlem 9089 Lemma for ~ omxpen . (Con...
omxpen 9090 The cardinal and ordinal p...
omf1o 9091 Construct an explicit bije...
pw2f1olem 9092 Lemma for ~ pw2f1o . (Con...
pw2f1o 9093 The power set of a set is ...
pw2eng 9094 The power set of a set is ...
pw2en 9095 The power set of a set is ...
fopwdom 9096 Covering implies injection...
enfixsn 9097 Given two equipollent sets...
sucdom2OLD 9098 Obsolete version of ~ sucd...
sbthlem1 9099 Lemma for ~ sbth . (Contr...
sbthlem2 9100 Lemma for ~ sbth . (Contr...
sbthlem3 9101 Lemma for ~ sbth . (Contr...
sbthlem4 9102 Lemma for ~ sbth . (Contr...
sbthlem5 9103 Lemma for ~ sbth . (Contr...
sbthlem6 9104 Lemma for ~ sbth . (Contr...
sbthlem7 9105 Lemma for ~ sbth . (Contr...
sbthlem8 9106 Lemma for ~ sbth . (Contr...
sbthlem9 9107 Lemma for ~ sbth . (Contr...
sbthlem10 9108 Lemma for ~ sbth . (Contr...
sbth 9109 Schroeder-Bernstein Theore...
sbthb 9110 Schroeder-Bernstein Theore...
sbthcl 9111 Schroeder-Bernstein Theore...
dfsdom2 9112 Alternate definition of st...
brsdom2 9113 Alternate definition of st...
sdomnsym 9114 Strict dominance is asymme...
domnsym 9115 Theorem 22(i) of [Suppes] ...
0domg 9116 Any set dominates the empt...
0domgOLD 9117 Obsolete version of ~ 0dom...
dom0 9118 A set dominated by the emp...
dom0OLD 9119 Obsolete version of ~ dom0...
0sdomg 9120 A set strictly dominates t...
0sdomgOLD 9121 Obsolete version of ~ 0sdo...
0dom 9122 Any set dominates the empt...
0sdom 9123 A set strictly dominates t...
sdom0 9124 The empty set does not str...
sdom0OLD 9125 Obsolete version of ~ sdom...
sdomdomtr 9126 Transitivity of strict dom...
sdomentr 9127 Transitivity of strict dom...
domsdomtr 9128 Transitivity of dominance ...
ensdomtr 9129 Transitivity of equinumero...
sdomirr 9130 Strict dominance is irrefl...
sdomtr 9131 Strict dominance is transi...
sdomn2lp 9132 Strict dominance has no 2-...
enen1 9133 Equality-like theorem for ...
enen2 9134 Equality-like theorem for ...
domen1 9135 Equality-like theorem for ...
domen2 9136 Equality-like theorem for ...
sdomen1 9137 Equality-like theorem for ...
sdomen2 9138 Equality-like theorem for ...
domtriord 9139 Dominance is trichotomous ...
sdomel 9140 For ordinals, strict domin...
sdomdif 9141 The difference of a set fr...
onsdominel 9142 An ordinal with more eleme...
domunsn 9143 Dominance over a set with ...
fodomr 9144 There exists a mapping fro...
pwdom 9145 Injection of sets implies ...
canth2 9146 Cantor's Theorem. No set ...
canth2g 9147 Cantor's theorem with the ...
2pwuninel 9148 The power set of the power...
2pwne 9149 No set equals the power se...
disjen 9150 A stronger form of ~ pwuni...
disjenex 9151 Existence version of ~ dis...
domss2 9152 A corollary of ~ disjenex ...
domssex2 9153 A corollary of ~ disjenex ...
domssex 9154 Weakening of ~ domssex2 to...
xpf1o 9155 Construct a bijection on a...
xpen 9156 Equinumerosity law for Car...
mapen 9157 Two set exponentiations ar...
mapdom1 9158 Order-preserving property ...
mapxpen 9159 Equinumerosity law for dou...
xpmapenlem 9160 Lemma for ~ xpmapen . (Co...
xpmapen 9161 Equinumerosity law for set...
mapunen 9162 Equinumerosity law for set...
map2xp 9163 A cardinal power with expo...
mapdom2 9164 Order-preserving property ...
mapdom3 9165 Set exponentiation dominat...
pwen 9166 If two sets are equinumero...
ssenen 9167 Equinumerosity of equinume...
limenpsi 9168 A limit ordinal is equinum...
limensuci 9169 A limit ordinal is equinum...
limensuc 9170 A limit ordinal is equinum...
infensuc 9171 Any infinite ordinal is eq...
dif1enlem 9172 Lemma for ~ rexdif1en and ...
dif1enlemOLD 9173 Obsolete version of ~ dif1...
rexdif1en 9174 If a set is equinumerous t...
rexdif1enOLD 9175 Obsolete version of ~ rexd...
dif1en 9176 If a set ` A ` is equinume...
dif1ennn 9177 If a set ` A ` is equinume...
dif1enOLD 9178 Obsolete version of ~ dif1...
findcard 9179 Schema for induction on th...
findcard2 9180 Schema for induction on th...
findcard2s 9181 Variation of ~ findcard2 r...
findcard2d 9182 Deduction version of ~ fin...
nnfi 9183 Natural numbers are finite...
pssnn 9184 A proper subset of a natur...
ssnnfi 9185 A subset of a natural numb...
ssnnfiOLD 9186 Obsolete version of ~ ssnn...
0fin 9187 The empty set is finite. ...
unfi 9188 The union of two finite se...
ssfi 9189 A subset of a finite set i...
ssfiALT 9190 Shorter proof of ~ ssfi us...
imafi 9191 Images of finite sets are ...
pwfir 9192 If the power set of a set ...
pwfilem 9193 Lemma for ~ pwfi . (Contr...
pwfi 9194 The power set of a finite ...
diffi 9195 If ` A ` is finite, ` ( A ...
cnvfi 9196 If a set is finite, its co...
fnfi 9197 A version of ~ fnex for fi...
f1oenfi 9198 If the domain of a one-to-...
f1oenfirn 9199 If the range of a one-to-o...
f1domfi 9200 If the codomain of a one-t...
f1domfi2 9201 If the domain of a one-to-...
enreffi 9202 Equinumerosity is reflexiv...
ensymfib 9203 Symmetry of equinumerosity...
entrfil 9204 Transitivity of equinumero...
enfii 9205 A set equinumerous to a fi...
enfi 9206 Equinumerous sets have the...
enfiALT 9207 Shorter proof of ~ enfi us...
domfi 9208 A set dominated by a finit...
entrfi 9209 Transitivity of equinumero...
entrfir 9210 Transitivity of equinumero...
domtrfil 9211 Transitivity of dominance ...
domtrfi 9212 Transitivity of dominance ...
domtrfir 9213 Transitivity of dominance ...
f1imaenfi 9214 If a function is one-to-on...
ssdomfi 9215 A finite set dominates its...
ssdomfi2 9216 A set dominates its finite...
sbthfilem 9217 Lemma for ~ sbthfi . (Con...
sbthfi 9218 Schroeder-Bernstein Theore...
domnsymfi 9219 If a set dominates a finit...
sdomdomtrfi 9220 Transitivity of strict dom...
domsdomtrfi 9221 Transitivity of dominance ...
sucdom2 9222 Strict dominance of a set ...
phplem1 9223 Lemma for Pigeonhole Princ...
phplem2 9224 Lemma for Pigeonhole Princ...
nneneq 9225 Two equinumerous natural n...
php 9226 Pigeonhole Principle. A n...
php2 9227 Corollary of Pigeonhole Pr...
php3 9228 Corollary of Pigeonhole Pr...
php4 9229 Corollary of the Pigeonhol...
php5 9230 Corollary of the Pigeonhol...
phpeqd 9231 Corollary of the Pigeonhol...
nndomog 9232 Cardinal ordering agrees w...
phplem1OLD 9233 Obsolete lemma for ~ php a...
phplem2OLD 9234 Obsolete lemma for ~ php a...
phplem3OLD 9235 Obsolete version of ~ phpl...
phplem4OLD 9236 Obsolete version of ~ phpl...
nneneqOLD 9237 Obsolete version of ~ nnen...
phpOLD 9238 Obsolete version of ~ php ...
php2OLD 9239 Obsolete version of ~ php2...
php3OLD 9240 Obsolete version of ~ php3...
phpeqdOLD 9241 Obsolete version of ~ phpe...
nndomogOLD 9242 Obsolete version of ~ nndo...
snnen2oOLD 9243 Obsolete version of ~ snne...
onomeneq 9244 An ordinal number equinume...
onomeneqOLD 9245 Obsolete version of ~ onom...
onfin 9246 An ordinal number is finit...
onfin2 9247 A set is a natural number ...
nnfiOLD 9248 Obsolete version of ~ nnfi...
nndomo 9249 Cardinal ordering agrees w...
nnsdomo 9250 Cardinal ordering agrees w...
sucdom 9251 Strict dominance of a set ...
sucdomOLD 9252 Obsolete version of ~ sucd...
snnen2o 9253 A singleton ` { A } ` is n...
0sdom1dom 9254 Strict dominance over 0 is...
0sdom1domALT 9255 Alternate proof of ~ 0sdom...
1sdom2 9256 Ordinal 1 is strictly domi...
1sdom2ALT 9257 Alternate proof of ~ 1sdom...
sdom1 9258 A set has less than one me...
sdom1OLD 9259 Obsolete version of ~ sdom...
modom 9260 Two ways to express "at mo...
modom2 9261 Two ways to express "at mo...
rex2dom 9262 A set that has at least 2 ...
1sdom2dom 9263 Strict dominance over 1 is...
1sdom 9264 A set that strictly domina...
1sdomOLD 9265 Obsolete version of ~ 1sdo...
unxpdomlem1 9266 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 9267 Lemma for ~ unxpdom . (Co...
unxpdomlem3 9268 Lemma for ~ unxpdom . (Co...
unxpdom 9269 Cartesian product dominate...
unxpdom2 9270 Corollary of ~ unxpdom . ...
sucxpdom 9271 Cartesian product dominate...
pssinf 9272 A set equinumerous to a pr...
fisseneq 9273 A finite set is equal to i...
ominf 9274 The set of natural numbers...
ominfOLD 9275 Obsolete version of ~ omin...
isinf 9276 Any set that is not finite...
isinfOLD 9277 Obsolete version of ~ isin...
fineqvlem 9278 Lemma for ~ fineqv . (Con...
fineqv 9279 If the Axiom of Infinity i...
enfiiOLD 9280 Obsolete version of ~ enfi...
pssnnOLD 9281 Obsolete version of ~ pssn...
xpfir 9282 The components of a nonemp...
ssfid 9283 A subset of a finite set i...
infi 9284 The intersection of two se...
rabfi 9285 A restricted class built f...
finresfin 9286 The restriction of a finit...
f1finf1o 9287 Any injection from one fin...
f1finf1oOLD 9288 Obsolete version of ~ f1fi...
nfielex 9289 If a class is not finite, ...
en1eqsn 9290 A set with one element is ...
en1eqsnOLD 9291 Obsolete version of ~ en1e...
en1eqsnbi 9292 A set containing an elemen...
dif1ennnALT 9293 Alternate proof of ~ dif1e...
enp1ilem 9294 Lemma for uses of ~ enp1i ...
enp1i 9295 Proof induction for ~ en2 ...
enp1iOLD 9296 Obsolete version of ~ enp1...
en2 9297 A set equinumerous to ordi...
en3 9298 A set equinumerous to ordi...
en4 9299 A set equinumerous to ordi...
findcard2OLD 9300 Obsolete version of ~ find...
findcard3 9301 Schema for strong inductio...
findcard3OLD 9302 Obsolete version of ~ find...
ac6sfi 9303 A version of ~ ac6s for fi...
frfi 9304 A partial order is well-fo...
fimax2g 9305 A finite set has a maximum...
fimaxg 9306 A finite set has a maximum...
fisupg 9307 Lemma showing existence an...
wofi 9308 A total order on a finite ...
ordunifi 9309 The maximum of a finite co...
nnunifi 9310 The union (supremum) of a ...
unblem1 9311 Lemma for ~ unbnn . After...
unblem2 9312 Lemma for ~ unbnn . The v...
unblem3 9313 Lemma for ~ unbnn . The v...
unblem4 9314 Lemma for ~ unbnn . The f...
unbnn 9315 Any unbounded subset of na...
unbnn2 9316 Version of ~ unbnn that do...
isfinite2 9317 Any set strictly dominated...
nnsdomg 9318 Omega strictly dominates a...
nnsdomgOLD 9319 Obsolete version of ~ nnsd...
isfiniteg 9320 A set is finite iff it is ...
infsdomnn 9321 An infinite set strictly d...
infsdomnnOLD 9322 Obsolete version of ~ infs...
infn0 9323 An infinite set is not emp...
infn0ALT 9324 Shorter proof of ~ infn0 u...
fin2inf 9325 This (useless) theorem, wh...
unfilem1 9326 Lemma for proving that the...
unfilem2 9327 Lemma for proving that the...
unfilem3 9328 Lemma for proving that the...
unfiOLD 9329 Obsolete version of ~ unfi...
unfir 9330 If a union is finite, the ...
unfi2 9331 The union of two finite se...
difinf 9332 An infinite set ` A ` minu...
xpfi 9333 The Cartesian product of t...
xpfiOLD 9334 Obsolete version of ~ xpfi...
3xpfi 9335 The Cartesian product of t...
domunfican 9336 A finite set union cancell...
infcntss 9337 Every infinite set has a d...
prfi 9338 An unordered pair is finit...
tpfi 9339 An unordered triple is fin...
fiint 9340 Equivalent ways of stating...
fodomfi 9341 An onto function implies d...
fodomfib 9342 Equivalence of an onto map...
fofinf1o 9343 Any surjection from one fi...
rneqdmfinf1o 9344 Any function from a finite...
fidomdm 9345 Any finite set dominates i...
dmfi 9346 The domain of a finite set...
fundmfibi 9347 A function is finite if an...
resfnfinfin 9348 The restriction of a funct...
residfi 9349 A restricted identity func...
cnvfiALT 9350 Shorter proof of ~ cnvfi u...
rnfi 9351 The range of a finite set ...
f1dmvrnfibi 9352 A one-to-one function whos...
f1vrnfibi 9353 A one-to-one function whic...
fofi 9354 If an onto function has a ...
f1fi 9355 If a 1-to-1 function has a...
iunfi 9356 The finite union of finite...
unifi 9357 The finite union of finite...
unifi2 9358 The finite union of finite...
infssuni 9359 If an infinite set ` A ` i...
unirnffid 9360 The union of the range of ...
imafiALT 9361 Shorter proof of ~ imafi u...
pwfilemOLD 9362 Obsolete version of ~ pwfi...
pwfiOLD 9363 Obsolete version of ~ pwfi...
mapfi 9364 Set exponentiation of fini...
ixpfi 9365 A Cartesian product of fin...
ixpfi2 9366 A Cartesian product of fin...
mptfi 9367 A finite mapping set is fi...
abrexfi 9368 An image set from a finite...
cnvimamptfin 9369 A preimage of a mapping wi...
elfpw 9370 Membership in a class of f...
unifpw 9371 A set is the union of its ...
f1opwfi 9372 A one-to-one mapping induc...
fissuni 9373 A finite subset of a union...
fipreima 9374 Given a finite subset ` A ...
finsschain 9375 A finite subset of the uni...
indexfi 9376 If for every element of a ...
relfsupp 9379 The property of a function...
relprcnfsupp 9380 A proper class is never fi...
isfsupp 9381 The property of a class to...
isfsuppd 9382 Deduction form of ~ isfsup...
funisfsupp 9383 The property of a function...
fsuppimp 9384 Implications of a class be...
fsuppimpd 9385 A finitely supported funct...
fsuppfund 9386 A finitely supported funct...
fisuppfi 9387 A function on a finite set...
fidmfisupp 9388 A function with a finite d...
fdmfisuppfi 9389 The support of a function ...
fdmfifsupp 9390 A function with a finite d...
fsuppmptdm 9391 A mapping with a finite do...
fndmfisuppfi 9392 The support of a function ...
fndmfifsupp 9393 A function with a finite d...
suppeqfsuppbi 9394 If two functions have the ...
suppssfifsupp 9395 If the support of a functi...
fsuppsssupp 9396 If the support of a functi...
fsuppsssuppgd 9397 If the support of a functi...
fsuppss 9398 A subset of a finitely sup...
fsuppssov1 9399 Formula building theorem f...
fsuppxpfi 9400 The cartesian product of t...
fczfsuppd 9401 A constant function with v...
fsuppun 9402 The union of two finitely ...
fsuppunfi 9403 The union of the support o...
fsuppunbi 9404 If the union of two classe...
0fsupp 9405 The empty set is a finitel...
snopfsupp 9406 A singleton containing an ...
funsnfsupp 9407 Finite support for a funct...
fsuppres 9408 The restriction of a finit...
fmptssfisupp 9409 The restriction of a mappi...
ressuppfi 9410 If the support of the rest...
resfsupp 9411 If the restriction of a fu...
resfifsupp 9412 The restriction of a funct...
ffsuppbi 9413 Two ways of saying that a ...
fsuppmptif 9414 A function mapping an argu...
sniffsupp 9415 A function mapping all but...
fsuppcolem 9416 Lemma for ~ fsuppco . For...
fsuppco 9417 The composition of a 1-1 f...
fsuppco2 9418 The composition of a funct...
fsuppcor 9419 The composition of a funct...
mapfienlem1 9420 Lemma 1 for ~ mapfien . (...
mapfienlem2 9421 Lemma 2 for ~ mapfien . (...
mapfienlem3 9422 Lemma 3 for ~ mapfien . (...
mapfien 9423 A bijection of the base se...
mapfien2 9424 Equinumerousity relation f...
fival 9427 The set of all the finite ...
elfi 9428 Specific properties of an ...
elfi2 9429 The empty intersection nee...
elfir 9430 Sufficient condition for a...
intrnfi 9431 Sufficient condition for t...
iinfi 9432 An indexed intersection of...
inelfi 9433 The intersection of two se...
ssfii 9434 Any element of a set ` A `...
fi0 9435 The set of finite intersec...
fieq0 9436 A set is empty iff the cla...
fiin 9437 The elements of ` ( fi `` ...
dffi2 9438 The set of finite intersec...
fiss 9439 Subset relationship for fu...
inficl 9440 A set which is closed unde...
fipwuni 9441 The set of finite intersec...
fisn 9442 A singleton is closed unde...
fiuni 9443 The union of the finite in...
fipwss 9444 If a set is a family of su...
elfiun 9445 A finite intersection of e...
dffi3 9446 The set of finite intersec...
fifo 9447 Describe a surjection from...
marypha1lem 9448 Core induction for Philip ...
marypha1 9449 (Philip) Hall's marriage t...
marypha2lem1 9450 Lemma for ~ marypha2 . Pr...
marypha2lem2 9451 Lemma for ~ marypha2 . Pr...
marypha2lem3 9452 Lemma for ~ marypha2 . Pr...
marypha2lem4 9453 Lemma for ~ marypha2 . Pr...
marypha2 9454 Version of ~ marypha1 usin...
dfsup2 9459 Quantifier-free definition...
supeq1 9460 Equality theorem for supre...
supeq1d 9461 Equality deduction for sup...
supeq1i 9462 Equality inference for sup...
supeq2 9463 Equality theorem for supre...
supeq3 9464 Equality theorem for supre...
supeq123d 9465 Equality deduction for sup...
nfsup 9466 Hypothesis builder for sup...
supmo 9467 Any class ` B ` has at mos...
supexd 9468 A supremum is a set. (Con...
supeu 9469 A supremum is unique. Sim...
supval2 9470 Alternate expression for t...
eqsup 9471 Sufficient condition for a...
eqsupd 9472 Sufficient condition for a...
supcl 9473 A supremum belongs to its ...
supub 9474 A supremum is an upper bou...
suplub 9475 A supremum is the least up...
suplub2 9476 Bidirectional form of ~ su...
supnub 9477 An upper bound is not less...
supex 9478 A supremum is a set. (Con...
sup00 9479 The supremum under an empt...
sup0riota 9480 The supremum of an empty s...
sup0 9481 The supremum of an empty s...
supmax 9482 The greatest element of a ...
fisup2g 9483 A finite set satisfies the...
fisupcl 9484 A nonempty finite set cont...
supgtoreq 9485 The supremum of a finite s...
suppr 9486 The supremum of a pair. (...
supsn 9487 The supremum of a singleto...
supisolem 9488 Lemma for ~ supiso . (Con...
supisoex 9489 Lemma for ~ supiso . (Con...
supiso 9490 Image of a supremum under ...
infeq1 9491 Equality theorem for infim...
infeq1d 9492 Equality deduction for inf...
infeq1i 9493 Equality inference for inf...
infeq2 9494 Equality theorem for infim...
infeq3 9495 Equality theorem for infim...
infeq123d 9496 Equality deduction for inf...
nfinf 9497 Hypothesis builder for inf...
infexd 9498 An infimum is a set. (Con...
eqinf 9499 Sufficient condition for a...
eqinfd 9500 Sufficient condition for a...
infval 9501 Alternate expression for t...
infcllem 9502 Lemma for ~ infcl , ~ infl...
infcl 9503 An infimum belongs to its ...
inflb 9504 An infimum is a lower boun...
infglb 9505 An infimum is the greatest...
infglbb 9506 Bidirectional form of ~ in...
infnlb 9507 A lower bound is not great...
infex 9508 An infimum is a set. (Con...
infmin 9509 The smallest element of a ...
infmo 9510 Any class ` B ` has at mos...
infeu 9511 An infimum is unique. (Co...
fimin2g 9512 A finite set has a minimum...
fiming 9513 A finite set has a minimum...
fiinfg 9514 Lemma showing existence an...
fiinf2g 9515 A finite set satisfies the...
fiinfcl 9516 A nonempty finite set cont...
infltoreq 9517 The infimum of a finite se...
infpr 9518 The infimum of a pair. (C...
infsupprpr 9519 The infimum of a proper pa...
infsn 9520 The infimum of a singleton...
inf00 9521 The infimum regarding an e...
infempty 9522 The infimum of an empty se...
infiso 9523 Image of an infimum under ...
dfoi 9526 Rewrite ~ df-oi with abbre...
oieq1 9527 Equality theorem for ordin...
oieq2 9528 Equality theorem for ordin...
nfoi 9529 Hypothesis builder for ord...
ordiso2 9530 Generalize ~ ordiso to pro...
ordiso 9531 Order-isomorphic ordinal n...
ordtypecbv 9532 Lemma for ~ ordtype . (Co...
ordtypelem1 9533 Lemma for ~ ordtype . (Co...
ordtypelem2 9534 Lemma for ~ ordtype . (Co...
ordtypelem3 9535 Lemma for ~ ordtype . (Co...
ordtypelem4 9536 Lemma for ~ ordtype . (Co...
ordtypelem5 9537 Lemma for ~ ordtype . (Co...
ordtypelem6 9538 Lemma for ~ ordtype . (Co...
ordtypelem7 9539 Lemma for ~ ordtype . ` ra...
ordtypelem8 9540 Lemma for ~ ordtype . (Co...
ordtypelem9 9541 Lemma for ~ ordtype . Eit...
ordtypelem10 9542 Lemma for ~ ordtype . Usi...
oi0 9543 Definition of the ordinal ...
oicl 9544 The order type of the well...
oif 9545 The order isomorphism of t...
oiiso2 9546 The order isomorphism of t...
ordtype 9547 For any set-like well-orde...
oiiniseg 9548 ` ran F ` is an initial se...
ordtype2 9549 For any set-like well-orde...
oiexg 9550 The order isomorphism on a...
oion 9551 The order type of the well...
oiiso 9552 The order isomorphism of t...
oien 9553 The order type of a well-o...
oieu 9554 Uniqueness of the unique o...
oismo 9555 When ` A ` is a subclass o...
oiid 9556 The order type of an ordin...
hartogslem1 9557 Lemma for ~ hartogs . (Co...
hartogslem2 9558 Lemma for ~ hartogs . (Co...
hartogs 9559 The class of ordinals domi...
wofib 9560 The only sets which are we...
wemaplem1 9561 Value of the lexicographic...
wemaplem2 9562 Lemma for ~ wemapso . Tra...
wemaplem3 9563 Lemma for ~ wemapso . Tra...
wemappo 9564 Construct lexicographic or...
wemapsolem 9565 Lemma for ~ wemapso . (Co...
wemapso 9566 Construct lexicographic or...
wemapso2lem 9567 Lemma for ~ wemapso2 . (C...
wemapso2 9568 An alternative to having a...
card2on 9569 The alternate definition o...
card2inf 9570 The alternate definition o...
harf 9573 Functionality of the Harto...
harcl 9574 Values of the Hartogs func...
harval 9575 Function value of the Hart...
elharval 9576 The Hartogs number of a se...
harndom 9577 The Hartogs number of a se...
harword 9578 Weak ordering property of ...
relwdom 9581 Weak dominance is a relati...
brwdom 9582 Property of weak dominance...
brwdomi 9583 Property of weak dominance...
brwdomn0 9584 Weak dominance over nonemp...
0wdom 9585 Any set weakly dominates t...
fowdom 9586 An onto function implies w...
wdomref 9587 Reflexivity of weak domina...
brwdom2 9588 Alternate characterization...
domwdom 9589 Weak dominance is implied ...
wdomtr 9590 Transitivity of weak domin...
wdomen1 9591 Equality-like theorem for ...
wdomen2 9592 Equality-like theorem for ...
wdompwdom 9593 Weak dominance strengthens...
canthwdom 9594 Cantor's Theorem, stated u...
wdom2d 9595 Deduce weak dominance from...
wdomd 9596 Deduce weak dominance from...
brwdom3 9597 Condition for weak dominan...
brwdom3i 9598 Weak dominance implies exi...
unwdomg 9599 Weak dominance of a (disjo...
xpwdomg 9600 Weak dominance of a Cartes...
wdomima2g 9601 A set is weakly dominant o...
wdomimag 9602 A set is weakly dominant o...
unxpwdom2 9603 Lemma for ~ unxpwdom . (C...
unxpwdom 9604 If a Cartesian product is ...
ixpiunwdom 9605 Describe an onto function ...
harwdom 9606 The value of the Hartogs f...
axreg2 9608 Axiom of Regularity expres...
zfregcl 9609 The Axiom of Regularity wi...
zfreg 9610 The Axiom of Regularity us...
elirrv 9611 The membership relation is...
elirr 9612 No class is a member of it...
elneq 9613 A class is not equal to an...
nelaneq 9614 A class is not an element ...
epinid0 9615 The membership relation an...
sucprcreg 9616 A class is equal to its su...
ruv 9617 The Russell class is equal...
ruALT 9618 Alternate proof of ~ ru , ...
disjcsn 9619 A class is disjoint from i...
zfregfr 9620 The membership relation is...
en2lp 9621 No class has 2-cycle membe...
elnanel 9622 Two classes are not elemen...
cnvepnep 9623 The membership (epsilon) r...
epnsym 9624 The membership (epsilon) r...
elnotel 9625 A class cannot be an eleme...
elnel 9626 A class cannot be an eleme...
en3lplem1 9627 Lemma for ~ en3lp . (Cont...
en3lplem2 9628 Lemma for ~ en3lp . (Cont...
en3lp 9629 No class has 3-cycle membe...
preleqg 9630 Equality of two unordered ...
preleq 9631 Equality of two unordered ...
preleqALT 9632 Alternate proof of ~ prele...
opthreg 9633 Theorem for alternate repr...
suc11reg 9634 The successor operation be...
dford2 9635 Assuming ~ ax-reg , an ord...
inf0 9636 Existence of ` _om ` impli...
inf1 9637 Variation of Axiom of Infi...
inf2 9638 Variation of Axiom of Infi...
inf3lema 9639 Lemma for our Axiom of Inf...
inf3lemb 9640 Lemma for our Axiom of Inf...
inf3lemc 9641 Lemma for our Axiom of Inf...
inf3lemd 9642 Lemma for our Axiom of Inf...
inf3lem1 9643 Lemma for our Axiom of Inf...
inf3lem2 9644 Lemma for our Axiom of Inf...
inf3lem3 9645 Lemma for our Axiom of Inf...
inf3lem4 9646 Lemma for our Axiom of Inf...
inf3lem5 9647 Lemma for our Axiom of Inf...
inf3lem6 9648 Lemma for our Axiom of Inf...
inf3lem7 9649 Lemma for our Axiom of Inf...
inf3 9650 Our Axiom of Infinity ~ ax...
infeq5i 9651 Half of ~ infeq5 . (Contr...
infeq5 9652 The statement "there exist...
zfinf 9654 Axiom of Infinity expresse...
axinf2 9655 A standard version of Axio...
zfinf2 9657 A standard version of the ...
omex 9658 The existence of omega (th...
axinf 9659 The first version of the A...
inf5 9660 The statement "there exist...
omelon 9661 Omega is an ordinal number...
dfom3 9662 The class of natural numbe...
elom3 9663 A simplification of ~ elom...
dfom4 9664 A simplification of ~ df-o...
dfom5 9665 ` _om ` is the smallest li...
oancom 9666 Ordinal addition is not co...
isfinite 9667 A set is finite iff it is ...
fict 9668 A finite set is countable ...
nnsdom 9669 A natural number is strict...
omenps 9670 Omega is equinumerous to a...
omensuc 9671 The set of natural numbers...
infdifsn 9672 Removing a singleton from ...
infdiffi 9673 Removing a finite set from...
unbnn3 9674 Any unbounded subset of na...
noinfep 9675 Using the Axiom of Regular...
cantnffval 9678 The value of the Cantor no...
cantnfdm 9679 The domain of the Cantor n...
cantnfvalf 9680 Lemma for ~ cantnf . The ...
cantnfs 9681 Elementhood in the set of ...
cantnfcl 9682 Basic properties of the or...
cantnfval 9683 The value of the Cantor no...
cantnfval2 9684 Alternate expression for t...
cantnfsuc 9685 The value of the recursive...
cantnfle 9686 A lower bound on the ` CNF...
cantnflt 9687 An upper bound on the part...
cantnflt2 9688 An upper bound on the ` CN...
cantnff 9689 The ` CNF ` function is a ...
cantnf0 9690 The value of the zero func...
cantnfrescl 9691 A function is finitely sup...
cantnfres 9692 The ` CNF ` function respe...
cantnfp1lem1 9693 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 9694 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 9695 Lemma for ~ cantnfp1 . (C...
cantnfp1 9696 If ` F ` is created by add...
oemapso 9697 The relation ` T ` is a st...
oemapval 9698 Value of the relation ` T ...
oemapvali 9699 If ` F < G ` , then there ...
cantnflem1a 9700 Lemma for ~ cantnf . (Con...
cantnflem1b 9701 Lemma for ~ cantnf . (Con...
cantnflem1c 9702 Lemma for ~ cantnf . (Con...
cantnflem1d 9703 Lemma for ~ cantnf . (Con...
cantnflem1 9704 Lemma for ~ cantnf . This...
cantnflem2 9705 Lemma for ~ cantnf . (Con...
cantnflem3 9706 Lemma for ~ cantnf . Here...
cantnflem4 9707 Lemma for ~ cantnf . Comp...
cantnf 9708 The Cantor Normal Form the...
oemapwe 9709 The lexicographic order on...
cantnffval2 9710 An alternate definition of...
cantnff1o 9711 Simplify the isomorphism o...
wemapwe 9712 Construct lexicographic or...
oef1o 9713 A bijection of the base se...
cnfcomlem 9714 Lemma for ~ cnfcom . (Con...
cnfcom 9715 Any ordinal ` B ` is equin...
cnfcom2lem 9716 Lemma for ~ cnfcom2 . (Co...
cnfcom2 9717 Any nonzero ordinal ` B ` ...
cnfcom3lem 9718 Lemma for ~ cnfcom3 . (Co...
cnfcom3 9719 Any infinite ordinal ` B `...
cnfcom3clem 9720 Lemma for ~ cnfcom3c . (C...
cnfcom3c 9721 Wrap the construction of ~...
ttrcleq 9724 Equality theorem for trans...
nfttrcld 9725 Bound variable hypothesis ...
nfttrcl 9726 Bound variable hypothesis ...
relttrcl 9727 The transitive closure of ...
brttrcl 9728 Characterization of elemen...
brttrcl2 9729 Characterization of elemen...
ssttrcl 9730 If ` R ` is a relation, th...
ttrcltr 9731 The transitive closure of ...
ttrclresv 9732 The transitive closure of ...
ttrclco 9733 Composition law for the tr...
cottrcl 9734 Composition law for the tr...
ttrclss 9735 If ` R ` is a subclass of ...
dmttrcl 9736 The domain of a transitive...
rnttrcl 9737 The range of a transitive ...
ttrclexg 9738 If ` R ` is a set, then so...
dfttrcl2 9739 When ` R ` is a set and a ...
ttrclselem1 9740 Lemma for ~ ttrclse . Sho...
ttrclselem2 9741 Lemma for ~ ttrclse . Sho...
ttrclse 9742 If ` R ` is set-like over ...
trcl 9743 For any set ` A ` , show t...
tz9.1 9744 Every set has a transitive...
tz9.1c 9745 Alternate expression for t...
epfrs 9746 The strong form of the Axi...
zfregs 9747 The strong form of the Axi...
zfregs2 9748 Alternate strong form of t...
setind 9749 Set (epsilon) induction. ...
setind2 9750 Set (epsilon) induction, s...
tcvalg 9753 Value of the transitive cl...
tcid 9754 Defining property of the t...
tctr 9755 Defining property of the t...
tcmin 9756 Defining property of the t...
tc2 9757 A variant of the definitio...
tcsni 9758 The transitive closure of ...
tcss 9759 The transitive closure fun...
tcel 9760 The transitive closure fun...
tcidm 9761 The transitive closure fun...
tc0 9762 The transitive closure of ...
tc00 9763 The transitive closure is ...
frmin 9764 Every (possibly proper) su...
frind 9765 A subclass of a well-found...
frinsg 9766 Well-Founded Induction Sch...
frins 9767 Well-Founded Induction Sch...
frins2f 9768 Well-Founded Induction sch...
frins2 9769 Well-Founded Induction sch...
frins3 9770 Well-Founded Induction sch...
frr3g 9771 Functions defined by well-...
frrlem15 9772 Lemma for general well-fou...
frrlem16 9773 Lemma for general well-fou...
frr1 9774 Law of general well-founde...
frr2 9775 Law of general well-founde...
frr3 9776 Law of general well-founde...
r1funlim 9781 The cumulative hierarchy o...
r1fnon 9782 The cumulative hierarchy o...
r10 9783 Value of the cumulative hi...
r1sucg 9784 Value of the cumulative hi...
r1suc 9785 Value of the cumulative hi...
r1limg 9786 Value of the cumulative hi...
r1lim 9787 Value of the cumulative hi...
r1fin 9788 The first ` _om ` levels o...
r1sdom 9789 Each stage in the cumulati...
r111 9790 The cumulative hierarchy i...
r1tr 9791 The cumulative hierarchy o...
r1tr2 9792 The union of a cumulative ...
r1ordg 9793 Ordering relation for the ...
r1ord3g 9794 Ordering relation for the ...
r1ord 9795 Ordering relation for the ...
r1ord2 9796 Ordering relation for the ...
r1ord3 9797 Ordering relation for the ...
r1sssuc 9798 The value of the cumulativ...
r1pwss 9799 Each set of the cumulative...
r1sscl 9800 Each set of the cumulative...
r1val1 9801 The value of the cumulativ...
tz9.12lem1 9802 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 9803 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 9804 Lemma for ~ tz9.12 . (Con...
tz9.12 9805 A set is well-founded if a...
tz9.13 9806 Every set is well-founded,...
tz9.13g 9807 Every set is well-founded,...
rankwflemb 9808 Two ways of saying a set i...
rankf 9809 The domain and codomain of...
rankon 9810 The rank of a set is an or...
r1elwf 9811 Any member of the cumulati...
rankvalb 9812 Value of the rank function...
rankr1ai 9813 One direction of ~ rankr1a...
rankvaln 9814 Value of the rank function...
rankidb 9815 Identity law for the rank ...
rankdmr1 9816 A rank is a member of the ...
rankr1ag 9817 A version of ~ rankr1a tha...
rankr1bg 9818 A relationship between ran...
r1rankidb 9819 Any set is a subset of the...
r1elssi 9820 The range of the ` R1 ` fu...
r1elss 9821 The range of the ` R1 ` fu...
pwwf 9822 A power set is well-founde...
sswf 9823 A subset of a well-founded...
snwf 9824 A singleton is well-founde...
unwf 9825 A binary union is well-fou...
prwf 9826 An unordered pair is well-...
opwf 9827 An ordered pair is well-fo...
unir1 9828 The cumulative hierarchy o...
jech9.3 9829 Every set belongs to some ...
rankwflem 9830 Every set is well-founded,...
rankval 9831 Value of the rank function...
rankvalg 9832 Value of the rank function...
rankval2 9833 Value of an alternate defi...
uniwf 9834 A union is well-founded if...
rankr1clem 9835 Lemma for ~ rankr1c . (Co...
rankr1c 9836 A relationship between the...
rankidn 9837 A relationship between the...
rankpwi 9838 The rank of a power set. ...
rankelb 9839 The membership relation is...
wfelirr 9840 A well-founded set is not ...
rankval3b 9841 The value of the rank func...
ranksnb 9842 The rank of a singleton. ...
rankonidlem 9843 Lemma for ~ rankonid . (C...
rankonid 9844 The rank of an ordinal num...
onwf 9845 The ordinals are all well-...
onssr1 9846 Initial segments of the or...
rankr1g 9847 A relationship between the...
rankid 9848 Identity law for the rank ...
rankr1 9849 A relationship between the...
ssrankr1 9850 A relationship between an ...
rankr1a 9851 A relationship between ran...
r1val2 9852 The value of the cumulativ...
r1val3 9853 The value of the cumulativ...
rankel 9854 The membership relation is...
rankval3 9855 The value of the rank func...
bndrank 9856 Any class whose elements h...
unbndrank 9857 The elements of a proper c...
rankpw 9858 The rank of a power set. ...
ranklim 9859 The rank of a set belongs ...
r1pw 9860 A stronger property of ` R...
r1pwALT 9861 Alternate shorter proof of...
r1pwcl 9862 The cumulative hierarchy o...
rankssb 9863 The subset relation is inh...
rankss 9864 The subset relation is inh...
rankunb 9865 The rank of the union of t...
rankprb 9866 The rank of an unordered p...
rankopb 9867 The rank of an ordered pai...
rankuni2b 9868 The value of the rank func...
ranksn 9869 The rank of a singleton. ...
rankuni2 9870 The rank of a union. Part...
rankun 9871 The rank of the union of t...
rankpr 9872 The rank of an unordered p...
rankop 9873 The rank of an ordered pai...
r1rankid 9874 Any set is a subset of the...
rankeq0b 9875 A set is empty iff its ran...
rankeq0 9876 A set is empty iff its ran...
rankr1id 9877 The rank of the hierarchy ...
rankuni 9878 The rank of a union. Part...
rankr1b 9879 A relationship between ran...
ranksuc 9880 The rank of a successor. ...
rankuniss 9881 Upper bound of the rank of...
rankval4 9882 The rank of a set is the s...
rankbnd 9883 The rank of a set is bound...
rankbnd2 9884 The rank of a set is bound...
rankc1 9885 A relationship that can be...
rankc2 9886 A relationship that can be...
rankelun 9887 Rank membership is inherit...
rankelpr 9888 Rank membership is inherit...
rankelop 9889 Rank membership is inherit...
rankxpl 9890 A lower bound on the rank ...
rankxpu 9891 An upper bound on the rank...
rankfu 9892 An upper bound on the rank...
rankmapu 9893 An upper bound on the rank...
rankxplim 9894 The rank of a Cartesian pr...
rankxplim2 9895 If the rank of a Cartesian...
rankxplim3 9896 The rank of a Cartesian pr...
rankxpsuc 9897 The rank of a Cartesian pr...
tcwf 9898 The transitive closure fun...
tcrank 9899 This theorem expresses two...
scottex 9900 Scott's trick collects all...
scott0 9901 Scott's trick collects all...
scottexs 9902 Theorem scheme version of ...
scott0s 9903 Theorem scheme version of ...
cplem1 9904 Lemma for the Collection P...
cplem2 9905 Lemma for the Collection P...
cp 9906 Collection Principle. Thi...
bnd 9907 A very strong generalizati...
bnd2 9908 A variant of the Boundedne...
kardex 9909 The collection of all sets...
karden 9910 If we allow the Axiom of R...
htalem 9911 Lemma for defining an emul...
hta 9912 A ZFC emulation of Hilbert...
djueq12 9919 Equality theorem for disjo...
djueq1 9920 Equality theorem for disjo...
djueq2 9921 Equality theorem for disjo...
nfdju 9922 Bound-variable hypothesis ...
djuex 9923 The disjoint union of sets...
djuexb 9924 The disjoint union of two ...
djulcl 9925 Left closure of disjoint u...
djurcl 9926 Right closure of disjoint ...
djulf1o 9927 The left injection functio...
djurf1o 9928 The right injection functi...
inlresf 9929 The left injection restric...
inlresf1 9930 The left injection restric...
inrresf 9931 The right injection restri...
inrresf1 9932 The right injection restri...
djuin 9933 The images of any classes ...
djur 9934 A member of a disjoint uni...
djuss 9935 A disjoint union is a subc...
djuunxp 9936 The union of a disjoint un...
djuexALT 9937 Alternate proof of ~ djuex...
eldju1st 9938 The first component of an ...
eldju2ndl 9939 The second component of an...
eldju2ndr 9940 The second component of an...
djuun 9941 The disjoint union of two ...
1stinl 9942 The first component of the...
2ndinl 9943 The second component of th...
1stinr 9944 The first component of the...
2ndinr 9945 The second component of th...
updjudhf 9946 The mapping of an element ...
updjudhcoinlf 9947 The composition of the map...
updjudhcoinrg 9948 The composition of the map...
updjud 9949 Universal property of the ...
cardf2 9958 The cardinality function i...
cardon 9959 The cardinal number of a s...
isnum2 9960 A way to express well-orde...
isnumi 9961 A set equinumerous to an o...
ennum 9962 Equinumerous sets are equi...
finnum 9963 Every finite set is numera...
onenon 9964 Every ordinal number is nu...
tskwe 9965 A Tarski set is well-order...
xpnum 9966 The cartesian product of n...
cardval3 9967 An alternate definition of...
cardid2 9968 Any numerable set is equin...
isnum3 9969 A set is numerable iff it ...
oncardval 9970 The value of the cardinal ...
oncardid 9971 Any ordinal number is equi...
cardonle 9972 The cardinal of an ordinal...
card0 9973 The cardinality of the emp...
cardidm 9974 The cardinality function i...
oncard 9975 A set is a cardinal number...
ficardom 9976 The cardinal number of a f...
ficardid 9977 A finite set is equinumero...
cardnn 9978 The cardinality of a natur...
cardnueq0 9979 The empty set is the only ...
cardne 9980 No member of a cardinal nu...
carden2a 9981 If two sets have equal non...
carden2b 9982 If two sets are equinumero...
card1 9983 A set has cardinality one ...
cardsn 9984 A singleton has cardinalit...
carddomi2 9985 Two sets have the dominanc...
sdomsdomcardi 9986 A set strictly dominates i...
cardlim 9987 An infinite cardinal is a ...
cardsdomelir 9988 A cardinal strictly domina...
cardsdomel 9989 A cardinal strictly domina...
iscard 9990 Two ways to express the pr...
iscard2 9991 Two ways to express the pr...
carddom2 9992 Two numerable sets have th...
harcard 9993 The class of ordinal numbe...
cardprclem 9994 Lemma for ~ cardprc . (Co...
cardprc 9995 The class of all cardinal ...
carduni 9996 The union of a set of card...
cardiun 9997 The indexed union of a set...
cardennn 9998 If ` A ` is equinumerous t...
cardsucinf 9999 The cardinality of the suc...
cardsucnn 10000 The cardinality of the suc...
cardom 10001 The set of natural numbers...
carden2 10002 Two numerable sets are equ...
cardsdom2 10003 A numerable set is strictl...
domtri2 10004 Trichotomy of dominance fo...
nnsdomel 10005 Strict dominance and eleme...
cardval2 10006 An alternate version of th...
isinffi 10007 An infinite set contains s...
fidomtri 10008 Trichotomy of dominance wi...
fidomtri2 10009 Trichotomy of dominance wi...
harsdom 10010 The Hartogs number of a we...
onsdom 10011 Any well-orderable set is ...
harval2 10012 An alternate expression fo...
harsucnn 10013 The next cardinal after a ...
cardmin2 10014 The smallest ordinal that ...
pm54.43lem 10015 In Theorem *54.43 of [Whit...
pm54.43 10016 Theorem *54.43 of [Whitehe...
enpr2 10017 An unordered pair with dis...
pr2nelemOLD 10018 Obsolete version of ~ enpr...
pr2ne 10019 If an unordered pair has t...
pr2neOLD 10020 Obsolete version of ~ pr2n...
prdom2 10021 An unordered pair has at m...
en2eqpr 10022 Building a set with two el...
en2eleq 10023 Express a set of pair card...
en2other2 10024 Taking the other element t...
dif1card 10025 The cardinality of a nonem...
leweon 10026 Lexicographical order is a...
r0weon 10027 A set-like well-ordering o...
infxpenlem 10028 Lemma for ~ infxpen . (Co...
infxpen 10029 Every infinite ordinal is ...
xpomen 10030 The Cartesian product of o...
xpct 10031 The cartesian product of t...
infxpidm2 10032 Every infinite well-ordera...
infxpenc 10033 A canonical version of ~ i...
infxpenc2lem1 10034 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 10035 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 10036 Lemma for ~ infxpenc2 . (...
infxpenc2 10037 Existence form of ~ infxpe...
iunmapdisj 10038 The union ` U_ n e. C ( A ...
fseqenlem1 10039 Lemma for ~ fseqen . (Con...
fseqenlem2 10040 Lemma for ~ fseqen . (Con...
fseqdom 10041 One half of ~ fseqen . (C...
fseqen 10042 A set that is equinumerous...
infpwfidom 10043 The collection of finite s...
dfac8alem 10044 Lemma for ~ dfac8a . If t...
dfac8a 10045 Numeration theorem: every ...
dfac8b 10046 The well-ordering theorem:...
dfac8clem 10047 Lemma for ~ dfac8c . (Con...
dfac8c 10048 If the union of a set is w...
ac10ct 10049 A proof of the well-orderi...
ween 10050 A set is numerable iff it ...
ac5num 10051 A version of ~ ac5b with t...
ondomen 10052 If a set is dominated by a...
numdom 10053 A set dominated by a numer...
ssnum 10054 A subset of a numerable se...
onssnum 10055 All subsets of the ordinal...
indcardi 10056 Indirect strong induction ...
acnrcl 10057 Reverse closure for the ch...
acneq 10058 Equality theorem for the c...
isacn 10059 The property of being a ch...
acni 10060 The property of being a ch...
acni2 10061 The property of being a ch...
acni3 10062 The property of being a ch...
acnlem 10063 Construct a mapping satisf...
numacn 10064 A well-orderable set has c...
finacn 10065 Every set has finite choic...
acndom 10066 A set with long choice seq...
acnnum 10067 A set ` X ` which has choi...
acnen 10068 The class of choice sets o...
acndom2 10069 A set smaller than one wit...
acnen2 10070 The class of sets with cho...
fodomacn 10071 A version of ~ fodom that ...
fodomnum 10072 A version of ~ fodom that ...
fonum 10073 A surjection maps numerabl...
numwdom 10074 A surjection maps numerabl...
fodomfi2 10075 Onto functions define domi...
wdomfil 10076 Weak dominance agrees with...
infpwfien 10077 Any infinite well-orderabl...
inffien 10078 The set of finite intersec...
wdomnumr 10079 Weak dominance agrees with...
alephfnon 10080 The aleph function is a fu...
aleph0 10081 The first infinite cardina...
alephlim 10082 Value of the aleph functio...
alephsuc 10083 Value of the aleph functio...
alephon 10084 An aleph is an ordinal num...
alephcard 10085 Every aleph is a cardinal ...
alephnbtwn 10086 No cardinal can be sandwic...
alephnbtwn2 10087 No set has equinumerosity ...
alephordilem1 10088 Lemma for ~ alephordi . (...
alephordi 10089 Strict ordering property o...
alephord 10090 Ordering property of the a...
alephord2 10091 Ordering property of the a...
alephord2i 10092 Ordering property of the a...
alephord3 10093 Ordering property of the a...
alephsucdom 10094 A set dominated by an alep...
alephsuc2 10095 An alternate representatio...
alephdom 10096 Relationship between inclu...
alephgeom 10097 Every aleph is greater tha...
alephislim 10098 Every aleph is a limit ord...
aleph11 10099 The aleph function is one-...
alephf1 10100 The aleph function is a on...
alephsdom 10101 If an ordinal is smaller t...
alephdom2 10102 A dominated initial ordina...
alephle 10103 The argument of the aleph ...
cardaleph 10104 Given any transfinite card...
cardalephex 10105 Every transfinite cardinal...
infenaleph 10106 An infinite numerable set ...
isinfcard 10107 Two ways to express the pr...
iscard3 10108 Two ways to express the pr...
cardnum 10109 Two ways to express the cl...
alephinit 10110 An infinite initial ordina...
carduniima 10111 The union of the image of ...
cardinfima 10112 If a mapping to cardinals ...
alephiso 10113 Aleph is an order isomorph...
alephprc 10114 The class of all transfini...
alephsson 10115 The class of transfinite c...
unialeph 10116 The union of the class of ...
alephsmo 10117 The aleph function is stri...
alephf1ALT 10118 Alternate proof of ~ aleph...
alephfplem1 10119 Lemma for ~ alephfp . (Co...
alephfplem2 10120 Lemma for ~ alephfp . (Co...
alephfplem3 10121 Lemma for ~ alephfp . (Co...
alephfplem4 10122 Lemma for ~ alephfp . (Co...
alephfp 10123 The aleph function has a f...
alephfp2 10124 The aleph function has at ...
alephval3 10125 An alternate way to expres...
alephsucpw2 10126 The power set of an aleph ...
mappwen 10127 Power rule for cardinal ar...
finnisoeu 10128 A finite totally ordered s...
iunfictbso 10129 Countability of a countabl...
aceq1 10132 Equivalence of two version...
aceq0 10133 Equivalence of two version...
aceq2 10134 Equivalence of two version...
aceq3lem 10135 Lemma for ~ dfac3 . (Cont...
dfac3 10136 Equivalence of two version...
dfac4 10137 Equivalence of two version...
dfac5lem1 10138 Lemma for ~ dfac5 . (Cont...
dfac5lem2 10139 Lemma for ~ dfac5 . (Cont...
dfac5lem3 10140 Lemma for ~ dfac5 . (Cont...
dfac5lem4 10141 Lemma for ~ dfac5 . (Cont...
dfac5lem5 10142 Lemma for ~ dfac5 . (Cont...
dfac5 10143 Equivalence of two version...
dfac2a 10144 Our Axiom of Choice (in th...
dfac2b 10145 Axiom of Choice (first for...
dfac2 10146 Axiom of Choice (first for...
dfac7 10147 Equivalence of the Axiom o...
dfac0 10148 Equivalence of two version...
dfac1 10149 Equivalence of two version...
dfac8 10150 A proof of the equivalency...
dfac9 10151 Equivalence of the axiom o...
dfac10 10152 Axiom of Choice equivalent...
dfac10c 10153 Axiom of Choice equivalent...
dfac10b 10154 Axiom of Choice equivalent...
acacni 10155 A choice equivalent: every...
dfacacn 10156 A choice equivalent: every...
dfac13 10157 The axiom of choice holds ...
dfac12lem1 10158 Lemma for ~ dfac12 . (Con...
dfac12lem2 10159 Lemma for ~ dfac12 . (Con...
dfac12lem3 10160 Lemma for ~ dfac12 . (Con...
dfac12r 10161 The axiom of choice holds ...
dfac12k 10162 Equivalence of ~ dfac12 an...
dfac12a 10163 The axiom of choice holds ...
dfac12 10164 The axiom of choice holds ...
kmlem1 10165 Lemma for 5-quantifier AC ...
kmlem2 10166 Lemma for 5-quantifier AC ...
kmlem3 10167 Lemma for 5-quantifier AC ...
kmlem4 10168 Lemma for 5-quantifier AC ...
kmlem5 10169 Lemma for 5-quantifier AC ...
kmlem6 10170 Lemma for 5-quantifier AC ...
kmlem7 10171 Lemma for 5-quantifier AC ...
kmlem8 10172 Lemma for 5-quantifier AC ...
kmlem9 10173 Lemma for 5-quantifier AC ...
kmlem10 10174 Lemma for 5-quantifier AC ...
kmlem11 10175 Lemma for 5-quantifier AC ...
kmlem12 10176 Lemma for 5-quantifier AC ...
kmlem13 10177 Lemma for 5-quantifier AC ...
kmlem14 10178 Lemma for 5-quantifier AC ...
kmlem15 10179 Lemma for 5-quantifier AC ...
kmlem16 10180 Lemma for 5-quantifier AC ...
dfackm 10181 Equivalence of the Axiom o...
undjudom 10182 Cardinal addition dominate...
endjudisj 10183 Equinumerosity of a disjoi...
djuen 10184 Disjoint unions of equinum...
djuenun 10185 Disjoint union is equinume...
dju1en 10186 Cardinal addition with car...
dju1dif 10187 Adding and subtracting one...
dju1p1e2 10188 1+1=2 for cardinal number ...
dju1p1e2ALT 10189 Alternate proof of ~ dju1p...
dju0en 10190 Cardinal addition with car...
xp2dju 10191 Two times a cardinal numbe...
djucomen 10192 Commutative law for cardin...
djuassen 10193 Associative law for cardin...
xpdjuen 10194 Cardinal multiplication di...
mapdjuen 10195 Sum of exponents law for c...
pwdjuen 10196 Sum of exponents law for c...
djudom1 10197 Ordering law for cardinal ...
djudom2 10198 Ordering law for cardinal ...
djudoml 10199 A set is dominated by its ...
djuxpdom 10200 Cartesian product dominate...
djufi 10201 The disjoint union of two ...
cdainflem 10202 Any partition of omega int...
djuinf 10203 A set is infinite iff the ...
infdju1 10204 An infinite set is equinum...
pwdju1 10205 The sum of a powerset with...
pwdjuidm 10206 If the natural numbers inj...
djulepw 10207 If ` A ` is idempotent und...
onadju 10208 The cardinal and ordinal s...
cardadju 10209 The cardinal sum is equinu...
djunum 10210 The disjoint union of two ...
unnum 10211 The union of two numerable...
nnadju 10212 The cardinal and ordinal s...
nnadjuALT 10213 Shorter proof of ~ nnadju ...
ficardadju 10214 The disjoint union of fini...
ficardun 10215 The cardinality of the uni...
ficardunOLD 10216 Obsolete version of ~ fica...
ficardun2 10217 The cardinality of the uni...
ficardun2OLD 10218 Obsolete version of ~ fica...
pwsdompw 10219 Lemma for ~ domtriom . Th...
unctb 10220 The union of two countable...
infdjuabs 10221 Absorption law for additio...
infunabs 10222 An infinite set is equinum...
infdju 10223 The sum of two cardinal nu...
infdif 10224 The cardinality of an infi...
infdif2 10225 Cardinality ordering for a...
infxpdom 10226 Dominance law for multipli...
infxpabs 10227 Absorption law for multipl...
infunsdom1 10228 The union of two sets that...
infunsdom 10229 The union of two sets that...
infxp 10230 Absorption law for multipl...
pwdjudom 10231 A property of dominance ov...
infpss 10232 Every infinite set has an ...
infmap2 10233 An exponentiation law for ...
ackbij2lem1 10234 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 10235 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 10236 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 10237 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 10238 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 10239 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 10240 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 10241 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 10242 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 10243 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 10244 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 10245 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 10246 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 10247 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 10248 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 10249 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 10250 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 10251 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 10252 Lemma for ~ ackbij1 . (Co...
ackbij1 10253 The Ackermann bijection, p...
ackbij1b 10254 The Ackermann bijection, p...
ackbij2lem2 10255 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 10256 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 10257 Lemma for ~ ackbij2 . (Co...
ackbij2 10258 The Ackermann bijection, p...
r1om 10259 The set of hereditarily fi...
fictb 10260 A set is countable iff its...
cflem 10261 A lemma used to simplify c...
cfval 10262 Value of the cofinality fu...
cff 10263 Cofinality is a function o...
cfub 10264 An upper bound on cofinali...
cflm 10265 Value of the cofinality fu...
cf0 10266 Value of the cofinality fu...
cardcf 10267 Cofinality is a cardinal n...
cflecard 10268 Cofinality is bounded by t...
cfle 10269 Cofinality is bounded by i...
cfon 10270 The cofinality of any set ...
cfeq0 10271 Only the ordinal zero has ...
cfsuc 10272 Value of the cofinality fu...
cff1 10273 There is always a map from...
cfflb 10274 If there is a cofinal map ...
cfval2 10275 Another expression for the...
coflim 10276 A simpler expression for t...
cflim3 10277 Another expression for the...
cflim2 10278 The cofinality function is...
cfom 10279 Value of the cofinality fu...
cfss 10280 There is a cofinal subset ...
cfslb 10281 Any cofinal subset of ` A ...
cfslbn 10282 Any subset of ` A ` smalle...
cfslb2n 10283 Any small collection of sm...
cofsmo 10284 Any cofinal map implies th...
cfsmolem 10285 Lemma for ~ cfsmo . (Cont...
cfsmo 10286 The map in ~ cff1 can be a...
cfcoflem 10287 Lemma for ~ cfcof , showin...
coftr 10288 If there is a cofinal map ...
cfcof 10289 If there is a cofinal map ...
cfidm 10290 The cofinality function is...
alephsing 10291 The cofinality of a limit ...
sornom 10292 The range of a single-step...
isfin1a 10307 Definition of a Ia-finite ...
fin1ai 10308 Property of a Ia-finite se...
isfin2 10309 Definition of a II-finite ...
fin2i 10310 Property of a II-finite se...
isfin3 10311 Definition of a III-finite...
isfin4 10312 Definition of a IV-finite ...
fin4i 10313 Infer that a set is IV-inf...
isfin5 10314 Definition of a V-finite s...
isfin6 10315 Definition of a VI-finite ...
isfin7 10316 Definition of a VII-finite...
sdom2en01 10317 A set with less than two e...
infpssrlem1 10318 Lemma for ~ infpssr . (Co...
infpssrlem2 10319 Lemma for ~ infpssr . (Co...
infpssrlem3 10320 Lemma for ~ infpssr . (Co...
infpssrlem4 10321 Lemma for ~ infpssr . (Co...
infpssrlem5 10322 Lemma for ~ infpssr . (Co...
infpssr 10323 Dedekind infinity implies ...
fin4en1 10324 Dedekind finite is a cardi...
ssfin4 10325 Dedekind finite sets have ...
domfin4 10326 A set dominated by a Dedek...
ominf4 10327 ` _om ` is Dedekind infini...
infpssALT 10328 Alternate proof of ~ infps...
isfin4-2 10329 Alternate definition of IV...
isfin4p1 10330 Alternate definition of IV...
fin23lem7 10331 Lemma for ~ isfin2-2 . Th...
fin23lem11 10332 Lemma for ~ isfin2-2 . (C...
fin2i2 10333 A II-finite set contains m...
isfin2-2 10334 ` Fin2 ` expressed in term...
ssfin2 10335 A subset of a II-finite se...
enfin2i 10336 II-finiteness is a cardina...
fin23lem24 10337 Lemma for ~ fin23 . In a ...
fincssdom 10338 In a chain of finite sets,...
fin23lem25 10339 Lemma for ~ fin23 . In a ...
fin23lem26 10340 Lemma for ~ fin23lem22 . ...
fin23lem23 10341 Lemma for ~ fin23lem22 . ...
fin23lem22 10342 Lemma for ~ fin23 but coul...
fin23lem27 10343 The mapping constructed in...
isfin3ds 10344 Property of a III-finite s...
ssfin3ds 10345 A subset of a III-finite s...
fin23lem12 10346 The beginning of the proof...
fin23lem13 10347 Lemma for ~ fin23 . Each ...
fin23lem14 10348 Lemma for ~ fin23 . ` U ` ...
fin23lem15 10349 Lemma for ~ fin23 . ` U ` ...
fin23lem16 10350 Lemma for ~ fin23 . ` U ` ...
fin23lem19 10351 Lemma for ~ fin23 . The f...
fin23lem20 10352 Lemma for ~ fin23 . ` X ` ...
fin23lem17 10353 Lemma for ~ fin23 . By ? ...
fin23lem21 10354 Lemma for ~ fin23 . ` X ` ...
fin23lem28 10355 Lemma for ~ fin23 . The r...
fin23lem29 10356 Lemma for ~ fin23 . The r...
fin23lem30 10357 Lemma for ~ fin23 . The r...
fin23lem31 10358 Lemma for ~ fin23 . The r...
fin23lem32 10359 Lemma for ~ fin23 . Wrap ...
fin23lem33 10360 Lemma for ~ fin23 . Disch...
fin23lem34 10361 Lemma for ~ fin23 . Estab...
fin23lem35 10362 Lemma for ~ fin23 . Stric...
fin23lem36 10363 Lemma for ~ fin23 . Weak ...
fin23lem38 10364 Lemma for ~ fin23 . The c...
fin23lem39 10365 Lemma for ~ fin23 . Thus,...
fin23lem40 10366 Lemma for ~ fin23 . ` Fin2...
fin23lem41 10367 Lemma for ~ fin23 . A set...
isf32lem1 10368 Lemma for ~ isfin3-2 . De...
isf32lem2 10369 Lemma for ~ isfin3-2 . No...
isf32lem3 10370 Lemma for ~ isfin3-2 . Be...
isf32lem4 10371 Lemma for ~ isfin3-2 . Be...
isf32lem5 10372 Lemma for ~ isfin3-2 . Th...
isf32lem6 10373 Lemma for ~ isfin3-2 . Ea...
isf32lem7 10374 Lemma for ~ isfin3-2 . Di...
isf32lem8 10375 Lemma for ~ isfin3-2 . K ...
isf32lem9 10376 Lemma for ~ isfin3-2 . Co...
isf32lem10 10377 Lemma for isfin3-2 . Writ...
isf32lem11 10378 Lemma for ~ isfin3-2 . Re...
isf32lem12 10379 Lemma for ~ isfin3-2 . (C...
isfin32i 10380 One half of ~ isfin3-2 . ...
isf33lem 10381 Lemma for ~ isfin3-3 . (C...
isfin3-2 10382 Weakly Dedekind-infinite s...
isfin3-3 10383 Weakly Dedekind-infinite s...
fin33i 10384 Inference from ~ isfin3-3 ...
compsscnvlem 10385 Lemma for ~ compsscnv . (...
compsscnv 10386 Complementation on a power...
isf34lem1 10387 Lemma for ~ isfin3-4 . (C...
isf34lem2 10388 Lemma for ~ isfin3-4 . (C...
compssiso 10389 Complementation is an anti...
isf34lem3 10390 Lemma for ~ isfin3-4 . (C...
compss 10391 Express image under of the...
isf34lem4 10392 Lemma for ~ isfin3-4 . (C...
isf34lem5 10393 Lemma for ~ isfin3-4 . (C...
isf34lem7 10394 Lemma for ~ isfin3-4 . (C...
isf34lem6 10395 Lemma for ~ isfin3-4 . (C...
fin34i 10396 Inference from ~ isfin3-4 ...
isfin3-4 10397 Weakly Dedekind-infinite s...
fin11a 10398 Every I-finite set is Ia-f...
enfin1ai 10399 Ia-finiteness is a cardina...
isfin1-2 10400 A set is finite in the usu...
isfin1-3 10401 A set is I-finite iff ever...
isfin1-4 10402 A set is I-finite iff ever...
dffin1-5 10403 Compact quantifier-free ve...
fin23 10404 Every II-finite set (every...
fin34 10405 Every III-finite set is IV...
isfin5-2 10406 Alternate definition of V-...
fin45 10407 Every IV-finite set is V-f...
fin56 10408 Every V-finite set is VI-f...
fin17 10409 Every I-finite set is VII-...
fin67 10410 Every VI-finite set is VII...
isfin7-2 10411 A set is VII-finite iff it...
fin71num 10412 A well-orderable set is VI...
dffin7-2 10413 Class form of ~ isfin7-2 ....
dfacfin7 10414 Axiom of Choice equivalent...
fin1a2lem1 10415 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 10416 Lemma for ~ fin1a2 . The ...
fin1a2lem3 10417 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 10418 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 10419 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 10420 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 10421 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 10422 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 10423 Lemma for ~ fin1a2 . In a...
fin1a2lem10 10424 Lemma for ~ fin1a2 . A no...
fin1a2lem11 10425 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 10426 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 10427 Lemma for ~ fin1a2 . (Con...
fin12 10428 Weak theorem which skips I...
fin1a2s 10429 An II-infinite set can hav...
fin1a2 10430 Every Ia-finite set is II-...
itunifval 10431 Function value of iterated...
itunifn 10432 Functionality of the itera...
ituni0 10433 A zero-fold iterated union...
itunisuc 10434 Successor iterated union. ...
itunitc1 10435 Each union iterate is a me...
itunitc 10436 The union of all union ite...
ituniiun 10437 Unwrap an iterated union f...
hsmexlem7 10438 Lemma for ~ hsmex . Prope...
hsmexlem8 10439 Lemma for ~ hsmex . Prope...
hsmexlem9 10440 Lemma for ~ hsmex . Prope...
hsmexlem1 10441 Lemma for ~ hsmex . Bound...
hsmexlem2 10442 Lemma for ~ hsmex . Bound...
hsmexlem3 10443 Lemma for ~ hsmex . Clear...
hsmexlem4 10444 Lemma for ~ hsmex . The c...
hsmexlem5 10445 Lemma for ~ hsmex . Combi...
hsmexlem6 10446 Lemma for ~ hsmex . (Cont...
hsmex 10447 The collection of heredita...
hsmex2 10448 The set of hereditary size...
hsmex3 10449 The set of hereditary size...
axcc2lem 10451 Lemma for ~ axcc2 . (Cont...
axcc2 10452 A possibly more useful ver...
axcc3 10453 A possibly more useful ver...
axcc4 10454 A version of ~ axcc3 that ...
acncc 10455 An ~ ax-cc equivalent: eve...
axcc4dom 10456 Relax the constraint on ~ ...
domtriomlem 10457 Lemma for ~ domtriom . (C...
domtriom 10458 Trichotomy of equinumerosi...
fin41 10459 Under countable choice, th...
dominf 10460 A nonempty set that is a s...
dcomex 10462 The Axiom of Dependent Cho...
axdc2lem 10463 Lemma for ~ axdc2 . We co...
axdc2 10464 An apparent strengthening ...
axdc3lem 10465 The class ` S ` of finite ...
axdc3lem2 10466 Lemma for ~ axdc3 . We ha...
axdc3lem3 10467 Simple substitution lemma ...
axdc3lem4 10468 Lemma for ~ axdc3 . We ha...
axdc3 10469 Dependent Choice. Axiom D...
axdc4lem 10470 Lemma for ~ axdc4 . (Cont...
axdc4 10471 A more general version of ...
axcclem 10472 Lemma for ~ axcc . (Contr...
axcc 10473 Although CC can be proven ...
zfac 10475 Axiom of Choice expressed ...
ac2 10476 Axiom of Choice equivalent...
ac3 10477 Axiom of Choice using abbr...
axac3 10479 This theorem asserts that ...
ackm 10480 A remarkable equivalent to...
axac2 10481 Derive ~ ax-ac2 from ~ ax-...
axac 10482 Derive ~ ax-ac from ~ ax-a...
axaci 10483 Apply a choice equivalent....
cardeqv 10484 All sets are well-orderabl...
numth3 10485 All sets are well-orderabl...
numth2 10486 Numeration theorem: any se...
numth 10487 Numeration theorem: every ...
ac7 10488 An Axiom of Choice equival...
ac7g 10489 An Axiom of Choice equival...
ac4 10490 Equivalent of Axiom of Cho...
ac4c 10491 Equivalent of Axiom of Cho...
ac5 10492 An Axiom of Choice equival...
ac5b 10493 Equivalent of Axiom of Cho...
ac6num 10494 A version of ~ ac6 which t...
ac6 10495 Equivalent of Axiom of Cho...
ac6c4 10496 Equivalent of Axiom of Cho...
ac6c5 10497 Equivalent of Axiom of Cho...
ac9 10498 An Axiom of Choice equival...
ac6s 10499 Equivalent of Axiom of Cho...
ac6n 10500 Equivalent of Axiom of Cho...
ac6s2 10501 Generalization of the Axio...
ac6s3 10502 Generalization of the Axio...
ac6sg 10503 ~ ac6s with sethood as ant...
ac6sf 10504 Version of ~ ac6 with boun...
ac6s4 10505 Generalization of the Axio...
ac6s5 10506 Generalization of the Axio...
ac8 10507 An Axiom of Choice equival...
ac9s 10508 An Axiom of Choice equival...
numthcor 10509 Any set is strictly domina...
weth 10510 Well-ordering theorem: any...
zorn2lem1 10511 Lemma for ~ zorn2 . (Cont...
zorn2lem2 10512 Lemma for ~ zorn2 . (Cont...
zorn2lem3 10513 Lemma for ~ zorn2 . (Cont...
zorn2lem4 10514 Lemma for ~ zorn2 . (Cont...
zorn2lem5 10515 Lemma for ~ zorn2 . (Cont...
zorn2lem6 10516 Lemma for ~ zorn2 . (Cont...
zorn2lem7 10517 Lemma for ~ zorn2 . (Cont...
zorn2g 10518 Zorn's Lemma of [Monk1] p....
zorng 10519 Zorn's Lemma. If the unio...
zornn0g 10520 Variant of Zorn's lemma ~ ...
zorn2 10521 Zorn's Lemma of [Monk1] p....
zorn 10522 Zorn's Lemma. If the unio...
zornn0 10523 Variant of Zorn's lemma ~ ...
ttukeylem1 10524 Lemma for ~ ttukey . Expa...
ttukeylem2 10525 Lemma for ~ ttukey . A pr...
ttukeylem3 10526 Lemma for ~ ttukey . (Con...
ttukeylem4 10527 Lemma for ~ ttukey . (Con...
ttukeylem5 10528 Lemma for ~ ttukey . The ...
ttukeylem6 10529 Lemma for ~ ttukey . (Con...
ttukeylem7 10530 Lemma for ~ ttukey . (Con...
ttukey2g 10531 The Teichmüller-Tukey...
ttukeyg 10532 The Teichmüller-Tukey...
ttukey 10533 The Teichmüller-Tukey...
axdclem 10534 Lemma for ~ axdc . (Contr...
axdclem2 10535 Lemma for ~ axdc . Using ...
axdc 10536 This theorem derives ~ ax-...
fodomg 10537 An onto function implies d...
fodom 10538 An onto function implies d...
dmct 10539 The domain of a countable ...
rnct 10540 The range of a countable s...
fodomb 10541 Equivalence of an onto map...
wdomac 10542 When assuming AC, weak and...
brdom3 10543 Equivalence to a dominance...
brdom5 10544 An equivalence to a domina...
brdom4 10545 An equivalence to a domina...
brdom7disj 10546 An equivalence to a domina...
brdom6disj 10547 An equivalence to a domina...
fin71ac 10548 Once we allow AC, the "str...
imadomg 10549 An image of a function und...
fimact 10550 The image by a function of...
fnrndomg 10551 The range of a function is...
fnct 10552 If the domain of a functio...
mptct 10553 A countable mapping set is...
iunfo 10554 Existence of an onto funct...
iundom2g 10555 An upper bound for the car...
iundomg 10556 An upper bound for the car...
iundom 10557 An upper bound for the car...
unidom 10558 An upper bound for the car...
uniimadom 10559 An upper bound for the car...
uniimadomf 10560 An upper bound for the car...
cardval 10561 The value of the cardinal ...
cardid 10562 Any set is equinumerous to...
cardidg 10563 Any set is equinumerous to...
cardidd 10564 Any set is equinumerous to...
cardf 10565 The cardinality function i...
carden 10566 Two sets are equinumerous ...
cardeq0 10567 Only the empty set has car...
unsnen 10568 Equinumerosity of a set wi...
carddom 10569 Two sets have the dominanc...
cardsdom 10570 Two sets have the strict d...
domtri 10571 Trichotomy law for dominan...
entric 10572 Trichotomy of equinumerosi...
entri2 10573 Trichotomy of dominance an...
entri3 10574 Trichotomy of dominance. ...
sdomsdomcard 10575 A set strictly dominates i...
canth3 10576 Cantor's theorem in terms ...
infxpidm 10577 Every infinite class is eq...
ondomon 10578 The class of ordinals domi...
cardmin 10579 The smallest ordinal that ...
ficard 10580 A set is finite iff its ca...
infinf 10581 Equivalence between two in...
unirnfdomd 10582 The union of the range of ...
konigthlem 10583 Lemma for ~ konigth . (Co...
konigth 10584 Konig's Theorem. If ` m (...
alephsucpw 10585 The power set of an aleph ...
aleph1 10586 The set exponentiation of ...
alephval2 10587 An alternate way to expres...
dominfac 10588 A nonempty set that is a s...
iunctb 10589 The countable union of cou...
unictb 10590 The countable union of cou...
infmap 10591 An exponentiation law for ...
alephadd 10592 The sum of two alephs is t...
alephmul 10593 The product of two alephs ...
alephexp1 10594 An exponentiation law for ...
alephsuc3 10595 An alternate representatio...
alephexp2 10596 An expression equinumerous...
alephreg 10597 A successor aleph is regul...
pwcfsdom 10598 A corollary of Konig's The...
cfpwsdom 10599 A corollary of Konig's The...
alephom 10600 From ~ canth2 , we know th...
smobeth 10601 The beth function is stric...
nd1 10602 A lemma for proving condit...
nd2 10603 A lemma for proving condit...
nd3 10604 A lemma for proving condit...
nd4 10605 A lemma for proving condit...
axextnd 10606 A version of the Axiom of ...
axrepndlem1 10607 Lemma for the Axiom of Rep...
axrepndlem2 10608 Lemma for the Axiom of Rep...
axrepnd 10609 A version of the Axiom of ...
axunndlem1 10610 Lemma for the Axiom of Uni...
axunnd 10611 A version of the Axiom of ...
axpowndlem1 10612 Lemma for the Axiom of Pow...
axpowndlem2 10613 Lemma for the Axiom of Pow...
axpowndlem3 10614 Lemma for the Axiom of Pow...
axpowndlem4 10615 Lemma for the Axiom of Pow...
axpownd 10616 A version of the Axiom of ...
axregndlem1 10617 Lemma for the Axiom of Reg...
axregndlem2 10618 Lemma for the Axiom of Reg...
axregnd 10619 A version of the Axiom of ...
axinfndlem1 10620 Lemma for the Axiom of Inf...
axinfnd 10621 A version of the Axiom of ...
axacndlem1 10622 Lemma for the Axiom of Cho...
axacndlem2 10623 Lemma for the Axiom of Cho...
axacndlem3 10624 Lemma for the Axiom of Cho...
axacndlem4 10625 Lemma for the Axiom of Cho...
axacndlem5 10626 Lemma for the Axiom of Cho...
axacnd 10627 A version of the Axiom of ...
zfcndext 10628 Axiom of Extensionality ~ ...
zfcndrep 10629 Axiom of Replacement ~ ax-...
zfcndun 10630 Axiom of Union ~ ax-un , r...
zfcndpow 10631 Axiom of Power Sets ~ ax-p...
zfcndreg 10632 Axiom of Regularity ~ ax-r...
zfcndinf 10633 Axiom of Infinity ~ ax-inf...
zfcndac 10634 Axiom of Choice ~ ax-ac , ...
elgch 10637 Elementhood in the collect...
fingch 10638 A finite set is a GCH-set....
gchi 10639 The only GCH-sets which ha...
gchen1 10640 If ` A <_ B < ~P A ` , and...
gchen2 10641 If ` A < B <_ ~P A ` , and...
gchor 10642 If ` A <_ B <_ ~P A ` , an...
engch 10643 The property of being a GC...
gchdomtri 10644 Under certain conditions, ...
fpwwe2cbv 10645 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 10646 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 10647 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 10648 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem4 10649 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 10650 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 10651 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 10652 Lemma for ~ fpwwe2 . Show...
fpwwe2lem8 10653 Lemma for ~ fpwwe2 . Give...
fpwwe2lem9 10654 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 10655 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem11 10656 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 10657 Lemma for ~ fpwwe2 . (Con...
fpwwe2 10658 Given any function ` F ` f...
fpwwecbv 10659 Lemma for ~ fpwwe . (Cont...
fpwwelem 10660 Lemma for ~ fpwwe . (Cont...
fpwwe 10661 Given any function ` F ` f...
canth4 10662 An "effective" form of Can...
canthnumlem 10663 Lemma for ~ canthnum . (C...
canthnum 10664 The set of well-orderable ...
canthwelem 10665 Lemma for ~ canthwe . (Co...
canthwe 10666 The set of well-orders of ...
canthp1lem1 10667 Lemma for ~ canthp1 . (Co...
canthp1lem2 10668 Lemma for ~ canthp1 . (Co...
canthp1 10669 A slightly stronger form o...
finngch 10670 The exclusion of finite se...
gchdju1 10671 An infinite GCH-set is ide...
gchinf 10672 An infinite GCH-set is Ded...
pwfseqlem1 10673 Lemma for ~ pwfseq . Deri...
pwfseqlem2 10674 Lemma for ~ pwfseq . (Con...
pwfseqlem3 10675 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 10676 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 10677 Lemma for ~ pwfseq . Deri...
pwfseqlem5 10678 Lemma for ~ pwfseq . Alth...
pwfseq 10679 The powerset of a Dedekind...
pwxpndom2 10680 The powerset of a Dedekind...
pwxpndom 10681 The powerset of a Dedekind...
pwdjundom 10682 The powerset of a Dedekind...
gchdjuidm 10683 An infinite GCH-set is ide...
gchxpidm 10684 An infinite GCH-set is ide...
gchpwdom 10685 A relationship between dom...
gchaleph 10686 If ` ( aleph `` A ) ` is a...
gchaleph2 10687 If ` ( aleph `` A ) ` and ...
hargch 10688 If ` A + ~~ ~P A ` , then ...
alephgch 10689 If ` ( aleph `` suc A ) ` ...
gch2 10690 It is sufficient to requir...
gch3 10691 An equivalent formulation ...
gch-kn 10692 The equivalence of two ver...
gchaclem 10693 Lemma for ~ gchac (obsolet...
gchhar 10694 A "local" form of ~ gchac ...
gchacg 10695 A "local" form of ~ gchac ...
gchac 10696 The Generalized Continuum ...
elwina 10701 Conditions of weak inacces...
elina 10702 Conditions of strong inacc...
winaon 10703 A weakly inaccessible card...
inawinalem 10704 Lemma for ~ inawina . (Co...
inawina 10705 Every strongly inaccessibl...
omina 10706 ` _om ` is a strongly inac...
winacard 10707 A weakly inaccessible card...
winainflem 10708 A weakly inaccessible card...
winainf 10709 A weakly inaccessible card...
winalim 10710 A weakly inaccessible card...
winalim2 10711 A nontrivial weakly inacce...
winafp 10712 A nontrivial weakly inacce...
winafpi 10713 This theorem, which states...
gchina 10714 Assuming the GCH, weakly a...
iswun 10719 Properties of a weak unive...
wuntr 10720 A weak universe is transit...
wununi 10721 A weak universe is closed ...
wunpw 10722 A weak universe is closed ...
wunelss 10723 The elements of a weak uni...
wunpr 10724 A weak universe is closed ...
wunun 10725 A weak universe is closed ...
wuntp 10726 A weak universe is closed ...
wunss 10727 A weak universe is closed ...
wunin 10728 A weak universe is closed ...
wundif 10729 A weak universe is closed ...
wunint 10730 A weak universe is closed ...
wunsn 10731 A weak universe is closed ...
wunsuc 10732 A weak universe is closed ...
wun0 10733 A weak universe contains t...
wunr1om 10734 A weak universe is infinit...
wunom 10735 A weak universe contains a...
wunfi 10736 A weak universe contains a...
wunop 10737 A weak universe is closed ...
wunot 10738 A weak universe is closed ...
wunxp 10739 A weak universe is closed ...
wunpm 10740 A weak universe is closed ...
wunmap 10741 A weak universe is closed ...
wunf 10742 A weak universe is closed ...
wundm 10743 A weak universe is closed ...
wunrn 10744 A weak universe is closed ...
wuncnv 10745 A weak universe is closed ...
wunres 10746 A weak universe is closed ...
wunfv 10747 A weak universe is closed ...
wunco 10748 A weak universe is closed ...
wuntpos 10749 A weak universe is closed ...
intwun 10750 The intersection of a coll...
r1limwun 10751 Each limit stage in the cu...
r1wunlim 10752 The weak universes in the ...
wunex2 10753 Construct a weak universe ...
wunex 10754 Construct a weak universe ...
uniwun 10755 Every set is contained in ...
wunex3 10756 Construct a weak universe ...
wuncval 10757 Value of the weak universe...
wuncid 10758 The weak universe closure ...
wunccl 10759 The weak universe closure ...
wuncss 10760 The weak universe closure ...
wuncidm 10761 The weak universe closure ...
wuncval2 10762 Our earlier expression for...
eltskg 10765 Properties of a Tarski cla...
eltsk2g 10766 Properties of a Tarski cla...
tskpwss 10767 First axiom of a Tarski cl...
tskpw 10768 Second axiom of a Tarski c...
tsken 10769 Third axiom of a Tarski cl...
0tsk 10770 The empty set is a (transi...
tsksdom 10771 An element of a Tarski cla...
tskssel 10772 A part of a Tarski class s...
tskss 10773 The subsets of an element ...
tskin 10774 The intersection of two el...
tsksn 10775 A singleton of an element ...
tsktrss 10776 A transitive element of a ...
tsksuc 10777 If an element of a Tarski ...
tsk0 10778 A nonempty Tarski class co...
tsk1 10779 One is an element of a non...
tsk2 10780 Two is an element of a non...
2domtsk 10781 If a Tarski class is not e...
tskr1om 10782 A nonempty Tarski class is...
tskr1om2 10783 A nonempty Tarski class co...
tskinf 10784 A nonempty Tarski class is...
tskpr 10785 If ` A ` and ` B ` are mem...
tskop 10786 If ` A ` and ` B ` are mem...
tskxpss 10787 A Cartesian product of two...
tskwe2 10788 A Tarski class is well-ord...
inttsk 10789 The intersection of a coll...
inar1 10790 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 10791 Alternate proof of ~ r1om ...
rankcf 10792 Any set must be at least a...
inatsk 10793 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 10794 The set of hereditarily fi...
tskord 10795 A Tarski class contains al...
tskcard 10796 An even more direct relati...
r1tskina 10797 There is a direct relation...
tskuni 10798 The union of an element of...
tskwun 10799 A nonempty transitive Tars...
tskint 10800 The intersection of an ele...
tskun 10801 The union of two elements ...
tskxp 10802 The Cartesian product of t...
tskmap 10803 Set exponentiation is an e...
tskurn 10804 A transitive Tarski class ...
elgrug 10807 Properties of a Grothendie...
grutr 10808 A Grothendieck universe is...
gruelss 10809 A Grothendieck universe is...
grupw 10810 A Grothendieck universe co...
gruss 10811 Any subset of an element o...
grupr 10812 A Grothendieck universe co...
gruurn 10813 A Grothendieck universe co...
gruiun 10814 If ` B ( x ) ` is a family...
gruuni 10815 A Grothendieck universe co...
grurn 10816 A Grothendieck universe co...
gruima 10817 A Grothendieck universe co...
gruel 10818 Any element of an element ...
grusn 10819 A Grothendieck universe co...
gruop 10820 A Grothendieck universe co...
gruun 10821 A Grothendieck universe co...
gruxp 10822 A Grothendieck universe co...
grumap 10823 A Grothendieck universe co...
gruixp 10824 A Grothendieck universe co...
gruiin 10825 A Grothendieck universe co...
gruf 10826 A Grothendieck universe co...
gruen 10827 A Grothendieck universe co...
gruwun 10828 A nonempty Grothendieck un...
intgru 10829 The intersection of a fami...
ingru 10830 The intersection of a univ...
wfgru 10831 The wellfounded part of a ...
grudomon 10832 Each ordinal that is compa...
gruina 10833 If a Grothendieck universe...
grur1a 10834 A characterization of Grot...
grur1 10835 A characterization of Grot...
grutsk1 10836 Grothendieck universes are...
grutsk 10837 Grothendieck universes are...
axgroth5 10839 The Tarski-Grothendieck ax...
axgroth2 10840 Alternate version of the T...
grothpw 10841 Derive the Axiom of Power ...
grothpwex 10842 Derive the Axiom of Power ...
axgroth6 10843 The Tarski-Grothendieck ax...
grothomex 10844 The Tarski-Grothendieck Ax...
grothac 10845 The Tarski-Grothendieck Ax...
axgroth3 10846 Alternate version of the T...
axgroth4 10847 Alternate version of the T...
grothprimlem 10848 Lemma for ~ grothprim . E...
grothprim 10849 The Tarski-Grothendieck Ax...
grothtsk 10850 The Tarski-Grothendieck Ax...
inaprc 10851 An equivalent to the Tarsk...
tskmval 10854 Value of our tarski map. ...
tskmid 10855 The set ` A ` is an elemen...
tskmcl 10856 A Tarski class that contai...
sstskm 10857 Being a part of ` ( tarski...
eltskm 10858 Belonging to ` ( tarskiMap...
elni 10891 Membership in the class of...
elni2 10892 Membership in the class of...
pinn 10893 A positive integer is a na...
pion 10894 A positive integer is an o...
piord 10895 A positive integer is ordi...
niex 10896 The class of positive inte...
0npi 10897 The empty set is not a pos...
1pi 10898 Ordinal 'one' is a positiv...
addpiord 10899 Positive integer addition ...
mulpiord 10900 Positive integer multiplic...
mulidpi 10901 1 is an identity element f...
ltpiord 10902 Positive integer 'less tha...
ltsopi 10903 Positive integer 'less tha...
ltrelpi 10904 Positive integer 'less tha...
dmaddpi 10905 Domain of addition on posi...
dmmulpi 10906 Domain of multiplication o...
addclpi 10907 Closure of addition of pos...
mulclpi 10908 Closure of multiplication ...
addcompi 10909 Addition of positive integ...
addasspi 10910 Addition of positive integ...
mulcompi 10911 Multiplication of positive...
mulasspi 10912 Multiplication of positive...
distrpi 10913 Multiplication of positive...
addcanpi 10914 Addition cancellation law ...
mulcanpi 10915 Multiplication cancellatio...
addnidpi 10916 There is no identity eleme...
ltexpi 10917 Ordering on positive integ...
ltapi 10918 Ordering property of addit...
ltmpi 10919 Ordering property of multi...
1lt2pi 10920 One is less than two (one ...
nlt1pi 10921 No positive integer is les...
indpi 10922 Principle of Finite Induct...
enqbreq 10934 Equivalence relation for p...
enqbreq2 10935 Equivalence relation for p...
enqer 10936 The equivalence relation f...
enqex 10937 The equivalence relation f...
nqex 10938 The class of positive frac...
0nnq 10939 The empty set is not a pos...
elpqn 10940 Each positive fraction is ...
ltrelnq 10941 Positive fraction 'less th...
pinq 10942 The representatives of pos...
1nq 10943 The positive fraction 'one...
nqereu 10944 There is a unique element ...
nqerf 10945 Corollary of ~ nqereu : th...
nqercl 10946 Corollary of ~ nqereu : cl...
nqerrel 10947 Any member of ` ( N. X. N....
nqerid 10948 Corollary of ~ nqereu : th...
enqeq 10949 Corollary of ~ nqereu : if...
nqereq 10950 The function ` /Q ` acts a...
addpipq2 10951 Addition of positive fract...
addpipq 10952 Addition of positive fract...
addpqnq 10953 Addition of positive fract...
mulpipq2 10954 Multiplication of positive...
mulpipq 10955 Multiplication of positive...
mulpqnq 10956 Multiplication of positive...
ordpipq 10957 Ordering of positive fract...
ordpinq 10958 Ordering of positive fract...
addpqf 10959 Closure of addition on pos...
addclnq 10960 Closure of addition on pos...
mulpqf 10961 Closure of multiplication ...
mulclnq 10962 Closure of multiplication ...
addnqf 10963 Domain of addition on posi...
mulnqf 10964 Domain of multiplication o...
addcompq 10965 Addition of positive fract...
addcomnq 10966 Addition of positive fract...
mulcompq 10967 Multiplication of positive...
mulcomnq 10968 Multiplication of positive...
adderpqlem 10969 Lemma for ~ adderpq . (Co...
mulerpqlem 10970 Lemma for ~ mulerpq . (Co...
adderpq 10971 Addition is compatible wit...
mulerpq 10972 Multiplication is compatib...
addassnq 10973 Addition of positive fract...
mulassnq 10974 Multiplication of positive...
mulcanenq 10975 Lemma for distributive law...
distrnq 10976 Multiplication of positive...
1nqenq 10977 The equivalence class of r...
mulidnq 10978 Multiplication identity el...
recmulnq 10979 Relationship between recip...
recidnq 10980 A positive fraction times ...
recclnq 10981 Closure law for positive f...
recrecnq 10982 Reciprocal of reciprocal o...
dmrecnq 10983 Domain of reciprocal on po...
ltsonq 10984 'Less than' is a strict or...
lterpq 10985 Compatibility of ordering ...
ltanq 10986 Ordering property of addit...
ltmnq 10987 Ordering property of multi...
1lt2nq 10988 One is less than two (one ...
ltaddnq 10989 The sum of two fractions i...
ltexnq 10990 Ordering on positive fract...
halfnq 10991 One-half of any positive f...
nsmallnq 10992 The is no smallest positiv...
ltbtwnnq 10993 There exists a number betw...
ltrnq 10994 Ordering property of recip...
archnq 10995 For any fraction, there is...
npex 11001 The class of positive real...
elnp 11002 Membership in positive rea...
elnpi 11003 Membership in positive rea...
prn0 11004 A positive real is not emp...
prpssnq 11005 A positive real is a subse...
elprnq 11006 A positive real is a set o...
0npr 11007 The empty set is not a pos...
prcdnq 11008 A positive real is closed ...
prub 11009 A positive fraction not in...
prnmax 11010 A positive real has no lar...
npomex 11011 A simplifying observation,...
prnmadd 11012 A positive real has no lar...
ltrelpr 11013 Positive real 'less than' ...
genpv 11014 Value of general operation...
genpelv 11015 Membership in value of gen...
genpprecl 11016 Pre-closure law for genera...
genpdm 11017 Domain of general operatio...
genpn0 11018 The result of an operation...
genpss 11019 The result of an operation...
genpnnp 11020 The result of an operation...
genpcd 11021 Downward closure of an ope...
genpnmax 11022 An operation on positive r...
genpcl 11023 Closure of an operation on...
genpass 11024 Associativity of an operat...
plpv 11025 Value of addition on posit...
mpv 11026 Value of multiplication on...
dmplp 11027 Domain of addition on posi...
dmmp 11028 Domain of multiplication o...
nqpr 11029 The canonical embedding of...
1pr 11030 The positive real number '...
addclprlem1 11031 Lemma to prove downward cl...
addclprlem2 11032 Lemma to prove downward cl...
addclpr 11033 Closure of addition on pos...
mulclprlem 11034 Lemma to prove downward cl...
mulclpr 11035 Closure of multiplication ...
addcompr 11036 Addition of positive reals...
addasspr 11037 Addition of positive reals...
mulcompr 11038 Multiplication of positive...
mulasspr 11039 Multiplication of positive...
distrlem1pr 11040 Lemma for distributive law...
distrlem4pr 11041 Lemma for distributive law...
distrlem5pr 11042 Lemma for distributive law...
distrpr 11043 Multiplication of positive...
1idpr 11044 1 is an identity element f...
ltprord 11045 Positive real 'less than' ...
psslinpr 11046 Proper subset is a linear ...
ltsopr 11047 Positive real 'less than' ...
prlem934 11048 Lemma 9-3.4 of [Gleason] p...
ltaddpr 11049 The sum of two positive re...
ltaddpr2 11050 The sum of two positive re...
ltexprlem1 11051 Lemma for Proposition 9-3....
ltexprlem2 11052 Lemma for Proposition 9-3....
ltexprlem3 11053 Lemma for Proposition 9-3....
ltexprlem4 11054 Lemma for Proposition 9-3....
ltexprlem5 11055 Lemma for Proposition 9-3....
ltexprlem6 11056 Lemma for Proposition 9-3....
ltexprlem7 11057 Lemma for Proposition 9-3....
ltexpri 11058 Proposition 9-3.5(iv) of [...
ltaprlem 11059 Lemma for Proposition 9-3....
ltapr 11060 Ordering property of addit...
addcanpr 11061 Addition cancellation law ...
prlem936 11062 Lemma 9-3.6 of [Gleason] p...
reclem2pr 11063 Lemma for Proposition 9-3....
reclem3pr 11064 Lemma for Proposition 9-3....
reclem4pr 11065 Lemma for Proposition 9-3....
recexpr 11066 The reciprocal of a positi...
suplem1pr 11067 The union of a nonempty, b...
suplem2pr 11068 The union of a set of posi...
supexpr 11069 The union of a nonempty, b...
enrer 11078 The equivalence relation f...
nrex1 11079 The class of signed reals ...
enrbreq 11080 Equivalence relation for s...
enreceq 11081 Equivalence class equality...
enrex 11082 The equivalence relation f...
ltrelsr 11083 Signed real 'less than' is...
addcmpblnr 11084 Lemma showing compatibilit...
mulcmpblnrlem 11085 Lemma used in lemma showin...
mulcmpblnr 11086 Lemma showing compatibilit...
prsrlem1 11087 Decomposing signed reals i...
addsrmo 11088 There is at most one resul...
mulsrmo 11089 There is at most one resul...
addsrpr 11090 Addition of signed reals i...
mulsrpr 11091 Multiplication of signed r...
ltsrpr 11092 Ordering of signed reals i...
gt0srpr 11093 Greater than zero in terms...
0nsr 11094 The empty set is not a sig...
0r 11095 The constant ` 0R ` is a s...
1sr 11096 The constant ` 1R ` is a s...
m1r 11097 The constant ` -1R ` is a ...
addclsr 11098 Closure of addition on sig...
mulclsr 11099 Closure of multiplication ...
dmaddsr 11100 Domain of addition on sign...
dmmulsr 11101 Domain of multiplication o...
addcomsr 11102 Addition of signed reals i...
addasssr 11103 Addition of signed reals i...
mulcomsr 11104 Multiplication of signed r...
mulasssr 11105 Multiplication of signed r...
distrsr 11106 Multiplication of signed r...
m1p1sr 11107 Minus one plus one is zero...
m1m1sr 11108 Minus one times minus one ...
ltsosr 11109 Signed real 'less than' is...
0lt1sr 11110 0 is less than 1 for signe...
1ne0sr 11111 1 and 0 are distinct for s...
0idsr 11112 The signed real number 0 i...
1idsr 11113 1 is an identity element f...
00sr 11114 A signed real times 0 is 0...
ltasr 11115 Ordering property of addit...
pn0sr 11116 A signed real plus its neg...
negexsr 11117 Existence of negative sign...
recexsrlem 11118 The reciprocal of a positi...
addgt0sr 11119 The sum of two positive si...
mulgt0sr 11120 The product of two positiv...
sqgt0sr 11121 The square of a nonzero si...
recexsr 11122 The reciprocal of a nonzer...
mappsrpr 11123 Mapping from positive sign...
ltpsrpr 11124 Mapping of order from posi...
map2psrpr 11125 Equivalence for positive s...
supsrlem 11126 Lemma for supremum theorem...
supsr 11127 A nonempty, bounded set of...
opelcn 11144 Ordered pair membership in...
opelreal 11145 Ordered pair membership in...
elreal 11146 Membership in class of rea...
elreal2 11147 Ordered pair membership in...
0ncn 11148 The empty set is not a com...
ltrelre 11149 'Less than' is a relation ...
addcnsr 11150 Addition of complex number...
mulcnsr 11151 Multiplication of complex ...
eqresr 11152 Equality of real numbers i...
addresr 11153 Addition of real numbers i...
mulresr 11154 Multiplication of real num...
ltresr 11155 Ordering of real subset of...
ltresr2 11156 Ordering of real subset of...
dfcnqs 11157 Technical trick to permit ...
addcnsrec 11158 Technical trick to permit ...
mulcnsrec 11159 Technical trick to permit ...
axaddf 11160 Addition is an operation o...
axmulf 11161 Multiplication is an opera...
axcnex 11162 The complex numbers form a...
axresscn 11163 The real numbers are a sub...
ax1cn 11164 1 is a complex number. Ax...
axicn 11165 ` _i ` is a complex number...
axaddcl 11166 Closure law for addition o...
axaddrcl 11167 Closure law for addition i...
axmulcl 11168 Closure law for multiplica...
axmulrcl 11169 Closure law for multiplica...
axmulcom 11170 Multiplication of complex ...
axaddass 11171 Addition of complex number...
axmulass 11172 Multiplication of complex ...
axdistr 11173 Distributive law for compl...
axi2m1 11174 i-squared equals -1 (expre...
ax1ne0 11175 1 and 0 are distinct. Axi...
ax1rid 11176 ` 1 ` is an identity eleme...
axrnegex 11177 Existence of negative of r...
axrrecex 11178 Existence of reciprocal of...
axcnre 11179 A complex number can be ex...
axpre-lttri 11180 Ordering on reals satisfie...
axpre-lttrn 11181 Ordering on reals is trans...
axpre-ltadd 11182 Ordering property of addit...
axpre-mulgt0 11183 The product of two positiv...
axpre-sup 11184 A nonempty, bounded-above ...
wuncn 11185 A weak universe containing...
cnex 11211 Alias for ~ ax-cnex . See...
addcl 11212 Alias for ~ ax-addcl , for...
readdcl 11213 Alias for ~ ax-addrcl , fo...
mulcl 11214 Alias for ~ ax-mulcl , for...
remulcl 11215 Alias for ~ ax-mulrcl , fo...
mulcom 11216 Alias for ~ ax-mulcom , fo...
addass 11217 Alias for ~ ax-addass , fo...
mulass 11218 Alias for ~ ax-mulass , fo...
adddi 11219 Alias for ~ ax-distr , for...
recn 11220 A real number is a complex...
reex 11221 The real numbers form a se...
reelprrecn 11222 Reals are a subset of the ...
cnelprrecn 11223 Complex numbers are a subs...
mpoaddf 11224 Addition is an operation o...
mpomulf 11225 Multiplication is an opera...
elimne0 11226 Hypothesis for weak deduct...
adddir 11227 Distributive law for compl...
0cn 11228 Zero is a complex number. ...
0cnd 11229 Zero is a complex number, ...
c0ex 11230 Zero is a set. (Contribut...
1cnd 11231 One is a complex number, d...
1ex 11232 One is a set. (Contribute...
cnre 11233 Alias for ~ ax-cnre , for ...
mulrid 11234 The number 1 is an identit...
mullid 11235 Identity law for multiplic...
1re 11236 The number 1 is real. Thi...
1red 11237 The number 1 is real, dedu...
0re 11238 The number 0 is real. Rem...
0red 11239 The number 0 is real, dedu...
mulridi 11240 Identity law for multiplic...
mullidi 11241 Identity law for multiplic...
addcli 11242 Closure law for addition. ...
mulcli 11243 Closure law for multiplica...
mulcomi 11244 Commutative law for multip...
mulcomli 11245 Commutative law for multip...
addassi 11246 Associative law for additi...
mulassi 11247 Associative law for multip...
adddii 11248 Distributive law (left-dis...
adddiri 11249 Distributive law (right-di...
recni 11250 A real number is a complex...
readdcli 11251 Closure law for addition o...
remulcli 11252 Closure law for multiplica...
mulridd 11253 Identity law for multiplic...
mullidd 11254 Identity law for multiplic...
addcld 11255 Closure law for addition. ...
mulcld 11256 Closure law for multiplica...
mulcomd 11257 Commutative law for multip...
addassd 11258 Associative law for additi...
mulassd 11259 Associative law for multip...
adddid 11260 Distributive law (left-dis...
adddird 11261 Distributive law (right-di...
adddirp1d 11262 Distributive law, plus 1 v...
joinlmuladdmuld 11263 Join AB+CB into (A+C) on L...
recnd 11264 Deduction from real number...
readdcld 11265 Closure law for addition o...
remulcld 11266 Closure law for multiplica...
pnfnre 11277 Plus infinity is not a rea...
pnfnre2 11278 Plus infinity is not a rea...
mnfnre 11279 Minus infinity is not a re...
ressxr 11280 The standard reals are a s...
rexpssxrxp 11281 The Cartesian product of s...
rexr 11282 A standard real is an exte...
0xr 11283 Zero is an extended real. ...
renepnf 11284 No (finite) real equals pl...
renemnf 11285 No real equals minus infin...
rexrd 11286 A standard real is an exte...
renepnfd 11287 No (finite) real equals pl...
renemnfd 11288 No real equals minus infin...
pnfex 11289 Plus infinity exists. (Co...
pnfxr 11290 Plus infinity belongs to t...
pnfnemnf 11291 Plus and minus infinity ar...
mnfnepnf 11292 Minus and plus infinity ar...
mnfxr 11293 Minus infinity belongs to ...
rexri 11294 A standard real is an exte...
1xr 11295 ` 1 ` is an extended real ...
renfdisj 11296 The reals and the infiniti...
ltrelxr 11297 "Less than" is a relation ...
ltrel 11298 "Less than" is a relation....
lerelxr 11299 "Less than or equal to" is...
lerel 11300 "Less than or equal to" is...
xrlenlt 11301 "Less than or equal to" ex...
xrlenltd 11302 "Less than or equal to" ex...
xrltnle 11303 "Less than" expressed in t...
xrnltled 11304 "Not less than" implies "l...
ssxr 11305 The three (non-exclusive) ...
ltxrlt 11306 The standard less-than ` <...
axlttri 11307 Ordering on reals satisfie...
axlttrn 11308 Ordering on reals is trans...
axltadd 11309 Ordering property of addit...
axmulgt0 11310 The product of two positiv...
axsup 11311 A nonempty, bounded-above ...
lttr 11312 Alias for ~ axlttrn , for ...
mulgt0 11313 The product of two positiv...
lenlt 11314 'Less than or equal to' ex...
ltnle 11315 'Less than' expressed in t...
ltso 11316 'Less than' is a strict or...
gtso 11317 'Greater than' is a strict...
lttri2 11318 Consequence of trichotomy....
lttri3 11319 Trichotomy law for 'less t...
lttri4 11320 Trichotomy law for 'less t...
letri3 11321 Trichotomy law. (Contribu...
leloe 11322 'Less than or equal to' ex...
eqlelt 11323 Equality in terms of 'less...
ltle 11324 'Less than' implies 'less ...
leltne 11325 'Less than or equal to' im...
lelttr 11326 Transitive law. (Contribu...
leltletr 11327 Transitive law, weaker for...
ltletr 11328 Transitive law. (Contribu...
ltleletr 11329 Transitive law, weaker for...
letr 11330 Transitive law. (Contribu...
ltnr 11331 'Less than' is irreflexive...
leid 11332 'Less than or equal to' is...
ltne 11333 'Less than' implies not eq...
ltnsym 11334 'Less than' is not symmetr...
ltnsym2 11335 'Less than' is antisymmetr...
letric 11336 Trichotomy law. (Contribu...
ltlen 11337 'Less than' expressed in t...
eqle 11338 Equality implies 'less tha...
eqled 11339 Equality implies 'less tha...
ltadd2 11340 Addition to both sides of ...
ne0gt0 11341 A nonzero nonnegative numb...
lecasei 11342 Ordering elimination by ca...
lelttric 11343 Trichotomy law. (Contribu...
ltlecasei 11344 Ordering elimination by ca...
ltnri 11345 'Less than' is irreflexive...
eqlei 11346 Equality implies 'less tha...
eqlei2 11347 Equality implies 'less tha...
gtneii 11348 'Less than' implies not eq...
ltneii 11349 'Greater than' implies not...
lttri2i 11350 Consequence of trichotomy....
lttri3i 11351 Consequence of trichotomy....
letri3i 11352 Consequence of trichotomy....
leloei 11353 'Less than or equal to' in...
ltleni 11354 'Less than' expressed in t...
ltnsymi 11355 'Less than' is not symmetr...
lenlti 11356 'Less than or equal to' in...
ltnlei 11357 'Less than' in terms of 'l...
ltlei 11358 'Less than' implies 'less ...
ltleii 11359 'Less than' implies 'less ...
ltnei 11360 'Less than' implies not eq...
letrii 11361 Trichotomy law for 'less t...
lttri 11362 'Less than' is transitive....
lelttri 11363 'Less than or equal to', '...
ltletri 11364 'Less than', 'less than or...
letri 11365 'Less than or equal to' is...
le2tri3i 11366 Extended trichotomy law fo...
ltadd2i 11367 Addition to both sides of ...
mulgt0i 11368 The product of two positiv...
mulgt0ii 11369 The product of two positiv...
ltnrd 11370 'Less than' is irreflexive...
gtned 11371 'Less than' implies not eq...
ltned 11372 'Greater than' implies not...
ne0gt0d 11373 A nonzero nonnegative numb...
lttrid 11374 Ordering on reals satisfie...
lttri2d 11375 Consequence of trichotomy....
lttri3d 11376 Consequence of trichotomy....
lttri4d 11377 Trichotomy law for 'less t...
letri3d 11378 Consequence of trichotomy....
leloed 11379 'Less than or equal to' in...
eqleltd 11380 Equality in terms of 'less...
ltlend 11381 'Less than' expressed in t...
lenltd 11382 'Less than or equal to' in...
ltnled 11383 'Less than' in terms of 'l...
ltled 11384 'Less than' implies 'less ...
ltnsymd 11385 'Less than' implies 'less ...
nltled 11386 'Not less than ' implies '...
lensymd 11387 'Less than or equal to' im...
letrid 11388 Trichotomy law for 'less t...
leltned 11389 'Less than or equal to' im...
leneltd 11390 'Less than or equal to' an...
mulgt0d 11391 The product of two positiv...
ltadd2d 11392 Addition to both sides of ...
letrd 11393 Transitive law deduction f...
lelttrd 11394 Transitive law deduction f...
ltadd2dd 11395 Addition to both sides of ...
ltletrd 11396 Transitive law deduction f...
lttrd 11397 Transitive law deduction f...
lelttrdi 11398 If a number is less than a...
dedekind 11399 The Dedekind cut theorem. ...
dedekindle 11400 The Dedekind cut theorem, ...
mul12 11401 Commutative/associative la...
mul32 11402 Commutative/associative la...
mul31 11403 Commutative/associative la...
mul4 11404 Rearrangement of 4 factors...
mul4r 11405 Rearrangement of 4 factors...
muladd11 11406 A simple product of sums e...
1p1times 11407 Two times a number. (Cont...
peano2cn 11408 A theorem for complex numb...
peano2re 11409 A theorem for reals analog...
readdcan 11410 Cancellation law for addit...
00id 11411 ` 0 ` is its own additive ...
mul02lem1 11412 Lemma for ~ mul02 . If an...
mul02lem2 11413 Lemma for ~ mul02 . Zero ...
mul02 11414 Multiplication by ` 0 ` . ...
mul01 11415 Multiplication by ` 0 ` . ...
addrid 11416 ` 0 ` is an additive ident...
cnegex 11417 Existence of the negative ...
cnegex2 11418 Existence of a left invers...
addlid 11419 ` 0 ` is a left identity f...
addcan 11420 Cancellation law for addit...
addcan2 11421 Cancellation law for addit...
addcom 11422 Addition commutes. This u...
addridi 11423 ` 0 ` is an additive ident...
addlidi 11424 ` 0 ` is a left identity f...
mul02i 11425 Multiplication by 0. Theo...
mul01i 11426 Multiplication by ` 0 ` . ...
addcomi 11427 Addition commutes. Based ...
addcomli 11428 Addition commutes. (Contr...
addcani 11429 Cancellation law for addit...
addcan2i 11430 Cancellation law for addit...
mul12i 11431 Commutative/associative la...
mul32i 11432 Commutative/associative la...
mul4i 11433 Rearrangement of 4 factors...
mul02d 11434 Multiplication by 0. Theo...
mul01d 11435 Multiplication by ` 0 ` . ...
addridd 11436 ` 0 ` is an additive ident...
addlidd 11437 ` 0 ` is a left identity f...
addcomd 11438 Addition commutes. Based ...
addcand 11439 Cancellation law for addit...
addcan2d 11440 Cancellation law for addit...
addcanad 11441 Cancelling a term on the l...
addcan2ad 11442 Cancelling a term on the r...
addneintrd 11443 Introducing a term on the ...
addneintr2d 11444 Introducing a term on the ...
mul12d 11445 Commutative/associative la...
mul32d 11446 Commutative/associative la...
mul31d 11447 Commutative/associative la...
mul4d 11448 Rearrangement of 4 factors...
muladd11r 11449 A simple product of sums e...
comraddd 11450 Commute RHS addition, in d...
ltaddneg 11451 Adding a negative number t...
ltaddnegr 11452 Adding a negative number t...
add12 11453 Commutative/associative la...
add32 11454 Commutative/associative la...
add32r 11455 Commutative/associative la...
add4 11456 Rearrangement of 4 terms i...
add42 11457 Rearrangement of 4 terms i...
add12i 11458 Commutative/associative la...
add32i 11459 Commutative/associative la...
add4i 11460 Rearrangement of 4 terms i...
add42i 11461 Rearrangement of 4 terms i...
add12d 11462 Commutative/associative la...
add32d 11463 Commutative/associative la...
add4d 11464 Rearrangement of 4 terms i...
add42d 11465 Rearrangement of 4 terms i...
0cnALT 11470 Alternate proof of ~ 0cn w...
0cnALT2 11471 Alternate proof of ~ 0cnAL...
negeu 11472 Existential uniqueness of ...
subval 11473 Value of subtraction, whic...
negeq 11474 Equality theorem for negat...
negeqi 11475 Equality inference for neg...
negeqd 11476 Equality deduction for neg...
nfnegd 11477 Deduction version of ~ nfn...
nfneg 11478 Bound-variable hypothesis ...
csbnegg 11479 Move class substitution in...
negex 11480 A negative is a set. (Con...
subcl 11481 Closure law for subtractio...
negcl 11482 Closure law for negative. ...
negicn 11483 ` -u _i ` is a complex num...
subf 11484 Subtraction is an operatio...
subadd 11485 Relationship between subtr...
subadd2 11486 Relationship between subtr...
subsub23 11487 Swap subtrahend and result...
pncan 11488 Cancellation law for subtr...
pncan2 11489 Cancellation law for subtr...
pncan3 11490 Subtraction and addition o...
npcan 11491 Cancellation law for subtr...
addsubass 11492 Associative-type law for a...
addsub 11493 Law for addition and subtr...
subadd23 11494 Commutative/associative la...
addsub12 11495 Commutative/associative la...
2addsub 11496 Law for subtraction and ad...
addsubeq4 11497 Relation between sums and ...
pncan3oi 11498 Subtraction and addition o...
mvrraddi 11499 Move the right term in a s...
mvlladdi 11500 Move the left term in a su...
subid 11501 Subtraction of a number fr...
subid1 11502 Identity law for subtracti...
npncan 11503 Cancellation law for subtr...
nppcan 11504 Cancellation law for subtr...
nnpcan 11505 Cancellation law for subtr...
nppcan3 11506 Cancellation law for subtr...
subcan2 11507 Cancellation law for subtr...
subeq0 11508 If the difference between ...
npncan2 11509 Cancellation law for subtr...
subsub2 11510 Law for double subtraction...
nncan 11511 Cancellation law for subtr...
subsub 11512 Law for double subtraction...
nppcan2 11513 Cancellation law for subtr...
subsub3 11514 Law for double subtraction...
subsub4 11515 Law for double subtraction...
sub32 11516 Swap the second and third ...
nnncan 11517 Cancellation law for subtr...
nnncan1 11518 Cancellation law for subtr...
nnncan2 11519 Cancellation law for subtr...
npncan3 11520 Cancellation law for subtr...
pnpcan 11521 Cancellation law for mixed...
pnpcan2 11522 Cancellation law for mixed...
pnncan 11523 Cancellation law for mixed...
ppncan 11524 Cancellation law for mixed...
addsub4 11525 Rearrangement of 4 terms i...
subadd4 11526 Rearrangement of 4 terms i...
sub4 11527 Rearrangement of 4 terms i...
neg0 11528 Minus 0 equals 0. (Contri...
negid 11529 Addition of a number and i...
negsub 11530 Relationship between subtr...
subneg 11531 Relationship between subtr...
negneg 11532 A number is equal to the n...
neg11 11533 Negative is one-to-one. (...
negcon1 11534 Negative contraposition la...
negcon2 11535 Negative contraposition la...
negeq0 11536 A number is zero iff its n...
subcan 11537 Cancellation law for subtr...
negsubdi 11538 Distribution of negative o...
negdi 11539 Distribution of negative o...
negdi2 11540 Distribution of negative o...
negsubdi2 11541 Distribution of negative o...
neg2sub 11542 Relationship between subtr...
renegcli 11543 Closure law for negative o...
resubcli 11544 Closure law for subtractio...
renegcl 11545 Closure law for negative o...
resubcl 11546 Closure law for subtractio...
negreb 11547 The negative of a real is ...
peano2cnm 11548 "Reverse" second Peano pos...
peano2rem 11549 "Reverse" second Peano pos...
negcli 11550 Closure law for negative. ...
negidi 11551 Addition of a number and i...
negnegi 11552 A number is equal to the n...
subidi 11553 Subtraction of a number fr...
subid1i 11554 Identity law for subtracti...
negne0bi 11555 A number is nonzero iff it...
negrebi 11556 The negative of a real is ...
negne0i 11557 The negative of a nonzero ...
subcli 11558 Closure law for subtractio...
pncan3i 11559 Subtraction and addition o...
negsubi 11560 Relationship between subtr...
subnegi 11561 Relationship between subtr...
subeq0i 11562 If the difference between ...
neg11i 11563 Negative is one-to-one. (...
negcon1i 11564 Negative contraposition la...
negcon2i 11565 Negative contraposition la...
negdii 11566 Distribution of negative o...
negsubdii 11567 Distribution of negative o...
negsubdi2i 11568 Distribution of negative o...
subaddi 11569 Relationship between subtr...
subadd2i 11570 Relationship between subtr...
subaddrii 11571 Relationship between subtr...
subsub23i 11572 Swap subtrahend and result...
addsubassi 11573 Associative-type law for s...
addsubi 11574 Law for subtraction and ad...
subcani 11575 Cancellation law for subtr...
subcan2i 11576 Cancellation law for subtr...
pnncani 11577 Cancellation law for mixed...
addsub4i 11578 Rearrangement of 4 terms i...
0reALT 11579 Alternate proof of ~ 0re ....
negcld 11580 Closure law for negative. ...
subidd 11581 Subtraction of a number fr...
subid1d 11582 Identity law for subtracti...
negidd 11583 Addition of a number and i...
negnegd 11584 A number is equal to the n...
negeq0d 11585 A number is zero iff its n...
negne0bd 11586 A number is nonzero iff it...
negcon1d 11587 Contraposition law for una...
negcon1ad 11588 Contraposition law for una...
neg11ad 11589 The negatives of two compl...
negned 11590 If two complex numbers are...
negne0d 11591 The negative of a nonzero ...
negrebd 11592 The negative of a real is ...
subcld 11593 Closure law for subtractio...
pncand 11594 Cancellation law for subtr...
pncan2d 11595 Cancellation law for subtr...
pncan3d 11596 Subtraction and addition o...
npcand 11597 Cancellation law for subtr...
nncand 11598 Cancellation law for subtr...
negsubd 11599 Relationship between subtr...
subnegd 11600 Relationship between subtr...
subeq0d 11601 If the difference between ...
subne0d 11602 Two unequal numbers have n...
subeq0ad 11603 The difference of two comp...
subne0ad 11604 If the difference of two c...
neg11d 11605 If the difference between ...
negdid 11606 Distribution of negative o...
negdi2d 11607 Distribution of negative o...
negsubdid 11608 Distribution of negative o...
negsubdi2d 11609 Distribution of negative o...
neg2subd 11610 Relationship between subtr...
subaddd 11611 Relationship between subtr...
subadd2d 11612 Relationship between subtr...
addsubassd 11613 Associative-type law for s...
addsubd 11614 Law for subtraction and ad...
subadd23d 11615 Commutative/associative la...
addsub12d 11616 Commutative/associative la...
npncand 11617 Cancellation law for subtr...
nppcand 11618 Cancellation law for subtr...
nppcan2d 11619 Cancellation law for subtr...
nppcan3d 11620 Cancellation law for subtr...
subsubd 11621 Law for double subtraction...
subsub2d 11622 Law for double subtraction...
subsub3d 11623 Law for double subtraction...
subsub4d 11624 Law for double subtraction...
sub32d 11625 Swap the second and third ...
nnncand 11626 Cancellation law for subtr...
nnncan1d 11627 Cancellation law for subtr...
nnncan2d 11628 Cancellation law for subtr...
npncan3d 11629 Cancellation law for subtr...
pnpcand 11630 Cancellation law for mixed...
pnpcan2d 11631 Cancellation law for mixed...
pnncand 11632 Cancellation law for mixed...
ppncand 11633 Cancellation law for mixed...
subcand 11634 Cancellation law for subtr...
subcan2d 11635 Cancellation law for subtr...
subcanad 11636 Cancellation law for subtr...
subneintrd 11637 Introducing subtraction on...
subcan2ad 11638 Cancellation law for subtr...
subneintr2d 11639 Introducing subtraction on...
addsub4d 11640 Rearrangement of 4 terms i...
subadd4d 11641 Rearrangement of 4 terms i...
sub4d 11642 Rearrangement of 4 terms i...
2addsubd 11643 Law for subtraction and ad...
addsubeq4d 11644 Relation between sums and ...
subeqxfrd 11645 Transfer two terms of a su...
mvlraddd 11646 Move the right term in a s...
mvlladdd 11647 Move the left term in a su...
mvrraddd 11648 Move the right term in a s...
mvrladdd 11649 Move the left term in a su...
assraddsubd 11650 Associate RHS addition-sub...
subaddeqd 11651 Transfer two terms of a su...
addlsub 11652 Left-subtraction: Subtrac...
addrsub 11653 Right-subtraction: Subtra...
subexsub 11654 A subtraction law: Exchan...
addid0 11655 If adding a number to a an...
addn0nid 11656 Adding a nonzero number to...
pnpncand 11657 Addition/subtraction cance...
subeqrev 11658 Reverse the order of subtr...
addeq0 11659 Two complex numbers add up...
pncan1 11660 Cancellation law for addit...
npcan1 11661 Cancellation law for subtr...
subeq0bd 11662 If two complex numbers are...
renegcld 11663 Closure law for negative o...
resubcld 11664 Closure law for subtractio...
negn0 11665 The image under negation o...
negf1o 11666 Negation is an isomorphism...
kcnktkm1cn 11667 k times k minus 1 is a com...
muladd 11668 Product of two sums. (Con...
subdi 11669 Distribution of multiplica...
subdir 11670 Distribution of multiplica...
ine0 11671 The imaginary unit ` _i ` ...
mulneg1 11672 Product with negative is n...
mulneg2 11673 The product with a negativ...
mulneg12 11674 Swap the negative sign in ...
mul2neg 11675 Product of two negatives. ...
submul2 11676 Convert a subtraction to a...
mulm1 11677 Product with minus one is ...
addneg1mul 11678 Addition with product with...
mulsub 11679 Product of two differences...
mulsub2 11680 Swap the order of subtract...
mulm1i 11681 Product with minus one is ...
mulneg1i 11682 Product with negative is n...
mulneg2i 11683 Product with negative is n...
mul2negi 11684 Product of two negatives. ...
subdii 11685 Distribution of multiplica...
subdiri 11686 Distribution of multiplica...
muladdi 11687 Product of two sums. (Con...
mulm1d 11688 Product with minus one is ...
mulneg1d 11689 Product with negative is n...
mulneg2d 11690 Product with negative is n...
mul2negd 11691 Product of two negatives. ...
subdid 11692 Distribution of multiplica...
subdird 11693 Distribution of multiplica...
muladdd 11694 Product of two sums. (Con...
mulsubd 11695 Product of two differences...
muls1d 11696 Multiplication by one minu...
mulsubfacd 11697 Multiplication followed by...
addmulsub 11698 The product of a sum and a...
subaddmulsub 11699 The difference with a prod...
mulsubaddmulsub 11700 A special difference of a ...
gt0ne0 11701 Positive implies nonzero. ...
lt0ne0 11702 A number which is less tha...
ltadd1 11703 Addition to both sides of ...
leadd1 11704 Addition to both sides of ...
leadd2 11705 Addition to both sides of ...
ltsubadd 11706 'Less than' relationship b...
ltsubadd2 11707 'Less than' relationship b...
lesubadd 11708 'Less than or equal to' re...
lesubadd2 11709 'Less than or equal to' re...
ltaddsub 11710 'Less than' relationship b...
ltaddsub2 11711 'Less than' relationship b...
leaddsub 11712 'Less than or equal to' re...
leaddsub2 11713 'Less than or equal to' re...
suble 11714 Swap subtrahends in an ine...
lesub 11715 Swap subtrahends in an ine...
ltsub23 11716 'Less than' relationship b...
ltsub13 11717 'Less than' relationship b...
le2add 11718 Adding both sides of two '...
ltleadd 11719 Adding both sides of two o...
leltadd 11720 Adding both sides of two o...
lt2add 11721 Adding both sides of two '...
addgt0 11722 The sum of 2 positive numb...
addgegt0 11723 The sum of nonnegative and...
addgtge0 11724 The sum of nonnegative and...
addge0 11725 The sum of 2 nonnegative n...
ltaddpos 11726 Adding a positive number t...
ltaddpos2 11727 Adding a positive number t...
ltsubpos 11728 Subtracting a positive num...
posdif 11729 Comparison of two numbers ...
lesub1 11730 Subtraction from both side...
lesub2 11731 Subtraction of both sides ...
ltsub1 11732 Subtraction from both side...
ltsub2 11733 Subtraction of both sides ...
lt2sub 11734 Subtracting both sides of ...
le2sub 11735 Subtracting both sides of ...
ltneg 11736 Negative of both sides of ...
ltnegcon1 11737 Contraposition of negative...
ltnegcon2 11738 Contraposition of negative...
leneg 11739 Negative of both sides of ...
lenegcon1 11740 Contraposition of negative...
lenegcon2 11741 Contraposition of negative...
lt0neg1 11742 Comparison of a number and...
lt0neg2 11743 Comparison of a number and...
le0neg1 11744 Comparison of a number and...
le0neg2 11745 Comparison of a number and...
addge01 11746 A number is less than or e...
addge02 11747 A number is less than or e...
add20 11748 Two nonnegative numbers ar...
subge0 11749 Nonnegative subtraction. ...
suble0 11750 Nonpositive subtraction. ...
leaddle0 11751 The sum of a real number a...
subge02 11752 Nonnegative subtraction. ...
lesub0 11753 Lemma to show a nonnegativ...
mulge0 11754 The product of two nonnega...
mullt0 11755 The product of two negativ...
msqgt0 11756 A nonzero square is positi...
msqge0 11757 A square is nonnegative. ...
0lt1 11758 0 is less than 1. Theorem...
0le1 11759 0 is less than or equal to...
relin01 11760 An interval law for less t...
ltordlem 11761 Lemma for ~ ltord1 . (Con...
ltord1 11762 Infer an ordering relation...
leord1 11763 Infer an ordering relation...
eqord1 11764 A strictly increasing real...
ltord2 11765 Infer an ordering relation...
leord2 11766 Infer an ordering relation...
eqord2 11767 A strictly decreasing real...
wloglei 11768 Form of ~ wlogle where bot...
wlogle 11769 If the predicate ` ch ( x ...
leidi 11770 'Less than or equal to' is...
gt0ne0i 11771 Positive means nonzero (us...
gt0ne0ii 11772 Positive implies nonzero. ...
msqgt0i 11773 A nonzero square is positi...
msqge0i 11774 A square is nonnegative. ...
addgt0i 11775 Addition of 2 positive num...
addge0i 11776 Addition of 2 nonnegative ...
addgegt0i 11777 Addition of nonnegative an...
addgt0ii 11778 Addition of 2 positive num...
add20i 11779 Two nonnegative numbers ar...
ltnegi 11780 Negative of both sides of ...
lenegi 11781 Negative of both sides of ...
ltnegcon2i 11782 Contraposition of negative...
mulge0i 11783 The product of two nonnega...
lesub0i 11784 Lemma to show a nonnegativ...
ltaddposi 11785 Adding a positive number t...
posdifi 11786 Comparison of two numbers ...
ltnegcon1i 11787 Contraposition of negative...
lenegcon1i 11788 Contraposition of negative...
subge0i 11789 Nonnegative subtraction. ...
ltadd1i 11790 Addition to both sides of ...
leadd1i 11791 Addition to both sides of ...
leadd2i 11792 Addition to both sides of ...
ltsubaddi 11793 'Less than' relationship b...
lesubaddi 11794 'Less than or equal to' re...
ltsubadd2i 11795 'Less than' relationship b...
lesubadd2i 11796 'Less than or equal to' re...
ltaddsubi 11797 'Less than' relationship b...
lt2addi 11798 Adding both side of two in...
le2addi 11799 Adding both side of two in...
gt0ne0d 11800 Positive implies nonzero. ...
lt0ne0d 11801 Something less than zero i...
leidd 11802 'Less than or equal to' is...
msqgt0d 11803 A nonzero square is positi...
msqge0d 11804 A square is nonnegative. ...
lt0neg1d 11805 Comparison of a number and...
lt0neg2d 11806 Comparison of a number and...
le0neg1d 11807 Comparison of a number and...
le0neg2d 11808 Comparison of a number and...
addgegt0d 11809 Addition of nonnegative an...
addgtge0d 11810 Addition of positive and n...
addgt0d 11811 Addition of 2 positive num...
addge0d 11812 Addition of 2 nonnegative ...
mulge0d 11813 The product of two nonnega...
ltnegd 11814 Negative of both sides of ...
lenegd 11815 Negative of both sides of ...
ltnegcon1d 11816 Contraposition of negative...
ltnegcon2d 11817 Contraposition of negative...
lenegcon1d 11818 Contraposition of negative...
lenegcon2d 11819 Contraposition of negative...
ltaddposd 11820 Adding a positive number t...
ltaddpos2d 11821 Adding a positive number t...
ltsubposd 11822 Subtracting a positive num...
posdifd 11823 Comparison of two numbers ...
addge01d 11824 A number is less than or e...
addge02d 11825 A number is less than or e...
subge0d 11826 Nonnegative subtraction. ...
suble0d 11827 Nonpositive subtraction. ...
subge02d 11828 Nonnegative subtraction. ...
ltadd1d 11829 Addition to both sides of ...
leadd1d 11830 Addition to both sides of ...
leadd2d 11831 Addition to both sides of ...
ltsubaddd 11832 'Less than' relationship b...
lesubaddd 11833 'Less than or equal to' re...
ltsubadd2d 11834 'Less than' relationship b...
lesubadd2d 11835 'Less than or equal to' re...
ltaddsubd 11836 'Less than' relationship b...
ltaddsub2d 11837 'Less than' relationship b...
leaddsub2d 11838 'Less than or equal to' re...
subled 11839 Swap subtrahends in an ine...
lesubd 11840 Swap subtrahends in an ine...
ltsub23d 11841 'Less than' relationship b...
ltsub13d 11842 'Less than' relationship b...
lesub1d 11843 Subtraction from both side...
lesub2d 11844 Subtraction of both sides ...
ltsub1d 11845 Subtraction from both side...
ltsub2d 11846 Subtraction of both sides ...
ltadd1dd 11847 Addition to both sides of ...
ltsub1dd 11848 Subtraction from both side...
ltsub2dd 11849 Subtraction of both sides ...
leadd1dd 11850 Addition to both sides of ...
leadd2dd 11851 Addition to both sides of ...
lesub1dd 11852 Subtraction from both side...
lesub2dd 11853 Subtraction of both sides ...
lesub3d 11854 The result of subtracting ...
le2addd 11855 Adding both side of two in...
le2subd 11856 Subtracting both sides of ...
ltleaddd 11857 Adding both sides of two o...
leltaddd 11858 Adding both sides of two o...
lt2addd 11859 Adding both side of two in...
lt2subd 11860 Subtracting both sides of ...
possumd 11861 Condition for a positive s...
sublt0d 11862 When a subtraction gives a...
ltaddsublt 11863 Addition and subtraction o...
1le1 11864 One is less than or equal ...
ixi 11865 ` _i ` times itself is min...
recextlem1 11866 Lemma for ~ recex . (Cont...
recextlem2 11867 Lemma for ~ recex . (Cont...
recex 11868 Existence of reciprocal of...
mulcand 11869 Cancellation law for multi...
mulcan2d 11870 Cancellation law for multi...
mulcanad 11871 Cancellation of a nonzero ...
mulcan2ad 11872 Cancellation of a nonzero ...
mulcan 11873 Cancellation law for multi...
mulcan2 11874 Cancellation law for multi...
mulcani 11875 Cancellation law for multi...
mul0or 11876 If a product is zero, one ...
mulne0b 11877 The product of two nonzero...
mulne0 11878 The product of two nonzero...
mulne0i 11879 The product of two nonzero...
muleqadd 11880 Property of numbers whose ...
receu 11881 Existential uniqueness of ...
mulnzcnf 11882 Multiplication maps nonzer...
msq0i 11883 A number is zero iff its s...
mul0ori 11884 If a product is zero, one ...
msq0d 11885 A number is zero iff its s...
mul0ord 11886 If a product is zero, one ...
mulne0bd 11887 The product of two nonzero...
mulne0d 11888 The product of two nonzero...
mulcan1g 11889 A generalized form of the ...
mulcan2g 11890 A generalized form of the ...
mulne0bad 11891 A factor of a nonzero comp...
mulne0bbd 11892 A factor of a nonzero comp...
1div0 11895 You can't divide by zero, ...
divval 11896 Value of division: if ` A ...
divmul 11897 Relationship between divis...
divmul2 11898 Relationship between divis...
divmul3 11899 Relationship between divis...
divcl 11900 Closure law for division. ...
reccl 11901 Closure law for reciprocal...
divcan2 11902 A cancellation law for div...
divcan1 11903 A cancellation law for div...
diveq0 11904 A ratio is zero iff the nu...
divne0b 11905 The ratio of nonzero numbe...
divne0 11906 The ratio of nonzero numbe...
recne0 11907 The reciprocal of a nonzer...
recid 11908 Multiplication of a number...
recid2 11909 Multiplication of a number...
divrec 11910 Relationship between divis...
divrec2 11911 Relationship between divis...
divass 11912 An associative law for div...
div23 11913 A commutative/associative ...
div32 11914 A commutative/associative ...
div13 11915 A commutative/associative ...
div12 11916 A commutative/associative ...
divmulass 11917 An associative law for div...
divmulasscom 11918 An associative/commutative...
divdir 11919 Distribution of division o...
divcan3 11920 A cancellation law for div...
divcan4 11921 A cancellation law for div...
div11 11922 One-to-one relationship fo...
divid 11923 A number divided by itself...
div0 11924 Division into zero is zero...
div1 11925 A number divided by 1 is i...
1div1e1 11926 1 divided by 1 is 1. (Con...
diveq1 11927 Equality in terms of unit ...
divneg 11928 Move negative sign inside ...
muldivdir 11929 Distribution of division o...
divsubdir 11930 Distribution of division o...
subdivcomb1 11931 Bring a term in a subtract...
subdivcomb2 11932 Bring a term in a subtract...
recrec 11933 A number is equal to the r...
rec11 11934 Reciprocal is one-to-one. ...
rec11r 11935 Mutual reciprocals. (Cont...
divmuldiv 11936 Multiplication of two rati...
divdivdiv 11937 Division of two ratios. T...
divcan5 11938 Cancellation of common fac...
divmul13 11939 Swap the denominators in t...
divmul24 11940 Swap the numerators in the...
divmuleq 11941 Cross-multiply in an equal...
recdiv 11942 The reciprocal of a ratio....
divcan6 11943 Cancellation of inverted f...
divdiv32 11944 Swap denominators in a div...
divcan7 11945 Cancel equal divisors in a...
dmdcan 11946 Cancellation law for divis...
divdiv1 11947 Division into a fraction. ...
divdiv2 11948 Division by a fraction. (...
recdiv2 11949 Division into a reciprocal...
ddcan 11950 Cancellation in a double d...
divadddiv 11951 Addition of two ratios. T...
divsubdiv 11952 Subtraction of two ratios....
conjmul 11953 Two numbers whose reciproc...
rereccl 11954 Closure law for reciprocal...
redivcl 11955 Closure law for division o...
eqneg 11956 A number equal to its nega...
eqnegd 11957 A complex number equals it...
eqnegad 11958 If a complex number equals...
div2neg 11959 Quotient of two negatives....
divneg2 11960 Move negative sign inside ...
recclzi 11961 Closure law for reciprocal...
recne0zi 11962 The reciprocal of a nonzer...
recidzi 11963 Multiplication of a number...
div1i 11964 A number divided by 1 is i...
eqnegi 11965 A number equal to its nega...
reccli 11966 Closure law for reciprocal...
recidi 11967 Multiplication of a number...
recreci 11968 A number is equal to the r...
dividi 11969 A number divided by itself...
div0i 11970 Division into zero is zero...
divclzi 11971 Closure law for division. ...
divcan1zi 11972 A cancellation law for div...
divcan2zi 11973 A cancellation law for div...
divreczi 11974 Relationship between divis...
divcan3zi 11975 A cancellation law for div...
divcan4zi 11976 A cancellation law for div...
rec11i 11977 Reciprocal is one-to-one. ...
divcli 11978 Closure law for division. ...
divcan2i 11979 A cancellation law for div...
divcan1i 11980 A cancellation law for div...
divreci 11981 Relationship between divis...
divcan3i 11982 A cancellation law for div...
divcan4i 11983 A cancellation law for div...
divne0i 11984 The ratio of nonzero numbe...
rec11ii 11985 Reciprocal is one-to-one. ...
divasszi 11986 An associative law for div...
divmulzi 11987 Relationship between divis...
divdirzi 11988 Distribution of division o...
divdiv23zi 11989 Swap denominators in a div...
divmuli 11990 Relationship between divis...
divdiv32i 11991 Swap denominators in a div...
divassi 11992 An associative law for div...
divdiri 11993 Distribution of division o...
div23i 11994 A commutative/associative ...
div11i 11995 One-to-one relationship fo...
divmuldivi 11996 Multiplication of two rati...
divmul13i 11997 Swap denominators of two r...
divadddivi 11998 Addition of two ratios. T...
divdivdivi 11999 Division of two ratios. T...
rerecclzi 12000 Closure law for reciprocal...
rereccli 12001 Closure law for reciprocal...
redivclzi 12002 Closure law for division o...
redivcli 12003 Closure law for division o...
div1d 12004 A number divided by 1 is i...
reccld 12005 Closure law for reciprocal...
recne0d 12006 The reciprocal of a nonzer...
recidd 12007 Multiplication of a number...
recid2d 12008 Multiplication of a number...
recrecd 12009 A number is equal to the r...
dividd 12010 A number divided by itself...
div0d 12011 Division into zero is zero...
divcld 12012 Closure law for division. ...
divcan1d 12013 A cancellation law for div...
divcan2d 12014 A cancellation law for div...
divrecd 12015 Relationship between divis...
divrec2d 12016 Relationship between divis...
divcan3d 12017 A cancellation law for div...
divcan4d 12018 A cancellation law for div...
diveq0d 12019 A ratio is zero iff the nu...
diveq1d 12020 Equality in terms of unit ...
diveq1ad 12021 The quotient of two comple...
diveq0ad 12022 A fraction of complex numb...
divne1d 12023 If two complex numbers are...
divne0bd 12024 A ratio is zero iff the nu...
divnegd 12025 Move negative sign inside ...
divneg2d 12026 Move negative sign inside ...
div2negd 12027 Quotient of two negatives....
divne0d 12028 The ratio of nonzero numbe...
recdivd 12029 The reciprocal of a ratio....
recdiv2d 12030 Division into a reciprocal...
divcan6d 12031 Cancellation of inverted f...
ddcand 12032 Cancellation in a double d...
rec11d 12033 Reciprocal is one-to-one. ...
divmuld 12034 Relationship between divis...
div32d 12035 A commutative/associative ...
div13d 12036 A commutative/associative ...
divdiv32d 12037 Swap denominators in a div...
divcan5d 12038 Cancellation of common fac...
divcan5rd 12039 Cancellation of common fac...
divcan7d 12040 Cancel equal divisors in a...
dmdcand 12041 Cancellation law for divis...
dmdcan2d 12042 Cancellation law for divis...
divdiv1d 12043 Division into a fraction. ...
divdiv2d 12044 Division by a fraction. (...
divmul2d 12045 Relationship between divis...
divmul3d 12046 Relationship between divis...
divassd 12047 An associative law for div...
div12d 12048 A commutative/associative ...
div23d 12049 A commutative/associative ...
divdird 12050 Distribution of division o...
divsubdird 12051 Distribution of division o...
div11d 12052 One-to-one relationship fo...
divmuldivd 12053 Multiplication of two rati...
divmul13d 12054 Swap denominators of two r...
divmul24d 12055 Swap the numerators in the...
divadddivd 12056 Addition of two ratios. T...
divsubdivd 12057 Subtraction of two ratios....
divmuleqd 12058 Cross-multiply in an equal...
divdivdivd 12059 Division of two ratios. T...
diveq1bd 12060 If two complex numbers are...
div2sub 12061 Swap the order of subtract...
div2subd 12062 Swap subtrahend and minuen...
rereccld 12063 Closure law for reciprocal...
redivcld 12064 Closure law for division o...
subrec 12065 Subtraction of reciprocals...
subreci 12066 Subtraction of reciprocals...
subrecd 12067 Subtraction of reciprocals...
mvllmuld 12068 Move the left term in a pr...
mvllmuli 12069 Move the left term in a pr...
ldiv 12070 Left-division. (Contribut...
rdiv 12071 Right-division. (Contribu...
mdiv 12072 A division law. (Contribu...
lineq 12073 Solution of a (scalar) lin...
elimgt0 12074 Hypothesis for weak deduct...
elimge0 12075 Hypothesis for weak deduct...
ltp1 12076 A number is less than itse...
lep1 12077 A number is less than or e...
ltm1 12078 A number minus 1 is less t...
lem1 12079 A number minus 1 is less t...
letrp1 12080 A transitive property of '...
p1le 12081 A transitive property of p...
recgt0 12082 The reciprocal of a positi...
prodgt0 12083 Infer that a multiplicand ...
prodgt02 12084 Infer that a multiplier is...
ltmul1a 12085 Lemma for ~ ltmul1 . Mult...
ltmul1 12086 Multiplication of both sid...
ltmul2 12087 Multiplication of both sid...
lemul1 12088 Multiplication of both sid...
lemul2 12089 Multiplication of both sid...
lemul1a 12090 Multiplication of both sid...
lemul2a 12091 Multiplication of both sid...
ltmul12a 12092 Comparison of product of t...
lemul12b 12093 Comparison of product of t...
lemul12a 12094 Comparison of product of t...
mulgt1 12095 The product of two numbers...
ltmulgt11 12096 Multiplication by a number...
ltmulgt12 12097 Multiplication by a number...
lemulge11 12098 Multiplication by a number...
lemulge12 12099 Multiplication by a number...
ltdiv1 12100 Division of both sides of ...
lediv1 12101 Division of both sides of ...
gt0div 12102 Division of a positive num...
ge0div 12103 Division of a nonnegative ...
divgt0 12104 The ratio of two positive ...
divge0 12105 The ratio of nonnegative a...
mulge0b 12106 A condition for multiplica...
mulle0b 12107 A condition for multiplica...
mulsuble0b 12108 A condition for multiplica...
ltmuldiv 12109 'Less than' relationship b...
ltmuldiv2 12110 'Less than' relationship b...
ltdivmul 12111 'Less than' relationship b...
ledivmul 12112 'Less than or equal to' re...
ltdivmul2 12113 'Less than' relationship b...
lt2mul2div 12114 'Less than' relationship b...
ledivmul2 12115 'Less than or equal to' re...
lemuldiv 12116 'Less than or equal' relat...
lemuldiv2 12117 'Less than or equal' relat...
ltrec 12118 The reciprocal of both sid...
lerec 12119 The reciprocal of both sid...
lt2msq1 12120 Lemma for ~ lt2msq . (Con...
lt2msq 12121 Two nonnegative numbers co...
ltdiv2 12122 Division of a positive num...
ltrec1 12123 Reciprocal swap in a 'less...
lerec2 12124 Reciprocal swap in a 'less...
ledivdiv 12125 Invert ratios of positive ...
lediv2 12126 Division of a positive num...
ltdiv23 12127 Swap denominator with othe...
lediv23 12128 Swap denominator with othe...
lediv12a 12129 Comparison of ratio of two...
lediv2a 12130 Division of both sides of ...
reclt1 12131 The reciprocal of a positi...
recgt1 12132 The reciprocal of a positi...
recgt1i 12133 The reciprocal of a number...
recp1lt1 12134 Construct a number less th...
recreclt 12135 Given a positive number ` ...
le2msq 12136 The square function on non...
msq11 12137 The square of a nonnegativ...
ledivp1 12138 "Less than or equal to" an...
squeeze0 12139 If a nonnegative number is...
ltp1i 12140 A number is less than itse...
recgt0i 12141 The reciprocal of a positi...
recgt0ii 12142 The reciprocal of a positi...
prodgt0i 12143 Infer that a multiplicand ...
divgt0i 12144 The ratio of two positive ...
divge0i 12145 The ratio of nonnegative a...
ltreci 12146 The reciprocal of both sid...
lereci 12147 The reciprocal of both sid...
lt2msqi 12148 The square function on non...
le2msqi 12149 The square function on non...
msq11i 12150 The square of a nonnegativ...
divgt0i2i 12151 The ratio of two positive ...
ltrecii 12152 The reciprocal of both sid...
divgt0ii 12153 The ratio of two positive ...
ltmul1i 12154 Multiplication of both sid...
ltdiv1i 12155 Division of both sides of ...
ltmuldivi 12156 'Less than' relationship b...
ltmul2i 12157 Multiplication of both sid...
lemul1i 12158 Multiplication of both sid...
lemul2i 12159 Multiplication of both sid...
ltdiv23i 12160 Swap denominator with othe...
ledivp1i 12161 "Less than or equal to" an...
ltdivp1i 12162 Less-than and division rel...
ltdiv23ii 12163 Swap denominator with othe...
ltmul1ii 12164 Multiplication of both sid...
ltdiv1ii 12165 Division of both sides of ...
ltp1d 12166 A number is less than itse...
lep1d 12167 A number is less than or e...
ltm1d 12168 A number minus 1 is less t...
lem1d 12169 A number minus 1 is less t...
recgt0d 12170 The reciprocal of a positi...
divgt0d 12171 The ratio of two positive ...
mulgt1d 12172 The product of two numbers...
lemulge11d 12173 Multiplication by a number...
lemulge12d 12174 Multiplication by a number...
lemul1ad 12175 Multiplication of both sid...
lemul2ad 12176 Multiplication of both sid...
ltmul12ad 12177 Comparison of product of t...
lemul12ad 12178 Comparison of product of t...
lemul12bd 12179 Comparison of product of t...
fimaxre 12180 A finite set of real numbe...
fimaxre2 12181 A nonempty finite set of r...
fimaxre3 12182 A nonempty finite set of r...
fiminre 12183 A nonempty finite set of r...
fiminre2 12184 A nonempty finite set of r...
negfi 12185 The negation of a finite s...
lbreu 12186 If a set of reals contains...
lbcl 12187 If a set of reals contains...
lble 12188 If a set of reals contains...
lbinf 12189 If a set of reals contains...
lbinfcl 12190 If a set of reals contains...
lbinfle 12191 If a set of reals contains...
sup2 12192 A nonempty, bounded-above ...
sup3 12193 A version of the completen...
infm3lem 12194 Lemma for ~ infm3 . (Cont...
infm3 12195 The completeness axiom for...
suprcl 12196 Closure of supremum of a n...
suprub 12197 A member of a nonempty bou...
suprubd 12198 Natural deduction form of ...
suprcld 12199 Natural deduction form of ...
suprlub 12200 The supremum of a nonempty...
suprnub 12201 An upper bound is not less...
suprleub 12202 The supremum of a nonempty...
supaddc 12203 The supremum function dist...
supadd 12204 The supremum function dist...
supmul1 12205 The supremum function dist...
supmullem1 12206 Lemma for ~ supmul . (Con...
supmullem2 12207 Lemma for ~ supmul . (Con...
supmul 12208 The supremum function dist...
sup3ii 12209 A version of the completen...
suprclii 12210 Closure of supremum of a n...
suprubii 12211 A member of a nonempty bou...
suprlubii 12212 The supremum of a nonempty...
suprnubii 12213 An upper bound is not less...
suprleubii 12214 The supremum of a nonempty...
riotaneg 12215 The negative of the unique...
negiso 12216 Negation is an order anti-...
dfinfre 12217 The infimum of a set of re...
infrecl 12218 Closure of infimum of a no...
infrenegsup 12219 The infimum of a set of re...
infregelb 12220 Any lower bound of a nonem...
infrelb 12221 If a nonempty set of real ...
infrefilb 12222 The infimum of a finite se...
supfirege 12223 The supremum of a finite s...
inelr 12224 The imaginary unit ` _i ` ...
rimul 12225 A real number times the im...
cru 12226 The representation of comp...
crne0 12227 The real representation of...
creur 12228 The real part of a complex...
creui 12229 The imaginary part of a co...
cju 12230 The complex conjugate of a...
ofsubeq0 12231 Function analogue of ~ sub...
ofnegsub 12232 Function analogue of ~ neg...
ofsubge0 12233 Function analogue of ~ sub...
nnexALT 12236 Alternate proof of ~ nnex ...
peano5nni 12237 Peano's inductive postulat...
nnssre 12238 The positive integers are ...
nnsscn 12239 The positive integers are ...
nnex 12240 The set of positive intege...
nnre 12241 A positive integer is a re...
nncn 12242 A positive integer is a co...
nnrei 12243 A positive integer is a re...
nncni 12244 A positive integer is a co...
1nn 12245 Peano postulate: 1 is a po...
peano2nn 12246 Peano postulate: a success...
dfnn2 12247 Alternate definition of th...
dfnn3 12248 Alternate definition of th...
nnred 12249 A positive integer is a re...
nncnd 12250 A positive integer is a co...
peano2nnd 12251 Peano postulate: a success...
nnind 12252 Principle of Mathematical ...
nnindALT 12253 Principle of Mathematical ...
nnindd 12254 Principle of Mathematical ...
nn1m1nn 12255 Every positive integer is ...
nn1suc 12256 If a statement holds for 1...
nnaddcl 12257 Closure of addition of pos...
nnmulcl 12258 Closure of multiplication ...
nnmulcli 12259 Closure of multiplication ...
nnmtmip 12260 "Minus times minus is plus...
nn2ge 12261 There exists a positive in...
nnge1 12262 A positive integer is one ...
nngt1ne1 12263 A positive integer is grea...
nnle1eq1 12264 A positive integer is less...
nngt0 12265 A positive integer is posi...
nnnlt1 12266 A positive integer is not ...
nnnle0 12267 A positive integer is not ...
nnne0 12268 A positive integer is nonz...
nnneneg 12269 No positive integer is equ...
0nnn 12270 Zero is not a positive int...
0nnnALT 12271 Alternate proof of ~ 0nnn ...
nnne0ALT 12272 Alternate version of ~ nnn...
nngt0i 12273 A positive integer is posi...
nnne0i 12274 A positive integer is nonz...
nndivre 12275 The quotient of a real and...
nnrecre 12276 The reciprocal of a positi...
nnrecgt0 12277 The reciprocal of a positi...
nnsub 12278 Subtraction of positive in...
nnsubi 12279 Subtraction of positive in...
nndiv 12280 Two ways to express " ` A ...
nndivtr 12281 Transitive property of div...
nnge1d 12282 A positive integer is one ...
nngt0d 12283 A positive integer is posi...
nnne0d 12284 A positive integer is nonz...
nnrecred 12285 The reciprocal of a positi...
nnaddcld 12286 Closure of addition of pos...
nnmulcld 12287 Closure of multiplication ...
nndivred 12288 A positive integer is one ...
0ne1 12305 Zero is different from one...
1m1e0 12306 One minus one equals zero....
2nn 12307 2 is a positive integer. ...
2re 12308 The number 2 is real. (Co...
2cn 12309 The number 2 is a complex ...
2cnALT 12310 Alternate proof of ~ 2cn ....
2ex 12311 The number 2 is a set. (C...
2cnd 12312 The number 2 is a complex ...
3nn 12313 3 is a positive integer. ...
3re 12314 The number 3 is real. (Co...
3cn 12315 The number 3 is a complex ...
3ex 12316 The number 3 is a set. (C...
4nn 12317 4 is a positive integer. ...
4re 12318 The number 4 is real. (Co...
4cn 12319 The number 4 is a complex ...
5nn 12320 5 is a positive integer. ...
5re 12321 The number 5 is real. (Co...
5cn 12322 The number 5 is a complex ...
6nn 12323 6 is a positive integer. ...
6re 12324 The number 6 is real. (Co...
6cn 12325 The number 6 is a complex ...
7nn 12326 7 is a positive integer. ...
7re 12327 The number 7 is real. (Co...
7cn 12328 The number 7 is a complex ...
8nn 12329 8 is a positive integer. ...
8re 12330 The number 8 is real. (Co...
8cn 12331 The number 8 is a complex ...
9nn 12332 9 is a positive integer. ...
9re 12333 The number 9 is real. (Co...
9cn 12334 The number 9 is a complex ...
0le0 12335 Zero is nonnegative. (Con...
0le2 12336 The number 0 is less than ...
2pos 12337 The number 2 is positive. ...
2ne0 12338 The number 2 is nonzero. ...
3pos 12339 The number 3 is positive. ...
3ne0 12340 The number 3 is nonzero. ...
4pos 12341 The number 4 is positive. ...
4ne0 12342 The number 4 is nonzero. ...
5pos 12343 The number 5 is positive. ...
6pos 12344 The number 6 is positive. ...
7pos 12345 The number 7 is positive. ...
8pos 12346 The number 8 is positive. ...
9pos 12347 The number 9 is positive. ...
neg1cn 12348 -1 is a complex number. (...
neg1rr 12349 -1 is a real number. (Con...
neg1ne0 12350 -1 is nonzero. (Contribut...
neg1lt0 12351 -1 is less than 0. (Contr...
negneg1e1 12352 ` -u -u 1 ` is 1. (Contri...
1pneg1e0 12353 ` 1 + -u 1 ` is 0. (Contr...
0m0e0 12354 0 minus 0 equals 0. (Cont...
1m0e1 12355 1 - 0 = 1. (Contributed b...
0p1e1 12356 0 + 1 = 1. (Contributed b...
fv0p1e1 12357 Function value at ` N + 1 ...
1p0e1 12358 1 + 0 = 1. (Contributed b...
1p1e2 12359 1 + 1 = 2. (Contributed b...
2m1e1 12360 2 - 1 = 1. The result is ...
1e2m1 12361 1 = 2 - 1. (Contributed b...
3m1e2 12362 3 - 1 = 2. (Contributed b...
4m1e3 12363 4 - 1 = 3. (Contributed b...
5m1e4 12364 5 - 1 = 4. (Contributed b...
6m1e5 12365 6 - 1 = 5. (Contributed b...
7m1e6 12366 7 - 1 = 6. (Contributed b...
8m1e7 12367 8 - 1 = 7. (Contributed b...
9m1e8 12368 9 - 1 = 8. (Contributed b...
2p2e4 12369 Two plus two equals four. ...
2times 12370 Two times a number. (Cont...
times2 12371 A number times 2. (Contri...
2timesi 12372 Two times a number. (Cont...
times2i 12373 A number times 2. (Contri...
2txmxeqx 12374 Two times a complex number...
2div2e1 12375 2 divided by 2 is 1. (Con...
2p1e3 12376 2 + 1 = 3. (Contributed b...
1p2e3 12377 1 + 2 = 3. For a shorter ...
1p2e3ALT 12378 Alternate proof of ~ 1p2e3...
3p1e4 12379 3 + 1 = 4. (Contributed b...
4p1e5 12380 4 + 1 = 5. (Contributed b...
5p1e6 12381 5 + 1 = 6. (Contributed b...
6p1e7 12382 6 + 1 = 7. (Contributed b...
7p1e8 12383 7 + 1 = 8. (Contributed b...
8p1e9 12384 8 + 1 = 9. (Contributed b...
3p2e5 12385 3 + 2 = 5. (Contributed b...
3p3e6 12386 3 + 3 = 6. (Contributed b...
4p2e6 12387 4 + 2 = 6. (Contributed b...
4p3e7 12388 4 + 3 = 7. (Contributed b...
4p4e8 12389 4 + 4 = 8. (Contributed b...
5p2e7 12390 5 + 2 = 7. (Contributed b...
5p3e8 12391 5 + 3 = 8. (Contributed b...
5p4e9 12392 5 + 4 = 9. (Contributed b...
6p2e8 12393 6 + 2 = 8. (Contributed b...
6p3e9 12394 6 + 3 = 9. (Contributed b...
7p2e9 12395 7 + 2 = 9. (Contributed b...
1t1e1 12396 1 times 1 equals 1. (Cont...
2t1e2 12397 2 times 1 equals 2. (Cont...
2t2e4 12398 2 times 2 equals 4. (Cont...
3t1e3 12399 3 times 1 equals 3. (Cont...
3t2e6 12400 3 times 2 equals 6. (Cont...
3t3e9 12401 3 times 3 equals 9. (Cont...
4t2e8 12402 4 times 2 equals 8. (Cont...
2t0e0 12403 2 times 0 equals 0. (Cont...
4d2e2 12404 One half of four is two. ...
1lt2 12405 1 is less than 2. (Contri...
2lt3 12406 2 is less than 3. (Contri...
1lt3 12407 1 is less than 3. (Contri...
3lt4 12408 3 is less than 4. (Contri...
2lt4 12409 2 is less than 4. (Contri...
1lt4 12410 1 is less than 4. (Contri...
4lt5 12411 4 is less than 5. (Contri...
3lt5 12412 3 is less than 5. (Contri...
2lt5 12413 2 is less than 5. (Contri...
1lt5 12414 1 is less than 5. (Contri...
5lt6 12415 5 is less than 6. (Contri...
4lt6 12416 4 is less than 6. (Contri...
3lt6 12417 3 is less than 6. (Contri...
2lt6 12418 2 is less than 6. (Contri...
1lt6 12419 1 is less than 6. (Contri...
6lt7 12420 6 is less than 7. (Contri...
5lt7 12421 5 is less than 7. (Contri...
4lt7 12422 4 is less than 7. (Contri...
3lt7 12423 3 is less than 7. (Contri...
2lt7 12424 2 is less than 7. (Contri...
1lt7 12425 1 is less than 7. (Contri...
7lt8 12426 7 is less than 8. (Contri...
6lt8 12427 6 is less than 8. (Contri...
5lt8 12428 5 is less than 8. (Contri...
4lt8 12429 4 is less than 8. (Contri...
3lt8 12430 3 is less than 8. (Contri...
2lt8 12431 2 is less than 8. (Contri...
1lt8 12432 1 is less than 8. (Contri...
8lt9 12433 8 is less than 9. (Contri...
7lt9 12434 7 is less than 9. (Contri...
6lt9 12435 6 is less than 9. (Contri...
5lt9 12436 5 is less than 9. (Contri...
4lt9 12437 4 is less than 9. (Contri...
3lt9 12438 3 is less than 9. (Contri...
2lt9 12439 2 is less than 9. (Contri...
1lt9 12440 1 is less than 9. (Contri...
0ne2 12441 0 is not equal to 2. (Con...
1ne2 12442 1 is not equal to 2. (Con...
1le2 12443 1 is less than or equal to...
2cnne0 12444 2 is a nonzero complex num...
2rene0 12445 2 is a nonzero real number...
1le3 12446 1 is less than or equal to...
neg1mulneg1e1 12447 ` -u 1 x. -u 1 ` is 1. (C...
halfre 12448 One-half is real. (Contri...
halfcn 12449 One-half is a complex numb...
halfgt0 12450 One-half is greater than z...
halfge0 12451 One-half is not negative. ...
halflt1 12452 One-half is less than one....
1mhlfehlf 12453 Prove that 1 - 1/2 = 1/2. ...
8th4div3 12454 An eighth of four thirds i...
halfpm6th 12455 One half plus or minus one...
it0e0 12456 i times 0 equals 0. (Cont...
2mulicn 12457 ` ( 2 x. _i ) e. CC ` . (...
2muline0 12458 ` ( 2 x. _i ) =/= 0 ` . (...
halfcl 12459 Closure of half of a numbe...
rehalfcl 12460 Real closure of half. (Co...
half0 12461 Half of a number is zero i...
2halves 12462 Two halves make a whole. ...
halfpos2 12463 A number is positive iff i...
halfpos 12464 A positive number is great...
halfnneg2 12465 A number is nonnegative if...
halfaddsubcl 12466 Closure of half-sum and ha...
halfaddsub 12467 Sum and difference of half...
subhalfhalf 12468 Subtracting the half of a ...
lt2halves 12469 A sum is less than the who...
addltmul 12470 Sum is less than product f...
nominpos 12471 There is no smallest posit...
avglt1 12472 Ordering property for aver...
avglt2 12473 Ordering property for aver...
avgle1 12474 Ordering property for aver...
avgle2 12475 Ordering property for aver...
avgle 12476 The average of two numbers...
2timesd 12477 Two times a number. (Cont...
times2d 12478 A number times 2. (Contri...
halfcld 12479 Closure of half of a numbe...
2halvesd 12480 Two halves make a whole. ...
rehalfcld 12481 Real closure of half. (Co...
lt2halvesd 12482 A sum is less than the who...
rehalfcli 12483 Half a real number is real...
lt2addmuld 12484 If two real numbers are le...
add1p1 12485 Adding two times 1 to a nu...
sub1m1 12486 Subtracting two times 1 fr...
cnm2m1cnm3 12487 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 12488 A complex number increased...
div4p1lem1div2 12489 An integer greater than 5,...
nnunb 12490 The set of positive intege...
arch 12491 Archimedean property of re...
nnrecl 12492 There exists a positive in...
bndndx 12493 A bounded real sequence ` ...
elnn0 12496 Nonnegative integers expre...
nnssnn0 12497 Positive naturals are a su...
nn0ssre 12498 Nonnegative integers are a...
nn0sscn 12499 Nonnegative integers are a...
nn0ex 12500 The set of nonnegative int...
nnnn0 12501 A positive integer is a no...
nnnn0i 12502 A positive integer is a no...
nn0re 12503 A nonnegative integer is a...
nn0cn 12504 A nonnegative integer is a...
nn0rei 12505 A nonnegative integer is a...
nn0cni 12506 A nonnegative integer is a...
dfn2 12507 The set of positive intege...
elnnne0 12508 The positive integer prope...
0nn0 12509 0 is a nonnegative integer...
1nn0 12510 1 is a nonnegative integer...
2nn0 12511 2 is a nonnegative integer...
3nn0 12512 3 is a nonnegative integer...
4nn0 12513 4 is a nonnegative integer...
5nn0 12514 5 is a nonnegative integer...
6nn0 12515 6 is a nonnegative integer...
7nn0 12516 7 is a nonnegative integer...
8nn0 12517 8 is a nonnegative integer...
9nn0 12518 9 is a nonnegative integer...
nn0ge0 12519 A nonnegative integer is g...
nn0nlt0 12520 A nonnegative integer is n...
nn0ge0i 12521 Nonnegative integers are n...
nn0le0eq0 12522 A nonnegative integer is l...
nn0p1gt0 12523 A nonnegative integer incr...
nnnn0addcl 12524 A positive integer plus a ...
nn0nnaddcl 12525 A nonnegative integer plus...
0mnnnnn0 12526 The result of subtracting ...
un0addcl 12527 If ` S ` is closed under a...
un0mulcl 12528 If ` S ` is closed under m...
nn0addcl 12529 Closure of addition of non...
nn0mulcl 12530 Closure of multiplication ...
nn0addcli 12531 Closure of addition of non...
nn0mulcli 12532 Closure of multiplication ...
nn0p1nn 12533 A nonnegative integer plus...
peano2nn0 12534 Second Peano postulate for...
nnm1nn0 12535 A positive integer minus 1...
elnn0nn 12536 The nonnegative integer pr...
elnnnn0 12537 The positive integer prope...
elnnnn0b 12538 The positive integer prope...
elnnnn0c 12539 The positive integer prope...
nn0addge1 12540 A number is less than or e...
nn0addge2 12541 A number is less than or e...
nn0addge1i 12542 A number is less than or e...
nn0addge2i 12543 A number is less than or e...
nn0sub 12544 Subtraction of nonnegative...
ltsubnn0 12545 Subtracting a nonnegative ...
nn0negleid 12546 A nonnegative integer is g...
difgtsumgt 12547 If the difference of a rea...
nn0le2xi 12548 A nonnegative integer is l...
nn0lele2xi 12549 'Less than or equal to' im...
fcdmnn0supp 12550 Two ways to write the supp...
fcdmnn0fsupp 12551 A function into ` NN0 ` is...
fcdmnn0suppg 12552 Version of ~ fcdmnn0supp a...
fcdmnn0fsuppg 12553 Version of ~ fcdmnn0fsupp ...
nnnn0d 12554 A positive integer is a no...
nn0red 12555 A nonnegative integer is a...
nn0cnd 12556 A nonnegative integer is a...
nn0ge0d 12557 A nonnegative integer is g...
nn0addcld 12558 Closure of addition of non...
nn0mulcld 12559 Closure of multiplication ...
nn0readdcl 12560 Closure law for addition o...
nn0n0n1ge2 12561 A nonnegative integer whic...
nn0n0n1ge2b 12562 A nonnegative integer is n...
nn0ge2m1nn 12563 If a nonnegative integer i...
nn0ge2m1nn0 12564 If a nonnegative integer i...
nn0nndivcl 12565 Closure law for dividing o...
elxnn0 12568 An extended nonnegative in...
nn0ssxnn0 12569 The standard nonnegative i...
nn0xnn0 12570 A standard nonnegative int...
xnn0xr 12571 An extended nonnegative in...
0xnn0 12572 Zero is an extended nonneg...
pnf0xnn0 12573 Positive infinity is an ex...
nn0nepnf 12574 No standard nonnegative in...
nn0xnn0d 12575 A standard nonnegative int...
nn0nepnfd 12576 No standard nonnegative in...
xnn0nemnf 12577 No extended nonnegative in...
xnn0xrnemnf 12578 The extended nonnegative i...
xnn0nnn0pnf 12579 An extended nonnegative in...
elz 12582 Membership in the set of i...
nnnegz 12583 The negative of a positive...
zre 12584 An integer is a real. (Co...
zcn 12585 An integer is a complex nu...
zrei 12586 An integer is a real numbe...
zssre 12587 The integers are a subset ...
zsscn 12588 The integers are a subset ...
zex 12589 The set of integers exists...
elnnz 12590 Positive integer property ...
0z 12591 Zero is an integer. (Cont...
0zd 12592 Zero is an integer, deduct...
elnn0z 12593 Nonnegative integer proper...
elznn0nn 12594 Integer property expressed...
elznn0 12595 Integer property expressed...
elznn 12596 Integer property expressed...
zle0orge1 12597 There is no integer in the...
elz2 12598 Membership in the set of i...
dfz2 12599 Alternative definition of ...
zexALT 12600 Alternate proof of ~ zex ....
nnz 12601 A positive integer is an i...
nnssz 12602 Positive integers are a su...
nn0ssz 12603 Nonnegative integers are a...
nnzOLD 12604 Obsolete version of ~ nnz ...
nn0z 12605 A nonnegative integer is a...
nn0zd 12606 A nonnegative integer is a...
nnzd 12607 A positive integer is an i...
nnzi 12608 A positive integer is an i...
nn0zi 12609 A nonnegative integer is a...
elnnz1 12610 Positive integer property ...
znnnlt1 12611 An integer is not a positi...
nnzrab 12612 Positive integers expresse...
nn0zrab 12613 Nonnegative integers expre...
1z 12614 One is an integer. (Contr...
1zzd 12615 One is an integer, deducti...
2z 12616 2 is an integer. (Contrib...
3z 12617 3 is an integer. (Contrib...
4z 12618 4 is an integer. (Contrib...
znegcl 12619 Closure law for negative i...
neg1z 12620 -1 is an integer. (Contri...
znegclb 12621 A complex number is an int...
nn0negz 12622 The negative of a nonnegat...
nn0negzi 12623 The negative of a nonnegat...
zaddcl 12624 Closure of addition of int...
peano2z 12625 Second Peano postulate gen...
zsubcl 12626 Closure of subtraction of ...
peano2zm 12627 "Reverse" second Peano pos...
zletr 12628 Transitive law of ordering...
zrevaddcl 12629 Reverse closure law for ad...
znnsub 12630 The positive difference of...
znn0sub 12631 The nonnegative difference...
nzadd 12632 The sum of a real number n...
zmulcl 12633 Closure of multiplication ...
zltp1le 12634 Integer ordering relation....
zleltp1 12635 Integer ordering relation....
zlem1lt 12636 Integer ordering relation....
zltlem1 12637 Integer ordering relation....
zgt0ge1 12638 An integer greater than ` ...
nnleltp1 12639 Positive integer ordering ...
nnltp1le 12640 Positive integer ordering ...
nnaddm1cl 12641 Closure of addition of pos...
nn0ltp1le 12642 Nonnegative integer orderi...
nn0leltp1 12643 Nonnegative integer orderi...
nn0ltlem1 12644 Nonnegative integer orderi...
nn0sub2 12645 Subtraction of nonnegative...
nn0lt10b 12646 A nonnegative integer less...
nn0lt2 12647 A nonnegative integer less...
nn0le2is012 12648 A nonnegative integer whic...
nn0lem1lt 12649 Nonnegative integer orderi...
nnlem1lt 12650 Positive integer ordering ...
nnltlem1 12651 Positive integer ordering ...
nnm1ge0 12652 A positive integer decreas...
nn0ge0div 12653 Division of a nonnegative ...
zdiv 12654 Two ways to express " ` M ...
zdivadd 12655 Property of divisibility: ...
zdivmul 12656 Property of divisibility: ...
zextle 12657 An extensionality-like pro...
zextlt 12658 An extensionality-like pro...
recnz 12659 The reciprocal of a number...
btwnnz 12660 A number between an intege...
gtndiv 12661 A larger number does not d...
halfnz 12662 One-half is not an integer...
3halfnz 12663 Three halves is not an int...
suprzcl 12664 The supremum of a bounded-...
prime 12665 Two ways to express " ` A ...
msqznn 12666 The square of a nonzero in...
zneo 12667 No even integer equals an ...
nneo 12668 A positive integer is even...
nneoi 12669 A positive integer is even...
zeo 12670 An integer is even or odd....
zeo2 12671 An integer is even or odd ...
peano2uz2 12672 Second Peano postulate for...
peano5uzi 12673 Peano's inductive postulat...
peano5uzti 12674 Peano's inductive postulat...
dfuzi 12675 An expression for the uppe...
uzind 12676 Induction on the upper int...
uzind2 12677 Induction on the upper int...
uzind3 12678 Induction on the upper int...
nn0ind 12679 Principle of Mathematical ...
nn0indALT 12680 Principle of Mathematical ...
nn0indd 12681 Principle of Mathematical ...
fzind 12682 Induction on the integers ...
fnn0ind 12683 Induction on the integers ...
nn0ind-raph 12684 Principle of Mathematical ...
zindd 12685 Principle of Mathematical ...
fzindd 12686 Induction on the integers ...
btwnz 12687 Any real number can be san...
zred 12688 An integer is a real numbe...
zcnd 12689 An integer is a complex nu...
znegcld 12690 Closure law for negative i...
peano2zd 12691 Deduction from second Pean...
zaddcld 12692 Closure of addition of int...
zsubcld 12693 Closure of subtraction of ...
zmulcld 12694 Closure of multiplication ...
znnn0nn 12695 The negative of a negative...
zadd2cl 12696 Increasing an integer by 2...
zriotaneg 12697 The negative of the unique...
suprfinzcl 12698 The supremum of a nonempty...
9p1e10 12701 9 + 1 = 10. (Contributed ...
dfdec10 12702 Version of the definition ...
decex 12703 A decimal number is a set....
deceq1 12704 Equality theorem for the d...
deceq2 12705 Equality theorem for the d...
deceq1i 12706 Equality theorem for the d...
deceq2i 12707 Equality theorem for the d...
deceq12i 12708 Equality theorem for the d...
numnncl 12709 Closure for a numeral (wit...
num0u 12710 Add a zero in the units pl...
num0h 12711 Add a zero in the higher p...
numcl 12712 Closure for a decimal inte...
numsuc 12713 The successor of a decimal...
deccl 12714 Closure for a numeral. (C...
10nn 12715 10 is a positive integer. ...
10pos 12716 The number 10 is positive....
10nn0 12717 10 is a nonnegative intege...
10re 12718 The number 10 is real. (C...
decnncl 12719 Closure for a numeral. (C...
dec0u 12720 Add a zero in the units pl...
dec0h 12721 Add a zero in the higher p...
numnncl2 12722 Closure for a decimal inte...
decnncl2 12723 Closure for a decimal inte...
numlt 12724 Comparing two decimal inte...
numltc 12725 Comparing two decimal inte...
le9lt10 12726 A "decimal digit" (i.e. a ...
declt 12727 Comparing two decimal inte...
decltc 12728 Comparing two decimal inte...
declth 12729 Comparing two decimal inte...
decsuc 12730 The successor of a decimal...
3declth 12731 Comparing two decimal inte...
3decltc 12732 Comparing two decimal inte...
decle 12733 Comparing two decimal inte...
decleh 12734 Comparing two decimal inte...
declei 12735 Comparing a digit to a dec...
numlti 12736 Comparing a digit to a dec...
declti 12737 Comparing a digit to a dec...
decltdi 12738 Comparing a digit to a dec...
numsucc 12739 The successor of a decimal...
decsucc 12740 The successor of a decimal...
1e0p1 12741 The successor of zero. (C...
dec10p 12742 Ten plus an integer. (Con...
numma 12743 Perform a multiply-add of ...
nummac 12744 Perform a multiply-add of ...
numma2c 12745 Perform a multiply-add of ...
numadd 12746 Add two decimal integers `...
numaddc 12747 Add two decimal integers `...
nummul1c 12748 The product of a decimal i...
nummul2c 12749 The product of a decimal i...
decma 12750 Perform a multiply-add of ...
decmac 12751 Perform a multiply-add of ...
decma2c 12752 Perform a multiply-add of ...
decadd 12753 Add two numerals ` M ` and...
decaddc 12754 Add two numerals ` M ` and...
decaddc2 12755 Add two numerals ` M ` and...
decrmanc 12756 Perform a multiply-add of ...
decrmac 12757 Perform a multiply-add of ...
decaddm10 12758 The sum of two multiples o...
decaddi 12759 Add two numerals ` M ` and...
decaddci 12760 Add two numerals ` M ` and...
decaddci2 12761 Add two numerals ` M ` and...
decsubi 12762 Difference between a numer...
decmul1 12763 The product of a numeral w...
decmul1c 12764 The product of a numeral w...
decmul2c 12765 The product of a numeral w...
decmulnc 12766 The product of a numeral w...
11multnc 12767 The product of 11 (as nume...
decmul10add 12768 A multiplication of a numb...
6p5lem 12769 Lemma for ~ 6p5e11 and rel...
5p5e10 12770 5 + 5 = 10. (Contributed ...
6p4e10 12771 6 + 4 = 10. (Contributed ...
6p5e11 12772 6 + 5 = 11. (Contributed ...
6p6e12 12773 6 + 6 = 12. (Contributed ...
7p3e10 12774 7 + 3 = 10. (Contributed ...
7p4e11 12775 7 + 4 = 11. (Contributed ...
7p5e12 12776 7 + 5 = 12. (Contributed ...
7p6e13 12777 7 + 6 = 13. (Contributed ...
7p7e14 12778 7 + 7 = 14. (Contributed ...
8p2e10 12779 8 + 2 = 10. (Contributed ...
8p3e11 12780 8 + 3 = 11. (Contributed ...
8p4e12 12781 8 + 4 = 12. (Contributed ...
8p5e13 12782 8 + 5 = 13. (Contributed ...
8p6e14 12783 8 + 6 = 14. (Contributed ...
8p7e15 12784 8 + 7 = 15. (Contributed ...
8p8e16 12785 8 + 8 = 16. (Contributed ...
9p2e11 12786 9 + 2 = 11. (Contributed ...
9p3e12 12787 9 + 3 = 12. (Contributed ...
9p4e13 12788 9 + 4 = 13. (Contributed ...
9p5e14 12789 9 + 5 = 14. (Contributed ...
9p6e15 12790 9 + 6 = 15. (Contributed ...
9p7e16 12791 9 + 7 = 16. (Contributed ...
9p8e17 12792 9 + 8 = 17. (Contributed ...
9p9e18 12793 9 + 9 = 18. (Contributed ...
10p10e20 12794 10 + 10 = 20. (Contribute...
10m1e9 12795 10 - 1 = 9. (Contributed ...
4t3lem 12796 Lemma for ~ 4t3e12 and rel...
4t3e12 12797 4 times 3 equals 12. (Con...
4t4e16 12798 4 times 4 equals 16. (Con...
5t2e10 12799 5 times 2 equals 10. (Con...
5t3e15 12800 5 times 3 equals 15. (Con...
5t4e20 12801 5 times 4 equals 20. (Con...
5t5e25 12802 5 times 5 equals 25. (Con...
6t2e12 12803 6 times 2 equals 12. (Con...
6t3e18 12804 6 times 3 equals 18. (Con...
6t4e24 12805 6 times 4 equals 24. (Con...
6t5e30 12806 6 times 5 equals 30. (Con...
6t6e36 12807 6 times 6 equals 36. (Con...
7t2e14 12808 7 times 2 equals 14. (Con...
7t3e21 12809 7 times 3 equals 21. (Con...
7t4e28 12810 7 times 4 equals 28. (Con...
7t5e35 12811 7 times 5 equals 35. (Con...
7t6e42 12812 7 times 6 equals 42. (Con...
7t7e49 12813 7 times 7 equals 49. (Con...
8t2e16 12814 8 times 2 equals 16. (Con...
8t3e24 12815 8 times 3 equals 24. (Con...
8t4e32 12816 8 times 4 equals 32. (Con...
8t5e40 12817 8 times 5 equals 40. (Con...
8t6e48 12818 8 times 6 equals 48. (Con...
8t7e56 12819 8 times 7 equals 56. (Con...
8t8e64 12820 8 times 8 equals 64. (Con...
9t2e18 12821 9 times 2 equals 18. (Con...
9t3e27 12822 9 times 3 equals 27. (Con...
9t4e36 12823 9 times 4 equals 36. (Con...
9t5e45 12824 9 times 5 equals 45. (Con...
9t6e54 12825 9 times 6 equals 54. (Con...
9t7e63 12826 9 times 7 equals 63. (Con...
9t8e72 12827 9 times 8 equals 72. (Con...
9t9e81 12828 9 times 9 equals 81. (Con...
9t11e99 12829 9 times 11 equals 99. (Co...
9lt10 12830 9 is less than 10. (Contr...
8lt10 12831 8 is less than 10. (Contr...
7lt10 12832 7 is less than 10. (Contr...
6lt10 12833 6 is less than 10. (Contr...
5lt10 12834 5 is less than 10. (Contr...
4lt10 12835 4 is less than 10. (Contr...
3lt10 12836 3 is less than 10. (Contr...
2lt10 12837 2 is less than 10. (Contr...
1lt10 12838 1 is less than 10. (Contr...
decbin0 12839 Decompose base 4 into base...
decbin2 12840 Decompose base 4 into base...
decbin3 12841 Decompose base 4 into base...
halfthird 12842 Half minus a third. (Cont...
5recm6rec 12843 One fifth minus one sixth....
uzval 12846 The value of the upper int...
uzf 12847 The domain and codomain of...
eluz1 12848 Membership in the upper se...
eluzel2 12849 Implication of membership ...
eluz2 12850 Membership in an upper set...
eluzmn 12851 Membership in an earlier u...
eluz1i 12852 Membership in an upper set...
eluzuzle 12853 An integer in an upper set...
eluzelz 12854 A member of an upper set o...
eluzelre 12855 A member of an upper set o...
eluzelcn 12856 A member of an upper set o...
eluzle 12857 Implication of membership ...
eluz 12858 Membership in an upper set...
uzid 12859 Membership of the least me...
uzidd 12860 Membership of the least me...
uzn0 12861 The upper integers are all...
uztrn 12862 Transitive law for sets of...
uztrn2 12863 Transitive law for sets of...
uzneg 12864 Contraposition law for upp...
uzssz 12865 An upper set of integers i...
uzssre 12866 An upper set of integers i...
uzss 12867 Subset relationship for tw...
uztric 12868 Totality of the ordering r...
uz11 12869 The upper integers functio...
eluzp1m1 12870 Membership in the next upp...
eluzp1l 12871 Strict ordering implied by...
eluzp1p1 12872 Membership in the next upp...
eluzadd 12873 Membership in a later uppe...
eluzsub 12874 Membership in an earlier u...
eluzaddi 12875 Membership in a later uppe...
eluzaddiOLD 12876 Obsolete version of ~ eluz...
eluzsubi 12877 Membership in an earlier u...
eluzsubiOLD 12878 Obsolete version of ~ eluz...
eluzaddOLD 12879 Obsolete version of ~ eluz...
eluzsubOLD 12880 Obsolete version of ~ eluz...
subeluzsub 12881 Membership of a difference...
uzm1 12882 Choices for an element of ...
uznn0sub 12883 The nonnegative difference...
uzin 12884 Intersection of two upper ...
uzp1 12885 Choices for an element of ...
nn0uz 12886 Nonnegative integers expre...
nnuz 12887 Positive integers expresse...
elnnuz 12888 A positive integer express...
elnn0uz 12889 A nonnegative integer expr...
eluz2nn 12890 An integer greater than or...
eluz4eluz2 12891 An integer greater than or...
eluz4nn 12892 An integer greater than or...
eluzge2nn0 12893 If an integer is greater t...
eluz2n0 12894 An integer greater than or...
uzuzle23 12895 An integer in the upper se...
eluzge3nn 12896 If an integer is greater t...
uz3m2nn 12897 An integer greater than or...
1eluzge0 12898 1 is an integer greater th...
2eluzge0 12899 2 is an integer greater th...
2eluzge1 12900 2 is an integer greater th...
uznnssnn 12901 The upper integers startin...
raluz 12902 Restricted universal quant...
raluz2 12903 Restricted universal quant...
rexuz 12904 Restricted existential qua...
rexuz2 12905 Restricted existential qua...
2rexuz 12906 Double existential quantif...
peano2uz 12907 Second Peano postulate for...
peano2uzs 12908 Second Peano postulate for...
peano2uzr 12909 Reversed second Peano axio...
uzaddcl 12910 Addition closure law for a...
nn0pzuz 12911 The sum of a nonnegative i...
uzind4 12912 Induction on the upper set...
uzind4ALT 12913 Induction on the upper set...
uzind4s 12914 Induction on the upper set...
uzind4s2 12915 Induction on the upper set...
uzind4i 12916 Induction on the upper int...
uzwo 12917 Well-ordering principle: a...
uzwo2 12918 Well-ordering principle: a...
nnwo 12919 Well-ordering principle: a...
nnwof 12920 Well-ordering principle: a...
nnwos 12921 Well-ordering principle: a...
indstr 12922 Strong Mathematical Induct...
eluznn0 12923 Membership in a nonnegativ...
eluznn 12924 Membership in a positive u...
eluz2b1 12925 Two ways to say "an intege...
eluz2gt1 12926 An integer greater than or...
eluz2b2 12927 Two ways to say "an intege...
eluz2b3 12928 Two ways to say "an intege...
uz2m1nn 12929 One less than an integer g...
1nuz2 12930 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 12931 A positive integer is eith...
uz2mulcl 12932 Closure of multiplication ...
indstr2 12933 Strong Mathematical Induct...
uzinfi 12934 Extract the lower bound of...
nninf 12935 The infimum of the set of ...
nn0inf 12936 The infimum of the set of ...
infssuzle 12937 The infimum of a subset of...
infssuzcl 12938 The infimum of a subset of...
ublbneg 12939 The image under negation o...
eqreznegel 12940 Two ways to express the im...
supminf 12941 The supremum of a bounded-...
lbzbi 12942 If a set of reals is bound...
zsupss 12943 Any nonempty bounded subse...
suprzcl2 12944 The supremum of a bounded-...
suprzub 12945 The supremum of a bounded-...
uzsupss 12946 Any bounded subset of an u...
nn01to3 12947 A (nonnegative) integer be...
nn0ge2m1nnALT 12948 Alternate proof of ~ nn0ge...
uzwo3 12949 Well-ordering principle: a...
zmin 12950 There is a unique smallest...
zmax 12951 There is a unique largest ...
zbtwnre 12952 There is a unique integer ...
rebtwnz 12953 There is a unique greatest...
elq 12956 Membership in the set of r...
qmulz 12957 If ` A ` is rational, then...
znq 12958 The ratio of an integer an...
qre 12959 A rational number is a rea...
zq 12960 An integer is a rational n...
qred 12961 A rational number is a rea...
zssq 12962 The integers are a subset ...
nn0ssq 12963 The nonnegative integers a...
nnssq 12964 The positive integers are ...
qssre 12965 The rationals are a subset...
qsscn 12966 The rationals are a subset...
qex 12967 The set of rational number...
nnq 12968 A positive integer is rati...
qcn 12969 A rational number is a com...
qexALT 12970 Alternate proof of ~ qex ....
qaddcl 12971 Closure of addition of rat...
qnegcl 12972 Closure law for the negati...
qmulcl 12973 Closure of multiplication ...
qsubcl 12974 Closure of subtraction of ...
qreccl 12975 Closure of reciprocal of r...
qdivcl 12976 Closure of division of rat...
qrevaddcl 12977 Reverse closure law for ad...
nnrecq 12978 The reciprocal of a positi...
irradd 12979 The sum of an irrational n...
irrmul 12980 The product of an irration...
elpq 12981 A positive rational is the...
elpqb 12982 A class is a positive rati...
rpnnen1lem2 12983 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 12984 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 12985 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 12986 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 12987 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 12988 Lemma for ~ rpnnen1 . (Co...
rpnnen1 12989 One half of ~ rpnnen , whe...
reexALT 12990 Alternate proof of ~ reex ...
cnref1o 12991 There is a natural one-to-...
cnexALT 12992 The set of complex numbers...
xrex 12993 The set of extended reals ...
mpoaddex 12994 The addition operation is ...
addex 12995 The addition operation is ...
mpomulex 12996 The multiplication operati...
mulex 12997 The multiplication operati...
elrp 13000 Membership in the set of p...
elrpii 13001 Membership in the set of p...
1rp 13002 1 is a positive real. (Co...
2rp 13003 2 is a positive real. (Co...
3rp 13004 3 is a positive real. (Co...
rpssre 13005 The positive reals are a s...
rpre 13006 A positive real is a real....
rpxr 13007 A positive real is an exte...
rpcn 13008 A positive real is a compl...
nnrp 13009 A positive integer is a po...
rpgt0 13010 A positive real is greater...
rpge0 13011 A positive real is greater...
rpregt0 13012 A positive real is a posit...
rprege0 13013 A positive real is a nonne...
rpne0 13014 A positive real is nonzero...
rprene0 13015 A positive real is a nonze...
rpcnne0 13016 A positive real is a nonze...
rpcndif0 13017 A positive real number is ...
ralrp 13018 Quantification over positi...
rexrp 13019 Quantification over positi...
rpaddcl 13020 Closure law for addition o...
rpmulcl 13021 Closure law for multiplica...
rpmtmip 13022 "Minus times minus is plus...
rpdivcl 13023 Closure law for division o...
rpreccl 13024 Closure law for reciprocat...
rphalfcl 13025 Closure law for half of a ...
rpgecl 13026 A number greater than or e...
rphalflt 13027 Half of a positive real is...
rerpdivcl 13028 Closure law for division o...
ge0p1rp 13029 A nonnegative number plus ...
rpneg 13030 Either a nonzero real or i...
negelrp 13031 Elementhood of a negation ...
negelrpd 13032 The negation of a negative...
0nrp 13033 Zero is not a positive rea...
ltsubrp 13034 Subtracting a positive rea...
ltaddrp 13035 Adding a positive number t...
difrp 13036 Two ways to say one number...
elrpd 13037 Membership in the set of p...
nnrpd 13038 A positive integer is a po...
zgt1rpn0n1 13039 An integer greater than 1 ...
rpred 13040 A positive real is a real....
rpxrd 13041 A positive real is an exte...
rpcnd 13042 A positive real is a compl...
rpgt0d 13043 A positive real is greater...
rpge0d 13044 A positive real is greater...
rpne0d 13045 A positive real is nonzero...
rpregt0d 13046 A positive real is real an...
rprege0d 13047 A positive real is real an...
rprene0d 13048 A positive real is a nonze...
rpcnne0d 13049 A positive real is a nonze...
rpreccld 13050 Closure law for reciprocat...
rprecred 13051 Closure law for reciprocat...
rphalfcld 13052 Closure law for half of a ...
reclt1d 13053 The reciprocal of a positi...
recgt1d 13054 The reciprocal of a positi...
rpaddcld 13055 Closure law for addition o...
rpmulcld 13056 Closure law for multiplica...
rpdivcld 13057 Closure law for division o...
ltrecd 13058 The reciprocal of both sid...
lerecd 13059 The reciprocal of both sid...
ltrec1d 13060 Reciprocal swap in a 'less...
lerec2d 13061 Reciprocal swap in a 'less...
lediv2ad 13062 Division of both sides of ...
ltdiv2d 13063 Division of a positive num...
lediv2d 13064 Division of a positive num...
ledivdivd 13065 Invert ratios of positive ...
divge1 13066 The ratio of a number over...
divlt1lt 13067 A real number divided by a...
divle1le 13068 A real number divided by a...
ledivge1le 13069 If a number is less than o...
ge0p1rpd 13070 A nonnegative number plus ...
rerpdivcld 13071 Closure law for division o...
ltsubrpd 13072 Subtracting a positive rea...
ltaddrpd 13073 Adding a positive number t...
ltaddrp2d 13074 Adding a positive number t...
ltmulgt11d 13075 Multiplication by a number...
ltmulgt12d 13076 Multiplication by a number...
gt0divd 13077 Division of a positive num...
ge0divd 13078 Division of a nonnegative ...
rpgecld 13079 A number greater than or e...
divge0d 13080 The ratio of nonnegative a...
ltmul1d 13081 The ratio of nonnegative a...
ltmul2d 13082 Multiplication of both sid...
lemul1d 13083 Multiplication of both sid...
lemul2d 13084 Multiplication of both sid...
ltdiv1d 13085 Division of both sides of ...
lediv1d 13086 Division of both sides of ...
ltmuldivd 13087 'Less than' relationship b...
ltmuldiv2d 13088 'Less than' relationship b...
lemuldivd 13089 'Less than or equal to' re...
lemuldiv2d 13090 'Less than or equal to' re...
ltdivmuld 13091 'Less than' relationship b...
ltdivmul2d 13092 'Less than' relationship b...
ledivmuld 13093 'Less than or equal to' re...
ledivmul2d 13094 'Less than or equal to' re...
ltmul1dd 13095 The ratio of nonnegative a...
ltmul2dd 13096 Multiplication of both sid...
ltdiv1dd 13097 Division of both sides of ...
lediv1dd 13098 Division of both sides of ...
lediv12ad 13099 Comparison of ratio of two...
mul2lt0rlt0 13100 If the result of a multipl...
mul2lt0rgt0 13101 If the result of a multipl...
mul2lt0llt0 13102 If the result of a multipl...
mul2lt0lgt0 13103 If the result of a multipl...
mul2lt0bi 13104 If the result of a multipl...
prodge0rd 13105 Infer that a multiplicand ...
prodge0ld 13106 Infer that a multiplier is...
ltdiv23d 13107 Swap denominator with othe...
lediv23d 13108 Swap denominator with othe...
lt2mul2divd 13109 The ratio of nonnegative a...
nnledivrp 13110 Division of a positive int...
nn0ledivnn 13111 Division of a nonnegative ...
addlelt 13112 If the sum of a real numbe...
ltxr 13119 The 'less than' binary rel...
elxr 13120 Membership in the set of e...
xrnemnf 13121 An extended real other tha...
xrnepnf 13122 An extended real other tha...
xrltnr 13123 The extended real 'less th...
ltpnf 13124 Any (finite) real is less ...
ltpnfd 13125 Any (finite) real is less ...
0ltpnf 13126 Zero is less than plus inf...
mnflt 13127 Minus infinity is less tha...
mnfltd 13128 Minus infinity is less tha...
mnflt0 13129 Minus infinity is less tha...
mnfltpnf 13130 Minus infinity is less tha...
mnfltxr 13131 Minus infinity is less tha...
pnfnlt 13132 No extended real is greate...
nltmnf 13133 No extended real is less t...
pnfge 13134 Plus infinity is an upper ...
xnn0n0n1ge2b 13135 An extended nonnegative in...
0lepnf 13136 0 less than or equal to po...
xnn0ge0 13137 An extended nonnegative in...
mnfle 13138 Minus infinity is less tha...
mnfled 13139 Minus infinity is less tha...
xrltnsym 13140 Ordering on the extended r...
xrltnsym2 13141 'Less than' is antisymmetr...
xrlttri 13142 Ordering on the extended r...
xrlttr 13143 Ordering on the extended r...
xrltso 13144 'Less than' is a strict or...
xrlttri2 13145 Trichotomy law for 'less t...
xrlttri3 13146 Trichotomy law for 'less t...
xrleloe 13147 'Less than or equal' expre...
xrleltne 13148 'Less than or equal to' im...
xrltlen 13149 'Less than' expressed in t...
dfle2 13150 Alternative definition of ...
dflt2 13151 Alternative definition of ...
xrltle 13152 'Less than' implies 'less ...
xrltled 13153 'Less than' implies 'less ...
xrleid 13154 'Less than or equal to' is...
xrleidd 13155 'Less than or equal to' is...
xrletri 13156 Trichotomy law for extende...
xrletri3 13157 Trichotomy law for extende...
xrletrid 13158 Trichotomy law for extende...
xrlelttr 13159 Transitive law for orderin...
xrltletr 13160 Transitive law for orderin...
xrletr 13161 Transitive law for orderin...
xrlttrd 13162 Transitive law for orderin...
xrlelttrd 13163 Transitive law for orderin...
xrltletrd 13164 Transitive law for orderin...
xrletrd 13165 Transitive law for orderin...
xrltne 13166 'Less than' implies not eq...
nltpnft 13167 An extended real is not le...
xgepnf 13168 An extended real which is ...
ngtmnft 13169 An extended real is not gr...
xlemnf 13170 An extended real which is ...
xrrebnd 13171 An extended real is real i...
xrre 13172 A way of proving that an e...
xrre2 13173 An extended real between t...
xrre3 13174 A way of proving that an e...
ge0gtmnf 13175 A nonnegative extended rea...
ge0nemnf 13176 A nonnegative extended rea...
xrrege0 13177 A nonnegative extended rea...
xrmax1 13178 An extended real is less t...
xrmax2 13179 An extended real is less t...
xrmin1 13180 The minimum of two extende...
xrmin2 13181 The minimum of two extende...
xrmaxeq 13182 The maximum of two extende...
xrmineq 13183 The minimum of two extende...
xrmaxlt 13184 Two ways of saying the max...
xrltmin 13185 Two ways of saying an exte...
xrmaxle 13186 Two ways of saying the max...
xrlemin 13187 Two ways of saying a numbe...
max1 13188 A number is less than or e...
max1ALT 13189 A number is less than or e...
max2 13190 A number is less than or e...
2resupmax 13191 The supremum of two real n...
min1 13192 The minimum of two numbers...
min2 13193 The minimum of two numbers...
maxle 13194 Two ways of saying the max...
lemin 13195 Two ways of saying a numbe...
maxlt 13196 Two ways of saying the max...
ltmin 13197 Two ways of saying a numbe...
lemaxle 13198 A real number which is les...
max0sub 13199 Decompose a real number in...
ifle 13200 An if statement transforms...
z2ge 13201 There exists an integer gr...
qbtwnre 13202 The rational numbers are d...
qbtwnxr 13203 The rational numbers are d...
qsqueeze 13204 If a nonnegative real is l...
qextltlem 13205 Lemma for ~ qextlt and qex...
qextlt 13206 An extensionality-like pro...
qextle 13207 An extensionality-like pro...
xralrple 13208 Show that ` A ` is less th...
alrple 13209 Show that ` A ` is less th...
xnegeq 13210 Equality of two extended n...
xnegex 13211 A negative extended real e...
xnegpnf 13212 Minus ` +oo ` . Remark of...
xnegmnf 13213 Minus ` -oo ` . Remark of...
rexneg 13214 Minus a real number. Rema...
xneg0 13215 The negative of zero. (Co...
xnegcl 13216 Closure of extended real n...
xnegneg 13217 Extended real version of ~...
xneg11 13218 Extended real version of ~...
xltnegi 13219 Forward direction of ~ xlt...
xltneg 13220 Extended real version of ~...
xleneg 13221 Extended real version of ~...
xlt0neg1 13222 Extended real version of ~...
xlt0neg2 13223 Extended real version of ~...
xle0neg1 13224 Extended real version of ~...
xle0neg2 13225 Extended real version of ~...
xaddval 13226 Value of the extended real...
xaddf 13227 The extended real addition...
xmulval 13228 Value of the extended real...
xaddpnf1 13229 Addition of positive infin...
xaddpnf2 13230 Addition of positive infin...
xaddmnf1 13231 Addition of negative infin...
xaddmnf2 13232 Addition of negative infin...
pnfaddmnf 13233 Addition of positive and n...
mnfaddpnf 13234 Addition of negative and p...
rexadd 13235 The extended real addition...
rexsub 13236 Extended real subtraction ...
rexaddd 13237 The extended real addition...
xnn0xaddcl 13238 The extended nonnegative i...
xaddnemnf 13239 Closure of extended real a...
xaddnepnf 13240 Closure of extended real a...
xnegid 13241 Extended real version of ~...
xaddcl 13242 The extended real addition...
xaddcom 13243 The extended real addition...
xaddrid 13244 Extended real version of ~...
xaddlid 13245 Extended real version of ~...
xaddridd 13246 ` 0 ` is a right identity ...
xnn0lem1lt 13247 Extended nonnegative integ...
xnn0lenn0nn0 13248 An extended nonnegative in...
xnn0le2is012 13249 An extended nonnegative in...
xnn0xadd0 13250 The sum of two extended no...
xnegdi 13251 Extended real version of ~...
xaddass 13252 Associativity of extended ...
xaddass2 13253 Associativity of extended ...
xpncan 13254 Extended real version of ~...
xnpcan 13255 Extended real version of ~...
xleadd1a 13256 Extended real version of ~...
xleadd2a 13257 Commuted form of ~ xleadd1...
xleadd1 13258 Weakened version of ~ xlea...
xltadd1 13259 Extended real version of ~...
xltadd2 13260 Extended real version of ~...
xaddge0 13261 The sum of nonnegative ext...
xle2add 13262 Extended real version of ~...
xlt2add 13263 Extended real version of ~...
xsubge0 13264 Extended real version of ~...
xposdif 13265 Extended real version of ~...
xlesubadd 13266 Under certain conditions, ...
xmullem 13267 Lemma for ~ rexmul . (Con...
xmullem2 13268 Lemma for ~ xmulneg1 . (C...
xmulcom 13269 Extended real multiplicati...
xmul01 13270 Extended real version of ~...
xmul02 13271 Extended real version of ~...
xmulneg1 13272 Extended real version of ~...
xmulneg2 13273 Extended real version of ~...
rexmul 13274 The extended real multipli...
xmulf 13275 The extended real multipli...
xmulcl 13276 Closure of extended real m...
xmulpnf1 13277 Multiplication by plus inf...
xmulpnf2 13278 Multiplication by plus inf...
xmulmnf1 13279 Multiplication by minus in...
xmulmnf2 13280 Multiplication by minus in...
xmulpnf1n 13281 Multiplication by plus inf...
xmulrid 13282 Extended real version of ~...
xmullid 13283 Extended real version of ~...
xmulm1 13284 Extended real version of ~...
xmulasslem2 13285 Lemma for ~ xmulass . (Co...
xmulgt0 13286 Extended real version of ~...
xmulge0 13287 Extended real version of ~...
xmulasslem 13288 Lemma for ~ xmulass . (Co...
xmulasslem3 13289 Lemma for ~ xmulass . (Co...
xmulass 13290 Associativity of the exten...
xlemul1a 13291 Extended real version of ~...
xlemul2a 13292 Extended real version of ~...
xlemul1 13293 Extended real version of ~...
xlemul2 13294 Extended real version of ~...
xltmul1 13295 Extended real version of ~...
xltmul2 13296 Extended real version of ~...
xadddilem 13297 Lemma for ~ xadddi . (Con...
xadddi 13298 Distributive property for ...
xadddir 13299 Commuted version of ~ xadd...
xadddi2 13300 The assumption that the mu...
xadddi2r 13301 Commuted version of ~ xadd...
x2times 13302 Extended real version of ~...
xnegcld 13303 Closure of extended real n...
xaddcld 13304 The extended real addition...
xmulcld 13305 Closure of extended real m...
xadd4d 13306 Rearrangement of 4 terms i...
xnn0add4d 13307 Rearrangement of 4 terms i...
xrsupexmnf 13308 Adding minus infinity to a...
xrinfmexpnf 13309 Adding plus infinity to a ...
xrsupsslem 13310 Lemma for ~ xrsupss . (Co...
xrinfmsslem 13311 Lemma for ~ xrinfmss . (C...
xrsupss 13312 Any subset of extended rea...
xrinfmss 13313 Any subset of extended rea...
xrinfmss2 13314 Any subset of extended rea...
xrub 13315 By quantifying only over r...
supxr 13316 The supremum of a set of e...
supxr2 13317 The supremum of a set of e...
supxrcl 13318 The supremum of an arbitra...
supxrun 13319 The supremum of the union ...
supxrmnf 13320 Adding minus infinity to a...
supxrpnf 13321 The supremum of a set of e...
supxrunb1 13322 The supremum of an unbound...
supxrunb2 13323 The supremum of an unbound...
supxrbnd1 13324 The supremum of a bounded-...
supxrbnd2 13325 The supremum of a bounded-...
xrsup0 13326 The supremum of an empty s...
supxrub 13327 A member of a set of exten...
supxrlub 13328 The supremum of a set of e...
supxrleub 13329 The supremum of a set of e...
supxrre 13330 The real and extended real...
supxrbnd 13331 The supremum of a bounded-...
supxrgtmnf 13332 The supremum of a nonempty...
supxrre1 13333 The supremum of a nonempty...
supxrre2 13334 The supremum of a nonempty...
supxrss 13335 Smaller sets of extended r...
infxrcl 13336 The infimum of an arbitrar...
infxrlb 13337 A member of a set of exten...
infxrgelb 13338 The infimum of a set of ex...
infxrre 13339 The real and extended real...
infxrmnf 13340 The infinimum of a set of ...
xrinf0 13341 The infimum of the empty s...
infxrss 13342 Larger sets of extended re...
reltre 13343 For all real numbers there...
rpltrp 13344 For all positive real numb...
reltxrnmnf 13345 For all extended real numb...
infmremnf 13346 The infimum of the reals i...
infmrp1 13347 The infimum of the positiv...
ixxval 13356 Value of the interval func...
elixx1 13357 Membership in an interval ...
ixxf 13358 The set of intervals of ex...
ixxex 13359 The set of intervals of ex...
ixxssxr 13360 The set of intervals of ex...
elixx3g 13361 Membership in a set of ope...
ixxssixx 13362 An interval is a subset of...
ixxdisj 13363 Split an interval into dis...
ixxun 13364 Split an interval into two...
ixxin 13365 Intersection of two interv...
ixxss1 13366 Subset relationship for in...
ixxss2 13367 Subset relationship for in...
ixxss12 13368 Subset relationship for in...
ixxub 13369 Extract the upper bound of...
ixxlb 13370 Extract the lower bound of...
iooex 13371 The set of open intervals ...
iooval 13372 Value of the open interval...
ioo0 13373 An empty open interval of ...
ioon0 13374 An open interval of extend...
ndmioo 13375 The open interval function...
iooid 13376 An open interval with iden...
elioo3g 13377 Membership in a set of ope...
elioore 13378 A member of an open interv...
lbioo 13379 An open interval does not ...
ubioo 13380 An open interval does not ...
iooval2 13381 Value of the open interval...
iooin 13382 Intersection of two open i...
iooss1 13383 Subset relationship for op...
iooss2 13384 Subset relationship for op...
iocval 13385 Value of the open-below, c...
icoval 13386 Value of the closed-below,...
iccval 13387 Value of the closed interv...
elioo1 13388 Membership in an open inte...
elioo2 13389 Membership in an open inte...
elioc1 13390 Membership in an open-belo...
elico1 13391 Membership in a closed-bel...
elicc1 13392 Membership in a closed int...
iccid 13393 A closed interval with ide...
ico0 13394 An empty open interval of ...
ioc0 13395 An empty open interval of ...
icc0 13396 An empty closed interval o...
dfrp2 13397 Alternate definition of th...
elicod 13398 Membership in a left-close...
icogelb 13399 An element of a left-close...
elicore 13400 A member of a left-closed ...
ubioc1 13401 The upper bound belongs to...
lbico1 13402 The lower bound belongs to...
iccleub 13403 An element of a closed int...
iccgelb 13404 An element of a closed int...
elioo5 13405 Membership in an open inte...
eliooxr 13406 A nonempty open interval s...
eliooord 13407 Ordering implied by a memb...
elioo4g 13408 Membership in an open inte...
ioossre 13409 An open interval is a set ...
ioosscn 13410 An open interval is a set ...
elioc2 13411 Membership in an open-belo...
elico2 13412 Membership in a closed-bel...
elicc2 13413 Membership in a closed rea...
elicc2i 13414 Inference for membership i...
elicc4 13415 Membership in a closed rea...
iccss 13416 Condition for a closed int...
iccssioo 13417 Condition for a closed int...
icossico 13418 Condition for a closed-bel...
iccss2 13419 Condition for a closed int...
iccssico 13420 Condition for a closed int...
iccssioo2 13421 Condition for a closed int...
iccssico2 13422 Condition for a closed int...
ioomax 13423 The open interval from min...
iccmax 13424 The closed interval from m...
ioopos 13425 The set of positive reals ...
ioorp 13426 The set of positive reals ...
iooshf 13427 Shift the arguments of the...
iocssre 13428 A closed-above interval wi...
icossre 13429 A closed-below interval wi...
iccssre 13430 A closed real interval is ...
iccssxr 13431 A closed interval is a set...
iocssxr 13432 An open-below, closed-abov...
icossxr 13433 A closed-below, open-above...
ioossicc 13434 An open interval is a subs...
iccssred 13435 A closed real interval is ...
eliccxr 13436 A member of a closed inter...
icossicc 13437 A closed-below, open-above...
iocssicc 13438 A closed-above, open-below...
ioossico 13439 An open interval is a subs...
iocssioo 13440 Condition for a closed int...
icossioo 13441 Condition for a closed int...
ioossioo 13442 Condition for an open inte...
iccsupr 13443 A nonempty subset of a clo...
elioopnf 13444 Membership in an unbounded...
elioomnf 13445 Membership in an unbounded...
elicopnf 13446 Membership in a closed unb...
repos 13447 Two ways of saying that a ...
ioof 13448 The set of open intervals ...
iccf 13449 The set of closed interval...
unirnioo 13450 The union of the range of ...
dfioo2 13451 Alternate definition of th...
ioorebas 13452 Open intervals are element...
xrge0neqmnf 13453 A nonnegative extended rea...
xrge0nre 13454 An extended real which is ...
elrege0 13455 The predicate "is a nonneg...
nn0rp0 13456 A nonnegative integer is a...
rge0ssre 13457 Nonnegative real numbers a...
elxrge0 13458 Elementhood in the set of ...
0e0icopnf 13459 0 is a member of ` ( 0 [,)...
0e0iccpnf 13460 0 is a member of ` ( 0 [,]...
ge0addcl 13461 The nonnegative reals are ...
ge0mulcl 13462 The nonnegative reals are ...
ge0xaddcl 13463 The nonnegative reals are ...
ge0xmulcl 13464 The nonnegative extended r...
lbicc2 13465 The lower bound of a close...
ubicc2 13466 The upper bound of a close...
elicc01 13467 Membership in the closed r...
elunitrn 13468 The closed unit interval i...
elunitcn 13469 The closed unit interval i...
0elunit 13470 Zero is an element of the ...
1elunit 13471 One is an element of the c...
iooneg 13472 Membership in a negated op...
iccneg 13473 Membership in a negated cl...
icoshft 13474 A shifted real is a member...
icoshftf1o 13475 Shifting a closed-below, o...
icoun 13476 The union of two adjacent ...
icodisj 13477 Adjacent left-closed right...
ioounsn 13478 The union of an open inter...
snunioo 13479 The closure of one end of ...
snunico 13480 The closure of the open en...
snunioc 13481 The closure of the open en...
prunioo 13482 The closure of an open rea...
ioodisj 13483 If the upper bound of one ...
ioojoin 13484 Join two open intervals to...
difreicc 13485 The class difference of ` ...
iccsplit 13486 Split a closed interval in...
iccshftr 13487 Membership in a shifted in...
iccshftri 13488 Membership in a shifted in...
iccshftl 13489 Membership in a shifted in...
iccshftli 13490 Membership in a shifted in...
iccdil 13491 Membership in a dilated in...
iccdili 13492 Membership in a dilated in...
icccntr 13493 Membership in a contracted...
icccntri 13494 Membership in a contracted...
divelunit 13495 A condition for a ratio to...
lincmb01cmp 13496 A linear combination of tw...
iccf1o 13497 Describe a bijection from ...
iccen 13498 Any nontrivial closed inte...
xov1plusxeqvd 13499 A complex number ` X ` is ...
unitssre 13500 ` ( 0 [,] 1 ) ` is a subse...
unitsscn 13501 The closed unit interval i...
supicc 13502 Supremum of a bounded set ...
supiccub 13503 The supremum of a bounded ...
supicclub 13504 The supremum of a bounded ...
supicclub2 13505 The supremum of a bounded ...
zltaddlt1le 13506 The sum of an integer and ...
xnn0xrge0 13507 An extended nonnegative in...
fzval 13510 The value of a finite set ...
fzval2 13511 An alternative way of expr...
fzf 13512 Establish the domain and c...
elfz1 13513 Membership in a finite set...
elfz 13514 Membership in a finite set...
elfz2 13515 Membership in a finite set...
elfzd 13516 Membership in a finite set...
elfz5 13517 Membership in a finite set...
elfz4 13518 Membership in a finite set...
elfzuzb 13519 Membership in a finite set...
eluzfz 13520 Membership in a finite set...
elfzuz 13521 A member of a finite set o...
elfzuz3 13522 Membership in a finite set...
elfzel2 13523 Membership in a finite set...
elfzel1 13524 Membership in a finite set...
elfzelz 13525 A member of a finite set o...
elfzelzd 13526 A member of a finite set o...
fzssz 13527 A finite sequence of integ...
elfzle1 13528 A member of a finite set o...
elfzle2 13529 A member of a finite set o...
elfzuz2 13530 Implication of membership ...
elfzle3 13531 Membership in a finite set...
eluzfz1 13532 Membership in a finite set...
eluzfz2 13533 Membership in a finite set...
eluzfz2b 13534 Membership in a finite set...
elfz3 13535 Membership in a finite set...
elfz1eq 13536 Membership in a finite set...
elfzubelfz 13537 If there is a member in a ...
peano2fzr 13538 A Peano-postulate-like the...
fzn0 13539 Properties of a finite int...
fz0 13540 A finite set of sequential...
fzn 13541 A finite set of sequential...
fzen 13542 A shifted finite set of se...
fz1n 13543 A 1-based finite set of se...
0nelfz1 13544 0 is not an element of a f...
0fz1 13545 Two ways to say a finite 1...
fz10 13546 There are no integers betw...
uzsubsubfz 13547 Membership of an integer g...
uzsubsubfz1 13548 Membership of an integer g...
ige3m2fz 13549 Membership of an integer g...
fzsplit2 13550 Split a finite interval of...
fzsplit 13551 Split a finite interval of...
fzdisj 13552 Condition for two finite i...
fz01en 13553 0-based and 1-based finite...
elfznn 13554 A member of a finite set o...
elfz1end 13555 A nonempty finite range of...
fz1ssnn 13556 A finite set of positive i...
fznn0sub 13557 Subtraction closure for a ...
fzmmmeqm 13558 Subtracting the difference...
fzaddel 13559 Membership of a sum in a f...
fzadd2 13560 Membership of a sum in a f...
fzsubel 13561 Membership of a difference...
fzopth 13562 A finite set of sequential...
fzass4 13563 Two ways to express a nond...
fzss1 13564 Subset relationship for fi...
fzss2 13565 Subset relationship for fi...
fzssuz 13566 A finite set of sequential...
fzsn 13567 A finite interval of integ...
fzssp1 13568 Subset relationship for fi...
fzssnn 13569 Finite sets of sequential ...
ssfzunsnext 13570 A subset of a finite seque...
ssfzunsn 13571 A subset of a finite seque...
fzsuc 13572 Join a successor to the en...
fzpred 13573 Join a predecessor to the ...
fzpreddisj 13574 A finite set of sequential...
elfzp1 13575 Append an element to a fin...
fzp1ss 13576 Subset relationship for fi...
fzelp1 13577 Membership in a set of seq...
fzp1elp1 13578 Add one to an element of a...
fznatpl1 13579 Shift membership in a fini...
fzpr 13580 A finite interval of integ...
fztp 13581 A finite interval of integ...
fz12pr 13582 An integer range between 1...
fzsuc2 13583 Join a successor to the en...
fzp1disj 13584 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 13585 Remove a successor from th...
fzprval 13586 Two ways of defining the f...
fztpval 13587 Two ways of defining the f...
fzrev 13588 Reversal of start and end ...
fzrev2 13589 Reversal of start and end ...
fzrev2i 13590 Reversal of start and end ...
fzrev3 13591 The "complement" of a memb...
fzrev3i 13592 The "complement" of a memb...
fznn 13593 Finite set of sequential i...
elfz1b 13594 Membership in a 1-based fi...
elfz1uz 13595 Membership in a 1-based fi...
elfzm11 13596 Membership in a finite set...
uzsplit 13597 Express an upper integer s...
uzdisj 13598 The first ` N ` elements o...
fseq1p1m1 13599 Add/remove an item to/from...
fseq1m1p1 13600 Add/remove an item to/from...
fz1sbc 13601 Quantification over a one-...
elfzp1b 13602 An integer is a member of ...
elfzm1b 13603 An integer is a member of ...
elfzp12 13604 Options for membership in ...
fzm1 13605 Choices for an element of ...
fzneuz 13606 No finite set of sequentia...
fznuz 13607 Disjointness of the upper ...
uznfz 13608 Disjointness of the upper ...
fzp1nel 13609 One plus the upper bound o...
fzrevral 13610 Reversal of scanning order...
fzrevral2 13611 Reversal of scanning order...
fzrevral3 13612 Reversal of scanning order...
fzshftral 13613 Shift the scanning order i...
ige2m1fz1 13614 Membership of an integer g...
ige2m1fz 13615 Membership in a 0-based fi...
elfz2nn0 13616 Membership in a finite set...
fznn0 13617 Characterization of a fini...
elfznn0 13618 A member of a finite set o...
elfz3nn0 13619 The upper bound of a nonem...
fz0ssnn0 13620 Finite sets of sequential ...
fz1ssfz0 13621 Subset relationship for fi...
0elfz 13622 0 is an element of a finit...
nn0fz0 13623 A nonnegative integer is a...
elfz0add 13624 An element of a finite set...
fz0sn 13625 An integer range from 0 to...
fz0tp 13626 An integer range from 0 to...
fz0to3un2pr 13627 An integer range from 0 to...
fz0to4untppr 13628 An integer range from 0 to...
elfz0ubfz0 13629 An element of a finite set...
elfz0fzfz0 13630 A member of a finite set o...
fz0fzelfz0 13631 If a member of a finite se...
fznn0sub2 13632 Subtraction closure for a ...
uzsubfz0 13633 Membership of an integer g...
fz0fzdiffz0 13634 The difference of an integ...
elfzmlbm 13635 Subtracting the lower boun...
elfzmlbp 13636 Subtracting the lower boun...
fzctr 13637 Lemma for theorems about t...
difelfzle 13638 The difference of two inte...
difelfznle 13639 The difference of two inte...
nn0split 13640 Express the set of nonnega...
nn0disj 13641 The first ` N + 1 ` elemen...
fz0sn0fz1 13642 A finite set of sequential...
fvffz0 13643 The function value of a fu...
1fv 13644 A function on a singleton....
4fvwrd4 13645 The first four function va...
2ffzeq 13646 Two functions over 0-based...
preduz 13647 The value of the predecess...
prednn 13648 The value of the predecess...
prednn0 13649 The value of the predecess...
predfz 13650 Calculate the predecessor ...
fzof 13653 Functionality of the half-...
elfzoel1 13654 Reverse closure for half-o...
elfzoel2 13655 Reverse closure for half-o...
elfzoelz 13656 Reverse closure for half-o...
fzoval 13657 Value of the half-open int...
elfzo 13658 Membership in a half-open ...
elfzo2 13659 Membership in a half-open ...
elfzouz 13660 Membership in a half-open ...
nelfzo 13661 An integer not being a mem...
fzolb 13662 The left endpoint of a hal...
fzolb2 13663 The left endpoint of a hal...
elfzole1 13664 A member in a half-open in...
elfzolt2 13665 A member in a half-open in...
elfzolt3 13666 Membership in a half-open ...
elfzolt2b 13667 A member in a half-open in...
elfzolt3b 13668 Membership in a half-open ...
elfzop1le2 13669 A member in a half-open in...
fzonel 13670 A half-open range does not...
elfzouz2 13671 The upper bound of a half-...
elfzofz 13672 A half-open range is conta...
elfzo3 13673 Express membership in a ha...
fzon0 13674 A half-open integer interv...
fzossfz 13675 A half-open range is conta...
fzossz 13676 A half-open integer interv...
fzon 13677 A half-open set of sequent...
fzo0n 13678 A half-open range of nonne...
fzonlt0 13679 A half-open integer range ...
fzo0 13680 Half-open sets with equal ...
fzonnsub 13681 If ` K < N ` then ` N - K ...
fzonnsub2 13682 If ` M < N ` then ` N - M ...
fzoss1 13683 Subset relationship for ha...
fzoss2 13684 Subset relationship for ha...
fzossrbm1 13685 Subset of a half-open rang...
fzo0ss1 13686 Subset relationship for ha...
fzossnn0 13687 A half-open integer range ...
fzospliti 13688 One direction of splitting...
fzosplit 13689 Split a half-open integer ...
fzodisj 13690 Abutting half-open integer...
fzouzsplit 13691 Split an upper integer set...
fzouzdisj 13692 A half-open integer range ...
fzoun 13693 A half-open integer range ...
fzodisjsn 13694 A half-open integer range ...
prinfzo0 13695 The intersection of a half...
lbfzo0 13696 An integer is strictly gre...
elfzo0 13697 Membership in a half-open ...
elfzo0z 13698 Membership in a half-open ...
nn0p1elfzo 13699 A nonnegative integer incr...
elfzo0le 13700 A member in a half-open ra...
elfzonn0 13701 A member of a half-open ra...
fzonmapblen 13702 The result of subtracting ...
fzofzim 13703 If a nonnegative integer i...
fz1fzo0m1 13704 Translation of one between...
fzossnn 13705 Half-open integer ranges s...
elfzo1 13706 Membership in a half-open ...
fzo1fzo0n0 13707 An integer between 1 and a...
fzo0n0 13708 A half-open integer range ...
fzoaddel 13709 Translate membership in a ...
fzo0addel 13710 Translate membership in a ...
fzo0addelr 13711 Translate membership in a ...
fzoaddel2 13712 Translate membership in a ...
elfzoext 13713 Membership of an integer i...
elincfzoext 13714 Membership of an increased...
fzosubel 13715 Translate membership in a ...
fzosubel2 13716 Membership in a translated...
fzosubel3 13717 Membership in a translated...
eluzgtdifelfzo 13718 Membership of the differen...
ige2m2fzo 13719 Membership of an integer g...
fzocatel 13720 Translate membership in a ...
ubmelfzo 13721 If an integer in a 1-based...
elfzodifsumelfzo 13722 If an integer is in a half...
elfzom1elp1fzo 13723 Membership of an integer i...
elfzom1elfzo 13724 Membership in a half-open ...
fzval3 13725 Expressing a closed intege...
fz0add1fz1 13726 Translate membership in a ...
fzosn 13727 Expressing a singleton as ...
elfzomin 13728 Membership of an integer i...
zpnn0elfzo 13729 Membership of an integer i...
zpnn0elfzo1 13730 Membership of an integer i...
fzosplitsnm1 13731 Removing a singleton from ...
elfzonlteqm1 13732 If an element of a half-op...
fzonn0p1 13733 A nonnegative integer is e...
fzossfzop1 13734 A half-open range of nonne...
fzonn0p1p1 13735 If a nonnegative integer i...
elfzom1p1elfzo 13736 Increasing an element of a...
fzo0ssnn0 13737 Half-open integer ranges s...
fzo01 13738 Expressing the singleton o...
fzo12sn 13739 A 1-based half-open intege...
fzo13pr 13740 A 1-based half-open intege...
fzo0to2pr 13741 A half-open integer range ...
fzo0to3tp 13742 A half-open integer range ...
fzo0to42pr 13743 A half-open integer range ...
fzo1to4tp 13744 A half-open integer range ...
fzo0sn0fzo1 13745 A half-open range of nonne...
elfzo0l 13746 A member of a half-open ra...
fzoend 13747 The endpoint of a half-ope...
fzo0end 13748 The endpoint of a zero-bas...
ssfzo12 13749 Subset relationship for ha...
ssfzoulel 13750 If a half-open integer ran...
ssfzo12bi 13751 Subset relationship for ha...
ubmelm1fzo 13752 The result of subtracting ...
fzofzp1 13753 If a point is in a half-op...
fzofzp1b 13754 If a point is in a half-op...
elfzom1b 13755 An integer is a member of ...
elfzom1elp1fzo1 13756 Membership of a nonnegativ...
elfzo1elm1fzo0 13757 Membership of a positive i...
elfzonelfzo 13758 If an element of a half-op...
fzonfzoufzol 13759 If an element of a half-op...
elfzomelpfzo 13760 An integer increased by an...
elfznelfzo 13761 A value in a finite set of...
elfznelfzob 13762 A value in a finite set of...
peano2fzor 13763 A Peano-postulate-like the...
fzosplitsn 13764 Extending a half-open rang...
fzosplitpr 13765 Extending a half-open inte...
fzosplitprm1 13766 Extending a half-open inte...
fzosplitsni 13767 Membership in a half-open ...
fzisfzounsn 13768 A finite interval of integ...
elfzr 13769 A member of a finite inter...
elfzlmr 13770 A member of a finite inter...
elfz0lmr 13771 A member of a finite inter...
fzostep1 13772 Two possibilities for a nu...
fzoshftral 13773 Shift the scanning order i...
fzind2 13774 Induction on the integers ...
fvinim0ffz 13775 The function values for th...
injresinjlem 13776 Lemma for ~ injresinj . (...
injresinj 13777 A function whose restricti...
subfzo0 13778 The difference between two...
flval 13783 Value of the floor (greate...
flcl 13784 The floor (greatest intege...
reflcl 13785 The floor (greatest intege...
fllelt 13786 A basic property of the fl...
flcld 13787 The floor (greatest intege...
flle 13788 A basic property of the fl...
flltp1 13789 A basic property of the fl...
fllep1 13790 A basic property of the fl...
fraclt1 13791 The fractional part of a r...
fracle1 13792 The fractional part of a r...
fracge0 13793 The fractional part of a r...
flge 13794 The floor function value i...
fllt 13795 The floor function value i...
flflp1 13796 Move floor function betwee...
flid 13797 An integer is its own floo...
flidm 13798 The floor function is idem...
flidz 13799 A real number equals its f...
flltnz 13800 The floor of a non-integer...
flwordi 13801 Ordering relation for the ...
flword2 13802 Ordering relation for the ...
flval2 13803 An alternate way to define...
flval3 13804 An alternate way to define...
flbi 13805 A condition equivalent to ...
flbi2 13806 A condition equivalent to ...
adddivflid 13807 The floor of a sum of an i...
ico01fl0 13808 The floor of a real number...
flge0nn0 13809 The floor of a number grea...
flge1nn 13810 The floor of a number grea...
fldivnn0 13811 The floor function of a di...
refldivcl 13812 The floor function of a di...
divfl0 13813 The floor of a fraction is...
fladdz 13814 An integer can be moved in...
flzadd 13815 An integer can be moved in...
flmulnn0 13816 Move a nonnegative integer...
btwnzge0 13817 A real bounded between an ...
2tnp1ge0ge0 13818 Two times an integer plus ...
flhalf 13819 Ordering relation for the ...
fldivle 13820 The floor function of a di...
fldivnn0le 13821 The floor function of a di...
flltdivnn0lt 13822 The floor function of a di...
ltdifltdiv 13823 If the dividend of a divis...
fldiv4p1lem1div2 13824 The floor of an integer eq...
fldiv4lem1div2uz2 13825 The floor of an integer gr...
fldiv4lem1div2 13826 The floor of a positive in...
ceilval 13827 The value of the ceiling f...
dfceil2 13828 Alternative definition of ...
ceilval2 13829 The value of the ceiling f...
ceicl 13830 The ceiling function retur...
ceilcl 13831 Closure of the ceiling fun...
ceilcld 13832 Closure of the ceiling fun...
ceige 13833 The ceiling of a real numb...
ceilge 13834 The ceiling of a real numb...
ceilged 13835 The ceiling of a real numb...
ceim1l 13836 One less than the ceiling ...
ceilm1lt 13837 One less than the ceiling ...
ceile 13838 The ceiling of a real numb...
ceille 13839 The ceiling of a real numb...
ceilid 13840 An integer is its own ceil...
ceilidz 13841 A real number equals its c...
flleceil 13842 The floor of a real number...
fleqceilz 13843 A real number is an intege...
quoremz 13844 Quotient and remainder of ...
quoremnn0 13845 Quotient and remainder of ...
quoremnn0ALT 13846 Alternate proof of ~ quore...
intfrac2 13847 Decompose a real into inte...
intfracq 13848 Decompose a rational numbe...
fldiv 13849 Cancellation of the embedd...
fldiv2 13850 Cancellation of an embedde...
fznnfl 13851 Finite set of sequential i...
uzsup 13852 An upper set of integers i...
ioopnfsup 13853 An upper set of reals is u...
icopnfsup 13854 An upper set of reals is u...
rpsup 13855 The positive reals are unb...
resup 13856 The real numbers are unbou...
xrsup 13857 The extended real numbers ...
modval 13860 The value of the modulo op...
modvalr 13861 The value of the modulo op...
modcl 13862 Closure law for the modulo...
flpmodeq 13863 Partition of a division in...
modcld 13864 Closure law for the modulo...
mod0 13865 ` A mod B ` is zero iff ` ...
mulmod0 13866 The product of an integer ...
negmod0 13867 ` A ` is divisible by ` B ...
modge0 13868 The modulo operation is no...
modlt 13869 The modulo operation is le...
modelico 13870 Modular reduction produces...
moddiffl 13871 Value of the modulo operat...
moddifz 13872 The modulo operation diffe...
modfrac 13873 The fractional part of a n...
flmod 13874 The floor function express...
intfrac 13875 Break a number into its in...
zmod10 13876 An integer modulo 1 is 0. ...
zmod1congr 13877 Two arbitrary integers are...
modmulnn 13878 Move a positive integer in...
modvalp1 13879 The value of the modulo op...
zmodcl 13880 Closure law for the modulo...
zmodcld 13881 Closure law for the modulo...
zmodfz 13882 An integer mod ` B ` lies ...
zmodfzo 13883 An integer mod ` B ` lies ...
zmodfzp1 13884 An integer mod ` B ` lies ...
modid 13885 Identity law for modulo. ...
modid0 13886 A positive real number mod...
modid2 13887 Identity law for modulo. ...
zmodid2 13888 Identity law for modulo re...
zmodidfzo 13889 Identity law for modulo re...
zmodidfzoimp 13890 Identity law for modulo re...
0mod 13891 Special case: 0 modulo a p...
1mod 13892 Special case: 1 modulo a r...
modabs 13893 Absorption law for modulo....
modabs2 13894 Absorption law for modulo....
modcyc 13895 The modulo operation is pe...
modcyc2 13896 The modulo operation is pe...
modadd1 13897 Addition property of the m...
modaddabs 13898 Absorption law for modulo....
modaddmod 13899 The sum of a real number m...
muladdmodid 13900 The sum of a positive real...
mulp1mod1 13901 The product of an integer ...
modmuladd 13902 Decomposition of an intege...
modmuladdim 13903 Implication of a decomposi...
modmuladdnn0 13904 Implication of a decomposi...
negmod 13905 The negation of a number m...
m1modnnsub1 13906 Minus one modulo a positiv...
m1modge3gt1 13907 Minus one modulo an intege...
addmodid 13908 The sum of a positive inte...
addmodidr 13909 The sum of a positive inte...
modadd2mod 13910 The sum of a real number m...
modm1p1mod0 13911 If a real number modulo a ...
modltm1p1mod 13912 If a real number modulo a ...
modmul1 13913 Multiplication property of...
modmul12d 13914 Multiplication property of...
modnegd 13915 Negation property of the m...
modadd12d 13916 Additive property of the m...
modsub12d 13917 Subtraction property of th...
modsubmod 13918 The difference of a real n...
modsubmodmod 13919 The difference of a real n...
2txmodxeq0 13920 Two times a positive real ...
2submod 13921 If a real number is betwee...
modifeq2int 13922 If a nonnegative integer i...
modaddmodup 13923 The sum of an integer modu...
modaddmodlo 13924 The sum of an integer modu...
modmulmod 13925 The product of a real numb...
modmulmodr 13926 The product of an integer ...
modaddmulmod 13927 The sum of a real number a...
moddi 13928 Distribute multiplication ...
modsubdir 13929 Distribute the modulo oper...
modeqmodmin 13930 A real number equals the d...
modirr 13931 A number modulo an irratio...
modfzo0difsn 13932 For a number within a half...
modsumfzodifsn 13933 The sum of a number within...
modlteq 13934 Two nonnegative integers l...
addmodlteq 13935 Two nonnegative integers l...
om2uz0i 13936 The mapping ` G ` is a one...
om2uzsuci 13937 The value of ` G ` (see ~ ...
om2uzuzi 13938 The value ` G ` (see ~ om2...
om2uzlti 13939 Less-than relation for ` G...
om2uzlt2i 13940 The mapping ` G ` (see ~ o...
om2uzrani 13941 Range of ` G ` (see ~ om2u...
om2uzf1oi 13942 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 13943 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 13944 An alternative definition ...
om2uzrdg 13945 A helper lemma for the val...
uzrdglem 13946 A helper lemma for the val...
uzrdgfni 13947 The recursive definition g...
uzrdg0i 13948 Initial value of a recursi...
uzrdgsuci 13949 Successor value of a recur...
ltweuz 13950 ` < ` is a well-founded re...
ltwenn 13951 Less than well-orders the ...
ltwefz 13952 Less than well-orders a se...
uzenom 13953 An upper integer set is de...
uzinf 13954 An upper integer set is in...
nnnfi 13955 The set of positive intege...
uzrdgxfr 13956 Transfer the value of the ...
fzennn 13957 The cardinality of a finit...
fzen2 13958 The cardinality of a finit...
cardfz 13959 The cardinality of a finit...
hashgf1o 13960 ` G ` maps ` _om ` one-to-...
fzfi 13961 A finite interval of integ...
fzfid 13962 Commonly used special case...
fzofi 13963 Half-open integer sets are...
fsequb 13964 The values of a finite rea...
fsequb2 13965 The values of a finite rea...
fseqsupcl 13966 The values of a finite rea...
fseqsupubi 13967 The values of a finite rea...
nn0ennn 13968 The nonnegative integers a...
nnenom 13969 The set of positive intege...
nnct 13970 ` NN ` is countable. (Con...
uzindi 13971 Indirect strong induction ...
axdc4uzlem 13972 Lemma for ~ axdc4uz . (Co...
axdc4uz 13973 A version of ~ axdc4 that ...
ssnn0fi 13974 A subset of the nonnegativ...
rabssnn0fi 13975 A subset of the nonnegativ...
uzsinds 13976 Strong (or "total") induct...
nnsinds 13977 Strong (or "total") induct...
nn0sinds 13978 Strong (or "total") induct...
fsuppmapnn0fiublem 13979 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 13980 If all functions of a fini...
fsuppmapnn0fiubex 13981 If all functions of a fini...
fsuppmapnn0fiub0 13982 If all functions of a fini...
suppssfz 13983 Condition for a function o...
fsuppmapnn0ub 13984 If a function over the non...
fsuppmapnn0fz 13985 If a function over the non...
mptnn0fsupp 13986 A mapping from the nonnega...
mptnn0fsuppd 13987 A mapping from the nonnega...
mptnn0fsuppr 13988 A finitely supported mappi...
f13idfv 13989 A one-to-one function with...
seqex 13992 Existence of the sequence ...
seqeq1 13993 Equality theorem for the s...
seqeq2 13994 Equality theorem for the s...
seqeq3 13995 Equality theorem for the s...
seqeq1d 13996 Equality deduction for the...
seqeq2d 13997 Equality deduction for the...
seqeq3d 13998 Equality deduction for the...
seqeq123d 13999 Equality deduction for the...
nfseq 14000 Hypothesis builder for the...
seqval 14001 Value of the sequence buil...
seqfn 14002 The sequence builder funct...
seq1 14003 Value of the sequence buil...
seq1i 14004 Value of the sequence buil...
seqp1 14005 Value of the sequence buil...
seqexw 14006 Weak version of ~ seqex th...
seqp1d 14007 Value of the sequence buil...
seqm1 14008 Value of the sequence buil...
seqcl2 14009 Closure properties of the ...
seqf2 14010 Range of the recursive seq...
seqcl 14011 Closure properties of the ...
seqf 14012 Range of the recursive seq...
seqfveq2 14013 Equality of sequences. (C...
seqfeq2 14014 Equality of sequences. (C...
seqfveq 14015 Equality of sequences. (C...
seqfeq 14016 Equality of sequences. (C...
seqshft2 14017 Shifting the index set of ...
seqres 14018 Restricting its characteri...
serf 14019 An infinite series of comp...
serfre 14020 An infinite series of real...
monoord 14021 Ordering relation for a mo...
monoord2 14022 Ordering relation for a mo...
sermono 14023 The partial sums in an inf...
seqsplit 14024 Split a sequence into two ...
seq1p 14025 Removing the first term fr...
seqcaopr3 14026 Lemma for ~ seqcaopr2 . (...
seqcaopr2 14027 The sum of two infinite se...
seqcaopr 14028 The sum of two infinite se...
seqf1olem2a 14029 Lemma for ~ seqf1o . (Con...
seqf1olem1 14030 Lemma for ~ seqf1o . (Con...
seqf1olem2 14031 Lemma for ~ seqf1o . (Con...
seqf1o 14032 Rearrange a sum via an arb...
seradd 14033 The sum of two infinite se...
sersub 14034 The difference of two infi...
seqid3 14035 A sequence that consists e...
seqid 14036 Discarding the first few t...
seqid2 14037 The last few partial sums ...
seqhomo 14038 Apply a homomorphism to a ...
seqz 14039 If the operation ` .+ ` ha...
seqfeq4 14040 Equality of series under d...
seqfeq3 14041 Equality of series under d...
seqdistr 14042 The distributive property ...
ser0 14043 The value of the partial s...
ser0f 14044 A zero-valued infinite ser...
serge0 14045 A finite sum of nonnegativ...
serle 14046 Comparison of partial sums...
ser1const 14047 Value of the partial serie...
seqof 14048 Distribute function operat...
seqof2 14049 Distribute function operat...
expval 14052 Value of exponentiation to...
expnnval 14053 Value of exponentiation to...
exp0 14054 Value of a complex number ...
0exp0e1 14055 The zeroth power of zero e...
exp1 14056 Value of a complex number ...
expp1 14057 Value of a complex number ...
expneg 14058 Value of a complex number ...
expneg2 14059 Value of a complex number ...
expn1 14060 A complex number raised to...
expcllem 14061 Lemma for proving nonnegat...
expcl2lem 14062 Lemma for proving integer ...
nnexpcl 14063 Closure of exponentiation ...
nn0expcl 14064 Closure of exponentiation ...
zexpcl 14065 Closure of exponentiation ...
qexpcl 14066 Closure of exponentiation ...
reexpcl 14067 Closure of exponentiation ...
expcl 14068 Closure law for nonnegativ...
rpexpcl 14069 Closure law for integer ex...
qexpclz 14070 Closure of integer exponen...
reexpclz 14071 Closure of integer exponen...
expclzlem 14072 Lemma for ~ expclz . (Con...
expclz 14073 Closure law for integer ex...
m1expcl2 14074 Closure of integer exponen...
m1expcl 14075 Closure of exponentiation ...
zexpcld 14076 Closure of exponentiation ...
nn0expcli 14077 Closure of exponentiation ...
nn0sqcl 14078 The square of a nonnegativ...
expm1t 14079 Exponentiation in terms of...
1exp 14080 Value of 1 raised to an in...
expeq0 14081 A positive integer power i...
expne0 14082 A positive integer power i...
expne0i 14083 An integer power is nonzer...
expgt0 14084 A positive real raised to ...
expnegz 14085 Value of a nonzero complex...
0exp 14086 Value of zero raised to a ...
expge0 14087 A nonnegative real raised ...
expge1 14088 A real greater than or equ...
expgt1 14089 A real greater than 1 rais...
mulexp 14090 Nonnegative integer expone...
mulexpz 14091 Integer exponentiation of ...
exprec 14092 Integer exponentiation of ...
expadd 14093 Sum of exponents law for n...
expaddzlem 14094 Lemma for ~ expaddz . (Co...
expaddz 14095 Sum of exponents law for i...
expmul 14096 Product of exponents law f...
expmulz 14097 Product of exponents law f...
m1expeven 14098 Exponentiation of negative...
expsub 14099 Exponent subtraction law f...
expp1z 14100 Value of a nonzero complex...
expm1 14101 Value of a nonzero complex...
expdiv 14102 Nonnegative integer expone...
sqval 14103 Value of the square of a c...
sqneg 14104 The square of the negative...
sqsubswap 14105 Swap the order of subtract...
sqcl 14106 Closure of square. (Contr...
sqmul 14107 Distribution of squaring o...
sqeq0 14108 A complex number is zero i...
sqdiv 14109 Distribution of squaring o...
sqdivid 14110 The square of a nonzero co...
sqne0 14111 A complex number is nonzer...
resqcl 14112 Closure of squaring in rea...
resqcld 14113 Closure of squaring in rea...
sqgt0 14114 The square of a nonzero re...
sqn0rp 14115 The square of a nonzero re...
nnsqcl 14116 The positive naturals are ...
zsqcl 14117 Integers are closed under ...
qsqcl 14118 The square of a rational i...
sq11 14119 The square function is one...
nn0sq11 14120 The square function is one...
lt2sq 14121 The square function is inc...
le2sq 14122 The square function is non...
le2sq2 14123 The square function is non...
sqge0 14124 The square of a real is no...
sqge0d 14125 The square of a real is no...
zsqcl2 14126 The square of an integer i...
0expd 14127 Value of zero raised to a ...
exp0d 14128 Value of a complex number ...
exp1d 14129 Value of a complex number ...
expeq0d 14130 If a positive integer powe...
sqvald 14131 Value of square. Inferenc...
sqcld 14132 Closure of square. (Contr...
sqeq0d 14133 A number is zero iff its s...
expcld 14134 Closure law for nonnegativ...
expp1d 14135 Value of a complex number ...
expaddd 14136 Sum of exponents law for n...
expmuld 14137 Product of exponents law f...
sqrecd 14138 Square of reciprocal is re...
expclzd 14139 Closure law for integer ex...
expne0d 14140 A nonnegative integer powe...
expnegd 14141 Value of a nonzero complex...
exprecd 14142 An integer power of a reci...
expp1zd 14143 Value of a nonzero complex...
expm1d 14144 Value of a nonzero complex...
expsubd 14145 Exponent subtraction law f...
sqmuld 14146 Distribution of squaring o...
sqdivd 14147 Distribution of squaring o...
expdivd 14148 Nonnegative integer expone...
mulexpd 14149 Nonnegative integer expone...
znsqcld 14150 The square of a nonzero in...
reexpcld 14151 Closure of exponentiation ...
expge0d 14152 A nonnegative real raised ...
expge1d 14153 A real greater than or equ...
ltexp2a 14154 Exponent ordering relation...
expmordi 14155 Base ordering relationship...
rpexpmord 14156 Base ordering relationship...
expcan 14157 Cancellation law for integ...
ltexp2 14158 Strict ordering law for ex...
leexp2 14159 Ordering law for exponenti...
leexp2a 14160 Weak ordering relationship...
ltexp2r 14161 The integer powers of a fi...
leexp2r 14162 Weak ordering relationship...
leexp1a 14163 Weak base ordering relatio...
exple1 14164 A real between 0 and 1 inc...
expubnd 14165 An upper bound on ` A ^ N ...
sumsqeq0 14166 The sum of two squres of r...
sqvali 14167 Value of square. Inferenc...
sqcli 14168 Closure of square. (Contr...
sqeq0i 14169 A complex number is zero i...
sqrecii 14170 The square of a reciprocal...
sqmuli 14171 Distribution of squaring o...
sqdivi 14172 Distribution of squaring o...
resqcli 14173 Closure of square in reals...
sqgt0i 14174 The square of a nonzero re...
sqge0i 14175 The square of a real is no...
lt2sqi 14176 The square function on non...
le2sqi 14177 The square function on non...
sq11i 14178 The square function is one...
sq0 14179 The square of 0 is 0. (Co...
sq0i 14180 If a number is zero, then ...
sq0id 14181 If a number is zero, then ...
sq1 14182 The square of 1 is 1. (Co...
neg1sqe1 14183 The square of ` -u 1 ` is ...
sq2 14184 The square of 2 is 4. (Co...
sq3 14185 The square of 3 is 9. (Co...
sq4e2t8 14186 The square of 4 is 2 times...
cu2 14187 The cube of 2 is 8. (Cont...
irec 14188 The reciprocal of ` _i ` ....
i2 14189 ` _i ` squared. (Contribu...
i3 14190 ` _i ` cubed. (Contribute...
i4 14191 ` _i ` to the fourth power...
nnlesq 14192 A positive integer is less...
zzlesq 14193 An integer is less than or...
iexpcyc 14194 Taking ` _i ` to the ` K `...
expnass 14195 A counterexample showing t...
sqlecan 14196 Cancel one factor of a squ...
subsq 14197 Factor the difference of t...
subsq2 14198 Express the difference of ...
binom2i 14199 The square of a binomial. ...
subsqi 14200 Factor the difference of t...
sqeqori 14201 The squares of two complex...
subsq0i 14202 The two solutions to the d...
sqeqor 14203 The squares of two complex...
binom2 14204 The square of a binomial. ...
binom21 14205 Special case of ~ binom2 w...
binom2sub 14206 Expand the square of a sub...
binom2sub1 14207 Special case of ~ binom2su...
binom2subi 14208 Expand the square of a sub...
mulbinom2 14209 The square of a binomial w...
binom3 14210 The cube of a binomial. (...
sq01 14211 If a complex number equals...
zesq 14212 An integer is even iff its...
nnesq 14213 A positive integer is even...
crreczi 14214 Reciprocal of a complex nu...
bernneq 14215 Bernoulli's inequality, du...
bernneq2 14216 Variation of Bernoulli's i...
bernneq3 14217 A corollary of ~ bernneq ....
expnbnd 14218 Exponentiation with a base...
expnlbnd 14219 The reciprocal of exponent...
expnlbnd2 14220 The reciprocal of exponent...
expmulnbnd 14221 Exponentiation with a base...
digit2 14222 Two ways to express the ` ...
digit1 14223 Two ways to express the ` ...
modexp 14224 Exponentiation property of...
discr1 14225 A nonnegative quadratic fo...
discr 14226 If a quadratic polynomial ...
expnngt1 14227 If an integer power with a...
expnngt1b 14228 An integer power with an i...
sqoddm1div8 14229 A squared odd number minus...
nnsqcld 14230 The naturals are closed un...
nnexpcld 14231 Closure of exponentiation ...
nn0expcld 14232 Closure of exponentiation ...
rpexpcld 14233 Closure law for exponentia...
ltexp2rd 14234 The power of a positive nu...
reexpclzd 14235 Closure of exponentiation ...
sqgt0d 14236 The square of a nonzero re...
ltexp2d 14237 Ordering relationship for ...
leexp2d 14238 Ordering law for exponenti...
expcand 14239 Ordering relationship for ...
leexp2ad 14240 Ordering relationship for ...
leexp2rd 14241 Ordering relationship for ...
lt2sqd 14242 The square function on non...
le2sqd 14243 The square function on non...
sq11d 14244 The square function is one...
mulsubdivbinom2 14245 The square of a binomial w...
muldivbinom2 14246 The square of a binomial w...
sq10 14247 The square of 10 is 100. ...
sq10e99m1 14248 The square of 10 is 99 plu...
3dec 14249 A "decimal constructor" wh...
nn0le2msqi 14250 The square function on non...
nn0opthlem1 14251 A rather pretty lemma for ...
nn0opthlem2 14252 Lemma for ~ nn0opthi . (C...
nn0opthi 14253 An ordered pair theorem fo...
nn0opth2i 14254 An ordered pair theorem fo...
nn0opth2 14255 An ordered pair theorem fo...
facnn 14258 Value of the factorial fun...
fac0 14259 The factorial of 0. (Cont...
fac1 14260 The factorial of 1. (Cont...
facp1 14261 The factorial of a success...
fac2 14262 The factorial of 2. (Cont...
fac3 14263 The factorial of 3. (Cont...
fac4 14264 The factorial of 4. (Cont...
facnn2 14265 Value of the factorial fun...
faccl 14266 Closure of the factorial f...
faccld 14267 Closure of the factorial f...
facmapnn 14268 The factorial function res...
facne0 14269 The factorial function is ...
facdiv 14270 A positive integer divides...
facndiv 14271 No positive integer (great...
facwordi 14272 Ordering property of facto...
faclbnd 14273 A lower bound for the fact...
faclbnd2 14274 A lower bound for the fact...
faclbnd3 14275 A lower bound for the fact...
faclbnd4lem1 14276 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 14277 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 14278 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 14279 Lemma for ~ faclbnd4 . Pr...
faclbnd4 14280 Variant of ~ faclbnd5 prov...
faclbnd5 14281 The factorial function gro...
faclbnd6 14282 Geometric lower bound for ...
facubnd 14283 An upper bound for the fac...
facavg 14284 The product of two factori...
bcval 14287 Value of the binomial coef...
bcval2 14288 Value of the binomial coef...
bcval3 14289 Value of the binomial coef...
bcval4 14290 Value of the binomial coef...
bcrpcl 14291 Closure of the binomial co...
bccmpl 14292 "Complementing" its second...
bcn0 14293 ` N ` choose 0 is 1. Rema...
bc0k 14294 The binomial coefficient "...
bcnn 14295 ` N ` choose ` N ` is 1. ...
bcn1 14296 Binomial coefficient: ` N ...
bcnp1n 14297 Binomial coefficient: ` N ...
bcm1k 14298 The proportion of one bino...
bcp1n 14299 The proportion of one bino...
bcp1nk 14300 The proportion of one bino...
bcval5 14301 Write out the top and bott...
bcn2 14302 Binomial coefficient: ` N ...
bcp1m1 14303 Compute the binomial coeff...
bcpasc 14304 Pascal's rule for the bino...
bccl 14305 A binomial coefficient, in...
bccl2 14306 A binomial coefficient, in...
bcn2m1 14307 Compute the binomial coeff...
bcn2p1 14308 Compute the binomial coeff...
permnn 14309 The number of permutations...
bcnm1 14310 The binomial coefficent of...
4bc3eq4 14311 The value of four choose t...
4bc2eq6 14312 The value of four choose t...
hashkf 14315 The finite part of the siz...
hashgval 14316 The value of the ` # ` fun...
hashginv 14317 The converse of ` G ` maps...
hashinf 14318 The value of the ` # ` fun...
hashbnd 14319 If ` A ` has size bounded ...
hashfxnn0 14320 The size function is a fun...
hashf 14321 The size function maps all...
hashxnn0 14322 The value of the hash func...
hashresfn 14323 Restriction of the domain ...
dmhashres 14324 Restriction of the domain ...
hashnn0pnf 14325 The value of the hash func...
hashnnn0genn0 14326 If the size of a set is no...
hashnemnf 14327 The size of a set is never...
hashv01gt1 14328 The size of a set is eithe...
hashfz1 14329 The set ` ( 1 ... N ) ` ha...
hashen 14330 Two finite sets have the s...
hasheni 14331 Equinumerous sets have the...
hasheqf1o 14332 The size of two finite set...
fiinfnf1o 14333 There is no bijection betw...
hasheqf1oi 14334 The size of two sets is eq...
hashf1rn 14335 The size of a finite set w...
hasheqf1od 14336 The size of two sets is eq...
fz1eqb 14337 Two possibly-empty 1-based...
hashcard 14338 The size function of the c...
hashcl 14339 Closure of the ` # ` funct...
hashxrcl 14340 Extended real closure of t...
hashclb 14341 Reverse closure of the ` #...
nfile 14342 The size of any infinite s...
hashvnfin 14343 A set of finite size is a ...
hashnfinnn0 14344 The size of an infinite se...
isfinite4 14345 A finite set is equinumero...
hasheq0 14346 Two ways of saying a set i...
hashneq0 14347 Two ways of saying a set i...
hashgt0n0 14348 If the size of a set is gr...
hashnncl 14349 Positive natural closure o...
hash0 14350 The empty set has size zer...
hashelne0d 14351 A set with an element has ...
hashsng 14352 The size of a singleton. ...
hashen1 14353 A set has size 1 if and on...
hash1elsn 14354 A set of size 1 with a kno...
hashrabrsn 14355 The size of a restricted c...
hashrabsn01 14356 The size of a restricted c...
hashrabsn1 14357 If the size of a restricte...
hashfn 14358 A function is equinumerous...
fseq1hash 14359 The value of the size func...
hashgadd 14360 ` G ` maps ordinal additio...
hashgval2 14361 A short expression for the...
hashdom 14362 Dominance relation for the...
hashdomi 14363 Non-strict order relation ...
hashsdom 14364 Strict dominance relation ...
hashun 14365 The size of the union of d...
hashun2 14366 The size of the union of f...
hashun3 14367 The size of the union of f...
hashinfxadd 14368 The extended real addition...
hashunx 14369 The size of the union of d...
hashge0 14370 The cardinality of a set i...
hashgt0 14371 The cardinality of a nonem...
hashge1 14372 The cardinality of a nonem...
1elfz0hash 14373 1 is an element of the fin...
hashnn0n0nn 14374 If a nonnegative integer i...
hashunsng 14375 The size of the union of a...
hashunsngx 14376 The size of the union of a...
hashunsnggt 14377 The size of a set is great...
hashprg 14378 The size of an unordered p...
elprchashprn2 14379 If one element of an unord...
hashprb 14380 The size of an unordered p...
hashprdifel 14381 The elements of an unorder...
prhash2ex 14382 There is (at least) one se...
hashle00 14383 If the size of a set is le...
hashgt0elex 14384 If the size of a set is gr...
hashgt0elexb 14385 The size of a set is great...
hashp1i 14386 Size of a finite ordinal. ...
hash1 14387 Size of a finite ordinal. ...
hash2 14388 Size of a finite ordinal. ...
hash3 14389 Size of a finite ordinal. ...
hash4 14390 Size of a finite ordinal. ...
pr0hash2ex 14391 There is (at least) one se...
hashss 14392 The size of a subset is le...
prsshashgt1 14393 The size of a superset of ...
hashin 14394 The size of the intersecti...
hashssdif 14395 The size of the difference...
hashdif 14396 The size of the difference...
hashdifsn 14397 The size of the difference...
hashdifpr 14398 The size of the difference...
hashsn01 14399 The size of a singleton is...
hashsnle1 14400 The size of a singleton is...
hashsnlei 14401 Get an upper bound on a co...
hash1snb 14402 The size of a set is 1 if ...
euhash1 14403 The size of a set is 1 in ...
hash1n0 14404 If the size of a set is 1 ...
hashgt12el 14405 In a set with more than on...
hashgt12el2 14406 In a set with more than on...
hashgt23el 14407 A set with more than two e...
hashunlei 14408 Get an upper bound on a co...
hashsslei 14409 Get an upper bound on a co...
hashfz 14410 Value of the numeric cardi...
fzsdom2 14411 Condition for finite range...
hashfzo 14412 Cardinality of a half-open...
hashfzo0 14413 Cardinality of a half-open...
hashfzp1 14414 Value of the numeric cardi...
hashfz0 14415 Value of the numeric cardi...
hashxplem 14416 Lemma for ~ hashxp . (Con...
hashxp 14417 The size of the Cartesian ...
hashmap 14418 The size of the set expone...
hashpw 14419 The size of the power set ...
hashfun 14420 A finite set is a function...
hashres 14421 The number of elements of ...
hashreshashfun 14422 The number of elements of ...
hashimarn 14423 The size of the image of a...
hashimarni 14424 If the size of the image o...
hashfundm 14425 The size of a set function...
hashf1dmrn 14426 The size of the domain of ...
hashf1dmcdm 14427 The size of the domain of ...
resunimafz0 14428 TODO-AV: Revise using ` F...
fnfz0hash 14429 The size of a function on ...
ffz0hash 14430 The size of a function on ...
fnfz0hashnn0 14431 The size of a function on ...
ffzo0hash 14432 The size of a function on ...
fnfzo0hash 14433 The size of a function on ...
fnfzo0hashnn0 14434 The value of the size func...
hashbclem 14435 Lemma for ~ hashbc : induc...
hashbc 14436 The binomial coefficient c...
hashfacen 14437 The number of bijections b...
hashfacenOLD 14438 Obsolete version of ~ hash...
hashf1lem1 14439 Lemma for ~ hashf1 . (Con...
hashf1lem1OLD 14440 Obsolete version of ~ hash...
hashf1lem2 14441 Lemma for ~ hashf1 . (Con...
hashf1 14442 The permutation number ` |...
hashfac 14443 A factorial counts the num...
leiso 14444 Two ways to write a strict...
leisorel 14445 Version of ~ isorel for st...
fz1isolem 14446 Lemma for ~ fz1iso . (Con...
fz1iso 14447 Any finite ordered set has...
ishashinf 14448 Any set that is not finite...
seqcoll 14449 The function ` F ` contain...
seqcoll2 14450 The function ` F ` contain...
phphashd 14451 Corollary of the Pigeonhol...
phphashrd 14452 Corollary of the Pigeonhol...
hashprlei 14453 An unordered pair has at m...
hash2pr 14454 A set of size two is an un...
hash2prde 14455 A set of size two is an un...
hash2exprb 14456 A set of size two is an un...
hash2prb 14457 A set of size two is a pro...
prprrab 14458 The set of proper pairs of...
nehash2 14459 The cardinality of a set w...
hash2prd 14460 A set of size two is an un...
hash2pwpr 14461 If the size of a subset of...
hashle2pr 14462 A nonempty set of size les...
hashle2prv 14463 A nonempty subset of a pow...
pr2pwpr 14464 The set of subsets of a pa...
hashge2el2dif 14465 A set with size at least 2...
hashge2el2difr 14466 A set with at least 2 diff...
hashge2el2difb 14467 A set has size at least 2 ...
hashdmpropge2 14468 The size of the domain of ...
hashtplei 14469 An unordered triple has at...
hashtpg 14470 The size of an unordered t...
hashge3el3dif 14471 A set with size at least 3...
elss2prb 14472 An element of the set of s...
hash2sspr 14473 A subset of size two is an...
exprelprel 14474 If there is an element of ...
hash3tr 14475 A set of size three is an ...
hash1to3 14476 If the size of a set is be...
fundmge2nop0 14477 A function with a domain c...
fundmge2nop 14478 A function with a domain c...
fun2dmnop0 14479 A function with a domain c...
fun2dmnop 14480 A function with a domain c...
hashdifsnp1 14481 If the size of a set is a ...
fi1uzind 14482 Properties of an ordered p...
brfi1uzind 14483 Properties of a binary rel...
brfi1ind 14484 Properties of a binary rel...
brfi1indALT 14485 Alternate proof of ~ brfi1...
opfi1uzind 14486 Properties of an ordered p...
opfi1ind 14487 Properties of an ordered p...
iswrd 14490 Property of being a word o...
wrdval 14491 Value of the set of words ...
iswrdi 14492 A zero-based sequence is a...
wrdf 14493 A word is a zero-based seq...
iswrdb 14494 A word over an alphabet is...
wrddm 14495 The indices of a word (i.e...
sswrd 14496 The set of words respects ...
snopiswrd 14497 A singleton of an ordered ...
wrdexg 14498 The set of words over a se...
wrdexb 14499 The set of words over a se...
wrdexi 14500 The set of words over a se...
wrdsymbcl 14501 A symbol within a word ove...
wrdfn 14502 A word is a function with ...
wrdv 14503 A word over an alphabet is...
wrdlndm 14504 The length of a word is no...
iswrdsymb 14505 An arbitrary word is a wor...
wrdfin 14506 A word is a finite set. (...
lencl 14507 The length of a word is a ...
lennncl 14508 The length of a nonempty w...
wrdffz 14509 A word is a function from ...
wrdeq 14510 Equality theorem for the s...
wrdeqi 14511 Equality theorem for the s...
iswrddm0 14512 A function with empty doma...
wrd0 14513 The empty set is a word (t...
0wrd0 14514 The empty word is the only...
ffz0iswrd 14515 A sequence with zero-based...
wrdsymb 14516 A word is a word over the ...
nfwrd 14517 Hypothesis builder for ` W...
csbwrdg 14518 Class substitution for the...
wrdnval 14519 Words of a fixed length ar...
wrdmap 14520 Words as a mapping. (Cont...
hashwrdn 14521 If there is only a finite ...
wrdnfi 14522 If there is only a finite ...
wrdsymb0 14523 A symbol at a position "ou...
wrdlenge1n0 14524 A word with length at leas...
len0nnbi 14525 The length of a word is a ...
wrdlenge2n0 14526 A word with length at leas...
wrdsymb1 14527 The first symbol of a none...
wrdlen1 14528 A word of length 1 starts ...
fstwrdne 14529 The first symbol of a none...
fstwrdne0 14530 The first symbol of a none...
eqwrd 14531 Two words are equal iff th...
elovmpowrd 14532 Implications for the value...
elovmptnn0wrd 14533 Implications for the value...
wrdred1 14534 A word truncated by a symb...
wrdred1hash 14535 The length of a word trunc...
lsw 14538 Extract the last symbol of...
lsw0 14539 The last symbol of an empt...
lsw0g 14540 The last symbol of an empt...
lsw1 14541 The last symbol of a word ...
lswcl 14542 Closure of the last symbol...
lswlgt0cl 14543 The last symbol of a nonem...
ccatfn 14546 The concatenation operator...
ccatfval 14547 Value of the concatenation...
ccatcl 14548 The concatenation of two w...
ccatlen 14549 The length of a concatenat...
ccat0 14550 The concatenation of two w...
ccatval1 14551 Value of a symbol in the l...
ccatval2 14552 Value of a symbol in the r...
ccatval3 14553 Value of a symbol in the r...
elfzelfzccat 14554 An element of a finite set...
ccatvalfn 14555 The concatenation of two w...
ccatsymb 14556 The symbol at a given posi...
ccatfv0 14557 The first symbol of a conc...
ccatval1lsw 14558 The last symbol of the lef...
ccatval21sw 14559 The first symbol of the ri...
ccatlid 14560 Concatenation of a word by...
ccatrid 14561 Concatenation of a word by...
ccatass 14562 Associative law for concat...
ccatrn 14563 The range of a concatenate...
ccatidid 14564 Concatenation of the empty...
lswccatn0lsw 14565 The last symbol of a word ...
lswccat0lsw 14566 The last symbol of a word ...
ccatalpha 14567 A concatenation of two arb...
ccatrcl1 14568 Reverse closure of a conca...
ids1 14571 Identity function protecti...
s1val 14572 Value of a singleton word....
s1rn 14573 The range of a singleton w...
s1eq 14574 Equality theorem for a sin...
s1eqd 14575 Equality theorem for a sin...
s1cl 14576 A singleton word is a word...
s1cld 14577 A singleton word is a word...
s1prc 14578 Value of a singleton word ...
s1cli 14579 A singleton word is a word...
s1len 14580 Length of a singleton word...
s1nz 14581 A singleton word is not th...
s1dm 14582 The domain of a singleton ...
s1dmALT 14583 Alternate version of ~ s1d...
s1fv 14584 Sole symbol of a singleton...
lsws1 14585 The last symbol of a singl...
eqs1 14586 A word of length 1 is a si...
wrdl1exs1 14587 A word of length 1 is a si...
wrdl1s1 14588 A word of length 1 is a si...
s111 14589 The singleton word functio...
ccatws1cl 14590 The concatenation of a wor...
ccatws1clv 14591 The concatenation of a wor...
ccat2s1cl 14592 The concatenation of two s...
ccats1alpha 14593 A concatenation of a word ...
ccatws1len 14594 The length of the concaten...
ccatws1lenp1b 14595 The length of a word is ` ...
wrdlenccats1lenm1 14596 The length of a word is th...
ccat2s1len 14597 The length of the concaten...
ccatw2s1cl 14598 The concatenation of a wor...
ccatw2s1len 14599 The length of the concaten...
ccats1val1 14600 Value of a symbol in the l...
ccats1val2 14601 Value of the symbol concat...
ccat1st1st 14602 The first symbol of a word...
ccat2s1p1 14603 Extract the first of two c...
ccat2s1p2 14604 Extract the second of two ...
ccatw2s1ass 14605 Associative law for a conc...
ccatws1n0 14606 The concatenation of a wor...
ccatws1ls 14607 The last symbol of the con...
lswccats1 14608 The last symbol of a word ...
lswccats1fst 14609 The last symbol of a nonem...
ccatw2s1p1 14610 Extract the symbol of the ...
ccatw2s1p2 14611 Extract the second of two ...
ccat2s1fvw 14612 Extract a symbol of a word...
ccat2s1fst 14613 The first symbol of the co...
swrdnznd 14616 The value of a subword ope...
swrdval 14617 Value of a subword. (Cont...
swrd00 14618 A zero length substring. ...
swrdcl 14619 Closure of the subword ext...
swrdval2 14620 Value of the subword extra...
swrdlen 14621 Length of an extracted sub...
swrdfv 14622 A symbol in an extracted s...
swrdfv0 14623 The first symbol in an ext...
swrdf 14624 A subword of a word is a f...
swrdvalfn 14625 Value of the subword extra...
swrdrn 14626 The range of a subword of ...
swrdlend 14627 The value of the subword e...
swrdnd 14628 The value of the subword e...
swrdnd2 14629 Value of the subword extra...
swrdnnn0nd 14630 The value of a subword ope...
swrdnd0 14631 The value of a subword ope...
swrd0 14632 A subword of an empty set ...
swrdrlen 14633 Length of a right-anchored...
swrdlen2 14634 Length of an extracted sub...
swrdfv2 14635 A symbol in an extracted s...
swrdwrdsymb 14636 A subword is a word over t...
swrdsb0eq 14637 Two subwords with the same...
swrdsbslen 14638 Two subwords with the same...
swrdspsleq 14639 Two words have a common su...
swrds1 14640 Extract a single symbol fr...
swrdlsw 14641 Extract the last single sy...
ccatswrd 14642 Joining two adjacent subwo...
swrdccat2 14643 Recover the right half of ...
pfxnndmnd 14646 The value of a prefix oper...
pfxval 14647 Value of a prefix operatio...
pfx00 14648 The zero length prefix is ...
pfx0 14649 A prefix of an empty set i...
pfxval0 14650 Value of a prefix operatio...
pfxcl 14651 Closure of the prefix extr...
pfxmpt 14652 Value of the prefix extrac...
pfxres 14653 Value of the subword extra...
pfxf 14654 A prefix of a word is a fu...
pfxfn 14655 Value of the prefix extrac...
pfxfv 14656 A symbol in a prefix of a ...
pfxlen 14657 Length of a prefix. (Cont...
pfxid 14658 A word is a prefix of itse...
pfxrn 14659 The range of a prefix of a...
pfxn0 14660 A prefix consisting of at ...
pfxnd 14661 The value of a prefix oper...
pfxnd0 14662 The value of a prefix oper...
pfxwrdsymb 14663 A prefix of a word is a wo...
addlenrevpfx 14664 The sum of the lengths of ...
addlenpfx 14665 The sum of the lengths of ...
pfxfv0 14666 The first symbol of a pref...
pfxtrcfv 14667 A symbol in a word truncat...
pfxtrcfv0 14668 The first symbol in a word...
pfxfvlsw 14669 The last symbol in a nonem...
pfxeq 14670 The prefixes of two words ...
pfxtrcfvl 14671 The last symbol in a word ...
pfxsuffeqwrdeq 14672 Two words are equal if and...
pfxsuff1eqwrdeq 14673 Two (nonempty) words are e...
disjwrdpfx 14674 Sets of words are disjoint...
ccatpfx 14675 Concatenating a prefix wit...
pfxccat1 14676 Recover the left half of a...
pfx1 14677 The prefix of length one o...
swrdswrdlem 14678 Lemma for ~ swrdswrd . (C...
swrdswrd 14679 A subword of a subword is ...
pfxswrd 14680 A prefix of a subword is a...
swrdpfx 14681 A subword of a prefix is a...
pfxpfx 14682 A prefix of a prefix is a ...
pfxpfxid 14683 A prefix of a prefix with ...
pfxcctswrd 14684 The concatenation of the p...
lenpfxcctswrd 14685 The length of the concaten...
lenrevpfxcctswrd 14686 The length of the concaten...
pfxlswccat 14687 Reconstruct a nonempty wor...
ccats1pfxeq 14688 The last symbol of a word ...
ccats1pfxeqrex 14689 There exists a symbol such...
ccatopth 14690 An ~ opth -like theorem fo...
ccatopth2 14691 An ~ opth -like theorem fo...
ccatlcan 14692 Concatenation of words is ...
ccatrcan 14693 Concatenation of words is ...
wrdeqs1cat 14694 Decompose a nonempty word ...
cats1un 14695 Express a word with an ext...
wrdind 14696 Perform induction over the...
wrd2ind 14697 Perform induction over the...
swrdccatfn 14698 The subword of a concatena...
swrdccatin1 14699 The subword of a concatena...
pfxccatin12lem4 14700 Lemma 4 for ~ pfxccatin12 ...
pfxccatin12lem2a 14701 Lemma for ~ pfxccatin12lem...
pfxccatin12lem1 14702 Lemma 1 for ~ pfxccatin12 ...
swrdccatin2 14703 The subword of a concatena...
pfxccatin12lem2c 14704 Lemma for ~ pfxccatin12lem...
pfxccatin12lem2 14705 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12lem3 14706 Lemma 3 for ~ pfxccatin12 ...
pfxccatin12 14707 The subword of a concatena...
pfxccat3 14708 The subword of a concatena...
swrdccat 14709 The subword of a concatena...
pfxccatpfx1 14710 A prefix of a concatenatio...
pfxccatpfx2 14711 A prefix of a concatenatio...
pfxccat3a 14712 A prefix of a concatenatio...
swrdccat3blem 14713 Lemma for ~ swrdccat3b . ...
swrdccat3b 14714 A suffix of a concatenatio...
pfxccatid 14715 A prefix of a concatenatio...
ccats1pfxeqbi 14716 A word is a prefix of a wo...
swrdccatin1d 14717 The subword of a concatena...
swrdccatin2d 14718 The subword of a concatena...
pfxccatin12d 14719 The subword of a concatena...
reuccatpfxs1lem 14720 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 14721 There is a unique word hav...
reuccatpfxs1v 14722 There is a unique word hav...
splval 14725 Value of the substring rep...
splcl 14726 Closure of the substring r...
splid 14727 Splicing a subword for the...
spllen 14728 The length of a splice. (...
splfv1 14729 Symbols to the left of a s...
splfv2a 14730 Symbols within the replace...
splval2 14731 Value of a splice, assumin...
revval 14734 Value of the word reversin...
revcl 14735 The reverse of a word is a...
revlen 14736 The reverse of a word has ...
revfv 14737 Reverse of a word at a poi...
rev0 14738 The empty word is its own ...
revs1 14739 Singleton words are their ...
revccat 14740 Antiautomorphic property o...
revrev 14741 Reversal is an involution ...
reps 14744 Construct a function mappi...
repsundef 14745 A function mapping a half-...
repsconst 14746 Construct a function mappi...
repsf 14747 The constructed function m...
repswsymb 14748 The symbols of a "repeated...
repsw 14749 A function mapping a half-...
repswlen 14750 The length of a "repeated ...
repsw0 14751 The "repeated symbol word"...
repsdf2 14752 Alternative definition of ...
repswsymball 14753 All the symbols of a "repe...
repswsymballbi 14754 A word is a "repeated symb...
repswfsts 14755 The first symbol of a none...
repswlsw 14756 The last symbol of a nonem...
repsw1 14757 The "repeated symbol word"...
repswswrd 14758 A subword of a "repeated s...
repswpfx 14759 A prefix of a repeated sym...
repswccat 14760 The concatenation of two "...
repswrevw 14761 The reverse of a "repeated...
cshfn 14764 Perform a cyclical shift f...
cshword 14765 Perform a cyclical shift f...
cshnz 14766 A cyclical shift is the em...
0csh0 14767 Cyclically shifting an emp...
cshw0 14768 A word cyclically shifted ...
cshwmodn 14769 Cyclically shifting a word...
cshwsublen 14770 Cyclically shifting a word...
cshwn 14771 A word cyclically shifted ...
cshwcl 14772 A cyclically shifted word ...
cshwlen 14773 The length of a cyclically...
cshwf 14774 A cyclically shifted word ...
cshwfn 14775 A cyclically shifted word ...
cshwrn 14776 The range of a cyclically ...
cshwidxmod 14777 The symbol at a given inde...
cshwidxmodr 14778 The symbol at a given inde...
cshwidx0mod 14779 The symbol at index 0 of a...
cshwidx0 14780 The symbol at index 0 of a...
cshwidxm1 14781 The symbol at index ((n-N)...
cshwidxm 14782 The symbol at index (n-N) ...
cshwidxn 14783 The symbol at index (n-1) ...
cshf1 14784 Cyclically shifting a word...
cshinj 14785 If a word is injectiv (reg...
repswcshw 14786 A cyclically shifted "repe...
2cshw 14787 Cyclically shifting a word...
2cshwid 14788 Cyclically shifting a word...
lswcshw 14789 The last symbol of a word ...
2cshwcom 14790 Cyclically shifting a word...
cshwleneq 14791 If the results of cyclical...
3cshw 14792 Cyclically shifting a word...
cshweqdif2 14793 If cyclically shifting two...
cshweqdifid 14794 If cyclically shifting a w...
cshweqrep 14795 If cyclically shifting a w...
cshw1 14796 If cyclically shifting a w...
cshw1repsw 14797 If cyclically shifting a w...
cshwsexa 14798 The class of (different!) ...
cshwsexaOLD 14799 Obsolete version of ~ cshw...
2cshwcshw 14800 If a word is a cyclically ...
scshwfzeqfzo 14801 For a nonempty word the se...
cshwcshid 14802 A cyclically shifted word ...
cshwcsh2id 14803 A cyclically shifted word ...
cshimadifsn 14804 The image of a cyclically ...
cshimadifsn0 14805 The image of a cyclically ...
wrdco 14806 Mapping a word by a functi...
lenco 14807 Length of a mapped word is...
s1co 14808 Mapping of a singleton wor...
revco 14809 Mapping of words (i.e., a ...
ccatco 14810 Mapping of words commutes ...
cshco 14811 Mapping of words commutes ...
swrdco 14812 Mapping of words commutes ...
pfxco 14813 Mapping of words commutes ...
lswco 14814 Mapping of (nonempty) word...
repsco 14815 Mapping of words commutes ...
cats1cld 14830 Closure of concatenation w...
cats1co 14831 Closure of concatenation w...
cats1cli 14832 Closure of concatenation w...
cats1fvn 14833 The last symbol of a conca...
cats1fv 14834 A symbol other than the la...
cats1len 14835 The length of concatenatio...
cats1cat 14836 Closure of concatenation w...
cats2cat 14837 Closure of concatenation o...
s2eqd 14838 Equality theorem for a dou...
s3eqd 14839 Equality theorem for a len...
s4eqd 14840 Equality theorem for a len...
s5eqd 14841 Equality theorem for a len...
s6eqd 14842 Equality theorem for a len...
s7eqd 14843 Equality theorem for a len...
s8eqd 14844 Equality theorem for a len...
s3eq2 14845 Equality theorem for a len...
s2cld 14846 A doubleton word is a word...
s3cld 14847 A length 3 string is a wor...
s4cld 14848 A length 4 string is a wor...
s5cld 14849 A length 5 string is a wor...
s6cld 14850 A length 6 string is a wor...
s7cld 14851 A length 7 string is a wor...
s8cld 14852 A length 7 string is a wor...
s2cl 14853 A doubleton word is a word...
s3cl 14854 A length 3 string is a wor...
s2cli 14855 A doubleton word is a word...
s3cli 14856 A length 3 string is a wor...
s4cli 14857 A length 4 string is a wor...
s5cli 14858 A length 5 string is a wor...
s6cli 14859 A length 6 string is a wor...
s7cli 14860 A length 7 string is a wor...
s8cli 14861 A length 8 string is a wor...
s2fv0 14862 Extract the first symbol f...
s2fv1 14863 Extract the second symbol ...
s2len 14864 The length of a doubleton ...
s2dm 14865 The domain of a doubleton ...
s3fv0 14866 Extract the first symbol f...
s3fv1 14867 Extract the second symbol ...
s3fv2 14868 Extract the third symbol f...
s3len 14869 The length of a length 3 s...
s4fv0 14870 Extract the first symbol f...
s4fv1 14871 Extract the second symbol ...
s4fv2 14872 Extract the third symbol f...
s4fv3 14873 Extract the fourth symbol ...
s4len 14874 The length of a length 4 s...
s5len 14875 The length of a length 5 s...
s6len 14876 The length of a length 6 s...
s7len 14877 The length of a length 7 s...
s8len 14878 The length of a length 8 s...
lsws2 14879 The last symbol of a doubl...
lsws3 14880 The last symbol of a 3 let...
lsws4 14881 The last symbol of a 4 let...
s2prop 14882 A length 2 word is an unor...
s2dmALT 14883 Alternate version of ~ s2d...
s3tpop 14884 A length 3 word is an unor...
s4prop 14885 A length 4 word is a union...
s3fn 14886 A length 3 word is a funct...
funcnvs1 14887 The converse of a singleto...
funcnvs2 14888 The converse of a length 2...
funcnvs3 14889 The converse of a length 3...
funcnvs4 14890 The converse of a length 4...
s2f1o 14891 A length 2 word with mutua...
f1oun2prg 14892 A union of unordered pairs...
s4f1o 14893 A length 4 word with mutua...
s4dom 14894 The domain of a length 4 w...
s2co 14895 Mapping a doubleton word b...
s3co 14896 Mapping a length 3 string ...
s0s1 14897 Concatenation of fixed len...
s1s2 14898 Concatenation of fixed len...
s1s3 14899 Concatenation of fixed len...
s1s4 14900 Concatenation of fixed len...
s1s5 14901 Concatenation of fixed len...
s1s6 14902 Concatenation of fixed len...
s1s7 14903 Concatenation of fixed len...
s2s2 14904 Concatenation of fixed len...
s4s2 14905 Concatenation of fixed len...
s4s3 14906 Concatenation of fixed len...
s4s4 14907 Concatenation of fixed len...
s3s4 14908 Concatenation of fixed len...
s2s5 14909 Concatenation of fixed len...
s5s2 14910 Concatenation of fixed len...
s2eq2s1eq 14911 Two length 2 words are equ...
s2eq2seq 14912 Two length 2 words are equ...
s3eqs2s1eq 14913 Two length 3 words are equ...
s3eq3seq 14914 Two length 3 words are equ...
swrds2 14915 Extract two adjacent symbo...
swrds2m 14916 Extract two adjacent symbo...
wrdlen2i 14917 Implications of a word of ...
wrd2pr2op 14918 A word of length two repre...
wrdlen2 14919 A word of length two. (Co...
wrdlen2s2 14920 A word of length two as do...
wrdl2exs2 14921 A word of length two is a ...
pfx2 14922 A prefix of length two. (...
wrd3tpop 14923 A word of length three rep...
wrdlen3s3 14924 A word of length three as ...
repsw2 14925 The "repeated symbol word"...
repsw3 14926 The "repeated symbol word"...
swrd2lsw 14927 Extract the last two symbo...
2swrd2eqwrdeq 14928 Two words of length at lea...
ccatw2s1ccatws2 14929 The concatenation of a wor...
ccat2s1fvwALT 14930 Alternate proof of ~ ccat2...
wwlktovf 14931 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 14932 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 14933 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 14934 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 14935 There is a bijection betwe...
eqwrds3 14936 A word is equal with a len...
wrdl3s3 14937 A word of length 3 is a le...
s3sndisj 14938 The singletons consisting ...
s3iunsndisj 14939 The union of singletons co...
ofccat 14940 Letterwise operations on w...
ofs1 14941 Letterwise operations on a...
ofs2 14942 Letterwise operations on a...
coss12d 14943 Subset deduction for compo...
trrelssd 14944 The composition of subclas...
xpcogend 14945 The most interesting case ...
xpcoidgend 14946 If two classes are not dis...
cotr2g 14947 Two ways of saying that th...
cotr2 14948 Two ways of saying a relat...
cotr3 14949 Two ways of saying a relat...
coemptyd 14950 Deduction about compositio...
xptrrel 14951 The cross product is alway...
0trrel 14952 The empty class is a trans...
cleq1lem 14953 Equality implies bijection...
cleq1 14954 Equality of relations impl...
clsslem 14955 The closure of a subclass ...
trcleq1 14960 Equality of relations impl...
trclsslem 14961 The transitive closure (as...
trcleq2lem 14962 Equality implies bijection...
cvbtrcl 14963 Change of bound variable i...
trcleq12lem 14964 Equality implies bijection...
trclexlem 14965 Existence of relation impl...
trclublem 14966 If a relation exists then ...
trclubi 14967 The Cartesian product of t...
trclubgi 14968 The union with the Cartesi...
trclub 14969 The Cartesian product of t...
trclubg 14970 The union with the Cartesi...
trclfv 14971 The transitive closure of ...
brintclab 14972 Two ways to express a bina...
brtrclfv 14973 Two ways of expressing the...
brcnvtrclfv 14974 Two ways of expressing the...
brtrclfvcnv 14975 Two ways of expressing the...
brcnvtrclfvcnv 14976 Two ways of expressing the...
trclfvss 14977 The transitive closure (as...
trclfvub 14978 The transitive closure of ...
trclfvlb 14979 The transitive closure of ...
trclfvcotr 14980 The transitive closure of ...
trclfvlb2 14981 The transitive closure of ...
trclfvlb3 14982 The transitive closure of ...
cotrtrclfv 14983 The transitive closure of ...
trclidm 14984 The transitive closure of ...
trclun 14985 Transitive closure of a un...
trclfvg 14986 The value of the transitiv...
trclfvcotrg 14987 The value of the transitiv...
reltrclfv 14988 The transitive closure of ...
dmtrclfv 14989 The domain of the transiti...
reldmrelexp 14992 The domain of the repeated...
relexp0g 14993 A relation composed zero t...
relexp0 14994 A relation composed zero t...
relexp0d 14995 A relation composed zero t...
relexpsucnnr 14996 A reduction for relation e...
relexp1g 14997 A relation composed once i...
dfid5 14998 Identity relation is equal...
dfid6 14999 Identity relation expresse...
relexp1d 15000 A relation composed once i...
relexpsucnnl 15001 A reduction for relation e...
relexpsucl 15002 A reduction for relation e...
relexpsucr 15003 A reduction for relation e...
relexpsucrd 15004 A reduction for relation e...
relexpsucld 15005 A reduction for relation e...
relexpcnv 15006 Commutation of converse an...
relexpcnvd 15007 Commutation of converse an...
relexp0rel 15008 The exponentiation of a cl...
relexprelg 15009 The exponentiation of a cl...
relexprel 15010 The exponentiation of a re...
relexpreld 15011 The exponentiation of a re...
relexpnndm 15012 The domain of an exponenti...
relexpdmg 15013 The domain of an exponenti...
relexpdm 15014 The domain of an exponenti...
relexpdmd 15015 The domain of an exponenti...
relexpnnrn 15016 The range of an exponentia...
relexprng 15017 The range of an exponentia...
relexprn 15018 The range of an exponentia...
relexprnd 15019 The range of an exponentia...
relexpfld 15020 The field of an exponentia...
relexpfldd 15021 The field of an exponentia...
relexpaddnn 15022 Relation composition becom...
relexpuzrel 15023 The exponentiation of a cl...
relexpaddg 15024 Relation composition becom...
relexpaddd 15025 Relation composition becom...
rtrclreclem1 15028 The reflexive, transitive ...
dfrtrclrec2 15029 If two elements are connec...
rtrclreclem2 15030 The reflexive, transitive ...
rtrclreclem3 15031 The reflexive, transitive ...
rtrclreclem4 15032 The reflexive, transitive ...
dfrtrcl2 15033 The two definitions ` t* `...
relexpindlem 15034 Principle of transitive in...
relexpind 15035 Principle of transitive in...
rtrclind 15036 Principle of transitive in...
shftlem 15039 Two ways to write a shifte...
shftuz 15040 A shift of the upper integ...
shftfval 15041 The value of the sequence ...
shftdm 15042 Domain of a relation shift...
shftfib 15043 Value of a fiber of the re...
shftfn 15044 Functionality and domain o...
shftval 15045 Value of a sequence shifte...
shftval2 15046 Value of a sequence shifte...
shftval3 15047 Value of a sequence shifte...
shftval4 15048 Value of a sequence shifte...
shftval5 15049 Value of a shifted sequenc...
shftf 15050 Functionality of a shifted...
2shfti 15051 Composite shift operations...
shftidt2 15052 Identity law for the shift...
shftidt 15053 Identity law for the shift...
shftcan1 15054 Cancellation law for the s...
shftcan2 15055 Cancellation law for the s...
seqshft 15056 Shifting the index set of ...
sgnval 15059 Value of the signum functi...
sgn0 15060 The signum of 0 is 0. (Co...
sgnp 15061 The signum of a positive e...
sgnrrp 15062 The signum of a positive r...
sgn1 15063 The signum of 1 is 1. (Co...
sgnpnf 15064 The signum of ` +oo ` is 1...
sgnn 15065 The signum of a negative e...
sgnmnf 15066 The signum of ` -oo ` is -...
cjval 15073 The value of the conjugate...
cjth 15074 The defining property of t...
cjf 15075 Domain and codomain of the...
cjcl 15076 The conjugate of a complex...
reval 15077 The value of the real part...
imval 15078 The value of the imaginary...
imre 15079 The imaginary part of a co...
reim 15080 The real part of a complex...
recl 15081 The real part of a complex...
imcl 15082 The imaginary part of a co...
ref 15083 Domain and codomain of the...
imf 15084 Domain and codomain of the...
crre 15085 The real part of a complex...
crim 15086 The real part of a complex...
replim 15087 Reconstruct a complex numb...
remim 15088 Value of the conjugate of ...
reim0 15089 The imaginary part of a re...
reim0b 15090 A number is real iff its i...
rereb 15091 A number is real iff it eq...
mulre 15092 A product with a nonzero r...
rere 15093 A real number equals its r...
cjreb 15094 A number is real iff it eq...
recj 15095 Real part of a complex con...
reneg 15096 Real part of negative. (C...
readd 15097 Real part distributes over...
resub 15098 Real part distributes over...
remullem 15099 Lemma for ~ remul , ~ immu...
remul 15100 Real part of a product. (...
remul2 15101 Real part of a product. (...
rediv 15102 Real part of a division. ...
imcj 15103 Imaginary part of a comple...
imneg 15104 The imaginary part of a ne...
imadd 15105 Imaginary part distributes...
imsub 15106 Imaginary part distributes...
immul 15107 Imaginary part of a produc...
immul2 15108 Imaginary part of a produc...
imdiv 15109 Imaginary part of a divisi...
cjre 15110 A real number equals its c...
cjcj 15111 The conjugate of the conju...
cjadd 15112 Complex conjugate distribu...
cjmul 15113 Complex conjugate distribu...
ipcnval 15114 Standard inner product on ...
cjmulrcl 15115 A complex number times its...
cjmulval 15116 A complex number times its...
cjmulge0 15117 A complex number times its...
cjneg 15118 Complex conjugate of negat...
addcj 15119 A number plus its conjugat...
cjsub 15120 Complex conjugate distribu...
cjexp 15121 Complex conjugate of posit...
imval2 15122 The imaginary part of a nu...
re0 15123 The real part of zero. (C...
im0 15124 The imaginary part of zero...
re1 15125 The real part of one. (Co...
im1 15126 The imaginary part of one....
rei 15127 The real part of ` _i ` . ...
imi 15128 The imaginary part of ` _i...
cj0 15129 The conjugate of zero. (C...
cji 15130 The complex conjugate of t...
cjreim 15131 The conjugate of a represe...
cjreim2 15132 The conjugate of the repre...
cj11 15133 Complex conjugate is a one...
cjne0 15134 A number is nonzero iff it...
cjdiv 15135 Complex conjugate distribu...
cnrecnv 15136 The inverse to the canonic...
sqeqd 15137 A deduction for showing tw...
recli 15138 The real part of a complex...
imcli 15139 The imaginary part of a co...
cjcli 15140 Closure law for complex co...
replimi 15141 Construct a complex number...
cjcji 15142 The conjugate of the conju...
reim0bi 15143 A number is real iff its i...
rerebi 15144 A real number equals its r...
cjrebi 15145 A number is real iff it eq...
recji 15146 Real part of a complex con...
imcji 15147 Imaginary part of a comple...
cjmulrcli 15148 A complex number times its...
cjmulvali 15149 A complex number times its...
cjmulge0i 15150 A complex number times its...
renegi 15151 Real part of negative. (C...
imnegi 15152 Imaginary part of negative...
cjnegi 15153 Complex conjugate of negat...
addcji 15154 A number plus its conjugat...
readdi 15155 Real part distributes over...
imaddi 15156 Imaginary part distributes...
remuli 15157 Real part of a product. (...
immuli 15158 Imaginary part of a produc...
cjaddi 15159 Complex conjugate distribu...
cjmuli 15160 Complex conjugate distribu...
ipcni 15161 Standard inner product on ...
cjdivi 15162 Complex conjugate distribu...
crrei 15163 The real part of a complex...
crimi 15164 The imaginary part of a co...
recld 15165 The real part of a complex...
imcld 15166 The imaginary part of a co...
cjcld 15167 Closure law for complex co...
replimd 15168 Construct a complex number...
remimd 15169 Value of the conjugate of ...
cjcjd 15170 The conjugate of the conju...
reim0bd 15171 A number is real iff its i...
rerebd 15172 A real number equals its r...
cjrebd 15173 A number is real iff it eq...
cjne0d 15174 A number is nonzero iff it...
recjd 15175 Real part of a complex con...
imcjd 15176 Imaginary part of a comple...
cjmulrcld 15177 A complex number times its...
cjmulvald 15178 A complex number times its...
cjmulge0d 15179 A complex number times its...
renegd 15180 Real part of negative. (C...
imnegd 15181 Imaginary part of negative...
cjnegd 15182 Complex conjugate of negat...
addcjd 15183 A number plus its conjugat...
cjexpd 15184 Complex conjugate of posit...
readdd 15185 Real part distributes over...
imaddd 15186 Imaginary part distributes...
resubd 15187 Real part distributes over...
imsubd 15188 Imaginary part distributes...
remuld 15189 Real part of a product. (...
immuld 15190 Imaginary part of a produc...
cjaddd 15191 Complex conjugate distribu...
cjmuld 15192 Complex conjugate distribu...
ipcnd 15193 Standard inner product on ...
cjdivd 15194 Complex conjugate distribu...
rered 15195 A real number equals its r...
reim0d 15196 The imaginary part of a re...
cjred 15197 A real number equals its c...
remul2d 15198 Real part of a product. (...
immul2d 15199 Imaginary part of a produc...
redivd 15200 Real part of a division. ...
imdivd 15201 Imaginary part of a divisi...
crred 15202 The real part of a complex...
crimd 15203 The imaginary part of a co...
sqrtval 15208 Value of square root funct...
absval 15209 The absolute value (modulu...
rennim 15210 A real number does not lie...
cnpart 15211 The specification of restr...
sqrt0 15212 The square root of zero is...
01sqrexlem1 15213 Lemma for ~ 01sqrex . (Co...
01sqrexlem2 15214 Lemma for ~ 01sqrex . (Co...
01sqrexlem3 15215 Lemma for ~ 01sqrex . (Co...
01sqrexlem4 15216 Lemma for ~ 01sqrex . (Co...
01sqrexlem5 15217 Lemma for ~ 01sqrex . (Co...
01sqrexlem6 15218 Lemma for ~ 01sqrex . (Co...
01sqrexlem7 15219 Lemma for ~ 01sqrex . (Co...
01sqrex 15220 Existence of a square root...
resqrex 15221 Existence of a square root...
sqrmo 15222 Uniqueness for the square ...
resqreu 15223 Existence and uniqueness f...
resqrtcl 15224 Closure of the square root...
resqrtthlem 15225 Lemma for ~ resqrtth . (C...
resqrtth 15226 Square root theorem over t...
remsqsqrt 15227 Square of square root. (C...
sqrtge0 15228 The square root function i...
sqrtgt0 15229 The square root function i...
sqrtmul 15230 Square root distributes ov...
sqrtle 15231 Square root is monotonic. ...
sqrtlt 15232 Square root is strictly mo...
sqrt11 15233 The square root function i...
sqrt00 15234 A square root is zero iff ...
rpsqrtcl 15235 The square root of a posit...
sqrtdiv 15236 Square root distributes ov...
sqrtneglem 15237 The square root of a negat...
sqrtneg 15238 The square root of a negat...
sqrtsq2 15239 Relationship between squar...
sqrtsq 15240 Square root of square. (C...
sqrtmsq 15241 Square root of square. (C...
sqrt1 15242 The square root of 1 is 1....
sqrt4 15243 The square root of 4 is 2....
sqrt9 15244 The square root of 9 is 3....
sqrt2gt1lt2 15245 The square root of 2 is bo...
sqrtm1 15246 The imaginary unit is the ...
nn0sqeq1 15247 A natural number with squa...
absneg 15248 Absolute value of the nega...
abscl 15249 Real closure of absolute v...
abscj 15250 The absolute value of a nu...
absvalsq 15251 Square of value of absolut...
absvalsq2 15252 Square of value of absolut...
sqabsadd 15253 Square of absolute value o...
sqabssub 15254 Square of absolute value o...
absval2 15255 Value of absolute value fu...
abs0 15256 The absolute value of 0. ...
absi 15257 The absolute value of the ...
absge0 15258 Absolute value is nonnegat...
absrpcl 15259 The absolute value of a no...
abs00 15260 The absolute value of a nu...
abs00ad 15261 A complex number is zero i...
abs00bd 15262 If a complex number is zer...
absreimsq 15263 Square of the absolute val...
absreim 15264 Absolute value of a number...
absmul 15265 Absolute value distributes...
absdiv 15266 Absolute value distributes...
absid 15267 A nonnegative number is it...
abs1 15268 The absolute value of one ...
absnid 15269 For a negative number, its...
leabs 15270 A real number is less than...
absor 15271 The absolute value of a re...
absre 15272 Absolute value of a real n...
absresq 15273 Square of the absolute val...
absmod0 15274 ` A ` is divisible by ` B ...
absexp 15275 Absolute value of positive...
absexpz 15276 Absolute value of integer ...
abssq 15277 Square can be moved in and...
sqabs 15278 The squares of two reals a...
absrele 15279 The absolute value of a co...
absimle 15280 The absolute value of a co...
max0add 15281 The sum of the positive an...
absz 15282 A real number is an intege...
nn0abscl 15283 The absolute value of an i...
zabscl 15284 The absolute value of an i...
abslt 15285 Absolute value and 'less t...
absle 15286 Absolute value and 'less t...
abssubne0 15287 If the absolute value of a...
absdiflt 15288 The absolute value of a di...
absdifle 15289 The absolute value of a di...
elicc4abs 15290 Membership in a symmetric ...
lenegsq 15291 Comparison to a nonnegativ...
releabs 15292 The real part of a number ...
recval 15293 Reciprocal expressed with ...
absidm 15294 The absolute value functio...
absgt0 15295 The absolute value of a no...
nnabscl 15296 The absolute value of a no...
abssub 15297 Swapping order of subtract...
abssubge0 15298 Absolute value of a nonneg...
abssuble0 15299 Absolute value of a nonpos...
absmax 15300 The maximum of two numbers...
abstri 15301 Triangle inequality for ab...
abs3dif 15302 Absolute value of differen...
abs2dif 15303 Difference of absolute val...
abs2dif2 15304 Difference of absolute val...
abs2difabs 15305 Absolute value of differen...
abs1m 15306 For any complex number, th...
recan 15307 Cancellation law involving...
absf 15308 Mapping domain and codomai...
abs3lem 15309 Lemma involving absolute v...
abslem2 15310 Lemma involving absolute v...
rddif 15311 The difference between a r...
absrdbnd 15312 Bound on the absolute valu...
fzomaxdiflem 15313 Lemma for ~ fzomaxdif . (...
fzomaxdif 15314 A bound on the separation ...
uzin2 15315 The upper integers are clo...
rexanuz 15316 Combine two different uppe...
rexanre 15317 Combine two different uppe...
rexfiuz 15318 Combine finitely many diff...
rexuz3 15319 Restrict the base of the u...
rexanuz2 15320 Combine two different uppe...
r19.29uz 15321 A version of ~ 19.29 for u...
r19.2uz 15322 A version of ~ r19.2z for ...
rexuzre 15323 Convert an upper real quan...
rexico 15324 Restrict the base of an up...
cau3lem 15325 Lemma for ~ cau3 . (Contr...
cau3 15326 Convert between three-quan...
cau4 15327 Change the base of a Cauch...
caubnd2 15328 A Cauchy sequence of compl...
caubnd 15329 A Cauchy sequence of compl...
sqreulem 15330 Lemma for ~ sqreu : write ...
sqreu 15331 Existence and uniqueness f...
sqrtcl 15332 Closure of the square root...
sqrtthlem 15333 Lemma for ~ sqrtth . (Con...
sqrtf 15334 Mapping domain and codomai...
sqrtth 15335 Square root theorem over t...
sqrtrege0 15336 The square root function m...
eqsqrtor 15337 Solve an equation containi...
eqsqrtd 15338 A deduction for showing th...
eqsqrt2d 15339 A deduction for showing th...
amgm2 15340 Arithmetic-geometric mean ...
sqrtthi 15341 Square root theorem. Theo...
sqrtcli 15342 The square root of a nonne...
sqrtgt0i 15343 The square root of a posit...
sqrtmsqi 15344 Square root of square. (C...
sqrtsqi 15345 Square root of square. (C...
sqsqrti 15346 Square of square root. (C...
sqrtge0i 15347 The square root of a nonne...
absidi 15348 A nonnegative number is it...
absnidi 15349 A negative number is the n...
leabsi 15350 A real number is less than...
absori 15351 The absolute value of a re...
absrei 15352 Absolute value of a real n...
sqrtpclii 15353 The square root of a posit...
sqrtgt0ii 15354 The square root of a posit...
sqrt11i 15355 The square root function i...
sqrtmuli 15356 Square root distributes ov...
sqrtmulii 15357 Square root distributes ov...
sqrtmsq2i 15358 Relationship between squar...
sqrtlei 15359 Square root is monotonic. ...
sqrtlti 15360 Square root is strictly mo...
abslti 15361 Absolute value and 'less t...
abslei 15362 Absolute value and 'less t...
cnsqrt00 15363 A square root of a complex...
absvalsqi 15364 Square of value of absolut...
absvalsq2i 15365 Square of value of absolut...
abscli 15366 Real closure of absolute v...
absge0i 15367 Absolute value is nonnegat...
absval2i 15368 Value of absolute value fu...
abs00i 15369 The absolute value of a nu...
absgt0i 15370 The absolute value of a no...
absnegi 15371 Absolute value of negative...
abscji 15372 The absolute value of a nu...
releabsi 15373 The real part of a number ...
abssubi 15374 Swapping order of subtract...
absmuli 15375 Absolute value distributes...
sqabsaddi 15376 Square of absolute value o...
sqabssubi 15377 Square of absolute value o...
absdivzi 15378 Absolute value distributes...
abstrii 15379 Triangle inequality for ab...
abs3difi 15380 Absolute value of differen...
abs3lemi 15381 Lemma involving absolute v...
rpsqrtcld 15382 The square root of a posit...
sqrtgt0d 15383 The square root of a posit...
absnidd 15384 A negative number is the n...
leabsd 15385 A real number is less than...
absord 15386 The absolute value of a re...
absred 15387 Absolute value of a real n...
resqrtcld 15388 The square root of a nonne...
sqrtmsqd 15389 Square root of square. (C...
sqrtsqd 15390 Square root of square. (C...
sqrtge0d 15391 The square root of a nonne...
sqrtnegd 15392 The square root of a negat...
absidd 15393 A nonnegative number is it...
sqrtdivd 15394 Square root distributes ov...
sqrtmuld 15395 Square root distributes ov...
sqrtsq2d 15396 Relationship between squar...
sqrtled 15397 Square root is monotonic. ...
sqrtltd 15398 Square root is strictly mo...
sqr11d 15399 The square root function i...
absltd 15400 Absolute value and 'less t...
absled 15401 Absolute value and 'less t...
abssubge0d 15402 Absolute value of a nonneg...
abssuble0d 15403 Absolute value of a nonpos...
absdifltd 15404 The absolute value of a di...
absdifled 15405 The absolute value of a di...
icodiamlt 15406 Two elements in a half-ope...
abscld 15407 Real closure of absolute v...
sqrtcld 15408 Closure of the square root...
sqrtrege0d 15409 The real part of the squar...
sqsqrtd 15410 Square root theorem. Theo...
msqsqrtd 15411 Square root theorem. Theo...
sqr00d 15412 A square root is zero iff ...
absvalsqd 15413 Square of value of absolut...
absvalsq2d 15414 Square of value of absolut...
absge0d 15415 Absolute value is nonnegat...
absval2d 15416 Value of absolute value fu...
abs00d 15417 The absolute value of a nu...
absne0d 15418 The absolute value of a nu...
absrpcld 15419 The absolute value of a no...
absnegd 15420 Absolute value of negative...
abscjd 15421 The absolute value of a nu...
releabsd 15422 The real part of a number ...
absexpd 15423 Absolute value of positive...
abssubd 15424 Swapping order of subtract...
absmuld 15425 Absolute value distributes...
absdivd 15426 Absolute value distributes...
abstrid 15427 Triangle inequality for ab...
abs2difd 15428 Difference of absolute val...
abs2dif2d 15429 Difference of absolute val...
abs2difabsd 15430 Absolute value of differen...
abs3difd 15431 Absolute value of differen...
abs3lemd 15432 Lemma involving absolute v...
reusq0 15433 A complex number is the sq...
bhmafibid1cn 15434 The Brahmagupta-Fibonacci ...
bhmafibid2cn 15435 The Brahmagupta-Fibonacci ...
bhmafibid1 15436 The Brahmagupta-Fibonacci ...
bhmafibid2 15437 The Brahmagupta-Fibonacci ...
limsupgord 15440 Ordering property of the s...
limsupcl 15441 Closure of the superior li...
limsupval 15442 The superior limit of an i...
limsupgf 15443 Closure of the superior li...
limsupgval 15444 Value of the superior limi...
limsupgle 15445 The defining property of t...
limsuple 15446 The defining property of t...
limsuplt 15447 The defining property of t...
limsupval2 15448 The superior limit, relati...
limsupgre 15449 If a sequence of real numb...
limsupbnd1 15450 If a sequence is eventuall...
limsupbnd2 15451 If a sequence is eventuall...
climrel 15460 The limit relation is a re...
rlimrel 15461 The limit relation is a re...
clim 15462 Express the predicate: Th...
rlim 15463 Express the predicate: Th...
rlim2 15464 Rewrite ~ rlim for a mappi...
rlim2lt 15465 Use strictly less-than in ...
rlim3 15466 Restrict the range of the ...
climcl 15467 Closure of the limit of a ...
rlimpm 15468 Closure of a function with...
rlimf 15469 Closure of a function with...
rlimss 15470 Domain closure of a functi...
rlimcl 15471 Closure of the limit of a ...
clim2 15472 Express the predicate: Th...
clim2c 15473 Express the predicate ` F ...
clim0 15474 Express the predicate ` F ...
clim0c 15475 Express the predicate ` F ...
rlim0 15476 Express the predicate ` B ...
rlim0lt 15477 Use strictly less-than in ...
climi 15478 Convergence of a sequence ...
climi2 15479 Convergence of a sequence ...
climi0 15480 Convergence of a sequence ...
rlimi 15481 Convergence at infinity of...
rlimi2 15482 Convergence at infinity of...
ello1 15483 Elementhood in the set of ...
ello12 15484 Elementhood in the set of ...
ello12r 15485 Sufficient condition for e...
lo1f 15486 An eventually upper bounde...
lo1dm 15487 An eventually upper bounde...
lo1bdd 15488 The defining property of a...
ello1mpt 15489 Elementhood in the set of ...
ello1mpt2 15490 Elementhood in the set of ...
ello1d 15491 Sufficient condition for e...
lo1bdd2 15492 If an eventually bounded f...
lo1bddrp 15493 Refine ~ o1bdd2 to give a ...
elo1 15494 Elementhood in the set of ...
elo12 15495 Elementhood in the set of ...
elo12r 15496 Sufficient condition for e...
o1f 15497 An eventually bounded func...
o1dm 15498 An eventually bounded func...
o1bdd 15499 The defining property of a...
lo1o1 15500 A function is eventually b...
lo1o12 15501 A function is eventually b...
elo1mpt 15502 Elementhood in the set of ...
elo1mpt2 15503 Elementhood in the set of ...
elo1d 15504 Sufficient condition for e...
o1lo1 15505 A real function is eventua...
o1lo12 15506 A lower bounded real funct...
o1lo1d 15507 A real eventually bounded ...
icco1 15508 Derive eventual boundednes...
o1bdd2 15509 If an eventually bounded f...
o1bddrp 15510 Refine ~ o1bdd2 to give a ...
climconst 15511 An (eventually) constant s...
rlimconst 15512 A constant sequence conver...
rlimclim1 15513 Forward direction of ~ rli...
rlimclim 15514 A sequence on an upper int...
climrlim2 15515 Produce a real limit from ...
climconst2 15516 A constant sequence conver...
climz 15517 The zero sequence converge...
rlimuni 15518 A real function whose doma...
rlimdm 15519 Two ways to express that a...
climuni 15520 An infinite sequence of co...
fclim 15521 The limit relation is func...
climdm 15522 Two ways to express that a...
climeu 15523 An infinite sequence of co...
climreu 15524 An infinite sequence of co...
climmo 15525 An infinite sequence of co...
rlimres 15526 The restriction of a funct...
lo1res 15527 The restriction of an even...
o1res 15528 The restriction of an even...
rlimres2 15529 The restriction of a funct...
lo1res2 15530 The restriction of a funct...
o1res2 15531 The restriction of a funct...
lo1resb 15532 The restriction of a funct...
rlimresb 15533 The restriction of a funct...
o1resb 15534 The restriction of a funct...
climeq 15535 Two functions that are eve...
lo1eq 15536 Two functions that are eve...
rlimeq 15537 Two functions that are eve...
o1eq 15538 Two functions that are eve...
climmpt 15539 Exhibit a function ` G ` w...
2clim 15540 If two sequences converge ...
climmpt2 15541 Relate an integer limit on...
climshftlem 15542 A shifted function converg...
climres 15543 A function restricted to u...
climshft 15544 A shifted function converg...
serclim0 15545 The zero series converges ...
rlimcld2 15546 If ` D ` is a closed set i...
rlimrege0 15547 The limit of a sequence of...
rlimrecl 15548 The limit of a real sequen...
rlimge0 15549 The limit of a sequence of...
climshft2 15550 A shifted function converg...
climrecl 15551 The limit of a convergent ...
climge0 15552 A nonnegative sequence con...
climabs0 15553 Convergence to zero of the...
o1co 15554 Sufficient condition for t...
o1compt 15555 Sufficient condition for t...
rlimcn1 15556 Image of a limit under a c...
rlimcn1b 15557 Image of a limit under a c...
rlimcn3 15558 Image of a limit under a c...
rlimcn2 15559 Image of a limit under a c...
climcn1 15560 Image of a limit under a c...
climcn2 15561 Image of a limit under a c...
addcn2 15562 Complex number addition is...
subcn2 15563 Complex number subtraction...
mulcn2 15564 Complex number multiplicat...
reccn2 15565 The reciprocal function is...
cn1lem 15566 A sufficient condition for...
abscn2 15567 The absolute value functio...
cjcn2 15568 The complex conjugate func...
recn2 15569 The real part function is ...
imcn2 15570 The imaginary part functio...
climcn1lem 15571 The limit of a continuous ...
climabs 15572 Limit of the absolute valu...
climcj 15573 Limit of the complex conju...
climre 15574 Limit of the real part of ...
climim 15575 Limit of the imaginary par...
rlimmptrcl 15576 Reverse closure for a real...
rlimabs 15577 Limit of the absolute valu...
rlimcj 15578 Limit of the complex conju...
rlimre 15579 Limit of the real part of ...
rlimim 15580 Limit of the imaginary par...
o1of2 15581 Show that a binary operati...
o1add 15582 The sum of two eventually ...
o1mul 15583 The product of two eventua...
o1sub 15584 The difference of two even...
rlimo1 15585 Any function with a finite...
rlimdmo1 15586 A convergent function is e...
o1rlimmul 15587 The product of an eventual...
o1const 15588 A constant function is eve...
lo1const 15589 A constant function is eve...
lo1mptrcl 15590 Reverse closure for an eve...
o1mptrcl 15591 Reverse closure for an eve...
o1add2 15592 The sum of two eventually ...
o1mul2 15593 The product of two eventua...
o1sub2 15594 The product of two eventua...
lo1add 15595 The sum of two eventually ...
lo1mul 15596 The product of an eventual...
lo1mul2 15597 The product of an eventual...
o1dif 15598 If the difference of two f...
lo1sub 15599 The difference of an event...
climadd 15600 Limit of the sum of two co...
climmul 15601 Limit of the product of tw...
climsub 15602 Limit of the difference of...
climaddc1 15603 Limit of a constant ` C ` ...
climaddc2 15604 Limit of a constant ` C ` ...
climmulc2 15605 Limit of a sequence multip...
climsubc1 15606 Limit of a constant ` C ` ...
climsubc2 15607 Limit of a constant ` C ` ...
climle 15608 Comparison of the limits o...
climsqz 15609 Convergence of a sequence ...
climsqz2 15610 Convergence of a sequence ...
rlimadd 15611 Limit of the sum of two co...
rlimaddOLD 15612 Obsolete version of ~ rlim...
rlimsub 15613 Limit of the difference of...
rlimmul 15614 Limit of the product of tw...
rlimmulOLD 15615 Obsolete version of ~ rlim...
rlimdiv 15616 Limit of the quotient of t...
rlimneg 15617 Limit of the negative of a...
rlimle 15618 Comparison of the limits o...
rlimsqzlem 15619 Lemma for ~ rlimsqz and ~ ...
rlimsqz 15620 Convergence of a sequence ...
rlimsqz2 15621 Convergence of a sequence ...
lo1le 15622 Transfer eventual upper bo...
o1le 15623 Transfer eventual boundedn...
rlimno1 15624 A function whose inverse c...
clim2ser 15625 The limit of an infinite s...
clim2ser2 15626 The limit of an infinite s...
iserex 15627 An infinite series converg...
isermulc2 15628 Multiplication of an infin...
climlec2 15629 Comparison of a constant t...
iserle 15630 Comparison of the limits o...
iserge0 15631 The limit of an infinite s...
climub 15632 The limit of a monotonic s...
climserle 15633 The partial sums of a conv...
isershft 15634 Index shift of the limit o...
isercolllem1 15635 Lemma for ~ isercoll . (C...
isercolllem2 15636 Lemma for ~ isercoll . (C...
isercolllem3 15637 Lemma for ~ isercoll . (C...
isercoll 15638 Rearrange an infinite seri...
isercoll2 15639 Generalize ~ isercoll so t...
climsup 15640 A bounded monotonic sequen...
climcau 15641 A converging sequence of c...
climbdd 15642 A converging sequence of c...
caucvgrlem 15643 Lemma for ~ caurcvgr . (C...
caurcvgr 15644 A Cauchy sequence of real ...
caucvgrlem2 15645 Lemma for ~ caucvgr . (Co...
caucvgr 15646 A Cauchy sequence of compl...
caurcvg 15647 A Cauchy sequence of real ...
caurcvg2 15648 A Cauchy sequence of real ...
caucvg 15649 A Cauchy sequence of compl...
caucvgb 15650 A function is convergent i...
serf0 15651 If an infinite series conv...
iseraltlem1 15652 Lemma for ~ iseralt . A d...
iseraltlem2 15653 Lemma for ~ iseralt . The...
iseraltlem3 15654 Lemma for ~ iseralt . Fro...
iseralt 15655 The alternating series tes...
sumex 15658 A sum is a set. (Contribu...
sumeq1 15659 Equality theorem for a sum...
nfsum1 15660 Bound-variable hypothesis ...
nfsum 15661 Bound-variable hypothesis ...
sumeq2w 15662 Equality theorem for sum, ...
sumeq2ii 15663 Equality theorem for sum, ...
sumeq2 15664 Equality theorem for sum. ...
cbvsum 15665 Change bound variable in a...
cbvsumv 15666 Change bound variable in a...
cbvsumi 15667 Change bound variable in a...
sumeq1i 15668 Equality inference for sum...
sumeq2i 15669 Equality inference for sum...
sumeq12i 15670 Equality inference for sum...
sumeq1d 15671 Equality deduction for sum...
sumeq2d 15672 Equality deduction for sum...
sumeq2dv 15673 Equality deduction for sum...
sumeq2sdv 15674 Equality deduction for sum...
2sumeq2dv 15675 Equality deduction for dou...
sumeq12dv 15676 Equality deduction for sum...
sumeq12rdv 15677 Equality deduction for sum...
sum2id 15678 The second class argument ...
sumfc 15679 A lemma to facilitate conv...
fz1f1o 15680 A lemma for working with f...
sumrblem 15681 Lemma for ~ sumrb . (Cont...
fsumcvg 15682 The sequence of partial su...
sumrb 15683 Rebase the starting point ...
summolem3 15684 Lemma for ~ summo . (Cont...
summolem2a 15685 Lemma for ~ summo . (Cont...
summolem2 15686 Lemma for ~ summo . (Cont...
summo 15687 A sum has at most one limi...
zsum 15688 Series sum with index set ...
isum 15689 Series sum with an upper i...
fsum 15690 The value of a sum over a ...
sum0 15691 Any sum over the empty set...
sumz 15692 Any sum of zero over a sum...
fsumf1o 15693 Re-index a finite sum usin...
sumss 15694 Change the index set to a ...
fsumss 15695 Change the index set to a ...
sumss2 15696 Change the index set of a ...
fsumcvg2 15697 The sequence of partial su...
fsumsers 15698 Special case of series sum...
fsumcvg3 15699 A finite sum is convergent...
fsumser 15700 A finite sum expressed in ...
fsumcl2lem 15701 - Lemma for finite sum clo...
fsumcllem 15702 - Lemma for finite sum clo...
fsumcl 15703 Closure of a finite sum of...
fsumrecl 15704 Closure of a finite sum of...
fsumzcl 15705 Closure of a finite sum of...
fsumnn0cl 15706 Closure of a finite sum of...
fsumrpcl 15707 Closure of a finite sum of...
fsumclf 15708 Closure of a finite sum of...
fsumzcl2 15709 A finite sum with integer ...
fsumadd 15710 The sum of two finite sums...
fsumsplit 15711 Split a sum into two parts...
fsumsplitf 15712 Split a sum into two parts...
sumsnf 15713 A sum of a singleton is th...
fsumsplitsn 15714 Separate out a term in a f...
fsumsplit1 15715 Separate out a term in a f...
sumsn 15716 A sum of a singleton is th...
fsum1 15717 The finite sum of ` A ( k ...
sumpr 15718 A sum over a pair is the s...
sumtp 15719 A sum over a triple is the...
sumsns 15720 A sum of a singleton is th...
fsumm1 15721 Separate out the last term...
fzosump1 15722 Separate out the last term...
fsum1p 15723 Separate out the first ter...
fsummsnunz 15724 A finite sum all of whose ...
fsumsplitsnun 15725 Separate out a term in a f...
fsump1 15726 The addition of the next t...
isumclim 15727 An infinite sum equals the...
isumclim2 15728 A converging series conver...
isumclim3 15729 The sequence of partial fi...
sumnul 15730 The sum of a non-convergen...
isumcl 15731 The sum of a converging in...
isummulc2 15732 An infinite sum multiplied...
isummulc1 15733 An infinite sum multiplied...
isumdivc 15734 An infinite sum divided by...
isumrecl 15735 The sum of a converging in...
isumge0 15736 An infinite sum of nonnega...
isumadd 15737 Addition of infinite sums....
sumsplit 15738 Split a sum into two parts...
fsump1i 15739 Optimized version of ~ fsu...
fsum2dlem 15740 Lemma for ~ fsum2d - induc...
fsum2d 15741 Write a double sum as a su...
fsumxp 15742 Combine two sums into a si...
fsumcnv 15743 Transform a region of summ...
fsumcom2 15744 Interchange order of summa...
fsumcom 15745 Interchange order of summa...
fsum0diaglem 15746 Lemma for ~ fsum0diag . (...
fsum0diag 15747 Two ways to express "the s...
mptfzshft 15748 1-1 onto function in maps-...
fsumrev 15749 Reversal of a finite sum. ...
fsumshft 15750 Index shift of a finite su...
fsumshftm 15751 Negative index shift of a ...
fsumrev2 15752 Reversal of a finite sum. ...
fsum0diag2 15753 Two ways to express "the s...
fsummulc2 15754 A finite sum multiplied by...
fsummulc1 15755 A finite sum multiplied by...
fsumdivc 15756 A finite sum divided by a ...
fsumneg 15757 Negation of a finite sum. ...
fsumsub 15758 Split a finite sum over a ...
fsum2mul 15759 Separate the nested sum of...
fsumconst 15760 The sum of constant terms ...
fsumdifsnconst 15761 The sum of constant terms ...
modfsummodslem1 15762 Lemma 1 for ~ modfsummods ...
modfsummods 15763 Induction step for ~ modfs...
modfsummod 15764 A finite sum modulo a posi...
fsumge0 15765 If all of the terms of a f...
fsumless 15766 A shorter sum of nonnegati...
fsumge1 15767 A sum of nonnegative numbe...
fsum00 15768 A sum of nonnegative numbe...
fsumle 15769 If all of the terms of fin...
fsumlt 15770 If every term in one finit...
fsumabs 15771 Generalized triangle inequ...
telfsumo 15772 Sum of a telescoping serie...
telfsumo2 15773 Sum of a telescoping serie...
telfsum 15774 Sum of a telescoping serie...
telfsum2 15775 Sum of a telescoping serie...
fsumparts 15776 Summation by parts. (Cont...
fsumrelem 15777 Lemma for ~ fsumre , ~ fsu...
fsumre 15778 The real part of a sum. (...
fsumim 15779 The imaginary part of a su...
fsumcj 15780 The complex conjugate of a...
fsumrlim 15781 Limit of a finite sum of c...
fsumo1 15782 The finite sum of eventual...
o1fsum 15783 If ` A ( k ) ` is O(1), th...
seqabs 15784 Generalized triangle inequ...
iserabs 15785 Generalized triangle inequ...
cvgcmp 15786 A comparison test for conv...
cvgcmpub 15787 An upper bound for the lim...
cvgcmpce 15788 A comparison test for conv...
abscvgcvg 15789 An absolutely convergent s...
climfsum 15790 Limit of a finite sum of c...
fsumiun 15791 Sum over a disjoint indexe...
hashiun 15792 The cardinality of a disjo...
hash2iun 15793 The cardinality of a neste...
hash2iun1dif1 15794 The cardinality of a neste...
hashrabrex 15795 The number of elements in ...
hashuni 15796 The cardinality of a disjo...
qshash 15797 The cardinality of a set w...
ackbijnn 15798 Translate the Ackermann bi...
binomlem 15799 Lemma for ~ binom (binomia...
binom 15800 The binomial theorem: ` ( ...
binom1p 15801 Special case of the binomi...
binom11 15802 Special case of the binomi...
binom1dif 15803 A summation for the differ...
bcxmaslem1 15804 Lemma for ~ bcxmas . (Con...
bcxmas 15805 Parallel summation (Christ...
incexclem 15806 Lemma for ~ incexc . (Con...
incexc 15807 The inclusion/exclusion pr...
incexc2 15808 The inclusion/exclusion pr...
isumshft 15809 Index shift of an infinite...
isumsplit 15810 Split off the first ` N ` ...
isum1p 15811 The infinite sum of a conv...
isumnn0nn 15812 Sum from 0 to infinity in ...
isumrpcl 15813 The infinite sum of positi...
isumle 15814 Comparison of two infinite...
isumless 15815 A finite sum of nonnegativ...
isumsup2 15816 An infinite sum of nonnega...
isumsup 15817 An infinite sum of nonnega...
isumltss 15818 A partial sum of a series ...
climcndslem1 15819 Lemma for ~ climcnds : bou...
climcndslem2 15820 Lemma for ~ climcnds : bou...
climcnds 15821 The Cauchy condensation te...
divrcnv 15822 The sequence of reciprocal...
divcnv 15823 The sequence of reciprocal...
flo1 15824 The floor function satisfi...
divcnvshft 15825 Limit of a ratio function....
supcvg 15826 Extract a sequence ` f ` i...
infcvgaux1i 15827 Auxiliary theorem for appl...
infcvgaux2i 15828 Auxiliary theorem for appl...
harmonic 15829 The harmonic series ` H ` ...
arisum 15830 Arithmetic series sum of t...
arisum2 15831 Arithmetic series sum of t...
trireciplem 15832 Lemma for ~ trirecip . Sh...
trirecip 15833 The sum of the reciprocals...
expcnv 15834 A sequence of powers of a ...
explecnv 15835 A sequence of terms conver...
geoserg 15836 The value of the finite ge...
geoser 15837 The value of the finite ge...
pwdif 15838 The difference of two numb...
pwm1geoser 15839 The n-th power of a number...
geolim 15840 The partial sums in the in...
geolim2 15841 The partial sums in the ge...
georeclim 15842 The limit of a geometric s...
geo2sum 15843 The value of the finite ge...
geo2sum2 15844 The value of the finite ge...
geo2lim 15845 The value of the infinite ...
geomulcvg 15846 The geometric series conve...
geoisum 15847 The infinite sum of ` 1 + ...
geoisumr 15848 The infinite sum of recipr...
geoisum1 15849 The infinite sum of ` A ^ ...
geoisum1c 15850 The infinite sum of ` A x....
0.999... 15851 The recurring decimal 0.99...
geoihalfsum 15852 Prove that the infinite ge...
cvgrat 15853 Ratio test for convergence...
mertenslem1 15854 Lemma for ~ mertens . (Co...
mertenslem2 15855 Lemma for ~ mertens . (Co...
mertens 15856 Mertens' theorem. If ` A ...
prodf 15857 An infinite product of com...
clim2prod 15858 The limit of an infinite p...
clim2div 15859 The limit of an infinite p...
prodfmul 15860 The product of two infinit...
prodf1 15861 The value of the partial p...
prodf1f 15862 A one-valued infinite prod...
prodfclim1 15863 The constant one product c...
prodfn0 15864 No term of a nonzero infin...
prodfrec 15865 The reciprocal of an infin...
prodfdiv 15866 The quotient of two infini...
ntrivcvg 15867 A non-trivially converging...
ntrivcvgn0 15868 A product that converges t...
ntrivcvgfvn0 15869 Any value of a product seq...
ntrivcvgtail 15870 A tail of a non-trivially ...
ntrivcvgmullem 15871 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 15872 The product of two non-tri...
prodex 15875 A product is a set. (Cont...
prodeq1f 15876 Equality theorem for a pro...
prodeq1 15877 Equality theorem for a pro...
nfcprod1 15878 Bound-variable hypothesis ...
nfcprod 15879 Bound-variable hypothesis ...
prodeq2w 15880 Equality theorem for produ...
prodeq2ii 15881 Equality theorem for produ...
prodeq2 15882 Equality theorem for produ...
cbvprod 15883 Change bound variable in a...
cbvprodv 15884 Change bound variable in a...
cbvprodi 15885 Change bound variable in a...
prodeq1i 15886 Equality inference for pro...
prodeq2i 15887 Equality inference for pro...
prodeq12i 15888 Equality inference for pro...
prodeq1d 15889 Equality deduction for pro...
prodeq2d 15890 Equality deduction for pro...
prodeq2dv 15891 Equality deduction for pro...
prodeq2sdv 15892 Equality deduction for pro...
2cprodeq2dv 15893 Equality deduction for dou...
prodeq12dv 15894 Equality deduction for pro...
prodeq12rdv 15895 Equality deduction for pro...
prod2id 15896 The second class argument ...
prodrblem 15897 Lemma for ~ prodrb . (Con...
fprodcvg 15898 The sequence of partial pr...
prodrblem2 15899 Lemma for ~ prodrb . (Con...
prodrb 15900 Rebase the starting point ...
prodmolem3 15901 Lemma for ~ prodmo . (Con...
prodmolem2a 15902 Lemma for ~ prodmo . (Con...
prodmolem2 15903 Lemma for ~ prodmo . (Con...
prodmo 15904 A product has at most one ...
zprod 15905 Series product with index ...
iprod 15906 Series product with an upp...
zprodn0 15907 Nonzero series product wit...
iprodn0 15908 Nonzero series product wit...
fprod 15909 The value of a product ove...
fprodntriv 15910 A non-triviality lemma for...
prod0 15911 A product over the empty s...
prod1 15912 Any product of one over a ...
prodfc 15913 A lemma to facilitate conv...
fprodf1o 15914 Re-index a finite product ...
prodss 15915 Change the index set to a ...
fprodss 15916 Change the index set to a ...
fprodser 15917 A finite product expressed...
fprodcl2lem 15918 Finite product closure lem...
fprodcllem 15919 Finite product closure lem...
fprodcl 15920 Closure of a finite produc...
fprodrecl 15921 Closure of a finite produc...
fprodzcl 15922 Closure of a finite produc...
fprodnncl 15923 Closure of a finite produc...
fprodrpcl 15924 Closure of a finite produc...
fprodnn0cl 15925 Closure of a finite produc...
fprodcllemf 15926 Finite product closure lem...
fprodreclf 15927 Closure of a finite produc...
fprodmul 15928 The product of two finite ...
fproddiv 15929 The quotient of two finite...
prodsn 15930 A product of a singleton i...
fprod1 15931 A finite product of only o...
prodsnf 15932 A product of a singleton i...
climprod1 15933 The limit of a product ove...
fprodsplit 15934 Split a finite product int...
fprodm1 15935 Separate out the last term...
fprod1p 15936 Separate out the first ter...
fprodp1 15937 Multiply in the last term ...
fprodm1s 15938 Separate out the last term...
fprodp1s 15939 Multiply in the last term ...
prodsns 15940 A product of the singleton...
fprodfac 15941 Factorial using product no...
fprodabs 15942 The absolute value of a fi...
fprodeq0 15943 Any finite product contain...
fprodshft 15944 Shift the index of a finit...
fprodrev 15945 Reversal of a finite produ...
fprodconst 15946 The product of constant te...
fprodn0 15947 A finite product of nonzer...
fprod2dlem 15948 Lemma for ~ fprod2d - indu...
fprod2d 15949 Write a double product as ...
fprodxp 15950 Combine two products into ...
fprodcnv 15951 Transform a product region...
fprodcom2 15952 Interchange order of multi...
fprodcom 15953 Interchange product order....
fprod0diag 15954 Two ways to express "the p...
fproddivf 15955 The quotient of two finite...
fprodsplitf 15956 Split a finite product int...
fprodsplitsn 15957 Separate out a term in a f...
fprodsplit1f 15958 Separate out a term in a f...
fprodn0f 15959 A finite product of nonzer...
fprodclf 15960 Closure of a finite produc...
fprodge0 15961 If all the terms of a fini...
fprodeq0g 15962 Any finite product contain...
fprodge1 15963 If all of the terms of a f...
fprodle 15964 If all the terms of two fi...
fprodmodd 15965 If all factors of two fini...
iprodclim 15966 An infinite product equals...
iprodclim2 15967 A converging product conve...
iprodclim3 15968 The sequence of partial fi...
iprodcl 15969 The product of a non-trivi...
iprodrecl 15970 The product of a non-trivi...
iprodmul 15971 Multiplication of infinite...
risefacval 15976 The value of the rising fa...
fallfacval 15977 The value of the falling f...
risefacval2 15978 One-based value of rising ...
fallfacval2 15979 One-based value of falling...
fallfacval3 15980 A product representation o...
risefaccllem 15981 Lemma for rising factorial...
fallfaccllem 15982 Lemma for falling factoria...
risefaccl 15983 Closure law for rising fac...
fallfaccl 15984 Closure law for falling fa...
rerisefaccl 15985 Closure law for rising fac...
refallfaccl 15986 Closure law for falling fa...
nnrisefaccl 15987 Closure law for rising fac...
zrisefaccl 15988 Closure law for rising fac...
zfallfaccl 15989 Closure law for falling fa...
nn0risefaccl 15990 Closure law for rising fac...
rprisefaccl 15991 Closure law for rising fac...
risefallfac 15992 A relationship between ris...
fallrisefac 15993 A relationship between fal...
risefall0lem 15994 Lemma for ~ risefac0 and ~...
risefac0 15995 The value of the rising fa...
fallfac0 15996 The value of the falling f...
risefacp1 15997 The value of the rising fa...
fallfacp1 15998 The value of the falling f...
risefacp1d 15999 The value of the rising fa...
fallfacp1d 16000 The value of the falling f...
risefac1 16001 The value of rising factor...
fallfac1 16002 The value of falling facto...
risefacfac 16003 Relate rising factorial to...
fallfacfwd 16004 The forward difference of ...
0fallfac 16005 The value of the zero fall...
0risefac 16006 The value of the zero risi...
binomfallfaclem1 16007 Lemma for ~ binomfallfac ....
binomfallfaclem2 16008 Lemma for ~ binomfallfac ....
binomfallfac 16009 A version of the binomial ...
binomrisefac 16010 A version of the binomial ...
fallfacval4 16011 Represent the falling fact...
bcfallfac 16012 Binomial coefficient in te...
fallfacfac 16013 Relate falling factorial t...
bpolylem 16016 Lemma for ~ bpolyval . (C...
bpolyval 16017 The value of the Bernoulli...
bpoly0 16018 The value of the Bernoulli...
bpoly1 16019 The value of the Bernoulli...
bpolycl 16020 Closure law for Bernoulli ...
bpolysum 16021 A sum for Bernoulli polyno...
bpolydiflem 16022 Lemma for ~ bpolydif . (C...
bpolydif 16023 Calculate the difference b...
fsumkthpow 16024 A closed-form expression f...
bpoly2 16025 The Bernoulli polynomials ...
bpoly3 16026 The Bernoulli polynomials ...
bpoly4 16027 The Bernoulli polynomials ...
fsumcube 16028 Express the sum of cubes i...
eftcl 16041 Closure of a term in the s...
reeftcl 16042 The terms of the series ex...
eftabs 16043 The absolute value of a te...
eftval 16044 The value of a term in the...
efcllem 16045 Lemma for ~ efcl . The se...
ef0lem 16046 The series defining the ex...
efval 16047 Value of the exponential f...
esum 16048 Value of Euler's constant ...
eff 16049 Domain and codomain of the...
efcl 16050 Closure law for the expone...
efcld 16051 Closure law for the expone...
efval2 16052 Value of the exponential f...
efcvg 16053 The series that defines th...
efcvgfsum 16054 Exponential function conve...
reefcl 16055 The exponential function i...
reefcld 16056 The exponential function i...
ere 16057 Euler's constant ` _e ` = ...
ege2le3 16058 Lemma for ~ egt2lt3 . (Co...
ef0 16059 Value of the exponential f...
efcj 16060 The exponential of a compl...
efaddlem 16061 Lemma for ~ efadd (exponen...
efadd 16062 Sum of exponents law for e...
fprodefsum 16063 Move the exponential funct...
efcan 16064 Cancellation law for expon...
efne0 16065 The exponential of a compl...
efneg 16066 The exponential of the opp...
eff2 16067 The exponential function m...
efsub 16068 Difference of exponents la...
efexp 16069 The exponential of an inte...
efzval 16070 Value of the exponential f...
efgt0 16071 The exponential of a real ...
rpefcl 16072 The exponential of a real ...
rpefcld 16073 The exponential of a real ...
eftlcvg 16074 The tail series of the exp...
eftlcl 16075 Closure of the sum of an i...
reeftlcl 16076 Closure of the sum of an i...
eftlub 16077 An upper bound on the abso...
efsep 16078 Separate out the next term...
effsumlt 16079 The partial sums of the se...
eft0val 16080 The value of the first ter...
ef4p 16081 Separate out the first fou...
efgt1p2 16082 The exponential of a posit...
efgt1p 16083 The exponential of a posit...
efgt1 16084 The exponential of a posit...
eflt 16085 The exponential function o...
efle 16086 The exponential function o...
reef11 16087 The exponential function o...
reeff1 16088 The exponential function m...
eflegeo 16089 The exponential function o...
sinval 16090 Value of the sine function...
cosval 16091 Value of the cosine functi...
sinf 16092 Domain and codomain of the...
cosf 16093 Domain and codomain of the...
sincl 16094 Closure of the sine functi...
coscl 16095 Closure of the cosine func...
tanval 16096 Value of the tangent funct...
tancl 16097 The closure of the tangent...
sincld 16098 Closure of the sine functi...
coscld 16099 Closure of the cosine func...
tancld 16100 Closure of the tangent fun...
tanval2 16101 Express the tangent functi...
tanval3 16102 Express the tangent functi...
resinval 16103 The sine of a real number ...
recosval 16104 The cosine of a real numbe...
efi4p 16105 Separate out the first fou...
resin4p 16106 Separate out the first fou...
recos4p 16107 Separate out the first fou...
resincl 16108 The sine of a real number ...
recoscl 16109 The cosine of a real numbe...
retancl 16110 The closure of the tangent...
resincld 16111 Closure of the sine functi...
recoscld 16112 Closure of the cosine func...
retancld 16113 Closure of the tangent fun...
sinneg 16114 The sine of a negative is ...
cosneg 16115 The cosines of a number an...
tanneg 16116 The tangent of a negative ...
sin0 16117 Value of the sine function...
cos0 16118 Value of the cosine functi...
tan0 16119 The value of the tangent f...
efival 16120 The exponential function i...
efmival 16121 The exponential function i...
sinhval 16122 Value of the hyperbolic si...
coshval 16123 Value of the hyperbolic co...
resinhcl 16124 The hyperbolic sine of a r...
rpcoshcl 16125 The hyperbolic cosine of a...
recoshcl 16126 The hyperbolic cosine of a...
retanhcl 16127 The hyperbolic tangent of ...
tanhlt1 16128 The hyperbolic tangent of ...
tanhbnd 16129 The hyperbolic tangent of ...
efeul 16130 Eulerian representation of...
efieq 16131 The exponentials of two im...
sinadd 16132 Addition formula for sine....
cosadd 16133 Addition formula for cosin...
tanaddlem 16134 A useful intermediate step...
tanadd 16135 Addition formula for tange...
sinsub 16136 Sine of difference. (Cont...
cossub 16137 Cosine of difference. (Co...
addsin 16138 Sum of sines. (Contribute...
subsin 16139 Difference of sines. (Con...
sinmul 16140 Product of sines can be re...
cosmul 16141 Product of cosines can be ...
addcos 16142 Sum of cosines. (Contribu...
subcos 16143 Difference of cosines. (C...
sincossq 16144 Sine squared plus cosine s...
sin2t 16145 Double-angle formula for s...
cos2t 16146 Double-angle formula for c...
cos2tsin 16147 Double-angle formula for c...
sinbnd 16148 The sine of a real number ...
cosbnd 16149 The cosine of a real numbe...
sinbnd2 16150 The sine of a real number ...
cosbnd2 16151 The cosine of a real numbe...
ef01bndlem 16152 Lemma for ~ sin01bnd and ~...
sin01bnd 16153 Bounds on the sine of a po...
cos01bnd 16154 Bounds on the cosine of a ...
cos1bnd 16155 Bounds on the cosine of 1....
cos2bnd 16156 Bounds on the cosine of 2....
sinltx 16157 The sine of a positive rea...
sin01gt0 16158 The sine of a positive rea...
cos01gt0 16159 The cosine of a positive r...
sin02gt0 16160 The sine of a positive rea...
sincos1sgn 16161 The signs of the sine and ...
sincos2sgn 16162 The signs of the sine and ...
sin4lt0 16163 The sine of 4 is negative....
absefi 16164 The absolute value of the ...
absef 16165 The absolute value of the ...
absefib 16166 A complex number is real i...
efieq1re 16167 A number whose imaginary e...
demoivre 16168 De Moivre's Formula. Proo...
demoivreALT 16169 Alternate proof of ~ demoi...
eirrlem 16172 Lemma for ~ eirr . (Contr...
eirr 16173 ` _e ` is irrational. (Co...
egt2lt3 16174 Euler's constant ` _e ` = ...
epos 16175 Euler's constant ` _e ` is...
epr 16176 Euler's constant ` _e ` is...
ene0 16177 ` _e ` is not 0. (Contrib...
ene1 16178 ` _e ` is not 1. (Contrib...
xpnnen 16179 The Cartesian product of t...
znnen 16180 The set of integers and th...
qnnen 16181 The rational numbers are c...
rpnnen2lem1 16182 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 16183 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 16184 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 16185 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 16186 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 16187 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 16188 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 16189 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 16190 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 16191 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 16192 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 16193 Lemma for ~ rpnnen2 . (Co...
rpnnen2 16194 The other half of ~ rpnnen...
rpnnen 16195 The cardinality of the con...
rexpen 16196 The real numbers are equin...
cpnnen 16197 The complex numbers are eq...
rucALT 16198 Alternate proof of ~ ruc ....
ruclem1 16199 Lemma for ~ ruc (the reals...
ruclem2 16200 Lemma for ~ ruc . Orderin...
ruclem3 16201 Lemma for ~ ruc . The con...
ruclem4 16202 Lemma for ~ ruc . Initial...
ruclem6 16203 Lemma for ~ ruc . Domain ...
ruclem7 16204 Lemma for ~ ruc . Success...
ruclem8 16205 Lemma for ~ ruc . The int...
ruclem9 16206 Lemma for ~ ruc . The fir...
ruclem10 16207 Lemma for ~ ruc . Every f...
ruclem11 16208 Lemma for ~ ruc . Closure...
ruclem12 16209 Lemma for ~ ruc . The sup...
ruclem13 16210 Lemma for ~ ruc . There i...
ruc 16211 The set of positive intege...
resdomq 16212 The set of rationals is st...
aleph1re 16213 There are at least aleph-o...
aleph1irr 16214 There are at least aleph-o...
cnso 16215 The complex numbers can be...
sqrt2irrlem 16216 Lemma for ~ sqrt2irr . Th...
sqrt2irr 16217 The square root of 2 is ir...
sqrt2re 16218 The square root of 2 exist...
sqrt2irr0 16219 The square root of 2 is an...
nthruc 16220 The sequence ` NN ` , ` ZZ...
nthruz 16221 The sequence ` NN ` , ` NN...
divides 16224 Define the divides relatio...
dvdsval2 16225 One nonzero integer divide...
dvdsval3 16226 One nonzero integer divide...
dvdszrcl 16227 Reverse closure for the di...
dvdsmod0 16228 If a positive integer divi...
p1modz1 16229 If a number greater than 1...
dvdsmodexp 16230 If a positive integer divi...
nndivdvds 16231 Strong form of ~ dvdsval2 ...
nndivides 16232 Definition of the divides ...
moddvds 16233 Two ways to say ` A == B `...
modm1div 16234 An integer greater than on...
dvds0lem 16235 A lemma to assist theorems...
dvds1lem 16236 A lemma to assist theorems...
dvds2lem 16237 A lemma to assist theorems...
iddvds 16238 An integer divides itself....
1dvds 16239 1 divides any integer. Th...
dvds0 16240 Any integer divides 0. Th...
negdvdsb 16241 An integer divides another...
dvdsnegb 16242 An integer divides another...
absdvdsb 16243 An integer divides another...
dvdsabsb 16244 An integer divides another...
0dvds 16245 Only 0 is divisible by 0. ...
dvdsmul1 16246 An integer divides a multi...
dvdsmul2 16247 An integer divides a multi...
iddvdsexp 16248 An integer divides a posit...
muldvds1 16249 If a product divides an in...
muldvds2 16250 If a product divides an in...
dvdscmul 16251 Multiplication by a consta...
dvdsmulc 16252 Multiplication by a consta...
dvdscmulr 16253 Cancellation law for the d...
dvdsmulcr 16254 Cancellation law for the d...
summodnegmod 16255 The sum of two integers mo...
modmulconst 16256 Constant multiplication in...
dvds2ln 16257 If an integer divides each...
dvds2add 16258 If an integer divides each...
dvds2sub 16259 If an integer divides each...
dvds2addd 16260 Deduction form of ~ dvds2a...
dvds2subd 16261 Deduction form of ~ dvds2s...
dvdstr 16262 The divides relation is tr...
dvdstrd 16263 The divides relation is tr...
dvdsmultr1 16264 If an integer divides anot...
dvdsmultr1d 16265 Deduction form of ~ dvdsmu...
dvdsmultr2 16266 If an integer divides anot...
dvdsmultr2d 16267 Deduction form of ~ dvdsmu...
ordvdsmul 16268 If an integer divides eith...
dvdssub2 16269 If an integer divides a di...
dvdsadd 16270 An integer divides another...
dvdsaddr 16271 An integer divides another...
dvdssub 16272 An integer divides another...
dvdssubr 16273 An integer divides another...
dvdsadd2b 16274 Adding a multiple of the b...
dvdsaddre2b 16275 Adding a multiple of the b...
fsumdvds 16276 If every term in a sum is ...
dvdslelem 16277 Lemma for ~ dvdsle . (Con...
dvdsle 16278 The divisors of a positive...
dvdsleabs 16279 The divisors of a nonzero ...
dvdsleabs2 16280 Transfer divisibility to a...
dvdsabseq 16281 If two integers divide eac...
dvdseq 16282 If two nonnegative integer...
divconjdvds 16283 If a nonzero integer ` M `...
dvdsdivcl 16284 The complement of a diviso...
dvdsflip 16285 An involution of the divis...
dvdsssfz1 16286 The set of divisors of a n...
dvds1 16287 The only nonnegative integ...
alzdvds 16288 Only 0 is divisible by all...
dvdsext 16289 Poset extensionality for d...
fzm1ndvds 16290 No number between ` 1 ` an...
fzo0dvdseq 16291 Zero is the only one of th...
fzocongeq 16292 Two different elements of ...
addmodlteqALT 16293 Two nonnegative integers l...
dvdsfac 16294 A positive integer divides...
dvdsexp2im 16295 If an integer divides anot...
dvdsexp 16296 A power divides a power wi...
dvdsmod 16297 Any number ` K ` whose mod...
mulmoddvds 16298 If an integer is divisible...
3dvds 16299 A rule for divisibility by...
3dvdsdec 16300 A decimal number is divisi...
3dvds2dec 16301 A decimal number is divisi...
fprodfvdvdsd 16302 A finite product of intege...
fproddvdsd 16303 A finite product of intege...
evenelz 16304 An even number is an integ...
zeo3 16305 An integer is even or odd....
zeo4 16306 An integer is even or odd ...
zeneo 16307 No even integer equals an ...
odd2np1lem 16308 Lemma for ~ odd2np1 . (Co...
odd2np1 16309 An integer is odd iff it i...
even2n 16310 An integer is even iff it ...
oddm1even 16311 An integer is odd iff its ...
oddp1even 16312 An integer is odd iff its ...
oexpneg 16313 The exponential of the neg...
mod2eq0even 16314 An integer is 0 modulo 2 i...
mod2eq1n2dvds 16315 An integer is 1 modulo 2 i...
oddnn02np1 16316 A nonnegative integer is o...
oddge22np1 16317 An integer greater than on...
evennn02n 16318 A nonnegative integer is e...
evennn2n 16319 A positive integer is even...
2tp1odd 16320 A number which is twice an...
mulsucdiv2z 16321 An integer multiplied with...
sqoddm1div8z 16322 A squared odd number minus...
2teven 16323 A number which is twice an...
zeo5 16324 An integer is either even ...
evend2 16325 An integer is even iff its...
oddp1d2 16326 An integer is odd iff its ...
zob 16327 Alternate characterization...
oddm1d2 16328 An integer is odd iff its ...
ltoddhalfle 16329 An integer is less than ha...
halfleoddlt 16330 An integer is greater than...
opoe 16331 The sum of two odds is eve...
omoe 16332 The difference of two odds...
opeo 16333 The sum of an odd and an e...
omeo 16334 The difference of an odd a...
z0even 16335 2 divides 0. That means 0...
n2dvds1 16336 2 does not divide 1. That...
n2dvdsm1 16337 2 does not divide -1. Tha...
z2even 16338 2 divides 2. That means 2...
n2dvds3 16339 2 does not divide 3. That...
z4even 16340 2 divides 4. That means 4...
4dvdseven 16341 An integer which is divisi...
m1expe 16342 Exponentiation of -1 by an...
m1expo 16343 Exponentiation of -1 by an...
m1exp1 16344 Exponentiation of negative...
nn0enne 16345 A positive integer is an e...
nn0ehalf 16346 The half of an even nonneg...
nnehalf 16347 The half of an even positi...
nn0onn 16348 An odd nonnegative integer...
nn0o1gt2 16349 An odd nonnegative integer...
nno 16350 An alternate characterizat...
nn0o 16351 An alternate characterizat...
nn0ob 16352 Alternate characterization...
nn0oddm1d2 16353 A positive integer is odd ...
nnoddm1d2 16354 A positive integer is odd ...
sumeven 16355 If every term in a sum is ...
sumodd 16356 If every term in a sum is ...
evensumodd 16357 If every term in a sum wit...
oddsumodd 16358 If every term in a sum wit...
pwp1fsum 16359 The n-th power of a number...
oddpwp1fsum 16360 An odd power of a number i...
divalglem0 16361 Lemma for ~ divalg . (Con...
divalglem1 16362 Lemma for ~ divalg . (Con...
divalglem2 16363 Lemma for ~ divalg . (Con...
divalglem4 16364 Lemma for ~ divalg . (Con...
divalglem5 16365 Lemma for ~ divalg . (Con...
divalglem6 16366 Lemma for ~ divalg . (Con...
divalglem7 16367 Lemma for ~ divalg . (Con...
divalglem8 16368 Lemma for ~ divalg . (Con...
divalglem9 16369 Lemma for ~ divalg . (Con...
divalglem10 16370 Lemma for ~ divalg . (Con...
divalg 16371 The division algorithm (th...
divalgb 16372 Express the division algor...
divalg2 16373 The division algorithm (th...
divalgmod 16374 The result of the ` mod ` ...
divalgmodcl 16375 The result of the ` mod ` ...
modremain 16376 The result of the modulo o...
ndvdssub 16377 Corollary of the division ...
ndvdsadd 16378 Corollary of the division ...
ndvdsp1 16379 Special case of ~ ndvdsadd...
ndvdsi 16380 A quick test for non-divis...
flodddiv4 16381 The floor of an odd intege...
fldivndvdslt 16382 The floor of an integer di...
flodddiv4lt 16383 The floor of an odd number...
flodddiv4t2lthalf 16384 The floor of an odd number...
bitsfval 16389 Expand the definition of t...
bitsval 16390 Expand the definition of t...
bitsval2 16391 Expand the definition of t...
bitsss 16392 The set of bits of an inte...
bitsf 16393 The ` bits ` function is a...
bits0 16394 Value of the zeroth bit. ...
bits0e 16395 The zeroth bit of an even ...
bits0o 16396 The zeroth bit of an odd n...
bitsp1 16397 The ` M + 1 ` -th bit of `...
bitsp1e 16398 The ` M + 1 ` -th bit of `...
bitsp1o 16399 The ` M + 1 ` -th bit of `...
bitsfzolem 16400 Lemma for ~ bitsfzo . (Co...
bitsfzo 16401 The bits of a number are a...
bitsmod 16402 Truncating the bit sequenc...
bitsfi 16403 Every number is associated...
bitscmp 16404 The bit complement of ` N ...
0bits 16405 The bits of zero. (Contri...
m1bits 16406 The bits of negative one. ...
bitsinv1lem 16407 Lemma for ~ bitsinv1 . (C...
bitsinv1 16408 There is an explicit inver...
bitsinv2 16409 There is an explicit inver...
bitsf1ocnv 16410 The ` bits ` function rest...
bitsf1o 16411 The ` bits ` function rest...
bitsf1 16412 The ` bits ` function is a...
2ebits 16413 The bits of a power of two...
bitsinv 16414 The inverse of the ` bits ...
bitsinvp1 16415 Recursive definition of th...
sadadd2lem2 16416 The core of the proof of ~...
sadfval 16418 Define the addition of two...
sadcf 16419 The carry sequence is a se...
sadc0 16420 The initial element of the...
sadcp1 16421 The carry sequence (which ...
sadval 16422 The full adder sequence is...
sadcaddlem 16423 Lemma for ~ sadcadd . (Co...
sadcadd 16424 Non-recursive definition o...
sadadd2lem 16425 Lemma for ~ sadadd2 . (Co...
sadadd2 16426 Sum of initial segments of...
sadadd3 16427 Sum of initial segments of...
sadcl 16428 The sum of two sequences i...
sadcom 16429 The adder sequence functio...
saddisjlem 16430 Lemma for ~ sadadd . (Con...
saddisj 16431 The sum of disjoint sequen...
sadaddlem 16432 Lemma for ~ sadadd . (Con...
sadadd 16433 For sequences that corresp...
sadid1 16434 The adder sequence functio...
sadid2 16435 The adder sequence functio...
sadasslem 16436 Lemma for ~ sadass . (Con...
sadass 16437 Sequence addition is assoc...
sadeq 16438 Any element of a sequence ...
bitsres 16439 Restrict the bits of a num...
bitsuz 16440 The bits of a number are a...
bitsshft 16441 Shifting a bit sequence to...
smufval 16443 The multiplication of two ...
smupf 16444 The sequence of partial su...
smup0 16445 The initial element of the...
smupp1 16446 The initial element of the...
smuval 16447 Define the addition of two...
smuval2 16448 The partial sum sequence s...
smupvallem 16449 If ` A ` only has elements...
smucl 16450 The product of two sequenc...
smu01lem 16451 Lemma for ~ smu01 and ~ sm...
smu01 16452 Multiplication of a sequen...
smu02 16453 Multiplication of a sequen...
smupval 16454 Rewrite the elements of th...
smup1 16455 Rewrite ~ smupp1 using onl...
smueqlem 16456 Any element of a sequence ...
smueq 16457 Any element of a sequence ...
smumullem 16458 Lemma for ~ smumul . (Con...
smumul 16459 For sequences that corresp...
gcdval 16462 The value of the ` gcd ` o...
gcd0val 16463 The value, by convention, ...
gcdn0val 16464 The value of the ` gcd ` o...
gcdcllem1 16465 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 16466 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 16467 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 16468 Closure of the ` gcd ` ope...
gcddvds 16469 The gcd of two integers di...
dvdslegcd 16470 An integer which divides b...
nndvdslegcd 16471 A positive integer which d...
gcdcl 16472 Closure of the ` gcd ` ope...
gcdnncl 16473 Closure of the ` gcd ` ope...
gcdcld 16474 Closure of the ` gcd ` ope...
gcd2n0cl 16475 Closure of the ` gcd ` ope...
zeqzmulgcd 16476 An integer is the product ...
divgcdz 16477 An integer divided by the ...
gcdf 16478 Domain and codomain of the...
gcdcom 16479 The ` gcd ` operator is co...
gcdcomd 16480 The ` gcd ` operator is co...
divgcdnn 16481 A positive integer divided...
divgcdnnr 16482 A positive integer divided...
gcdeq0 16483 The gcd of two integers is...
gcdn0gt0 16484 The gcd of two integers is...
gcd0id 16485 The gcd of 0 and an intege...
gcdid0 16486 The gcd of an integer and ...
nn0gcdid0 16487 The gcd of a nonnegative i...
gcdneg 16488 Negating one operand of th...
neggcd 16489 Negating one operand of th...
gcdaddmlem 16490 Lemma for ~ gcdaddm . (Co...
gcdaddm 16491 Adding a multiple of one o...
gcdadd 16492 The GCD of two numbers is ...
gcdid 16493 The gcd of a number and it...
gcd1 16494 The gcd of a number with 1...
gcdabs1 16495 ` gcd ` of the absolute va...
gcdabs2 16496 ` gcd ` of the absolute va...
gcdabs 16497 The gcd of two integers is...
gcdabsOLD 16498 Obsolete version of ~ gcda...
modgcd 16499 The gcd remains unchanged ...
1gcd 16500 The GCD of one and an inte...
gcdmultipled 16501 The greatest common diviso...
gcdmultiplez 16502 The GCD of a multiple of a...
gcdmultiple 16503 The GCD of a multiple of a...
dvdsgcdidd 16504 The greatest common diviso...
6gcd4e2 16505 The greatest common diviso...
bezoutlem1 16506 Lemma for ~ bezout . (Con...
bezoutlem2 16507 Lemma for ~ bezout . (Con...
bezoutlem3 16508 Lemma for ~ bezout . (Con...
bezoutlem4 16509 Lemma for ~ bezout . (Con...
bezout 16510 Bézout's identity: ...
dvdsgcd 16511 An integer which divides e...
dvdsgcdb 16512 Biconditional form of ~ dv...
dfgcd2 16513 Alternate definition of th...
gcdass 16514 Associative law for ` gcd ...
mulgcd 16515 Distribute multiplication ...
absmulgcd 16516 Distribute absolute value ...
mulgcdr 16517 Reverse distribution law f...
gcddiv 16518 Division law for GCD. (Con...
gcdzeq 16519 A positive integer ` A ` i...
gcdeq 16520 ` A ` is equal to its gcd ...
dvdssqim 16521 Unidirectional form of ~ d...
dvdsmulgcd 16522 A divisibility equivalent ...
rpmulgcd 16523 If ` K ` and ` M ` are rel...
rplpwr 16524 If ` A ` and ` B ` are rel...
rprpwr 16525 If ` A ` and ` B ` are rel...
rppwr 16526 If ` A ` and ` B ` are rel...
sqgcd 16527 Square distributes over gc...
dvdssqlem 16528 Lemma for ~ dvdssq . (Con...
dvdssq 16529 Two numbers are divisible ...
bezoutr 16530 Partial converse to ~ bezo...
bezoutr1 16531 Converse of ~ bezout for w...
nn0seqcvgd 16532 A strictly-decreasing nonn...
seq1st 16533 A sequence whose iteration...
algr0 16534 The value of the algorithm...
algrf 16535 An algorithm is a step fun...
algrp1 16536 The value of the algorithm...
alginv 16537 If ` I ` is an invariant o...
algcvg 16538 One way to prove that an a...
algcvgblem 16539 Lemma for ~ algcvgb . (Co...
algcvgb 16540 Two ways of expressing tha...
algcvga 16541 The countdown function ` C...
algfx 16542 If ` F ` reaches a fixed p...
eucalgval2 16543 The value of the step func...
eucalgval 16544 Euclid's Algorithm ~ eucal...
eucalgf 16545 Domain and codomain of the...
eucalginv 16546 The invariant of the step ...
eucalglt 16547 The second member of the s...
eucalgcvga 16548 Once Euclid's Algorithm ha...
eucalg 16549 Euclid's Algorithm compute...
lcmval 16554 Value of the ` lcm ` opera...
lcmcom 16555 The ` lcm ` operator is co...
lcm0val 16556 The value, by convention, ...
lcmn0val 16557 The value of the ` lcm ` o...
lcmcllem 16558 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 16559 Closure of the ` lcm ` ope...
dvdslcm 16560 The lcm of two integers is...
lcmledvds 16561 A positive integer which b...
lcmeq0 16562 The lcm of two integers is...
lcmcl 16563 Closure of the ` lcm ` ope...
gcddvdslcm 16564 The greatest common diviso...
lcmneg 16565 Negating one operand of th...
neglcm 16566 Negating one operand of th...
lcmabs 16567 The lcm of two integers is...
lcmgcdlem 16568 Lemma for ~ lcmgcd and ~ l...
lcmgcd 16569 The product of two numbers...
lcmdvds 16570 The lcm of two integers di...
lcmid 16571 The lcm of an integer and ...
lcm1 16572 The lcm of an integer and ...
lcmgcdnn 16573 The product of two positiv...
lcmgcdeq 16574 Two integers' absolute val...
lcmdvdsb 16575 Biconditional form of ~ lc...
lcmass 16576 Associative law for ` lcm ...
3lcm2e6woprm 16577 The least common multiple ...
6lcm4e12 16578 The least common multiple ...
absproddvds 16579 The absolute value of the ...
absprodnn 16580 The absolute value of the ...
fissn0dvds 16581 For each finite subset of ...
fissn0dvdsn0 16582 For each finite subset of ...
lcmfval 16583 Value of the ` _lcm ` func...
lcmf0val 16584 The value, by convention, ...
lcmfn0val 16585 The value of the ` _lcm ` ...
lcmfnnval 16586 The value of the ` _lcm ` ...
lcmfcllem 16587 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 16588 Closure of the ` _lcm ` fu...
lcmfpr 16589 The value of the ` _lcm ` ...
lcmfcl 16590 Closure of the ` _lcm ` fu...
lcmfnncl 16591 Closure of the ` _lcm ` fu...
lcmfeq0b 16592 The least common multiple ...
dvdslcmf 16593 The least common multiple ...
lcmfledvds 16594 A positive integer which i...
lcmf 16595 Characterization of the le...
lcmf0 16596 The least common multiple ...
lcmfsn 16597 The least common multiple ...
lcmftp 16598 The least common multiple ...
lcmfunsnlem1 16599 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 16600 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 16601 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 16602 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 16603 Lemma for ~ lcmfdvds and ~...
lcmfdvds 16604 The least common multiple ...
lcmfdvdsb 16605 Biconditional form of ~ lc...
lcmfunsn 16606 The ` _lcm ` function for ...
lcmfun 16607 The ` _lcm ` function for ...
lcmfass 16608 Associative law for the ` ...
lcmf2a3a4e12 16609 The least common multiple ...
lcmflefac 16610 The least common multiple ...
coprmgcdb 16611 Two positive integers are ...
ncoprmgcdne1b 16612 Two positive integers are ...
ncoprmgcdgt1b 16613 Two positive integers are ...
coprmdvds1 16614 If two positive integers a...
coprmdvds 16615 Euclid's Lemma (see ProofW...
coprmdvds2 16616 If an integer is divisible...
mulgcddvds 16617 One half of ~ rpmulgcd2 , ...
rpmulgcd2 16618 If ` M ` is relatively pri...
qredeq 16619 Two equal reduced fraction...
qredeu 16620 Every rational number has ...
rpmul 16621 If ` K ` is relatively pri...
rpdvds 16622 If ` K ` is relatively pri...
coprmprod 16623 The product of the element...
coprmproddvdslem 16624 Lemma for ~ coprmproddvds ...
coprmproddvds 16625 If a positive integer is d...
congr 16626 Definition of congruence b...
divgcdcoprm0 16627 Integers divided by gcd ar...
divgcdcoprmex 16628 Integers divided by gcd ar...
cncongr1 16629 One direction of the bicon...
cncongr2 16630 The other direction of the...
cncongr 16631 Cancellability of Congruen...
cncongrcoprm 16632 Corollary 1 of Cancellabil...
isprm 16635 The predicate "is a prime ...
prmnn 16636 A prime number is a positi...
prmz 16637 A prime number is an integ...
prmssnn 16638 The prime numbers are a su...
prmex 16639 The set of prime numbers e...
0nprm 16640 0 is not a prime number. ...
1nprm 16641 1 is not a prime number. ...
1idssfct 16642 The positive divisors of a...
isprm2lem 16643 Lemma for ~ isprm2 . (Con...
isprm2 16644 The predicate "is a prime ...
isprm3 16645 The predicate "is a prime ...
isprm4 16646 The predicate "is a prime ...
prmind2 16647 A variation on ~ prmind as...
prmind 16648 Perform induction over the...
dvdsprime 16649 If ` M ` divides a prime, ...
nprm 16650 A product of two integers ...
nprmi 16651 An inference for composite...
dvdsnprmd 16652 If a number is divisible b...
prm2orodd 16653 A prime number is either 2...
2prm 16654 2 is a prime number. (Con...
2mulprm 16655 A multiple of two is prime...
3prm 16656 3 is a prime number. (Con...
4nprm 16657 4 is not a prime number. ...
prmuz2 16658 A prime number is an integ...
prmgt1 16659 A prime number is an integ...
prmm2nn0 16660 Subtracting 2 from a prime...
oddprmgt2 16661 An odd prime is greater th...
oddprmge3 16662 An odd prime is greater th...
ge2nprmge4 16663 A composite integer greate...
sqnprm 16664 A square is never prime. ...
dvdsprm 16665 An integer greater than or...
exprmfct 16666 Every integer greater than...
prmdvdsfz 16667 Each integer greater than ...
nprmdvds1 16668 No prime number divides 1....
isprm5 16669 One need only check prime ...
isprm7 16670 One need only check prime ...
maxprmfct 16671 The set of prime factors o...
divgcdodd 16672 Either ` A / ( A gcd B ) `...
coprm 16673 A prime number either divi...
prmrp 16674 Unequal prime numbers are ...
euclemma 16675 Euclid's lemma. A prime n...
isprm6 16676 A number is prime iff it s...
prmdvdsexp 16677 A prime divides a positive...
prmdvdsexpb 16678 A prime divides a positive...
prmdvdsexpr 16679 If a prime divides a nonne...
prmdvdssq 16680 Condition for a prime divi...
prmdvdssqOLD 16681 Obsolete version of ~ prmd...
prmexpb 16682 Two positive prime powers ...
prmfac1 16683 The factorial of a number ...
dvdszzq 16684 Divisibility for an intege...
rpexp 16685 If two numbers ` A ` and `...
rpexp1i 16686 Relative primality passes ...
rpexp12i 16687 Relative primality passes ...
prmndvdsfaclt 16688 A prime number does not di...
prmdvdsbc 16689 Condition for a prime numb...
prmdvdsncoprmbd 16690 Two positive integers are ...
ncoprmlnprm 16691 If two positive integers a...
cncongrprm 16692 Corollary 2 of Cancellabil...
isevengcd2 16693 The predicate "is an even ...
isoddgcd1 16694 The predicate "is an odd n...
3lcm2e6 16695 The least common multiple ...
qnumval 16700 Value of the canonical num...
qdenval 16701 Value of the canonical den...
qnumdencl 16702 Lemma for ~ qnumcl and ~ q...
qnumcl 16703 The canonical numerator of...
qdencl 16704 The canonical denominator ...
fnum 16705 Canonical numerator define...
fden 16706 Canonical denominator defi...
qnumdenbi 16707 Two numbers are the canoni...
qnumdencoprm 16708 The canonical representati...
qeqnumdivden 16709 Recover a rational number ...
qmuldeneqnum 16710 Multiplying a rational by ...
divnumden 16711 Calculate the reduced form...
divdenle 16712 Reducing a quotient never ...
qnumgt0 16713 A rational is positive iff...
qgt0numnn 16714 A rational is positive iff...
nn0gcdsq 16715 Squaring commutes with GCD...
zgcdsq 16716 ~ nn0gcdsq extended to int...
numdensq 16717 Squaring a rational square...
numsq 16718 Square commutes with canon...
densq 16719 Square commutes with canon...
qden1elz 16720 A rational is an integer i...
zsqrtelqelz 16721 If an integer has a ration...
nonsq 16722 Any integer strictly betwe...
phival 16727 Value of the Euler ` phi `...
phicl2 16728 Bounds and closure for the...
phicl 16729 Closure for the value of t...
phibndlem 16730 Lemma for ~ phibnd . (Con...
phibnd 16731 A slightly tighter bound o...
phicld 16732 Closure for the value of t...
phi1 16733 Value of the Euler ` phi `...
dfphi2 16734 Alternate definition of th...
hashdvds 16735 The number of numbers in a...
phiprmpw 16736 Value of the Euler ` phi `...
phiprm 16737 Value of the Euler ` phi `...
crth 16738 The Chinese Remainder Theo...
phimullem 16739 Lemma for ~ phimul . (Con...
phimul 16740 The Euler ` phi ` function...
eulerthlem1 16741 Lemma for ~ eulerth . (Co...
eulerthlem2 16742 Lemma for ~ eulerth . (Co...
eulerth 16743 Euler's theorem, a general...
fermltl 16744 Fermat's little theorem. ...
prmdiv 16745 Show an explicit expressio...
prmdiveq 16746 The modular inverse of ` A...
prmdivdiv 16747 The (modular) inverse of t...
hashgcdlem 16748 A correspondence between e...
hashgcdeq 16749 Number of initial positive...
phisum 16750 The divisor sum identity o...
odzval 16751 Value of the order functio...
odzcllem 16752 - Lemma for ~ odzcl , show...
odzcl 16753 The order of a group eleme...
odzid 16754 Any element raised to the ...
odzdvds 16755 The only powers of ` A ` t...
odzphi 16756 The order of any group ele...
modprm1div 16757 A prime number divides an ...
m1dvdsndvds 16758 If an integer minus 1 is d...
modprminv 16759 Show an explicit expressio...
modprminveq 16760 The modular inverse of ` A...
vfermltl 16761 Variant of Fermat's little...
vfermltlALT 16762 Alternate proof of ~ vferm...
powm2modprm 16763 If an integer minus 1 is d...
reumodprminv 16764 For any prime number and f...
modprm0 16765 For two positive integers ...
nnnn0modprm0 16766 For a positive integer and...
modprmn0modprm0 16767 For an integer not being 0...
coprimeprodsq 16768 If three numbers are copri...
coprimeprodsq2 16769 If three numbers are copri...
oddprm 16770 A prime not equal to ` 2 `...
nnoddn2prm 16771 A prime not equal to ` 2 `...
oddn2prm 16772 A prime not equal to ` 2 `...
nnoddn2prmb 16773 A number is a prime number...
prm23lt5 16774 A prime less than 5 is eit...
prm23ge5 16775 A prime is either 2 or 3 o...
pythagtriplem1 16776 Lemma for ~ pythagtrip . ...
pythagtriplem2 16777 Lemma for ~ pythagtrip . ...
pythagtriplem3 16778 Lemma for ~ pythagtrip . ...
pythagtriplem4 16779 Lemma for ~ pythagtrip . ...
pythagtriplem10 16780 Lemma for ~ pythagtrip . ...
pythagtriplem6 16781 Lemma for ~ pythagtrip . ...
pythagtriplem7 16782 Lemma for ~ pythagtrip . ...
pythagtriplem8 16783 Lemma for ~ pythagtrip . ...
pythagtriplem9 16784 Lemma for ~ pythagtrip . ...
pythagtriplem11 16785 Lemma for ~ pythagtrip . ...
pythagtriplem12 16786 Lemma for ~ pythagtrip . ...
pythagtriplem13 16787 Lemma for ~ pythagtrip . ...
pythagtriplem14 16788 Lemma for ~ pythagtrip . ...
pythagtriplem15 16789 Lemma for ~ pythagtrip . ...
pythagtriplem16 16790 Lemma for ~ pythagtrip . ...
pythagtriplem17 16791 Lemma for ~ pythagtrip . ...
pythagtriplem18 16792 Lemma for ~ pythagtrip . ...
pythagtriplem19 16793 Lemma for ~ pythagtrip . ...
pythagtrip 16794 Parameterize the Pythagore...
iserodd 16795 Collect the odd terms in a...
pclem 16798 - Lemma for the prime powe...
pcprecl 16799 Closure of the prime power...
pcprendvds 16800 Non-divisibility property ...
pcprendvds2 16801 Non-divisibility property ...
pcpre1 16802 Value of the prime power p...
pcpremul 16803 Multiplicative property of...
pcval 16804 The value of the prime pow...
pceulem 16805 Lemma for ~ pceu . (Contr...
pceu 16806 Uniqueness for the prime p...
pczpre 16807 Connect the prime count pr...
pczcl 16808 Closure of the prime power...
pccl 16809 Closure of the prime power...
pccld 16810 Closure of the prime power...
pcmul 16811 Multiplication property of...
pcdiv 16812 Division property of the p...
pcqmul 16813 Multiplication property of...
pc0 16814 The value of the prime pow...
pc1 16815 Value of the prime count f...
pcqcl 16816 Closure of the general pri...
pcqdiv 16817 Division property of the p...
pcrec 16818 Prime power of a reciproca...
pcexp 16819 Prime power of an exponent...
pcxnn0cl 16820 Extended nonnegative integ...
pcxcl 16821 Extended real closure of t...
pcge0 16822 The prime count of an inte...
pczdvds 16823 Defining property of the p...
pcdvds 16824 Defining property of the p...
pczndvds 16825 Defining property of the p...
pcndvds 16826 Defining property of the p...
pczndvds2 16827 The remainder after dividi...
pcndvds2 16828 The remainder after dividi...
pcdvdsb 16829 ` P ^ A ` divides ` N ` if...
pcelnn 16830 There are a positive numbe...
pceq0 16831 There are zero powers of a...
pcidlem 16832 The prime count of a prime...
pcid 16833 The prime count of a prime...
pcneg 16834 The prime count of a negat...
pcabs 16835 The prime count of an abso...
pcdvdstr 16836 The prime count increases ...
pcgcd1 16837 The prime count of a GCD i...
pcgcd 16838 The prime count of a GCD i...
pc2dvds 16839 A characterization of divi...
pc11 16840 The prime count function, ...
pcz 16841 The prime count function c...
pcprmpw2 16842 Self-referential expressio...
pcprmpw 16843 Self-referential expressio...
dvdsprmpweq 16844 If a positive integer divi...
dvdsprmpweqnn 16845 If an integer greater than...
dvdsprmpweqle 16846 If a positive integer divi...
difsqpwdvds 16847 If the difference of two s...
pcaddlem 16848 Lemma for ~ pcadd . The o...
pcadd 16849 An inequality for the prim...
pcadd2 16850 The inequality of ~ pcadd ...
pcmptcl 16851 Closure for the prime powe...
pcmpt 16852 Construct a function with ...
pcmpt2 16853 Dividing two prime count m...
pcmptdvds 16854 The partial products of th...
pcprod 16855 The product of the primes ...
sumhash 16856 The sum of 1 over a set is...
fldivp1 16857 The difference between the...
pcfaclem 16858 Lemma for ~ pcfac . (Cont...
pcfac 16859 Calculate the prime count ...
pcbc 16860 Calculate the prime count ...
qexpz 16861 If a power of a rational n...
expnprm 16862 A second or higher power o...
oddprmdvds 16863 Every positive integer whi...
prmpwdvds 16864 A relation involving divis...
pockthlem 16865 Lemma for ~ pockthg . (Co...
pockthg 16866 The generalized Pocklingto...
pockthi 16867 Pocklington's theorem, whi...
unbenlem 16868 Lemma for ~ unben . (Cont...
unben 16869 An unbounded set of positi...
infpnlem1 16870 Lemma for ~ infpn . The s...
infpnlem2 16871 Lemma for ~ infpn . For a...
infpn 16872 There exist infinitely man...
infpn2 16873 There exist infinitely man...
prmunb 16874 The primes are unbounded. ...
prminf 16875 There are an infinite numb...
prmreclem1 16876 Lemma for ~ prmrec . Prop...
prmreclem2 16877 Lemma for ~ prmrec . Ther...
prmreclem3 16878 Lemma for ~ prmrec . The ...
prmreclem4 16879 Lemma for ~ prmrec . Show...
prmreclem5 16880 Lemma for ~ prmrec . Here...
prmreclem6 16881 Lemma for ~ prmrec . If t...
prmrec 16882 The sum of the reciprocals...
1arithlem1 16883 Lemma for ~ 1arith . (Con...
1arithlem2 16884 Lemma for ~ 1arith . (Con...
1arithlem3 16885 Lemma for ~ 1arith . (Con...
1arithlem4 16886 Lemma for ~ 1arith . (Con...
1arith 16887 Fundamental theorem of ari...
1arith2 16888 Fundamental theorem of ari...
elgz 16891 Elementhood in the gaussia...
gzcn 16892 A gaussian integer is a co...
zgz 16893 An integer is a gaussian i...
igz 16894 ` _i ` is a gaussian integ...
gznegcl 16895 The gaussian integers are ...
gzcjcl 16896 The gaussian integers are ...
gzaddcl 16897 The gaussian integers are ...
gzmulcl 16898 The gaussian integers are ...
gzreim 16899 Construct a gaussian integ...
gzsubcl 16900 The gaussian integers are ...
gzabssqcl 16901 The squared norm of a gaus...
4sqlem5 16902 Lemma for ~ 4sq . (Contri...
4sqlem6 16903 Lemma for ~ 4sq . (Contri...
4sqlem7 16904 Lemma for ~ 4sq . (Contri...
4sqlem8 16905 Lemma for ~ 4sq . (Contri...
4sqlem9 16906 Lemma for ~ 4sq . (Contri...
4sqlem10 16907 Lemma for ~ 4sq . (Contri...
4sqlem1 16908 Lemma for ~ 4sq . The set...
4sqlem2 16909 Lemma for ~ 4sq . Change ...
4sqlem3 16910 Lemma for ~ 4sq . Suffici...
4sqlem4a 16911 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 16912 Lemma for ~ 4sq . We can ...
mul4sqlem 16913 Lemma for ~ mul4sq : algeb...
mul4sq 16914 Euler's four-square identi...
4sqlem11 16915 Lemma for ~ 4sq . Use the...
4sqlem12 16916 Lemma for ~ 4sq . For any...
4sqlem13 16917 Lemma for ~ 4sq . (Contri...
4sqlem14 16918 Lemma for ~ 4sq . (Contri...
4sqlem15 16919 Lemma for ~ 4sq . (Contri...
4sqlem16 16920 Lemma for ~ 4sq . (Contri...
4sqlem17 16921 Lemma for ~ 4sq . (Contri...
4sqlem18 16922 Lemma for ~ 4sq . Inducti...
4sqlem19 16923 Lemma for ~ 4sq . The pro...
4sq 16924 Lagrange's four-square the...
vdwapfval 16931 Define the arithmetic prog...
vdwapf 16932 The arithmetic progression...
vdwapval 16933 Value of the arithmetic pr...
vdwapun 16934 Remove the first element o...
vdwapid1 16935 The first element of an ar...
vdwap0 16936 Value of a length-1 arithm...
vdwap1 16937 Value of a length-1 arithm...
vdwmc 16938 The predicate " The ` <. R...
vdwmc2 16939 Expand out the definition ...
vdwpc 16940 The predicate " The colori...
vdwlem1 16941 Lemma for ~ vdw . (Contri...
vdwlem2 16942 Lemma for ~ vdw . (Contri...
vdwlem3 16943 Lemma for ~ vdw . (Contri...
vdwlem4 16944 Lemma for ~ vdw . (Contri...
vdwlem5 16945 Lemma for ~ vdw . (Contri...
vdwlem6 16946 Lemma for ~ vdw . (Contri...
vdwlem7 16947 Lemma for ~ vdw . (Contri...
vdwlem8 16948 Lemma for ~ vdw . (Contri...
vdwlem9 16949 Lemma for ~ vdw . (Contri...
vdwlem10 16950 Lemma for ~ vdw . Set up ...
vdwlem11 16951 Lemma for ~ vdw . (Contri...
vdwlem12 16952 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 16953 Lemma for ~ vdw . Main in...
vdw 16954 Van der Waerden's theorem....
vdwnnlem1 16955 Corollary of ~ vdw , and l...
vdwnnlem2 16956 Lemma for ~ vdwnn . The s...
vdwnnlem3 16957 Lemma for ~ vdwnn . (Cont...
vdwnn 16958 Van der Waerden's theorem,...
ramtlecl 16960 The set ` T ` of numbers w...
hashbcval 16962 Value of the "binomial set...
hashbccl 16963 The binomial set is a fini...
hashbcss 16964 Subset relation for the bi...
hashbc0 16965 The set of subsets of size...
hashbc2 16966 The size of the binomial s...
0hashbc 16967 There are no subsets of th...
ramval 16968 The value of the Ramsey nu...
ramcl2lem 16969 Lemma for extended real cl...
ramtcl 16970 The Ramsey number has the ...
ramtcl2 16971 The Ramsey number is an in...
ramtub 16972 The Ramsey number is a low...
ramub 16973 The Ramsey number is a low...
ramub2 16974 It is sufficient to check ...
rami 16975 The defining property of a...
ramcl2 16976 The Ramsey number is eithe...
ramxrcl 16977 The Ramsey number is an ex...
ramubcl 16978 If the Ramsey number is up...
ramlb 16979 Establish a lower bound on...
0ram 16980 The Ramsey number when ` M...
0ram2 16981 The Ramsey number when ` M...
ram0 16982 The Ramsey number when ` R...
0ramcl 16983 Lemma for ~ ramcl : Exist...
ramz2 16984 The Ramsey number when ` F...
ramz 16985 The Ramsey number when ` F...
ramub1lem1 16986 Lemma for ~ ramub1 . (Con...
ramub1lem2 16987 Lemma for ~ ramub1 . (Con...
ramub1 16988 Inductive step for Ramsey'...
ramcl 16989 Ramsey's theorem: the Rams...
ramsey 16990 Ramsey's theorem with the ...
prmoval 16993 Value of the primorial fun...
prmocl 16994 Closure of the primorial f...
prmone0 16995 The primorial function is ...
prmo0 16996 The primorial of 0. (Cont...
prmo1 16997 The primorial of 1. (Cont...
prmop1 16998 The primorial of a success...
prmonn2 16999 Value of the primorial fun...
prmo2 17000 The primorial of 2. (Cont...
prmo3 17001 The primorial of 3. (Cont...
prmdvdsprmo 17002 The primorial of a number ...
prmdvdsprmop 17003 The primorial of a number ...
fvprmselelfz 17004 The value of the prime sel...
fvprmselgcd1 17005 The greatest common diviso...
prmolefac 17006 The primorial of a positiv...
prmodvdslcmf 17007 The primorial of a nonnega...
prmolelcmf 17008 The primorial of a positiv...
prmgaplem1 17009 Lemma for ~ prmgap : The ...
prmgaplem2 17010 Lemma for ~ prmgap : The ...
prmgaplcmlem1 17011 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 17012 Lemma for ~ prmgaplcm : T...
prmgaplem3 17013 Lemma for ~ prmgap . (Con...
prmgaplem4 17014 Lemma for ~ prmgap . (Con...
prmgaplem5 17015 Lemma for ~ prmgap : for e...
prmgaplem6 17016 Lemma for ~ prmgap : for e...
prmgaplem7 17017 Lemma for ~ prmgap . (Con...
prmgaplem8 17018 Lemma for ~ prmgap . (Con...
prmgap 17019 The prime gap theorem: for...
prmgaplcm 17020 Alternate proof of ~ prmga...
prmgapprmolem 17021 Lemma for ~ prmgapprmo : ...
prmgapprmo 17022 Alternate proof of ~ prmga...
dec2dvds 17023 Divisibility by two is obv...
dec5dvds 17024 Divisibility by five is ob...
dec5dvds2 17025 Divisibility by five is ob...
dec5nprm 17026 Divisibility by five is ob...
dec2nprm 17027 Divisibility by two is obv...
modxai 17028 Add exponents in a power m...
mod2xi 17029 Double exponents in a powe...
modxp1i 17030 Add one to an exponent in ...
mod2xnegi 17031 Version of ~ mod2xi with a...
modsubi 17032 Subtract from within a mod...
gcdi 17033 Calculate a GCD via Euclid...
gcdmodi 17034 Calculate a GCD via Euclid...
decexp2 17035 Calculate a power of two. ...
numexp0 17036 Calculate an integer power...
numexp1 17037 Calculate an integer power...
numexpp1 17038 Calculate an integer power...
numexp2x 17039 Double an integer power. ...
decsplit0b 17040 Split a decimal number int...
decsplit0 17041 Split a decimal number int...
decsplit1 17042 Split a decimal number int...
decsplit 17043 Split a decimal number int...
karatsuba 17044 The Karatsuba multiplicati...
2exp4 17045 Two to the fourth power is...
2exp5 17046 Two to the fifth power is ...
2exp6 17047 Two to the sixth power is ...
2exp7 17048 Two to the seventh power i...
2exp8 17049 Two to the eighth power is...
2exp11 17050 Two to the eleventh power ...
2exp16 17051 Two to the sixteenth power...
3exp3 17052 Three to the third power i...
2expltfac 17053 The factorial grows faster...
cshwsidrepsw 17054 If cyclically shifting a w...
cshwsidrepswmod0 17055 If cyclically shifting a w...
cshwshashlem1 17056 If cyclically shifting a w...
cshwshashlem2 17057 If cyclically shifting a w...
cshwshashlem3 17058 If cyclically shifting a w...
cshwsdisj 17059 The singletons resulting b...
cshwsiun 17060 The set of (different!) wo...
cshwsex 17061 The class of (different!) ...
cshws0 17062 The size of the set of (di...
cshwrepswhash1 17063 The size of the set of (di...
cshwshashnsame 17064 If a word (not consisting ...
cshwshash 17065 If a word has a length bei...
prmlem0 17066 Lemma for ~ prmlem1 and ~ ...
prmlem1a 17067 A quick proof skeleton to ...
prmlem1 17068 A quick proof skeleton to ...
5prm 17069 5 is a prime number. (Con...
6nprm 17070 6 is not a prime number. ...
7prm 17071 7 is a prime number. (Con...
8nprm 17072 8 is not a prime number. ...
9nprm 17073 9 is not a prime number. ...
10nprm 17074 10 is not a prime number. ...
11prm 17075 11 is a prime number. (Co...
13prm 17076 13 is a prime number. (Co...
17prm 17077 17 is a prime number. (Co...
19prm 17078 19 is a prime number. (Co...
23prm 17079 23 is a prime number. (Co...
prmlem2 17080 Our last proving session g...
37prm 17081 37 is a prime number. (Co...
43prm 17082 43 is a prime number. (Co...
83prm 17083 83 is a prime number. (Co...
139prm 17084 139 is a prime number. (C...
163prm 17085 163 is a prime number. (C...
317prm 17086 317 is a prime number. (C...
631prm 17087 631 is a prime number. (C...
prmo4 17088 The primorial of 4. (Cont...
prmo5 17089 The primorial of 5. (Cont...
prmo6 17090 The primorial of 6. (Cont...
1259lem1 17091 Lemma for ~ 1259prm . Cal...
1259lem2 17092 Lemma for ~ 1259prm . Cal...
1259lem3 17093 Lemma for ~ 1259prm . Cal...
1259lem4 17094 Lemma for ~ 1259prm . Cal...
1259lem5 17095 Lemma for ~ 1259prm . Cal...
1259prm 17096 1259 is a prime number. (...
2503lem1 17097 Lemma for ~ 2503prm . Cal...
2503lem2 17098 Lemma for ~ 2503prm . Cal...
2503lem3 17099 Lemma for ~ 2503prm . Cal...
2503prm 17100 2503 is a prime number. (...
4001lem1 17101 Lemma for ~ 4001prm . Cal...
4001lem2 17102 Lemma for ~ 4001prm . Cal...
4001lem3 17103 Lemma for ~ 4001prm . Cal...
4001lem4 17104 Lemma for ~ 4001prm . Cal...
4001prm 17105 4001 is a prime number. (...
brstruct 17108 The structure relation is ...
isstruct2 17109 The property of being a st...
structex 17110 A structure is a set. (Co...
structn0fun 17111 A structure without the em...
isstruct 17112 The property of being a st...
structcnvcnv 17113 Two ways to express the re...
structfung 17114 The converse of the conver...
structfun 17115 Convert between two kinds ...
structfn 17116 Convert between two kinds ...
strleun 17117 Combine two structures int...
strle1 17118 Make a structure from a si...
strle2 17119 Make a structure from a pa...
strle3 17120 Make a structure from a tr...
sbcie2s 17121 A special version of class...
sbcie3s 17122 A special version of class...
reldmsets 17125 The structure override ope...
setsvalg 17126 Value of the structure rep...
setsval 17127 Value of the structure rep...
fvsetsid 17128 The value of the structure...
fsets 17129 The structure replacement ...
setsdm 17130 The domain of a structure ...
setsfun 17131 A structure with replaceme...
setsfun0 17132 A structure with replaceme...
setsn0fun 17133 The value of the structure...
setsstruct2 17134 An extensible structure wi...
setsexstruct2 17135 An extensible structure wi...
setsstruct 17136 An extensible structure wi...
wunsets 17137 Closure of structure repla...
setsres 17138 The structure replacement ...
setsabs 17139 Replacing the same compone...
setscom 17140 Different components can b...
sloteq 17143 Equality theorem for the `...
slotfn 17144 A slot is a function on se...
strfvnd 17145 Deduction version of ~ str...
strfvn 17146 Value of a structure compo...
strfvss 17147 A structure component extr...
wunstr 17148 Closure of a structure ind...
str0 17149 All components of the empt...
strfvi 17150 Structure slot extractors ...
fveqprc 17151 Lemma for showing the equa...
oveqprc 17152 Lemma for showing the equa...
wunndx 17155 Closure of the index extra...
ndxarg 17156 Get the numeric argument f...
ndxid 17157 A structure component extr...
strndxid 17158 The value of a structure c...
setsidvald 17159 Value of the structure rep...
setsidvaldOLD 17160 Obsolete version of ~ sets...
strfvd 17161 Deduction version of ~ str...
strfv2d 17162 Deduction version of ~ str...
strfv2 17163 A variation on ~ strfv to ...
strfv 17164 Extract a structure compon...
strfv3 17165 Variant on ~ strfv for lar...
strssd 17166 Deduction version of ~ str...
strss 17167 Propagate component extrac...
setsid 17168 Value of the structure rep...
setsnid 17169 Value of the structure rep...
setsnidOLD 17170 Obsolete proof of ~ setsni...
baseval 17173 Value of the base set extr...
baseid 17174 Utility theorem: index-ind...
basfn 17175 The base set extractor is ...
base0 17176 The base set of the empty ...
elbasfv 17177 Utility theorem: reverse c...
elbasov 17178 Utility theorem: reverse c...
strov2rcl 17179 Partial reverse closure fo...
basendx 17180 Index value of the base se...
basendxnn 17181 The index value of the bas...
basendxnnOLD 17182 Obsolete proof of ~ basend...
basndxelwund 17183 The index of the base set ...
basprssdmsets 17184 The pair of the base index...
opelstrbas 17185 The base set of a structur...
1strstr 17186 A constructed one-slot str...
1strstr1 17187 A constructed one-slot str...
1strbas 17188 The base set of a construc...
1strbasOLD 17189 Obsolete proof of ~ 1strba...
1strwunbndx 17190 A constructed one-slot str...
1strwun 17191 A constructed one-slot str...
1strwunOLD 17192 Obsolete version of ~ 1str...
2strstr 17193 A constructed two-slot str...
2strbas 17194 The base set of a construc...
2strop 17195 The other slot of a constr...
2strstr1 17196 A constructed two-slot str...
2strstr1OLD 17197 Obsolete version of ~ 2str...
2strbas1 17198 The base set of a construc...
2strop1 17199 The other slot of a constr...
reldmress 17202 The structure restriction ...
ressval 17203 Value of structure restric...
ressid2 17204 General behavior of trivia...
ressval2 17205 Value of nontrivial struct...
ressbas 17206 Base set of a structure re...
ressbasOLD 17207 Obsolete proof of ~ ressba...
ressbasssg 17208 The base set of a restrict...
ressbas2 17209 Base set of a structure re...
ressbasss 17210 The base set of a restrict...
ressbasssOLD 17211 Obsolete proof of ~ ressba...
ressbasss2 17212 The base set of a restrict...
resseqnbas 17213 The components of an exten...
resslemOLD 17214 Obsolete version of ~ ress...
ress0 17215 All restrictions of the nu...
ressid 17216 Behavior of trivial restri...
ressinbas 17217 Restriction only cares abo...
ressval3d 17218 Value of structure restric...
ressval3dOLD 17219 Obsolete version of ~ ress...
ressress 17220 Restriction composition la...
ressabs 17221 Restriction absorption law...
wunress 17222 Closure of structure restr...
wunressOLD 17223 Obsolete proof of ~ wunres...
plusgndx 17250 Index value of the ~ df-pl...
plusgid 17251 Utility theorem: index-ind...
plusgndxnn 17252 The index of the slot for ...
basendxltplusgndx 17253 The index of the slot for ...
basendxnplusgndx 17254 The slot for the base set ...
basendxnplusgndxOLD 17255 Obsolete version of ~ base...
grpstr 17256 A constructed group is a s...
grpstrndx 17257 A constructed group is a s...
grpbase 17258 The base set of a construc...
grpbaseOLD 17259 Obsolete version of ~ grpb...
grpplusg 17260 The operation of a constru...
grpplusgOLD 17261 Obsolete version of ~ grpp...
ressplusg 17262 ` +g ` is unaffected by re...
grpbasex 17263 The base of an explicitly ...
grpplusgx 17264 The operation of an explic...
mulrndx 17265 Index value of the ~ df-mu...
mulridx 17266 Utility theorem: index-ind...
basendxnmulrndx 17267 The slot for the base set ...
basendxnmulrndxOLD 17268 Obsolete proof of ~ basend...
plusgndxnmulrndx 17269 The slot for the group (ad...
rngstr 17270 A constructed ring is a st...
rngbase 17271 The base set of a construc...
rngplusg 17272 The additive operation of ...
rngmulr 17273 The multiplicative operati...
starvndx 17274 Index value of the ~ df-st...
starvid 17275 Utility theorem: index-ind...
starvndxnbasendx 17276 The slot for the involutio...
starvndxnplusgndx 17277 The slot for the involutio...
starvndxnmulrndx 17278 The slot for the involutio...
ressmulr 17279 ` .r ` is unaffected by re...
ressstarv 17280 ` *r ` is unaffected by re...
srngstr 17281 A constructed star ring is...
srngbase 17282 The base set of a construc...
srngplusg 17283 The addition operation of ...
srngmulr 17284 The multiplication operati...
srnginvl 17285 The involution function of...
scandx 17286 Index value of the ~ df-sc...
scaid 17287 Utility theorem: index-ind...
scandxnbasendx 17288 The slot for the scalar is...
scandxnplusgndx 17289 The slot for the scalar fi...
scandxnmulrndx 17290 The slot for the scalar fi...
vscandx 17291 Index value of the ~ df-vs...
vscaid 17292 Utility theorem: index-ind...
vscandxnbasendx 17293 The slot for the scalar pr...
vscandxnplusgndx 17294 The slot for the scalar pr...
vscandxnmulrndx 17295 The slot for the scalar pr...
vscandxnscandx 17296 The slot for the scalar pr...
lmodstr 17297 A constructed left module ...
lmodbase 17298 The base set of a construc...
lmodplusg 17299 The additive operation of ...
lmodsca 17300 The set of scalars of a co...
lmodvsca 17301 The scalar product operati...
ipndx 17302 Index value of the ~ df-ip...
ipid 17303 Utility theorem: index-ind...
ipndxnbasendx 17304 The slot for the inner pro...
ipndxnplusgndx 17305 The slot for the inner pro...
ipndxnmulrndx 17306 The slot for the inner pro...
slotsdifipndx 17307 The slot for the scalar is...
ipsstr 17308 Lemma to shorten proofs of...
ipsbase 17309 The base set of a construc...
ipsaddg 17310 The additive operation of ...
ipsmulr 17311 The multiplicative operati...
ipssca 17312 The set of scalars of a co...
ipsvsca 17313 The scalar product operati...
ipsip 17314 The multiplicative operati...
resssca 17315 ` Scalar ` is unaffected b...
ressvsca 17316 ` .s ` is unaffected by re...
ressip 17317 The inner product is unaff...
phlstr 17318 A constructed pre-Hilbert ...
phlbase 17319 The base set of a construc...
phlplusg 17320 The additive operation of ...
phlsca 17321 The ring of scalars of a c...
phlvsca 17322 The scalar product operati...
phlip 17323 The inner product (Hermiti...
tsetndx 17324 Index value of the ~ df-ts...
tsetid 17325 Utility theorem: index-ind...
tsetndxnn 17326 The index of the slot for ...
basendxlttsetndx 17327 The index of the slot for ...
tsetndxnbasendx 17328 The slot for the topology ...
tsetndxnplusgndx 17329 The slot for the topology ...
tsetndxnmulrndx 17330 The slot for the topology ...
tsetndxnstarvndx 17331 The slot for the topology ...
slotstnscsi 17332 The slots ` Scalar ` , ` ....
topgrpstr 17333 A constructed topological ...
topgrpbas 17334 The base set of a construc...
topgrpplusg 17335 The additive operation of ...
topgrptset 17336 The topology of a construc...
resstset 17337 ` TopSet ` is unaffected b...
plendx 17338 Index value of the ~ df-pl...
pleid 17339 Utility theorem: self-refe...
plendxnn 17340 The index value of the ord...
basendxltplendx 17341 The index value of the ` B...
plendxnbasendx 17342 The slot for the order is ...
plendxnplusgndx 17343 The slot for the "less tha...
plendxnmulrndx 17344 The slot for the "less tha...
plendxnscandx 17345 The slot for the "less tha...
plendxnvscandx 17346 The slot for the "less tha...
slotsdifplendx 17347 The index of the slot for ...
otpsstr 17348 Functionality of a topolog...
otpsbas 17349 The base set of a topologi...
otpstset 17350 The open sets of a topolog...
otpsle 17351 The order of a topological...
ressle 17352 ` le ` is unaffected by re...
ocndx 17353 Index value of the ~ df-oc...
ocid 17354 Utility theorem: index-ind...
basendxnocndx 17355 The slot for the orthocomp...
plendxnocndx 17356 The slot for the orthocomp...
dsndx 17357 Index value of the ~ df-ds...
dsid 17358 Utility theorem: index-ind...
dsndxnn 17359 The index of the slot for ...
basendxltdsndx 17360 The index of the slot for ...
dsndxnbasendx 17361 The slot for the distance ...
dsndxnplusgndx 17362 The slot for the distance ...
dsndxnmulrndx 17363 The slot for the distance ...
slotsdnscsi 17364 The slots ` Scalar ` , ` ....
dsndxntsetndx 17365 The slot for the distance ...
slotsdifdsndx 17366 The index of the slot for ...
unifndx 17367 Index value of the ~ df-un...
unifid 17368 Utility theorem: index-ind...
unifndxnn 17369 The index of the slot for ...
basendxltunifndx 17370 The index of the slot for ...
unifndxnbasendx 17371 The slot for the uniform s...
unifndxntsetndx 17372 The slot for the uniform s...
slotsdifunifndx 17373 The index of the slot for ...
ressunif 17374 ` UnifSet ` is unaffected ...
odrngstr 17375 Functionality of an ordere...
odrngbas 17376 The base set of an ordered...
odrngplusg 17377 The addition operation of ...
odrngmulr 17378 The multiplication operati...
odrngtset 17379 The open sets of an ordere...
odrngle 17380 The order of an ordered me...
odrngds 17381 The metric of an ordered m...
ressds 17382 ` dist ` is unaffected by ...
homndx 17383 Index value of the ~ df-ho...
homid 17384 Utility theorem: index-ind...
ccondx 17385 Index value of the ~ df-cc...
ccoid 17386 Utility theorem: index-ind...
slotsbhcdif 17387 The slots ` Base ` , ` Hom...
slotsbhcdifOLD 17388 Obsolete proof of ~ slotsb...
slotsdifplendx2 17389 The index of the slot for ...
slotsdifocndx 17390 The index of the slot for ...
resshom 17391 ` Hom ` is unaffected by r...
ressco 17392 ` comp ` is unaffected by ...
restfn 17397 The subspace topology oper...
topnfn 17398 The topology extractor fun...
restval 17399 The subspace topology indu...
elrest 17400 The predicate "is an open ...
elrestr 17401 Sufficient condition for b...
0rest 17402 Value of the structure res...
restid2 17403 The subspace topology over...
restsspw 17404 The subspace topology is a...
firest 17405 The finite intersections o...
restid 17406 The subspace topology of t...
topnval 17407 Value of the topology extr...
topnid 17408 Value of the topology extr...
topnpropd 17409 The topology extractor fun...
reldmprds 17421 The structure product is a...
prdsbasex 17423 Lemma for structure produc...
imasvalstr 17424 An image structure value i...
prdsvalstr 17425 Structure product value is...
prdsbaslem 17426 Lemma for ~ prdsbas and si...
prdsvallem 17427 Lemma for ~ prdsval . (Co...
prdsval 17428 Value of the structure pro...
prdssca 17429 Scalar ring of a structure...
prdsbas 17430 Base set of a structure pr...
prdsplusg 17431 Addition in a structure pr...
prdsmulr 17432 Multiplication in a struct...
prdsvsca 17433 Scalar multiplication in a...
prdsip 17434 Inner product in a structu...
prdsle 17435 Structure product weak ord...
prdsless 17436 Closure of the order relat...
prdsds 17437 Structure product distance...
prdsdsfn 17438 Structure product distance...
prdstset 17439 Structure product topology...
prdshom 17440 Structure product hom-sets...
prdsco 17441 Structure product composit...
prdsbas2 17442 The base set of a structur...
prdsbasmpt 17443 A constructed tuple is a p...
prdsbasfn 17444 Points in the structure pr...
prdsbasprj 17445 Each point in a structure ...
prdsplusgval 17446 Value of a componentwise s...
prdsplusgfval 17447 Value of a structure produ...
prdsmulrval 17448 Value of a componentwise r...
prdsmulrfval 17449 Value of a structure produ...
prdsleval 17450 Value of the product order...
prdsdsval 17451 Value of the metric in a s...
prdsvscaval 17452 Scalar multiplication in a...
prdsvscafval 17453 Scalar multiplication of a...
prdsbas3 17454 The base set of an indexed...
prdsbasmpt2 17455 A constructed tuple is a p...
prdsbascl 17456 An element of the base has...
prdsdsval2 17457 Value of the metric in a s...
prdsdsval3 17458 Value of the metric in a s...
pwsval 17459 Value of a structure power...
pwsbas 17460 Base set of a structure po...
pwselbasb 17461 Membership in the base set...
pwselbas 17462 An element of a structure ...
pwsplusgval 17463 Value of addition in a str...
pwsmulrval 17464 Value of multiplication in...
pwsle 17465 Ordering in a structure po...
pwsleval 17466 Ordering in a structure po...
pwsvscafval 17467 Scalar multiplication in a...
pwsvscaval 17468 Scalar multiplication of a...
pwssca 17469 The ring of scalars of a s...
pwsdiagel 17470 Membership of diagonal ele...
pwssnf1o 17471 Triviality of singleton po...
imasval 17484 Value of an image structur...
imasbas 17485 The base set of an image s...
imasds 17486 The distance function of a...
imasdsfn 17487 The distance function is a...
imasdsval 17488 The distance function of a...
imasdsval2 17489 The distance function of a...
imasplusg 17490 The group operation in an ...
imasmulr 17491 The ring multiplication in...
imassca 17492 The scalar field of an ima...
imasvsca 17493 The scalar multiplication ...
imasip 17494 The inner product of an im...
imastset 17495 The topology of an image s...
imasle 17496 The ordering of an image s...
f1ocpbllem 17497 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 17498 An injection is compatible...
f1ovscpbl 17499 An injection is compatible...
f1olecpbl 17500 An injection is compatible...
imasaddfnlem 17501 The image structure operat...
imasaddvallem 17502 The operation of an image ...
imasaddflem 17503 The image set operations a...
imasaddfn 17504 The image structure's grou...
imasaddval 17505 The value of an image stru...
imasaddf 17506 The image structure's grou...
imasmulfn 17507 The image structure's ring...
imasmulval 17508 The value of an image stru...
imasmulf 17509 The image structure's ring...
imasvscafn 17510 The image structure's scal...
imasvscaval 17511 The value of an image stru...
imasvscaf 17512 The image structure's scal...
imasless 17513 The order relation defined...
imasleval 17514 The value of the image str...
qusval 17515 Value of a quotient struct...
quslem 17516 The function in ~ qusval i...
qusin 17517 Restrict the equivalence r...
qusbas 17518 Base set of a quotient str...
quss 17519 The scalar field of a quot...
divsfval 17520 Value of the function in ~...
ercpbllem 17521 Lemma for ~ ercpbl . (Con...
ercpbl 17522 Translate the function com...
erlecpbl 17523 Translate the relation com...
qusaddvallem 17524 Value of an operation defi...
qusaddflem 17525 The operation of a quotien...
qusaddval 17526 The addition in a quotient...
qusaddf 17527 The addition in a quotient...
qusmulval 17528 The multiplication in a qu...
qusmulf 17529 The multiplication in a qu...
fnpr2o 17530 Function with a domain of ...
fnpr2ob 17531 Biconditional version of ~...
fvpr0o 17532 The value of a function wi...
fvpr1o 17533 The value of a function wi...
fvprif 17534 The value of the pair func...
xpsfrnel 17535 Elementhood in the target ...
xpsfeq 17536 A function on ` 2o ` is de...
xpsfrnel2 17537 Elementhood in the target ...
xpscf 17538 Equivalent condition for t...
xpsfval 17539 The value of the function ...
xpsff1o 17540 The function appearing in ...
xpsfrn 17541 A short expression for the...
xpsff1o2 17542 The function appearing in ...
xpsval 17543 Value of the binary struct...
xpsrnbas 17544 The indexed structure prod...
xpsbas 17545 The base set of the binary...
xpsaddlem 17546 Lemma for ~ xpsadd and ~ x...
xpsadd 17547 Value of the addition oper...
xpsmul 17548 Value of the multiplicatio...
xpssca 17549 Value of the scalar field ...
xpsvsca 17550 Value of the scalar multip...
xpsless 17551 Closure of the ordering in...
xpsle 17552 Value of the ordering in a...
ismre 17561 Property of being a Moore ...
fnmre 17562 The Moore collection gener...
mresspw 17563 A Moore collection is a su...
mress 17564 A Moore-closed subset is a...
mre1cl 17565 In any Moore collection th...
mreintcl 17566 A nonempty collection of c...
mreiincl 17567 A nonempty indexed interse...
mrerintcl 17568 The relative intersection ...
mreriincl 17569 The relative intersection ...
mreincl 17570 Two closed sets have a clo...
mreuni 17571 Since the entire base set ...
mreunirn 17572 Two ways to express the no...
ismred 17573 Properties that determine ...
ismred2 17574 Properties that determine ...
mremre 17575 The Moore collections of s...
submre 17576 The subcollection of a clo...
mrcflem 17577 The domain and codomain of...
fnmrc 17578 Moore-closure is a well-be...
mrcfval 17579 Value of the function expr...
mrcf 17580 The Moore closure is a fun...
mrcval 17581 Evaluation of the Moore cl...
mrccl 17582 The Moore closure of a set...
mrcsncl 17583 The Moore closure of a sin...
mrcid 17584 The closure of a closed se...
mrcssv 17585 The closure of a set is a ...
mrcidb 17586 A set is closed iff it is ...
mrcss 17587 Closure preserves subset o...
mrcssid 17588 The closure of a set is a ...
mrcidb2 17589 A set is closed iff it con...
mrcidm 17590 The closure operation is i...
mrcsscl 17591 The closure is the minimal...
mrcuni 17592 Idempotence of closure und...
mrcun 17593 Idempotence of closure und...
mrcssvd 17594 The Moore closure of a set...
mrcssd 17595 Moore closure preserves su...
mrcssidd 17596 A set is contained in its ...
mrcidmd 17597 Moore closure is idempoten...
mressmrcd 17598 In a Moore system, if a se...
submrc 17599 In a closure system which ...
mrieqvlemd 17600 In a Moore system, if ` Y ...
mrisval 17601 Value of the set of indepe...
ismri 17602 Criterion for a set to be ...
ismri2 17603 Criterion for a subset of ...
ismri2d 17604 Criterion for a subset of ...
ismri2dd 17605 Definition of independence...
mriss 17606 An independent set of a Mo...
mrissd 17607 An independent set of a Mo...
ismri2dad 17608 Consequence of a set in a ...
mrieqvd 17609 In a Moore system, a set i...
mrieqv2d 17610 In a Moore system, a set i...
mrissmrcd 17611 In a Moore system, if an i...
mrissmrid 17612 In a Moore system, subsets...
mreexd 17613 In a Moore system, the clo...
mreexmrid 17614 In a Moore system whose cl...
mreexexlemd 17615 This lemma is used to gene...
mreexexlem2d 17616 Used in ~ mreexexlem4d to ...
mreexexlem3d 17617 Base case of the induction...
mreexexlem4d 17618 Induction step of the indu...
mreexexd 17619 Exchange-type theorem. In...
mreexdomd 17620 In a Moore system whose cl...
mreexfidimd 17621 In a Moore system whose cl...
isacs 17622 A set is an algebraic clos...
acsmre 17623 Algebraic closure systems ...
isacs2 17624 In the definition of an al...
acsfiel 17625 A set is closed in an alge...
acsfiel2 17626 A set is closed in an alge...
acsmred 17627 An algebraic closure syste...
isacs1i 17628 A closure system determine...
mreacs 17629 Algebraicity is a composab...
acsfn 17630 Algebraicity of a conditio...
acsfn0 17631 Algebraicity of a point cl...
acsfn1 17632 Algebraicity of a one-argu...
acsfn1c 17633 Algebraicity of a one-argu...
acsfn2 17634 Algebraicity of a two-argu...
iscat 17643 The predicate "is a catego...
iscatd 17644 Properties that determine ...
catidex 17645 Each object in a category ...
catideu 17646 Each object in a category ...
cidfval 17647 Each object in a category ...
cidval 17648 Each object in a category ...
cidffn 17649 The identity arrow constru...
cidfn 17650 The identity arrow operato...
catidd 17651 Deduce the identity arrow ...
iscatd2 17652 Version of ~ iscatd with a...
catidcl 17653 Each object in a category ...
catlid 17654 Left identity property of ...
catrid 17655 Right identity property of...
catcocl 17656 Closure of a composition a...
catass 17657 Associativity of compositi...
catcone0 17658 Composition of non-empty h...
0catg 17659 Any structure with an empt...
0cat 17660 The empty set is a categor...
homffval 17661 Value of the functionalize...
fnhomeqhomf 17662 If the Hom-set operation i...
homfval 17663 Value of the functionalize...
homffn 17664 The functionalized Hom-set...
homfeq 17665 Condition for two categori...
homfeqd 17666 If two structures have the...
homfeqbas 17667 Deduce equality of base se...
homfeqval 17668 Value of the functionalize...
comfffval 17669 Value of the functionalize...
comffval 17670 Value of the functionalize...
comfval 17671 Value of the functionalize...
comfffval2 17672 Value of the functionalize...
comffval2 17673 Value of the functionalize...
comfval2 17674 Value of the functionalize...
comfffn 17675 The functionalized composi...
comffn 17676 The functionalized composi...
comfeq 17677 Condition for two categori...
comfeqd 17678 Condition for two categori...
comfeqval 17679 Equality of two compositio...
catpropd 17680 Two structures with the sa...
cidpropd 17681 Two structures with the sa...
oppcval 17684 Value of the opposite cate...
oppchomfval 17685 Hom-sets of the opposite c...
oppchomfvalOLD 17686 Obsolete proof of ~ oppcho...
oppchom 17687 Hom-sets of the opposite c...
oppccofval 17688 Composition in the opposit...
oppcco 17689 Composition in the opposit...
oppcbas 17690 Base set of an opposite ca...
oppcbasOLD 17691 Obsolete version of ~ oppc...
oppccatid 17692 Lemma for ~ oppccat . (Co...
oppchomf 17693 Hom-sets of the opposite c...
oppcid 17694 Identity function of an op...
oppccat 17695 An opposite category is a ...
2oppcbas 17696 The double opposite catego...
2oppchomf 17697 The double opposite catego...
2oppccomf 17698 The double opposite catego...
oppchomfpropd 17699 If two categories have the...
oppccomfpropd 17700 If two categories have the...
oppccatf 17701 ` oppCat ` restricted to `...
monfval 17706 Definition of a monomorphi...
ismon 17707 Definition of a monomorphi...
ismon2 17708 Write out the monomorphism...
monhom 17709 A monomorphism is a morphi...
moni 17710 Property of a monomorphism...
monpropd 17711 If two categories have the...
oppcmon 17712 A monomorphism in the oppo...
oppcepi 17713 An epimorphism in the oppo...
isepi 17714 Definition of an epimorphi...
isepi2 17715 Write out the epimorphism ...
epihom 17716 An epimorphism is a morphi...
epii 17717 Property of an epimorphism...
sectffval 17724 Value of the section opera...
sectfval 17725 Value of the section relat...
sectss 17726 The section relation is a ...
issect 17727 The property " ` F ` is a ...
issect2 17728 Property of being a sectio...
sectcan 17729 If ` G ` is a section of `...
sectco 17730 Composition of two section...
isofval 17731 Function value of the func...
invffval 17732 Value of the inverse relat...
invfval 17733 Value of the inverse relat...
isinv 17734 Value of the inverse relat...
invss 17735 The inverse relation is a ...
invsym 17736 The inverse relation is sy...
invsym2 17737 The inverse relation is sy...
invfun 17738 The inverse relation is a ...
isoval 17739 The isomorphisms are the d...
inviso1 17740 If ` G ` is an inverse to ...
inviso2 17741 If ` G ` is an inverse to ...
invf 17742 The inverse relation is a ...
invf1o 17743 The inverse relation is a ...
invinv 17744 The inverse of the inverse...
invco 17745 The composition of two iso...
dfiso2 17746 Alternate definition of an...
dfiso3 17747 Alternate definition of an...
inveq 17748 If there are two inverses ...
isofn 17749 The function value of the ...
isohom 17750 An isomorphism is a homomo...
isoco 17751 The composition of two iso...
oppcsect 17752 A section in the opposite ...
oppcsect2 17753 A section in the opposite ...
oppcinv 17754 An inverse in the opposite...
oppciso 17755 An isomorphism in the oppo...
sectmon 17756 If ` F ` is a section of `...
monsect 17757 If ` F ` is a monomorphism...
sectepi 17758 If ` F ` is a section of `...
episect 17759 If ` F ` is an epimorphism...
sectid 17760 The identity is a section ...
invid 17761 The inverse of the identit...
idiso 17762 The identity is an isomorp...
idinv 17763 The inverse of the identit...
invisoinvl 17764 The inverse of an isomorph...
invisoinvr 17765 The inverse of an isomorph...
invcoisoid 17766 The inverse of an isomorph...
isocoinvid 17767 The inverse of an isomorph...
rcaninv 17768 Right cancellation of an i...
cicfval 17771 The set of isomorphic obje...
brcic 17772 The relation "is isomorphi...
cic 17773 Objects ` X ` and ` Y ` in...
brcici 17774 Prove that two objects are...
cicref 17775 Isomorphism is reflexive. ...
ciclcl 17776 Isomorphism implies the le...
cicrcl 17777 Isomorphism implies the ri...
cicsym 17778 Isomorphism is symmetric. ...
cictr 17779 Isomorphism is transitive....
cicer 17780 Isomorphism is an equivale...
sscrel 17787 The subcategory subset rel...
brssc 17788 The subcategory subset rel...
sscpwex 17789 An analogue of ~ pwex for ...
subcrcl 17790 Reverse closure for the su...
sscfn1 17791 The subcategory subset rel...
sscfn2 17792 The subcategory subset rel...
ssclem 17793 Lemma for ~ ssc1 and simil...
isssc 17794 Value of the subcategory s...
ssc1 17795 Infer subset relation on o...
ssc2 17796 Infer subset relation on m...
sscres 17797 Any function restricted to...
sscid 17798 The subcategory subset rel...
ssctr 17799 The subcategory subset rel...
ssceq 17800 The subcategory subset rel...
rescval 17801 Value of the category rest...
rescval2 17802 Value of the category rest...
rescbas 17803 Base set of the category r...
rescbasOLD 17804 Obsolete version of ~ resc...
reschom 17805 Hom-sets of the category r...
reschomf 17806 Hom-sets of the category r...
rescco 17807 Composition in the categor...
resccoOLD 17808 Obsolete proof of ~ rescco...
rescabs 17809 Restriction absorption law...
rescabsOLD 17810 Obsolete proof of ~ seqp1d...
rescabs2 17811 Restriction absorption law...
issubc 17812 Elementhood in the set of ...
issubc2 17813 Elementhood in the set of ...
0ssc 17814 For any category ` C ` , t...
0subcat 17815 For any category ` C ` , t...
catsubcat 17816 For any category ` C ` , `...
subcssc 17817 An element in the set of s...
subcfn 17818 An element in the set of s...
subcss1 17819 The objects of a subcatego...
subcss2 17820 The morphisms of a subcate...
subcidcl 17821 The identity of the origin...
subccocl 17822 A subcategory is closed un...
subccatid 17823 A subcategory is a categor...
subcid 17824 The identity in a subcateg...
subccat 17825 A subcategory is a categor...
issubc3 17826 Alternate definition of a ...
fullsubc 17827 The full subcategory gener...
fullresc 17828 The category formed by str...
resscat 17829 A category restricted to a...
subsubc 17830 A subcategory of a subcate...
relfunc 17839 The set of functors is a r...
funcrcl 17840 Reverse closure for a func...
isfunc 17841 Value of the set of functo...
isfuncd 17842 Deduce that an operation i...
funcf1 17843 The object part of a funct...
funcixp 17844 The morphism part of a fun...
funcf2 17845 The morphism part of a fun...
funcfn2 17846 The morphism part of a fun...
funcid 17847 A functor maps each identi...
funcco 17848 A functor maps composition...
funcsect 17849 The image of a section und...
funcinv 17850 The image of an inverse un...
funciso 17851 The image of an isomorphis...
funcoppc 17852 A functor on categories yi...
idfuval 17853 Value of the identity func...
idfu2nd 17854 Value of the morphism part...
idfu2 17855 Value of the morphism part...
idfu1st 17856 Value of the object part o...
idfu1 17857 Value of the object part o...
idfucl 17858 The identity functor is a ...
cofuval 17859 Value of the composition o...
cofu1st 17860 Value of the object part o...
cofu1 17861 Value of the object part o...
cofu2nd 17862 Value of the morphism part...
cofu2 17863 Value of the morphism part...
cofuval2 17864 Value of the composition o...
cofucl 17865 The composition of two fun...
cofuass 17866 Functor composition is ass...
cofulid 17867 The identity functor is a ...
cofurid 17868 The identity functor is a ...
resfval 17869 Value of the functor restr...
resfval2 17870 Value of the functor restr...
resf1st 17871 Value of the functor restr...
resf2nd 17872 Value of the functor restr...
funcres 17873 A functor restricted to a ...
funcres2b 17874 Condition for a functor to...
funcres2 17875 A functor into a restricte...
idfusubc0 17876 The identity functor for a...
idfusubc 17877 The identity functor for a...
wunfunc 17878 A weak universe is closed ...
wunfuncOLD 17879 Obsolete proof of ~ wunfun...
funcpropd 17880 If two categories have the...
funcres2c 17881 Condition for a functor to...
fullfunc 17886 A full functor is a functo...
fthfunc 17887 A faithful functor is a fu...
relfull 17888 The set of full functors i...
relfth 17889 The set of faithful functo...
isfull 17890 Value of the set of full f...
isfull2 17891 Equivalent condition for a...
fullfo 17892 The morphism map of a full...
fulli 17893 The morphism map of a full...
isfth 17894 Value of the set of faithf...
isfth2 17895 Equivalent condition for a...
isffth2 17896 A fully faithful functor i...
fthf1 17897 The morphism map of a fait...
fthi 17898 The morphism map of a fait...
ffthf1o 17899 The morphism map of a full...
fullpropd 17900 If two categories have the...
fthpropd 17901 If two categories have the...
fulloppc 17902 The opposite functor of a ...
fthoppc 17903 The opposite functor of a ...
ffthoppc 17904 The opposite functor of a ...
fthsect 17905 A faithful functor reflect...
fthinv 17906 A faithful functor reflect...
fthmon 17907 A faithful functor reflect...
fthepi 17908 A faithful functor reflect...
ffthiso 17909 A fully faithful functor r...
fthres2b 17910 Condition for a faithful f...
fthres2c 17911 Condition for a faithful f...
fthres2 17912 A faithful functor into a ...
idffth 17913 The identity functor is a ...
cofull 17914 The composition of two ful...
cofth 17915 The composition of two fai...
coffth 17916 The composition of two ful...
rescfth 17917 The inclusion functor from...
ressffth 17918 The inclusion functor from...
fullres2c 17919 Condition for a full funct...
ffthres2c 17920 Condition for a fully fait...
inclfusubc 17921 The "inclusion functor" fr...
fnfuc 17926 The ` FuncCat ` operation ...
natfval 17927 Value of the function givi...
isnat 17928 Property of being a natura...
isnat2 17929 Property of being a natura...
natffn 17930 The natural transformation...
natrcl 17931 Reverse closure for a natu...
nat1st2nd 17932 Rewrite the natural transf...
natixp 17933 A natural transformation i...
natcl 17934 A component of a natural t...
natfn 17935 A natural transformation i...
nati 17936 Naturality property of a n...
wunnat 17937 A weak universe is closed ...
wunnatOLD 17938 Obsolete proof of ~ wunnat...
catstr 17939 A category structure is a ...
fucval 17940 Value of the functor categ...
fuccofval 17941 Value of the functor categ...
fucbas 17942 The objects of the functor...
fuchom 17943 The morphisms in the funct...
fuchomOLD 17944 Obsolete proof of ~ fuchom...
fucco 17945 Value of the composition o...
fuccoval 17946 Value of the functor categ...
fuccocl 17947 The composition of two nat...
fucidcl 17948 The identity natural trans...
fuclid 17949 Left identity of natural t...
fucrid 17950 Right identity of natural ...
fucass 17951 Associativity of natural t...
fuccatid 17952 The functor category is a ...
fuccat 17953 The functor category is a ...
fucid 17954 The identity morphism in t...
fucsect 17955 Two natural transformation...
fucinv 17956 Two natural transformation...
invfuc 17957 If ` V ( x ) ` is an inver...
fuciso 17958 A natural transformation i...
natpropd 17959 If two categories have the...
fucpropd 17960 If two categories have the...
initofn 17967 ` InitO ` is a function on...
termofn 17968 ` TermO ` is a function on...
zeroofn 17969 ` ZeroO ` is a function on...
initorcl 17970 Reverse closure for an ini...
termorcl 17971 Reverse closure for a term...
zeroorcl 17972 Reverse closure for a zero...
initoval 17973 The value of the initial o...
termoval 17974 The value of the terminal ...
zerooval 17975 The value of the zero obje...
isinito 17976 The predicate "is an initi...
istermo 17977 The predicate "is a termin...
iszeroo 17978 The predicate "is a zero o...
isinitoi 17979 Implication of a class bei...
istermoi 17980 Implication of a class bei...
initoid 17981 For an initial object, the...
termoid 17982 For a terminal object, the...
dfinito2 17983 An initial object is a ter...
dftermo2 17984 A terminal object is an in...
dfinito3 17985 An alternate definition of...
dftermo3 17986 An alternate definition of...
initoo 17987 An initial object is an ob...
termoo 17988 A terminal object is an ob...
iszeroi 17989 Implication of a class bei...
2initoinv 17990 Morphisms between two init...
initoeu1 17991 Initial objects are essent...
initoeu1w 17992 Initial objects are essent...
initoeu2lem0 17993 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 17994 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 17995 Lemma 2 for ~ initoeu2 . ...
initoeu2 17996 Initial objects are essent...
2termoinv 17997 Morphisms between two term...
termoeu1 17998 Terminal objects are essen...
termoeu1w 17999 Terminal objects are essen...
homarcl 18008 Reverse closure for an arr...
homafval 18009 Value of the disjointified...
homaf 18010 Functionality of the disjo...
homaval 18011 Value of the disjointified...
elhoma 18012 Value of the disjointified...
elhomai 18013 Produce an arrow from a mo...
elhomai2 18014 Produce an arrow from a mo...
homarcl2 18015 Reverse closure for the do...
homarel 18016 An arrow is an ordered pai...
homa1 18017 The first component of an ...
homahom2 18018 The second component of an...
homahom 18019 The second component of an...
homadm 18020 The domain of an arrow wit...
homacd 18021 The codomain of an arrow w...
homadmcd 18022 Decompose an arrow into do...
arwval 18023 The set of arrows is the u...
arwrcl 18024 The first component of an ...
arwhoma 18025 An arrow is contained in t...
homarw 18026 A hom-set is a subset of t...
arwdm 18027 The domain of an arrow is ...
arwcd 18028 The codomain of an arrow i...
dmaf 18029 The domain function is a f...
cdaf 18030 The codomain function is a...
arwhom 18031 The second component of an...
arwdmcd 18032 Decompose an arrow into do...
idafval 18037 Value of the identity arro...
idaval 18038 Value of the identity arro...
ida2 18039 Morphism part of the ident...
idahom 18040 Domain and codomain of the...
idadm 18041 Domain of the identity arr...
idacd 18042 Codomain of the identity a...
idaf 18043 The identity arrow functio...
coafval 18044 The value of the compositi...
eldmcoa 18045 A pair ` <. G , F >. ` is ...
dmcoass 18046 The domain of composition ...
homdmcoa 18047 If ` F : X --> Y ` and ` G...
coaval 18048 Value of composition for c...
coa2 18049 The morphism part of arrow...
coahom 18050 The composition of two com...
coapm 18051 Composition of arrows is a...
arwlid 18052 Left identity of a categor...
arwrid 18053 Right identity of a catego...
arwass 18054 Associativity of compositi...
setcval 18057 Value of the category of s...
setcbas 18058 Set of objects of the cate...
setchomfval 18059 Set of arrows of the categ...
setchom 18060 Set of arrows of the categ...
elsetchom 18061 A morphism of sets is a fu...
setccofval 18062 Composition in the categor...
setcco 18063 Composition in the categor...
setccatid 18064 Lemma for ~ setccat . (Co...
setccat 18065 The category of sets is a ...
setcid 18066 The identity arrow in the ...
setcmon 18067 A monomorphism of sets is ...
setcepi 18068 An epimorphism of sets is ...
setcsect 18069 A section in the category ...
setcinv 18070 An inverse in the category...
setciso 18071 An isomorphism in the cate...
resssetc 18072 The restriction of the cat...
funcsetcres2 18073 A functor into a smaller c...
setc2obas 18074 ` (/) ` and ` 1o ` are dis...
setc2ohom 18075 ` ( SetCat `` 2o ) ` is a ...
cat1lem 18076 The category of sets in a ...
cat1 18077 The definition of category...
catcval 18080 Value of the category of c...
catcbas 18081 Set of objects of the cate...
catchomfval 18082 Set of arrows of the categ...
catchom 18083 Set of arrows of the categ...
catccofval 18084 Composition in the categor...
catcco 18085 Composition in the categor...
catccatid 18086 Lemma for ~ catccat . (Co...
catcid 18087 The identity arrow in the ...
catccat 18088 The category of categories...
resscatc 18089 The restriction of the cat...
catcisolem 18090 Lemma for ~ catciso . (Co...
catciso 18091 A functor is an isomorphis...
catcbascl 18092 An element of the base set...
catcslotelcl 18093 A slot entry of an element...
catcbaselcl 18094 The base set of an element...
catchomcl 18095 The Hom-set of an element ...
catcccocl 18096 The composition operation ...
catcoppccl 18097 The category of categories...
catcoppcclOLD 18098 Obsolete proof of ~ catcop...
catcfuccl 18099 The category of categories...
catcfucclOLD 18100 Obsolete proof of ~ catcfu...
fncnvimaeqv 18101 The inverse images of the ...
bascnvimaeqv 18102 The inverse image of the u...
estrcval 18105 Value of the category of e...
estrcbas 18106 Set of objects of the cate...
estrchomfval 18107 Set of morphisms ("arrows"...
estrchom 18108 The morphisms between exte...
elestrchom 18109 A morphism between extensi...
estrccofval 18110 Composition in the categor...
estrcco 18111 Composition in the categor...
estrcbasbas 18112 An element of the base set...
estrccatid 18113 Lemma for ~ estrccat . (C...
estrccat 18114 The category of extensible...
estrcid 18115 The identity arrow in the ...
estrchomfn 18116 The Hom-set operation in t...
estrchomfeqhom 18117 The functionalized Hom-set...
estrreslem1 18118 Lemma 1 for ~ estrres . (...
estrreslem1OLD 18119 Obsolete version of ~ estr...
estrreslem2 18120 Lemma 2 for ~ estrres . (...
estrres 18121 Any restriction of a categ...
funcestrcsetclem1 18122 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 18123 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 18124 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 18125 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 18126 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 18127 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 18128 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 18129 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 18130 Lemma 9 for ~ funcestrcset...
funcestrcsetc 18131 The "natural forgetful fun...
fthestrcsetc 18132 The "natural forgetful fun...
fullestrcsetc 18133 The "natural forgetful fun...
equivestrcsetc 18134 The "natural forgetful fun...
setc1strwun 18135 A constructed one-slot str...
funcsetcestrclem1 18136 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 18137 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 18138 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 18139 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 18140 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 18141 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 18142 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 18143 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 18144 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 18145 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 18146 The "embedding functor" fr...
fthsetcestrc 18147 The "embedding functor" fr...
fullsetcestrc 18148 The "embedding functor" fr...
embedsetcestrc 18149 The "embedding functor" fr...
fnxpc 18158 The binary product of cate...
xpcval 18159 Value of the binary produc...
xpcbas 18160 Set of objects of the bina...
xpchomfval 18161 Set of morphisms of the bi...
xpchom 18162 Set of morphisms of the bi...
relxpchom 18163 A hom-set in the binary pr...
xpccofval 18164 Value of composition in th...
xpcco 18165 Value of composition in th...
xpcco1st 18166 Value of composition in th...
xpcco2nd 18167 Value of composition in th...
xpchom2 18168 Value of the set of morphi...
xpcco2 18169 Value of composition in th...
xpccatid 18170 The product of two categor...
xpcid 18171 The identity morphism in t...
xpccat 18172 The product of two categor...
1stfval 18173 Value of the first project...
1stf1 18174 Value of the first project...
1stf2 18175 Value of the first project...
2ndfval 18176 Value of the first project...
2ndf1 18177 Value of the first project...
2ndf2 18178 Value of the first project...
1stfcl 18179 The first projection funct...
2ndfcl 18180 The second projection func...
prfval 18181 Value of the pairing funct...
prf1 18182 Value of the pairing funct...
prf2fval 18183 Value of the pairing funct...
prf2 18184 Value of the pairing funct...
prfcl 18185 The pairing of functors ` ...
prf1st 18186 Cancellation of pairing wi...
prf2nd 18187 Cancellation of pairing wi...
1st2ndprf 18188 Break a functor into a pro...
catcxpccl 18189 The category of categories...
catcxpcclOLD 18190 Obsolete proof of ~ catcxp...
xpcpropd 18191 If two categories have the...
evlfval 18200 Value of the evaluation fu...
evlf2 18201 Value of the evaluation fu...
evlf2val 18202 Value of the evaluation na...
evlf1 18203 Value of the evaluation fu...
evlfcllem 18204 Lemma for ~ evlfcl . (Con...
evlfcl 18205 The evaluation functor is ...
curfval 18206 Value of the curry functor...
curf1fval 18207 Value of the object part o...
curf1 18208 Value of the object part o...
curf11 18209 Value of the double evalua...
curf12 18210 The partially evaluated cu...
curf1cl 18211 The partially evaluated cu...
curf2 18212 Value of the curry functor...
curf2val 18213 Value of a component of th...
curf2cl 18214 The curry functor at a mor...
curfcl 18215 The curry functor of a fun...
curfpropd 18216 If two categories have the...
uncfval 18217 Value of the uncurry funct...
uncfcl 18218 The uncurry operation take...
uncf1 18219 Value of the uncurry funct...
uncf2 18220 Value of the uncurry funct...
curfuncf 18221 Cancellation of curry with...
uncfcurf 18222 Cancellation of uncurry wi...
diagval 18223 Define the diagonal functo...
diagcl 18224 The diagonal functor is a ...
diag1cl 18225 The constant functor of ` ...
diag11 18226 Value of the constant func...
diag12 18227 Value of the constant func...
diag2 18228 Value of the diagonal func...
diag2cl 18229 The diagonal functor at a ...
curf2ndf 18230 As shown in ~ diagval , th...
hofval 18235 Value of the Hom functor, ...
hof1fval 18236 The object part of the Hom...
hof1 18237 The object part of the Hom...
hof2fval 18238 The morphism part of the H...
hof2val 18239 The morphism part of the H...
hof2 18240 The morphism part of the H...
hofcllem 18241 Lemma for ~ hofcl . (Cont...
hofcl 18242 Closure of the Hom functor...
oppchofcl 18243 Closure of the opposite Ho...
yonval 18244 Value of the Yoneda embedd...
yoncl 18245 The Yoneda embedding is a ...
yon1cl 18246 The Yoneda embedding at an...
yon11 18247 Value of the Yoneda embedd...
yon12 18248 Value of the Yoneda embedd...
yon2 18249 Value of the Yoneda embedd...
hofpropd 18250 If two categories have the...
yonpropd 18251 If two categories have the...
oppcyon 18252 Value of the opposite Yone...
oyoncl 18253 The opposite Yoneda embedd...
oyon1cl 18254 The opposite Yoneda embedd...
yonedalem1 18255 Lemma for ~ yoneda . (Con...
yonedalem21 18256 Lemma for ~ yoneda . (Con...
yonedalem3a 18257 Lemma for ~ yoneda . (Con...
yonedalem4a 18258 Lemma for ~ yoneda . (Con...
yonedalem4b 18259 Lemma for ~ yoneda . (Con...
yonedalem4c 18260 Lemma for ~ yoneda . (Con...
yonedalem22 18261 Lemma for ~ yoneda . (Con...
yonedalem3b 18262 Lemma for ~ yoneda . (Con...
yonedalem3 18263 Lemma for ~ yoneda . (Con...
yonedainv 18264 The Yoneda Lemma with expl...
yonffthlem 18265 Lemma for ~ yonffth . (Co...
yoneda 18266 The Yoneda Lemma. There i...
yonffth 18267 The Yoneda Lemma. The Yon...
yoniso 18268 If the codomain is recover...
oduval 18271 Value of an order dual str...
oduleval 18272 Value of the less-equal re...
oduleg 18273 Truth of the less-equal re...
odubas 18274 Base set of an order dual ...
odubasOLD 18275 Obsolete proof of ~ odubas...
isprs 18280 Property of being a preord...
prslem 18281 Lemma for ~ prsref and ~ p...
prsref 18282 "Less than or equal to" is...
prstr 18283 "Less than or equal to" is...
isdrs 18284 Property of being a direct...
drsdir 18285 Direction of a directed se...
drsprs 18286 A directed set is a proset...
drsbn0 18287 The base of a directed set...
drsdirfi 18288 Any _finite_ number of ele...
isdrs2 18289 Directed sets may be defin...
ispos 18297 The predicate "is a poset"...
ispos2 18298 A poset is an antisymmetri...
posprs 18299 A poset is a proset. (Con...
posi 18300 Lemma for poset properties...
posref 18301 A poset ordering is reflex...
posasymb 18302 A poset ordering is asymme...
postr 18303 A poset ordering is transi...
0pos 18304 Technical lemma to simplif...
0posOLD 18305 Obsolete proof of ~ 0pos a...
isposd 18306 Properties that determine ...
isposi 18307 Properties that determine ...
isposix 18308 Properties that determine ...
isposixOLD 18309 Obsolete proof of ~ isposi...
pospropd 18310 Posethood is determined on...
odupos 18311 Being a poset is a self-du...
oduposb 18312 Being a poset is a self-du...
pltfval 18314 Value of the less-than rel...
pltval 18315 Less-than relation. ( ~ d...
pltle 18316 "Less than" implies "less ...
pltne 18317 The "less than" relation i...
pltirr 18318 The "less than" relation i...
pleval2i 18319 One direction of ~ pleval2...
pleval2 18320 "Less than or equal to" in...
pltnle 18321 "Less than" implies not co...
pltval3 18322 Alternate expression for t...
pltnlt 18323 The less-than relation imp...
pltn2lp 18324 The less-than relation has...
plttr 18325 The less-than relation is ...
pltletr 18326 Transitive law for chained...
plelttr 18327 Transitive law for chained...
pospo 18328 Write a poset structure in...
lubfval 18333 Value of the least upper b...
lubdm 18334 Domain of the least upper ...
lubfun 18335 The LUB is a function. (C...
lubeldm 18336 Member of the domain of th...
lubelss 18337 A member of the domain of ...
lubeu 18338 Unique existence proper of...
lubval 18339 Value of the least upper b...
lubcl 18340 The least upper bound func...
lubprop 18341 Properties of greatest low...
luble 18342 The greatest lower bound i...
lublecllem 18343 Lemma for ~ lublecl and ~ ...
lublecl 18344 The set of all elements le...
lubid 18345 The LUB of elements less t...
glbfval 18346 Value of the greatest lowe...
glbdm 18347 Domain of the greatest low...
glbfun 18348 The GLB is a function. (C...
glbeldm 18349 Member of the domain of th...
glbelss 18350 A member of the domain of ...
glbeu 18351 Unique existence proper of...
glbval 18352 Value of the greatest lowe...
glbcl 18353 The least upper bound func...
glbprop 18354 Properties of greatest low...
glble 18355 The greatest lower bound i...
joinfval 18356 Value of join function for...
joinfval2 18357 Value of join function for...
joindm 18358 Domain of join function fo...
joindef 18359 Two ways to say that a joi...
joinval 18360 Join value. Since both si...
joincl 18361 Closure of join of element...
joindmss 18362 Subset property of domain ...
joinval2lem 18363 Lemma for ~ joinval2 and ~...
joinval2 18364 Value of join for a poset ...
joineu 18365 Uniqueness of join of elem...
joinlem 18366 Lemma for join properties....
lejoin1 18367 A join's first argument is...
lejoin2 18368 A join's second argument i...
joinle 18369 A join is less than or equ...
meetfval 18370 Value of meet function for...
meetfval2 18371 Value of meet function for...
meetdm 18372 Domain of meet function fo...
meetdef 18373 Two ways to say that a mee...
meetval 18374 Meet value. Since both si...
meetcl 18375 Closure of meet of element...
meetdmss 18376 Subset property of domain ...
meetval2lem 18377 Lemma for ~ meetval2 and ~...
meetval2 18378 Value of meet for a poset ...
meeteu 18379 Uniqueness of meet of elem...
meetlem 18380 Lemma for meet properties....
lemeet1 18381 A meet's first argument is...
lemeet2 18382 A meet's second argument i...
meetle 18383 A meet is less than or equ...
joincomALT 18384 The join of a poset is com...
joincom 18385 The join of a poset is com...
meetcomALT 18386 The meet of a poset is com...
meetcom 18387 The meet of a poset is com...
join0 18388 Lemma for ~ odumeet . (Co...
meet0 18389 Lemma for ~ odujoin . (Co...
odulub 18390 Least upper bounds in a du...
odujoin 18391 Joins in a dual order are ...
oduglb 18392 Greatest lower bounds in a...
odumeet 18393 Meets in a dual order are ...
poslubmo 18394 Least upper bounds in a po...
posglbmo 18395 Greatest lower bounds in a...
poslubd 18396 Properties which determine...
poslubdg 18397 Properties which determine...
posglbdg 18398 Properties which determine...
istos 18401 The predicate "is a toset"...
tosso 18402 Write the totally ordered ...
tospos 18403 A Toset is a Poset. (Cont...
tleile 18404 In a Toset, any two elemen...
tltnle 18405 In a Toset, "less than" is...
p0val 18410 Value of poset zero. (Con...
p1val 18411 Value of poset zero. (Con...
p0le 18412 Any element is less than o...
ple1 18413 Any element is less than o...
islat 18416 The predicate "is a lattic...
odulatb 18417 Being a lattice is self-du...
odulat 18418 Being a lattice is self-du...
latcl2 18419 The join and meet of any t...
latlem 18420 Lemma for lattice properti...
latpos 18421 A lattice is a poset. (Co...
latjcl 18422 Closure of join operation ...
latmcl 18423 Closure of meet operation ...
latref 18424 A lattice ordering is refl...
latasymb 18425 A lattice ordering is asym...
latasym 18426 A lattice ordering is asym...
lattr 18427 A lattice ordering is tran...
latasymd 18428 Deduce equality from latti...
lattrd 18429 A lattice ordering is tran...
latjcom 18430 The join of a lattice comm...
latlej1 18431 A join's first argument is...
latlej2 18432 A join's second argument i...
latjle12 18433 A join is less than or equ...
latleeqj1 18434 "Less than or equal to" in...
latleeqj2 18435 "Less than or equal to" in...
latjlej1 18436 Add join to both sides of ...
latjlej2 18437 Add join to both sides of ...
latjlej12 18438 Add join to both sides of ...
latnlej 18439 An idiom to express that a...
latnlej1l 18440 An idiom to express that a...
latnlej1r 18441 An idiom to express that a...
latnlej2 18442 An idiom to express that a...
latnlej2l 18443 An idiom to express that a...
latnlej2r 18444 An idiom to express that a...
latjidm 18445 Lattice join is idempotent...
latmcom 18446 The join of a lattice comm...
latmle1 18447 A meet is less than or equ...
latmle2 18448 A meet is less than or equ...
latlem12 18449 An element is less than or...
latleeqm1 18450 "Less than or equal to" in...
latleeqm2 18451 "Less than or equal to" in...
latmlem1 18452 Add meet to both sides of ...
latmlem2 18453 Add meet to both sides of ...
latmlem12 18454 Add join to both sides of ...
latnlemlt 18455 Negation of "less than or ...
latnle 18456 Equivalent expressions for...
latmidm 18457 Lattice meet is idempotent...
latabs1 18458 Lattice absorption law. F...
latabs2 18459 Lattice absorption law. F...
latledi 18460 An ortholattice is distrib...
latmlej11 18461 Ordering of a meet and joi...
latmlej12 18462 Ordering of a meet and joi...
latmlej21 18463 Ordering of a meet and joi...
latmlej22 18464 Ordering of a meet and joi...
lubsn 18465 The least upper bound of a...
latjass 18466 Lattice join is associativ...
latj12 18467 Swap 1st and 2nd members o...
latj32 18468 Swap 2nd and 3rd members o...
latj13 18469 Swap 1st and 3rd members o...
latj31 18470 Swap 2nd and 3rd members o...
latjrot 18471 Rotate lattice join of 3 c...
latj4 18472 Rearrangement of lattice j...
latj4rot 18473 Rotate lattice join of 4 c...
latjjdi 18474 Lattice join distributes o...
latjjdir 18475 Lattice join distributes o...
mod1ile 18476 The weak direction of the ...
mod2ile 18477 The weak direction of the ...
latmass 18478 Lattice meet is associativ...
latdisdlem 18479 Lemma for ~ latdisd . (Co...
latdisd 18480 In a lattice, joins distri...
isclat 18483 The predicate "is a comple...
clatpos 18484 A complete lattice is a po...
clatlem 18485 Lemma for properties of a ...
clatlubcl 18486 Any subset of the base set...
clatlubcl2 18487 Any subset of the base set...
clatglbcl 18488 Any subset of the base set...
clatglbcl2 18489 Any subset of the base set...
oduclatb 18490 Being a complete lattice i...
clatl 18491 A complete lattice is a la...
isglbd 18492 Properties that determine ...
lublem 18493 Lemma for the least upper ...
lubub 18494 The LUB of a complete latt...
lubl 18495 The LUB of a complete latt...
lubss 18496 Subset law for least upper...
lubel 18497 An element of a set is les...
lubun 18498 The LUB of a union. (Cont...
clatglb 18499 Properties of greatest low...
clatglble 18500 The greatest lower bound i...
clatleglb 18501 Two ways of expressing "le...
clatglbss 18502 Subset law for greatest lo...
isdlat 18505 Property of being a distri...
dlatmjdi 18506 In a distributive lattice,...
dlatl 18507 A distributive lattice is ...
odudlatb 18508 The dual of a distributive...
dlatjmdi 18509 In a distributive lattice,...
ipostr 18512 The structure of ~ df-ipo ...
ipoval 18513 Value of the inclusion pos...
ipobas 18514 Base set of the inclusion ...
ipolerval 18515 Relation of the inclusion ...
ipotset 18516 Topology of the inclusion ...
ipole 18517 Weak order condition of th...
ipolt 18518 Strict order condition of ...
ipopos 18519 The inclusion poset on a f...
isipodrs 18520 Condition for a family of ...
ipodrscl 18521 Direction by inclusion as ...
ipodrsfi 18522 Finite upper bound propert...
fpwipodrs 18523 The finite subsets of any ...
ipodrsima 18524 The monotone image of a di...
isacs3lem 18525 An algebraic closure syste...
acsdrsel 18526 An algebraic closure syste...
isacs4lem 18527 In a closure system in whi...
isacs5lem 18528 If closure commutes with d...
acsdrscl 18529 In an algebraic closure sy...
acsficl 18530 A closure in an algebraic ...
isacs5 18531 A closure system is algebr...
isacs4 18532 A closure system is algebr...
isacs3 18533 A closure system is algebr...
acsficld 18534 In an algebraic closure sy...
acsficl2d 18535 In an algebraic closure sy...
acsfiindd 18536 In an algebraic closure sy...
acsmapd 18537 In an algebraic closure sy...
acsmap2d 18538 In an algebraic closure sy...
acsinfd 18539 In an algebraic closure sy...
acsdomd 18540 In an algebraic closure sy...
acsinfdimd 18541 In an algebraic closure sy...
acsexdimd 18542 In an algebraic closure sy...
mrelatglb 18543 Greatest lower bounds in a...
mrelatglb0 18544 The empty intersection in ...
mrelatlub 18545 Least upper bounds in a Mo...
mreclatBAD 18546 A Moore space is a complet...
isps 18551 The predicate "is a poset"...
psrel 18552 A poset is a relation. (C...
psref2 18553 A poset is antisymmetric a...
pstr2 18554 A poset is transitive. (C...
pslem 18555 Lemma for ~ psref and othe...
psdmrn 18556 The domain and range of a ...
psref 18557 A poset is reflexive. (Co...
psrn 18558 The range of a poset equal...
psasym 18559 A poset is antisymmetric. ...
pstr 18560 A poset is transitive. (C...
cnvps 18561 The converse of a poset is...
cnvpsb 18562 The converse of a poset is...
psss 18563 Any subset of a partially ...
psssdm2 18564 Field of a subposet. (Con...
psssdm 18565 Field of a subposet. (Con...
istsr 18566 The predicate is a toset. ...
istsr2 18567 The predicate is a toset. ...
tsrlin 18568 A toset is a linear order....
tsrlemax 18569 Two ways of saying a numbe...
tsrps 18570 A toset is a poset. (Cont...
cnvtsr 18571 The converse of a toset is...
tsrss 18572 Any subset of a totally or...
ledm 18573 The domain of ` <_ ` is ` ...
lern 18574 The range of ` <_ ` is ` R...
lefld 18575 The field of the 'less or ...
letsr 18576 The "less than or equal to...
isdir 18581 A condition for a relation...
reldir 18582 A direction is a relation....
dirdm 18583 A direction's domain is eq...
dirref 18584 A direction is reflexive. ...
dirtr 18585 A direction is transitive....
dirge 18586 For any two elements of a ...
tsrdir 18587 A totally ordered set is a...
ismgm 18592 The predicate "is a magma"...
ismgmn0 18593 The predicate "is a magma"...
mgmcl 18594 Closure of the operation o...
isnmgm 18595 A condition for a structur...
mgmsscl 18596 If the base set of a magma...
plusffval 18597 The group addition operati...
plusfval 18598 The group addition operati...
plusfeq 18599 If the addition operation ...
plusffn 18600 The group addition operati...
mgmplusf 18601 The group addition functio...
mgmpropd 18602 If two structures have the...
ismgmd 18603 Deduce a magma from its pr...
issstrmgm 18604 Characterize a substructur...
intopsn 18605 The internal operation for...
mgmb1mgm1 18606 The only magma with a base...
mgm0 18607 Any set with an empty base...
mgm0b 18608 The structure with an empt...
mgm1 18609 The structure with one ele...
opifismgm 18610 A structure with a group a...
mgmidmo 18611 A two-sided identity eleme...
grpidval 18612 The value of the identity ...
grpidpropd 18613 If two structures have the...
fn0g 18614 The group zero extractor i...
0g0 18615 The identity element funct...
ismgmid 18616 The identity element of a ...
mgmidcl 18617 The identity element of a ...
mgmlrid 18618 The identity element of a ...
ismgmid2 18619 Show that a given element ...
lidrideqd 18620 If there is a left and rig...
lidrididd 18621 If there is a left and rig...
grpidd 18622 Deduce the identity elemen...
mgmidsssn0 18623 Property of the set of ide...
grpinvalem 18624 Lemma for ~ grpinva . (Co...
grpinva 18625 Deduce right inverse from ...
grprida 18626 Deduce right identity from...
gsumvalx 18627 Expand out the substitutio...
gsumval 18628 Expand out the substitutio...
gsumpropd 18629 The group sum depends only...
gsumpropd2lem 18630 Lemma for ~ gsumpropd2 . ...
gsumpropd2 18631 A stronger version of ~ gs...
gsummgmpropd 18632 A stronger version of ~ gs...
gsumress 18633 The group sum in a substru...
gsumval1 18634 Value of the group sum ope...
gsum0 18635 Value of the empty group s...
gsumval2a 18636 Value of the group sum ope...
gsumval2 18637 Value of the group sum ope...
gsumsplit1r 18638 Splitting off the rightmos...
gsumprval 18639 Value of the group sum ope...
gsumpr12val 18640 Value of the group sum ope...
mgmhmrcl 18645 Reverse closure of a magma...
submgmrcl 18646 Reverse closure for submag...
ismgmhm 18647 Property of a magma homomo...
mgmhmf 18648 A magma homomorphism is a ...
mgmhmpropd 18649 Magma homomorphism depends...
mgmhmlin 18650 A magma homomorphism prese...
mgmhmf1o 18651 A magma homomorphism is bi...
idmgmhm 18652 The identity homomorphism ...
issubmgm 18653 Expand definition of a sub...
issubmgm2 18654 Submagmas are subsets that...
rabsubmgmd 18655 Deduction for proving that...
submgmss 18656 Submagmas are subsets of t...
submgmid 18657 Every magma is trivially a...
submgmcl 18658 Submagmas are closed under...
submgmmgm 18659 Submagmas are themselves m...
submgmbas 18660 The base set of a submagma...
subsubmgm 18661 A submagma of a submagma i...
resmgmhm 18662 Restriction of a magma hom...
resmgmhm2 18663 One direction of ~ resmgmh...
resmgmhm2b 18664 Restriction of the codomai...
mgmhmco 18665 The composition of magma h...
mgmhmima 18666 The homomorphic image of a...
mgmhmeql 18667 The equalizer of two magma...
submgmacs 18668 Submagmas are an algebraic...
issgrp 18671 The predicate "is a semigr...
issgrpv 18672 The predicate "is a semigr...
issgrpn0 18673 The predicate "is a semigr...
isnsgrp 18674 A condition for a structur...
sgrpmgm 18675 A semigroup is a magma. (...
sgrpass 18676 A semigroup operation is a...
sgrpcl 18677 Closure of the operation o...
sgrp0 18678 Any set with an empty base...
sgrp0b 18679 The structure with an empt...
sgrp1 18680 The structure with one ele...
issgrpd 18681 Deduce a semigroup from it...
sgrppropd 18682 If two structures are sets...
prdsplusgsgrpcl 18683 Structure product pointwis...
prdssgrpd 18684 The product of a family of...
ismnddef 18687 The predicate "is a monoid...
ismnd 18688 The predicate "is a monoid...
isnmnd 18689 A condition for a structur...
sgrpidmnd 18690 A semigroup with an identi...
mndsgrp 18691 A monoid is a semigroup. ...
mndmgm 18692 A monoid is a magma. (Con...
mndcl 18693 Closure of the operation o...
mndass 18694 A monoid operation is asso...
mndid 18695 A monoid has a two-sided i...
mndideu 18696 The two-sided identity ele...
mnd32g 18697 Commutative/associative la...
mnd12g 18698 Commutative/associative la...
mnd4g 18699 Commutative/associative la...
mndidcl 18700 The identity element of a ...
mndbn0 18701 The base set of a monoid i...
hashfinmndnn 18702 A finite monoid has positi...
mndplusf 18703 The group addition operati...
mndlrid 18704 A monoid's identity elemen...
mndlid 18705 The identity element of a ...
mndrid 18706 The identity element of a ...
ismndd 18707 Deduce a monoid from its p...
mndpfo 18708 The addition operation of ...
mndfo 18709 The addition operation of ...
mndpropd 18710 If two structures have the...
mndprop 18711 If two structures have the...
issubmnd 18712 Characterize a submonoid b...
ress0g 18713 ` 0g ` is unaffected by re...
submnd0 18714 The zero of a submonoid is...
mndinvmod 18715 Uniqueness of an inverse e...
prdsplusgcl 18716 Structure product pointwis...
prdsidlem 18717 Characterization of identi...
prdsmndd 18718 The product of a family of...
prds0g 18719 Zero in a product of monoi...
pwsmnd 18720 The structure power of a m...
pws0g 18721 Zero in a structure power ...
imasmnd2 18722 The image structure of a m...
imasmnd 18723 The image structure of a m...
imasmndf1 18724 The image of a monoid unde...
xpsmnd 18725 The binary product of mono...
xpsmnd0 18726 The identity element of a ...
mnd1 18727 The (smallest) structure r...
mnd1id 18728 The singleton element of a...
ismhm 18733 Property of a monoid homom...
ismhmd 18734 Deduction version of ~ ism...
mhmrcl1 18735 Reverse closure of a monoi...
mhmrcl2 18736 Reverse closure of a monoi...
mhmf 18737 A monoid homomorphism is a...
ismhm0 18738 Property of a monoid homom...
mhmismgmhm 18739 Each monoid homomorphism i...
mhmpropd 18740 Monoid homomorphism depend...
mhmlin 18741 A monoid homomorphism comm...
mhm0 18742 A monoid homomorphism pres...
idmhm 18743 The identity homomorphism ...
mhmf1o 18744 A monoid homomorphism is b...
submrcl 18745 Reverse closure for submon...
issubm 18746 Expand definition of a sub...
issubm2 18747 Submonoids are subsets tha...
issubmndb 18748 The submonoid predicate. ...
issubmd 18749 Deduction for proving a su...
mndissubm 18750 If the base set of a monoi...
resmndismnd 18751 If the base set of a monoi...
submss 18752 Submonoids are subsets of ...
submid 18753 Every monoid is trivially ...
subm0cl 18754 Submonoids contain zero. ...
submcl 18755 Submonoids are closed unde...
submmnd 18756 Submonoids are themselves ...
submbas 18757 The base set of a submonoi...
subm0 18758 Submonoids have the same i...
subsubm 18759 A submonoid of a submonoid...
0subm 18760 The zero submonoid of an a...
insubm 18761 The intersection of two su...
0mhm 18762 The constant zero linear f...
resmhm 18763 Restriction of a monoid ho...
resmhm2 18764 One direction of ~ resmhm2...
resmhm2b 18765 Restriction of the codomai...
mhmco 18766 The composition of monoid ...
mhmimalem 18767 Lemma for ~ mhmima and sim...
mhmima 18768 The homomorphic image of a...
mhmeql 18769 The equalizer of two monoi...
submacs 18770 Submonoids are an algebrai...
mndind 18771 Induction in a monoid. In...
prdspjmhm 18772 A projection from a produc...
pwspjmhm 18773 A projection from a struct...
pwsdiagmhm 18774 Diagonal monoid homomorphi...
pwsco1mhm 18775 Right composition with a f...
pwsco2mhm 18776 Left composition with a mo...
gsumvallem2 18777 Lemma for properties of th...
gsumsubm 18778 Evaluate a group sum in a ...
gsumz 18779 Value of a group sum over ...
gsumwsubmcl 18780 Closure of the composite i...
gsumws1 18781 A singleton composite reco...
gsumwcl 18782 Closure of the composite o...
gsumsgrpccat 18783 Homomorphic property of no...
gsumccat 18784 Homomorphic property of co...
gsumws2 18785 Valuation of a pair in a m...
gsumccatsn 18786 Homomorphic property of co...
gsumspl 18787 The primary purpose of the...
gsumwmhm 18788 Behavior of homomorphisms ...
gsumwspan 18789 The submonoid generated by...
frmdval 18794 Value of the free monoid c...
frmdbas 18795 The base set of a free mon...
frmdelbas 18796 An element of the base set...
frmdplusg 18797 The monoid operation of a ...
frmdadd 18798 Value of the monoid operat...
vrmdfval 18799 The canonical injection fr...
vrmdval 18800 The value of the generatin...
vrmdf 18801 The mapping from the index...
frmdmnd 18802 A free monoid is a monoid....
frmd0 18803 The identity of the free m...
frmdsssubm 18804 The set of words taking va...
frmdgsum 18805 Any word in a free monoid ...
frmdss2 18806 A subset of generators is ...
frmdup1 18807 Any assignment of the gene...
frmdup2 18808 The evaluation map has the...
frmdup3lem 18809 Lemma for ~ frmdup3 . (Co...
frmdup3 18810 Universal property of the ...
efmnd 18813 The monoid of endofunction...
efmndbas 18814 The base set of the monoid...
efmndbasabf 18815 The base set of the monoid...
elefmndbas 18816 Two ways of saying a funct...
elefmndbas2 18817 Two ways of saying a funct...
efmndbasf 18818 Elements in the monoid of ...
efmndhash 18819 The monoid of endofunction...
efmndbasfi 18820 The monoid of endofunction...
efmndfv 18821 The function value of an e...
efmndtset 18822 The topology of the monoid...
efmndplusg 18823 The group operation of a m...
efmndov 18824 The value of the group ope...
efmndcl 18825 The group operation of the...
efmndtopn 18826 The topology of the monoid...
symggrplem 18827 Lemma for ~ symggrp and ~ ...
efmndmgm 18828 The monoid of endofunction...
efmndsgrp 18829 The monoid of endofunction...
ielefmnd 18830 The identity function rest...
efmndid 18831 The identity function rest...
efmndmnd 18832 The monoid of endofunction...
efmnd0nmnd 18833 Even the monoid of endofun...
efmndbas0 18834 The base set of the monoid...
efmnd1hash 18835 The monoid of endofunction...
efmnd1bas 18836 The monoid of endofunction...
efmnd2hash 18837 The monoid of endofunction...
submefmnd 18838 If the base set of a monoi...
sursubmefmnd 18839 The set of surjective endo...
injsubmefmnd 18840 The set of injective endof...
idressubmefmnd 18841 The singleton containing o...
idresefmnd 18842 The structure with the sin...
smndex1ibas 18843 The modulo function ` I ` ...
smndex1iidm 18844 The modulo function ` I ` ...
smndex1gbas 18845 The constant functions ` (...
smndex1gid 18846 The composition of a const...
smndex1igid 18847 The composition of the mod...
smndex1basss 18848 The modulo function ` I ` ...
smndex1bas 18849 The base set of the monoid...
smndex1mgm 18850 The monoid of endofunction...
smndex1sgrp 18851 The monoid of endofunction...
smndex1mndlem 18852 Lemma for ~ smndex1mnd and...
smndex1mnd 18853 The monoid of endofunction...
smndex1id 18854 The modulo function ` I ` ...
smndex1n0mnd 18855 The identity of the monoid...
nsmndex1 18856 The base set ` B ` of the ...
smndex2dbas 18857 The doubling function ` D ...
smndex2dnrinv 18858 The doubling function ` D ...
smndex2hbas 18859 The halving functions ` H ...
smndex2dlinvh 18860 The halving functions ` H ...
mgm2nsgrplem1 18861 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 18862 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 18863 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 18864 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 18865 A small magma (with two el...
sgrp2nmndlem1 18866 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 18867 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 18868 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 18869 A small semigroup (with tw...
sgrp2rid2ex 18870 A small semigroup (with tw...
sgrp2nmndlem4 18871 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 18872 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 18873 A small semigroup (with tw...
mgmnsgrpex 18874 There is a magma which is ...
sgrpnmndex 18875 There is a semigroup which...
sgrpssmgm 18876 The class of all semigroup...
mndsssgrp 18877 The class of all monoids i...
pwmndgplus 18878 The operation of the monoi...
pwmndid 18879 The identity of the monoid...
pwmnd 18880 The power set of a class `...
isgrp 18887 The predicate "is a group"...
grpmnd 18888 A group is a monoid. (Con...
grpcl 18889 Closure of the operation o...
grpass 18890 A group operation is assoc...
grpinvex 18891 Every member of a group ha...
grpideu 18892 The two-sided identity ele...
grpassd 18893 A group operation is assoc...
grpmndd 18894 A group is a monoid. (Con...
grpcld 18895 Closure of the operation o...
grpplusf 18896 The group addition operati...
grpplusfo 18897 The group addition operati...
resgrpplusfrn 18898 The underlying set of a gr...
grppropd 18899 If two structures have the...
grpprop 18900 If two structures have the...
grppropstr 18901 Generalize a specific 2-el...
grpss 18902 Show that a structure exte...
isgrpd2e 18903 Deduce a group from its pr...
isgrpd2 18904 Deduce a group from its pr...
isgrpde 18905 Deduce a group from its pr...
isgrpd 18906 Deduce a group from its pr...
isgrpi 18907 Properties that determine ...
grpsgrp 18908 A group is a semigroup. (...
grpmgmd 18909 A group is a magma, deduct...
dfgrp2 18910 Alternate definition of a ...
dfgrp2e 18911 Alternate definition of a ...
isgrpix 18912 Properties that determine ...
grpidcl 18913 The identity element of a ...
grpbn0 18914 The base set of a group is...
grplid 18915 The identity element of a ...
grprid 18916 The identity element of a ...
grplidd 18917 The identity element of a ...
grpridd 18918 The identity element of a ...
grpn0 18919 A group is not empty. (Co...
hashfingrpnn 18920 A finite group has positiv...
grprcan 18921 Right cancellation law for...
grpinveu 18922 The left inverse element o...
grpid 18923 Two ways of saying that an...
isgrpid2 18924 Properties showing that an...
grpidd2 18925 Deduce the identity elemen...
grpinvfval 18926 The inverse function of a ...
grpinvfvalALT 18927 Shorter proof of ~ grpinvf...
grpinvval 18928 The inverse of a group ele...
grpinvfn 18929 Functionality of the group...
grpinvfvi 18930 The group inverse function...
grpsubfval 18931 Group subtraction (divisio...
grpsubfvalALT 18932 Shorter proof of ~ grpsubf...
grpsubval 18933 Group subtraction (divisio...
grpinvf 18934 The group inversion operat...
grpinvcl 18935 A group element's inverse ...
grpinvcld 18936 A group element's inverse ...
grplinv 18937 The left inverse of a grou...
grprinv 18938 The right inverse of a gro...
grpinvid1 18939 The inverse of a group ele...
grpinvid2 18940 The inverse of a group ele...
isgrpinv 18941 Properties showing that a ...
grplinvd 18942 The left inverse of a grou...
grprinvd 18943 The right inverse of a gro...
grplrinv 18944 In a group, every member h...
grpidinv2 18945 A group's properties using...
grpidinv 18946 A group has a left and rig...
grpinvid 18947 The inverse of the identit...
grplcan 18948 Left cancellation law for ...
grpasscan1 18949 An associative cancellatio...
grpasscan2 18950 An associative cancellatio...
grpidrcan 18951 If right adding an element...
grpidlcan 18952 If left adding an element ...
grpinvinv 18953 Double inverse law for gro...
grpinvcnv 18954 The group inverse is its o...
grpinv11 18955 The group inverse is one-t...
grpinvf1o 18956 The group inverse is a one...
grpinvnz 18957 The inverse of a nonzero g...
grpinvnzcl 18958 The inverse of a nonzero g...
grpsubinv 18959 Subtraction of an inverse....
grplmulf1o 18960 Left multiplication by a g...
grpraddf1o 18961 Right addition by a group ...
grpinvpropd 18962 If two structures have the...
grpidssd 18963 If the base set of a group...
grpinvssd 18964 If the base set of a group...
grpinvadd 18965 The inverse of the group o...
grpsubf 18966 Functionality of group sub...
grpsubcl 18967 Closure of group subtracti...
grpsubrcan 18968 Right cancellation law for...
grpinvsub 18969 Inverse of a group subtrac...
grpinvval2 18970 A ~ df-neg -like equation ...
grpsubid 18971 Subtraction of a group ele...
grpsubid1 18972 Subtraction of the identit...
grpsubeq0 18973 If the difference between ...
grpsubadd0sub 18974 Subtraction expressed as a...
grpsubadd 18975 Relationship between group...
grpsubsub 18976 Double group subtraction. ...
grpaddsubass 18977 Associative-type law for g...
grppncan 18978 Cancellation law for subtr...
grpnpcan 18979 Cancellation law for subtr...
grpsubsub4 18980 Double group subtraction (...
grppnpcan2 18981 Cancellation law for mixed...
grpnpncan 18982 Cancellation law for group...
grpnpncan0 18983 Cancellation law for group...
grpnnncan2 18984 Cancellation law for group...
dfgrp3lem 18985 Lemma for ~ dfgrp3 . (Con...
dfgrp3 18986 Alternate definition of a ...
dfgrp3e 18987 Alternate definition of a ...
grplactfval 18988 The left group action of e...
grplactval 18989 The value of the left grou...
grplactcnv 18990 The left group action of e...
grplactf1o 18991 The left group action of e...
grpsubpropd 18992 Weak property deduction fo...
grpsubpropd2 18993 Strong property deduction ...
grp1 18994 The (smallest) structure r...
grp1inv 18995 The inverse function of th...
prdsinvlem 18996 Characterization of invers...
prdsgrpd 18997 The product of a family of...
prdsinvgd 18998 Negation in a product of g...
pwsgrp 18999 A structure power of a gro...
pwsinvg 19000 Negation in a group power....
pwssub 19001 Subtraction in a group pow...
imasgrp2 19002 The image structure of a g...
imasgrp 19003 The image structure of a g...
imasgrpf1 19004 The image of a group under...
qusgrp2 19005 Prove that a quotient stru...
xpsgrp 19006 The binary product of grou...
xpsinv 19007 Value of the negation oper...
xpsgrpsub 19008 Value of the subtraction o...
mhmlem 19009 Lemma for ~ mhmmnd and ~ g...
mhmid 19010 A surjective monoid morphi...
mhmmnd 19011 The image of a monoid ` G ...
mhmfmhm 19012 The function fulfilling th...
ghmgrp 19013 The image of a group ` G `...
mulgfval 19016 Group multiple (exponentia...
mulgfvalALT 19017 Shorter proof of ~ mulgfva...
mulgval 19018 Value of the group multipl...
mulgfn 19019 Functionality of the group...
mulgfvi 19020 The group multiple operati...
mulg0 19021 Group multiple (exponentia...
mulgnn 19022 Group multiple (exponentia...
ressmulgnn 19023 Values for the group multi...
ressmulgnn0 19024 Values for the group multi...
mulgnngsum 19025 Group multiple (exponentia...
mulgnn0gsum 19026 Group multiple (exponentia...
mulg1 19027 Group multiple (exponentia...
mulgnnp1 19028 Group multiple (exponentia...
mulg2 19029 Group multiple (exponentia...
mulgnegnn 19030 Group multiple (exponentia...
mulgnn0p1 19031 Group multiple (exponentia...
mulgnnsubcl 19032 Closure of the group multi...
mulgnn0subcl 19033 Closure of the group multi...
mulgsubcl 19034 Closure of the group multi...
mulgnncl 19035 Closure of the group multi...
mulgnn0cl 19036 Closure of the group multi...
mulgcl 19037 Closure of the group multi...
mulgneg 19038 Group multiple (exponentia...
mulgnegneg 19039 The inverse of a negative ...
mulgm1 19040 Group multiple (exponentia...
mulgnn0cld 19041 Closure of the group multi...
mulgcld 19042 Deduction associated with ...
mulgaddcomlem 19043 Lemma for ~ mulgaddcom . ...
mulgaddcom 19044 The group multiple operato...
mulginvcom 19045 The group multiple operato...
mulginvinv 19046 The group multiple operato...
mulgnn0z 19047 A group multiple of the id...
mulgz 19048 A group multiple of the id...
mulgnndir 19049 Sum of group multiples, fo...
mulgnn0dir 19050 Sum of group multiples, ge...
mulgdirlem 19051 Lemma for ~ mulgdir . (Co...
mulgdir 19052 Sum of group multiples, ge...
mulgp1 19053 Group multiple (exponentia...
mulgneg2 19054 Group multiple (exponentia...
mulgnnass 19055 Product of group multiples...
mulgnn0ass 19056 Product of group multiples...
mulgass 19057 Product of group multiples...
mulgassr 19058 Reversed product of group ...
mulgmodid 19059 Casting out multiples of t...
mulgsubdir 19060 Distribution of group mult...
mhmmulg 19061 A homomorphism of monoids ...
mulgpropd 19062 Two structures with the sa...
submmulgcl 19063 Closure of the group multi...
submmulg 19064 A group multiple is the sa...
pwsmulg 19065 Value of a group multiple ...
issubg 19072 The subgroup predicate. (...
subgss 19073 A subgroup is a subset. (...
subgid 19074 A group is a subgroup of i...
subggrp 19075 A subgroup is a group. (C...
subgbas 19076 The base of the restricted...
subgrcl 19077 Reverse closure for the su...
subg0 19078 A subgroup of a group must...
subginv 19079 The inverse of an element ...
subg0cl 19080 The group identity is an e...
subginvcl 19081 The inverse of an element ...
subgcl 19082 A subgroup is closed under...
subgsubcl 19083 A subgroup is closed under...
subgsub 19084 The subtraction of element...
subgmulgcl 19085 Closure of the group multi...
subgmulg 19086 A group multiple is the sa...
issubg2 19087 Characterize the subgroups...
issubgrpd2 19088 Prove a subgroup by closur...
issubgrpd 19089 Prove a subgroup by closur...
issubg3 19090 A subgroup is a symmetric ...
issubg4 19091 A subgroup is a nonempty s...
grpissubg 19092 If the base set of a group...
resgrpisgrp 19093 If the base set of a group...
subgsubm 19094 A subgroup is a submonoid....
subsubg 19095 A subgroup of a subgroup i...
subgint 19096 The intersection of a none...
0subg 19097 The zero subgroup of an ar...
0subgOLD 19098 Obsolete version of ~ 0sub...
trivsubgd 19099 The only subgroup of a tri...
trivsubgsnd 19100 The only subgroup of a tri...
isnsg 19101 Property of being a normal...
isnsg2 19102 Weaken the condition of ~ ...
nsgbi 19103 Defining property of a nor...
nsgsubg 19104 A normal subgroup is a sub...
nsgconj 19105 The conjugation of an elem...
isnsg3 19106 A subgroup is normal iff t...
subgacs 19107 Subgroups are an algebraic...
nsgacs 19108 Normal subgroups form an a...
elnmz 19109 Elementhood in the normali...
nmzbi 19110 Defining property of the n...
nmzsubg 19111 The normalizer N_G(S) of a...
ssnmz 19112 A subgroup is a subset of ...
isnsg4 19113 A subgroup is normal iff i...
nmznsg 19114 Any subgroup is a normal s...
0nsg 19115 The zero subgroup is norma...
nsgid 19116 The whole group is a norma...
0idnsgd 19117 The whole group and the ze...
trivnsgd 19118 The only normal subgroup o...
triv1nsgd 19119 A trivial group has exactl...
1nsgtrivd 19120 A group with exactly one n...
releqg 19121 The left coset equivalence...
eqgfval 19122 Value of the subgroup left...
eqgval 19123 Value of the subgroup left...
eqger 19124 The subgroup coset equival...
eqglact 19125 A left coset can be expres...
eqgid 19126 The left coset containing ...
eqgen 19127 Each coset is equipotent t...
eqgcpbl 19128 The subgroup coset equival...
eqg0el 19129 Equivalence class of a quo...
quselbas 19130 Membership in the base set...
quseccl0 19131 Closure of the quotient ma...
qusgrp 19132 If ` Y ` is a normal subgr...
quseccl 19133 Closure of the quotient ma...
qusadd 19134 Value of the group operati...
qus0 19135 Value of the group identit...
qusinv 19136 Value of the group inverse...
qussub 19137 Value of the group subtrac...
ecqusaddd 19138 Addition of equivalence cl...
ecqusaddcl 19139 Closure of the addition in...
lagsubg2 19140 Lagrange's theorem for fin...
lagsubg 19141 Lagrange's theorem for Gro...
eqg0subg 19142 The coset equivalence rela...
eqg0subgecsn 19143 The equivalence classes mo...
qus0subgbas 19144 The base set of a quotient...
qus0subgadd 19145 The addition in a quotient...
cycsubmel 19146 Characterization of an ele...
cycsubmcl 19147 The set of nonnegative int...
cycsubm 19148 The set of nonnegative int...
cyccom 19149 Condition for an operation...
cycsubmcom 19150 The operation of a monoid ...
cycsubggend 19151 The cyclic subgroup genera...
cycsubgcl 19152 The set of integer powers ...
cycsubgss 19153 The cyclic subgroup genera...
cycsubg 19154 The cyclic group generated...
cycsubgcld 19155 The cyclic subgroup genera...
cycsubg2 19156 The subgroup generated by ...
cycsubg2cl 19157 Any multiple of an element...
reldmghm 19160 Lemma for group homomorphi...
isghm 19161 Property of being a homomo...
isghm3 19162 Property of a group homomo...
ghmgrp1 19163 A group homomorphism is on...
ghmgrp2 19164 A group homomorphism is on...
ghmf 19165 A group homomorphism is a ...
ghmlin 19166 A homomorphism of groups i...
ghmid 19167 A homomorphism of groups p...
ghminv 19168 A homomorphism of groups p...
ghmsub 19169 Linearity of subtraction t...
isghmd 19170 Deduction for a group homo...
ghmmhm 19171 A group homomorphism is a ...
ghmmhmb 19172 Group homomorphisms and mo...
ghmmulg 19173 A homomorphism of monoids ...
ghmrn 19174 The range of a homomorphis...
0ghm 19175 The constant zero linear f...
idghm 19176 The identity homomorphism ...
resghm 19177 Restriction of a homomorph...
resghm2 19178 One direction of ~ resghm2...
resghm2b 19179 Restriction of the codomai...
ghmghmrn 19180 A group homomorphism from ...
ghmco 19181 The composition of group h...
ghmima 19182 The image of a subgroup un...
ghmpreima 19183 The inverse image of a sub...
ghmeql 19184 The equalizer of two group...
ghmnsgima 19185 The image of a normal subg...
ghmnsgpreima 19186 The inverse image of a nor...
ghmker 19187 The kernel of a homomorphi...
ghmeqker 19188 Two source points map to t...
pwsdiagghm 19189 Diagonal homomorphism into...
f1ghm0to0 19190 If a group homomorphism ` ...
ghmf1 19191 Two ways of saying a group...
kerf1ghm 19192 A group homomorphism ` F `...
ghmf1o 19193 A bijective group homomorp...
conjghm 19194 Conjugation is an automorp...
conjsubg 19195 A conjugated subgroup is a...
conjsubgen 19196 A conjugated subgroup is e...
conjnmz 19197 A subgroup is unchanged un...
conjnmzb 19198 Alternative condition for ...
conjnsg 19199 A normal subgroup is uncha...
qusghm 19200 If ` Y ` is a normal subgr...
ghmpropd 19201 Group homomorphism depends...
gimfn 19206 The group isomorphism func...
isgim 19207 An isomorphism of groups i...
gimf1o 19208 An isomorphism of groups i...
gimghm 19209 An isomorphism of groups i...
isgim2 19210 A group isomorphism is a h...
subggim 19211 Behavior of subgroups unde...
gimcnv 19212 The converse of a group is...
gimco 19213 The composition of group i...
gim0to0 19214 A group isomorphism maps t...
brgic 19215 The relation "is isomorphi...
brgici 19216 Prove isomorphic by an exp...
gicref 19217 Isomorphism is reflexive. ...
giclcl 19218 Isomorphism implies the le...
gicrcl 19219 Isomorphism implies the ri...
gicsym 19220 Isomorphism is symmetric. ...
gictr 19221 Isomorphism is transitive....
gicer 19222 Isomorphism is an equivale...
gicen 19223 Isomorphic groups have equ...
gicsubgen 19224 A less trivial example of ...
ghmquskerlem1 19225 Lemma for ~ ghmqusker . (...
ghmquskerco 19226 In the case of theorem ~ g...
ghmquskerlem2 19227 Lemma for ~ ghmqusker . (...
ghmquskerlem3 19228 The mapping ` H ` induced ...
ghmqusker 19229 A surjective group homomor...
gicqusker 19230 The image ` H ` of a group...
isga 19233 The predicate "is a (left)...
gagrp 19234 The left argument of a gro...
gaset 19235 The right argument of a gr...
gagrpid 19236 The identity of the group ...
gaf 19237 The mapping of the group a...
gafo 19238 A group action is onto its...
gaass 19239 An "associative" property ...
ga0 19240 The action of a group on t...
gaid 19241 The trivial action of a gr...
subgga 19242 A subgroup acts on its par...
gass 19243 A subset of a group action...
gasubg 19244 The restriction of a group...
gaid2 19245 A group operation is a lef...
galcan 19246 The action of a particular...
gacan 19247 Group inverses cancel in a...
gapm 19248 The action of a particular...
gaorb 19249 The orbit equivalence rela...
gaorber 19250 The orbit equivalence rela...
gastacl 19251 The stabilizer subgroup in...
gastacos 19252 Write the coset relation f...
orbstafun 19253 Existence and uniqueness f...
orbstaval 19254 Value of the function at a...
orbsta 19255 The Orbit-Stabilizer theor...
orbsta2 19256 Relation between the size ...
cntrval 19261 Substitute definition of t...
cntzfval 19262 First level substitution f...
cntzval 19263 Definition substitution fo...
elcntz 19264 Elementhood in the central...
cntzel 19265 Membership in a centralize...
cntzsnval 19266 Special substitution for t...
elcntzsn 19267 Value of the centralizer o...
sscntz 19268 A centralizer expression f...
cntzrcl 19269 Reverse closure for elemen...
cntzssv 19270 The centralizer is uncondi...
cntzi 19271 Membership in a centralize...
elcntr 19272 Elementhood in the center ...
cntrss 19273 The center is a subset of ...
cntri 19274 Defining property of the c...
resscntz 19275 Centralizer in a substruct...
cntzsgrpcl 19276 Centralizers are closed un...
cntz2ss 19277 Centralizers reverse the s...
cntzrec 19278 Reciprocity relationship f...
cntziinsn 19279 Express any centralizer as...
cntzsubm 19280 Centralizers in a monoid a...
cntzsubg 19281 Centralizers in a group ar...
cntzidss 19282 If the elements of ` S ` c...
cntzmhm 19283 Centralizers in a monoid a...
cntzmhm2 19284 Centralizers in a monoid a...
cntrsubgnsg 19285 A central subgroup is norm...
cntrnsg 19286 The center of a group is a...
oppgval 19289 Value of the opposite grou...
oppgplusfval 19290 Value of the addition oper...
oppgplus 19291 Value of the addition oper...
setsplusg 19292 The other components of an...
oppglemOLD 19293 Obsolete version of ~ sets...
oppgbas 19294 Base set of an opposite gr...
oppgbasOLD 19295 Obsolete version of ~ oppg...
oppgtset 19296 Topology of an opposite gr...
oppgtsetOLD 19297 Obsolete version of ~ oppg...
oppgtopn 19298 Topology of an opposite gr...
oppgmnd 19299 The opposite of a monoid i...
oppgmndb 19300 Bidirectional form of ~ op...
oppgid 19301 Zero in a monoid is a symm...
oppggrp 19302 The opposite of a group is...
oppggrpb 19303 Bidirectional form of ~ op...
oppginv 19304 Inverses in a group are a ...
invoppggim 19305 The inverse is an antiauto...
oppggic 19306 Every group is (naturally)...
oppgsubm 19307 Being a submonoid is a sym...
oppgsubg 19308 Being a subgroup is a symm...
oppgcntz 19309 A centralizer in a group i...
oppgcntr 19310 The center of a group is t...
gsumwrev 19311 A sum in an opposite monoi...
symgval 19314 The value of the symmetric...
permsetexOLD 19315 Obsolete version of ~ f1os...
symgbas 19316 The base set of the symmet...
symgbasexOLD 19317 Obsolete as of 8-Aug-2024....
elsymgbas2 19318 Two ways of saying a funct...
elsymgbas 19319 Two ways of saying a funct...
symgbasf1o 19320 Elements in the symmetric ...
symgbasf 19321 A permutation (element of ...
symgbasmap 19322 A permutation (element of ...
symghash 19323 The symmetric group on ` n...
symgbasfi 19324 The symmetric group on a f...
symgfv 19325 The function value of a pe...
symgfvne 19326 The function values of a p...
symgressbas 19327 The symmetric group on ` A...
symgplusg 19328 The group operation of a s...
symgov 19329 The value of the group ope...
symgcl 19330 The group operation of the...
idresperm 19331 The identity function rest...
symgmov1 19332 For a permutation of a set...
symgmov2 19333 For a permutation of a set...
symgbas0 19334 The base set of the symmet...
symg1hash 19335 The symmetric group on a s...
symg1bas 19336 The symmetric group on a s...
symg2hash 19337 The symmetric group on a (...
symg2bas 19338 The symmetric group on a p...
0symgefmndeq 19339 The symmetric group on the...
snsymgefmndeq 19340 The symmetric group on a s...
symgpssefmnd 19341 For a set ` A ` with more ...
symgvalstruct 19342 The value of the symmetric...
symgvalstructOLD 19343 Obsolete proof of ~ symgva...
symgsubmefmnd 19344 The symmetric group on a s...
symgtset 19345 The topology of the symmet...
symggrp 19346 The symmetric group on a s...
symgid 19347 The group identity element...
symginv 19348 The group inverse in the s...
symgsubmefmndALT 19349 The symmetric group on a s...
galactghm 19350 The currying of a group ac...
lactghmga 19351 The converse of ~ galactgh...
symgtopn 19352 The topology of the symmet...
symgga 19353 The symmetric group induce...
pgrpsubgsymgbi 19354 Every permutation group is...
pgrpsubgsymg 19355 Every permutation group is...
idressubgsymg 19356 The singleton containing o...
idrespermg 19357 The structure with the sin...
cayleylem1 19358 Lemma for ~ cayley . (Con...
cayleylem2 19359 Lemma for ~ cayley . (Con...
cayley 19360 Cayley's Theorem (construc...
cayleyth 19361 Cayley's Theorem (existenc...
symgfix2 19362 If a permutation does not ...
symgextf 19363 The extension of a permuta...
symgextfv 19364 The function value of the ...
symgextfve 19365 The function value of the ...
symgextf1lem 19366 Lemma for ~ symgextf1 . (...
symgextf1 19367 The extension of a permuta...
symgextfo 19368 The extension of a permuta...
symgextf1o 19369 The extension of a permuta...
symgextsymg 19370 The extension of a permuta...
symgextres 19371 The restriction of the ext...
gsumccatsymgsn 19372 Homomorphic property of co...
gsmsymgrfixlem1 19373 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 19374 The composition of permuta...
fvcosymgeq 19375 The values of two composit...
gsmsymgreqlem1 19376 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 19377 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 19378 Two combination of permuta...
symgfixelq 19379 A permutation of a set fix...
symgfixels 19380 The restriction of a permu...
symgfixelsi 19381 The restriction of a permu...
symgfixf 19382 The mapping of a permutati...
symgfixf1 19383 The mapping of a permutati...
symgfixfolem1 19384 Lemma 1 for ~ symgfixfo . ...
symgfixfo 19385 The mapping of a permutati...
symgfixf1o 19386 The mapping of a permutati...
f1omvdmvd 19389 A permutation of any class...
f1omvdcnv 19390 A permutation and its inve...
mvdco 19391 Composing two permutations...
f1omvdconj 19392 Conjugation of a permutati...
f1otrspeq 19393 A transposition is charact...
f1omvdco2 19394 If exactly one of two perm...
f1omvdco3 19395 If a point is moved by exa...
pmtrfval 19396 The function generating tr...
pmtrval 19397 A generated transposition,...
pmtrfv 19398 General value of mapping a...
pmtrprfv 19399 In a transposition of two ...
pmtrprfv3 19400 In a transposition of two ...
pmtrf 19401 Functionality of a transpo...
pmtrmvd 19402 A transposition moves prec...
pmtrrn 19403 Transposing two points giv...
pmtrfrn 19404 A transposition (as a kind...
pmtrffv 19405 Mapping of a point under a...
pmtrrn2 19406 For any transposition ther...
pmtrfinv 19407 A transposition function i...
pmtrfmvdn0 19408 A transposition moves at l...
pmtrff1o 19409 A transposition function i...
pmtrfcnv 19410 A transposition function i...
pmtrfb 19411 An intrinsic characterizat...
pmtrfconj 19412 Any conjugate of a transpo...
symgsssg 19413 The symmetric group has su...
symgfisg 19414 The symmetric group has a ...
symgtrf 19415 Transpositions are element...
symggen 19416 The span of the transposit...
symggen2 19417 A finite permutation group...
symgtrinv 19418 To invert a permutation re...
pmtr3ncomlem1 19419 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 19420 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 19421 Transpositions over sets w...
pmtrdifellem1 19422 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 19423 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 19424 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 19425 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 19426 A transposition of element...
pmtrdifwrdellem1 19427 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 19428 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 19429 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 19430 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 19431 A sequence of transpositio...
pmtrdifwrdel2 19432 A sequence of transpositio...
pmtrprfval 19433 The transpositions on a pa...
pmtrprfvalrn 19434 The range of the transposi...
psgnunilem1 19439 Lemma for ~ psgnuni . Giv...
psgnunilem5 19440 Lemma for ~ psgnuni . It ...
psgnunilem2 19441 Lemma for ~ psgnuni . Ind...
psgnunilem3 19442 Lemma for ~ psgnuni . Any...
psgnunilem4 19443 Lemma for ~ psgnuni . An ...
m1expaddsub 19444 Addition and subtraction o...
psgnuni 19445 If the same permutation ca...
psgnfval 19446 Function definition of the...
psgnfn 19447 Functionality and domain o...
psgndmsubg 19448 The finitary permutations ...
psgneldm 19449 Property of being a finita...
psgneldm2 19450 The finitary permutations ...
psgneldm2i 19451 A sequence of transpositio...
psgneu 19452 A finitary permutation has...
psgnval 19453 Value of the permutation s...
psgnvali 19454 A finitary permutation has...
psgnvalii 19455 Any representation of a pe...
psgnpmtr 19456 All transpositions are odd...
psgn0fv0 19457 The permutation sign funct...
sygbasnfpfi 19458 The class of non-fixed poi...
psgnfvalfi 19459 Function definition of the...
psgnvalfi 19460 Value of the permutation s...
psgnran 19461 The range of the permutati...
gsmtrcl 19462 The group sum of transposi...
psgnfitr 19463 A permutation of a finite ...
psgnfieu 19464 A permutation of a finite ...
pmtrsn 19465 The value of the transposi...
psgnsn 19466 The permutation sign funct...
psgnprfval 19467 The permutation sign funct...
psgnprfval1 19468 The permutation sign of th...
psgnprfval2 19469 The permutation sign of th...
odfval 19478 Value of the order functio...
odfvalALT 19479 Shorter proof of ~ odfval ...
odval 19480 Second substitution for th...
odlem1 19481 The group element order is...
odcl 19482 The order of a group eleme...
odf 19483 Functionality of the group...
odid 19484 Any element to the power o...
odlem2 19485 Any positive annihilator o...
odmodnn0 19486 Reduce the argument of a g...
mndodconglem 19487 Lemma for ~ mndodcong . (...
mndodcong 19488 If two multipliers are con...
mndodcongi 19489 If two multipliers are con...
oddvdsnn0 19490 The only multiples of ` A ...
odnncl 19491 If a nonzero multiple of a...
odmod 19492 Reduce the argument of a g...
oddvds 19493 The only multiples of ` A ...
oddvdsi 19494 Any group element is annih...
odcong 19495 If two multipliers are con...
odeq 19496 The ~ oddvds property uniq...
odval2 19497 A non-conditional definiti...
odcld 19498 The order of a group eleme...
odm1inv 19499 The (order-1)th multiple o...
odmulgid 19500 A relationship between the...
odmulg2 19501 The order of a multiple di...
odmulg 19502 Relationship between the o...
odmulgeq 19503 A multiple of a point of f...
odbezout 19504 If ` N ` is coprime to the...
od1 19505 The order of the group ide...
odeq1 19506 The group identity is the ...
odinv 19507 The order of the inverse o...
odf1 19508 The multiples of an elemen...
odinf 19509 The multiples of an elemen...
dfod2 19510 An alternative definition ...
odcl2 19511 The order of an element of...
oddvds2 19512 The order of an element of...
finodsubmsubg 19513 A submonoid whose elements...
0subgALT 19514 A shorter proof of ~ 0subg...
submod 19515 The order of an element is...
subgod 19516 The order of an element is...
odsubdvds 19517 The order of an element of...
odf1o1 19518 An element with zero order...
odf1o2 19519 An element with nonzero or...
odhash 19520 An element of zero order g...
odhash2 19521 If an element has nonzero ...
odhash3 19522 An element which generates...
odngen 19523 A cyclic subgroup of size ...
gexval 19524 Value of the exponent of a...
gexlem1 19525 The group element order is...
gexcl 19526 The exponent of a group is...
gexid 19527 Any element to the power o...
gexlem2 19528 Any positive annihilator o...
gexdvdsi 19529 Any group element is annih...
gexdvds 19530 The only ` N ` that annihi...
gexdvds2 19531 An integer divides the gro...
gexod 19532 Any group element is annih...
gexcl3 19533 If the order of every grou...
gexnnod 19534 Every group element has fi...
gexcl2 19535 The exponent of a finite g...
gexdvds3 19536 The exponent of a finite g...
gex1 19537 A group or monoid has expo...
ispgp 19538 A group is a ` P ` -group ...
pgpprm 19539 Reverse closure for the fi...
pgpgrp 19540 Reverse closure for the se...
pgpfi1 19541 A finite group with order ...
pgp0 19542 The identity subgroup is a...
subgpgp 19543 A subgroup of a p-group is...
sylow1lem1 19544 Lemma for ~ sylow1 . The ...
sylow1lem2 19545 Lemma for ~ sylow1 . The ...
sylow1lem3 19546 Lemma for ~ sylow1 . One ...
sylow1lem4 19547 Lemma for ~ sylow1 . The ...
sylow1lem5 19548 Lemma for ~ sylow1 . Usin...
sylow1 19549 Sylow's first theorem. If...
odcau 19550 Cauchy's theorem for the o...
pgpfi 19551 The converse to ~ pgpfi1 ....
pgpfi2 19552 Alternate version of ~ pgp...
pgphash 19553 The order of a p-group. (...
isslw 19554 The property of being a Sy...
slwprm 19555 Reverse closure for the fi...
slwsubg 19556 A Sylow ` P ` -subgroup is...
slwispgp 19557 Defining property of a Syl...
slwpss 19558 A proper superset of a Syl...
slwpgp 19559 A Sylow ` P ` -subgroup is...
pgpssslw 19560 Every ` P ` -subgroup is c...
slwn0 19561 Every finite group contain...
subgslw 19562 A Sylow subgroup that is c...
sylow2alem1 19563 Lemma for ~ sylow2a . An ...
sylow2alem2 19564 Lemma for ~ sylow2a . All...
sylow2a 19565 A named lemma of Sylow's s...
sylow2blem1 19566 Lemma for ~ sylow2b . Eva...
sylow2blem2 19567 Lemma for ~ sylow2b . Lef...
sylow2blem3 19568 Sylow's second theorem. P...
sylow2b 19569 Sylow's second theorem. A...
slwhash 19570 A sylow subgroup has cardi...
fislw 19571 The sylow subgroups of a f...
sylow2 19572 Sylow's second theorem. S...
sylow3lem1 19573 Lemma for ~ sylow3 , first...
sylow3lem2 19574 Lemma for ~ sylow3 , first...
sylow3lem3 19575 Lemma for ~ sylow3 , first...
sylow3lem4 19576 Lemma for ~ sylow3 , first...
sylow3lem5 19577 Lemma for ~ sylow3 , secon...
sylow3lem6 19578 Lemma for ~ sylow3 , secon...
sylow3 19579 Sylow's third theorem. Th...
lsmfval 19584 The subgroup sum function ...
lsmvalx 19585 Subspace sum value (for a ...
lsmelvalx 19586 Subspace sum membership (f...
lsmelvalix 19587 Subspace sum membership (f...
oppglsm 19588 The subspace sum operation...
lsmssv 19589 Subgroup sum is a subset o...
lsmless1x 19590 Subset implies subgroup su...
lsmless2x 19591 Subset implies subgroup su...
lsmub1x 19592 Subgroup sum is an upper b...
lsmub2x 19593 Subgroup sum is an upper b...
lsmval 19594 Subgroup sum value (for a ...
lsmelval 19595 Subgroup sum membership (f...
lsmelvali 19596 Subgroup sum membership (f...
lsmelvalm 19597 Subgroup sum membership an...
lsmelvalmi 19598 Membership of vector subtr...
lsmsubm 19599 The sum of two commuting s...
lsmsubg 19600 The sum of two commuting s...
lsmcom2 19601 Subgroup sum commutes. (C...
smndlsmidm 19602 The direct product is idem...
lsmub1 19603 Subgroup sum is an upper b...
lsmub2 19604 Subgroup sum is an upper b...
lsmunss 19605 Union of subgroups is a su...
lsmless1 19606 Subset implies subgroup su...
lsmless2 19607 Subset implies subgroup su...
lsmless12 19608 Subset implies subgroup su...
lsmidm 19609 Subgroup sum is idempotent...
lsmlub 19610 The least upper bound prop...
lsmss1 19611 Subgroup sum with a subset...
lsmss1b 19612 Subgroup sum with a subset...
lsmss2 19613 Subgroup sum with a subset...
lsmss2b 19614 Subgroup sum with a subset...
lsmass 19615 Subgroup sum is associativ...
mndlsmidm 19616 Subgroup sum is idempotent...
lsm01 19617 Subgroup sum with the zero...
lsm02 19618 Subgroup sum with the zero...
subglsm 19619 The subgroup sum evaluated...
lssnle 19620 Equivalent expressions for...
lsmmod 19621 The modular law holds for ...
lsmmod2 19622 Modular law dual for subgr...
lsmpropd 19623 If two structures have the...
cntzrecd 19624 Commute the "subgroups com...
lsmcntz 19625 The "subgroups commute" pr...
lsmcntzr 19626 The "subgroups commute" pr...
lsmdisj 19627 Disjointness from a subgro...
lsmdisj2 19628 Association of the disjoin...
lsmdisj3 19629 Association of the disjoin...
lsmdisjr 19630 Disjointness from a subgro...
lsmdisj2r 19631 Association of the disjoin...
lsmdisj3r 19632 Association of the disjoin...
lsmdisj2a 19633 Association of the disjoin...
lsmdisj2b 19634 Association of the disjoin...
lsmdisj3a 19635 Association of the disjoin...
lsmdisj3b 19636 Association of the disjoin...
subgdisj1 19637 Vectors belonging to disjo...
subgdisj2 19638 Vectors belonging to disjo...
subgdisjb 19639 Vectors belonging to disjo...
pj1fval 19640 The left projection functi...
pj1val 19641 The left projection functi...
pj1eu 19642 Uniqueness of a left proje...
pj1f 19643 The left projection functi...
pj2f 19644 The right projection funct...
pj1id 19645 Any element of a direct su...
pj1eq 19646 Any element of a direct su...
pj1lid 19647 The left projection functi...
pj1rid 19648 The left projection functi...
pj1ghm 19649 The left projection functi...
pj1ghm2 19650 The left projection functi...
lsmhash 19651 The order of the direct pr...
efgmval 19658 Value of the formal invers...
efgmf 19659 The formal inverse operati...
efgmnvl 19660 The inversion function on ...
efgrcl 19661 Lemma for ~ efgval . (Con...
efglem 19662 Lemma for ~ efgval . (Con...
efgval 19663 Value of the free group co...
efger 19664 Value of the free group co...
efgi 19665 Value of the free group co...
efgi0 19666 Value of the free group co...
efgi1 19667 Value of the free group co...
efgtf 19668 Value of the free group co...
efgtval 19669 Value of the extension fun...
efgval2 19670 Value of the free group co...
efgi2 19671 Value of the free group co...
efgtlen 19672 Value of the free group co...
efginvrel2 19673 The inverse of the reverse...
efginvrel1 19674 The inverse of the reverse...
efgsf 19675 Value of the auxiliary fun...
efgsdm 19676 Elementhood in the domain ...
efgsval 19677 Value of the auxiliary fun...
efgsdmi 19678 Property of the last link ...
efgsval2 19679 Value of the auxiliary fun...
efgsrel 19680 The start and end of any e...
efgs1 19681 A singleton of an irreduci...
efgs1b 19682 Every extension sequence e...
efgsp1 19683 If ` F ` is an extension s...
efgsres 19684 An initial segment of an e...
efgsfo 19685 For any word, there is a s...
efgredlema 19686 The reduced word that form...
efgredlemf 19687 Lemma for ~ efgredleme . ...
efgredlemg 19688 Lemma for ~ efgred . (Con...
efgredleme 19689 Lemma for ~ efgred . (Con...
efgredlemd 19690 The reduced word that form...
efgredlemc 19691 The reduced word that form...
efgredlemb 19692 The reduced word that form...
efgredlem 19693 The reduced word that form...
efgred 19694 The reduced word that form...
efgrelexlema 19695 If two words ` A , B ` are...
efgrelexlemb 19696 If two words ` A , B ` are...
efgrelex 19697 If two words ` A , B ` are...
efgredeu 19698 There is a unique reduced ...
efgred2 19699 Two extension sequences ha...
efgcpbllema 19700 Lemma for ~ efgrelex . De...
efgcpbllemb 19701 Lemma for ~ efgrelex . Sh...
efgcpbl 19702 Two extension sequences ha...
efgcpbl2 19703 Two extension sequences ha...
frgpval 19704 Value of the free group co...
frgpcpbl 19705 Compatibility of the group...
frgp0 19706 The free group is a group....
frgpeccl 19707 Closure of the quotient ma...
frgpgrp 19708 The free group is a group....
frgpadd 19709 Addition in the free group...
frgpinv 19710 The inverse of an element ...
frgpmhm 19711 The "natural map" from wor...
vrgpfval 19712 The canonical injection fr...
vrgpval 19713 The value of the generatin...
vrgpf 19714 The mapping from the index...
vrgpinv 19715 The inverse of a generatin...
frgpuptf 19716 Any assignment of the gene...
frgpuptinv 19717 Any assignment of the gene...
frgpuplem 19718 Any assignment of the gene...
frgpupf 19719 Any assignment of the gene...
frgpupval 19720 Any assignment of the gene...
frgpup1 19721 Any assignment of the gene...
frgpup2 19722 The evaluation map has the...
frgpup3lem 19723 The evaluation map has the...
frgpup3 19724 Universal property of the ...
0frgp 19725 The free group on zero gen...
isabl 19730 The predicate "is an Abeli...
ablgrp 19731 An Abelian group is a grou...
ablgrpd 19732 An Abelian group is a grou...
ablcmn 19733 An Abelian group is a comm...
ablcmnd 19734 An Abelian group is a comm...
iscmn 19735 The predicate "is a commut...
isabl2 19736 The predicate "is an Abeli...
cmnpropd 19737 If two structures have the...
ablpropd 19738 If two structures have the...
ablprop 19739 If two structures have the...
iscmnd 19740 Properties that determine ...
isabld 19741 Properties that determine ...
isabli 19742 Properties that determine ...
cmnmnd 19743 A commutative monoid is a ...
cmncom 19744 A commutative monoid is co...
ablcom 19745 An Abelian group operation...
cmn32 19746 Commutative/associative la...
cmn4 19747 Commutative/associative la...
cmn12 19748 Commutative/associative la...
abl32 19749 Commutative/associative la...
cmnmndd 19750 A commutative monoid is a ...
cmnbascntr 19751 The base set of a commutat...
rinvmod 19752 Uniqueness of a right inve...
ablinvadd 19753 The inverse of an Abelian ...
ablsub2inv 19754 Abelian group subtraction ...
ablsubadd 19755 Relationship between Abeli...
ablsub4 19756 Commutative/associative su...
abladdsub4 19757 Abelian group addition/sub...
abladdsub 19758 Associative-type law for g...
ablsubadd23 19759 Commutative/associative la...
ablsubaddsub 19760 Double subtraction and add...
ablpncan2 19761 Cancellation law for subtr...
ablpncan3 19762 A cancellation law for Abe...
ablsubsub 19763 Law for double subtraction...
ablsubsub4 19764 Law for double subtraction...
ablpnpcan 19765 Cancellation law for mixed...
ablnncan 19766 Cancellation law for group...
ablsub32 19767 Swap the second and third ...
ablnnncan 19768 Cancellation law for group...
ablnnncan1 19769 Cancellation law for group...
ablsubsub23 19770 Swap subtrahend and result...
mulgnn0di 19771 Group multiple of a sum, f...
mulgdi 19772 Group multiple of a sum. ...
mulgmhm 19773 The map from ` x ` to ` n ...
mulgghm 19774 The map from ` x ` to ` n ...
mulgsubdi 19775 Group multiple of a differ...
ghmfghm 19776 The function fulfilling th...
ghmcmn 19777 The image of a commutative...
ghmabl 19778 The image of an abelian gr...
invghm 19779 The inversion map is a gro...
eqgabl 19780 Value of the subgroup cose...
qusecsub 19781 Two subgroup cosets are eq...
subgabl 19782 A subgroup of an abelian g...
subcmn 19783 A submonoid of a commutati...
submcmn 19784 A submonoid of a commutati...
submcmn2 19785 A submonoid is commutative...
cntzcmn 19786 The centralizer of any sub...
cntzcmnss 19787 Any subset in a commutativ...
cntrcmnd 19788 The center of a monoid is ...
cntrabl 19789 The center of a group is a...
cntzspan 19790 If the generators commute,...
cntzcmnf 19791 Discharge the centralizer ...
ghmplusg 19792 The pointwise sum of two l...
ablnsg 19793 Every subgroup of an abeli...
odadd1 19794 The order of a product in ...
odadd2 19795 The order of a product in ...
odadd 19796 The order of a product is ...
gex2abl 19797 A group with exponent 2 (o...
gexexlem 19798 Lemma for ~ gexex . (Cont...
gexex 19799 In an abelian group with f...
torsubg 19800 The set of all elements of...
oddvdssubg 19801 The set of all elements wh...
lsmcomx 19802 Subgroup sum commutes (ext...
ablcntzd 19803 All subgroups in an abelia...
lsmcom 19804 Subgroup sum commutes. (C...
lsmsubg2 19805 The sum of two subgroups i...
lsm4 19806 Commutative/associative la...
prdscmnd 19807 The product of a family of...
prdsabld 19808 The product of a family of...
pwscmn 19809 The structure power on a c...
pwsabl 19810 The structure power on an ...
qusabl 19811 If ` Y ` is a subgroup of ...
abl1 19812 The (smallest) structure r...
abln0 19813 Abelian groups (and theref...
cnaddablx 19814 The complex numbers are an...
cnaddabl 19815 The complex numbers are an...
cnaddid 19816 The group identity element...
cnaddinv 19817 Value of the group inverse...
zaddablx 19818 The integers are an Abelia...
frgpnabllem1 19819 Lemma for ~ frgpnabl . (C...
frgpnabllem2 19820 Lemma for ~ frgpnabl . (C...
frgpnabl 19821 The free group on two or m...
imasabl 19822 The image structure of an ...
iscyg 19825 Definition of a cyclic gro...
iscyggen 19826 The property of being a cy...
iscyggen2 19827 The property of being a cy...
iscyg2 19828 A cyclic group is a group ...
cyggeninv 19829 The inverse of a cyclic ge...
cyggenod 19830 An element is the generato...
cyggenod2 19831 In an infinite cyclic grou...
iscyg3 19832 Definition of a cyclic gro...
iscygd 19833 Definition of a cyclic gro...
iscygodd 19834 Show that a group with an ...
cycsubmcmn 19835 The set of nonnegative int...
cyggrp 19836 A cyclic group is a group....
cygabl 19837 A cyclic group is abelian....
cygctb 19838 A cyclic group is countabl...
0cyg 19839 The trivial group is cycli...
prmcyg 19840 A group with prime order i...
lt6abl 19841 A group with fewer than ` ...
ghmcyg 19842 The image of a cyclic grou...
cyggex2 19843 The exponent of a cyclic g...
cyggex 19844 The exponent of a finite c...
cyggexb 19845 A finite abelian group is ...
giccyg 19846 Cyclicity is a group prope...
cycsubgcyg 19847 The cyclic subgroup genera...
cycsubgcyg2 19848 The cyclic subgroup genera...
gsumval3a 19849 Value of the group sum ope...
gsumval3eu 19850 The group sum as defined i...
gsumval3lem1 19851 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 19852 Lemma 2 for ~ gsumval3 . ...
gsumval3 19853 Value of the group sum ope...
gsumcllem 19854 Lemma for ~ gsumcl and rel...
gsumzres 19855 Extend a finite group sum ...
gsumzcl2 19856 Closure of a finite group ...
gsumzcl 19857 Closure of a finite group ...
gsumzf1o 19858 Re-index a finite group su...
gsumres 19859 Extend a finite group sum ...
gsumcl2 19860 Closure of a finite group ...
gsumcl 19861 Closure of a finite group ...
gsumf1o 19862 Re-index a finite group su...
gsumreidx 19863 Re-index a finite group su...
gsumzsubmcl 19864 Closure of a group sum in ...
gsumsubmcl 19865 Closure of a group sum in ...
gsumsubgcl 19866 Closure of a group sum in ...
gsumzaddlem 19867 The sum of two group sums....
gsumzadd 19868 The sum of two group sums....
gsumadd 19869 The sum of two group sums....
gsummptfsadd 19870 The sum of two group sums ...
gsummptfidmadd 19871 The sum of two group sums ...
gsummptfidmadd2 19872 The sum of two group sums ...
gsumzsplit 19873 Split a group sum into two...
gsumsplit 19874 Split a group sum into two...
gsumsplit2 19875 Split a group sum into two...
gsummptfidmsplit 19876 Split a group sum expresse...
gsummptfidmsplitres 19877 Split a group sum expresse...
gsummptfzsplit 19878 Split a group sum expresse...
gsummptfzsplitl 19879 Split a group sum expresse...
gsumconst 19880 Sum of a constant series. ...
gsumconstf 19881 Sum of a constant series. ...
gsummptshft 19882 Index shift of a finite gr...
gsumzmhm 19883 Apply a group homomorphism...
gsummhm 19884 Apply a group homomorphism...
gsummhm2 19885 Apply a group homomorphism...
gsummptmhm 19886 Apply a group homomorphism...
gsummulglem 19887 Lemma for ~ gsummulg and ~...
gsummulg 19888 Nonnegative multiple of a ...
gsummulgz 19889 Integer multiple of a grou...
gsumzoppg 19890 The opposite of a group su...
gsumzinv 19891 Inverse of a group sum. (...
gsuminv 19892 Inverse of a group sum. (...
gsummptfidminv 19893 Inverse of a group sum exp...
gsumsub 19894 The difference of two grou...
gsummptfssub 19895 The difference of two grou...
gsummptfidmsub 19896 The difference of two grou...
gsumsnfd 19897 Group sum of a singleton, ...
gsumsnd 19898 Group sum of a singleton, ...
gsumsnf 19899 Group sum of a singleton, ...
gsumsn 19900 Group sum of a singleton. ...
gsumpr 19901 Group sum of a pair. (Con...
gsumzunsnd 19902 Append an element to a fin...
gsumunsnfd 19903 Append an element to a fin...
gsumunsnd 19904 Append an element to a fin...
gsumunsnf 19905 Append an element to a fin...
gsumunsn 19906 Append an element to a fin...
gsumdifsnd 19907 Extract a summand from a f...
gsumpt 19908 Sum of a family that is no...
gsummptf1o 19909 Re-index a finite group su...
gsummptun 19910 Group sum of a disjoint un...
gsummpt1n0 19911 If only one summand in a f...
gsummptif1n0 19912 If only one summand in a f...
gsummptcl 19913 Closure of a finite group ...
gsummptfif1o 19914 Re-index a finite group su...
gsummptfzcl 19915 Closure of a finite group ...
gsum2dlem1 19916 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 19917 Lemma for ~ gsum2d . (Con...
gsum2d 19918 Write a sum over a two-dim...
gsum2d2lem 19919 Lemma for ~ gsum2d2 : show...
gsum2d2 19920 Write a group sum over a t...
gsumcom2 19921 Two-dimensional commutatio...
gsumxp 19922 Write a group sum over a c...
gsumcom 19923 Commute the arguments of a...
gsumcom3 19924 A commutative law for fini...
gsumcom3fi 19925 A commutative law for fini...
gsumxp2 19926 Write a group sum over a c...
prdsgsum 19927 Finite commutative sums in...
pwsgsum 19928 Finite commutative sums in...
fsfnn0gsumfsffz 19929 Replacing a finitely suppo...
nn0gsumfz 19930 Replacing a finitely suppo...
nn0gsumfz0 19931 Replacing a finitely suppo...
gsummptnn0fz 19932 A final group sum over a f...
gsummptnn0fzfv 19933 A final group sum over a f...
telgsumfzslem 19934 Lemma for ~ telgsumfzs (in...
telgsumfzs 19935 Telescoping group sum rang...
telgsumfz 19936 Telescoping group sum rang...
telgsumfz0s 19937 Telescoping finite group s...
telgsumfz0 19938 Telescoping finite group s...
telgsums 19939 Telescoping finitely suppo...
telgsum 19940 Telescoping finitely suppo...
reldmdprd 19945 The domain of the internal...
dmdprd 19946 The domain of definition o...
dmdprdd 19947 Show that a given family i...
dprddomprc 19948 A family of subgroups inde...
dprddomcld 19949 If a family of subgroups i...
dprdval0prc 19950 The internal direct produc...
dprdval 19951 The value of the internal ...
eldprd 19952 A class ` A ` is an intern...
dprdgrp 19953 Reverse closure for the in...
dprdf 19954 The function ` S ` is a fa...
dprdf2 19955 The function ` S ` is a fa...
dprdcntz 19956 The function ` S ` is a fa...
dprddisj 19957 The function ` S ` is a fa...
dprdw 19958 The property of being a fi...
dprdwd 19959 A mapping being a finitely...
dprdff 19960 A finitely supported funct...
dprdfcl 19961 A finitely supported funct...
dprdffsupp 19962 A finitely supported funct...
dprdfcntz 19963 A function on the elements...
dprdssv 19964 The internal direct produc...
dprdfid 19965 A function mapping all but...
eldprdi 19966 The domain of definition o...
dprdfinv 19967 Take the inverse of a grou...
dprdfadd 19968 Take the sum of group sums...
dprdfsub 19969 Take the difference of gro...
dprdfeq0 19970 The zero function is the o...
dprdf11 19971 Two group sums over a dire...
dprdsubg 19972 The internal direct produc...
dprdub 19973 Each factor is a subset of...
dprdlub 19974 The direct product is smal...
dprdspan 19975 The direct product is the ...
dprdres 19976 Restriction of a direct pr...
dprdss 19977 Create a direct product by...
dprdz 19978 A family consisting entire...
dprd0 19979 The empty family is an int...
dprdf1o 19980 Rearrange the index set of...
dprdf1 19981 Rearrange the index set of...
subgdmdprd 19982 A direct product in a subg...
subgdprd 19983 A direct product in a subg...
dprdsn 19984 A singleton family is an i...
dmdprdsplitlem 19985 Lemma for ~ dmdprdsplit . ...
dprdcntz2 19986 The function ` S ` is a fa...
dprddisj2 19987 The function ` S ` is a fa...
dprd2dlem2 19988 The direct product of a co...
dprd2dlem1 19989 The direct product of a co...
dprd2da 19990 The direct product of a co...
dprd2db 19991 The direct product of a co...
dprd2d2 19992 The direct product of a co...
dmdprdsplit2lem 19993 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 19994 The direct product splits ...
dmdprdsplit 19995 The direct product splits ...
dprdsplit 19996 The direct product is the ...
dmdprdpr 19997 A singleton family is an i...
dprdpr 19998 A singleton family is an i...
dpjlem 19999 Lemma for theorems about d...
dpjcntz 20000 The two subgroups that app...
dpjdisj 20001 The two subgroups that app...
dpjlsm 20002 The two subgroups that app...
dpjfval 20003 Value of the direct produc...
dpjval 20004 Value of the direct produc...
dpjf 20005 The ` X ` -th index projec...
dpjidcl 20006 The key property of projec...
dpjeq 20007 Decompose a group sum into...
dpjid 20008 The key property of projec...
dpjlid 20009 The ` X ` -th index projec...
dpjrid 20010 The ` Y ` -th index projec...
dpjghm 20011 The direct product is the ...
dpjghm2 20012 The direct product is the ...
ablfacrplem 20013 Lemma for ~ ablfacrp2 . (...
ablfacrp 20014 A finite abelian group who...
ablfacrp2 20015 The factors ` K , L ` of ~...
ablfac1lem 20016 Lemma for ~ ablfac1b . Sa...
ablfac1a 20017 The factors of ~ ablfac1b ...
ablfac1b 20018 Any abelian group is the d...
ablfac1c 20019 The factors of ~ ablfac1b ...
ablfac1eulem 20020 Lemma for ~ ablfac1eu . (...
ablfac1eu 20021 The factorization of ~ abl...
pgpfac1lem1 20022 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 20023 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 20024 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 20025 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 20026 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 20027 Lemma for ~ pgpfac1 . (Co...
pgpfac1 20028 Factorization of a finite ...
pgpfaclem1 20029 Lemma for ~ pgpfac . (Con...
pgpfaclem2 20030 Lemma for ~ pgpfac . (Con...
pgpfaclem3 20031 Lemma for ~ pgpfac . (Con...
pgpfac 20032 Full factorization of a fi...
ablfaclem1 20033 Lemma for ~ ablfac . (Con...
ablfaclem2 20034 Lemma for ~ ablfac . (Con...
ablfaclem3 20035 Lemma for ~ ablfac . (Con...
ablfac 20036 The Fundamental Theorem of...
ablfac2 20037 Choose generators for each...
issimpg 20040 The predicate "is a simple...
issimpgd 20041 Deduce a simple group from...
simpggrp 20042 A simple group is a group....
simpggrpd 20043 A simple group is a group....
simpg2nsg 20044 A simple group has two nor...
trivnsimpgd 20045 Trivial groups are not sim...
simpgntrivd 20046 Simple groups are nontrivi...
simpgnideld 20047 A simple group contains a ...
simpgnsgd 20048 The only normal subgroups ...
simpgnsgeqd 20049 A normal subgroup of a sim...
2nsgsimpgd 20050 If any normal subgroup of ...
simpgnsgbid 20051 A nontrivial group is simp...
ablsimpnosubgd 20052 A subgroup of an abelian s...
ablsimpg1gend 20053 An abelian simple group is...
ablsimpgcygd 20054 An abelian simple group is...
ablsimpgfindlem1 20055 Lemma for ~ ablsimpgfind ....
ablsimpgfindlem2 20056 Lemma for ~ ablsimpgfind ....
cycsubggenodd 20057 Relationship between the o...
ablsimpgfind 20058 An abelian simple group is...
fincygsubgd 20059 The subgroup referenced in...
fincygsubgodd 20060 Calculate the order of a s...
fincygsubgodexd 20061 A finite cyclic group has ...
prmgrpsimpgd 20062 A group of prime order is ...
ablsimpgprmd 20063 An abelian simple group ha...
ablsimpgd 20064 An abelian group is simple...
fnmgp 20067 The multiplicative group o...
mgpval 20068 Value of the multiplicatio...
mgpplusg 20069 Value of the group operati...
mgplemOLD 20070 Obsolete version of ~ sets...
mgpbas 20071 Base set of the multiplica...
mgpbasOLD 20072 Obsolete version of ~ mgpb...
mgpsca 20073 The multiplication monoid ...
mgpscaOLD 20074 Obsolete version of ~ mgps...
mgptset 20075 Topology component of the ...
mgptsetOLD 20076 Obsolete version of ~ mgpt...
mgptopn 20077 Topology of the multiplica...
mgpds 20078 Distance function of the m...
mgpdsOLD 20079 Obsolete version of ~ mgpd...
mgpress 20080 Subgroup commutes with the...
mgpressOLD 20081 Obsolete version of ~ mgpr...
prdsmgp 20082 The multiplicative monoid ...
isrng 20085 The predicate "is a non-un...
rngabl 20086 A non-unital ring is an (a...
rngmgp 20087 A non-unital ring is a sem...
rngmgpf 20088 Restricted functionality o...
rnggrp 20089 A non-unital ring is a (ad...
rngass 20090 Associative law for the mu...
rngdi 20091 Distributive law for the m...
rngdir 20092 Distributive law for the m...
rngacl 20093 Closure of the addition op...
rng0cl 20094 The zero element of a non-...
rngcl 20095 Closure of the multiplicat...
rnglz 20096 The zero of a non-unital r...
rngrz 20097 The zero of a non-unital r...
rngmneg1 20098 Negation of a product in a...
rngmneg2 20099 Negation of a product in a...
rngm2neg 20100 Double negation of a produ...
rngansg 20101 Every additive subgroup of...
rngsubdi 20102 Ring multiplication distri...
rngsubdir 20103 Ring multiplication distri...
isrngd 20104 Properties that determine ...
rngpropd 20105 If two structures have the...
prdsmulrngcl 20106 Closure of the multiplicat...
prdsrngd 20107 A product of non-unital ri...
imasrng 20108 The image structure of a n...
imasrngf1 20109 The image of a non-unital ...
xpsrngd 20110 A product of two non-unita...
qusrng 20111 The quotient structure of ...
ringidval 20114 The value of the unity ele...
dfur2 20115 The multiplicative identit...
ringurd 20116 Deduce the unity element o...
issrg 20119 The predicate "is a semiri...
srgcmn 20120 A semiring is a commutativ...
srgmnd 20121 A semiring is a monoid. (...
srgmgp 20122 A semiring is a monoid und...
srgdilem 20123 Lemma for ~ srgdi and ~ sr...
srgcl 20124 Closure of the multiplicat...
srgass 20125 Associative law for the mu...
srgideu 20126 The unity element of a sem...
srgfcl 20127 Functionality of the multi...
srgdi 20128 Distributive law for the m...
srgdir 20129 Distributive law for the m...
srgidcl 20130 The unity element of a sem...
srg0cl 20131 The zero element of a semi...
srgidmlem 20132 Lemma for ~ srglidm and ~ ...
srglidm 20133 The unity element of a sem...
srgridm 20134 The unity element of a sem...
issrgid 20135 Properties showing that an...
srgacl 20136 Closure of the addition op...
srgcom 20137 Commutativity of the addit...
srgrz 20138 The zero of a semiring is ...
srglz 20139 The zero of a semiring is ...
srgisid 20140 In a semiring, the only le...
o2timesd 20141 An element of a ring-like ...
rglcom4d 20142 Restricted commutativity o...
srgo2times 20143 A semiring element plus it...
srgcom4lem 20144 Lemma for ~ srgcom4 . Thi...
srgcom4 20145 Restricted commutativity o...
srg1zr 20146 The only semiring with a b...
srgen1zr 20147 The only semiring with one...
srgmulgass 20148 An associative property be...
srgpcomp 20149 If two elements of a semir...
srgpcompp 20150 If two elements of a semir...
srgpcomppsc 20151 If two elements of a semir...
srglmhm 20152 Left-multiplication in a s...
srgrmhm 20153 Right-multiplication in a ...
srgsummulcr 20154 A finite semiring sum mult...
sgsummulcl 20155 A finite semiring sum mult...
srg1expzeq1 20156 The exponentiation (by a n...
srgbinomlem1 20157 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 20158 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 20159 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 20160 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 20161 Lemma for ~ srgbinom . In...
srgbinom 20162 The binomial theorem for c...
csrgbinom 20163 The binomial theorem for c...
isring 20168 The predicate "is a (unita...
ringgrp 20169 A ring is a group. (Contr...
ringmgp 20170 A ring is a monoid under m...
iscrng 20171 A commutative ring is a ri...
crngmgp 20172 A commutative ring's multi...
ringgrpd 20173 A ring is a group. (Contr...
ringmnd 20174 A ring is a monoid under a...
ringmgm 20175 A ring is a magma. (Contr...
crngring 20176 A commutative ring is a ri...
crngringd 20177 A commutative ring is a ri...
crnggrpd 20178 A commutative ring is a gr...
mgpf 20179 Restricted functionality o...
ringdilem 20180 Properties of a unital rin...
ringcl 20181 Closure of the multiplicat...
crngcom 20182 A commutative ring's multi...
iscrng2 20183 A commutative ring is a ri...
ringass 20184 Associative law for multip...
ringideu 20185 The unity element of a rin...
crngbascntr 20186 The base set of a commutat...
ringassd 20187 Associative law for multip...
ringcld 20188 Closure of the multiplicat...
ringdi 20189 Distributive law for the m...
ringdir 20190 Distributive law for the m...
ringidcl 20191 The unity element of a rin...
ring0cl 20192 The zero element of a ring...
ringidmlem 20193 Lemma for ~ ringlidm and ~...
ringlidm 20194 The unity element of a rin...
ringridm 20195 The unity element of a rin...
isringid 20196 Properties showing that an...
ringlidmd 20197 The unity element of a rin...
ringridmd 20198 The unity element of a rin...
ringid 20199 The multiplication operati...
ringo2times 20200 A ring element plus itself...
ringadd2 20201 A ring element plus itself...
ringidss 20202 A subset of the multiplica...
ringacl 20203 Closure of the addition op...
ringcomlem 20204 Lemma for ~ ringcom . Thi...
ringcom 20205 Commutativity of the addit...
ringabl 20206 A ring is an Abelian group...
ringcmn 20207 A ring is a commutative mo...
ringabld 20208 A ring is an Abelian group...
ringcmnd 20209 A ring is a commutative mo...
ringrng 20210 A unital ring is a non-uni...
ringssrng 20211 The unital rings are non-u...
isringrng 20212 The predicate "is a unital...
ringpropd 20213 If two structures have the...
crngpropd 20214 If two structures have the...
ringprop 20215 If two structures have the...
isringd 20216 Properties that determine ...
iscrngd 20217 Properties that determine ...
ringlz 20218 The zero of a unital ring ...
ringrz 20219 The zero of a unital ring ...
ringlzd 20220 The zero of a unital ring ...
ringrzd 20221 The zero of a unital ring ...
ringsrg 20222 Any ring is also a semirin...
ring1eq0 20223 If one and zero are equal,...
ring1ne0 20224 If a ring has at least two...
ringinvnz1ne0 20225 In a unital ring, a left i...
ringinvnzdiv 20226 In a unital ring, a left i...
ringnegl 20227 Negation in a ring is the ...
ringnegr 20228 Negation in a ring is the ...
ringmneg1 20229 Negation of a product in a...
ringmneg2 20230 Negation of a product in a...
ringm2neg 20231 Double negation of a produ...
ringsubdi 20232 Ring multiplication distri...
ringsubdir 20233 Ring multiplication distri...
mulgass2 20234 An associative property be...
ring1 20235 The (smallest) structure r...
ringn0 20236 Rings exist. (Contributed...
ringlghm 20237 Left-multiplication in a r...
ringrghm 20238 Right-multiplication in a ...
gsummulc1OLD 20239 Obsolete version of ~ gsum...
gsummulc2OLD 20240 Obsolete version of ~ gsum...
gsummulc1 20241 A finite ring sum multipli...
gsummulc2 20242 A finite ring sum multipli...
gsummgp0 20243 If one factor in a finite ...
gsumdixp 20244 Distribute a binary produc...
prdsmulrcl 20245 A structure product of rin...
prdsringd 20246 A product of rings is a ri...
prdscrngd 20247 A product of commutative r...
prds1 20248 Value of the ring unity in...
pwsring 20249 A structure power of a rin...
pws1 20250 Value of the ring unity in...
pwscrng 20251 A structure power of a com...
pwsmgp 20252 The multiplicative group o...
pwspjmhmmgpd 20253 The projection given by ~ ...
pwsexpg 20254 Value of a group exponenti...
imasring 20255 The image structure of a r...
imasringf1 20256 The image of a ring under ...
xpsringd 20257 A product of two rings is ...
xpsring1d 20258 The multiplicative identit...
qusring2 20259 The quotient structure of ...
crngbinom 20260 The binomial theorem for c...
opprval 20263 Value of the opposite ring...
opprmulfval 20264 Value of the multiplicatio...
opprmul 20265 Value of the multiplicatio...
crngoppr 20266 In a commutative ring, the...
opprlem 20267 Lemma for ~ opprbas and ~ ...
opprlemOLD 20268 Obsolete version of ~ oppr...
opprbas 20269 Base set of an opposite ri...
opprbasOLD 20270 Obsolete proof of ~ opprba...
oppradd 20271 Addition operation of an o...
oppraddOLD 20272 Obsolete proof of ~ opprba...
opprrng 20273 An opposite non-unital rin...
opprrngb 20274 A class is a non-unital ri...
opprring 20275 An opposite ring is a ring...
opprringb 20276 Bidirectional form of ~ op...
oppr0 20277 Additive identity of an op...
oppr1 20278 Multiplicative identity of...
opprneg 20279 The negative function in a...
opprsubg 20280 Being a subgroup is a symm...
mulgass3 20281 An associative property be...
reldvdsr 20288 The divides relation is a ...
dvdsrval 20289 Value of the divides relat...
dvdsr 20290 Value of the divides relat...
dvdsr2 20291 Value of the divides relat...
dvdsrmul 20292 A left-multiple of ` X ` i...
dvdsrcl 20293 Closure of a dividing elem...
dvdsrcl2 20294 Closure of a dividing elem...
dvdsrid 20295 An element in a (unital) r...
dvdsrtr 20296 Divisibility is transitive...
dvdsrmul1 20297 The divisibility relation ...
dvdsrneg 20298 An element divides its neg...
dvdsr01 20299 In a ring, zero is divisib...
dvdsr02 20300 Only zero is divisible by ...
isunit 20301 Property of being a unit o...
1unit 20302 The multiplicative identit...
unitcl 20303 A unit is an element of th...
unitss 20304 The set of units is contai...
opprunit 20305 Being a unit is a symmetri...
crngunit 20306 Property of being a unit i...
dvdsunit 20307 A divisor of a unit is a u...
unitmulcl 20308 The product of units is a ...
unitmulclb 20309 Reversal of ~ unitmulcl in...
unitgrpbas 20310 The base set of the group ...
unitgrp 20311 The group of units is a gr...
unitabl 20312 The group of units of a co...
unitgrpid 20313 The identity of the group ...
unitsubm 20314 The group of units is a su...
invrfval 20317 Multiplicative inverse fun...
unitinvcl 20318 The inverse of a unit exis...
unitinvinv 20319 The inverse of the inverse...
ringinvcl 20320 The inverse of a unit is a...
unitlinv 20321 A unit times its inverse i...
unitrinv 20322 A unit times its inverse i...
1rinv 20323 The inverse of the ring un...
0unit 20324 The additive identity is a...
unitnegcl 20325 The negative of a unit is ...
ringunitnzdiv 20326 In a unitary ring, a unit ...
ring1nzdiv 20327 In a unitary ring, the rin...
dvrfval 20330 Division operation in a ri...
dvrval 20331 Division operation in a ri...
dvrcl 20332 Closure of division operat...
unitdvcl 20333 The units are closed under...
dvrid 20334 A ring element divided by ...
dvr1 20335 A ring element divided by ...
dvrass 20336 An associative law for div...
dvrcan1 20337 A cancellation law for div...
dvrcan3 20338 A cancellation law for div...
dvreq1 20339 Equality in terms of ratio...
dvrdir 20340 Distributive law for the d...
rdivmuldivd 20341 Multiplication of two rati...
ringinvdv 20342 Write the inverse function...
rngidpropd 20343 The ring unity depends onl...
dvdsrpropd 20344 The divisibility relation ...
unitpropd 20345 The set of units depends o...
invrpropd 20346 The ring inverse function ...
isirred 20347 An irreducible element of ...
isnirred 20348 The property of being a no...
isirred2 20349 Expand out the class diffe...
opprirred 20350 Irreducibility is symmetri...
irredn0 20351 The additive identity is n...
irredcl 20352 An irreducible element is ...
irrednu 20353 An irreducible element is ...
irredn1 20354 The multiplicative identit...
irredrmul 20355 The product of an irreduci...
irredlmul 20356 The product of a unit and ...
irredmul 20357 If product of two elements...
irredneg 20358 The negative of an irreduc...
irrednegb 20359 An element is irreducible ...
rnghmrcl 20366 Reverse closure of a non-u...
rnghmfn 20367 The mapping of two non-uni...
rnghmval 20368 The set of the non-unital ...
isrnghm 20369 A function is a non-unital...
isrnghmmul 20370 A function is a non-unital...
rnghmmgmhm 20371 A non-unital ring homomorp...
rnghmval2 20372 The non-unital ring homomo...
isrngim 20373 An isomorphism of non-unit...
rngimrcl 20374 Reverse closure for an iso...
rnghmghm 20375 A non-unital ring homomorp...
rnghmf 20376 A ring homomorphism is a f...
rnghmmul 20377 A homomorphism of non-unit...
isrnghm2d 20378 Demonstration of non-unita...
isrnghmd 20379 Demonstration of non-unita...
rnghmf1o 20380 A non-unital ring homomorp...
isrngim2 20381 An isomorphism of non-unit...
rngimf1o 20382 An isomorphism of non-unit...
rngimrnghm 20383 An isomorphism of non-unit...
rngimcnv 20384 The converse of an isomorp...
rnghmco 20385 The composition of non-uni...
idrnghm 20386 The identity homomorphism ...
c0mgm 20387 The constant mapping to ze...
c0mhm 20388 The constant mapping to ze...
c0ghm 20389 The constant mapping to ze...
c0snmgmhm 20390 The constant mapping to ze...
c0snmhm 20391 The constant mapping to ze...
c0snghm 20392 The constant mapping to ze...
rngisomfv1 20393 If there is a non-unital r...
rngisom1 20394 If there is a non-unital r...
rngisomring 20395 If there is a non-unital r...
rngisomring1 20396 If there is a non-unital r...
dfrhm2 20402 The property of a ring hom...
rhmrcl1 20404 Reverse closure of a ring ...
rhmrcl2 20405 Reverse closure of a ring ...
isrhm 20406 A function is a ring homom...
rhmmhm 20407 A ring homomorphism is a h...
rhmisrnghm 20408 Each unital ring homomorph...
isrim0OLD 20409 Obsolete version of ~ isri...
rimrcl 20410 Reverse closure for an iso...
isrim0 20411 A ring isomorphism is a ho...
rhmghm 20412 A ring homomorphism is an ...
rhmf 20413 A ring homomorphism is a f...
rhmmul 20414 A homomorphism of rings pr...
isrhm2d 20415 Demonstration of ring homo...
isrhmd 20416 Demonstration of ring homo...
rhm1 20417 Ring homomorphisms are req...
idrhm 20418 The identity homomorphism ...
rhmf1o 20419 A ring homomorphism is bij...
isrim 20420 An isomorphism of rings is...
isrimOLD 20421 Obsolete version of ~ isri...
rimf1o 20422 An isomorphism of rings is...
rimrhmOLD 20423 Obsolete version of ~ rimr...
rimrhm 20424 A ring isomorphism is a ho...
rimgim 20425 An isomorphism of rings is...
rimisrngim 20426 Each unital ring isomorphi...
rhmfn 20427 The mapping of two rings t...
rhmval 20428 The ring homomorphisms bet...
rhmco 20429 The composition of ring ho...
pwsco1rhm 20430 Right composition with a f...
pwsco2rhm 20431 Left composition with a ri...
brric 20432 The relation "is isomorphi...
brrici 20433 Prove isomorphic by an exp...
brric2 20434 The relation "is isomorphi...
ricgic 20435 If two rings are (ring) is...
rhmdvdsr 20436 A ring homomorphism preser...
rhmopp 20437 A ring homomorphism is als...
elrhmunit 20438 Ring homomorphisms preserv...
rhmunitinv 20439 Ring homomorphisms preserv...
isnzr 20442 Property of a nonzero ring...
nzrnz 20443 One and zero are different...
nzrring 20444 A nonzero ring is a ring. ...
nzrringOLD 20445 Obsolete version of ~ nzrr...
isnzr2 20446 Equivalent characterizatio...
isnzr2hash 20447 Equivalent characterizatio...
opprnzr 20448 The opposite of a nonzero ...
ringelnzr 20449 A ring is nonzero if it ha...
nzrunit 20450 A unit is nonzero in any n...
0ringnnzr 20451 A ring is a zero ring iff ...
0ring 20452 If a ring has only one ele...
0ringdif 20453 A zero ring is a ring whic...
0ringbas 20454 The base set of a zero rin...
0ring01eq 20455 In a ring with only one el...
01eq0ring 20456 If the zero and the identi...
01eq0ringOLD 20457 Obsolete version of ~ 01eq...
0ring01eqbi 20458 In a unital ring the zero ...
0ring1eq0 20459 In a zero ring, a ring whi...
c0rhm 20460 The constant mapping to ze...
c0rnghm 20461 The constant mapping to ze...
zrrnghm 20462 The constant mapping to ze...
nrhmzr 20463 There is no ring homomorph...
islring 20466 The predicate "is a local ...
lringnzr 20467 A local ring is a nonzero ...
lringring 20468 A local ring is a ring. (...
lringnz 20469 A local ring is a nonzero ...
lringuplu 20470 If the sum of two elements...
issubrng 20473 The subring of non-unital ...
subrngss 20474 A subring is a subset. (C...
subrngid 20475 Every non-unital ring is a...
subrngrng 20476 A subring is a non-unital ...
subrngrcl 20477 Reverse closure for a subr...
subrngsubg 20478 A subring is a subgroup. ...
subrngringnsg 20479 A subring is a normal subg...
subrngbas 20480 Base set of a subring stru...
subrng0 20481 A subring always has the s...
subrngacl 20482 A subring is closed under ...
subrngmcl 20483 A subgroup is closed under...
issubrng2 20484 Characterize the subrings ...
opprsubrng 20485 Being a subring is a symme...
subrngint 20486 The intersection of a none...
subrngin 20487 The intersection of two su...
subrngmre 20488 The subrings of a non-unit...
subsubrng 20489 A subring of a subring is ...
subsubrng2 20490 The set of subrings of a s...
rhmimasubrnglem 20491 Lemma for ~ rhmimasubrng :...
rhmimasubrng 20492 The homomorphic image of a...
cntzsubrng 20493 Centralizers in a non-unit...
subrngpropd 20494 If two structures have the...
issubrg 20499 The subring predicate. (C...
subrgss 20500 A subring is a subset. (C...
subrgid 20501 Every ring is a subring of...
subrgring 20502 A subring is a ring. (Con...
subrgcrng 20503 A subring of a commutative...
subrgrcl 20504 Reverse closure for a subr...
subrgsubg 20505 A subring is a subgroup. ...
subrgsubrng 20506 A subring of a unital ring...
subrg0 20507 A subring always has the s...
subrg1cl 20508 A subring contains the mul...
subrgbas 20509 Base set of a subring stru...
subrg1 20510 A subring always has the s...
subrgacl 20511 A subring is closed under ...
subrgmcl 20512 A subgroup is closed under...
subrgsubm 20513 A subring is a submonoid o...
subrgdvds 20514 If an element divides anot...
subrguss 20515 A unit of a subring is a u...
subrginv 20516 A subring always has the s...
subrgdv 20517 A subring always has the s...
subrgunit 20518 An element of a ring is a ...
subrgugrp 20519 The units of a subring for...
issubrg2 20520 Characterize the subrings ...
opprsubrg 20521 Being a subring is a symme...
subrgnzr 20522 A subring of a nonzero rin...
subrgint 20523 The intersection of a none...
subrgin 20524 The intersection of two su...
subrgmre 20525 The subrings of a ring are...
subsubrg 20526 A subring of a subring is ...
subsubrg2 20527 The set of subrings of a s...
issubrg3 20528 A subring is an additive s...
resrhm 20529 Restriction of a ring homo...
resrhm2b 20530 Restriction of the codomai...
rhmeql 20531 The equalizer of two ring ...
rhmima 20532 The homomorphic image of a...
rnrhmsubrg 20533 The range of a ring homomo...
cntzsubr 20534 Centralizers in a ring are...
pwsdiagrhm 20535 Diagonal homomorphism into...
subrgpropd 20536 If two structures have the...
rhmpropd 20537 Ring homomorphism depends ...
rngcval 20540 Value of the category of n...
rnghmresfn 20541 The class of non-unital ri...
rnghmresel 20542 An element of the non-unit...
rngcbas 20543 Set of objects of the cate...
rngchomfval 20544 Set of arrows of the categ...
rngchom 20545 Set of arrows of the categ...
elrngchom 20546 A morphism of non-unital r...
rngchomfeqhom 20547 The functionalized Hom-set...
rngccofval 20548 Composition in the categor...
rngcco 20549 Composition in the categor...
dfrngc2 20550 Alternate definition of th...
rnghmsscmap2 20551 The non-unital ring homomo...
rnghmsscmap 20552 The non-unital ring homomo...
rnghmsubcsetclem1 20553 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 20554 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 20555 The non-unital ring homomo...
rngccat 20556 The category of non-unital...
rngcid 20557 The identity arrow in the ...
rngcsect 20558 A section in the category ...
rngcinv 20559 An inverse in the category...
rngciso 20560 An isomorphism in the cate...
rngcifuestrc 20561 The "inclusion functor" fr...
funcrngcsetc 20562 The "natural forgetful fun...
funcrngcsetcALT 20563 Alternate proof of ~ funcr...
zrinitorngc 20564 The zero ring is an initia...
zrtermorngc 20565 The zero ring is a termina...
zrzeroorngc 20566 The zero ring is a zero ob...
ringcval 20569 Value of the category of u...
rhmresfn 20570 The class of unital ring h...
rhmresel 20571 An element of the unital r...
ringcbas 20572 Set of objects of the cate...
ringchomfval 20573 Set of arrows of the categ...
ringchom 20574 Set of arrows of the categ...
elringchom 20575 A morphism of unital rings...
ringchomfeqhom 20576 The functionalized Hom-set...
ringccofval 20577 Composition in the categor...
ringcco 20578 Composition in the categor...
dfringc2 20579 Alternate definition of th...
rhmsscmap2 20580 The unital ring homomorphi...
rhmsscmap 20581 The unital ring homomorphi...
rhmsubcsetclem1 20582 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 20583 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 20584 The unital ring homomorphi...
ringccat 20585 The category of unital rin...
ringcid 20586 The identity arrow in the ...
rhmsscrnghm 20587 The unital ring homomorphi...
rhmsubcrngclem1 20588 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 20589 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 20590 The unital ring homomorphi...
rngcresringcat 20591 The restriction of the cat...
ringcsect 20592 A section in the category ...
ringcinv 20593 An inverse in the category...
ringciso 20594 An isomorphism in the cate...
ringcbasbas 20595 An element of the base set...
funcringcsetc 20596 The "natural forgetful fun...
zrtermoringc 20597 The zero ring is a termina...
zrninitoringc 20598 The zero ring is not an in...
srhmsubclem1 20599 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 20600 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 20601 Lemma 3 for ~ srhmsubc . ...
srhmsubc 20602 According to ~ df-subc , t...
sringcat 20603 The restriction of the cat...
crhmsubc 20604 According to ~ df-subc , t...
cringcat 20605 The restriction of the cat...
rngcrescrhm 20606 The category of non-unital...
rhmsubclem1 20607 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 20608 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 20609 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 20610 Lemma 4 for ~ rhmsubc . (...
rhmsubc 20611 According to ~ df-subc , t...
rhmsubccat 20612 The restriction of the cat...
isdrng 20617 The predicate "is a divisi...
drngunit 20618 Elementhood in the set of ...
drngui 20619 The set of units of a divi...
drngring 20620 A division ring is a ring....
drngringd 20621 A division ring is a ring....
drnggrpd 20622 A division ring is a group...
drnggrp 20623 A division ring is a group...
isfld 20624 A field is a commutative d...
flddrngd 20625 A field is a division ring...
fldcrngd 20626 A field is a commutative r...
isdrng2 20627 A division ring can equiva...
drngprop 20628 If two structures have the...
drngmgp 20629 A division ring contains a...
drngmcl 20630 The product of two nonzero...
drngid 20631 A division ring's unity is...
drngunz 20632 A division ring's unity is...
drngnzr 20633 All division rings are non...
drngid2 20634 Properties showing that an...
drnginvrcl 20635 Closure of the multiplicat...
drnginvrn0 20636 The multiplicative inverse...
drnginvrcld 20637 Closure of the multiplicat...
drnginvrl 20638 Property of the multiplica...
drnginvrr 20639 Property of the multiplica...
drnginvrld 20640 Property of the multiplica...
drnginvrrd 20641 Property of the multiplica...
drngmul0or 20642 A product is zero iff one ...
drngmulne0 20643 A product is nonzero iff b...
drngmuleq0 20644 An element is zero iff its...
opprdrng 20645 The opposite of a division...
isdrngd 20646 Properties that characteri...
isdrngrd 20647 Properties that characteri...
isdrngdOLD 20648 Obsolete version of ~ isdr...
isdrngrdOLD 20649 Obsolete version of ~ isdr...
drngpropd 20650 If two structures have the...
fldpropd 20651 If two structures have the...
rng1nnzr 20652 The (smallest) structure r...
ring1zr 20653 The only (unital) ring wit...
rngen1zr 20654 The only (unital) ring wit...
ringen1zr 20655 The only unital ring with ...
rng1nfld 20656 The zero ring is not a fie...
issubdrg 20657 Characterize the subfields...
drhmsubc 20658 According to ~ df-subc , t...
drngcat 20659 The restriction of the cat...
fldcat 20660 The restriction of the cat...
fldc 20661 The restriction of the cat...
fldhmsubc 20662 According to ~ df-subc , t...
issdrg 20665 Property of a division sub...
sdrgrcl 20666 Reverse closure for a sub-...
sdrgdrng 20667 A sub-division-ring is a d...
sdrgsubrg 20668 A sub-division-ring is a s...
sdrgid 20669 Every division ring is a d...
sdrgss 20670 A division subring is a su...
sdrgbas 20671 Base set of a sub-division...
issdrg2 20672 Property of a division sub...
sdrgunit 20673 A unit of a sub-division-r...
imadrhmcl 20674 The image of a (nontrivial...
fldsdrgfld 20675 A sub-division-ring of a f...
acsfn1p 20676 Construction of a closure ...
subrgacs 20677 Closure property of subrin...
sdrgacs 20678 Closure property of divisi...
cntzsdrg 20679 Centralizers in division r...
subdrgint 20680 The intersection of a none...
sdrgint 20681 The intersection of a none...
primefld 20682 The smallest sub division ...
primefld0cl 20683 The prime field contains t...
primefld1cl 20684 The prime field contains t...
abvfval 20687 Value of the set of absolu...
isabv 20688 Elementhood in the set of ...
isabvd 20689 Properties that determine ...
abvrcl 20690 Reverse closure for the ab...
abvfge0 20691 An absolute value is a fun...
abvf 20692 An absolute value is a fun...
abvcl 20693 An absolute value is a fun...
abvge0 20694 The absolute value of a nu...
abveq0 20695 The value of an absolute v...
abvne0 20696 The absolute value of a no...
abvgt0 20697 The absolute value of a no...
abvmul 20698 An absolute value distribu...
abvtri 20699 An absolute value satisfie...
abv0 20700 The absolute value of zero...
abv1z 20701 The absolute value of one ...
abv1 20702 The absolute value of one ...
abvneg 20703 The absolute value of a ne...
abvsubtri 20704 An absolute value satisfie...
abvrec 20705 The absolute value distrib...
abvdiv 20706 The absolute value distrib...
abvdom 20707 Any ring with an absolute ...
abvres 20708 The restriction of an abso...
abvtrivd 20709 The trivial absolute value...
abvtriv 20710 The trivial absolute value...
abvpropd 20711 If two structures have the...
staffval 20716 The functionalization of t...
stafval 20717 The functionalization of t...
staffn 20718 The functionalization is e...
issrng 20719 The predicate "is a star r...
srngrhm 20720 The involution function in...
srngring 20721 A star ring is a ring. (C...
srngcnv 20722 The involution function in...
srngf1o 20723 The involution function in...
srngcl 20724 The involution function in...
srngnvl 20725 The involution function in...
srngadd 20726 The involution function in...
srngmul 20727 The involution function in...
srng1 20728 The conjugate of the ring ...
srng0 20729 The conjugate of the ring ...
issrngd 20730 Properties that determine ...
idsrngd 20731 A commutative ring is a st...
islmod 20736 The predicate "is a left m...
lmodlema 20737 Lemma for properties of a ...
islmodd 20738 Properties that determine ...
lmodgrp 20739 A left module is a group. ...
lmodring 20740 The scalar component of a ...
lmodfgrp 20741 The scalar component of a ...
lmodgrpd 20742 A left module is a group. ...
lmodbn0 20743 The base set of a left mod...
lmodacl 20744 Closure of ring addition f...
lmodmcl 20745 Closure of ring multiplica...
lmodsn0 20746 The set of scalars in a le...
lmodvacl 20747 Closure of vector addition...
lmodass 20748 Left module vector sum is ...
lmodlcan 20749 Left cancellation law for ...
lmodvscl 20750 Closure of scalar product ...
lmodvscld 20751 Closure of scalar product ...
scaffval 20752 The scalar multiplication ...
scafval 20753 The scalar multiplication ...
scafeq 20754 If the scalar multiplicati...
scaffn 20755 The scalar multiplication ...
lmodscaf 20756 The scalar multiplication ...
lmodvsdi 20757 Distributive law for scala...
lmodvsdir 20758 Distributive law for scala...
lmodvsass 20759 Associative law for scalar...
lmod0cl 20760 The ring zero in a left mo...
lmod1cl 20761 The ring unity in a left m...
lmodvs1 20762 Scalar product with the ri...
lmod0vcl 20763 The zero vector is a vecto...
lmod0vlid 20764 Left identity law for the ...
lmod0vrid 20765 Right identity law for the...
lmod0vid 20766 Identity equivalent to the...
lmod0vs 20767 Zero times a vector is the...
lmodvs0 20768 Anything times the zero ve...
lmodvsmmulgdi 20769 Distributive law for a gro...
lmodfopnelem1 20770 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 20771 Lemma 2 for ~ lmodfopne . ...
lmodfopne 20772 The (functionalized) opera...
lcomf 20773 A linear-combination sum i...
lcomfsupp 20774 A linear-combination sum i...
lmodvnegcl 20775 Closure of vector negative...
lmodvnegid 20776 Addition of a vector with ...
lmodvneg1 20777 Minus 1 times a vector is ...
lmodvsneg 20778 Multiplication of a vector...
lmodvsubcl 20779 Closure of vector subtract...
lmodcom 20780 Left module vector sum is ...
lmodabl 20781 A left module is an abelia...
lmodcmn 20782 A left module is a commuta...
lmodnegadd 20783 Distribute negation throug...
lmod4 20784 Commutative/associative la...
lmodvsubadd 20785 Relationship between vecto...
lmodvaddsub4 20786 Vector addition/subtractio...
lmodvpncan 20787 Addition/subtraction cance...
lmodvnpcan 20788 Cancellation law for vecto...
lmodvsubval2 20789 Value of vector subtractio...
lmodsubvs 20790 Subtraction of a scalar pr...
lmodsubdi 20791 Scalar multiplication dist...
lmodsubdir 20792 Scalar multiplication dist...
lmodsubeq0 20793 If the difference between ...
lmodsubid 20794 Subtraction of a vector fr...
lmodvsghm 20795 Scalar multiplication of t...
lmodprop2d 20796 If two structures have the...
lmodpropd 20797 If two structures have the...
gsumvsmul 20798 Pull a scalar multiplicati...
mptscmfsupp0 20799 A mapping to a scalar prod...
mptscmfsuppd 20800 A function mapping to a sc...
rmodislmodlem 20801 Lemma for ~ rmodislmod . ...
rmodislmod 20802 The right module ` R ` ind...
rmodislmodOLD 20803 Obsolete version of ~ rmod...
lssset 20806 The set of all (not necess...
islss 20807 The predicate "is a subspa...
islssd 20808 Properties that determine ...
lssss 20809 A subspace is a set of vec...
lssel 20810 A subspace member is a vec...
lss1 20811 The set of vectors in a le...
lssuni 20812 The union of all subspaces...
lssn0 20813 A subspace is not empty. ...
00lss 20814 The empty structure has no...
lsscl 20815 Closure property of a subs...
lssvacl 20816 Closure of vector addition...
lssvsubcl 20817 Closure of vector subtract...
lssvancl1 20818 Non-closure: if one vector...
lssvancl2 20819 Non-closure: if one vector...
lss0cl 20820 The zero vector belongs to...
lsssn0 20821 The singleton of the zero ...
lss0ss 20822 The zero subspace is inclu...
lssle0 20823 No subspace is smaller tha...
lssne0 20824 A nonzero subspace has a n...
lssvneln0 20825 A vector ` X ` which doesn...
lssneln0 20826 A vector ` X ` which doesn...
lssssr 20827 Conclude subspace ordering...
lssvscl 20828 Closure of scalar product ...
lssvnegcl 20829 Closure of negative vector...
lsssubg 20830 All subspaces are subgroup...
lsssssubg 20831 All subspaces are subgroup...
islss3 20832 A linear subspace of a mod...
lsslmod 20833 A submodule is a module. ...
lsslss 20834 The subspaces of a subspac...
islss4 20835 A linear subspace is a sub...
lss1d 20836 One-dimensional subspace (...
lssintcl 20837 The intersection of a none...
lssincl 20838 The intersection of two su...
lssmre 20839 The subspaces of a module ...
lssacs 20840 Submodules are an algebrai...
prdsvscacl 20841 Pointwise scalar multiplic...
prdslmodd 20842 The product of a family of...
pwslmod 20843 A structure power of a lef...
lspfval 20846 The span function for a le...
lspf 20847 The span function on a lef...
lspval 20848 The span of a set of vecto...
lspcl 20849 The span of a set of vecto...
lspsncl 20850 The span of a singleton is...
lspprcl 20851 The span of a pair is a su...
lsptpcl 20852 The span of an unordered t...
lspsnsubg 20853 The span of a singleton is...
00lsp 20854 ~ fvco4i lemma for linear ...
lspid 20855 The span of a subspace is ...
lspssv 20856 A span is a set of vectors...
lspss 20857 Span preserves subset orde...
lspssid 20858 A set of vectors is a subs...
lspidm 20859 The span of a set of vecto...
lspun 20860 The span of union is the s...
lspssp 20861 If a set of vectors is a s...
mrclsp 20862 Moore closure generalizes ...
lspsnss 20863 The span of the singleton ...
lspsnel3 20864 A member of the span of th...
lspprss 20865 The span of a pair of vect...
lspsnid 20866 A vector belongs to the sp...
lspsnel6 20867 Relationship between a vec...
lspsnel5 20868 Relationship between a vec...
lspsnel5a 20869 Relationship between a vec...
lspprid1 20870 A member of a pair of vect...
lspprid2 20871 A member of a pair of vect...
lspprvacl 20872 The sum of two vectors bel...
lssats2 20873 A way to express atomistic...
lspsneli 20874 A scalar product with a ve...
lspsn 20875 Span of the singleton of a...
lspsnel 20876 Member of span of the sing...
lspsnvsi 20877 Span of a scalar product o...
lspsnss2 20878 Comparable spans of single...
lspsnneg 20879 Negation does not change t...
lspsnsub 20880 Swapping subtraction order...
lspsn0 20881 Span of the singleton of t...
lsp0 20882 Span of the empty set. (C...
lspuni0 20883 Union of the span of the e...
lspun0 20884 The span of a union with t...
lspsneq0 20885 Span of the singleton is t...
lspsneq0b 20886 Equal singleton spans impl...
lmodindp1 20887 Two independent (non-colin...
lsslsp 20888 Spans in submodules corres...
lsslspOLD 20889 Obsolete version of ~ lssl...
lss0v 20890 The zero vector in a submo...
lsspropd 20891 If two structures have the...
lsppropd 20892 If two structures have the...
reldmlmhm 20899 Lemma for module homomorph...
lmimfn 20900 Lemma for module isomorphi...
islmhm 20901 Property of being a homomo...
islmhm3 20902 Property of a module homom...
lmhmlem 20903 Non-quantified consequence...
lmhmsca 20904 A homomorphism of left mod...
lmghm 20905 A homomorphism of left mod...
lmhmlmod2 20906 A homomorphism of left mod...
lmhmlmod1 20907 A homomorphism of left mod...
lmhmf 20908 A homomorphism of left mod...
lmhmlin 20909 A homomorphism of left mod...
lmodvsinv 20910 Multiplication of a vector...
lmodvsinv2 20911 Multiplying a negated vect...
islmhm2 20912 A one-equation proof of li...
islmhmd 20913 Deduction for a module hom...
0lmhm 20914 The constant zero linear f...
idlmhm 20915 The identity function on a...
invlmhm 20916 The negative function on a...
lmhmco 20917 The composition of two mod...
lmhmplusg 20918 The pointwise sum of two l...
lmhmvsca 20919 The pointwise scalar produ...
lmhmf1o 20920 A bijective module homomor...
lmhmima 20921 The image of a subspace un...
lmhmpreima 20922 The inverse image of a sub...
lmhmlsp 20923 Homomorphisms preserve spa...
lmhmrnlss 20924 The range of a homomorphis...
lmhmkerlss 20925 The kernel of a homomorphi...
reslmhm 20926 Restriction of a homomorph...
reslmhm2 20927 Expansion of the codomain ...
reslmhm2b 20928 Expansion of the codomain ...
lmhmeql 20929 The equalizer of two modul...
lspextmo 20930 A linear function is compl...
pwsdiaglmhm 20931 Diagonal homomorphism into...
pwssplit0 20932 Splitting for structure po...
pwssplit1 20933 Splitting for structure po...
pwssplit2 20934 Splitting for structure po...
pwssplit3 20935 Splitting for structure po...
islmim 20936 An isomorphism of left mod...
lmimf1o 20937 An isomorphism of left mod...
lmimlmhm 20938 An isomorphism of modules ...
lmimgim 20939 An isomorphism of modules ...
islmim2 20940 An isomorphism of left mod...
lmimcnv 20941 The converse of a bijectiv...
brlmic 20942 The relation "is isomorphi...
brlmici 20943 Prove isomorphic by an exp...
lmiclcl 20944 Isomorphism implies the le...
lmicrcl 20945 Isomorphism implies the ri...
lmicsym 20946 Module isomorphism is symm...
lmhmpropd 20947 Module homomorphism depend...
islbs 20950 The predicate " ` B ` is a...
lbsss 20951 A basis is a set of vector...
lbsel 20952 An element of a basis is a...
lbssp 20953 The span of a basis is the...
lbsind 20954 A basis is linearly indepe...
lbsind2 20955 A basis is linearly indepe...
lbspss 20956 No proper subset of a basi...
lsmcl 20957 The sum of two subspaces i...
lsmspsn 20958 Member of subspace sum of ...
lsmelval2 20959 Subspace sum membership in...
lsmsp 20960 Subspace sum in terms of s...
lsmsp2 20961 Subspace sum of spans of s...
lsmssspx 20962 Subspace sum (in its exten...
lsmpr 20963 The span of a pair of vect...
lsppreli 20964 A vector expressed as a su...
lsmelpr 20965 Two ways to say that a vec...
lsppr0 20966 The span of a vector paire...
lsppr 20967 Span of a pair of vectors....
lspprel 20968 Member of the span of a pa...
lspprabs 20969 Absorption of vector sum i...
lspvadd 20970 The span of a vector sum i...
lspsntri 20971 Triangle-type inequality f...
lspsntrim 20972 Triangle-type inequality f...
lbspropd 20973 If two structures have the...
pj1lmhm 20974 The left projection functi...
pj1lmhm2 20975 The left projection functi...
islvec 20978 The predicate "is a left v...
lvecdrng 20979 The set of scalars of a le...
lveclmod 20980 A left vector space is a l...
lveclmodd 20981 A vector space is a left m...
lvecgrpd 20982 A vector space is a group....
lsslvec 20983 A vector subspace is a vec...
lmhmlvec 20984 The property for modules t...
lvecvs0or 20985 If a scalar product is zer...
lvecvsn0 20986 A scalar product is nonzer...
lssvs0or 20987 If a scalar product belong...
lvecvscan 20988 Cancellation law for scala...
lvecvscan2 20989 Cancellation law for scala...
lvecinv 20990 Invert coefficient of scal...
lspsnvs 20991 A nonzero scalar product d...
lspsneleq 20992 Membership relation that i...
lspsncmp 20993 Comparable spans of nonzer...
lspsnne1 20994 Two ways to express that v...
lspsnne2 20995 Two ways to express that v...
lspsnnecom 20996 Swap two vectors with diff...
lspabs2 20997 Absorption law for span of...
lspabs3 20998 Absorption law for span of...
lspsneq 20999 Equal spans of singletons ...
lspsneu 21000 Nonzero vectors with equal...
lspsnel4 21001 A member of the span of th...
lspdisj 21002 The span of a vector not i...
lspdisjb 21003 A nonzero vector is not in...
lspdisj2 21004 Unequal spans are disjoint...
lspfixed 21005 Show membership in the spa...
lspexch 21006 Exchange property for span...
lspexchn1 21007 Exchange property for span...
lspexchn2 21008 Exchange property for span...
lspindpi 21009 Partial independence prope...
lspindp1 21010 Alternate way to say 3 vec...
lspindp2l 21011 Alternate way to say 3 vec...
lspindp2 21012 Alternate way to say 3 vec...
lspindp3 21013 Independence of 2 vectors ...
lspindp4 21014 (Partial) independence of ...
lvecindp 21015 Compute the ` X ` coeffici...
lvecindp2 21016 Sums of independent vector...
lspsnsubn0 21017 Unequal singleton spans im...
lsmcv 21018 Subspace sum has the cover...
lspsolvlem 21019 Lemma for ~ lspsolv . (Co...
lspsolv 21020 If ` X ` is in the span of...
lssacsex 21021 In a vector space, subspac...
lspsnat 21022 There is no subspace stric...
lspsncv0 21023 The span of a singleton co...
lsppratlem1 21024 Lemma for ~ lspprat . Let...
lsppratlem2 21025 Lemma for ~ lspprat . Sho...
lsppratlem3 21026 Lemma for ~ lspprat . In ...
lsppratlem4 21027 Lemma for ~ lspprat . In ...
lsppratlem5 21028 Lemma for ~ lspprat . Com...
lsppratlem6 21029 Lemma for ~ lspprat . Neg...
lspprat 21030 A proper subspace of the s...
islbs2 21031 An equivalent formulation ...
islbs3 21032 An equivalent formulation ...
lbsacsbs 21033 Being a basis in a vector ...
lvecdim 21034 The dimension theorem for ...
lbsextlem1 21035 Lemma for ~ lbsext . The ...
lbsextlem2 21036 Lemma for ~ lbsext . Sinc...
lbsextlem3 21037 Lemma for ~ lbsext . A ch...
lbsextlem4 21038 Lemma for ~ lbsext . ~ lbs...
lbsextg 21039 For any linearly independe...
lbsext 21040 For any linearly independe...
lbsexg 21041 Every vector space has a b...
lbsex 21042 Every vector space has a b...
lvecprop2d 21043 If two structures have the...
lvecpropd 21044 If two structures have the...
sraval 21049 Lemma for ~ srabase throug...
sralem 21050 Lemma for ~ srabase and si...
sralemOLD 21051 Obsolete version of ~ sral...
srabase 21052 Base set of a subring alge...
srabaseOLD 21053 Obsolete proof of ~ srabas...
sraaddg 21054 Additive operation of a su...
sraaddgOLD 21055 Obsolete proof of ~ sraadd...
sramulr 21056 Multiplicative operation o...
sramulrOLD 21057 Obsolete proof of ~ sramul...
srasca 21058 The set of scalars of a su...
srascaOLD 21059 Obsolete proof of ~ srasca...
sravsca 21060 The scalar product operati...
sravscaOLD 21061 Obsolete proof of ~ sravsc...
sraip 21062 The inner product operatio...
sratset 21063 Topology component of a su...
sratsetOLD 21064 Obsolete proof of ~ sratse...
sratopn 21065 Topology component of a su...
srads 21066 Distance function of a sub...
sradsOLD 21067 Obsolete proof of ~ srads ...
sraring 21068 Condition for a subring al...
sralmod 21069 The subring algebra is a l...
sralmod0 21070 The subring module inherit...
issubrgd 21071 Prove a subring by closure...
rlmfn 21072 ` ringLMod ` is a function...
rlmval 21073 Value of the ring module. ...
rlmval2 21074 Value of the ring module e...
rlmbas 21075 Base set of the ring modul...
rlmplusg 21076 Vector addition in the rin...
rlm0 21077 Zero vector in the ring mo...
rlmsub 21078 Subtraction in the ring mo...
rlmmulr 21079 Ring multiplication in the...
rlmsca 21080 Scalars in the ring module...
rlmsca2 21081 Scalars in the ring module...
rlmvsca 21082 Scalar multiplication in t...
rlmtopn 21083 Topology component of the ...
rlmds 21084 Metric component of the ri...
rlmlmod 21085 The ring module is a modul...
rlmlvec 21086 The ring module over a div...
rlmlsm 21087 Subgroup sum of the ring m...
rlmvneg 21088 Vector negation in the rin...
rlmscaf 21089 Functionalized scalar mult...
ixpsnbasval 21090 The value of an infinite C...
lidlval 21095 Value of the set of ring i...
rspval 21096 Value of the ring span fun...
lidlss 21097 An ideal is a subset of th...
lidlssbas 21098 The base set of the restri...
lidlbas 21099 A (left) ideal of a ring i...
islidl 21100 Predicate of being a (left...
rnglidlmcl 21101 A (left) ideal containing ...
rngridlmcl 21102 A right ideal (which is a ...
dflidl2rng 21103 Alternate (the usual textb...
isridlrng 21104 A right ideal is a left id...
lidl0cl 21105 An ideal contains 0. (Con...
lidlacl 21106 An ideal is closed under a...
lidlnegcl 21107 An ideal contains negative...
lidlsubg 21108 An ideal is a subgroup of ...
lidlsubcl 21109 An ideal is closed under s...
lidlmcl 21110 An ideal is closed under l...
lidl1el 21111 An ideal contains 1 iff it...
dflidl2 21112 Alternate (the usual textb...
lidl0ALT 21113 Alternate proof for ~ lidl...
rnglidl0 21114 Every non-unital ring cont...
lidl0 21115 Every ring contains a zero...
lidl1ALT 21116 Alternate proof for ~ lidl...
rnglidl1 21117 The base set of every non-...
lidl1 21118 Every ring contains a unit...
lidlacs 21119 The ideal system is an alg...
rspcl 21120 The span of a set of ring ...
rspssid 21121 The span of a set of ring ...
rsp1 21122 The span of the identity e...
rsp0 21123 The span of the zero eleme...
rspssp 21124 The ideal span of a set of...
mrcrsp 21125 Moore closure generalizes ...
lidlnz 21126 A nonzero ideal contains a...
drngnidl 21127 A division ring has only t...
lidlrsppropd 21128 The left ideals and ring s...
rnglidlmmgm 21129 The multiplicative group o...
rnglidlmsgrp 21130 The multiplicative group o...
rnglidlrng 21131 A (left) ideal of a non-un...
2idlval 21134 Definition of a two-sided ...
isridl 21135 A right ideal is a left id...
2idlelb 21136 Membership in a two-sided ...
2idllidld 21137 A two-sided ideal is a lef...
2idlridld 21138 A two-sided ideal is a rig...
df2idl2rng 21139 Alternate (the usual textb...
df2idl2 21140 Alternate (the usual textb...
ridl0 21141 Every ring contains a zero...
ridl1 21142 Every ring contains a unit...
2idl0 21143 Every ring contains a zero...
2idl1 21144 Every ring contains a unit...
2idlss 21145 A two-sided ideal is a sub...
2idlbas 21146 The base set of a two-side...
2idlelbas 21147 The base set of a two-side...
rng2idlsubrng 21148 A two-sided ideal of a non...
rng2idlnsg 21149 A two-sided ideal of a non...
rng2idl0 21150 The zero (additive identit...
rng2idlsubgsubrng 21151 A two-sided ideal of a non...
rng2idlsubgnsg 21152 A two-sided ideal of a non...
rng2idlsubg0 21153 The zero (additive identit...
2idlcpblrng 21154 The coset equivalence rela...
2idlcpbl 21155 The coset equivalence rela...
qus2idrng 21156 The quotient of a non-unit...
qus1 21157 The multiplicative identit...
qusring 21158 If ` S ` is a two-sided id...
qusrhm 21159 If ` S ` is a two-sided id...
qusmul2 21160 Value of the ring operatio...
crngridl 21161 In a commutative ring, the...
crng2idl 21162 In a commutative ring, a t...
qusmulrng 21163 Value of the multiplicatio...
quscrng 21164 The quotient of a commutat...
rngqiprng1elbas 21165 The ring unity of a two-si...
rngqiprngghmlem1 21166 Lemma 1 for ~ rngqiprngghm...
rngqiprngghmlem2 21167 Lemma 2 for ~ rngqiprngghm...
rngqiprngghmlem3 21168 Lemma 3 for ~ rngqiprngghm...
rngqiprngimfolem 21169 Lemma for ~ rngqiprngimfo ...
rngqiprnglinlem1 21170 Lemma 1 for ~ rngqiprnglin...
rngqiprnglinlem2 21171 Lemma 2 for ~ rngqiprnglin...
rngqiprnglinlem3 21172 Lemma 3 for ~ rngqiprnglin...
rngqiprngimf1lem 21173 Lemma for ~ rngqiprngimf1 ...
rngqipbas 21174 The base set of the produc...
rngqiprng 21175 The product of the quotien...
rngqiprngimf 21176 ` F ` is a function from (...
rngqiprngimfv 21177 The value of the function ...
rngqiprngghm 21178 ` F ` is a homomorphism of...
rngqiprngimf1 21179 ` F ` is a one-to-one func...
rngqiprngimfo 21180 ` F ` is a function from (...
rngqiprnglin 21181 ` F ` is linear with respe...
rngqiprngho 21182 ` F ` is a homomorphism of...
rngqiprngim 21183 ` F ` is an isomorphism of...
rng2idl1cntr 21184 The unity of a two-sided i...
rngringbdlem1 21185 In a unital ring, the quot...
rngringbdlem2 21186 A non-unital ring is unita...
rngringbd 21187 A non-unital ring is unita...
ring2idlqus 21188 For every unital ring ther...
ring2idlqusb 21189 A non-unital ring is unita...
rngqiprngfulem1 21190 Lemma 1 for ~ rngqiprngfu ...
rngqiprngfulem2 21191 Lemma 2 for ~ rngqiprngfu ...
rngqiprngfulem3 21192 Lemma 3 for ~ rngqiprngfu ...
rngqiprngfulem4 21193 Lemma 4 for ~ rngqiprngfu ...
rngqiprngfulem5 21194 Lemma 5 for ~ rngqiprngfu ...
rngqipring1 21195 The ring unity of the prod...
rngqiprngfu 21196 The function value of ` F ...
rngqiprngu 21197 If a non-unital ring has a...
ring2idlqus1 21198 If a non-unital ring has a...
lpival 21203 Value of the set of princi...
islpidl 21204 Property of being a princi...
lpi0 21205 The zero ideal is always p...
lpi1 21206 The unit ideal is always p...
islpir 21207 Principal ideal rings are ...
lpiss 21208 Principal ideals are a sub...
islpir2 21209 Principal ideal rings are ...
lpirring 21210 Principal ideal rings are ...
drnglpir 21211 Division rings are princip...
rspsn 21212 Membership in principal id...
lidldvgen 21213 An element generates an id...
lpigen 21214 An ideal is principal iff ...
rrgval 21223 Value of the set or left-r...
isrrg 21224 Membership in the set of l...
rrgeq0i 21225 Property of a left-regular...
rrgeq0 21226 Left-multiplication by a l...
rrgsupp 21227 Left multiplication by a l...
rrgss 21228 Left-regular elements are ...
unitrrg 21229 Units are regular elements...
isdomn 21230 Expand definition of a dom...
domnnzr 21231 A domain is a nonzero ring...
domnring 21232 A domain is a ring. (Cont...
domneq0 21233 In a domain, a product is ...
domnmuln0 21234 In a domain, a product of ...
isdomn2 21235 A ring is a domain iff all...
domnrrg 21236 In a domain, any nonzero e...
isdomn5 21237 The right conjunct in the ...
isdomn4 21238 A ring is a domain iff it ...
opprdomn 21239 The opposite of a domain i...
abvn0b 21240 Another characterization o...
drngdomn 21241 A division ring is a domai...
isidom 21242 An integral domain is a co...
idomdomd 21243 An integral domain is a do...
idomringd 21244 An integral domain is a ri...
fldidom 21245 A field is an integral dom...
fldidomOLD 21246 Obsolete version of ~ fldi...
fidomndrnglem 21247 Lemma for ~ fidomndrng . ...
fidomndrng 21248 A finite domain is a divis...
fiidomfld 21249 A finite integral domain i...
cnfldstr 21268 The field of complex numbe...
cnfldex 21269 The field of complex numbe...
cnfldbas 21270 The base set of the field ...
mpocnfldadd 21271 The addition operation of ...
cnfldadd 21272 The addition operation of ...
mpocnfldmul 21273 The multiplication operati...
cnfldmul 21274 The multiplication operati...
cnfldcj 21275 The conjugation operation ...
cnfldtset 21276 The topology component of ...
cnfldle 21277 The ordering of the field ...
cnfldds 21278 The metric of the field of...
cnfldunif 21279 The uniform structure comp...
cnfldfun 21280 The field of complex numbe...
cnfldfunALT 21281 The field of complex numbe...
dfcnfldOLD 21282 Obsolete version of ~ df-c...
cnfldstrOLD 21283 Obsolete version of ~ cnfl...
cnfldexOLD 21284 Obsolete version of ~ cnfl...
cnfldbasOLD 21285 Obsolete version of ~ cnfl...
cnfldaddOLD 21286 Obsolete version of ~ cnfl...
cnfldmulOLD 21287 Obsolete version of ~ cnfl...
cnfldcjOLD 21288 Obsolete version of ~ cnfl...
cnfldtsetOLD 21289 Obsolete version of ~ cnfl...
cnfldleOLD 21290 Obsolete version of ~ cnfl...
cnflddsOLD 21291 Obsolete version of ~ cnfl...
cnfldunifOLD 21292 Obsolete version of ~ cnfl...
cnfldfunOLD 21293 Obsolete version of ~ cnfl...
cnfldfunALTOLD 21294 Obsolete version of ~ cnfl...
cnfldfunALTOLDOLD 21295 Obsolete proof of ~ cnfldf...
xrsstr 21296 The extended real structur...
xrsex 21297 The extended real structur...
xrsbas 21298 The base set of the extend...
xrsadd 21299 The addition operation of ...
xrsmul 21300 The multiplication operati...
xrstset 21301 The topology component of ...
xrsle 21302 The ordering of the extend...
cncrng 21303 The complex numbers form a...
cncrngOLD 21304 Obsolete version of ~ cncr...
cnring 21305 The complex numbers form a...
xrsmcmn 21306 The "multiplicative group"...
cnfld0 21307 Zero is the zero element o...
cnfld1 21308 One is the unity element o...
cnfld1OLD 21309 Obsolete version of ~ cnfl...
cnfldneg 21310 The additive inverse in th...
cnfldplusf 21311 The functionalized additio...
cnfldsub 21312 The subtraction operator i...
cndrng 21313 The complex numbers form a...
cndrngOLD 21314 Obsolete version of ~ cndr...
cnflddiv 21315 The division operation in ...
cnflddivOLD 21316 Obsolete version of ~ cnfl...
cnfldinv 21317 The multiplicative inverse...
cnfldmulg 21318 The group multiple functio...
cnfldexp 21319 The exponentiation operato...
cnsrng 21320 The complex numbers form a...
xrsmgm 21321 The "additive group" of th...
xrsnsgrp 21322 The "additive group" of th...
xrsmgmdifsgrp 21323 The "additive group" of th...
xrs1mnd 21324 The extended real numbers,...
xrs10 21325 The zero of the extended r...
xrs1cmn 21326 The extended real numbers ...
xrge0subm 21327 The nonnegative extended r...
xrge0cmn 21328 The nonnegative extended r...
xrsds 21329 The metric of the extended...
xrsdsval 21330 The metric of the extended...
xrsdsreval 21331 The metric of the extended...
xrsdsreclblem 21332 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 21333 The metric of the extended...
cnsubmlem 21334 Lemma for ~ nn0subm and fr...
cnsubglem 21335 Lemma for ~ resubdrg and f...
cnsubrglem 21336 Lemma for ~ resubdrg and f...
cnsubrglemOLD 21337 Obsolete version of ~ cnsu...
cnsubdrglem 21338 Lemma for ~ resubdrg and f...
qsubdrg 21339 The rational numbers form ...
zsubrg 21340 The integers form a subrin...
gzsubrg 21341 The gaussian integers form...
nn0subm 21342 The nonnegative integers f...
rege0subm 21343 The nonnegative reals form...
absabv 21344 The regular absolute value...
zsssubrg 21345 The integers are a subset ...
qsssubdrg 21346 The rational numbers are a...
cnsubrg 21347 There are no subrings of t...
cnmgpabl 21348 The unit group of the comp...
cnmgpid 21349 The group identity element...
cnmsubglem 21350 Lemma for ~ rpmsubg and fr...
rpmsubg 21351 The positive reals form a ...
gzrngunitlem 21352 Lemma for ~ gzrngunit . (...
gzrngunit 21353 The units on ` ZZ [ _i ] `...
gsumfsum 21354 Relate a group sum on ` CC...
regsumfsum 21355 Relate a group sum on ` ( ...
expmhm 21356 Exponentiation is a monoid...
nn0srg 21357 The nonnegative integers f...
rge0srg 21358 The nonnegative real numbe...
zringcrng 21361 The ring of integers is a ...
zringring 21362 The ring of integers is a ...
zringrng 21363 The ring of integers is a ...
zringabl 21364 The ring of integers is an...
zringgrp 21365 The ring of integers is an...
zringbas 21366 The integers are the base ...
zringplusg 21367 The addition operation of ...
zringsub 21368 The subtraction of element...
zringmulg 21369 The multiplication (group ...
zringmulr 21370 The multiplication operati...
zring0 21371 The zero element of the ri...
zring1 21372 The unity element of the r...
zringnzr 21373 The ring of integers is a ...
dvdsrzring 21374 Ring divisibility in the r...
zringlpirlem1 21375 Lemma for ~ zringlpir . A...
zringlpirlem2 21376 Lemma for ~ zringlpir . A...
zringlpirlem3 21377 Lemma for ~ zringlpir . A...
zringinvg 21378 The additive inverse of an...
zringunit 21379 The units of ` ZZ ` are th...
zringlpir 21380 The integers are a princip...
zringndrg 21381 The integers are not a div...
zringcyg 21382 The integers are a cyclic ...
zringsubgval 21383 Subtraction in the ring of...
zringmpg 21384 The multiplicative group o...
prmirredlem 21385 A positive integer is irre...
dfprm2 21386 The positive irreducible e...
prmirred 21387 The irreducible elements o...
expghm 21388 Exponentiation is a group ...
mulgghm2 21389 The powers of a group elem...
mulgrhm 21390 The powers of the element ...
mulgrhm2 21391 The powers of the element ...
irinitoringc 21392 The ring of integers is an...
nzerooringczr 21393 There is no zero object in...
pzriprnglem1 21394 Lemma 1 for ~ pzriprng : `...
pzriprnglem2 21395 Lemma 2 for ~ pzriprng : ...
pzriprnglem3 21396 Lemma 3 for ~ pzriprng : ...
pzriprnglem4 21397 Lemma 4 for ~ pzriprng : `...
pzriprnglem5 21398 Lemma 5 for ~ pzriprng : `...
pzriprnglem6 21399 Lemma 6 for ~ pzriprng : `...
pzriprnglem7 21400 Lemma 7 for ~ pzriprng : `...
pzriprnglem8 21401 Lemma 8 for ~ pzriprng : `...
pzriprnglem9 21402 Lemma 9 for ~ pzriprng : ...
pzriprnglem10 21403 Lemma 10 for ~ pzriprng : ...
pzriprnglem11 21404 Lemma 11 for ~ pzriprng : ...
pzriprnglem12 21405 Lemma 12 for ~ pzriprng : ...
pzriprnglem13 21406 Lemma 13 for ~ pzriprng : ...
pzriprnglem14 21407 Lemma 14 for ~ pzriprng : ...
pzriprngALT 21408 The non-unital ring ` ( ZZ...
pzriprng1ALT 21409 The ring unity of the ring...
pzriprng 21410 The non-unital ring ` ( ZZ...
pzriprng1 21411 The ring unity of the ring...
zrhval 21420 Define the unique homomorp...
zrhval2 21421 Alternate value of the ` Z...
zrhmulg 21422 Value of the ` ZRHom ` hom...
zrhrhmb 21423 The ` ZRHom ` homomorphism...
zrhrhm 21424 The ` ZRHom ` homomorphism...
zrh1 21425 Interpretation of 1 in a r...
zrh0 21426 Interpretation of 0 in a r...
zrhpropd 21427 The ` ZZ ` ring homomorphi...
zlmval 21428 Augment an abelian group w...
zlmlem 21429 Lemma for ~ zlmbas and ~ z...
zlmlemOLD 21430 Obsolete version of ~ zlml...
zlmbas 21431 Base set of a ` ZZ ` -modu...
zlmbasOLD 21432 Obsolete version of ~ zlmb...
zlmplusg 21433 Group operation of a ` ZZ ...
zlmplusgOLD 21434 Obsolete version of ~ zlmb...
zlmmulr 21435 Ring operation of a ` ZZ `...
zlmmulrOLD 21436 Obsolete version of ~ zlmb...
zlmsca 21437 Scalar ring of a ` ZZ ` -m...
zlmvsca 21438 Scalar multiplication oper...
zlmlmod 21439 The ` ZZ ` -module operati...
chrval 21440 Definition substitution of...
chrcl 21441 Closure of the characteris...
chrid 21442 The canonical ` ZZ ` ring ...
chrdvds 21443 The ` ZZ ` ring homomorphi...
chrcong 21444 If two integers are congru...
dvdschrmulg 21445 In a ring, any multiple of...
fermltlchr 21446 A generalization of Fermat...
chrnzr 21447 Nonzero rings are precisel...
chrrhm 21448 The characteristic restric...
domnchr 21449 The characteristic of a do...
znlidl 21450 The set ` n ZZ ` is an ide...
zncrng2 21451 The value of the ` Z/nZ ` ...
znval 21452 The value of the ` Z/nZ ` ...
znle 21453 The value of the ` Z/nZ ` ...
znval2 21454 Self-referential expressio...
znbaslem 21455 Lemma for ~ znbas . (Cont...
znbaslemOLD 21456 Obsolete version of ~ znba...
znbas2 21457 The base set of ` Z/nZ ` i...
znbas2OLD 21458 Obsolete version of ~ znba...
znadd 21459 The additive structure of ...
znaddOLD 21460 Obsolete version of ~ znad...
znmul 21461 The multiplicative structu...
znmulOLD 21462 Obsolete version of ~ znad...
znzrh 21463 The ` ZZ ` ring homomorphi...
znbas 21464 The base set of ` Z/nZ ` s...
zncrng 21465 ` Z/nZ ` is a commutative ...
znzrh2 21466 The ` ZZ ` ring homomorphi...
znzrhval 21467 The ` ZZ ` ring homomorphi...
znzrhfo 21468 The ` ZZ ` ring homomorphi...
zncyg 21469 The group ` ZZ / n ZZ ` is...
zndvds 21470 Express equality of equiva...
zndvds0 21471 Special case of ~ zndvds w...
znf1o 21472 The function ` F ` enumera...
zzngim 21473 The ` ZZ ` ring homomorphi...
znle2 21474 The ordering of the ` Z/nZ...
znleval 21475 The ordering of the ` Z/nZ...
znleval2 21476 The ordering of the ` Z/nZ...
zntoslem 21477 Lemma for ~ zntos . (Cont...
zntos 21478 The ` Z/nZ ` structure is ...
znhash 21479 The ` Z/nZ ` structure has...
znfi 21480 The ` Z/nZ ` structure is ...
znfld 21481 The ` Z/nZ ` structure is ...
znidomb 21482 The ` Z/nZ ` structure is ...
znchr 21483 Cyclic rings are defined b...
znunit 21484 The units of ` Z/nZ ` are ...
znunithash 21485 The size of the unit group...
znrrg 21486 The regular elements of ` ...
cygznlem1 21487 Lemma for ~ cygzn . (Cont...
cygznlem2a 21488 Lemma for ~ cygzn . (Cont...
cygznlem2 21489 Lemma for ~ cygzn . (Cont...
cygznlem3 21490 A cyclic group with ` n ` ...
cygzn 21491 A cyclic group with ` n ` ...
cygth 21492 The "fundamental theorem o...
cyggic 21493 Cyclic groups are isomorph...
frgpcyg 21494 A free group is cyclic iff...
freshmansdream 21495 For a prime number ` P ` ,...
cnmsgnsubg 21496 The signs form a multiplic...
cnmsgnbas 21497 The base set of the sign s...
cnmsgngrp 21498 The group of signs under m...
psgnghm 21499 The sign is a homomorphism...
psgnghm2 21500 The sign is a homomorphism...
psgninv 21501 The sign of a permutation ...
psgnco 21502 Multiplicativity of the pe...
zrhpsgnmhm 21503 Embedding of permutation s...
zrhpsgninv 21504 The embedded sign of a per...
evpmss 21505 Even permutations are perm...
psgnevpmb 21506 A class is an even permuta...
psgnodpm 21507 A permutation which is odd...
psgnevpm 21508 A permutation which is eve...
psgnodpmr 21509 If a permutation has sign ...
zrhpsgnevpm 21510 The sign of an even permut...
zrhpsgnodpm 21511 The sign of an odd permuta...
cofipsgn 21512 Composition of any class `...
zrhpsgnelbas 21513 Embedding of permutation s...
zrhcopsgnelbas 21514 Embedding of permutation s...
evpmodpmf1o 21515 The function for performin...
pmtrodpm 21516 A transposition is an odd ...
psgnfix1 21517 A permutation of a finite ...
psgnfix2 21518 A permutation of a finite ...
psgndiflemB 21519 Lemma 1 for ~ psgndif . (...
psgndiflemA 21520 Lemma 2 for ~ psgndif . (...
psgndif 21521 Embedding of permutation s...
copsgndif 21522 Embedding of permutation s...
rebase 21525 The base of the field of r...
remulg 21526 The multiplication (group ...
resubdrg 21527 The real numbers form a di...
resubgval 21528 Subtraction in the field o...
replusg 21529 The addition operation of ...
remulr 21530 The multiplication operati...
re0g 21531 The zero element of the fi...
re1r 21532 The unity element of the f...
rele2 21533 The ordering relation of t...
relt 21534 The ordering relation of t...
reds 21535 The distance of the field ...
redvr 21536 The division operation of ...
retos 21537 The real numbers are a tot...
refld 21538 The real numbers form a fi...
refldcj 21539 The conjugation operation ...
resrng 21540 The real numbers form a st...
regsumsupp 21541 The group sum over the rea...
rzgrp 21542 The quotient group ` RR / ...
isphl 21547 The predicate "is a genera...
phllvec 21548 A pre-Hilbert space is a l...
phllmod 21549 A pre-Hilbert space is a l...
phlsrng 21550 The scalar ring of a pre-H...
phllmhm 21551 The inner product of a pre...
ipcl 21552 Closure of the inner produ...
ipcj 21553 Conjugate of an inner prod...
iporthcom 21554 Orthogonality (meaning inn...
ip0l 21555 Inner product with a zero ...
ip0r 21556 Inner product with a zero ...
ipeq0 21557 The inner product of a vec...
ipdir 21558 Distributive law for inner...
ipdi 21559 Distributive law for inner...
ip2di 21560 Distributive law for inner...
ipsubdir 21561 Distributive law for inner...
ipsubdi 21562 Distributive law for inner...
ip2subdi 21563 Distributive law for inner...
ipass 21564 Associative law for inner ...
ipassr 21565 "Associative" law for seco...
ipassr2 21566 "Associative" law for inne...
ipffval 21567 The inner product operatio...
ipfval 21568 The inner product operatio...
ipfeq 21569 If the inner product opera...
ipffn 21570 The inner product operatio...
phlipf 21571 The inner product operatio...
ip2eq 21572 Two vectors are equal iff ...
isphld 21573 Properties that determine ...
phlpropd 21574 If two structures have the...
ssipeq 21575 The inner product on a sub...
phssipval 21576 The inner product on a sub...
phssip 21577 The inner product (as a fu...
phlssphl 21578 A subspace of an inner pro...
ocvfval 21585 The orthocomplement operat...
ocvval 21586 Value of the orthocompleme...
elocv 21587 Elementhood in the orthoco...
ocvi 21588 Property of a member of th...
ocvss 21589 The orthocomplement of a s...
ocvocv 21590 A set is contained in its ...
ocvlss 21591 The orthocomplement of a s...
ocv2ss 21592 Orthocomplements reverse s...
ocvin 21593 An orthocomplement has tri...
ocvsscon 21594 Two ways to say that ` S `...
ocvlsp 21595 The orthocomplement of a l...
ocv0 21596 The orthocomplement of the...
ocvz 21597 The orthocomplement of the...
ocv1 21598 The orthocomplement of the...
unocv 21599 The orthocomplement of a u...
iunocv 21600 The orthocomplement of an ...
cssval 21601 The set of closed subspace...
iscss 21602 The predicate "is a closed...
cssi 21603 Property of a closed subsp...
cssss 21604 A closed subspace is a sub...
iscss2 21605 It is sufficient to prove ...
ocvcss 21606 The orthocomplement of any...
cssincl 21607 The zero subspace is a clo...
css0 21608 The zero subspace is a clo...
css1 21609 The whole space is a close...
csslss 21610 A closed subspace of a pre...
lsmcss 21611 A subset of a pre-Hilbert ...
cssmre 21612 The closed subspaces of a ...
mrccss 21613 The Moore closure correspo...
thlval 21614 Value of the Hilbert latti...
thlbas 21615 Base set of the Hilbert la...
thlbasOLD 21616 Obsolete proof of ~ thlbas...
thlle 21617 Ordering on the Hilbert la...
thlleOLD 21618 Obsolete proof of ~ thlle ...
thlleval 21619 Ordering on the Hilbert la...
thloc 21620 Orthocomplement on the Hil...
pjfval 21627 The value of the projectio...
pjdm 21628 A subspace is in the domai...
pjpm 21629 The projection map is a pa...
pjfval2 21630 Value of the projection ma...
pjval 21631 Value of the projection ma...
pjdm2 21632 A subspace is in the domai...
pjff 21633 A projection is a linear o...
pjf 21634 A projection is a function...
pjf2 21635 A projection is a function...
pjfo 21636 A projection is a surjecti...
pjcss 21637 A projection subspace is a...
ocvpj 21638 The orthocomplement of a p...
ishil 21639 The predicate "is a Hilber...
ishil2 21640 The predicate "is a Hilber...
isobs 21641 The predicate "is an ortho...
obsip 21642 The inner product of two e...
obsipid 21643 A basis element has length...
obsrcl 21644 Reverse closure for an ort...
obsss 21645 An orthonormal basis is a ...
obsne0 21646 A basis element is nonzero...
obsocv 21647 An orthonormal basis has t...
obs2ocv 21648 The double orthocomplement...
obselocv 21649 A basis element is in the ...
obs2ss 21650 A basis has no proper subs...
obslbs 21651 An orthogonal basis is a l...
reldmdsmm 21654 The direct sum is a well-b...
dsmmval 21655 Value of the module direct...
dsmmbase 21656 Base set of the module dir...
dsmmval2 21657 Self-referential definitio...
dsmmbas2 21658 Base set of the direct sum...
dsmmfi 21659 For finite products, the d...
dsmmelbas 21660 Membership in the finitely...
dsmm0cl 21661 The all-zero vector is con...
dsmmacl 21662 The finite hull is closed ...
prdsinvgd2 21663 Negation of a single coord...
dsmmsubg 21664 The finite hull of a produ...
dsmmlss 21665 The finite hull of a produ...
dsmmlmod 21666 The direct sum of a family...
frlmval 21669 Value of the "free module"...
frlmlmod 21670 The free module is a modul...
frlmpws 21671 The free module as a restr...
frlmlss 21672 The base set of the free m...
frlmpwsfi 21673 The finite free module is ...
frlmsca 21674 The ring of scalars of a f...
frlm0 21675 Zero in a free module (rin...
frlmbas 21676 Base set of the free modul...
frlmelbas 21677 Membership in the base set...
frlmrcl 21678 If a free module is inhabi...
frlmbasfsupp 21679 Elements of the free modul...
frlmbasmap 21680 Elements of the free modul...
frlmbasf 21681 Elements of the free modul...
frlmlvec 21682 The free module over a div...
frlmfibas 21683 The base set of the finite...
elfrlmbasn0 21684 If the dimension of a free...
frlmplusgval 21685 Addition in a free module....
frlmsubgval 21686 Subtraction in a free modu...
frlmvscafval 21687 Scalar multiplication in a...
frlmvplusgvalc 21688 Coordinates of a sum with ...
frlmvscaval 21689 Coordinates of a scalar mu...
frlmplusgvalb 21690 Addition in a free module ...
frlmvscavalb 21691 Scalar multiplication in a...
frlmvplusgscavalb 21692 Addition combined with sca...
frlmgsum 21693 Finite commutative sums in...
frlmsplit2 21694 Restriction is homomorphic...
frlmsslss 21695 A subset of a free module ...
frlmsslss2 21696 A subset of a free module ...
frlmbas3 21697 An element of the base set...
mpofrlmd 21698 Elements of the free modul...
frlmip 21699 The inner product of a fre...
frlmipval 21700 The inner product of a fre...
frlmphllem 21701 Lemma for ~ frlmphl . (Co...
frlmphl 21702 Conditions for a free modu...
uvcfval 21705 Value of the unit-vector g...
uvcval 21706 Value of a single unit vec...
uvcvval 21707 Value of a unit vector coo...
uvcvvcl 21708 A coordinate of a unit vec...
uvcvvcl2 21709 A unit vector coordinate i...
uvcvv1 21710 The unit vector is one at ...
uvcvv0 21711 The unit vector is zero at...
uvcff 21712 Domain and codomain of the...
uvcf1 21713 In a nonzero ring, each un...
uvcresum 21714 Any element of a free modu...
frlmssuvc1 21715 A scalar multiple of a uni...
frlmssuvc2 21716 A nonzero scalar multiple ...
frlmsslsp 21717 A subset of a free module ...
frlmlbs 21718 The unit vectors comprise ...
frlmup1 21719 Any assignment of unit vec...
frlmup2 21720 The evaluation map has the...
frlmup3 21721 The range of such an evalu...
frlmup4 21722 Universal property of the ...
ellspd 21723 The elements of the span o...
elfilspd 21724 Simplified version of ~ el...
rellindf 21729 The independent-family pre...
islinds 21730 Property of an independent...
linds1 21731 An independent set of vect...
linds2 21732 An independent set of vect...
islindf 21733 Property of an independent...
islinds2 21734 Expanded property of an in...
islindf2 21735 Property of an independent...
lindff 21736 Functional property of a l...
lindfind 21737 A linearly independent fam...
lindsind 21738 A linearly independent set...
lindfind2 21739 In a linearly independent ...
lindsind2 21740 In a linearly independent ...
lindff1 21741 A linearly independent fam...
lindfrn 21742 The range of an independen...
f1lindf 21743 Rearranging and deleting e...
lindfres 21744 Any restriction of an inde...
lindsss 21745 Any subset of an independe...
f1linds 21746 A family constructed from ...
islindf3 21747 In a nonzero ring, indepen...
lindfmm 21748 Linear independence of a f...
lindsmm 21749 Linear independence of a s...
lindsmm2 21750 The monomorphic image of a...
lsslindf 21751 Linear independence is unc...
lsslinds 21752 Linear independence is unc...
islbs4 21753 A basis is an independent ...
lbslinds 21754 A basis is independent. (...
islinds3 21755 A subset is linearly indep...
islinds4 21756 A set is independent in a ...
lmimlbs 21757 The isomorphic image of a ...
lmiclbs 21758 Having a basis is an isomo...
islindf4 21759 A family is independent if...
islindf5 21760 A family is independent if...
indlcim 21761 An independent, spanning f...
lbslcic 21762 A module with a basis is i...
lmisfree 21763 A module has a basis iff i...
lvecisfrlm 21764 Every vector space is isom...
lmimco 21765 The composition of two iso...
lmictra 21766 Module isomorphism is tran...
uvcf1o 21767 In a nonzero ring, the map...
uvcendim 21768 In a nonzero ring, the num...
frlmisfrlm 21769 A free module is isomorphi...
frlmiscvec 21770 Every free module is isomo...
isassa 21777 The properties of an assoc...
assalem 21778 The properties of an assoc...
assaass 21779 Left-associative property ...
assaassr 21780 Right-associative property...
assalmod 21781 An associative algebra is ...
assaring 21782 An associative algebra is ...
assasca 21783 The scalars of an associat...
assa2ass 21784 Left- and right-associativ...
isassad 21785 Sufficient condition for b...
issubassa3 21786 A subring that is also a s...
issubassa 21787 The subalgebras of an asso...
sraassab 21788 A subring algebra is an as...
sraassa 21789 The subring algebra over a...
sraassaOLD 21790 Obsolete version of ~ sraa...
rlmassa 21791 The ring module over a com...
assapropd 21792 If two structures have the...
aspval 21793 Value of the algebraic clo...
asplss 21794 The algebraic span of a se...
aspid 21795 The algebraic span of a su...
aspsubrg 21796 The algebraic span of a se...
aspss 21797 Span preserves subset orde...
aspssid 21798 A set of vectors is a subs...
asclfval 21799 Function value of the alge...
asclval 21800 Value of a mapped algebra ...
asclfn 21801 Unconditional functionalit...
asclf 21802 The algebra scalars functi...
asclghm 21803 The algebra scalars functi...
ascl0 21804 The scalar 0 embedded into...
ascl1 21805 The scalar 1 embedded into...
asclmul1 21806 Left multiplication by a l...
asclmul2 21807 Right multiplication by a ...
ascldimul 21808 The algebra scalars functi...
asclinvg 21809 The group inverse (negatio...
asclrhm 21810 The scalar injection is a ...
rnascl 21811 The set of injected scalar...
issubassa2 21812 A subring of a unital alge...
rnasclsubrg 21813 The scalar multiples of th...
rnasclmulcl 21814 (Vector) multiplication is...
rnasclassa 21815 The scalar multiples of th...
ressascl 21816 The injection of scalars i...
asclpropd 21817 If two structures have the...
aspval2 21818 The algebraic closure is t...
assamulgscmlem1 21819 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 21820 Lemma for ~ assamulgscm (i...
assamulgscm 21821 Exponentiation of a scalar...
asclmulg 21822 Apply group multiplication...
zlmassa 21823 The ` ZZ ` -module operati...
reldmpsr 21834 The multivariate power ser...
psrval 21835 Value of the multivariate ...
psrvalstr 21836 The multivariate power ser...
psrbag 21837 Elementhood in the set of ...
psrbagf 21838 A finite bag is a function...
psrbagfOLD 21839 Obsolete version of ~ psrb...
psrbagfsupp 21840 Finite bags have finite su...
psrbagfsuppOLD 21841 Obsolete version of ~ psrb...
snifpsrbag 21842 A bag containing one eleme...
fczpsrbag 21843 The constant function equa...
psrbaglesupp 21844 The support of a dominated...
psrbaglesuppOLD 21845 Obsolete version of ~ psrb...
psrbaglecl 21846 The set of finite bags is ...
psrbagleclOLD 21847 Obsolete version of ~ psrb...
psrbagaddcl 21848 The sum of two finite bags...
psrbagaddclOLD 21849 Obsolete version of ~ psrb...
psrbagcon 21850 The analogue of the statem...
psrbagconOLD 21851 Obsolete version of ~ psrb...
psrbaglefi 21852 There are finitely many ba...
psrbaglefiOLD 21853 Obsolete version of ~ psrb...
psrbagconcl 21854 The complement of a bag is...
psrbagconclOLD 21855 Obsolete version of ~ psrb...
psrbagleadd1 21856 The analogue of " ` X <_ F...
psrbagconf1o 21857 Bag complementation is a b...
psrbagconf1oOLD 21858 Obsolete version of ~ psrb...
gsumbagdiaglemOLD 21859 Obsolete version of ~ gsum...
gsumbagdiagOLD 21860 Obsolete version of ~ gsum...
psrass1lemOLD 21861 Obsolete version of ~ psra...
gsumbagdiaglem 21862 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 21863 Two-dimensional commutatio...
psrass1lem 21864 A group sum commutation us...
psrbas 21865 The base set of the multiv...
psrelbas 21866 An element of the set of p...
psrelbasfun 21867 An element of the set of p...
psrplusg 21868 The addition operation of ...
psradd 21869 The addition operation of ...
psraddcl 21870 Closure of the power serie...
psraddclOLD 21871 Obsolete version of ~ psra...
psrmulr 21872 The multiplication operati...
psrmulfval 21873 The multiplication operati...
psrmulval 21874 The multiplication operati...
psrmulcllem 21875 Closure of the power serie...
psrmulcl 21876 Closure of the power serie...
psrsca 21877 The scalar field of the mu...
psrvscafval 21878 The scalar multiplication ...
psrvsca 21879 The scalar multiplication ...
psrvscaval 21880 The scalar multiplication ...
psrvscacl 21881 Closure of the power serie...
psr0cl 21882 The zero element of the ri...
psr0lid 21883 The zero element of the ri...
psrnegcl 21884 The negative function in t...
psrlinv 21885 The negative function in t...
psrgrp 21886 The ring of power series i...
psrgrpOLD 21887 Obsolete proof of ~ psrgrp...
psr0 21888 The zero element of the ri...
psrneg 21889 The negative function of t...
psrlmod 21890 The ring of power series i...
psr1cl 21891 The identity element of th...
psrlidm 21892 The identity element of th...
psrridm 21893 The identity element of th...
psrass1 21894 Associative identity for t...
psrdi 21895 Distributive law for the r...
psrdir 21896 Distributive law for the r...
psrass23l 21897 Associative identity for t...
psrcom 21898 Commutative law for the ri...
psrass23 21899 Associative identities for...
psrring 21900 The ring of power series i...
psr1 21901 The identity element of th...
psrcrng 21902 The ring of power series i...
psrassa 21903 The ring of power series i...
resspsrbas 21904 A restricted power series ...
resspsradd 21905 A restricted power series ...
resspsrmul 21906 A restricted power series ...
resspsrvsca 21907 A restricted power series ...
subrgpsr 21908 A subring of the base ring...
psrasclcl 21909 A scalar is lifted into a ...
mvrfval 21910 Value of the generating el...
mvrval 21911 Value of the generating el...
mvrval2 21912 Value of the generating el...
mvrid 21913 The ` X i ` -th coefficien...
mvrf 21914 The power series variable ...
mvrf1 21915 The power series variable ...
mvrcl2 21916 A power series variable is...
reldmmpl 21917 The multivariate polynomia...
mplval 21918 Value of the set of multiv...
mplbas 21919 Base set of the set of mul...
mplelbas 21920 Property of being a polyno...
mvrcl 21921 A power series variable is...
mvrf2 21922 The power series/polynomia...
mplrcl 21923 Reverse closure for the po...
mplelsfi 21924 A polynomial treated as a ...
mplval2 21925 Self-referential expressio...
mplbasss 21926 The set of polynomials is ...
mplelf 21927 A polynomial is defined as...
mplsubglem 21928 If ` A ` is an ideal of se...
mpllsslem 21929 If ` A ` is an ideal of su...
mplsubglem2 21930 Lemma for ~ mplsubg and ~ ...
mplsubg 21931 The set of polynomials is ...
mpllss 21932 The set of polynomials is ...
mplsubrglem 21933 Lemma for ~ mplsubrg . (C...
mplsubrg 21934 The set of polynomials is ...
mpl0 21935 The zero polynomial. (Con...
mplplusg 21936 Value of addition in a pol...
mplmulr 21937 Value of multiplication in...
mpladd 21938 The addition operation on ...
mplneg 21939 The negative function on m...
mplmul 21940 The multiplication operati...
mpl1 21941 The identity element of th...
mplsca 21942 The scalar field of a mult...
mplvsca2 21943 The scalar multiplication ...
mplvsca 21944 The scalar multiplication ...
mplvscaval 21945 The scalar multiplication ...
mplgrp 21946 The polynomial ring is a g...
mpllmod 21947 The polynomial ring is a l...
mplring 21948 The polynomial ring is a r...
mpllvec 21949 The polynomial ring is a v...
mplcrng 21950 The polynomial ring is a c...
mplassa 21951 The polynomial ring is an ...
ressmplbas2 21952 The base set of a restrict...
ressmplbas 21953 A restricted polynomial al...
ressmpladd 21954 A restricted polynomial al...
ressmplmul 21955 A restricted polynomial al...
ressmplvsca 21956 A restricted power series ...
subrgmpl 21957 A subring of the base ring...
subrgmvr 21958 The variables in a subring...
subrgmvrf 21959 The variables in a polynom...
mplmon 21960 A monomial is a polynomial...
mplmonmul 21961 The product of two monomia...
mplcoe1 21962 Decompose a polynomial int...
mplcoe3 21963 Decompose a monomial in on...
mplcoe5lem 21964 Lemma for ~ mplcoe4 . (Co...
mplcoe5 21965 Decompose a monomial into ...
mplcoe2 21966 Decompose a monomial into ...
mplbas2 21967 An alternative expression ...
ltbval 21968 Value of the well-order on...
ltbwe 21969 The finite bag order is a ...
reldmopsr 21970 Lemma for ordered power se...
opsrval 21971 The value of the "ordered ...
opsrle 21972 An alternative expression ...
opsrval2 21973 Self-referential expressio...
opsrbaslem 21974 Get a component of the ord...
opsrbaslemOLD 21975 Obsolete version of ~ opsr...
opsrbas 21976 The base set of the ordere...
opsrbasOLD 21977 Obsolete version of ~ opsr...
opsrplusg 21978 The addition operation of ...
opsrplusgOLD 21979 Obsolete version of ~ opsr...
opsrmulr 21980 The multiplication operati...
opsrmulrOLD 21981 Obsolete version of ~ opsr...
opsrvsca 21982 The scalar product operati...
opsrvscaOLD 21983 Obsolete version of ~ opsr...
opsrsca 21984 The scalar ring of the ord...
opsrscaOLD 21985 Obsolete version of ~ opsr...
opsrtoslem1 21986 Lemma for ~ opsrtos . (Co...
opsrtoslem2 21987 Lemma for ~ opsrtos . (Co...
opsrtos 21988 The ordered power series s...
opsrso 21989 The ordered power series s...
opsrcrng 21990 The ring of ordered power ...
opsrassa 21991 The ring of ordered power ...
mplmon2 21992 Express a scaled monomial....
psrbag0 21993 The empty bag is a bag. (...
psrbagsn 21994 A singleton bag is a bag. ...
mplascl 21995 Value of the scalar inject...
mplasclf 21996 The scalar injection is a ...
subrgascl 21997 The scalar injection funct...
subrgasclcl 21998 The scalars in a polynomia...
mplmon2cl 21999 A scaled monomial is a pol...
mplmon2mul 22000 Product of scaled monomial...
mplind 22001 Prove a property of polyno...
mplcoe4 22002 Decompose a polynomial int...
evlslem4 22007 The support of a tensor pr...
psrbagev1 22008 A bag of multipliers provi...
psrbagev1OLD 22009 Obsolete version of ~ psrb...
psrbagev2 22010 Closure of a sum using a b...
psrbagev2OLD 22011 Obsolete version of ~ psrb...
evlslem2 22012 A linear function on the p...
evlslem3 22013 Lemma for ~ evlseu . Poly...
evlslem6 22014 Lemma for ~ evlseu . Fini...
evlslem1 22015 Lemma for ~ evlseu , give ...
evlseu 22016 For a given interpretation...
reldmevls 22017 Well-behaved binary operat...
mpfrcl 22018 Reverse closure for the se...
evlsval 22019 Value of the polynomial ev...
evlsval2 22020 Characterizing properties ...
evlsrhm 22021 Polynomial evaluation is a...
evlssca 22022 Polynomial evaluation maps...
evlsvar 22023 Polynomial evaluation maps...
evlsgsumadd 22024 Polynomial evaluation maps...
evlsgsummul 22025 Polynomial evaluation maps...
evlspw 22026 Polynomial evaluation for ...
evlsvarpw 22027 Polynomial evaluation for ...
evlval 22028 Value of the simple/same r...
evlrhm 22029 The simple evaluation map ...
evlsscasrng 22030 The evaluation of a scalar...
evlsca 22031 Simple polynomial evaluati...
evlsvarsrng 22032 The evaluation of the vari...
evlvar 22033 Simple polynomial evaluati...
mpfconst 22034 Constants are multivariate...
mpfproj 22035 Projections are multivaria...
mpfsubrg 22036 Polynomial functions are a...
mpff 22037 Polynomial functions are f...
mpfaddcl 22038 The sum of multivariate po...
mpfmulcl 22039 The product of multivariat...
mpfind 22040 Prove a property of polyno...
selvffval 22046 Value of the "variable sel...
selvfval 22047 Value of the "variable sel...
selvval 22048 Value of the "variable sel...
mhpfval 22050 Value of the "homogeneous ...
mhpval 22051 Value of the "homogeneous ...
ismhp 22052 Property of being a homoge...
ismhp2 22053 Deduce a homogeneous polyn...
ismhp3 22054 A polynomial is homogeneou...
mhpmpl 22055 A homogeneous polynomial i...
mhpdeg 22056 All nonzero terms of a hom...
mhp0cl 22057 The zero polynomial is hom...
mhpsclcl 22058 A scalar (or constant) pol...
mhpvarcl 22059 A power series variable is...
mhpmulcl 22060 A product of homogeneous p...
mhppwdeg 22061 Degree of a homogeneous po...
mhpaddcl 22062 Homogeneous polynomials ar...
mhpinvcl 22063 Homogeneous polynomials ar...
mhpsubg 22064 Homogeneous polynomials fo...
mhpvscacl 22065 Homogeneous polynomials ar...
mhplss 22066 Homogeneous polynomials fo...
psdffval 22068 Value of the power series ...
psdfval 22069 Give a map between power s...
psdval 22070 Evaluate the partial deriv...
psdcoef 22071 Coefficient of a term of t...
psdcl 22072 The derivative of a power ...
psdmplcl 22073 The derivative of a polyno...
psdadd 22074 The derivative of a sum is...
psdvsca 22075 The derivative of a scaled...
psdmullem 22076 Lemma for ~ psdmul . Tran...
psdmul 22077 Product rule for power ser...
psd1 22078 The derivative of one is z...
psdascl 22079 The derivative of a consta...
psr1baslem 22091 The set of finite bags on ...
psr1val 22092 Value of the ring of univa...
psr1crng 22093 The ring of univariate pow...
psr1assa 22094 The ring of univariate pow...
psr1tos 22095 The ordered power series s...
psr1bas2 22096 The base set of the ring o...
psr1bas 22097 The base set of the ring o...
vr1val 22098 The value of the generator...
vr1cl2 22099 The variable ` X ` is a me...
ply1val 22100 The value of the set of un...
ply1bas 22101 The value of the base set ...
ply1lss 22102 Univariate polynomials for...
ply1subrg 22103 Univariate polynomials for...
ply1crng 22104 The ring of univariate pol...
ply1assa 22105 The ring of univariate pol...
psr1bascl 22106 A univariate power series ...
psr1basf 22107 Univariate power series ba...
ply1basf 22108 Univariate polynomial base...
ply1bascl 22109 A univariate polynomial is...
ply1bascl2 22110 A univariate polynomial is...
coe1fval 22111 Value of the univariate po...
coe1fv 22112 Value of an evaluated coef...
fvcoe1 22113 Value of a multivariate co...
coe1fval3 22114 Univariate power series co...
coe1f2 22115 Functionality of univariat...
coe1fval2 22116 Univariate polynomial coef...
coe1f 22117 Functionality of univariat...
coe1fvalcl 22118 A coefficient of a univari...
coe1sfi 22119 Finite support of univaria...
coe1fsupp 22120 The coefficient vector of ...
mptcoe1fsupp 22121 A mapping involving coeffi...
coe1ae0 22122 The coefficient vector of ...
vr1cl 22123 The generator of a univari...
opsr0 22124 Zero in the ordered power ...
opsr1 22125 One in the ordered power s...
psr1plusg 22126 Value of addition in a uni...
psr1vsca 22127 Value of scalar multiplica...
psr1mulr 22128 Value of multiplication in...
ply1plusg 22129 Value of addition in a uni...
ply1vsca 22130 Value of scalar multiplica...
ply1mulr 22131 Value of multiplication in...
ply1ass23l 22132 Associative identity with ...
ressply1bas2 22133 The base set of a restrict...
ressply1bas 22134 A restricted polynomial al...
ressply1add 22135 A restricted polynomial al...
ressply1mul 22136 A restricted polynomial al...
ressply1vsca 22137 A restricted power series ...
subrgply1 22138 A subring of the base ring...
gsumply1subr 22139 Evaluate a group sum in a ...
psrbaspropd 22140 Property deduction for pow...
psrplusgpropd 22141 Property deduction for pow...
mplbaspropd 22142 Property deduction for pol...
psropprmul 22143 Reversing multiplication i...
ply1opprmul 22144 Reversing multiplication i...
00ply1bas 22145 Lemma for ~ ply1basfvi and...
ply1basfvi 22146 Protection compatibility o...
ply1plusgfvi 22147 Protection compatibility o...
ply1baspropd 22148 Property deduction for uni...
ply1plusgpropd 22149 Property deduction for uni...
opsrring 22150 Ordered power series form ...
opsrlmod 22151 Ordered power series form ...
psr1ring 22152 Univariate power series fo...
ply1ring 22153 Univariate polynomials for...
psr1lmod 22154 Univariate power series fo...
psr1sca 22155 Scalars of a univariate po...
psr1sca2 22156 Scalars of a univariate po...
ply1lmod 22157 Univariate polynomials for...
ply1sca 22158 Scalars of a univariate po...
ply1sca2 22159 Scalars of a univariate po...
ply1ascl0 22160 The zero scalar as a polyn...
ply1mpl0 22161 The univariate polynomial ...
ply10s0 22162 Zero times a univariate po...
ply1mpl1 22163 The univariate polynomial ...
ply1ascl 22164 The univariate polynomial ...
subrg1ascl 22165 The scalar injection funct...
subrg1asclcl 22166 The scalars in a polynomia...
subrgvr1 22167 The variables in a subring...
subrgvr1cl 22168 The variables in a polynom...
coe1z 22169 The coefficient vector of ...
coe1add 22170 The coefficient vector of ...
coe1addfv 22171 A particular coefficient o...
coe1subfv 22172 A particular coefficient o...
coe1mul2lem1 22173 An equivalence for ~ coe1m...
coe1mul2lem2 22174 An equivalence for ~ coe1m...
coe1mul2 22175 The coefficient vector of ...
coe1mul 22176 The coefficient vector of ...
ply1moncl 22177 Closure of the expression ...
ply1tmcl 22178 Closure of the expression ...
coe1tm 22179 Coefficient vector of a po...
coe1tmfv1 22180 Nonzero coefficient of a p...
coe1tmfv2 22181 Zero coefficient of a poly...
coe1tmmul2 22182 Coefficient vector of a po...
coe1tmmul 22183 Coefficient vector of a po...
coe1tmmul2fv 22184 Function value of a right-...
coe1pwmul 22185 Coefficient vector of a po...
coe1pwmulfv 22186 Function value of a right-...
ply1scltm 22187 A scalar is a term with ze...
coe1sclmul 22188 Coefficient vector of a po...
coe1sclmulfv 22189 A single coefficient of a ...
coe1sclmul2 22190 Coefficient vector of a po...
ply1sclf 22191 A scalar polynomial is a p...
ply1sclcl 22192 The value of the algebra s...
coe1scl 22193 Coefficient vector of a sc...
ply1sclid 22194 Recover the base scalar fr...
ply1sclf1 22195 The polynomial scalar func...
ply1scl0 22196 The zero scalar is zero. ...
ply1scl0OLD 22197 Obsolete version of ~ ply1...
ply1scln0 22198 Nonzero scalars create non...
ply1scl1 22199 The one scalar is the unit...
ply1scl1OLD 22200 Obsolete version of ~ ply1...
ply1idvr1 22201 The identity of a polynomi...
cply1mul 22202 The product of two constan...
ply1coefsupp 22203 The decomposition of a uni...
ply1coe 22204 Decompose a univariate pol...
eqcoe1ply1eq 22205 Two polynomials over the s...
ply1coe1eq 22206 Two polynomials over the s...
cply1coe0 22207 All but the first coeffici...
cply1coe0bi 22208 A polynomial is constant (...
coe1fzgsumdlem 22209 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 22210 Value of an evaluated coef...
ply1scleq 22211 Equality of a constant pol...
ply1chr 22212 The characteristic of a po...
gsumsmonply1 22213 A finite group sum of scal...
gsummoncoe1 22214 A coefficient of the polyn...
gsumply1eq 22215 Two univariate polynomials...
lply1binom 22216 The binomial theorem for l...
lply1binomsc 22217 The binomial theorem for l...
ply1fermltlchr 22218 Fermat's little theorem fo...
reldmevls1 22223 Well-behaved binary operat...
ply1frcl 22224 Reverse closure for the se...
evls1fval 22225 Value of the univariate po...
evls1val 22226 Value of the univariate po...
evls1rhmlem 22227 Lemma for ~ evl1rhm and ~ ...
evls1rhm 22228 Polynomial evaluation is a...
evls1sca 22229 Univariate polynomial eval...
evls1gsumadd 22230 Univariate polynomial eval...
evls1gsummul 22231 Univariate polynomial eval...
evls1pw 22232 Univariate polynomial eval...
evls1varpw 22233 Univariate polynomial eval...
evl1fval 22234 Value of the simple/same r...
evl1val 22235 Value of the simple/same r...
evl1fval1lem 22236 Lemma for ~ evl1fval1 . (...
evl1fval1 22237 Value of the simple/same r...
evl1rhm 22238 Polynomial evaluation is a...
fveval1fvcl 22239 The function value of the ...
evl1sca 22240 Polynomial evaluation maps...
evl1scad 22241 Polynomial evaluation buil...
evl1var 22242 Polynomial evaluation maps...
evl1vard 22243 Polynomial evaluation buil...
evls1var 22244 Univariate polynomial eval...
evls1scasrng 22245 The evaluation of a scalar...
evls1varsrng 22246 The evaluation of the vari...
evl1addd 22247 Polynomial evaluation buil...
evl1subd 22248 Polynomial evaluation buil...
evl1muld 22249 Polynomial evaluation buil...
evl1vsd 22250 Polynomial evaluation buil...
evl1expd 22251 Polynomial evaluation buil...
pf1const 22252 Constants are polynomial f...
pf1id 22253 The identity is a polynomi...
pf1subrg 22254 Polynomial functions are a...
pf1rcl 22255 Reverse closure for the se...
pf1f 22256 Polynomial functions are f...
mpfpf1 22257 Convert a multivariate pol...
pf1mpf 22258 Convert a univariate polyn...
pf1addcl 22259 The sum of multivariate po...
pf1mulcl 22260 The product of multivariat...
pf1ind 22261 Prove a property of polyno...
evl1gsumdlem 22262 Lemma for ~ evl1gsumd (ind...
evl1gsumd 22263 Polynomial evaluation buil...
evl1gsumadd 22264 Univariate polynomial eval...
evl1gsumaddval 22265 Value of a univariate poly...
evl1gsummul 22266 Univariate polynomial eval...
evl1varpw 22267 Univariate polynomial eval...
evl1varpwval 22268 Value of a univariate poly...
evl1scvarpw 22269 Univariate polynomial eval...
evl1scvarpwval 22270 Value of a univariate poly...
evl1gsummon 22271 Value of a univariate poly...
mamufval 22274 Functional value of the ma...
mamuval 22275 Multiplication of two matr...
mamufv 22276 A cell in the multiplicati...
mamudm 22277 The domain of the matrix m...
mamufacex 22278 Every solution of the equa...
mamures 22279 Rows in a matrix product a...
mndvcl 22280 Tuple-wise additive closur...
mndvass 22281 Tuple-wise associativity i...
mndvlid 22282 Tuple-wise left identity i...
mndvrid 22283 Tuple-wise right identity ...
grpvlinv 22284 Tuple-wise left inverse in...
grpvrinv 22285 Tuple-wise right inverse i...
mhmvlin 22286 Tuple extension of monoid ...
ringvcl 22287 Tuple-wise multiplication ...
mamucl 22288 Operation closure of matri...
mamuass 22289 Matrix multiplication is a...
mamudi 22290 Matrix multiplication dist...
mamudir 22291 Matrix multiplication dist...
mamuvs1 22292 Matrix multiplication dist...
mamuvs2 22293 Matrix multiplication dist...
matbas0pc 22296 There is no matrix with a ...
matbas0 22297 There is no matrix for a n...
matval 22298 Value of the matrix algebr...
matrcl 22299 Reverse closure for the ma...
matbas 22300 The matrix ring has the sa...
matplusg 22301 The matrix ring has the sa...
matsca 22302 The matrix ring has the sa...
matscaOLD 22303 Obsolete proof of ~ matsca...
matvsca 22304 The matrix ring has the sa...
matvscaOLD 22305 Obsolete proof of ~ matvsc...
mat0 22306 The matrix ring has the sa...
matinvg 22307 The matrix ring has the sa...
mat0op 22308 Value of a zero matrix as ...
matsca2 22309 The scalars of the matrix ...
matbas2 22310 The base set of the matrix...
matbas2i 22311 A matrix is a function. (...
matbas2d 22312 The base set of the matrix...
eqmat 22313 Two square matrices of the...
matecl 22314 Each entry (according to W...
matecld 22315 Each entry (according to W...
matplusg2 22316 Addition in the matrix rin...
matvsca2 22317 Scalar multiplication in t...
matlmod 22318 The matrix ring is a linea...
matgrp 22319 The matrix ring is a group...
matvscl 22320 Closure of the scalar mult...
matsubg 22321 The matrix ring has the sa...
matplusgcell 22322 Addition in the matrix rin...
matsubgcell 22323 Subtraction in the matrix ...
matinvgcell 22324 Additive inversion in the ...
matvscacell 22325 Scalar multiplication in t...
matgsum 22326 Finite commutative sums in...
matmulr 22327 Multiplication in the matr...
mamumat1cl 22328 The identity matrix (as op...
mat1comp 22329 The components of the iden...
mamulid 22330 The identity matrix (as op...
mamurid 22331 The identity matrix (as op...
matring 22332 Existence of the matrix ri...
matassa 22333 Existence of the matrix al...
matmulcell 22334 Multiplication in the matr...
mpomatmul 22335 Multiplication of two N x ...
mat1 22336 Value of an identity matri...
mat1ov 22337 Entries of an identity mat...
mat1bas 22338 The identity matrix is a m...
matsc 22339 The identity matrix multip...
ofco2 22340 Distribution law for the f...
oftpos 22341 The transposition of the v...
mattposcl 22342 The transpose of a square ...
mattpostpos 22343 The transpose of the trans...
mattposvs 22344 The transposition of a mat...
mattpos1 22345 The transposition of the i...
tposmap 22346 The transposition of an I ...
mamutpos 22347 Behavior of transposes in ...
mattposm 22348 Multiplying two transposed...
matgsumcl 22349 Closure of a group sum ove...
madetsumid 22350 The identity summand in th...
matepmcl 22351 Each entry of a matrix wit...
matepm2cl 22352 Each entry of a matrix wit...
madetsmelbas 22353 A summand of the determina...
madetsmelbas2 22354 A summand of the determina...
mat0dimbas0 22355 The empty set is the one a...
mat0dim0 22356 The zero of the algebra of...
mat0dimid 22357 The identity of the algebr...
mat0dimscm 22358 The scalar multiplication ...
mat0dimcrng 22359 The algebra of matrices wi...
mat1dimelbas 22360 A matrix with dimension 1 ...
mat1dimbas 22361 A matrix with dimension 1 ...
mat1dim0 22362 The zero of the algebra of...
mat1dimid 22363 The identity of the algebr...
mat1dimscm 22364 The scalar multiplication ...
mat1dimmul 22365 The ring multiplication in...
mat1dimcrng 22366 The algebra of matrices wi...
mat1f1o 22367 There is a 1-1 function fr...
mat1rhmval 22368 The value of the ring homo...
mat1rhmelval 22369 The value of the ring homo...
mat1rhmcl 22370 The value of the ring homo...
mat1f 22371 There is a function from a...
mat1ghm 22372 There is a group homomorph...
mat1mhm 22373 There is a monoid homomorp...
mat1rhm 22374 There is a ring homomorphi...
mat1rngiso 22375 There is a ring isomorphis...
mat1ric 22376 A ring is isomorphic to th...
dmatval 22381 The set of ` N ` x ` N ` d...
dmatel 22382 A ` N ` x ` N ` diagonal m...
dmatmat 22383 An ` N ` x ` N ` diagonal ...
dmatid 22384 The identity matrix is a d...
dmatelnd 22385 An extradiagonal entry of ...
dmatmul 22386 The product of two diagona...
dmatsubcl 22387 The difference of two diag...
dmatsgrp 22388 The set of diagonal matric...
dmatmulcl 22389 The product of two diagona...
dmatsrng 22390 The set of diagonal matric...
dmatcrng 22391 The subring of diagonal ma...
dmatscmcl 22392 The multiplication of a di...
scmatval 22393 The set of ` N ` x ` N ` s...
scmatel 22394 An ` N ` x ` N ` scalar ma...
scmatscmid 22395 A scalar matrix can be exp...
scmatscmide 22396 An entry of a scalar matri...
scmatscmiddistr 22397 Distributive law for scala...
scmatmat 22398 An ` N ` x ` N ` scalar ma...
scmate 22399 An entry of an ` N ` x ` N...
scmatmats 22400 The set of an ` N ` x ` N ...
scmateALT 22401 Alternate proof of ~ scmat...
scmatscm 22402 The multiplication of a ma...
scmatid 22403 The identity matrix is a s...
scmatdmat 22404 A scalar matrix is a diago...
scmataddcl 22405 The sum of two scalar matr...
scmatsubcl 22406 The difference of two scal...
scmatmulcl 22407 The product of two scalar ...
scmatsgrp 22408 The set of scalar matrices...
scmatsrng 22409 The set of scalar matrices...
scmatcrng 22410 The subring of scalar matr...
scmatsgrp1 22411 The set of scalar matrices...
scmatsrng1 22412 The set of scalar matrices...
smatvscl 22413 Closure of the scalar mult...
scmatlss 22414 The set of scalar matrices...
scmatstrbas 22415 The set of scalar matrices...
scmatrhmval 22416 The value of the ring homo...
scmatrhmcl 22417 The value of the ring homo...
scmatf 22418 There is a function from a...
scmatfo 22419 There is a function from a...
scmatf1 22420 There is a 1-1 function fr...
scmatf1o 22421 There is a bijection betwe...
scmatghm 22422 There is a group homomorph...
scmatmhm 22423 There is a monoid homomorp...
scmatrhm 22424 There is a ring homomorphi...
scmatrngiso 22425 There is a ring isomorphis...
scmatric 22426 A ring is isomorphic to ev...
mat0scmat 22427 The empty matrix over a ri...
mat1scmat 22428 A 1-dimensional matrix ove...
mvmulfval 22431 Functional value of the ma...
mvmulval 22432 Multiplication of a vector...
mvmulfv 22433 A cell/element in the vect...
mavmulval 22434 Multiplication of a vector...
mavmulfv 22435 A cell/element in the vect...
mavmulcl 22436 Multiplication of an NxN m...
1mavmul 22437 Multiplication of the iden...
mavmulass 22438 Associativity of the multi...
mavmuldm 22439 The domain of the matrix v...
mavmulsolcl 22440 Every solution of the equa...
mavmul0 22441 Multiplication of a 0-dime...
mavmul0g 22442 The result of the 0-dimens...
mvmumamul1 22443 The multiplication of an M...
mavmumamul1 22444 The multiplication of an N...
marrepfval 22449 First substitution for the...
marrepval0 22450 Second substitution for th...
marrepval 22451 Third substitution for the...
marrepeval 22452 An entry of a matrix with ...
marrepcl 22453 Closure of the row replace...
marepvfval 22454 First substitution for the...
marepvval0 22455 Second substitution for th...
marepvval 22456 Third substitution for the...
marepveval 22457 An entry of a matrix with ...
marepvcl 22458 Closure of the column repl...
ma1repvcl 22459 Closure of the column repl...
ma1repveval 22460 An entry of an identity ma...
mulmarep1el 22461 Element by element multipl...
mulmarep1gsum1 22462 The sum of element by elem...
mulmarep1gsum2 22463 The sum of element by elem...
1marepvmarrepid 22464 Replacing the ith row by 0...
submabas 22467 Any subset of the index se...
submafval 22468 First substitution for a s...
submaval0 22469 Second substitution for a ...
submaval 22470 Third substitution for a s...
submaeval 22471 An entry of a submatrix of...
1marepvsma1 22472 The submatrix of the ident...
mdetfval 22475 First substitution for the...
mdetleib 22476 Full substitution of our d...
mdetleib2 22477 Leibniz' formula can also ...
nfimdetndef 22478 The determinant is not def...
mdetfval1 22479 First substitution of an a...
mdetleib1 22480 Full substitution of an al...
mdet0pr 22481 The determinant function f...
mdet0f1o 22482 The determinant function f...
mdet0fv0 22483 The determinant of the emp...
mdetf 22484 Functionality of the deter...
mdetcl 22485 The determinant evaluates ...
m1detdiag 22486 The determinant of a 1-dim...
mdetdiaglem 22487 Lemma for ~ mdetdiag . Pr...
mdetdiag 22488 The determinant of a diago...
mdetdiagid 22489 The determinant of a diago...
mdet1 22490 The determinant of the ide...
mdetrlin 22491 The determinant function i...
mdetrsca 22492 The determinant function i...
mdetrsca2 22493 The determinant function i...
mdetr0 22494 The determinant of a matri...
mdet0 22495 The determinant of the zer...
mdetrlin2 22496 The determinant function i...
mdetralt 22497 The determinant function i...
mdetralt2 22498 The determinant function i...
mdetero 22499 The determinant function i...
mdettpos 22500 Determinant is invariant u...
mdetunilem1 22501 Lemma for ~ mdetuni . (Co...
mdetunilem2 22502 Lemma for ~ mdetuni . (Co...
mdetunilem3 22503 Lemma for ~ mdetuni . (Co...
mdetunilem4 22504 Lemma for ~ mdetuni . (Co...
mdetunilem5 22505 Lemma for ~ mdetuni . (Co...
mdetunilem6 22506 Lemma for ~ mdetuni . (Co...
mdetunilem7 22507 Lemma for ~ mdetuni . (Co...
mdetunilem8 22508 Lemma for ~ mdetuni . (Co...
mdetunilem9 22509 Lemma for ~ mdetuni . (Co...
mdetuni0 22510 Lemma for ~ mdetuni . (Co...
mdetuni 22511 According to the definitio...
mdetmul 22512 Multiplicativity of the de...
m2detleiblem1 22513 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 22514 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 22515 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 22516 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 22517 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 22518 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 22519 Lemma 4 for ~ m2detleib . ...
m2detleib 22520 Leibniz' Formula for 2x2-m...
mndifsplit 22525 Lemma for ~ maducoeval2 . ...
madufval 22526 First substitution for the...
maduval 22527 Second substitution for th...
maducoeval 22528 An entry of the adjunct (c...
maducoeval2 22529 An entry of the adjunct (c...
maduf 22530 Creating the adjunct of ma...
madutpos 22531 The adjuct of a transposed...
madugsum 22532 The determinant of a matri...
madurid 22533 Multiplying a matrix with ...
madulid 22534 Multiplying the adjunct of...
minmar1fval 22535 First substitution for the...
minmar1val0 22536 Second substitution for th...
minmar1val 22537 Third substitution for the...
minmar1eval 22538 An entry of a matrix for a...
minmar1marrep 22539 The minor matrix is a spec...
minmar1cl 22540 Closure of the row replace...
maducoevalmin1 22541 The coefficients of an adj...
symgmatr01lem 22542 Lemma for ~ symgmatr01 . ...
symgmatr01 22543 Applying a permutation tha...
gsummatr01lem1 22544 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 22545 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 22546 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 22547 Lemma 2 for ~ gsummatr01 ....
gsummatr01 22548 Lemma 1 for ~ smadiadetlem...
marep01ma 22549 Replacing a row of a squar...
smadiadetlem0 22550 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 22551 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 22552 Lemma 1a for ~ smadiadet :...
smadiadetlem2 22553 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 22554 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 22555 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 22556 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 22557 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 22558 Lemma 4 for ~ smadiadet . ...
smadiadet 22559 The determinant of a subma...
smadiadetglem1 22560 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 22561 Lemma 2 for ~ smadiadetg ....
smadiadetg 22562 The determinant of a squar...
smadiadetg0 22563 Lemma for ~ smadiadetr : v...
smadiadetr 22564 The determinant of a squar...
invrvald 22565 If a matrix multiplied wit...
matinv 22566 The inverse of a matrix is...
matunit 22567 A matrix is a unit in the ...
slesolvec 22568 Every solution of a system...
slesolinv 22569 The solution of a system o...
slesolinvbi 22570 The solution of a system o...
slesolex 22571 Every system of linear equ...
cramerimplem1 22572 Lemma 1 for ~ cramerimp : ...
cramerimplem2 22573 Lemma 2 for ~ cramerimp : ...
cramerimplem3 22574 Lemma 3 for ~ cramerimp : ...
cramerimp 22575 One direction of Cramer's ...
cramerlem1 22576 Lemma 1 for ~ cramer . (C...
cramerlem2 22577 Lemma 2 for ~ cramer . (C...
cramerlem3 22578 Lemma 3 for ~ cramer . (C...
cramer0 22579 Special case of Cramer's r...
cramer 22580 Cramer's rule. According ...
pmatring 22581 The set of polynomial matr...
pmatlmod 22582 The set of polynomial matr...
pmatassa 22583 The set of polynomial matr...
pmat0op 22584 The zero polynomial matrix...
pmat1op 22585 The identity polynomial ma...
pmat1ovd 22586 Entries of the identity po...
pmat0opsc 22587 The zero polynomial matrix...
pmat1opsc 22588 The identity polynomial ma...
pmat1ovscd 22589 Entries of the identity po...
pmatcoe1fsupp 22590 For a polynomial matrix th...
1pmatscmul 22591 The scalar product of the ...
cpmat 22598 Value of the constructor o...
cpmatpmat 22599 A constant polynomial matr...
cpmatel 22600 Property of a constant pol...
cpmatelimp 22601 Implication of a set being...
cpmatel2 22602 Another property of a cons...
cpmatelimp2 22603 Another implication of a s...
1elcpmat 22604 The identity of the ring o...
cpmatacl 22605 The set of all constant po...
cpmatinvcl 22606 The set of all constant po...
cpmatmcllem 22607 Lemma for ~ cpmatmcl . (C...
cpmatmcl 22608 The set of all constant po...
cpmatsubgpmat 22609 The set of all constant po...
cpmatsrgpmat 22610 The set of all constant po...
0elcpmat 22611 The zero of the ring of al...
mat2pmatfval 22612 Value of the matrix transf...
mat2pmatval 22613 The result of a matrix tra...
mat2pmatvalel 22614 A (matrix) element of the ...
mat2pmatbas 22615 The result of a matrix tra...
mat2pmatbas0 22616 The result of a matrix tra...
mat2pmatf 22617 The matrix transformation ...
mat2pmatf1 22618 The matrix transformation ...
mat2pmatghm 22619 The transformation of matr...
mat2pmatmul 22620 The transformation of matr...
mat2pmat1 22621 The transformation of the ...
mat2pmatmhm 22622 The transformation of matr...
mat2pmatrhm 22623 The transformation of matr...
mat2pmatlin 22624 The transformation of matr...
0mat2pmat 22625 The transformed zero matri...
idmatidpmat 22626 The transformed identity m...
d0mat2pmat 22627 The transformed empty set ...
d1mat2pmat 22628 The transformation of a ma...
mat2pmatscmxcl 22629 A transformed matrix multi...
m2cpm 22630 The result of a matrix tra...
m2cpmf 22631 The matrix transformation ...
m2cpmf1 22632 The matrix transformation ...
m2cpmghm 22633 The transformation of matr...
m2cpmmhm 22634 The transformation of matr...
m2cpmrhm 22635 The transformation of matr...
m2pmfzmap 22636 The transformed values of ...
m2pmfzgsumcl 22637 Closure of the sum of scal...
cpm2mfval 22638 Value of the inverse matri...
cpm2mval 22639 The result of an inverse m...
cpm2mvalel 22640 A (matrix) element of the ...
cpm2mf 22641 The inverse matrix transfo...
m2cpminvid 22642 The inverse transformation...
m2cpminvid2lem 22643 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 22644 The transformation applied...
m2cpmfo 22645 The matrix transformation ...
m2cpmf1o 22646 The matrix transformation ...
m2cpmrngiso 22647 The transformation of matr...
matcpmric 22648 The ring of matrices over ...
m2cpminv 22649 The inverse matrix transfo...
m2cpminv0 22650 The inverse matrix transfo...
decpmatval0 22653 The matrix consisting of t...
decpmatval 22654 The matrix consisting of t...
decpmate 22655 An entry of the matrix con...
decpmatcl 22656 Closure of the decompositi...
decpmataa0 22657 The matrix consisting of t...
decpmatfsupp 22658 The mapping to the matrice...
decpmatid 22659 The matrix consisting of t...
decpmatmullem 22660 Lemma for ~ decpmatmul . ...
decpmatmul 22661 The matrix consisting of t...
decpmatmulsumfsupp 22662 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 22663 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 22664 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 22665 Write a polynomial matrix ...
pmatcollpw2lem 22666 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 22667 Write a polynomial matrix ...
monmatcollpw 22668 The matrix consisting of t...
pmatcollpwlem 22669 Lemma for ~ pmatcollpw . ...
pmatcollpw 22670 Write a polynomial matrix ...
pmatcollpwfi 22671 Write a polynomial matrix ...
pmatcollpw3lem 22672 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 22673 Write a polynomial matrix ...
pmatcollpw3fi 22674 Write a polynomial matrix ...
pmatcollpw3fi1lem1 22675 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 22676 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 22677 Write a polynomial matrix ...
pmatcollpwscmatlem1 22678 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 22679 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 22680 Write a scalar matrix over...
pm2mpf1lem 22683 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 22684 Value of the transformatio...
pm2mpfval 22685 A polynomial matrix transf...
pm2mpcl 22686 The transformation of poly...
pm2mpf 22687 The transformation of poly...
pm2mpf1 22688 The transformation of poly...
pm2mpcoe1 22689 A coefficient of the polyn...
idpm2idmp 22690 The transformation of the ...
mptcoe1matfsupp 22691 The mapping extracting the...
mply1topmatcllem 22692 Lemma for ~ mply1topmatcl ...
mply1topmatval 22693 A polynomial over matrices...
mply1topmatcl 22694 A polynomial over matrices...
mp2pm2mplem1 22695 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 22696 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 22697 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 22698 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 22699 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 22700 A polynomial over matrices...
pm2mpghmlem2 22701 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 22702 Lemma 1 for pm2mpghm . (C...
pm2mpfo 22703 The transformation of poly...
pm2mpf1o 22704 The transformation of poly...
pm2mpghm 22705 The transformation of poly...
pm2mpgrpiso 22706 The transformation of poly...
pm2mpmhmlem1 22707 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 22708 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 22709 The transformation of poly...
pm2mprhm 22710 The transformation of poly...
pm2mprngiso 22711 The transformation of poly...
pmmpric 22712 The ring of polynomial mat...
monmat2matmon 22713 The transformation of a po...
pm2mp 22714 The transformation of a su...
chmatcl 22717 Closure of the characteris...
chmatval 22718 The entries of the charact...
chpmatfval 22719 Value of the characteristi...
chpmatval 22720 The characteristic polynom...
chpmatply1 22721 The characteristic polynom...
chpmatval2 22722 The characteristic polynom...
chpmat0d 22723 The characteristic polynom...
chpmat1dlem 22724 Lemma for ~ chpmat1d . (C...
chpmat1d 22725 The characteristic polynom...
chpdmatlem0 22726 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 22727 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 22728 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 22729 Lemma 3 for ~ chpdmat . (...
chpdmat 22730 The characteristic polynom...
chpscmat 22731 The characteristic polynom...
chpscmat0 22732 The characteristic polynom...
chpscmatgsumbin 22733 The characteristic polynom...
chpscmatgsummon 22734 The characteristic polynom...
chp0mat 22735 The characteristic polynom...
chpidmat 22736 The characteristic polynom...
chmaidscmat 22737 The characteristic polynom...
fvmptnn04if 22738 The function values of a m...
fvmptnn04ifa 22739 The function value of a ma...
fvmptnn04ifb 22740 The function value of a ma...
fvmptnn04ifc 22741 The function value of a ma...
fvmptnn04ifd 22742 The function value of a ma...
chfacfisf 22743 The "characteristic factor...
chfacfisfcpmat 22744 The "characteristic factor...
chfacffsupp 22745 The "characteristic factor...
chfacfscmulcl 22746 Closure of a scaled value ...
chfacfscmul0 22747 A scaled value of the "cha...
chfacfscmulfsupp 22748 A mapping of scaled values...
chfacfscmulgsum 22749 Breaking up a sum of value...
chfacfpmmulcl 22750 Closure of the value of th...
chfacfpmmul0 22751 The value of the "characte...
chfacfpmmulfsupp 22752 A mapping of values of the...
chfacfpmmulgsum 22753 Breaking up a sum of value...
chfacfpmmulgsum2 22754 Breaking up a sum of value...
cayhamlem1 22755 Lemma 1 for ~ cayleyhamilt...
cpmadurid 22756 The right-hand fundamental...
cpmidgsum 22757 Representation of the iden...
cpmidgsumm2pm 22758 Representation of the iden...
cpmidpmatlem1 22759 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 22760 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 22761 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 22762 Representation of the iden...
cpmadugsumlemB 22763 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 22764 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 22765 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 22766 The product of the charact...
cpmadugsum 22767 The product of the charact...
cpmidgsum2 22768 Representation of the iden...
cpmidg2sum 22769 Equality of two sums repre...
cpmadumatpolylem1 22770 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 22771 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 22772 The product of the charact...
cayhamlem2 22773 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 22774 Lemma for ~ chcoeffeq . (...
chcoeffeq 22775 The coefficients of the ch...
cayhamlem3 22776 Lemma for ~ cayhamlem4 . ...
cayhamlem4 22777 Lemma for ~ cayleyhamilton...
cayleyhamilton0 22778 The Cayley-Hamilton theore...
cayleyhamilton 22779 The Cayley-Hamilton theore...
cayleyhamiltonALT 22780 Alternate proof of ~ cayle...
cayleyhamilton1 22781 The Cayley-Hamilton theore...
istopg 22784 Express the predicate " ` ...
istop2g 22785 Express the predicate " ` ...
uniopn 22786 The union of a subset of a...
iunopn 22787 The indexed union of a sub...
inopn 22788 The intersection of two op...
fitop 22789 A topology is closed under...
fiinopn 22790 The intersection of a none...
iinopn 22791 The intersection of a none...
unopn 22792 The union of two open sets...
0opn 22793 The empty set is an open s...
0ntop 22794 The empty set is not a top...
topopn 22795 The underlying set of a to...
eltopss 22796 A member of a topology is ...
riinopn 22797 A finite indexed relative ...
rintopn 22798 A finite relative intersec...
istopon 22801 Property of being a topolo...
topontop 22802 A topology on a given base...
toponuni 22803 The base set of a topology...
topontopi 22804 A topology on a given base...
toponunii 22805 The base set of a topology...
toptopon 22806 Alternative definition of ...
toptopon2 22807 A topology is the same thi...
topontopon 22808 A topology on a set is a t...
funtopon 22809 The class ` TopOn ` is a f...
toponrestid 22810 Given a topology on a set,...
toponsspwpw 22811 The set of topologies on a...
dmtopon 22812 The domain of ` TopOn ` is...
fntopon 22813 The class ` TopOn ` is a f...
toprntopon 22814 A topology is the same thi...
toponmax 22815 The base set of a topology...
toponss 22816 A member of a topology is ...
toponcom 22817 If ` K ` is a topology on ...
toponcomb 22818 Biconditional form of ~ to...
topgele 22819 The topologies over the sa...
topsn 22820 The only topology on a sin...
istps 22823 Express the predicate "is ...
istps2 22824 Express the predicate "is ...
tpsuni 22825 The base set of a topologi...
tpstop 22826 The topology extractor on ...
tpspropd 22827 A topological space depend...
tpsprop2d 22828 A topological space depend...
topontopn 22829 Express the predicate "is ...
tsettps 22830 If the topology component ...
istpsi 22831 Properties that determine ...
eltpsg 22832 Properties that determine ...
eltpsgOLD 22833 Obsolete version of ~ eltp...
eltpsi 22834 Properties that determine ...
isbasisg 22837 Express the predicate "the...
isbasis2g 22838 Express the predicate "the...
isbasis3g 22839 Express the predicate "the...
basis1 22840 Property of a basis. (Con...
basis2 22841 Property of a basis. (Con...
fiinbas 22842 If a set is closed under f...
basdif0 22843 A basis is not affected by...
baspartn 22844 A disjoint system of sets ...
tgval 22845 The topology generated by ...
tgval2 22846 Definition of a topology g...
eltg 22847 Membership in a topology g...
eltg2 22848 Membership in a topology g...
eltg2b 22849 Membership in a topology g...
eltg4i 22850 An open set in a topology ...
eltg3i 22851 The union of a set of basi...
eltg3 22852 Membership in a topology g...
tgval3 22853 Alternate expression for t...
tg1 22854 Property of a member of a ...
tg2 22855 Property of a member of a ...
bastg 22856 A member of a basis is a s...
unitg 22857 The topology generated by ...
tgss 22858 Subset relation for genera...
tgcl 22859 Show that a basis generate...
tgclb 22860 The property ~ tgcl can be...
tgtopon 22861 A basis generates a topolo...
topbas 22862 A topology is its own basi...
tgtop 22863 A topology is its own basi...
eltop 22864 Membership in a topology, ...
eltop2 22865 Membership in a topology. ...
eltop3 22866 Membership in a topology. ...
fibas 22867 A collection of finite int...
tgdom 22868 A space has no more open s...
tgiun 22869 The indexed union of a set...
tgidm 22870 The topology generator fun...
bastop 22871 Two ways to express that a...
tgtop11 22872 The topology generation fu...
0top 22873 The singleton of the empty...
en1top 22874 ` { (/) } ` is the only to...
en2top 22875 If a topology has two elem...
tgss3 22876 A criterion for determinin...
tgss2 22877 A criterion for determinin...
basgen 22878 Given a topology ` J ` , s...
basgen2 22879 Given a topology ` J ` , s...
2basgen 22880 Conditions that determine ...
tgfiss 22881 If a subbase is included i...
tgdif0 22882 A generated topology is no...
bastop1 22883 A subset of a topology is ...
bastop2 22884 A version of ~ bastop1 tha...
distop 22885 The discrete topology on a...
topnex 22886 The class of all topologie...
distopon 22887 The discrete topology on a...
sn0topon 22888 The singleton of the empty...
sn0top 22889 The singleton of the empty...
indislem 22890 A lemma to eliminate some ...
indistopon 22891 The indiscrete topology on...
indistop 22892 The indiscrete topology on...
indisuni 22893 The base set of the indisc...
fctop 22894 The finite complement topo...
fctop2 22895 The finite complement topo...
cctop 22896 The countable complement t...
ppttop 22897 The particular point topol...
pptbas 22898 The particular point topol...
epttop 22899 The excluded point topolog...
indistpsx 22900 The indiscrete topology on...
indistps 22901 The indiscrete topology on...
indistps2 22902 The indiscrete topology on...
indistpsALT 22903 The indiscrete topology on...
indistpsALTOLD 22904 Obsolete version of ~ indi...
indistps2ALT 22905 The indiscrete topology on...
distps 22906 The discrete topology on a...
fncld 22913 The closed-set generator i...
cldval 22914 The set of closed sets of ...
ntrfval 22915 The interior function on t...
clsfval 22916 The closure function on th...
cldrcl 22917 Reverse closure of the clo...
iscld 22918 The predicate "the class `...
iscld2 22919 A subset of the underlying...
cldss 22920 A closed set is a subset o...
cldss2 22921 The set of closed sets is ...
cldopn 22922 The complement of a closed...
isopn2 22923 A subset of the underlying...
opncld 22924 The complement of an open ...
difopn 22925 The difference of a closed...
topcld 22926 The underlying set of a to...
ntrval 22927 The interior of a subset o...
clsval 22928 The closure of a subset of...
0cld 22929 The empty set is closed. ...
iincld 22930 The indexed intersection o...
intcld 22931 The intersection of a set ...
uncld 22932 The union of two closed se...
cldcls 22933 A closed subset equals its...
incld 22934 The intersection of two cl...
riincld 22935 An indexed relative inters...
iuncld 22936 A finite indexed union of ...
unicld 22937 A finite union of closed s...
clscld 22938 The closure of a subset of...
clsf 22939 The closure function is a ...
ntropn 22940 The interior of a subset o...
clsval2 22941 Express closure in terms o...
ntrval2 22942 Interior expressed in term...
ntrdif 22943 An interior of a complemen...
clsdif 22944 A closure of a complement ...
clsss 22945 Subset relationship for cl...
ntrss 22946 Subset relationship for in...
sscls 22947 A subset of a topology's u...
ntrss2 22948 A subset includes its inte...
ssntr 22949 An open subset of a set is...
clsss3 22950 The closure of a subset of...
ntrss3 22951 The interior of a subset o...
ntrin 22952 A pairwise intersection of...
cmclsopn 22953 The complement of a closur...
cmntrcld 22954 The complement of an inter...
iscld3 22955 A subset is closed iff it ...
iscld4 22956 A subset is closed iff it ...
isopn3 22957 A subset is open iff it eq...
clsidm 22958 The closure operation is i...
ntridm 22959 The interior operation is ...
clstop 22960 The closure of a topology'...
ntrtop 22961 The interior of a topology...
0ntr 22962 A subset with an empty int...
clsss2 22963 If a subset is included in...
elcls 22964 Membership in a closure. ...
elcls2 22965 Membership in a closure. ...
clsndisj 22966 Any open set containing a ...
ntrcls0 22967 A subset whose closure has...
ntreq0 22968 Two ways to say that a sub...
cldmre 22969 The closed sets of a topol...
mrccls 22970 Moore closure generalizes ...
cls0 22971 The closure of the empty s...
ntr0 22972 The interior of the empty ...
isopn3i 22973 An open subset equals its ...
elcls3 22974 Membership in a closure in...
opncldf1 22975 A bijection useful for con...
opncldf2 22976 The values of the open-clo...
opncldf3 22977 The values of the converse...
isclo 22978 A set ` A ` is clopen iff ...
isclo2 22979 A set ` A ` is clopen iff ...
discld 22980 The open sets of a discret...
sn0cld 22981 The closed sets of the top...
indiscld 22982 The closed sets of an indi...
mretopd 22983 A Moore collection which i...
toponmre 22984 The topologies over a give...
cldmreon 22985 The closed sets of a topol...
iscldtop 22986 A family is the closed set...
mreclatdemoBAD 22987 The closed subspaces of a ...
neifval 22990 Value of the neighborhood ...
neif 22991 The neighborhood function ...
neiss2 22992 A set with a neighborhood ...
neival 22993 Value of the set of neighb...
isnei 22994 The predicate "the class `...
neiint 22995 An intuitive definition of...
isneip 22996 The predicate "the class `...
neii1 22997 A neighborhood is included...
neisspw 22998 The neighborhoods of any s...
neii2 22999 Property of a neighborhood...
neiss 23000 Any neighborhood of a set ...
ssnei 23001 A set is included in any o...
elnei 23002 A point belongs to any of ...
0nnei 23003 The empty set is not a nei...
neips 23004 A neighborhood of a set is...
opnneissb 23005 An open set is a neighborh...
opnssneib 23006 Any superset of an open se...
ssnei2 23007 Any subset ` M ` of ` X ` ...
neindisj 23008 Any neighborhood of an ele...
opnneiss 23009 An open set is a neighborh...
opnneip 23010 An open set is a neighborh...
opnnei 23011 A set is open iff it is a ...
tpnei 23012 The underlying set of a to...
neiuni 23013 The union of the neighborh...
neindisj2 23014 A point ` P ` belongs to t...
topssnei 23015 A finer topology has more ...
innei 23016 The intersection of two ne...
opnneiid 23017 Only an open set is a neig...
neissex 23018 For any neighborhood ` N `...
0nei 23019 The empty set is a neighbo...
neipeltop 23020 Lemma for ~ neiptopreu . ...
neiptopuni 23021 Lemma for ~ neiptopreu . ...
neiptoptop 23022 Lemma for ~ neiptopreu . ...
neiptopnei 23023 Lemma for ~ neiptopreu . ...
neiptopreu 23024 If, to each element ` P ` ...
lpfval 23029 The limit point function o...
lpval 23030 The set of limit points of...
islp 23031 The predicate "the class `...
lpsscls 23032 The limit points of a subs...
lpss 23033 The limit points of a subs...
lpdifsn 23034 ` P ` is a limit point of ...
lpss3 23035 Subset relationship for li...
islp2 23036 The predicate " ` P ` is a...
islp3 23037 The predicate " ` P ` is a...
maxlp 23038 A point is a limit point o...
clslp 23039 The closure of a subset of...
islpi 23040 A point belonging to a set...
cldlp 23041 A subset of a topological ...
isperf 23042 Definition of a perfect sp...
isperf2 23043 Definition of a perfect sp...
isperf3 23044 A perfect space is a topol...
perflp 23045 The limit points of a perf...
perfi 23046 Property of a perfect spac...
perftop 23047 A perfect space is a topol...
restrcl 23048 Reverse closure for the su...
restbas 23049 A subspace topology basis ...
tgrest 23050 A subspace can be generate...
resttop 23051 A subspace topology is a t...
resttopon 23052 A subspace topology is a t...
restuni 23053 The underlying set of a su...
stoig 23054 The topological space buil...
restco 23055 Composition of subspaces. ...
restabs 23056 Equivalence of being a sub...
restin 23057 When the subspace region i...
restuni2 23058 The underlying set of a su...
resttopon2 23059 The underlying set of a su...
rest0 23060 The subspace topology indu...
restsn 23061 The only subspace topology...
restsn2 23062 The subspace topology indu...
restcld 23063 A closed set of a subspace...
restcldi 23064 A closed set is closed in ...
restcldr 23065 A set which is closed in t...
restopnb 23066 If ` B ` is an open subset...
ssrest 23067 If ` K ` is a finer topolo...
restopn2 23068 If ` A ` is open, then ` B...
restdis 23069 A subspace of a discrete t...
restfpw 23070 The restriction of the set...
neitr 23071 The neighborhood of a trac...
restcls 23072 A closure in a subspace to...
restntr 23073 An interior in a subspace ...
restlp 23074 The limit points of a subs...
restperf 23075 Perfection of a subspace. ...
perfopn 23076 An open subset of a perfec...
resstopn 23077 The topology of a restrict...
resstps 23078 A restricted topological s...
ordtbaslem 23079 Lemma for ~ ordtbas . In ...
ordtval 23080 Value of the order topolog...
ordtuni 23081 Value of the order topolog...
ordtbas2 23082 Lemma for ~ ordtbas . (Co...
ordtbas 23083 In a total order, the fini...
ordttopon 23084 Value of the order topolog...
ordtopn1 23085 An upward ray ` ( P , +oo ...
ordtopn2 23086 A downward ray ` ( -oo , P...
ordtopn3 23087 An open interval ` ( A , B...
ordtcld1 23088 A downward ray ` ( -oo , P...
ordtcld2 23089 An upward ray ` [ P , +oo ...
ordtcld3 23090 A closed interval ` [ A , ...
ordttop 23091 The order topology is a to...
ordtcnv 23092 The order dual generates t...
ordtrest 23093 The subspace topology of a...
ordtrest2lem 23094 Lemma for ~ ordtrest2 . (...
ordtrest2 23095 An interval-closed set ` A...
letopon 23096 The topology of the extend...
letop 23097 The topology of the extend...
letopuni 23098 The topology of the extend...
xrstopn 23099 The topology component of ...
xrstps 23100 The extended real number s...
leordtvallem1 23101 Lemma for ~ leordtval . (...
leordtvallem2 23102 Lemma for ~ leordtval . (...
leordtval2 23103 The topology of the extend...
leordtval 23104 The topology of the extend...
iccordt 23105 A closed interval is close...
iocpnfordt 23106 An unbounded above open in...
icomnfordt 23107 An unbounded above open in...
iooordt 23108 An open interval is open i...
reordt 23109 The real numbers are an op...
lecldbas 23110 The set of closed interval...
pnfnei 23111 A neighborhood of ` +oo ` ...
mnfnei 23112 A neighborhood of ` -oo ` ...
ordtrestixx 23113 The restriction of the les...
ordtresticc 23114 The restriction of the les...
lmrel 23121 The topological space conv...
lmrcl 23122 Reverse closure for the co...
lmfval 23123 The relation "sequence ` f...
cnfval 23124 The set of all continuous ...
cnpfval 23125 The function mapping the p...
iscn 23126 The predicate "the class `...
cnpval 23127 The set of all functions f...
iscnp 23128 The predicate "the class `...
iscn2 23129 The predicate "the class `...
iscnp2 23130 The predicate "the class `...
cntop1 23131 Reverse closure for a cont...
cntop2 23132 Reverse closure for a cont...
cnptop1 23133 Reverse closure for a func...
cnptop2 23134 Reverse closure for a func...
iscnp3 23135 The predicate "the class `...
cnprcl 23136 Reverse closure for a func...
cnf 23137 A continuous function is a...
cnpf 23138 A continuous function at p...
cnpcl 23139 The value of a continuous ...
cnf2 23140 A continuous function is a...
cnpf2 23141 A continuous function at p...
cnprcl2 23142 Reverse closure for a func...
tgcn 23143 The continuity predicate w...
tgcnp 23144 The "continuous at a point...
subbascn 23145 The continuity predicate w...
ssidcn 23146 The identity function is a...
cnpimaex 23147 Property of a function con...
idcn 23148 A restricted identity func...
lmbr 23149 Express the binary relatio...
lmbr2 23150 Express the binary relatio...
lmbrf 23151 Express the binary relatio...
lmconst 23152 A constant sequence conver...
lmcvg 23153 Convergence property of a ...
iscnp4 23154 The predicate "the class `...
cnpnei 23155 A condition for continuity...
cnima 23156 An open subset of the codo...
cnco 23157 The composition of two con...
cnpco 23158 The composition of a funct...
cnclima 23159 A closed subset of the cod...
iscncl 23160 A characterization of a co...
cncls2i 23161 Property of the preimage o...
cnntri 23162 Property of the preimage o...
cnclsi 23163 Property of the image of a...
cncls2 23164 Continuity in terms of clo...
cncls 23165 Continuity in terms of clo...
cnntr 23166 Continuity in terms of int...
cnss1 23167 If the topology ` K ` is f...
cnss2 23168 If the topology ` K ` is f...
cncnpi 23169 A continuous function is c...
cnsscnp 23170 The set of continuous func...
cncnp 23171 A continuous function is c...
cncnp2 23172 A continuous function is c...
cnnei 23173 Continuity in terms of nei...
cnconst2 23174 A constant function is con...
cnconst 23175 A constant function is con...
cnrest 23176 Continuity of a restrictio...
cnrest2 23177 Equivalence of continuity ...
cnrest2r 23178 Equivalence of continuity ...
cnpresti 23179 One direction of ~ cnprest...
cnprest 23180 Equivalence of continuity ...
cnprest2 23181 Equivalence of point-conti...
cndis 23182 Every function is continuo...
cnindis 23183 Every function is continuo...
cnpdis 23184 If ` A ` is an isolated po...
paste 23185 Pasting lemma. If ` A ` a...
lmfpm 23186 If ` F ` converges, then `...
lmfss 23187 Inclusion of a function ha...
lmcl 23188 Closure of a limit. (Cont...
lmss 23189 Limit on a subspace. (Con...
sslm 23190 A finer topology has fewer...
lmres 23191 A function converges iff i...
lmff 23192 If ` F ` converges, there ...
lmcls 23193 Any convergent sequence of...
lmcld 23194 Any convergent sequence of...
lmcnp 23195 The image of a convergent ...
lmcn 23196 The image of a convergent ...
ist0 23211 The predicate "is a T_0 sp...
ist1 23212 The predicate "is a T_1 sp...
ishaus 23213 The predicate "is a Hausdo...
iscnrm 23214 The property of being comp...
t0sep 23215 Any two topologically indi...
t0dist 23216 Any two distinct points in...
t1sncld 23217 In a T_1 space, singletons...
t1ficld 23218 In a T_1 space, finite set...
hausnei 23219 Neighborhood property of a...
t0top 23220 A T_0 space is a topologic...
t1top 23221 A T_1 space is a topologic...
haustop 23222 A Hausdorff space is a top...
isreg 23223 The predicate "is a regula...
regtop 23224 A regular space is a topol...
regsep 23225 In a regular space, every ...
isnrm 23226 The predicate "is a normal...
nrmtop 23227 A normal space is a topolo...
cnrmtop 23228 A completely normal space ...
iscnrm2 23229 The property of being comp...
ispnrm 23230 The property of being perf...
pnrmnrm 23231 A perfectly normal space i...
pnrmtop 23232 A perfectly normal space i...
pnrmcld 23233 A closed set in a perfectl...
pnrmopn 23234 An open set in a perfectly...
ist0-2 23235 The predicate "is a T_0 sp...
ist0-3 23236 The predicate "is a T_0 sp...
cnt0 23237 The preimage of a T_0 topo...
ist1-2 23238 An alternate characterizat...
t1t0 23239 A T_1 space is a T_0 space...
ist1-3 23240 A space is T_1 iff every p...
cnt1 23241 The preimage of a T_1 topo...
ishaus2 23242 Express the predicate " ` ...
haust1 23243 A Hausdorff space is a T_1...
hausnei2 23244 The Hausdorff condition st...
cnhaus 23245 The preimage of a Hausdorf...
nrmsep3 23246 In a normal space, given a...
nrmsep2 23247 In a normal space, any two...
nrmsep 23248 In a normal space, disjoin...
isnrm2 23249 An alternate characterizat...
isnrm3 23250 A topological space is nor...
cnrmi 23251 A subspace of a completely...
cnrmnrm 23252 A completely normal space ...
restcnrm 23253 A subspace of a completely...
resthauslem 23254 Lemma for ~ resthaus and s...
lpcls 23255 The limit points of the cl...
perfcls 23256 A subset of a perfect spac...
restt0 23257 A subspace of a T_0 topolo...
restt1 23258 A subspace of a T_1 topolo...
resthaus 23259 A subspace of a Hausdorff ...
t1sep2 23260 Any two points in a T_1 sp...
t1sep 23261 Any two distinct points in...
sncld 23262 A singleton is closed in a...
sshauslem 23263 Lemma for ~ sshaus and sim...
sst0 23264 A topology finer than a T_...
sst1 23265 A topology finer than a T_...
sshaus 23266 A topology finer than a Ha...
regsep2 23267 In a regular space, a clos...
isreg2 23268 A topological space is reg...
dnsconst 23269 If a continuous mapping to...
ordtt1 23270 The order topology is T_1 ...
lmmo 23271 A sequence in a Hausdorff ...
lmfun 23272 The convergence relation i...
dishaus 23273 A discrete topology is Hau...
ordthauslem 23274 Lemma for ~ ordthaus . (C...
ordthaus 23275 The order topology of a to...
xrhaus 23276 The topology of the extend...
iscmp 23279 The predicate "is a compac...
cmpcov 23280 An open cover of a compact...
cmpcov2 23281 Rewrite ~ cmpcov for the c...
cmpcovf 23282 Combine ~ cmpcov with ~ ac...
cncmp 23283 Compactness is respected b...
fincmp 23284 A finite topology is compa...
0cmp 23285 The singleton of the empty...
cmptop 23286 A compact topology is a to...
rncmp 23287 The image of a compact set...
imacmp 23288 The image of a compact set...
discmp 23289 A discrete topology is com...
cmpsublem 23290 Lemma for ~ cmpsub . (Con...
cmpsub 23291 Two equivalent ways of des...
tgcmp 23292 A topology generated by a ...
cmpcld 23293 A closed subset of a compa...
uncmp 23294 The union of two compact s...
fiuncmp 23295 A finite union of compact ...
sscmp 23296 A subset of a compact topo...
hauscmplem 23297 Lemma for ~ hauscmp . (Co...
hauscmp 23298 A compact subspace of a T2...
cmpfi 23299 If a topology is compact a...
cmpfii 23300 In a compact topology, a s...
bwth 23301 The glorious Bolzano-Weier...
isconn 23304 The predicate ` J ` is a c...
isconn2 23305 The predicate ` J ` is a c...
connclo 23306 The only nonempty clopen s...
conndisj 23307 If a topology is connected...
conntop 23308 A connected topology is a ...
indisconn 23309 The indiscrete topology (o...
dfconn2 23310 An alternate definition of...
connsuba 23311 Connectedness for a subspa...
connsub 23312 Two equivalent ways of say...
cnconn 23313 Connectedness is respected...
nconnsubb 23314 Disconnectedness for a sub...
connsubclo 23315 If a clopen set meets a co...
connima 23316 The image of a connected s...
conncn 23317 A continuous function from...
iunconnlem 23318 Lemma for ~ iunconn . (Co...
iunconn 23319 The indexed union of conne...
unconn 23320 The union of two connected...
clsconn 23321 The closure of a connected...
conncompid 23322 The connected component co...
conncompconn 23323 The connected component co...
conncompss 23324 The connected component co...
conncompcld 23325 The connected component co...
conncompclo 23326 The connected component co...
t1connperf 23327 A connected T_1 space is p...
is1stc 23332 The predicate "is a first-...
is1stc2 23333 An equivalent way of sayin...
1stctop 23334 A first-countable topology...
1stcclb 23335 A property of points in a ...
1stcfb 23336 For any point ` A ` in a f...
is2ndc 23337 The property of being seco...
2ndctop 23338 A second-countable topolog...
2ndci 23339 A countable basis generate...
2ndcsb 23340 Having a countable subbase...
2ndcredom 23341 A second-countable space h...
2ndc1stc 23342 A second-countable space i...
1stcrestlem 23343 Lemma for ~ 1stcrest . (C...
1stcrest 23344 A subspace of a first-coun...
2ndcrest 23345 A subspace of a second-cou...
2ndcctbss 23346 If a topology is second-co...
2ndcdisj 23347 Any disjoint family of ope...
2ndcdisj2 23348 Any disjoint collection of...
2ndcomap 23349 A surjective continuous op...
2ndcsep 23350 A second-countable topolog...
dis2ndc 23351 A discrete space is second...
1stcelcls 23352 A point belongs to the clo...
1stccnp 23353 A mapping is continuous at...
1stccn 23354 A mapping ` X --> Y ` , wh...
islly 23359 The property of being a lo...
isnlly 23360 The property of being an n...
llyeq 23361 Equality theorem for the `...
nllyeq 23362 Equality theorem for the `...
llytop 23363 A locally ` A ` space is a...
nllytop 23364 A locally ` A ` space is a...
llyi 23365 The property of a locally ...
nllyi 23366 The property of an n-local...
nlly2i 23367 Eliminate the neighborhood...
llynlly 23368 A locally ` A ` space is n...
llyssnlly 23369 A locally ` A ` space is n...
llyss 23370 The "locally" predicate re...
nllyss 23371 The "n-locally" predicate ...
subislly 23372 The property of a subspace...
restnlly 23373 If the property ` A ` pass...
restlly 23374 If the property ` A ` pass...
islly2 23375 An alternative expression ...
llyrest 23376 An open subspace of a loca...
nllyrest 23377 An open subspace of an n-l...
loclly 23378 If ` A ` is a local proper...
llyidm 23379 Idempotence of the "locall...
nllyidm 23380 Idempotence of the "n-loca...
toplly 23381 A topology is locally a to...
topnlly 23382 A topology is n-locally a ...
hauslly 23383 A Hausdorff space is local...
hausnlly 23384 A Hausdorff space is n-loc...
hausllycmp 23385 A compact Hausdorff space ...
cldllycmp 23386 A closed subspace of a loc...
lly1stc 23387 First-countability is a lo...
dislly 23388 The discrete space ` ~P X ...
disllycmp 23389 A discrete space is locall...
dis1stc 23390 A discrete space is first-...
hausmapdom 23391 If ` X ` is a first-counta...
hauspwdom 23392 Simplify the cardinal ` A ...
refrel 23399 Refinement is a relation. ...
isref 23400 The property of being a re...
refbas 23401 A refinement covers the sa...
refssex 23402 Every set in a refinement ...
ssref 23403 A subcover is a refinement...
refref 23404 Reflexivity of refinement....
reftr 23405 Refinement is transitive. ...
refun0 23406 Adding the empty set prese...
isptfin 23407 The statement "is a point-...
islocfin 23408 The statement "is a locall...
finptfin 23409 A finite cover is a point-...
ptfinfin 23410 A point covered by a point...
finlocfin 23411 A finite cover of a topolo...
locfintop 23412 A locally finite cover cov...
locfinbas 23413 A locally finite cover mus...
locfinnei 23414 A point covered by a local...
lfinpfin 23415 A locally finite cover is ...
lfinun 23416 Adding a finite set preser...
locfincmp 23417 For a compact space, the l...
unisngl 23418 Taking the union of the se...
dissnref 23419 The set of singletons is a...
dissnlocfin 23420 The set of singletons is l...
locfindis 23421 The locally finite covers ...
locfincf 23422 A locally finite cover in ...
comppfsc 23423 A space where every open c...
kgenval 23426 Value of the compact gener...
elkgen 23427 Value of the compact gener...
kgeni 23428 Property of the open sets ...
kgentopon 23429 The compact generator gene...
kgenuni 23430 The base set of the compac...
kgenftop 23431 The compact generator gene...
kgenf 23432 The compact generator is a...
kgentop 23433 A compactly generated spac...
kgenss 23434 The compact generator gene...
kgenhaus 23435 The compact generator gene...
kgencmp 23436 The compact generator topo...
kgencmp2 23437 The compact generator topo...
kgenidm 23438 The compact generator is i...
iskgen2 23439 A space is compactly gener...
iskgen3 23440 Derive the usual definitio...
llycmpkgen2 23441 A locally compact space is...
cmpkgen 23442 A compact space is compact...
llycmpkgen 23443 A locally compact space is...
1stckgenlem 23444 The one-point compactifica...
1stckgen 23445 A first-countable space is...
kgen2ss 23446 The compact generator pres...
kgencn 23447 A function from a compactl...
kgencn2 23448 A function ` F : J --> K `...
kgencn3 23449 The set of continuous func...
kgen2cn 23450 A continuous function is a...
txval 23455 Value of the binary topolo...
txuni2 23456 The underlying set of the ...
txbasex 23457 The basis for the product ...
txbas 23458 The set of Cartesian produ...
eltx 23459 A set in a product is open...
txtop 23460 The product of two topolog...
ptval 23461 The value of the product t...
ptpjpre1 23462 The preimage of a projecti...
elpt 23463 Elementhood in the bases o...
elptr 23464 A basic open set in the pr...
elptr2 23465 A basic open set in the pr...
ptbasid 23466 The base set of the produc...
ptuni2 23467 The base set for the produ...
ptbasin 23468 The basis for a product to...
ptbasin2 23469 The basis for a product to...
ptbas 23470 The basis for a product to...
ptpjpre2 23471 The basis for a product to...
ptbasfi 23472 The basis for the product ...
pttop 23473 The product topology is a ...
ptopn 23474 A basic open set in the pr...
ptopn2 23475 A sub-basic open set in th...
xkotf 23476 Functionality of function ...
xkobval 23477 Alternative expression for...
xkoval 23478 Value of the compact-open ...
xkotop 23479 The compact-open topology ...
xkoopn 23480 A basic open set of the co...
txtopi 23481 The product of two topolog...
txtopon 23482 The underlying set of the ...
txuni 23483 The underlying set of the ...
txunii 23484 The underlying set of the ...
ptuni 23485 The base set for the produ...
ptunimpt 23486 Base set of a product topo...
pttopon 23487 The base set for the produ...
pttoponconst 23488 The base set for a product...
ptuniconst 23489 The base set for a product...
xkouni 23490 The base set of the compac...
xkotopon 23491 The base set of the compac...
ptval2 23492 The value of the product t...
txopn 23493 The product of two open se...
txcld 23494 The product of two closed ...
txcls 23495 Closure of a rectangle in ...
txss12 23496 Subset property of the top...
txbasval 23497 It is sufficient to consid...
neitx 23498 The Cartesian product of t...
txcnpi 23499 Continuity of a two-argume...
tx1cn 23500 Continuity of the first pr...
tx2cn 23501 Continuity of the second p...
ptpjcn 23502 Continuity of a projection...
ptpjopn 23503 The projection map is an o...
ptcld 23504 A closed box in the produc...
ptcldmpt 23505 A closed box in the produc...
ptclsg 23506 The closure of a box in th...
ptcls 23507 The closure of a box in th...
dfac14lem 23508 Lemma for ~ dfac14 . By e...
dfac14 23509 Theorem ~ ptcls is an equi...
xkoccn 23510 The "constant function" fu...
txcnp 23511 If two functions are conti...
ptcnplem 23512 Lemma for ~ ptcnp . (Cont...
ptcnp 23513 If every projection of a f...
upxp 23514 Universal property of the ...
txcnmpt 23515 A map into the product of ...
uptx 23516 Universal property of the ...
txcn 23517 A map into the product of ...
ptcn 23518 If every projection of a f...
prdstopn 23519 Topology of a structure pr...
prdstps 23520 A structure product of top...
pwstps 23521 A structure power of a top...
txrest 23522 The subspace of a topologi...
txdis 23523 The topological product of...
txindislem 23524 Lemma for ~ txindis . (Co...
txindis 23525 The topological product of...
txdis1cn 23526 A function is jointly cont...
txlly 23527 If the property ` A ` is p...
txnlly 23528 If the property ` A ` is p...
pthaus 23529 The product of a collectio...
ptrescn 23530 Restriction is a continuou...
txtube 23531 The "tube lemma". If ` X ...
txcmplem1 23532 Lemma for ~ txcmp . (Cont...
txcmplem2 23533 Lemma for ~ txcmp . (Cont...
txcmp 23534 The topological product of...
txcmpb 23535 The topological product of...
hausdiag 23536 A topology is Hausdorff if...
hauseqlcld 23537 In a Hausdorff topology, t...
txhaus 23538 The topological product of...
txlm 23539 Two sequences converge iff...
lmcn2 23540 The image of a convergent ...
tx1stc 23541 The topological product of...
tx2ndc 23542 The topological product of...
txkgen 23543 The topological product of...
xkohaus 23544 If the codomain space is H...
xkoptsub 23545 The compact-open topology ...
xkopt 23546 The compact-open topology ...
xkopjcn 23547 Continuity of a projection...
xkoco1cn 23548 If ` F ` is a continuous f...
xkoco2cn 23549 If ` F ` is a continuous f...
xkococnlem 23550 Continuity of the composit...
xkococn 23551 Continuity of the composit...
cnmptid 23552 The identity function is c...
cnmptc 23553 A constant function is con...
cnmpt11 23554 The composition of continu...
cnmpt11f 23555 The composition of continu...
cnmpt1t 23556 The composition of continu...
cnmpt12f 23557 The composition of continu...
cnmpt12 23558 The composition of continu...
cnmpt1st 23559 The projection onto the fi...
cnmpt2nd 23560 The projection onto the se...
cnmpt2c 23561 A constant function is con...
cnmpt21 23562 The composition of continu...
cnmpt21f 23563 The composition of continu...
cnmpt2t 23564 The composition of continu...
cnmpt22 23565 The composition of continu...
cnmpt22f 23566 The composition of continu...
cnmpt1res 23567 The restriction of a conti...
cnmpt2res 23568 The restriction of a conti...
cnmptcom 23569 The argument converse of a...
cnmptkc 23570 The curried first projecti...
cnmptkp 23571 The evaluation of the inne...
cnmptk1 23572 The composition of a curri...
cnmpt1k 23573 The composition of a one-a...
cnmptkk 23574 The composition of two cur...
xkofvcn 23575 Joint continuity of the fu...
cnmptk1p 23576 The evaluation of a currie...
cnmptk2 23577 The uncurrying of a currie...
xkoinjcn 23578 Continuity of "injection",...
cnmpt2k 23579 The currying of a two-argu...
txconn 23580 The topological product of...
imasnopn 23581 If a relation graph is ope...
imasncld 23582 If a relation graph is clo...
imasncls 23583 If a relation graph is clo...
qtopval 23586 Value of the quotient topo...
qtopval2 23587 Value of the quotient topo...
elqtop 23588 Value of the quotient topo...
qtopres 23589 The quotient topology is u...
qtoptop2 23590 The quotient topology is a...
qtoptop 23591 The quotient topology is a...
elqtop2 23592 Value of the quotient topo...
qtopuni 23593 The base set of the quotie...
elqtop3 23594 Value of the quotient topo...
qtoptopon 23595 The base set of the quotie...
qtopid 23596 A quotient map is a contin...
idqtop 23597 The quotient topology indu...
qtopcmplem 23598 Lemma for ~ qtopcmp and ~ ...
qtopcmp 23599 A quotient of a compact sp...
qtopconn 23600 A quotient of a connected ...
qtopkgen 23601 A quotient of a compactly ...
basqtop 23602 An injection maps bases to...
tgqtop 23603 An injection maps generate...
qtopcld 23604 The property of being a cl...
qtopcn 23605 Universal property of a qu...
qtopss 23606 A surjective continuous fu...
qtopeu 23607 Universal property of the ...
qtoprest 23608 If ` A ` is a saturated op...
qtopomap 23609 If ` F ` is a surjective c...
qtopcmap 23610 If ` F ` is a surjective c...
imastopn 23611 The topology of an image s...
imastps 23612 The image of a topological...
qustps 23613 A quotient structure is a ...
kqfval 23614 Value of the function appe...
kqfeq 23615 Two points in the Kolmogor...
kqffn 23616 The topological indistingu...
kqval 23617 Value of the quotient topo...
kqtopon 23618 The Kolmogorov quotient is...
kqid 23619 The topological indistingu...
ist0-4 23620 The topological indistingu...
kqfvima 23621 When the image set is open...
kqsat 23622 Any open set is saturated ...
kqdisj 23623 A version of ~ imain for t...
kqcldsat 23624 Any closed set is saturate...
kqopn 23625 The topological indistingu...
kqcld 23626 The topological indistingu...
kqt0lem 23627 Lemma for ~ kqt0 . (Contr...
isr0 23628 The property " ` J ` is an...
r0cld 23629 The analogue of the T_1 ax...
regr1lem 23630 Lemma for ~ regr1 . (Cont...
regr1lem2 23631 A Kolmogorov quotient of a...
kqreglem1 23632 A Kolmogorov quotient of a...
kqreglem2 23633 If the Kolmogorov quotient...
kqnrmlem1 23634 A Kolmogorov quotient of a...
kqnrmlem2 23635 If the Kolmogorov quotient...
kqtop 23636 The Kolmogorov quotient is...
kqt0 23637 The Kolmogorov quotient is...
kqf 23638 The Kolmogorov quotient is...
r0sep 23639 The separation property of...
nrmr0reg 23640 A normal R_0 space is also...
regr1 23641 A regular space is R_1, wh...
kqreg 23642 The Kolmogorov quotient of...
kqnrm 23643 The Kolmogorov quotient of...
hmeofn 23648 The set of homeomorphisms ...
hmeofval 23649 The set of all the homeomo...
ishmeo 23650 The predicate F is a homeo...
hmeocn 23651 A homeomorphism is continu...
hmeocnvcn 23652 The converse of a homeomor...
hmeocnv 23653 The converse of a homeomor...
hmeof1o2 23654 A homeomorphism is a 1-1-o...
hmeof1o 23655 A homeomorphism is a 1-1-o...
hmeoima 23656 The image of an open set b...
hmeoopn 23657 Homeomorphisms preserve op...
hmeocld 23658 Homeomorphisms preserve cl...
hmeocls 23659 Homeomorphisms preserve cl...
hmeontr 23660 Homeomorphisms preserve in...
hmeoimaf1o 23661 The function mapping open ...
hmeores 23662 The restriction of a homeo...
hmeoco 23663 The composite of two homeo...
idhmeo 23664 The identity function is a...
hmeocnvb 23665 The converse of a homeomor...
hmeoqtop 23666 A homeomorphism is a quoti...
hmph 23667 Express the predicate ` J ...
hmphi 23668 If there is a homeomorphis...
hmphtop 23669 Reverse closure for the ho...
hmphtop1 23670 The relation "being homeom...
hmphtop2 23671 The relation "being homeom...
hmphref 23672 "Is homeomorphic to" is re...
hmphsym 23673 "Is homeomorphic to" is sy...
hmphtr 23674 "Is homeomorphic to" is tr...
hmpher 23675 "Is homeomorphic to" is an...
hmphen 23676 Homeomorphisms preserve th...
hmphsymb 23677 "Is homeomorphic to" is sy...
haushmphlem 23678 Lemma for ~ haushmph and s...
cmphmph 23679 Compactness is a topologic...
connhmph 23680 Connectedness is a topolog...
t0hmph 23681 T_0 is a topological prope...
t1hmph 23682 T_1 is a topological prope...
haushmph 23683 Hausdorff-ness is a topolo...
reghmph 23684 Regularity is a topologica...
nrmhmph 23685 Normality is a topological...
hmph0 23686 A topology homeomorphic to...
hmphdis 23687 Homeomorphisms preserve to...
hmphindis 23688 Homeomorphisms preserve to...
indishmph 23689 Equinumerous sets equipped...
hmphen2 23690 Homeomorphisms preserve th...
cmphaushmeo 23691 A continuous bijection fro...
ordthmeolem 23692 Lemma for ~ ordthmeo . (C...
ordthmeo 23693 An order isomorphism is a ...
txhmeo 23694 Lift a pair of homeomorphi...
txswaphmeolem 23695 Show inverse for the "swap...
txswaphmeo 23696 There is a homeomorphism f...
pt1hmeo 23697 The canonical homeomorphis...
ptuncnv 23698 Exhibit the converse funct...
ptunhmeo 23699 Define a homeomorphism fro...
xpstopnlem1 23700 The function ` F ` used in...
xpstps 23701 A binary product of topolo...
xpstopnlem2 23702 Lemma for ~ xpstopn . (Co...
xpstopn 23703 The topology on a binary p...
ptcmpfi 23704 A topological product of f...
xkocnv 23705 The inverse of the "curryi...
xkohmeo 23706 The Exponential Law for to...
qtopf1 23707 If a quotient map is injec...
qtophmeo 23708 If two functions on a base...
t0kq 23709 A topological space is T_0...
kqhmph 23710 A topological space is T_0...
ist1-5lem 23711 Lemma for ~ ist1-5 and sim...
t1r0 23712 A T_1 space is R_0. That ...
ist1-5 23713 A topological space is T_1...
ishaus3 23714 A topological space is Hau...
nrmreg 23715 A normal T_1 space is regu...
reghaus 23716 A regular T_0 space is Hau...
nrmhaus 23717 A T_1 normal space is Haus...
elmptrab 23718 Membership in a one-parame...
elmptrab2 23719 Membership in a one-parame...
isfbas 23720 The predicate " ` F ` is a...
fbasne0 23721 There are no empty filter ...
0nelfb 23722 No filter base contains th...
fbsspw 23723 A filter base on a set is ...
fbelss 23724 An element of the filter b...
fbdmn0 23725 The domain of a filter bas...
isfbas2 23726 The predicate " ` F ` is a...
fbasssin 23727 A filter base contains sub...
fbssfi 23728 A filter base contains sub...
fbssint 23729 A filter base contains sub...
fbncp 23730 A filter base does not con...
fbun 23731 A necessary and sufficient...
fbfinnfr 23732 No filter base containing ...
opnfbas 23733 The collection of open sup...
trfbas2 23734 Conditions for the trace o...
trfbas 23735 Conditions for the trace o...
isfil 23738 The predicate "is a filter...
filfbas 23739 A filter is a filter base....
0nelfil 23740 The empty set doesn't belo...
fileln0 23741 An element of a filter is ...
filsspw 23742 A filter is a subset of th...
filelss 23743 An element of a filter is ...
filss 23744 A filter is closed under t...
filin 23745 A filter is closed under t...
filtop 23746 The underlying set belongs...
isfil2 23747 Derive the standard axioms...
isfildlem 23748 Lemma for ~ isfild . (Con...
isfild 23749 Sufficient condition for a...
filfi 23750 A filter is closed under t...
filinn0 23751 The intersection of two el...
filintn0 23752 A filter has the finite in...
filn0 23753 The empty set is not a fil...
infil 23754 The intersection of two fi...
snfil 23755 A singleton is a filter. ...
fbasweak 23756 A filter base on any set i...
snfbas 23757 Condition for a singleton ...
fsubbas 23758 A condition for a set to g...
fbasfip 23759 A filter base has the fini...
fbunfip 23760 A helpful lemma for showin...
fgval 23761 The filter generating clas...
elfg 23762 A condition for elements o...
ssfg 23763 A filter base is a subset ...
fgss 23764 A bigger base generates a ...
fgss2 23765 A condition for a filter t...
fgfil 23766 A filter generates itself....
elfilss 23767 An element belongs to a fi...
filfinnfr 23768 No filter containing a fin...
fgcl 23769 A generated filter is a fi...
fgabs 23770 Absorption law for filter ...
neifil 23771 The neighborhoods of a non...
filunibas 23772 Recover the base set from ...
filunirn 23773 Two ways to express a filt...
filconn 23774 A filter gives rise to a c...
fbasrn 23775 Given a filter on a domain...
filuni 23776 The union of a nonempty se...
trfil1 23777 Conditions for the trace o...
trfil2 23778 Conditions for the trace o...
trfil3 23779 Conditions for the trace o...
trfilss 23780 If ` A ` is a member of th...
fgtr 23781 If ` A ` is a member of th...
trfg 23782 The trace operation and th...
trnei 23783 The trace, over a set ` A ...
cfinfil 23784 Relative complements of th...
csdfil 23785 The set of all elements wh...
supfil 23786 The supersets of a nonempt...
zfbas 23787 The set of upper sets of i...
uzrest 23788 The restriction of the set...
uzfbas 23789 The set of upper sets of i...
isufil 23794 The property of being an u...
ufilfil 23795 An ultrafilter is a filter...
ufilss 23796 For any subset of the base...
ufilb 23797 The complement is in an ul...
ufilmax 23798 Any filter finer than an u...
isufil2 23799 The maximal property of an...
ufprim 23800 An ultrafilter is a prime ...
trufil 23801 Conditions for the trace o...
filssufilg 23802 A filter is contained in s...
filssufil 23803 A filter is contained in s...
isufl 23804 Define the (strong) ultraf...
ufli 23805 Property of a set that sat...
numufl 23806 Consequence of ~ filssufil...
fiufl 23807 A finite set satisfies the...
acufl 23808 The axiom of choice implie...
ssufl 23809 If ` Y ` is a subset of ` ...
ufileu 23810 If the ultrafilter contain...
filufint 23811 A filter is equal to the i...
uffix 23812 Lemma for ~ fixufil and ~ ...
fixufil 23813 The condition describing a...
uffixfr 23814 An ultrafilter is either f...
uffix2 23815 A classification of fixed ...
uffixsn 23816 The singleton of the gener...
ufildom1 23817 An ultrafilter is generate...
uffinfix 23818 An ultrafilter containing ...
cfinufil 23819 An ultrafilter is free iff...
ufinffr 23820 An infinite subset is cont...
ufilen 23821 Any infinite set has an ul...
ufildr 23822 An ultrafilter gives rise ...
fin1aufil 23823 There are no definable fre...
fmval 23834 Introduce a function that ...
fmfil 23835 A mapping filter is a filt...
fmf 23836 Pushing-forward via a func...
fmss 23837 A finer filter produces a ...
elfm 23838 An element of a mapping fi...
elfm2 23839 An element of a mapping fi...
fmfg 23840 The image filter of a filt...
elfm3 23841 An alternate formulation o...
imaelfm 23842 An image of a filter eleme...
rnelfmlem 23843 Lemma for ~ rnelfm . (Con...
rnelfm 23844 A condition for a filter t...
fmfnfmlem1 23845 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 23846 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 23847 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 23848 Lemma for ~ fmfnfm . (Con...
fmfnfm 23849 A filter finer than an ima...
fmufil 23850 An image filter of an ultr...
fmid 23851 The filter map applied to ...
fmco 23852 Composition of image filte...
ufldom 23853 The ultrafilter lemma prop...
flimval 23854 The set of limit points of...
elflim2 23855 The predicate "is a limit ...
flimtop 23856 Reverse closure for the li...
flimneiss 23857 A filter contains the neig...
flimnei 23858 A filter contains all of t...
flimelbas 23859 A limit point of a filter ...
flimfil 23860 Reverse closure for the li...
flimtopon 23861 Reverse closure for the li...
elflim 23862 The predicate "is a limit ...
flimss2 23863 A limit point of a filter ...
flimss1 23864 A limit point of a filter ...
neiflim 23865 A point is a limit point o...
flimopn 23866 The condition for being a ...
fbflim 23867 A condition for a filter t...
fbflim2 23868 A condition for a filter b...
flimclsi 23869 The convergent points of a...
hausflimlem 23870 If ` A ` and ` B ` are bot...
hausflimi 23871 One direction of ~ hausfli...
hausflim 23872 A condition for a topology...
flimcf 23873 Fineness is properly chara...
flimrest 23874 The set of limit points in...
flimclslem 23875 Lemma for ~ flimcls . (Co...
flimcls 23876 Closure in terms of filter...
flimsncls 23877 If ` A ` is a limit point ...
hauspwpwf1 23878 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 23879 If ` X ` is a Hausdorff sp...
flffval 23880 Given a topology and a fil...
flfval 23881 Given a function from a fi...
flfnei 23882 The property of being a li...
flfneii 23883 A neighborhood of a limit ...
isflf 23884 The property of being a li...
flfelbas 23885 A limit point of a functio...
flffbas 23886 Limit points of a function...
flftg 23887 Limit points of a function...
hausflf 23888 If a function has its valu...
hausflf2 23889 If a convergent function h...
cnpflfi 23890 Forward direction of ~ cnp...
cnpflf2 23891 ` F ` is continuous at poi...
cnpflf 23892 Continuity of a function a...
cnflf 23893 A function is continuous i...
cnflf2 23894 A function is continuous i...
flfcnp 23895 A continuous function pres...
lmflf 23896 The topological limit rela...
txflf 23897 Two sequences converge in ...
flfcnp2 23898 The image of a convergent ...
fclsval 23899 The set of all cluster poi...
isfcls 23900 A cluster point of a filte...
fclsfil 23901 Reverse closure for the cl...
fclstop 23902 Reverse closure for the cl...
fclstopon 23903 Reverse closure for the cl...
isfcls2 23904 A cluster point of a filte...
fclsopn 23905 Write the cluster point co...
fclsopni 23906 An open neighborhood of a ...
fclselbas 23907 A cluster point is in the ...
fclsneii 23908 A neighborhood of a cluste...
fclssscls 23909 The set of cluster points ...
fclsnei 23910 Cluster points in terms of...
supnfcls 23911 The filter of supersets of...
fclsbas 23912 Cluster points in terms of...
fclsss1 23913 A finer topology has fewer...
fclsss2 23914 A finer filter has fewer c...
fclsrest 23915 The set of cluster points ...
fclscf 23916 Characterization of finene...
flimfcls 23917 A limit point is a cluster...
fclsfnflim 23918 A filter clusters at a poi...
flimfnfcls 23919 A filter converges to a po...
fclscmpi 23920 Forward direction of ~ fcl...
fclscmp 23921 A space is compact iff eve...
uffclsflim 23922 The cluster points of an u...
ufilcmp 23923 A space is compact iff eve...
fcfval 23924 The set of cluster points ...
isfcf 23925 The property of being a cl...
fcfnei 23926 The property of being a cl...
fcfelbas 23927 A cluster point of a funct...
fcfneii 23928 A neighborhood of a cluste...
flfssfcf 23929 A limit point of a functio...
uffcfflf 23930 If the domain filter is an...
cnpfcfi 23931 Lemma for ~ cnpfcf . If a...
cnpfcf 23932 A function ` F ` is contin...
cnfcf 23933 Continuity of a function i...
flfcntr 23934 A continuous function's va...
alexsublem 23935 Lemma for ~ alexsub . (Co...
alexsub 23936 The Alexander Subbase Theo...
alexsubb 23937 Biconditional form of the ...
alexsubALTlem1 23938 Lemma for ~ alexsubALT . ...
alexsubALTlem2 23939 Lemma for ~ alexsubALT . ...
alexsubALTlem3 23940 Lemma for ~ alexsubALT . ...
alexsubALTlem4 23941 Lemma for ~ alexsubALT . ...
alexsubALT 23942 The Alexander Subbase Theo...
ptcmplem1 23943 Lemma for ~ ptcmp . (Cont...
ptcmplem2 23944 Lemma for ~ ptcmp . (Cont...
ptcmplem3 23945 Lemma for ~ ptcmp . (Cont...
ptcmplem4 23946 Lemma for ~ ptcmp . (Cont...
ptcmplem5 23947 Lemma for ~ ptcmp . (Cont...
ptcmpg 23948 Tychonoff's theorem: The ...
ptcmp 23949 Tychonoff's theorem: The ...
cnextval 23952 The function applying cont...
cnextfval 23953 The continuous extension o...
cnextrel 23954 In the general case, a con...
cnextfun 23955 If the target space is Hau...
cnextfvval 23956 The value of the continuou...
cnextf 23957 Extension by continuity. ...
cnextcn 23958 Extension by continuity. ...
cnextfres1 23959 ` F ` and its extension by...
cnextfres 23960 ` F ` and its extension by...
istmd 23965 The predicate "is a topolo...
tmdmnd 23966 A topological monoid is a ...
tmdtps 23967 A topological monoid is a ...
istgp 23968 The predicate "is a topolo...
tgpgrp 23969 A topological group is a g...
tgptmd 23970 A topological group is a t...
tgptps 23971 A topological group is a t...
tmdtopon 23972 The topology of a topologi...
tgptopon 23973 The topology of a topologi...
tmdcn 23974 In a topological monoid, t...
tgpcn 23975 In a topological group, th...
tgpinv 23976 In a topological group, th...
grpinvhmeo 23977 The inverse function in a ...
cnmpt1plusg 23978 Continuity of the group su...
cnmpt2plusg 23979 Continuity of the group su...
tmdcn2 23980 Write out the definition o...
tgpsubcn 23981 In a topological group, th...
istgp2 23982 A group with a topology is...
tmdmulg 23983 In a topological monoid, t...
tgpmulg 23984 In a topological group, th...
tgpmulg2 23985 In a topological monoid, t...
tmdgsum 23986 In a topological monoid, t...
tmdgsum2 23987 For any neighborhood ` U `...
oppgtmd 23988 The opposite of a topologi...
oppgtgp 23989 The opposite of a topologi...
distgp 23990 Any group equipped with th...
indistgp 23991 Any group equipped with th...
efmndtmd 23992 The monoid of endofunction...
tmdlactcn 23993 The left group action of e...
tgplacthmeo 23994 The left group action of e...
submtmd 23995 A submonoid of a topologic...
subgtgp 23996 A subgroup of a topologica...
symgtgp 23997 The symmetric group is a t...
subgntr 23998 A subgroup of a topologica...
opnsubg 23999 An open subgroup of a topo...
clssubg 24000 The closure of a subgroup ...
clsnsg 24001 The closure of a normal su...
cldsubg 24002 A subgroup of finite index...
tgpconncompeqg 24003 The connected component co...
tgpconncomp 24004 The identity component, th...
tgpconncompss 24005 The identity component is ...
ghmcnp 24006 A group homomorphism on to...
snclseqg 24007 The coset of the closure o...
tgphaus 24008 A topological group is Hau...
tgpt1 24009 Hausdorff and T1 are equiv...
tgpt0 24010 Hausdorff and T0 are equiv...
qustgpopn 24011 A quotient map in a topolo...
qustgplem 24012 Lemma for ~ qustgp . (Con...
qustgp 24013 The quotient of a topologi...
qustgphaus 24014 The quotient of a topologi...
prdstmdd 24015 The product of a family of...
prdstgpd 24016 The product of a family of...
tsmsfbas 24019 The collection of all sets...
tsmslem1 24020 The finite partial sums of...
tsmsval2 24021 Definition of the topologi...
tsmsval 24022 Definition of the topologi...
tsmspropd 24023 The group sum depends only...
eltsms 24024 The property of being a su...
tsmsi 24025 The property of being a su...
tsmscl 24026 A sum in a topological gro...
haustsms 24027 In a Hausdorff topological...
haustsms2 24028 In a Hausdorff topological...
tsmscls 24029 One half of ~ tgptsmscls ,...
tsmsgsum 24030 The convergent points of a...
tsmsid 24031 If a sum is finite, the us...
haustsmsid 24032 In a Hausdorff topological...
tsms0 24033 The sum of zero is zero. ...
tsmssubm 24034 Evaluate an infinite group...
tsmsres 24035 Extend an infinite group s...
tsmsf1o 24036 Re-index an infinite group...
tsmsmhm 24037 Apply a continuous group h...
tsmsadd 24038 The sum of two infinite gr...
tsmsinv 24039 Inverse of an infinite gro...
tsmssub 24040 The difference of two infi...
tgptsmscls 24041 A sum in a topological gro...
tgptsmscld 24042 The set of limit points to...
tsmssplit 24043 Split a topological group ...
tsmsxplem1 24044 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 24045 Lemma for ~ tsmsxp . (Con...
tsmsxp 24046 Write a sum over a two-dim...
istrg 24055 Express the predicate " ` ...
trgtmd 24056 The multiplicative monoid ...
istdrg 24057 Express the predicate " ` ...
tdrgunit 24058 The unit group of a topolo...
trgtgp 24059 A topological ring is a to...
trgtmd2 24060 A topological ring is a to...
trgtps 24061 A topological ring is a to...
trgring 24062 A topological ring is a ri...
trggrp 24063 A topological ring is a gr...
tdrgtrg 24064 A topological division rin...
tdrgdrng 24065 A topological division rin...
tdrgring 24066 A topological division rin...
tdrgtmd 24067 A topological division rin...
tdrgtps 24068 A topological division rin...
istdrg2 24069 A topological-ring divisio...
mulrcn 24070 The functionalization of t...
invrcn2 24071 The multiplicative inverse...
invrcn 24072 The multiplicative inverse...
cnmpt1mulr 24073 Continuity of ring multipl...
cnmpt2mulr 24074 Continuity of ring multipl...
dvrcn 24075 The division function is c...
istlm 24076 The predicate " ` W ` is a...
vscacn 24077 The scalar multiplication ...
tlmtmd 24078 A topological module is a ...
tlmtps 24079 A topological module is a ...
tlmlmod 24080 A topological module is a ...
tlmtrg 24081 The scalar ring of a topol...
tlmscatps 24082 The scalar ring of a topol...
istvc 24083 A topological vector space...
tvctdrg 24084 The scalar field of a topo...
cnmpt1vsca 24085 Continuity of scalar multi...
cnmpt2vsca 24086 Continuity of scalar multi...
tlmtgp 24087 A topological vector space...
tvctlm 24088 A topological vector space...
tvclmod 24089 A topological vector space...
tvclvec 24090 A topological vector space...
ustfn 24093 The defined uniform struct...
ustval 24094 The class of all uniform s...
isust 24095 The predicate " ` U ` is a...
ustssxp 24096 Entourages are subsets of ...
ustssel 24097 A uniform structure is upw...
ustbasel 24098 The full set is always an ...
ustincl 24099 A uniform structure is clo...
ustdiag 24100 The diagonal set is includ...
ustinvel 24101 If ` V ` is an entourage, ...
ustexhalf 24102 For each entourage ` V ` t...
ustrel 24103 The elements of uniform st...
ustfilxp 24104 A uniform structure on a n...
ustne0 24105 A uniform structure cannot...
ustssco 24106 In an uniform structure, a...
ustexsym 24107 In an uniform structure, f...
ustex2sym 24108 In an uniform structure, f...
ustex3sym 24109 In an uniform structure, f...
ustref 24110 Any element of the base se...
ust0 24111 The unique uniform structu...
ustn0 24112 The empty set is not an un...
ustund 24113 If two intersecting sets `...
ustelimasn 24114 Any point ` A ` is near en...
ustneism 24115 For a point ` A ` in ` X `...
elrnustOLD 24116 Obsolete version of ~ elfv...
ustbas2 24117 Second direction for ~ ust...
ustuni 24118 The set union of a uniform...
ustbas 24119 Recover the base of an uni...
ustimasn 24120 Lemma for ~ ustuqtop . (C...
trust 24121 The trace of a uniform str...
utopval 24124 The topology induced by a ...
elutop 24125 Open sets in the topology ...
utoptop 24126 The topology induced by a ...
utopbas 24127 The base of the topology i...
utoptopon 24128 Topology induced by a unif...
restutop 24129 Restriction of a topology ...
restutopopn 24130 The restriction of the top...
ustuqtoplem 24131 Lemma for ~ ustuqtop . (C...
ustuqtop0 24132 Lemma for ~ ustuqtop . (C...
ustuqtop1 24133 Lemma for ~ ustuqtop , sim...
ustuqtop2 24134 Lemma for ~ ustuqtop . (C...
ustuqtop3 24135 Lemma for ~ ustuqtop , sim...
ustuqtop4 24136 Lemma for ~ ustuqtop . (C...
ustuqtop5 24137 Lemma for ~ ustuqtop . (C...
ustuqtop 24138 For a given uniform struct...
utopsnneiplem 24139 The neighborhoods of a poi...
utopsnneip 24140 The neighborhoods of a poi...
utopsnnei 24141 Images of singletons by en...
utop2nei 24142 For any symmetrical entour...
utop3cls 24143 Relation between a topolog...
utopreg 24144 All Hausdorff uniform spac...
ussval 24151 The uniform structure on u...
ussid 24152 In case the base of the ` ...
isusp 24153 The predicate ` W ` is a u...
ressuss 24154 Value of the uniform struc...
ressust 24155 The uniform structure of a...
ressusp 24156 The restriction of a unifo...
tusval 24157 The value of the uniform s...
tuslem 24158 Lemma for ~ tusbas , ~ tus...
tuslemOLD 24159 Obsolete proof of ~ tuslem...
tusbas 24160 The base set of a construc...
tusunif 24161 The uniform structure of a...
tususs 24162 The uniform structure of a...
tustopn 24163 The topology induced by a ...
tususp 24164 A constructed uniform spac...
tustps 24165 A constructed uniform spac...
uspreg 24166 If a uniform space is Haus...
ucnval 24169 The set of all uniformly c...
isucn 24170 The predicate " ` F ` is a...
isucn2 24171 The predicate " ` F ` is a...
ucnimalem 24172 Reformulate the ` G ` func...
ucnima 24173 An equivalent statement of...
ucnprima 24174 The preimage by a uniforml...
iducn 24175 The identity is uniformly ...
cstucnd 24176 A constant function is uni...
ucncn 24177 Uniform continuity implies...
iscfilu 24180 The predicate " ` F ` is a...
cfilufbas 24181 A Cauchy filter base is a ...
cfiluexsm 24182 For a Cauchy filter base a...
fmucndlem 24183 Lemma for ~ fmucnd . (Con...
fmucnd 24184 The image of a Cauchy filt...
cfilufg 24185 The filter generated by a ...
trcfilu 24186 Condition for the trace of...
cfiluweak 24187 A Cauchy filter base is al...
neipcfilu 24188 In an uniform space, a nei...
iscusp 24191 The predicate " ` W ` is a...
cuspusp 24192 A complete uniform space i...
cuspcvg 24193 In a complete uniform spac...
iscusp2 24194 The predicate " ` W ` is a...
cnextucn 24195 Extension by continuity. ...
ucnextcn 24196 Extension by continuity. ...
ispsmet 24197 Express the predicate " ` ...
psmetdmdm 24198 Recover the base set from ...
psmetf 24199 The distance function of a...
psmetcl 24200 Closure of the distance fu...
psmet0 24201 The distance function of a...
psmettri2 24202 Triangle inequality for th...
psmetsym 24203 The distance function of a...
psmettri 24204 Triangle inequality for th...
psmetge0 24205 The distance function of a...
psmetxrge0 24206 The distance function of a...
psmetres2 24207 Restriction of a pseudomet...
psmetlecl 24208 Real closure of an extende...
distspace 24209 A set ` X ` together with ...
ismet 24216 Express the predicate " ` ...
isxmet 24217 Express the predicate " ` ...
ismeti 24218 Properties that determine ...
isxmetd 24219 Properties that determine ...
isxmet2d 24220 It is safe to only require...
metflem 24221 Lemma for ~ metf and other...
xmetf 24222 Mapping of the distance fu...
metf 24223 Mapping of the distance fu...
xmetcl 24224 Closure of the distance fu...
metcl 24225 Closure of the distance fu...
ismet2 24226 An extended metric is a me...
metxmet 24227 A metric is an extended me...
xmetdmdm 24228 Recover the base set from ...
metdmdm 24229 Recover the base set from ...
xmetunirn 24230 Two ways to express an ext...
xmeteq0 24231 The value of an extended m...
meteq0 24232 The value of a metric is z...
xmettri2 24233 Triangle inequality for th...
mettri2 24234 Triangle inequality for th...
xmet0 24235 The distance function of a...
met0 24236 The distance function of a...
xmetge0 24237 The distance function of a...
metge0 24238 The distance function of a...
xmetlecl 24239 Real closure of an extende...
xmetsym 24240 The distance function of a...
xmetpsmet 24241 An extended metric is a ps...
xmettpos 24242 The distance function of a...
metsym 24243 The distance function of a...
xmettri 24244 Triangle inequality for th...
mettri 24245 Triangle inequality for th...
xmettri3 24246 Triangle inequality for th...
mettri3 24247 Triangle inequality for th...
xmetrtri 24248 One half of the reverse tr...
xmetrtri2 24249 The reverse triangle inequ...
metrtri 24250 Reverse triangle inequalit...
xmetgt0 24251 The distance function of a...
metgt0 24252 The distance function of a...
metn0 24253 A metric space is nonempty...
xmetres2 24254 Restriction of an extended...
metreslem 24255 Lemma for ~ metres . (Con...
metres2 24256 Lemma for ~ metres . (Con...
xmetres 24257 A restriction of an extend...
metres 24258 A restriction of a metric ...
0met 24259 The empty metric. (Contri...
prdsdsf 24260 The product metric is a fu...
prdsxmetlem 24261 The product metric is an e...
prdsxmet 24262 The product metric is an e...
prdsmet 24263 The product metric is a me...
ressprdsds 24264 Restriction of a product m...
resspwsds 24265 Restriction of a power met...
imasdsf1olem 24266 Lemma for ~ imasdsf1o . (...
imasdsf1o 24267 The distance function is t...
imasf1oxmet 24268 The image of an extended m...
imasf1omet 24269 The image of a metric is a...
xpsdsfn 24270 Closure of the metric in a...
xpsdsfn2 24271 Closure of the metric in a...
xpsxmetlem 24272 Lemma for ~ xpsxmet . (Co...
xpsxmet 24273 A product metric of extend...
xpsdsval 24274 Value of the metric in a b...
xpsmet 24275 The direct product of two ...
blfvalps 24276 The value of the ball func...
blfval 24277 The value of the ball func...
blvalps 24278 The ball around a point ` ...
blval 24279 The ball around a point ` ...
elblps 24280 Membership in a ball. (Co...
elbl 24281 Membership in a ball. (Co...
elbl2ps 24282 Membership in a ball. (Co...
elbl2 24283 Membership in a ball. (Co...
elbl3ps 24284 Membership in a ball, with...
elbl3 24285 Membership in a ball, with...
blcomps 24286 Commute the arguments to t...
blcom 24287 Commute the arguments to t...
xblpnfps 24288 The infinity ball in an ex...
xblpnf 24289 The infinity ball in an ex...
blpnf 24290 The infinity ball in a sta...
bldisj 24291 Two balls are disjoint if ...
blgt0 24292 A nonempty ball implies th...
bl2in 24293 Two balls are disjoint if ...
xblss2ps 24294 One ball is contained in a...
xblss2 24295 One ball is contained in a...
blss2ps 24296 One ball is contained in a...
blss2 24297 One ball is contained in a...
blhalf 24298 A ball of radius ` R / 2 `...
blfps 24299 Mapping of a ball. (Contr...
blf 24300 Mapping of a ball. (Contr...
blrnps 24301 Membership in the range of...
blrn 24302 Membership in the range of...
xblcntrps 24303 A ball contains its center...
xblcntr 24304 A ball contains its center...
blcntrps 24305 A ball contains its center...
blcntr 24306 A ball contains its center...
xbln0 24307 A ball is nonempty iff the...
bln0 24308 A ball is not empty. (Con...
blelrnps 24309 A ball belongs to the set ...
blelrn 24310 A ball belongs to the set ...
blssm 24311 A ball is a subset of the ...
unirnblps 24312 The union of the set of ba...
unirnbl 24313 The union of the set of ba...
blin 24314 The intersection of two ba...
ssblps 24315 The size of a ball increas...
ssbl 24316 The size of a ball increas...
blssps 24317 Any point ` P ` in a ball ...
blss 24318 Any point ` P ` in a ball ...
blssexps 24319 Two ways to express the ex...
blssex 24320 Two ways to express the ex...
ssblex 24321 A nested ball exists whose...
blin2 24322 Given any two balls and a ...
blbas 24323 The balls of a metric spac...
blres 24324 A ball in a restricted met...
xmeterval 24325 Value of the "finitely sep...
xmeter 24326 The "finitely separated" r...
xmetec 24327 The equivalence classes un...
blssec 24328 A ball centered at ` P ` i...
blpnfctr 24329 The infinity ball in an ex...
xmetresbl 24330 An extended metric restric...
mopnval 24331 An open set is a subset of...
mopntopon 24332 The set of open sets of a ...
mopntop 24333 The set of open sets of a ...
mopnuni 24334 The union of all open sets...
elmopn 24335 The defining property of a...
mopnfss 24336 The family of open sets of...
mopnm 24337 The base set of a metric s...
elmopn2 24338 A defining property of an ...
mopnss 24339 An open set of a metric sp...
isxms 24340 Express the predicate " ` ...
isxms2 24341 Express the predicate " ` ...
isms 24342 Express the predicate " ` ...
isms2 24343 Express the predicate " ` ...
xmstopn 24344 The topology component of ...
mstopn 24345 The topology component of ...
xmstps 24346 An extended metric space i...
msxms 24347 A metric space is an exten...
mstps 24348 A metric space is a topolo...
xmsxmet 24349 The distance function, sui...
msmet 24350 The distance function, sui...
msf 24351 The distance function of a...
xmsxmet2 24352 The distance function, sui...
msmet2 24353 The distance function, sui...
mscl 24354 Closure of the distance fu...
xmscl 24355 Closure of the distance fu...
xmsge0 24356 The distance function in a...
xmseq0 24357 The distance between two p...
xmssym 24358 The distance function in a...
xmstri2 24359 Triangle inequality for th...
mstri2 24360 Triangle inequality for th...
xmstri 24361 Triangle inequality for th...
mstri 24362 Triangle inequality for th...
xmstri3 24363 Triangle inequality for th...
mstri3 24364 Triangle inequality for th...
msrtri 24365 Reverse triangle inequalit...
xmspropd 24366 Property deduction for an ...
mspropd 24367 Property deduction for a m...
setsmsbas 24368 The base set of a construc...
setsmsbasOLD 24369 Obsolete proof of ~ setsms...
setsmsds 24370 The distance function of a...
setsmsdsOLD 24371 Obsolete proof of ~ setsms...
setsmstset 24372 The topology of a construc...
setsmstopn 24373 The topology of a construc...
setsxms 24374 The constructed metric spa...
setsms 24375 The constructed metric spa...
tmsval 24376 For any metric there is an...
tmslem 24377 Lemma for ~ tmsbas , ~ tms...
tmslemOLD 24378 Obsolete version of ~ tmsl...
tmsbas 24379 The base set of a construc...
tmsds 24380 The metric of a constructe...
tmstopn 24381 The topology of a construc...
tmsxms 24382 The constructed metric spa...
tmsms 24383 The constructed metric spa...
imasf1obl 24384 The image of a metric spac...
imasf1oxms 24385 The image of a metric spac...
imasf1oms 24386 The image of a metric spac...
prdsbl 24387 A ball in the product metr...
mopni 24388 An open set of a metric sp...
mopni2 24389 An open set of a metric sp...
mopni3 24390 An open set of a metric sp...
blssopn 24391 The balls of a metric spac...
unimopn 24392 The union of a collection ...
mopnin 24393 The intersection of two op...
mopn0 24394 The empty set is an open s...
rnblopn 24395 A ball of a metric space i...
blopn 24396 A ball of a metric space i...
neibl 24397 The neighborhoods around a...
blnei 24398 A ball around a point is a...
lpbl 24399 Every ball around a limit ...
blsscls2 24400 A smaller closed ball is c...
blcld 24401 A "closed ball" in a metri...
blcls 24402 The closure of an open bal...
blsscls 24403 If two concentric balls ha...
metss 24404 Two ways of saying that me...
metequiv 24405 Two ways of saying that tw...
metequiv2 24406 If there is a sequence of ...
metss2lem 24407 Lemma for ~ metss2 . (Con...
metss2 24408 If the metric ` D ` is "st...
comet 24409 The composition of an exte...
stdbdmetval 24410 Value of the standard boun...
stdbdxmet 24411 The standard bounded metri...
stdbdmet 24412 The standard bounded metri...
stdbdbl 24413 The standard bounded metri...
stdbdmopn 24414 The standard bounded metri...
mopnex 24415 The topology generated by ...
methaus 24416 The topology generated by ...
met1stc 24417 The topology generated by ...
met2ndci 24418 A separable metric space (...
met2ndc 24419 A metric space is second-c...
metrest 24420 Two alternate formulations...
ressxms 24421 The restriction of a metri...
ressms 24422 The restriction of a metri...
prdsmslem1 24423 Lemma for ~ prdsms . The ...
prdsxmslem1 24424 Lemma for ~ prdsms . The ...
prdsxmslem2 24425 Lemma for ~ prdsxms . The...
prdsxms 24426 The indexed product struct...
prdsms 24427 The indexed product struct...
pwsxms 24428 A power of an extended met...
pwsms 24429 A power of a metric space ...
xpsxms 24430 A binary product of metric...
xpsms 24431 A binary product of metric...
tmsxps 24432 Express the product of two...
tmsxpsmopn 24433 Express the product of two...
tmsxpsval 24434 Value of the product of tw...
tmsxpsval2 24435 Value of the product of tw...
metcnp3 24436 Two ways to express that `...
metcnp 24437 Two ways to say a mapping ...
metcnp2 24438 Two ways to say a mapping ...
metcn 24439 Two ways to say a mapping ...
metcnpi 24440 Epsilon-delta property of ...
metcnpi2 24441 Epsilon-delta property of ...
metcnpi3 24442 Epsilon-delta property of ...
txmetcnp 24443 Continuity of a binary ope...
txmetcn 24444 Continuity of a binary ope...
metuval 24445 Value of the uniform struc...
metustel 24446 Define a filter base ` F `...
metustss 24447 Range of the elements of t...
metustrel 24448 Elements of the filter bas...
metustto 24449 Any two elements of the fi...
metustid 24450 The identity diagonal is i...
metustsym 24451 Elements of the filter bas...
metustexhalf 24452 For any element ` A ` of t...
metustfbas 24453 The filter base generated ...
metust 24454 The uniform structure gene...
cfilucfil 24455 Given a metric ` D ` and a...
metuust 24456 The uniform structure gene...
cfilucfil2 24457 Given a metric ` D ` and a...
blval2 24458 The ball around a point ` ...
elbl4 24459 Membership in a ball, alte...
metuel 24460 Elementhood in the uniform...
metuel2 24461 Elementhood in the uniform...
metustbl 24462 The "section" image of an ...
psmetutop 24463 The topology induced by a ...
xmetutop 24464 The topology induced by a ...
xmsusp 24465 If the uniform set of a me...
restmetu 24466 The uniform structure gene...
metucn 24467 Uniform continuity in metr...
dscmet 24468 The discrete metric on any...
dscopn 24469 The discrete metric genera...
nrmmetd 24470 Show that a group norm gen...
abvmet 24471 An absolute value ` F ` ge...
nmfval 24484 The value of the norm func...
nmval 24485 The value of the norm as t...
nmfval0 24486 The value of the norm func...
nmfval2 24487 The value of the norm func...
nmval2 24488 The value of the norm on a...
nmf2 24489 The norm on a metric group...
nmpropd 24490 Weak property deduction fo...
nmpropd2 24491 Strong property deduction ...
isngp 24492 The property of being a no...
isngp2 24493 The property of being a no...
isngp3 24494 The property of being a no...
ngpgrp 24495 A normed group is a group....
ngpms 24496 A normed group is a metric...
ngpxms 24497 A normed group is an exten...
ngptps 24498 A normed group is a topolo...
ngpmet 24499 The (induced) metric of a ...
ngpds 24500 Value of the distance func...
ngpdsr 24501 Value of the distance func...
ngpds2 24502 Write the distance between...
ngpds2r 24503 Write the distance between...
ngpds3 24504 Write the distance between...
ngpds3r 24505 Write the distance between...
ngprcan 24506 Cancel right addition insi...
ngplcan 24507 Cancel left addition insid...
isngp4 24508 Express the property of be...
ngpinvds 24509 Two elements are the same ...
ngpsubcan 24510 Cancel right subtraction i...
nmf 24511 The norm on a normed group...
nmcl 24512 The norm of a normed group...
nmge0 24513 The norm of a normed group...
nmeq0 24514 The identity is the only e...
nmne0 24515 The norm of a nonzero elem...
nmrpcl 24516 The norm of a nonzero elem...
nminv 24517 The norm of a negated elem...
nmmtri 24518 The triangle inequality fo...
nmsub 24519 The norm of the difference...
nmrtri 24520 Reverse triangle inequalit...
nm2dif 24521 Inequality for the differe...
nmtri 24522 The triangle inequality fo...
nmtri2 24523 Triangle inequality for th...
ngpi 24524 The properties of a normed...
nm0 24525 Norm of the identity eleme...
nmgt0 24526 The norm of a nonzero elem...
sgrim 24527 The induced metric on a su...
sgrimval 24528 The induced metric on a su...
subgnm 24529 The norm in a subgroup. (...
subgnm2 24530 A substructure assigns the...
subgngp 24531 A normed group restricted ...
ngptgp 24532 A normed abelian group is ...
ngppropd 24533 Property deduction for a n...
reldmtng 24534 The function ` toNrmGrp ` ...
tngval 24535 Value of the function whic...
tnglem 24536 Lemma for ~ tngbas and sim...
tnglemOLD 24537 Obsolete version of ~ tngl...
tngbas 24538 The base set of a structur...
tngbasOLD 24539 Obsolete proof of ~ tngbas...
tngplusg 24540 The group addition of a st...
tngplusgOLD 24541 Obsolete proof of ~ tngplu...
tng0 24542 The group identity of a st...
tngmulr 24543 The ring multiplication of...
tngmulrOLD 24544 Obsolete proof of ~ tngmul...
tngsca 24545 The scalar ring of a struc...
tngscaOLD 24546 Obsolete proof of ~ tngsca...
tngvsca 24547 The scalar multiplication ...
tngvscaOLD 24548 Obsolete proof of ~ tngvsc...
tngip 24549 The inner product operatio...
tngipOLD 24550 Obsolete proof of ~ tngip ...
tngds 24551 The metric function of a s...
tngdsOLD 24552 Obsolete proof of ~ tngds ...
tngtset 24553 The topology generated by ...
tngtopn 24554 The topology generated by ...
tngnm 24555 The topology generated by ...
tngngp2 24556 A norm turns a group into ...
tngngpd 24557 Derive the axioms for a no...
tngngp 24558 Derive the axioms for a no...
tnggrpr 24559 If a structure equipped wi...
tngngp3 24560 Alternate definition of a ...
nrmtngdist 24561 The augmentation of a norm...
nrmtngnrm 24562 The augmentation of a norm...
tngngpim 24563 The induced metric of a no...
isnrg 24564 A normed ring is a ring wi...
nrgabv 24565 The norm of a normed ring ...
nrgngp 24566 A normed ring is a normed ...
nrgring 24567 A normed ring is a ring. ...
nmmul 24568 The norm of a product in a...
nrgdsdi 24569 Distribute a distance calc...
nrgdsdir 24570 Distribute a distance calc...
nm1 24571 The norm of one in a nonze...
unitnmn0 24572 The norm of a unit is nonz...
nminvr 24573 The norm of an inverse in ...
nmdvr 24574 The norm of a division in ...
nrgdomn 24575 A nonzero normed ring is a...
nrgtgp 24576 A normed ring is a topolog...
subrgnrg 24577 A normed ring restricted t...
tngnrg 24578 Given any absolute value o...
isnlm 24579 A normed (left) module is ...
nmvs 24580 Defining property of a nor...
nlmngp 24581 A normed module is a norme...
nlmlmod 24582 A normed module is a left ...
nlmnrg 24583 The scalar component of a ...
nlmngp2 24584 The scalar component of a ...
nlmdsdi 24585 Distribute a distance calc...
nlmdsdir 24586 Distribute a distance calc...
nlmmul0or 24587 If a scalar product is zer...
sranlm 24588 The subring algebra over a...
nlmvscnlem2 24589 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 24590 Lemma for ~ nlmvscn . (Co...
nlmvscn 24591 The scalar multiplication ...
rlmnlm 24592 The ring module over a nor...
rlmnm 24593 The norm function in the r...
nrgtrg 24594 A normed ring is a topolog...
nrginvrcnlem 24595 Lemma for ~ nrginvrcn . C...
nrginvrcn 24596 The ring inverse function ...
nrgtdrg 24597 A normed division ring is ...
nlmtlm 24598 A normed module is a topol...
isnvc 24599 A normed vector space is j...
nvcnlm 24600 A normed vector space is a...
nvclvec 24601 A normed vector space is a...
nvclmod 24602 A normed vector space is a...
isnvc2 24603 A normed vector space is j...
nvctvc 24604 A normed vector space is a...
lssnlm 24605 A subspace of a normed mod...
lssnvc 24606 A subspace of a normed vec...
rlmnvc 24607 The ring module over a nor...
ngpocelbl 24608 Membership of an off-cente...
nmoffn 24615 The function producing ope...
reldmnghm 24616 Lemma for normed group hom...
reldmnmhm 24617 Lemma for module homomorph...
nmofval 24618 Value of the operator norm...
nmoval 24619 Value of the operator norm...
nmogelb 24620 Property of the operator n...
nmolb 24621 Any upper bound on the val...
nmolb2d 24622 Any upper bound on the val...
nmof 24623 The operator norm is a fun...
nmocl 24624 The operator norm of an op...
nmoge0 24625 The operator norm of an op...
nghmfval 24626 A normed group homomorphis...
isnghm 24627 A normed group homomorphis...
isnghm2 24628 A normed group homomorphis...
isnghm3 24629 A normed group homomorphis...
bddnghm 24630 A bounded group homomorphi...
nghmcl 24631 A normed group homomorphis...
nmoi 24632 The operator norm achieves...
nmoix 24633 The operator norm is a bou...
nmoi2 24634 The operator norm is a bou...
nmoleub 24635 The operator norm, defined...
nghmrcl1 24636 Reverse closure for a norm...
nghmrcl2 24637 Reverse closure for a norm...
nghmghm 24638 A normed group homomorphis...
nmo0 24639 The operator norm of the z...
nmoeq0 24640 The operator norm is zero ...
nmoco 24641 An upper bound on the oper...
nghmco 24642 The composition of normed ...
nmotri 24643 Triangle inequality for th...
nghmplusg 24644 The sum of two bounded lin...
0nghm 24645 The zero operator is a nor...
nmoid 24646 The operator norm of the i...
idnghm 24647 The identity operator is a...
nmods 24648 Upper bound for the distan...
nghmcn 24649 A normed group homomorphis...
isnmhm 24650 A normed module homomorphi...
nmhmrcl1 24651 Reverse closure for a norm...
nmhmrcl2 24652 Reverse closure for a norm...
nmhmlmhm 24653 A normed module homomorphi...
nmhmnghm 24654 A normed module homomorphi...
nmhmghm 24655 A normed module homomorphi...
isnmhm2 24656 A normed module homomorphi...
nmhmcl 24657 A normed module homomorphi...
idnmhm 24658 The identity operator is a...
0nmhm 24659 The zero operator is a bou...
nmhmco 24660 The composition of bounded...
nmhmplusg 24661 The sum of two bounded lin...
qtopbaslem 24662 The set of open intervals ...
qtopbas 24663 The set of open intervals ...
retopbas 24664 A basis for the standard t...
retop 24665 The standard topology on t...
uniretop 24666 The underlying set of the ...
retopon 24667 The standard topology on t...
retps 24668 The standard topological s...
iooretop 24669 Open intervals are open se...
icccld 24670 Closed intervals are close...
icopnfcld 24671 Right-unbounded closed int...
iocmnfcld 24672 Left-unbounded closed inte...
qdensere 24673 ` QQ ` is dense in the sta...
cnmetdval 24674 Value of the distance func...
cnmet 24675 The absolute value metric ...
cnxmet 24676 The absolute value metric ...
cnbl0 24677 Two ways to write the open...
cnblcld 24678 Two ways to write the clos...
cnfldms 24679 The complex number field i...
cnfldxms 24680 The complex number field i...
cnfldtps 24681 The complex number field i...
cnfldnm 24682 The norm of the field of c...
cnngp 24683 The complex numbers form a...
cnnrg 24684 The complex numbers form a...
cnfldtopn 24685 The topology of the comple...
cnfldtopon 24686 The topology of the comple...
cnfldtop 24687 The topology of the comple...
cnfldhaus 24688 The topology of the comple...
unicntop 24689 The underlying set of the ...
cnopn 24690 The set of complex numbers...
zringnrg 24691 The ring of integers is a ...
remetdval 24692 Value of the distance func...
remet 24693 The absolute value metric ...
rexmet 24694 The absolute value metric ...
bl2ioo 24695 A ball in terms of an open...
ioo2bl 24696 An open interval of reals ...
ioo2blex 24697 An open interval of reals ...
blssioo 24698 The balls of the standard ...
tgioo 24699 The topology generated by ...
qdensere2 24700 ` QQ ` is dense in ` RR ` ...
blcvx 24701 An open ball in the comple...
rehaus 24702 The standard topology on t...
tgqioo 24703 The topology generated by ...
re2ndc 24704 The standard topology on t...
resubmet 24705 The subspace topology indu...
tgioo2 24706 The standard topology on t...
rerest 24707 The subspace topology indu...
tgioo3 24708 The standard topology on t...
xrtgioo 24709 The topology on the extend...
xrrest 24710 The subspace topology indu...
xrrest2 24711 The subspace topology indu...
xrsxmet 24712 The metric on the extended...
xrsdsre 24713 The metric on the extended...
xrsblre 24714 Any ball of the metric of ...
xrsmopn 24715 The metric on the extended...
zcld 24716 The integers are a closed ...
recld2 24717 The real numbers are a clo...
zcld2 24718 The integers are a closed ...
zdis 24719 The integers are a discret...
sszcld 24720 Every subset of the intege...
reperflem 24721 A subset of the real numbe...
reperf 24722 The real numbers are a per...
cnperf 24723 The complex numbers are a ...
iccntr 24724 The interior of a closed i...
icccmplem1 24725 Lemma for ~ icccmp . (Con...
icccmplem2 24726 Lemma for ~ icccmp . (Con...
icccmplem3 24727 Lemma for ~ icccmp . (Con...
icccmp 24728 A closed interval in ` RR ...
reconnlem1 24729 Lemma for ~ reconn . Conn...
reconnlem2 24730 Lemma for ~ reconn . (Con...
reconn 24731 A subset of the reals is c...
retopconn 24732 Corollary of ~ reconn . T...
iccconn 24733 A closed interval is conne...
opnreen 24734 Every nonempty open set is...
rectbntr0 24735 A countable subset of the ...
xrge0gsumle 24736 A finite sum in the nonneg...
xrge0tsms 24737 Any finite or infinite sum...
xrge0tsms2 24738 Any finite or infinite sum...
metdcnlem 24739 The metric function of a m...
xmetdcn2 24740 The metric function of an ...
xmetdcn 24741 The metric function of an ...
metdcn2 24742 The metric function of a m...
metdcn 24743 The metric function of a m...
msdcn 24744 The metric function of a m...
cnmpt1ds 24745 Continuity of the metric f...
cnmpt2ds 24746 Continuity of the metric f...
nmcn 24747 The norm of a normed group...
ngnmcncn 24748 The norm of a normed group...
abscn 24749 The absolute value functio...
metdsval 24750 Value of the "distance to ...
metdsf 24751 The distance from a point ...
metdsge 24752 The distance from the poin...
metds0 24753 If a point is in a set, it...
metdstri 24754 A generalization of the tr...
metdsle 24755 The distance from a point ...
metdsre 24756 The distance from a point ...
metdseq0 24757 The distance from a point ...
metdscnlem 24758 Lemma for ~ metdscn . (Co...
metdscn 24759 The function ` F ` which g...
metdscn2 24760 The function ` F ` which g...
metnrmlem1a 24761 Lemma for ~ metnrm . (Con...
metnrmlem1 24762 Lemma for ~ metnrm . (Con...
metnrmlem2 24763 Lemma for ~ metnrm . (Con...
metnrmlem3 24764 Lemma for ~ metnrm . (Con...
metnrm 24765 A metric space is normal. ...
metreg 24766 A metric space is regular....
addcnlem 24767 Lemma for ~ addcn , ~ subc...
addcn 24768 Complex number addition is...
subcn 24769 Complex number subtraction...
mulcn 24770 Complex number multiplicat...
divcnOLD 24771 Obsolete version of ~ divc...
mpomulcn 24772 Complex number multiplicat...
divcn 24773 Complex number division is...
cnfldtgp 24774 The complex numbers form a...
fsumcn 24775 A finite sum of functions ...
fsum2cn 24776 Version of ~ fsumcn for tw...
expcn 24777 The power function on comp...
divccn 24778 Division by a nonzero cons...
expcnOLD 24779 Obsolete version of ~ expc...
divccnOLD 24780 Obsolete version of ~ divc...
sqcn 24781 The square function on com...
iitopon 24786 The unit interval is a top...
iitop 24787 The unit interval is a top...
iiuni 24788 The base set of the unit i...
dfii2 24789 Alternate definition of th...
dfii3 24790 Alternate definition of th...
dfii4 24791 Alternate definition of th...
dfii5 24792 The unit interval expresse...
iicmp 24793 The unit interval is compa...
iiconn 24794 The unit interval is conne...
cncfval 24795 The value of the continuou...
elcncf 24796 Membership in the set of c...
elcncf2 24797 Version of ~ elcncf with a...
cncfrss 24798 Reverse closure of the con...
cncfrss2 24799 Reverse closure of the con...
cncff 24800 A continuous complex funct...
cncfi 24801 Defining property of a con...
elcncf1di 24802 Membership in the set of c...
elcncf1ii 24803 Membership in the set of c...
rescncf 24804 A continuous complex funct...
cncfcdm 24805 Change the codomain of a c...
cncfss 24806 The set of continuous func...
climcncf 24807 Image of a limit under a c...
abscncf 24808 Absolute value is continuo...
recncf 24809 Real part is continuous. ...
imcncf 24810 Imaginary part is continuo...
cjcncf 24811 Complex conjugate is conti...
mulc1cncf 24812 Multiplication by a consta...
divccncf 24813 Division by a constant is ...
cncfco 24814 The composition of two con...
cncfcompt2 24815 Composition of continuous ...
cncfmet 24816 Relate complex function co...
cncfcn 24817 Relate complex function co...
cncfcn1 24818 Relate complex function co...
cncfmptc 24819 A constant function is a c...
cncfmptid 24820 The identity function is a...
cncfmpt1f 24821 Composition of continuous ...
cncfmpt2f 24822 Composition of continuous ...
cncfmpt2ss 24823 Composition of continuous ...
addccncf 24824 Adding a constant is a con...
idcncf 24825 The identity function is a...
sub1cncf 24826 Subtracting a constant is ...
sub2cncf 24827 Subtraction from a constan...
cdivcncf 24828 Division with a constant n...
negcncf 24829 The negative function is c...
negcncfOLD 24830 Obsolete version of ~ negc...
negfcncf 24831 The negative of a continuo...
abscncfALT 24832 Absolute value is continuo...
cncfcnvcn 24833 Rewrite ~ cmphaushmeo for ...
expcncf 24834 The power function on comp...
cnmptre 24835 Lemma for ~ iirevcn and re...
cnmpopc 24836 Piecewise definition of a ...
iirev 24837 Reverse the unit interval....
iirevcn 24838 The reversion function is ...
iihalf1 24839 Map the first half of ` II...
iihalf1cn 24840 The first half function is...
iihalf1cnOLD 24841 Obsolete version of ~ iiha...
iihalf2 24842 Map the second half of ` I...
iihalf2cn 24843 The second half function i...
iihalf2cnOLD 24844 Obsolete version of ~ iiha...
elii1 24845 Divide the unit interval i...
elii2 24846 Divide the unit interval i...
iimulcl 24847 The unit interval is close...
iimulcn 24848 Multiplication is a contin...
iimulcnOLD 24849 Obsolete version of ~ iimu...
icoopnst 24850 A half-open interval start...
iocopnst 24851 A half-open interval endin...
icchmeo 24852 The natural bijection from...
icchmeoOLD 24853 Obsolete version of ~ icch...
icopnfcnv 24854 Define a bijection from ` ...
icopnfhmeo 24855 The defined bijection from...
iccpnfcnv 24856 Define a bijection from ` ...
iccpnfhmeo 24857 The defined bijection from...
xrhmeo 24858 The bijection from ` [ -u ...
xrhmph 24859 The extended reals are hom...
xrcmp 24860 The topology of the extend...
xrconn 24861 The topology of the extend...
icccvx 24862 A linear combination of tw...
oprpiece1res1 24863 Restriction to the first p...
oprpiece1res2 24864 Restriction to the second ...
cnrehmeo 24865 The canonical bijection fr...
cnrehmeoOLD 24866 Obsolete version of ~ cnre...
cnheiborlem 24867 Lemma for ~ cnheibor . (C...
cnheibor 24868 Heine-Borel theorem for co...
cnllycmp 24869 The topology on the comple...
rellycmp 24870 The topology on the reals ...
bndth 24871 The Boundedness Theorem. ...
evth 24872 The Extreme Value Theorem....
evth2 24873 The Extreme Value Theorem,...
lebnumlem1 24874 Lemma for ~ lebnum . The ...
lebnumlem2 24875 Lemma for ~ lebnum . As a...
lebnumlem3 24876 Lemma for ~ lebnum . By t...
lebnum 24877 The Lebesgue number lemma,...
xlebnum 24878 Generalize ~ lebnum to ext...
lebnumii 24879 Specialize the Lebesgue nu...
ishtpy 24885 Membership in the class of...
htpycn 24886 A homotopy is a continuous...
htpyi 24887 A homotopy evaluated at it...
ishtpyd 24888 Deduction for membership i...
htpycom 24889 Given a homotopy from ` F ...
htpyid 24890 A homotopy from a function...
htpyco1 24891 Compose a homotopy with a ...
htpyco2 24892 Compose a homotopy with a ...
htpycc 24893 Concatenate two homotopies...
isphtpy 24894 Membership in the class of...
phtpyhtpy 24895 A path homotopy is a homot...
phtpycn 24896 A path homotopy is a conti...
phtpyi 24897 Membership in the class of...
phtpy01 24898 Two path-homotopic paths h...
isphtpyd 24899 Deduction for membership i...
isphtpy2d 24900 Deduction for membership i...
phtpycom 24901 Given a homotopy from ` F ...
phtpyid 24902 A homotopy from a path to ...
phtpyco2 24903 Compose a path homotopy wi...
phtpycc 24904 Concatenate two path homot...
phtpcrel 24906 The path homotopy relation...
isphtpc 24907 The relation "is path homo...
phtpcer 24908 Path homotopy is an equiva...
phtpc01 24909 Path homotopic paths have ...
reparphti 24910 Lemma for ~ reparpht . (C...
reparphtiOLD 24911 Obsolete version of ~ repa...
reparpht 24912 Reparametrization lemma. ...
phtpcco2 24913 Compose a path homotopy wi...
pcofval 24924 The value of the path conc...
pcoval 24925 The concatenation of two p...
pcovalg 24926 Evaluate the concatenation...
pcoval1 24927 Evaluate the concatenation...
pco0 24928 The starting point of a pa...
pco1 24929 The ending point of a path...
pcoval2 24930 Evaluate the concatenation...
pcocn 24931 The concatenation of two p...
copco 24932 The composition of a conca...
pcohtpylem 24933 Lemma for ~ pcohtpy . (Co...
pcohtpy 24934 Homotopy invariance of pat...
pcoptcl 24935 A constant function is a p...
pcopt 24936 Concatenation with a point...
pcopt2 24937 Concatenation with a point...
pcoass 24938 Order of concatenation doe...
pcorevcl 24939 Closure for a reversed pat...
pcorevlem 24940 Lemma for ~ pcorev . Prov...
pcorev 24941 Concatenation with the rev...
pcorev2 24942 Concatenation with the rev...
pcophtb 24943 The path homotopy equivale...
om1val 24944 The definition of the loop...
om1bas 24945 The base set of the loop s...
om1elbas 24946 Elementhood in the base se...
om1addcl 24947 Closure of the group opera...
om1plusg 24948 The group operation (which...
om1tset 24949 The topology of the loop s...
om1opn 24950 The topology of the loop s...
pi1val 24951 The definition of the fund...
pi1bas 24952 The base set of the fundam...
pi1blem 24953 Lemma for ~ pi1buni . (Co...
pi1buni 24954 Another way to write the l...
pi1bas2 24955 The base set of the fundam...
pi1eluni 24956 Elementhood in the base se...
pi1bas3 24957 The base set of the fundam...
pi1cpbl 24958 The group operation, loop ...
elpi1 24959 The elements of the fundam...
elpi1i 24960 The elements of the fundam...
pi1addf 24961 The group operation of ` p...
pi1addval 24962 The concatenation of two p...
pi1grplem 24963 Lemma for ~ pi1grp . (Con...
pi1grp 24964 The fundamental group is a...
pi1id 24965 The identity element of th...
pi1inv 24966 An inverse in the fundamen...
pi1xfrf 24967 Functionality of the loop ...
pi1xfrval 24968 The value of the loop tran...
pi1xfr 24969 Given a path ` F ` and its...
pi1xfrcnvlem 24970 Given a path ` F ` between...
pi1xfrcnv 24971 Given a path ` F ` between...
pi1xfrgim 24972 The mapping ` G ` between ...
pi1cof 24973 Functionality of the loop ...
pi1coval 24974 The value of the loop tran...
pi1coghm 24975 The mapping ` G ` between ...
isclm 24978 A subcomplex module is a l...
clmsca 24979 The ring of scalars ` F ` ...
clmsubrg 24980 The base set of the ring o...
clmlmod 24981 A subcomplex module is a l...
clmgrp 24982 A subcomplex module is an ...
clmabl 24983 A subcomplex module is an ...
clmring 24984 The scalar ring of a subco...
clmfgrp 24985 The scalar ring of a subco...
clm0 24986 The zero of the scalar rin...
clm1 24987 The identity of the scalar...
clmadd 24988 The addition of the scalar...
clmmul 24989 The multiplication of the ...
clmcj 24990 The conjugation of the sca...
isclmi 24991 Reverse direction of ~ isc...
clmzss 24992 The scalar ring of a subco...
clmsscn 24993 The scalar ring of a subco...
clmsub 24994 Subtraction in the scalar ...
clmneg 24995 Negation in the scalar rin...
clmneg1 24996 Minus one is in the scalar...
clmabs 24997 Norm in the scalar ring of...
clmacl 24998 Closure of ring addition f...
clmmcl 24999 Closure of ring multiplica...
clmsubcl 25000 Closure of ring subtractio...
lmhmclm 25001 The domain of a linear ope...
clmvscl 25002 Closure of scalar product ...
clmvsass 25003 Associative law for scalar...
clmvscom 25004 Commutative law for the sc...
clmvsdir 25005 Distributive law for scala...
clmvsdi 25006 Distributive law for scala...
clmvs1 25007 Scalar product with ring u...
clmvs2 25008 A vector plus itself is tw...
clm0vs 25009 Zero times a vector is the...
clmopfne 25010 The (functionalized) opera...
isclmp 25011 The predicate "is a subcom...
isclmi0 25012 Properties that determine ...
clmvneg1 25013 Minus 1 times a vector is ...
clmvsneg 25014 Multiplication of a vector...
clmmulg 25015 The group multiple functio...
clmsubdir 25016 Scalar multiplication dist...
clmpm1dir 25017 Subtractive distributive l...
clmnegneg 25018 Double negative of a vecto...
clmnegsubdi2 25019 Distribution of negative o...
clmsub4 25020 Rearrangement of 4 terms i...
clmvsrinv 25021 A vector minus itself. (C...
clmvslinv 25022 Minus a vector plus itself...
clmvsubval 25023 Value of vector subtractio...
clmvsubval2 25024 Value of vector subtractio...
clmvz 25025 Two ways to express the ne...
zlmclm 25026 The ` ZZ ` -module operati...
clmzlmvsca 25027 The scalar product of a su...
nmoleub2lem 25028 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 25029 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 25030 Lemma for ~ nmoleub2a and ...
nmoleub2a 25031 The operator norm is the s...
nmoleub2b 25032 The operator norm is the s...
nmoleub3 25033 The operator norm is the s...
nmhmcn 25034 A linear operator over a n...
cmodscexp 25035 The powers of ` _i ` belon...
cmodscmulexp 25036 The scalar product of a ve...
cvslvec 25039 A subcomplex vector space ...
cvsclm 25040 A subcomplex vector space ...
iscvs 25041 A subcomplex vector space ...
iscvsp 25042 The predicate "is a subcom...
iscvsi 25043 Properties that determine ...
cvsi 25044 The properties of a subcom...
cvsunit 25045 Unit group of the scalar r...
cvsdiv 25046 Division of the scalar rin...
cvsdivcl 25047 The scalar field of a subc...
cvsmuleqdivd 25048 An equality involving rati...
cvsdiveqd 25049 An equality involving rati...
cnlmodlem1 25050 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 25051 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 25052 Lemma 3 for ~ cnlmod . (C...
cnlmod4 25053 Lemma 4 for ~ cnlmod . (C...
cnlmod 25054 The set of complex numbers...
cnstrcvs 25055 The set of complex numbers...
cnrbas 25056 The set of complex numbers...
cnrlmod 25057 The complex left module of...
cnrlvec 25058 The complex left module of...
cncvs 25059 The complex left module of...
recvs 25060 The field of the real numb...
recvsOLD 25061 Obsolete version of ~ recv...
qcvs 25062 The field of rational numb...
zclmncvs 25063 The ring of integers as le...
isncvsngp 25064 A normed subcomplex vector...
isncvsngpd 25065 Properties that determine ...
ncvsi 25066 The properties of a normed...
ncvsprp 25067 Proportionality property o...
ncvsge0 25068 The norm of a scalar produ...
ncvsm1 25069 The norm of the opposite o...
ncvsdif 25070 The norm of the difference...
ncvspi 25071 The norm of a vector plus ...
ncvs1 25072 From any nonzero vector of...
cnrnvc 25073 The module of complex numb...
cnncvs 25074 The module of complex numb...
cnnm 25075 The norm of the normed sub...
ncvspds 25076 Value of the distance func...
cnindmet 25077 The metric induced on the ...
cnncvsaddassdemo 25078 Derive the associative law...
cnncvsmulassdemo 25079 Derive the associative law...
cnncvsabsnegdemo 25080 Derive the absolute value ...
iscph 25085 A subcomplex pre-Hilbert s...
cphphl 25086 A subcomplex pre-Hilbert s...
cphnlm 25087 A subcomplex pre-Hilbert s...
cphngp 25088 A subcomplex pre-Hilbert s...
cphlmod 25089 A subcomplex pre-Hilbert s...
cphlvec 25090 A subcomplex pre-Hilbert s...
cphnvc 25091 A subcomplex pre-Hilbert s...
cphsubrglem 25092 Lemma for ~ cphsubrg . (C...
cphreccllem 25093 Lemma for ~ cphreccl . (C...
cphsca 25094 A subcomplex pre-Hilbert s...
cphsubrg 25095 The scalar field of a subc...
cphreccl 25096 The scalar field of a subc...
cphdivcl 25097 The scalar field of a subc...
cphcjcl 25098 The scalar field of a subc...
cphsqrtcl 25099 The scalar field of a subc...
cphabscl 25100 The scalar field of a subc...
cphsqrtcl2 25101 The scalar field of a subc...
cphsqrtcl3 25102 If the scalar field of a s...
cphqss 25103 The scalar field of a subc...
cphclm 25104 A subcomplex pre-Hilbert s...
cphnmvs 25105 Norm of a scalar product. ...
cphipcl 25106 An inner product is a memb...
cphnmfval 25107 The value of the norm in a...
cphnm 25108 The square of the norm is ...
nmsq 25109 The square of the norm is ...
cphnmf 25110 The norm of a vector is a ...
cphnmcl 25111 The norm of a vector is a ...
reipcl 25112 An inner product of an ele...
ipge0 25113 The inner product in a sub...
cphipcj 25114 Conjugate of an inner prod...
cphipipcj 25115 An inner product times its...
cphorthcom 25116 Orthogonality (meaning inn...
cphip0l 25117 Inner product with a zero ...
cphip0r 25118 Inner product with a zero ...
cphipeq0 25119 The inner product of a vec...
cphdir 25120 Distributive law for inner...
cphdi 25121 Distributive law for inner...
cph2di 25122 Distributive law for inner...
cphsubdir 25123 Distributive law for inner...
cphsubdi 25124 Distributive law for inner...
cph2subdi 25125 Distributive law for inner...
cphass 25126 Associative law for inner ...
cphassr 25127 "Associative" law for seco...
cph2ass 25128 Move scalar multiplication...
cphassi 25129 Associative law for the fi...
cphassir 25130 "Associative" law for the ...
cphpyth 25131 The pythagorean theorem fo...
tcphex 25132 Lemma for ~ tcphbas and si...
tcphval 25133 Define a function to augme...
tcphbas 25134 The base set of a subcompl...
tchplusg 25135 The addition operation of ...
tcphsub 25136 The subtraction operation ...
tcphmulr 25137 The ring operation of a su...
tcphsca 25138 The scalar field of a subc...
tcphvsca 25139 The scalar multiplication ...
tcphip 25140 The inner product of a sub...
tcphtopn 25141 The topology of a subcompl...
tcphphl 25142 Augmentation of a subcompl...
tchnmfval 25143 The norm of a subcomplex p...
tcphnmval 25144 The norm of a subcomplex p...
cphtcphnm 25145 The norm of a norm-augment...
tcphds 25146 The distance of a pre-Hilb...
phclm 25147 A pre-Hilbert space whose ...
tcphcphlem3 25148 Lemma for ~ tcphcph : real...
ipcau2 25149 The Cauchy-Schwarz inequal...
tcphcphlem1 25150 Lemma for ~ tcphcph : the ...
tcphcphlem2 25151 Lemma for ~ tcphcph : homo...
tcphcph 25152 The standard definition of...
ipcau 25153 The Cauchy-Schwarz inequal...
nmparlem 25154 Lemma for ~ nmpar . (Cont...
nmpar 25155 A subcomplex pre-Hilbert s...
cphipval2 25156 Value of the inner product...
4cphipval2 25157 Four times the inner produ...
cphipval 25158 Value of the inner product...
ipcnlem2 25159 The inner product operatio...
ipcnlem1 25160 The inner product operatio...
ipcn 25161 The inner product operatio...
cnmpt1ip 25162 Continuity of inner produc...
cnmpt2ip 25163 Continuity of inner produc...
csscld 25164 A "closed subspace" in a s...
clsocv 25165 The orthogonal complement ...
cphsscph 25166 A subspace of a subcomplex...
lmmbr 25173 Express the binary relatio...
lmmbr2 25174 Express the binary relatio...
lmmbr3 25175 Express the binary relatio...
lmmcvg 25176 Convergence property of a ...
lmmbrf 25177 Express the binary relatio...
lmnn 25178 A condition that implies c...
cfilfval 25179 The set of Cauchy filters ...
iscfil 25180 The property of being a Ca...
iscfil2 25181 The property of being a Ca...
cfilfil 25182 A Cauchy filter is a filte...
cfili 25183 Property of a Cauchy filte...
cfil3i 25184 A Cauchy filter contains b...
cfilss 25185 A filter finer than a Cauc...
fgcfil 25186 The Cauchy filter conditio...
fmcfil 25187 The Cauchy filter conditio...
iscfil3 25188 A filter is Cauchy iff it ...
cfilfcls 25189 Similar to ultrafilters ( ...
caufval 25190 The set of Cauchy sequence...
iscau 25191 Express the property " ` F...
iscau2 25192 Express the property " ` F...
iscau3 25193 Express the Cauchy sequenc...
iscau4 25194 Express the property " ` F...
iscauf 25195 Express the property " ` F...
caun0 25196 A metric with a Cauchy seq...
caufpm 25197 Inclusion of a Cauchy sequ...
caucfil 25198 A Cauchy sequence predicat...
iscmet 25199 The property " ` D ` is a ...
cmetcvg 25200 The convergence of a Cauch...
cmetmet 25201 A complete metric space is...
cmetmeti 25202 A complete metric space is...
cmetcaulem 25203 Lemma for ~ cmetcau . (Co...
cmetcau 25204 The convergence of a Cauch...
iscmet3lem3 25205 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 25206 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 25207 Lemma for ~ iscmet3 . (Co...
iscmet3 25208 The property " ` D ` is a ...
iscmet2 25209 A metric ` D ` is complete...
cfilresi 25210 A Cauchy filter on a metri...
cfilres 25211 Cauchy filter on a metric ...
caussi 25212 Cauchy sequence on a metri...
causs 25213 Cauchy sequence on a metri...
equivcfil 25214 If the metric ` D ` is "st...
equivcau 25215 If the metric ` D ` is "st...
lmle 25216 If the distance from each ...
nglmle 25217 If the norm of each member...
lmclim 25218 Relate a limit on the metr...
lmclimf 25219 Relate a limit on the metr...
metelcls 25220 A point belongs to the clo...
metcld 25221 A subset of a metric space...
metcld2 25222 A subset of a metric space...
caubl 25223 Sufficient condition to en...
caublcls 25224 The convergent point of a ...
metcnp4 25225 Two ways to say a mapping ...
metcn4 25226 Two ways to say a mapping ...
iscmet3i 25227 Properties that determine ...
lmcau 25228 Every convergent sequence ...
flimcfil 25229 Every convergent filter in...
metsscmetcld 25230 A complete subspace of a m...
cmetss 25231 A subspace of a complete m...
equivcmet 25232 If two metrics are strongl...
relcmpcmet 25233 If ` D ` is a metric space...
cmpcmet 25234 A compact metric space is ...
cfilucfil3 25235 Given a metric ` D ` and a...
cfilucfil4 25236 Given a metric ` D ` and a...
cncmet 25237 The set of complex numbers...
recmet 25238 The real numbers are a com...
bcthlem1 25239 Lemma for ~ bcth . Substi...
bcthlem2 25240 Lemma for ~ bcth . The ba...
bcthlem3 25241 Lemma for ~ bcth . The li...
bcthlem4 25242 Lemma for ~ bcth . Given ...
bcthlem5 25243 Lemma for ~ bcth . The pr...
bcth 25244 Baire's Category Theorem. ...
bcth2 25245 Baire's Category Theorem, ...
bcth3 25246 Baire's Category Theorem, ...
isbn 25253 A Banach space is a normed...
bnsca 25254 The scalar field of a Bana...
bnnvc 25255 A Banach space is a normed...
bnnlm 25256 A Banach space is a normed...
bnngp 25257 A Banach space is a normed...
bnlmod 25258 A Banach space is a left m...
bncms 25259 A Banach space is a comple...
iscms 25260 A complete metric space is...
cmscmet 25261 The induced metric on a co...
bncmet 25262 The induced metric on Bana...
cmsms 25263 A complete metric space is...
cmspropd 25264 Property deduction for a c...
cmssmscld 25265 The restriction of a metri...
cmsss 25266 The restriction of a compl...
lssbn 25267 A subspace of a Banach spa...
cmetcusp1 25268 If the uniform set of a co...
cmetcusp 25269 The uniform space generate...
cncms 25270 The field of complex numbe...
cnflduss 25271 The uniform structure of t...
cnfldcusp 25272 The field of complex numbe...
resscdrg 25273 The real numbers are a sub...
cncdrg 25274 The only complete subfield...
srabn 25275 The subring algebra over a...
rlmbn 25276 The ring module over a com...
ishl 25277 The predicate "is a subcom...
hlbn 25278 Every subcomplex Hilbert s...
hlcph 25279 Every subcomplex Hilbert s...
hlphl 25280 Every subcomplex Hilbert s...
hlcms 25281 Every subcomplex Hilbert s...
hlprlem 25282 Lemma for ~ hlpr . (Contr...
hlress 25283 The scalar field of a subc...
hlpr 25284 The scalar field of a subc...
ishl2 25285 A Hilbert space is a compl...
cphssphl 25286 A Banach subspace of a sub...
cmslssbn 25287 A complete linear subspace...
cmscsscms 25288 A closed subspace of a com...
bncssbn 25289 A closed subspace of a Ban...
cssbn 25290 A complete subspace of a n...
csschl 25291 A complete subspace of a c...
cmslsschl 25292 A complete linear subspace...
chlcsschl 25293 A closed subspace of a sub...
retopn 25294 The topology of the real n...
recms 25295 The real numbers form a co...
reust 25296 The Uniform structure of t...
recusp 25297 The real numbers form a co...
rrxval 25302 Value of the generalized E...
rrxbase 25303 The base of the generalize...
rrxprds 25304 Expand the definition of t...
rrxip 25305 The inner product of the g...
rrxnm 25306 The norm of the generalize...
rrxcph 25307 Generalized Euclidean real...
rrxds 25308 The distance over generali...
rrxvsca 25309 The scalar product over ge...
rrxplusgvscavalb 25310 The result of the addition...
rrxsca 25311 The field of real numbers ...
rrx0 25312 The zero ("origin") in a g...
rrx0el 25313 The zero ("origin") in a g...
csbren 25314 Cauchy-Schwarz-Bunjakovsky...
trirn 25315 Triangle inequality in R^n...
rrxf 25316 Euclidean vectors as funct...
rrxfsupp 25317 Euclidean vectors are of f...
rrxsuppss 25318 Support of Euclidean vecto...
rrxmvallem 25319 Support of the function us...
rrxmval 25320 The value of the Euclidean...
rrxmfval 25321 The value of the Euclidean...
rrxmetlem 25322 Lemma for ~ rrxmet . (Con...
rrxmet 25323 Euclidean space is a metri...
rrxdstprj1 25324 The distance between two p...
rrxbasefi 25325 The base of the generalize...
rrxdsfi 25326 The distance over generali...
rrxmetfi 25327 Euclidean space is a metri...
rrxdsfival 25328 The value of the Euclidean...
ehlval 25329 Value of the Euclidean spa...
ehlbase 25330 The base of the Euclidean ...
ehl0base 25331 The base of the Euclidean ...
ehl0 25332 The Euclidean space of dim...
ehleudis 25333 The Euclidean distance fun...
ehleudisval 25334 The value of the Euclidean...
ehl1eudis 25335 The Euclidean distance fun...
ehl1eudisval 25336 The value of the Euclidean...
ehl2eudis 25337 The Euclidean distance fun...
ehl2eudisval 25338 The value of the Euclidean...
minveclem1 25339 Lemma for ~ minvec . The ...
minveclem4c 25340 Lemma for ~ minvec . The ...
minveclem2 25341 Lemma for ~ minvec . Any ...
minveclem3a 25342 Lemma for ~ minvec . ` D `...
minveclem3b 25343 Lemma for ~ minvec . The ...
minveclem3 25344 Lemma for ~ minvec . The ...
minveclem4a 25345 Lemma for ~ minvec . ` F `...
minveclem4b 25346 Lemma for ~ minvec . The ...
minveclem4 25347 Lemma for ~ minvec . The ...
minveclem5 25348 Lemma for ~ minvec . Disc...
minveclem6 25349 Lemma for ~ minvec . Any ...
minveclem7 25350 Lemma for ~ minvec . Sinc...
minvec 25351 Minimizing vector theorem,...
pjthlem1 25352 Lemma for ~ pjth . (Contr...
pjthlem2 25353 Lemma for ~ pjth . (Contr...
pjth 25354 Projection Theorem: Any H...
pjth2 25355 Projection Theorem with ab...
cldcss 25356 Corollary of the Projectio...
cldcss2 25357 Corollary of the Projectio...
hlhil 25358 Corollary of the Projectio...
addcncf 25359 The addition of two contin...
subcncf 25360 The addition of two contin...
mulcncf 25361 The multiplication of two ...
mulcncfOLD 25362 Obsolete version of ~ mulc...
divcncf 25363 The quotient of two contin...
pmltpclem1 25364 Lemma for ~ pmltpc . (Con...
pmltpclem2 25365 Lemma for ~ pmltpc . (Con...
pmltpc 25366 Any function on the reals ...
ivthlem1 25367 Lemma for ~ ivth . The se...
ivthlem2 25368 Lemma for ~ ivth . Show t...
ivthlem3 25369 Lemma for ~ ivth , the int...
ivth 25370 The intermediate value the...
ivth2 25371 The intermediate value the...
ivthle 25372 The intermediate value the...
ivthle2 25373 The intermediate value the...
ivthicc 25374 The interval between any t...
evthicc 25375 Specialization of the Extr...
evthicc2 25376 Combine ~ ivthicc with ~ e...
cniccbdd 25377 A continuous function on a...
ovolfcl 25382 Closure for the interval e...
ovolfioo 25383 Unpack the interval coveri...
ovolficc 25384 Unpack the interval coveri...
ovolficcss 25385 Any (closed) interval cove...
ovolfsval 25386 The value of the interval ...
ovolfsf 25387 Closure for the interval l...
ovolsf 25388 Closure for the partial su...
ovolval 25389 The value of the outer mea...
elovolmlem 25390 Lemma for ~ elovolm and re...
elovolm 25391 Elementhood in the set ` M...
elovolmr 25392 Sufficient condition for e...
ovolmge0 25393 The set ` M ` is composed ...
ovolcl 25394 The volume of a set is an ...
ovollb 25395 The outer volume is a lowe...
ovolgelb 25396 The outer volume is the gr...
ovolge0 25397 The volume of a set is alw...
ovolf 25398 The domain and codomain of...
ovollecl 25399 If an outer volume is boun...
ovolsslem 25400 Lemma for ~ ovolss . (Con...
ovolss 25401 The volume of a set is mon...
ovolsscl 25402 If a set is contained in a...
ovolssnul 25403 A subset of a nullset is n...
ovollb2lem 25404 Lemma for ~ ovollb2 . (Co...
ovollb2 25405 It is often more convenien...
ovolctb 25406 The volume of a denumerabl...
ovolq 25407 The rational numbers have ...
ovolctb2 25408 The volume of a countable ...
ovol0 25409 The empty set has 0 outer ...
ovolfi 25410 A finite set has 0 outer L...
ovolsn 25411 A singleton has 0 outer Le...
ovolunlem1a 25412 Lemma for ~ ovolun . (Con...
ovolunlem1 25413 Lemma for ~ ovolun . (Con...
ovolunlem2 25414 Lemma for ~ ovolun . (Con...
ovolun 25415 The Lebesgue outer measure...
ovolunnul 25416 Adding a nullset does not ...
ovolfiniun 25417 The Lebesgue outer measure...
ovoliunlem1 25418 Lemma for ~ ovoliun . (Co...
ovoliunlem2 25419 Lemma for ~ ovoliun . (Co...
ovoliunlem3 25420 Lemma for ~ ovoliun . (Co...
ovoliun 25421 The Lebesgue outer measure...
ovoliun2 25422 The Lebesgue outer measure...
ovoliunnul 25423 A countable union of nulls...
shft2rab 25424 If ` B ` is a shift of ` A...
ovolshftlem1 25425 Lemma for ~ ovolshft . (C...
ovolshftlem2 25426 Lemma for ~ ovolshft . (C...
ovolshft 25427 The Lebesgue outer measure...
sca2rab 25428 If ` B ` is a scale of ` A...
ovolscalem1 25429 Lemma for ~ ovolsca . (Co...
ovolscalem2 25430 Lemma for ~ ovolshft . (C...
ovolsca 25431 The Lebesgue outer measure...
ovolicc1 25432 The measure of a closed in...
ovolicc2lem1 25433 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 25434 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 25435 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 25436 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 25437 Lemma for ~ ovolicc2 . (C...
ovolicc2 25438 The measure of a closed in...
ovolicc 25439 The measure of a closed in...
ovolicopnf 25440 The measure of a right-unb...
ovolre 25441 The measure of the real nu...
ismbl 25442 The predicate " ` A ` is L...
ismbl2 25443 From ~ ovolun , it suffice...
volres 25444 A self-referencing abbrevi...
volf 25445 The domain and codomain of...
mblvol 25446 The volume of a measurable...
mblss 25447 A measurable set is a subs...
mblsplit 25448 The defining property of m...
volss 25449 The Lebesgue measure is mo...
cmmbl 25450 The complement of a measur...
nulmbl 25451 A nullset is measurable. ...
nulmbl2 25452 A set of outer measure zer...
unmbl 25453 A union of measurable sets...
shftmbl 25454 A shift of a measurable se...
0mbl 25455 The empty set is measurabl...
rembl 25456 The set of all real number...
unidmvol 25457 The union of the Lebesgue ...
inmbl 25458 An intersection of measura...
difmbl 25459 A difference of measurable...
finiunmbl 25460 A finite union of measurab...
volun 25461 The Lebesgue measure funct...
volinun 25462 Addition of non-disjoint s...
volfiniun 25463 The volume of a disjoint f...
iundisj 25464 Rewrite a countable union ...
iundisj2 25465 A disjoint union is disjoi...
voliunlem1 25466 Lemma for ~ voliun . (Con...
voliunlem2 25467 Lemma for ~ voliun . (Con...
voliunlem3 25468 Lemma for ~ voliun . (Con...
iunmbl 25469 The measurable sets are cl...
voliun 25470 The Lebesgue measure funct...
volsuplem 25471 Lemma for ~ volsup . (Con...
volsup 25472 The volume of the limit of...
iunmbl2 25473 The measurable sets are cl...
ioombl1lem1 25474 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 25475 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 25476 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 25477 Lemma for ~ ioombl1 . (Co...
ioombl1 25478 An open right-unbounded in...
icombl1 25479 A closed unbounded-above i...
icombl 25480 A closed-below, open-above...
ioombl 25481 An open real interval is m...
iccmbl 25482 A closed real interval is ...
iccvolcl 25483 A closed real interval has...
ovolioo 25484 The measure of an open int...
volioo 25485 The measure of an open int...
ioovolcl 25486 An open real interval has ...
ovolfs2 25487 Alternative expression for...
ioorcl2 25488 An open interval with fini...
ioorf 25489 Define a function from ope...
ioorval 25490 Define a function from ope...
ioorinv2 25491 The function ` F ` is an "...
ioorinv 25492 The function ` F ` is an "...
ioorcl 25493 The function ` F ` does no...
uniiccdif 25494 A union of closed interval...
uniioovol 25495 A disjoint union of open i...
uniiccvol 25496 An almost-disjoint union o...
uniioombllem1 25497 Lemma for ~ uniioombl . (...
uniioombllem2a 25498 Lemma for ~ uniioombl . (...
uniioombllem2 25499 Lemma for ~ uniioombl . (...
uniioombllem3a 25500 Lemma for ~ uniioombl . (...
uniioombllem3 25501 Lemma for ~ uniioombl . (...
uniioombllem4 25502 Lemma for ~ uniioombl . (...
uniioombllem5 25503 Lemma for ~ uniioombl . (...
uniioombllem6 25504 Lemma for ~ uniioombl . (...
uniioombl 25505 A disjoint union of open i...
uniiccmbl 25506 An almost-disjoint union o...
dyadf 25507 The function ` F ` returns...
dyadval 25508 Value of the dyadic ration...
dyadovol 25509 Volume of a dyadic rationa...
dyadss 25510 Two closed dyadic rational...
dyaddisjlem 25511 Lemma for ~ dyaddisj . (C...
dyaddisj 25512 Two closed dyadic rational...
dyadmaxlem 25513 Lemma for ~ dyadmax . (Co...
dyadmax 25514 Any nonempty set of dyadic...
dyadmbllem 25515 Lemma for ~ dyadmbl . (Co...
dyadmbl 25516 Any union of dyadic ration...
opnmbllem 25517 Lemma for ~ opnmbl . (Con...
opnmbl 25518 All open sets are measurab...
opnmblALT 25519 All open sets are measurab...
subopnmbl 25520 Sets which are open in a m...
volsup2 25521 The volume of ` A ` is the...
volcn 25522 The function formed by res...
volivth 25523 The Intermediate Value The...
vitalilem1 25524 Lemma for ~ vitali . (Con...
vitalilem2 25525 Lemma for ~ vitali . (Con...
vitalilem3 25526 Lemma for ~ vitali . (Con...
vitalilem4 25527 Lemma for ~ vitali . (Con...
vitalilem5 25528 Lemma for ~ vitali . (Con...
vitali 25529 If the reals can be well-o...
ismbf1 25540 The predicate " ` F ` is a...
mbff 25541 A measurable function is a...
mbfdm 25542 The domain of a measurable...
mbfconstlem 25543 Lemma for ~ mbfconst and r...
ismbf 25544 The predicate " ` F ` is a...
ismbfcn 25545 A complex function is meas...
mbfima 25546 Definitional property of a...
mbfimaicc 25547 The preimage of any closed...
mbfimasn 25548 The preimage of a point un...
mbfconst 25549 A constant function is mea...
mbf0 25550 The empty function is meas...
mbfid 25551 The identity function is m...
mbfmptcl 25552 Lemma for the ` MblFn ` pr...
mbfdm2 25553 The domain of a measurable...
ismbfcn2 25554 A complex function is meas...
ismbfd 25555 Deduction to prove measura...
ismbf2d 25556 Deduction to prove measura...
mbfeqalem1 25557 Lemma for ~ mbfeqalem2 . ...
mbfeqalem2 25558 Lemma for ~ mbfeqa . (Con...
mbfeqa 25559 If two functions are equal...
mbfres 25560 The restriction of a measu...
mbfres2 25561 Measurability of a piecewi...
mbfss 25562 Change the domain of a mea...
mbfmulc2lem 25563 Multiplication by a consta...
mbfmulc2re 25564 Multiplication by a consta...
mbfmax 25565 The maximum of two functio...
mbfneg 25566 The negative of a measurab...
mbfpos 25567 The positive part of a mea...
mbfposr 25568 Converse to ~ mbfpos . (C...
mbfposb 25569 A function is measurable i...
ismbf3d 25570 Simplified form of ~ ismbf...
mbfimaopnlem 25571 Lemma for ~ mbfimaopn . (...
mbfimaopn 25572 The preimage of any open s...
mbfimaopn2 25573 The preimage of any set op...
cncombf 25574 The composition of a conti...
cnmbf 25575 A continuous function is m...
mbfaddlem 25576 The sum of two measurable ...
mbfadd 25577 The sum of two measurable ...
mbfsub 25578 The difference of two meas...
mbfmulc2 25579 A complex constant times a...
mbfsup 25580 The supremum of a sequence...
mbfinf 25581 The infimum of a sequence ...
mbflimsup 25582 The limit supremum of a se...
mbflimlem 25583 The pointwise limit of a s...
mbflim 25584 The pointwise limit of a s...
0pval 25587 The zero function evaluate...
0plef 25588 Two ways to say that the f...
0pledm 25589 Adjust the domain of the l...
isi1f 25590 The predicate " ` F ` is a...
i1fmbf 25591 Simple functions are measu...
i1ff 25592 A simple function is a fun...
i1frn 25593 A simple function has fini...
i1fima 25594 Any preimage of a simple f...
i1fima2 25595 Any preimage of a simple f...
i1fima2sn 25596 Preimage of a singleton. ...
i1fd 25597 A simplified set of assump...
i1f0rn 25598 Any simple function takes ...
itg1val 25599 The value of the integral ...
itg1val2 25600 The value of the integral ...
itg1cl 25601 Closure of the integral on...
itg1ge0 25602 Closure of the integral on...
i1f0 25603 The zero function is simpl...
itg10 25604 The zero function has zero...
i1f1lem 25605 Lemma for ~ i1f1 and ~ itg...
i1f1 25606 Base case simple functions...
itg11 25607 The integral of an indicat...
itg1addlem1 25608 Decompose a preimage, whic...
i1faddlem 25609 Decompose the preimage of ...
i1fmullem 25610 Decompose the preimage of ...
i1fadd 25611 The sum of two simple func...
i1fmul 25612 The pointwise product of t...
itg1addlem2 25613 Lemma for ~ itg1add . The...
itg1addlem3 25614 Lemma for ~ itg1add . (Co...
itg1addlem4 25615 Lemma for ~ itg1add . (Co...
itg1addlem4OLD 25616 Obsolete version of ~ itg1...
itg1addlem5 25617 Lemma for ~ itg1add . (Co...
itg1add 25618 The integral of a sum of s...
i1fmulclem 25619 Decompose the preimage of ...
i1fmulc 25620 A nonnegative constant tim...
itg1mulc 25621 The integral of a constant...
i1fres 25622 The "restriction" of a sim...
i1fpos 25623 The positive part of a sim...
i1fposd 25624 Deduction form of ~ i1fpos...
i1fsub 25625 The difference of two simp...
itg1sub 25626 The integral of a differen...
itg10a 25627 The integral of a simple f...
itg1ge0a 25628 The integral of an almost ...
itg1lea 25629 Approximate version of ~ i...
itg1le 25630 If one simple function dom...
itg1climres 25631 Restricting the simple fun...
mbfi1fseqlem1 25632 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 25633 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 25634 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 25635 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 25636 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 25637 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 25638 A characterization of meas...
mbfi1flimlem 25639 Lemma for ~ mbfi1flim . (...
mbfi1flim 25640 Any real measurable functi...
mbfmullem2 25641 Lemma for ~ mbfmul . (Con...
mbfmullem 25642 Lemma for ~ mbfmul . (Con...
mbfmul 25643 The product of two measura...
itg2lcl 25644 The set of lower sums is a...
itg2val 25645 Value of the integral on n...
itg2l 25646 Elementhood in the set ` L...
itg2lr 25647 Sufficient condition for e...
xrge0f 25648 A real function is a nonne...
itg2cl 25649 The integral of a nonnegat...
itg2ub 25650 The integral of a nonnegat...
itg2leub 25651 Any upper bound on the int...
itg2ge0 25652 The integral of a nonnegat...
itg2itg1 25653 The integral of a nonnegat...
itg20 25654 The integral of the zero f...
itg2lecl 25655 If an ` S.2 ` integral is ...
itg2le 25656 If one function dominates ...
itg2const 25657 Integral of a constant fun...
itg2const2 25658 When the base set of a con...
itg2seq 25659 Definitional property of t...
itg2uba 25660 Approximate version of ~ i...
itg2lea 25661 Approximate version of ~ i...
itg2eqa 25662 Approximate equality of in...
itg2mulclem 25663 Lemma for ~ itg2mulc . (C...
itg2mulc 25664 The integral of a nonnegat...
itg2splitlem 25665 Lemma for ~ itg2split . (...
itg2split 25666 The ` S.2 ` integral split...
itg2monolem1 25667 Lemma for ~ itg2mono . We...
itg2monolem2 25668 Lemma for ~ itg2mono . (C...
itg2monolem3 25669 Lemma for ~ itg2mono . (C...
itg2mono 25670 The Monotone Convergence T...
itg2i1fseqle 25671 Subject to the conditions ...
itg2i1fseq 25672 Subject to the conditions ...
itg2i1fseq2 25673 In an extension to the res...
itg2i1fseq3 25674 Special case of ~ itg2i1fs...
itg2addlem 25675 Lemma for ~ itg2add . (Co...
itg2add 25676 The ` S.2 ` integral is li...
itg2gt0 25677 If the function ` F ` is s...
itg2cnlem1 25678 Lemma for ~ itgcn . (Cont...
itg2cnlem2 25679 Lemma for ~ itgcn . (Cont...
itg2cn 25680 A sort of absolute continu...
ibllem 25681 Conditioned equality theor...
isibl 25682 The predicate " ` F ` is i...
isibl2 25683 The predicate " ` F ` is i...
iblmbf 25684 An integrable function is ...
iblitg 25685 If a function is integrabl...
dfitg 25686 Evaluate the class substit...
itgex 25687 An integral is a set. (Co...
itgeq1f 25688 Equality theorem for an in...
itgeq1 25689 Equality theorem for an in...
nfitg1 25690 Bound-variable hypothesis ...
nfitg 25691 Bound-variable hypothesis ...
cbvitg 25692 Change bound variable in a...
cbvitgv 25693 Change bound variable in a...
itgeq2 25694 Equality theorem for an in...
itgresr 25695 The domain of an integral ...
itg0 25696 The integral of anything o...
itgz 25697 The integral of zero on an...
itgeq2dv 25698 Equality theorem for an in...
itgmpt 25699 Change bound variable in a...
itgcl 25700 The integral of an integra...
itgvallem 25701 Substitution lemma. (Cont...
itgvallem3 25702 Lemma for ~ itgposval and ...
ibl0 25703 The zero function is integ...
iblcnlem1 25704 Lemma for ~ iblcnlem . (C...
iblcnlem 25705 Expand out the universal q...
itgcnlem 25706 Expand out the sum in ~ df...
iblrelem 25707 Integrability of a real fu...
iblposlem 25708 Lemma for ~ iblpos . (Con...
iblpos 25709 Integrability of a nonnega...
iblre 25710 Integrability of a real fu...
itgrevallem1 25711 Lemma for ~ itgposval and ...
itgposval 25712 The integral of a nonnegat...
itgreval 25713 Decompose the integral of ...
itgrecl 25714 Real closure of an integra...
iblcn 25715 Integrability of a complex...
itgcnval 25716 Decompose the integral of ...
itgre 25717 Real part of an integral. ...
itgim 25718 Imaginary part of an integ...
iblneg 25719 The negative of an integra...
itgneg 25720 Negation of an integral. ...
iblss 25721 A subset of an integrable ...
iblss2 25722 Change the domain of an in...
itgitg2 25723 Transfer an integral using...
i1fibl 25724 A simple function is integ...
itgitg1 25725 Transfer an integral using...
itgle 25726 Monotonicity of an integra...
itgge0 25727 The integral of a positive...
itgss 25728 Expand the set of an integ...
itgss2 25729 Expand the set of an integ...
itgeqa 25730 Approximate equality of in...
itgss3 25731 Expand the set of an integ...
itgioo 25732 Equality of integrals on o...
itgless 25733 Expand the integral of a n...
iblconst 25734 A constant function is int...
itgconst 25735 Integral of a constant fun...
ibladdlem 25736 Lemma for ~ ibladd . (Con...
ibladd 25737 Add two integrals over the...
iblsub 25738 Subtract two integrals ove...
itgaddlem1 25739 Lemma for ~ itgadd . (Con...
itgaddlem2 25740 Lemma for ~ itgadd . (Con...
itgadd 25741 Add two integrals over the...
itgsub 25742 Subtract two integrals ove...
itgfsum 25743 Take a finite sum of integ...
iblabslem 25744 Lemma for ~ iblabs . (Con...
iblabs 25745 The absolute value of an i...
iblabsr 25746 A measurable function is i...
iblmulc2 25747 Multiply an integral by a ...
itgmulc2lem1 25748 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 25749 Lemma for ~ itgmulc2 : rea...
itgmulc2 25750 Multiply an integral by a ...
itgabs 25751 The triangle inequality fo...
itgsplit 25752 The ` S. ` integral splits...
itgspliticc 25753 The ` S. ` integral splits...
itgsplitioo 25754 The ` S. ` integral splits...
bddmulibl 25755 A bounded function times a...
bddibl 25756 A bounded function is inte...
cniccibl 25757 A continuous function on a...
bddiblnc 25758 Choice-free proof of ~ bdd...
cnicciblnc 25759 Choice-free proof of ~ cni...
itggt0 25760 The integral of a strictly...
itgcn 25761 Transfer ~ itg2cn to the f...
ditgeq1 25764 Equality theorem for the d...
ditgeq2 25765 Equality theorem for the d...
ditgeq3 25766 Equality theorem for the d...
ditgeq3dv 25767 Equality theorem for the d...
ditgex 25768 A directed integral is a s...
ditg0 25769 Value of the directed inte...
cbvditg 25770 Change bound variable in a...
cbvditgv 25771 Change bound variable in a...
ditgpos 25772 Value of the directed inte...
ditgneg 25773 Value of the directed inte...
ditgcl 25774 Closure of a directed inte...
ditgswap 25775 Reverse a directed integra...
ditgsplitlem 25776 Lemma for ~ ditgsplit . (...
ditgsplit 25777 This theorem is the raison...
reldv 25786 The derivative function is...
limcvallem 25787 Lemma for ~ ellimc . (Con...
limcfval 25788 Value and set bounds on th...
ellimc 25789 Value of the limit predica...
limcrcl 25790 Reverse closure for the li...
limccl 25791 Closure of the limit opera...
limcdif 25792 It suffices to consider fu...
ellimc2 25793 Write the definition of a ...
limcnlp 25794 If ` B ` is not a limit po...
ellimc3 25795 Write the epsilon-delta de...
limcflflem 25796 Lemma for ~ limcflf . (Co...
limcflf 25797 The limit operator can be ...
limcmo 25798 If ` B ` is a limit point ...
limcmpt 25799 Express the limit operator...
limcmpt2 25800 Express the limit operator...
limcresi 25801 Any limit of ` F ` is also...
limcres 25802 If ` B ` is an interior po...
cnplimc 25803 A function is continuous a...
cnlimc 25804 ` F ` is a continuous func...
cnlimci 25805 If ` F ` is a continuous f...
cnmptlimc 25806 If ` F ` is a continuous f...
limccnp 25807 If the limit of ` F ` at `...
limccnp2 25808 The image of a convergent ...
limcco 25809 Composition of two limits....
limciun 25810 A point is a limit of ` F ...
limcun 25811 A point is a limit of ` F ...
dvlem 25812 Closure for a difference q...
dvfval 25813 Value and set bounds on th...
eldv 25814 The differentiable predica...
dvcl 25815 The derivative function ta...
dvbssntr 25816 The set of differentiable ...
dvbss 25817 The set of differentiable ...
dvbsss 25818 The set of differentiable ...
perfdvf 25819 The derivative is a functi...
recnprss 25820 Both ` RR ` and ` CC ` are...
recnperf 25821 Both ` RR ` and ` CC ` are...
dvfg 25822 Explicitly write out the f...
dvf 25823 The derivative is a functi...
dvfcn 25824 The derivative is a functi...
dvreslem 25825 Lemma for ~ dvres . (Cont...
dvres2lem 25826 Lemma for ~ dvres2 . (Con...
dvres 25827 Restriction of a derivativ...
dvres2 25828 Restriction of the base se...
dvres3 25829 Restriction of a complex d...
dvres3a 25830 Restriction of a complex d...
dvidlem 25831 Lemma for ~ dvid and ~ dvc...
dvmptresicc 25832 Derivative of a function r...
dvconst 25833 Derivative of a constant f...
dvid 25834 Derivative of the identity...
dvcnp 25835 The difference quotient is...
dvcnp2 25836 A function is continuous a...
dvcnp2OLD 25837 Obsolete version of ~ dvcn...
dvcn 25838 A differentiable function ...
dvnfval 25839 Value of the iterated deri...
dvnff 25840 The iterated derivative is...
dvn0 25841 Zero times iterated deriva...
dvnp1 25842 Successor iterated derivat...
dvn1 25843 One times iterated derivat...
dvnf 25844 The N-times derivative is ...
dvnbss 25845 The set of N-times differe...
dvnadd 25846 The ` N ` -th derivative o...
dvn2bss 25847 An N-times differentiable ...
dvnres 25848 Multiple derivative versio...
cpnfval 25849 Condition for n-times cont...
fncpn 25850 The ` C^n ` object is a fu...
elcpn 25851 Condition for n-times cont...
cpnord 25852 ` C^n ` conditions are ord...
cpncn 25853 A ` C^n ` function is cont...
cpnres 25854 The restriction of a ` C^n...
dvaddbr 25855 The sum rule for derivativ...
dvmulbr 25856 The product rule for deriv...
dvmulbrOLD 25857 Obsolete version of ~ dvmu...
dvadd 25858 The sum rule for derivativ...
dvmul 25859 The product rule for deriv...
dvaddf 25860 The sum rule for everywher...
dvmulf 25861 The product rule for every...
dvcmul 25862 The product rule when one ...
dvcmulf 25863 The product rule when one ...
dvcobr 25864 The chain rule for derivat...
dvcobrOLD 25865 Obsolete version of ~ dvco...
dvco 25866 The chain rule for derivat...
dvcof 25867 The chain rule for everywh...
dvcjbr 25868 The derivative of the conj...
dvcj 25869 The derivative of the conj...
dvfre 25870 The derivative of a real f...
dvnfre 25871 The ` N ` -th derivative o...
dvexp 25872 Derivative of a power func...
dvexp2 25873 Derivative of an exponenti...
dvrec 25874 Derivative of the reciproc...
dvmptres3 25875 Function-builder for deriv...
dvmptid 25876 Function-builder for deriv...
dvmptc 25877 Function-builder for deriv...
dvmptcl 25878 Closure lemma for ~ dvmptc...
dvmptadd 25879 Function-builder for deriv...
dvmptmul 25880 Function-builder for deriv...
dvmptres2 25881 Function-builder for deriv...
dvmptres 25882 Function-builder for deriv...
dvmptcmul 25883 Function-builder for deriv...
dvmptdivc 25884 Function-builder for deriv...
dvmptneg 25885 Function-builder for deriv...
dvmptsub 25886 Function-builder for deriv...
dvmptcj 25887 Function-builder for deriv...
dvmptre 25888 Function-builder for deriv...
dvmptim 25889 Function-builder for deriv...
dvmptntr 25890 Function-builder for deriv...
dvmptco 25891 Function-builder for deriv...
dvrecg 25892 Derivative of the reciproc...
dvmptdiv 25893 Function-builder for deriv...
dvmptfsum 25894 Function-builder for deriv...
dvcnvlem 25895 Lemma for ~ dvcnvre . (Co...
dvcnv 25896 A weak version of ~ dvcnvr...
dvexp3 25897 Derivative of an exponenti...
dveflem 25898 Derivative of the exponent...
dvef 25899 Derivative of the exponent...
dvsincos 25900 Derivative of the sine and...
dvsin 25901 Derivative of the sine fun...
dvcos 25902 Derivative of the cosine f...
dvferm1lem 25903 Lemma for ~ dvferm . (Con...
dvferm1 25904 One-sided version of ~ dvf...
dvferm2lem 25905 Lemma for ~ dvferm . (Con...
dvferm2 25906 One-sided version of ~ dvf...
dvferm 25907 Fermat's theorem on statio...
rollelem 25908 Lemma for ~ rolle . (Cont...
rolle 25909 Rolle's theorem. If ` F `...
cmvth 25910 Cauchy's Mean Value Theore...
cmvthOLD 25911 Obsolete version of ~ cmvt...
mvth 25912 The Mean Value Theorem. I...
dvlip 25913 A function with derivative...
dvlipcn 25914 A complex function with de...
dvlip2 25915 Combine the results of ~ d...
c1liplem1 25916 Lemma for ~ c1lip1 . (Con...
c1lip1 25917 C^1 functions are Lipschit...
c1lip2 25918 C^1 functions are Lipschit...
c1lip3 25919 C^1 functions are Lipschit...
dveq0 25920 If a continuous function h...
dv11cn 25921 Two functions defined on a...
dvgt0lem1 25922 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 25923 Lemma for ~ dvgt0 and ~ dv...
dvgt0 25924 A function on a closed int...
dvlt0 25925 A function on a closed int...
dvge0 25926 A function on a closed int...
dvle 25927 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 25928 Lemma for ~ dvivth . (Con...
dvivthlem2 25929 Lemma for ~ dvivth . (Con...
dvivth 25930 Darboux' theorem, or the i...
dvne0 25931 A function on a closed int...
dvne0f1 25932 A function on a closed int...
lhop1lem 25933 Lemma for ~ lhop1 . (Cont...
lhop1 25934 L'Hôpital's Rule for...
lhop2 25935 L'Hôpital's Rule for...
lhop 25936 L'Hôpital's Rule. I...
dvcnvrelem1 25937 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 25938 Lemma for ~ dvcnvre . (Co...
dvcnvre 25939 The derivative rule for in...
dvcvx 25940 A real function with stric...
dvfsumle 25941 Compare a finite sum to an...
dvfsumleOLD 25942 Obsolete version of ~ dvfs...
dvfsumge 25943 Compare a finite sum to an...
dvfsumabs 25944 Compare a finite sum to an...
dvmptrecl 25945 Real closure of a derivati...
dvfsumrlimf 25946 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 25947 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 25948 Lemma for ~ dvfsumrlim . ...
dvfsumlem2OLD 25949 Obsolete version of ~ dvfs...
dvfsumlem3 25950 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 25951 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 25952 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 25953 Compare a finite sum to an...
dvfsumrlim2 25954 Compare a finite sum to an...
dvfsumrlim3 25955 Conjoin the statements of ...
dvfsum2 25956 The reverse of ~ dvfsumrli...
ftc1lem1 25957 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 25958 Lemma for ~ ftc1 . (Contr...
ftc1a 25959 The Fundamental Theorem of...
ftc1lem3 25960 Lemma for ~ ftc1 . (Contr...
ftc1lem4 25961 Lemma for ~ ftc1 . (Contr...
ftc1lem5 25962 Lemma for ~ ftc1 . (Contr...
ftc1lem6 25963 Lemma for ~ ftc1 . (Contr...
ftc1 25964 The Fundamental Theorem of...
ftc1cn 25965 Strengthen the assumptions...
ftc2 25966 The Fundamental Theorem of...
ftc2ditglem 25967 Lemma for ~ ftc2ditg . (C...
ftc2ditg 25968 Directed integral analogue...
itgparts 25969 Integration by parts. If ...
itgsubstlem 25970 Lemma for ~ itgsubst . (C...
itgsubst 25971 Integration by ` u ` -subs...
itgpowd 25972 The integral of a monomial...
reldmmdeg 25977 Multivariate degree is a b...
tdeglem1 25978 Functionality of the total...
tdeglem1OLD 25979 Obsolete version of ~ tdeg...
tdeglem3 25980 Additivity of the total de...
tdeglem3OLD 25981 Obsolete version of ~ tdeg...
tdeglem4 25982 There is only one multi-in...
tdeglem4OLD 25983 Obsolete version of ~ tdeg...
tdeglem2 25984 Simplification of total de...
mdegfval 25985 Value of the multivariate ...
mdegval 25986 Value of the multivariate ...
mdegleb 25987 Property of being of limit...
mdeglt 25988 If there is an upper limit...
mdegldg 25989 A nonzero polynomial has s...
mdegxrcl 25990 Closure of polynomial degr...
mdegxrf 25991 Functionality of polynomia...
mdegcl 25992 Sharp closure for multivar...
mdeg0 25993 Degree of the zero polynom...
mdegnn0cl 25994 Degree of a nonzero polyno...
degltlem1 25995 Theorem on arithmetic of e...
degltp1le 25996 Theorem on arithmetic of e...
mdegaddle 25997 The degree of a sum is at ...
mdegvscale 25998 The degree of a scalar mul...
mdegvsca 25999 The degree of a scalar mul...
mdegle0 26000 A polynomial has nonpositi...
mdegmullem 26001 Lemma for ~ mdegmulle2 . ...
mdegmulle2 26002 The multivariate degree of...
deg1fval 26003 Relate univariate polynomi...
deg1xrf 26004 Functionality of univariat...
deg1xrcl 26005 Closure of univariate poly...
deg1cl 26006 Sharp closure of univariat...
mdegpropd 26007 Property deduction for pol...
deg1fvi 26008 Univariate polynomial degr...
deg1propd 26009 Property deduction for pol...
deg1z 26010 Degree of the zero univari...
deg1nn0cl 26011 Degree of a nonzero univar...
deg1n0ima 26012 Degree image of a set of p...
deg1nn0clb 26013 A polynomial is nonzero if...
deg1lt0 26014 A polynomial is zero iff i...
deg1ldg 26015 A nonzero univariate polyn...
deg1ldgn 26016 An index at which a polyno...
deg1ldgdomn 26017 A nonzero univariate polyn...
deg1leb 26018 Property of being of limit...
deg1val 26019 Value of the univariate de...
deg1lt 26020 If the degree of a univari...
deg1ge 26021 Conversely, a nonzero coef...
coe1mul3 26022 The coefficient vector of ...
coe1mul4 26023 Value of the "leading" coe...
deg1addle 26024 The degree of a sum is at ...
deg1addle2 26025 If both factors have degre...
deg1add 26026 Exact degree of a sum of t...
deg1vscale 26027 The degree of a scalar tim...
deg1vsca 26028 The degree of a scalar tim...
deg1invg 26029 The degree of the negated ...
deg1suble 26030 The degree of a difference...
deg1sub 26031 Exact degree of a differen...
deg1mulle2 26032 Produce a bound on the pro...
deg1sublt 26033 Subtraction of two polynom...
deg1le0 26034 A polynomial has nonpositi...
deg1sclle 26035 A scalar polynomial has no...
deg1scl 26036 A nonzero scalar polynomia...
deg1mul2 26037 Degree of multiplication o...
deg1mul3 26038 Degree of multiplication o...
deg1mul3le 26039 Degree of multiplication o...
deg1tmle 26040 Limiting degree of a polyn...
deg1tm 26041 Exact degree of a polynomi...
deg1pwle 26042 Limiting degree of a varia...
deg1pw 26043 Exact degree of a variable...
ply1nz 26044 Univariate polynomials ove...
ply1nzb 26045 Univariate polynomials are...
ply1domn 26046 Corollary of ~ deg1mul2 : ...
ply1idom 26047 The ring of univariate pol...
ply1divmo 26058 Uniqueness of a quotient i...
ply1divex 26059 Lemma for ~ ply1divalg : e...
ply1divalg 26060 The division algorithm for...
ply1divalg2 26061 Reverse the order of multi...
uc1pval 26062 Value of the set of unitic...
isuc1p 26063 Being a unitic polynomial....
mon1pval 26064 Value of the set of monic ...
ismon1p 26065 Being a monic polynomial. ...
uc1pcl 26066 Unitic polynomials are pol...
mon1pcl 26067 Monic polynomials are poly...
uc1pn0 26068 Unitic polynomials are not...
mon1pn0 26069 Monic polynomials are not ...
uc1pdeg 26070 Unitic polynomials have no...
uc1pldg 26071 Unitic polynomials have un...
mon1pldg 26072 Unitic polynomials have on...
mon1puc1p 26073 Monic polynomials are unit...
uc1pmon1p 26074 Make a unitic polynomial m...
deg1submon1p 26075 The difference of two moni...
mon1pid 26076 Monicity and degree of the...
q1pval 26077 Value of the univariate po...
q1peqb 26078 Characterizing property of...
q1pcl 26079 Closure of the quotient by...
r1pval 26080 Value of the polynomial re...
r1pcl 26081 Closure of remainder follo...
r1pdeglt 26082 The remainder has a degree...
r1pid 26083 Express the original polyn...
dvdsq1p 26084 Divisibility in a polynomi...
dvdsr1p 26085 Divisibility in a polynomi...
ply1remlem 26086 A term of the form ` x - N...
ply1rem 26087 The polynomial remainder t...
facth1 26088 The factor theorem and its...
fta1glem1 26089 Lemma for ~ fta1g . (Cont...
fta1glem2 26090 Lemma for ~ fta1g . (Cont...
fta1g 26091 The one-sided fundamental ...
fta1blem 26092 Lemma for ~ fta1b . (Cont...
fta1b 26093 The assumption that ` R ` ...
idomrootle 26094 No element of an integral ...
drnguc1p 26095 Over a division ring, all ...
ig1peu 26096 There is a unique monic po...
ig1pval 26097 Substitutions for the poly...
ig1pval2 26098 Generator of the zero idea...
ig1pval3 26099 Characterizing properties ...
ig1pcl 26100 The monic generator of an ...
ig1pdvds 26101 The monic generator of an ...
ig1prsp 26102 Any ideal of polynomials o...
ply1lpir 26103 The ring of polynomials ov...
ply1pid 26104 The polynomials over a fie...
plyco0 26113 Two ways to say that a fun...
plyval 26114 Value of the polynomial se...
plybss 26115 Reverse closure of the par...
elply 26116 Definition of a polynomial...
elply2 26117 The coefficient function c...
plyun0 26118 The set of polynomials is ...
plyf 26119 The polynomial is a functi...
plyss 26120 The polynomial set functio...
plyssc 26121 Every polynomial ring is c...
elplyr 26122 Sufficient condition for e...
elplyd 26123 Sufficient condition for e...
ply1termlem 26124 Lemma for ~ ply1term . (C...
ply1term 26125 A one-term polynomial. (C...
plypow 26126 A power is a polynomial. ...
plyconst 26127 A constant function is a p...
ne0p 26128 A test to show that a poly...
ply0 26129 The zero function is a pol...
plyid 26130 The identity function is a...
plyeq0lem 26131 Lemma for ~ plyeq0 . If `...
plyeq0 26132 If a polynomial is zero at...
plypf1 26133 Write the set of complex p...
plyaddlem1 26134 Derive the coefficient fun...
plymullem1 26135 Derive the coefficient fun...
plyaddlem 26136 Lemma for ~ plyadd . (Con...
plymullem 26137 Lemma for ~ plymul . (Con...
plyadd 26138 The sum of two polynomials...
plymul 26139 The product of two polynom...
plysub 26140 The difference of two poly...
plyaddcl 26141 The sum of two polynomials...
plymulcl 26142 The product of two polynom...
plysubcl 26143 The difference of two poly...
coeval 26144 Value of the coefficient f...
coeeulem 26145 Lemma for ~ coeeu . (Cont...
coeeu 26146 Uniqueness of the coeffici...
coelem 26147 Lemma for properties of th...
coeeq 26148 If ` A ` satisfies the pro...
dgrval 26149 Value of the degree functi...
dgrlem 26150 Lemma for ~ dgrcl and simi...
coef 26151 The domain and codomain of...
coef2 26152 The domain and codomain of...
coef3 26153 The domain and codomain of...
dgrcl 26154 The degree of any polynomi...
dgrub 26155 If the ` M ` -th coefficie...
dgrub2 26156 All the coefficients above...
dgrlb 26157 If all the coefficients ab...
coeidlem 26158 Lemma for ~ coeid . (Cont...
coeid 26159 Reconstruct a polynomial a...
coeid2 26160 Reconstruct a polynomial a...
coeid3 26161 Reconstruct a polynomial a...
plyco 26162 The composition of two pol...
coeeq2 26163 Compute the coefficient fu...
dgrle 26164 Given an explicit expressi...
dgreq 26165 If the highest term in a p...
0dgr 26166 A constant function has de...
0dgrb 26167 A function has degree zero...
dgrnznn 26168 A nonzero polynomial with ...
coefv0 26169 The result of evaluating a...
coeaddlem 26170 Lemma for ~ coeadd and ~ d...
coemullem 26171 Lemma for ~ coemul and ~ d...
coeadd 26172 The coefficient function o...
coemul 26173 A coefficient of a product...
coe11 26174 The coefficient function i...
coemulhi 26175 The leading coefficient of...
coemulc 26176 The coefficient function i...
coe0 26177 The coefficients of the ze...
coesub 26178 The coefficient function o...
coe1termlem 26179 The coefficient function o...
coe1term 26180 The coefficient function o...
dgr1term 26181 The degree of a monomial. ...
plycn 26182 A polynomial is a continuo...
plycnOLD 26183 Obsolete version of ~ plyc...
dgr0 26184 The degree of the zero pol...
coeidp 26185 The coefficients of the id...
dgrid 26186 The degree of the identity...
dgreq0 26187 The leading coefficient of...
dgrlt 26188 Two ways to say that the d...
dgradd 26189 The degree of a sum of pol...
dgradd2 26190 The degree of a sum of pol...
dgrmul2 26191 The degree of a product of...
dgrmul 26192 The degree of a product of...
dgrmulc 26193 Scalar multiplication by a...
dgrsub 26194 The degree of a difference...
dgrcolem1 26195 The degree of a compositio...
dgrcolem2 26196 Lemma for ~ dgrco . (Cont...
dgrco 26197 The degree of a compositio...
plycjlem 26198 Lemma for ~ plycj and ~ co...
plycj 26199 The double conjugation of ...
coecj 26200 Double conjugation of a po...
plyrecj 26201 A polynomial with real coe...
plymul0or 26202 Polynomial multiplication ...
ofmulrt 26203 The set of roots of a prod...
plyreres 26204 Real-coefficient polynomia...
dvply1 26205 Derivative of a polynomial...
dvply2g 26206 The derivative of a polyno...
dvply2gOLD 26207 Obsolete version of ~ dvpl...
dvply2 26208 The derivative of a polyno...
dvnply2 26209 Polynomials have polynomia...
dvnply 26210 Polynomials have polynomia...
plycpn 26211 Polynomials are smooth. (...
quotval 26214 Value of the quotient func...
plydivlem1 26215 Lemma for ~ plydivalg . (...
plydivlem2 26216 Lemma for ~ plydivalg . (...
plydivlem3 26217 Lemma for ~ plydivex . Ba...
plydivlem4 26218 Lemma for ~ plydivex . In...
plydivex 26219 Lemma for ~ plydivalg . (...
plydiveu 26220 Lemma for ~ plydivalg . (...
plydivalg 26221 The division algorithm on ...
quotlem 26222 Lemma for properties of th...
quotcl 26223 The quotient of two polyno...
quotcl2 26224 Closure of the quotient fu...
quotdgr 26225 Remainder property of the ...
plyremlem 26226 Closure of a linear factor...
plyrem 26227 The polynomial remainder t...
facth 26228 The factor theorem. If a ...
fta1lem 26229 Lemma for ~ fta1 . (Contr...
fta1 26230 The easy direction of the ...
quotcan 26231 Exact division with a mult...
vieta1lem1 26232 Lemma for ~ vieta1 . (Con...
vieta1lem2 26233 Lemma for ~ vieta1 : induc...
vieta1 26234 The first-order Vieta's fo...
plyexmo 26235 An infinite set of values ...
elaa 26238 Elementhood in the set of ...
aacn 26239 An algebraic number is a c...
aasscn 26240 The algebraic numbers are ...
elqaalem1 26241 Lemma for ~ elqaa . The f...
elqaalem2 26242 Lemma for ~ elqaa . (Cont...
elqaalem3 26243 Lemma for ~ elqaa . (Cont...
elqaa 26244 The set of numbers generat...
qaa 26245 Every rational number is a...
qssaa 26246 The rational numbers are c...
iaa 26247 The imaginary unit is alge...
aareccl 26248 The reciprocal of an algeb...
aacjcl 26249 The conjugate of an algebr...
aannenlem1 26250 Lemma for ~ aannen . (Con...
aannenlem2 26251 Lemma for ~ aannen . (Con...
aannenlem3 26252 The algebraic numbers are ...
aannen 26253 The algebraic numbers are ...
aalioulem1 26254 Lemma for ~ aaliou . An i...
aalioulem2 26255 Lemma for ~ aaliou . (Con...
aalioulem3 26256 Lemma for ~ aaliou . (Con...
aalioulem4 26257 Lemma for ~ aaliou . (Con...
aalioulem5 26258 Lemma for ~ aaliou . (Con...
aalioulem6 26259 Lemma for ~ aaliou . (Con...
aaliou 26260 Liouville's theorem on dio...
geolim3 26261 Geometric series convergen...
aaliou2 26262 Liouville's approximation ...
aaliou2b 26263 Liouville's approximation ...
aaliou3lem1 26264 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 26265 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 26266 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 26267 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 26268 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 26269 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 26270 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 26271 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 26272 Example of a "Liouville nu...
aaliou3 26273 Example of a "Liouville nu...
taylfvallem1 26278 Lemma for ~ taylfval . (C...
taylfvallem 26279 Lemma for ~ taylfval . (C...
taylfval 26280 Define the Taylor polynomi...
eltayl 26281 Value of the Taylor series...
taylf 26282 The Taylor series defines ...
tayl0 26283 The Taylor series is alway...
taylplem1 26284 Lemma for ~ taylpfval and ...
taylplem2 26285 Lemma for ~ taylpfval and ...
taylpfval 26286 Define the Taylor polynomi...
taylpf 26287 The Taylor polynomial is a...
taylpval 26288 Value of the Taylor polyno...
taylply2 26289 The Taylor polynomial is a...
taylply2OLD 26290 Obsolete version of ~ tayl...
taylply 26291 The Taylor polynomial is a...
dvtaylp 26292 The derivative of the Tayl...
dvntaylp 26293 The ` M ` -th derivative o...
dvntaylp0 26294 The first ` N ` derivative...
taylthlem1 26295 Lemma for ~ taylth . This...
taylthlem2 26296 Lemma for ~ taylth . (Con...
taylthlem2OLD 26297 Obsolete version of ~ tayl...
taylth 26298 Taylor's theorem. The Tay...
ulmrel 26301 The uniform limit relation...
ulmscl 26302 Closure of the base set in...
ulmval 26303 Express the predicate: Th...
ulmcl 26304 Closure of a uniform limit...
ulmf 26305 Closure of a uniform limit...
ulmpm 26306 Closure of a uniform limit...
ulmf2 26307 Closure of a uniform limit...
ulm2 26308 Simplify ~ ulmval when ` F...
ulmi 26309 The uniform limit property...
ulmclm 26310 A uniform limit of functio...
ulmres 26311 A sequence of functions co...
ulmshftlem 26312 Lemma for ~ ulmshft . (Co...
ulmshft 26313 A sequence of functions co...
ulm0 26314 Every function converges u...
ulmuni 26315 A sequence of functions un...
ulmdm 26316 Two ways to express that a...
ulmcaulem 26317 Lemma for ~ ulmcau and ~ u...
ulmcau 26318 A sequence of functions co...
ulmcau2 26319 A sequence of functions co...
ulmss 26320 A uniform limit of functio...
ulmbdd 26321 A uniform limit of bounded...
ulmcn 26322 A uniform limit of continu...
ulmdvlem1 26323 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 26324 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 26325 Lemma for ~ ulmdv . (Cont...
ulmdv 26326 If ` F ` is a sequence of ...
mtest 26327 The Weierstrass M-test. I...
mtestbdd 26328 Given the hypotheses of th...
mbfulm 26329 A uniform limit of measura...
iblulm 26330 A uniform limit of integra...
itgulm 26331 A uniform limit of integra...
itgulm2 26332 A uniform limit of integra...
pserval 26333 Value of the function ` G ...
pserval2 26334 Value of the function ` G ...
psergf 26335 The sequence of terms in t...
radcnvlem1 26336 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 26337 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 26338 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 26339 Zero is always a convergen...
radcnvcl 26340 The radius of convergence ...
radcnvlt1 26341 If ` X ` is within the ope...
radcnvlt2 26342 If ` X ` is within the ope...
radcnvle 26343 If ` X ` is a convergent p...
dvradcnv 26344 The radius of convergence ...
pserulm 26345 If ` S ` is a region conta...
psercn2 26346 Since by ~ pserulm the ser...
psercn2OLD 26347 Obsolete version of ~ pser...
psercnlem2 26348 Lemma for ~ psercn . (Con...
psercnlem1 26349 Lemma for ~ psercn . (Con...
psercn 26350 An infinite series converg...
pserdvlem1 26351 Lemma for ~ pserdv . (Con...
pserdvlem2 26352 Lemma for ~ pserdv . (Con...
pserdv 26353 The derivative of a power ...
pserdv2 26354 The derivative of a power ...
abelthlem1 26355 Lemma for ~ abelth . (Con...
abelthlem2 26356 Lemma for ~ abelth . The ...
abelthlem3 26357 Lemma for ~ abelth . (Con...
abelthlem4 26358 Lemma for ~ abelth . (Con...
abelthlem5 26359 Lemma for ~ abelth . (Con...
abelthlem6 26360 Lemma for ~ abelth . (Con...
abelthlem7a 26361 Lemma for ~ abelth . (Con...
abelthlem7 26362 Lemma for ~ abelth . (Con...
abelthlem8 26363 Lemma for ~ abelth . (Con...
abelthlem9 26364 Lemma for ~ abelth . By a...
abelth 26365 Abel's theorem. If the po...
abelth2 26366 Abel's theorem, restricted...
efcn 26367 The exponential function i...
sincn 26368 Sine is continuous. (Cont...
coscn 26369 Cosine is continuous. (Co...
reeff1olem 26370 Lemma for ~ reeff1o . (Co...
reeff1o 26371 The real exponential funct...
reefiso 26372 The exponential function o...
efcvx 26373 The exponential function o...
reefgim 26374 The exponential function i...
pilem1 26375 Lemma for ~ pire , ~ pigt2...
pilem2 26376 Lemma for ~ pire , ~ pigt2...
pilem3 26377 Lemma for ~ pire , ~ pigt2...
pigt2lt4 26378 ` _pi ` is between 2 and 4...
sinpi 26379 The sine of ` _pi ` is 0. ...
pire 26380 ` _pi ` is a real number. ...
picn 26381 ` _pi ` is a complex numbe...
pipos 26382 ` _pi ` is positive. (Con...
pirp 26383 ` _pi ` is a positive real...
negpicn 26384 ` -u _pi ` is a real numbe...
sinhalfpilem 26385 Lemma for ~ sinhalfpi and ...
halfpire 26386 ` _pi / 2 ` is real. (Con...
neghalfpire 26387 ` -u _pi / 2 ` is real. (...
neghalfpirx 26388 ` -u _pi / 2 ` is an exten...
pidiv2halves 26389 Adding ` _pi / 2 ` to itse...
sinhalfpi 26390 The sine of ` _pi / 2 ` is...
coshalfpi 26391 The cosine of ` _pi / 2 ` ...
cosneghalfpi 26392 The cosine of ` -u _pi / 2...
efhalfpi 26393 The exponential of ` _i _p...
cospi 26394 The cosine of ` _pi ` is `...
efipi 26395 The exponential of ` _i x....
eulerid 26396 Euler's identity. (Contri...
sin2pi 26397 The sine of ` 2 _pi ` is 0...
cos2pi 26398 The cosine of ` 2 _pi ` is...
ef2pi 26399 The exponential of ` 2 _pi...
ef2kpi 26400 If ` K ` is an integer, th...
efper 26401 The exponential function i...
sinperlem 26402 Lemma for ~ sinper and ~ c...
sinper 26403 The sine function is perio...
cosper 26404 The cosine function is per...
sin2kpi 26405 If ` K ` is an integer, th...
cos2kpi 26406 If ` K ` is an integer, th...
sin2pim 26407 Sine of a number subtracte...
cos2pim 26408 Cosine of a number subtrac...
sinmpi 26409 Sine of a number less ` _p...
cosmpi 26410 Cosine of a number less ` ...
sinppi 26411 Sine of a number plus ` _p...
cosppi 26412 Cosine of a number plus ` ...
efimpi 26413 The exponential function a...
sinhalfpip 26414 The sine of ` _pi / 2 ` pl...
sinhalfpim 26415 The sine of ` _pi / 2 ` mi...
coshalfpip 26416 The cosine of ` _pi / 2 ` ...
coshalfpim 26417 The cosine of ` _pi / 2 ` ...
ptolemy 26418 Ptolemy's Theorem. This t...
sincosq1lem 26419 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 26420 The signs of the sine and ...
sincosq2sgn 26421 The signs of the sine and ...
sincosq3sgn 26422 The signs of the sine and ...
sincosq4sgn 26423 The signs of the sine and ...
coseq00topi 26424 Location of the zeroes of ...
coseq0negpitopi 26425 Location of the zeroes of ...
tanrpcl 26426 Positive real closure of t...
tangtx 26427 The tangent function is gr...
tanabsge 26428 The tangent function is gr...
sinq12gt0 26429 The sine of a number stric...
sinq12ge0 26430 The sine of a number betwe...
sinq34lt0t 26431 The sine of a number stric...
cosq14gt0 26432 The cosine of a number str...
cosq14ge0 26433 The cosine of a number bet...
sincosq1eq 26434 Complementarity of the sin...
sincos4thpi 26435 The sine and cosine of ` _...
tan4thpi 26436 The tangent of ` _pi / 4 `...
sincos6thpi 26437 The sine and cosine of ` _...
sincos3rdpi 26438 The sine and cosine of ` _...
pigt3 26439 ` _pi ` is greater than 3....
pige3 26440 ` _pi ` is greater than or...
pige3ALT 26441 Alternate proof of ~ pige3...
abssinper 26442 The absolute value of sine...
sinkpi 26443 The sine of an integer mul...
coskpi 26444 The absolute value of the ...
sineq0 26445 A complex number whose sin...
coseq1 26446 A complex number whose cos...
cos02pilt1 26447 Cosine is less than one be...
cosq34lt1 26448 Cosine is less than one in...
efeq1 26449 A complex number whose exp...
cosne0 26450 The cosine function has no...
cosordlem 26451 Lemma for ~ cosord . (Con...
cosord 26452 Cosine is decreasing over ...
cos0pilt1 26453 Cosine is between minus on...
cos11 26454 Cosine is one-to-one over ...
sinord 26455 Sine is increasing over th...
recosf1o 26456 The cosine function is a b...
resinf1o 26457 The sine function is a bij...
tanord1 26458 The tangent function is st...
tanord 26459 The tangent function is st...
tanregt0 26460 The real part of the tange...
negpitopissre 26461 The interval ` ( -u _pi (,...
efgh 26462 The exponential function o...
efif1olem1 26463 Lemma for ~ efif1o . (Con...
efif1olem2 26464 Lemma for ~ efif1o . (Con...
efif1olem3 26465 Lemma for ~ efif1o . (Con...
efif1olem4 26466 The exponential function o...
efif1o 26467 The exponential function o...
efifo 26468 The exponential function o...
eff1olem 26469 The exponential function m...
eff1o 26470 The exponential function m...
efabl 26471 The image of a subgroup of...
efsubm 26472 The image of a subgroup of...
circgrp 26473 The circle group ` T ` is ...
circsubm 26474 The circle group ` T ` is ...
logrn 26479 The range of the natural l...
ellogrn 26480 Write out the property ` A...
dflog2 26481 The natural logarithm func...
relogrn 26482 The range of the natural l...
logrncn 26483 The range of the natural l...
eff1o2 26484 The exponential function r...
logf1o 26485 The natural logarithm func...
dfrelog 26486 The natural logarithm func...
relogf1o 26487 The natural logarithm func...
logrncl 26488 Closure of the natural log...
logcl 26489 Closure of the natural log...
logimcl 26490 Closure of the imaginary p...
logcld 26491 The logarithm of a nonzero...
logimcld 26492 The imaginary part of the ...
logimclad 26493 The imaginary part of the ...
abslogimle 26494 The imaginary part of the ...
logrnaddcl 26495 The range of the natural l...
relogcl 26496 Closure of the natural log...
eflog 26497 Relationship between the n...
logeq0im1 26498 If the logarithm of a numb...
logccne0 26499 The logarithm isn't 0 if i...
logne0 26500 Logarithm of a non-1 posit...
reeflog 26501 Relationship between the n...
logef 26502 Relationship between the n...
relogef 26503 Relationship between the n...
logeftb 26504 Relationship between the n...
relogeftb 26505 Relationship between the n...
log1 26506 The natural logarithm of `...
loge 26507 The natural logarithm of `...
logi 26508 The natural logarithm of `...
logneg 26509 The natural logarithm of a...
logm1 26510 The natural logarithm of n...
lognegb 26511 If a number has imaginary ...
relogoprlem 26512 Lemma for ~ relogmul and ~...
relogmul 26513 The natural logarithm of t...
relogdiv 26514 The natural logarithm of t...
explog 26515 Exponentiation of a nonzer...
reexplog 26516 Exponentiation of a positi...
relogexp 26517 The natural logarithm of p...
relog 26518 Real part of a logarithm. ...
relogiso 26519 The natural logarithm func...
reloggim 26520 The natural logarithm is a...
logltb 26521 The natural logarithm func...
logfac 26522 The logarithm of a factori...
eflogeq 26523 Solve an equation involvin...
logleb 26524 Natural logarithm preserve...
rplogcl 26525 Closure of the logarithm f...
logge0 26526 The logarithm of a number ...
logcj 26527 The natural logarithm dist...
efiarg 26528 The exponential of the "ar...
cosargd 26529 The cosine of the argument...
cosarg0d 26530 The cosine of the argument...
argregt0 26531 Closure of the argument of...
argrege0 26532 Closure of the argument of...
argimgt0 26533 Closure of the argument of...
argimlt0 26534 Closure of the argument of...
logimul 26535 Multiplying a number by ` ...
logneg2 26536 The logarithm of the negat...
logmul2 26537 Generalization of ~ relogm...
logdiv2 26538 Generalization of ~ relogd...
abslogle 26539 Bound on the magnitude of ...
tanarg 26540 The basic relation between...
logdivlti 26541 The ` log x / x ` function...
logdivlt 26542 The ` log x / x ` function...
logdivle 26543 The ` log x / x ` function...
relogcld 26544 Closure of the natural log...
reeflogd 26545 Relationship between the n...
relogmuld 26546 The natural logarithm of t...
relogdivd 26547 The natural logarithm of t...
logled 26548 Natural logarithm preserve...
relogefd 26549 Relationship between the n...
rplogcld 26550 Closure of the logarithm f...
logge0d 26551 The logarithm of a number ...
logge0b 26552 The logarithm of a number ...
loggt0b 26553 The logarithm of a number ...
logle1b 26554 The logarithm of a number ...
loglt1b 26555 The logarithm of a number ...
divlogrlim 26556 The inverse logarithm func...
logno1 26557 The logarithm function is ...
dvrelog 26558 The derivative of the real...
relogcn 26559 The real logarithm functio...
ellogdm 26560 Elementhood in the "contin...
logdmn0 26561 A number in the continuous...
logdmnrp 26562 A number in the continuous...
logdmss 26563 The continuity domain of `...
logcnlem2 26564 Lemma for ~ logcn . (Cont...
logcnlem3 26565 Lemma for ~ logcn . (Cont...
logcnlem4 26566 Lemma for ~ logcn . (Cont...
logcnlem5 26567 Lemma for ~ logcn . (Cont...
logcn 26568 The logarithm function is ...
dvloglem 26569 Lemma for ~ dvlog . (Cont...
logdmopn 26570 The "continuous domain" of...
logf1o2 26571 The logarithm maps its con...
dvlog 26572 The derivative of the comp...
dvlog2lem 26573 Lemma for ~ dvlog2 . (Con...
dvlog2 26574 The derivative of the comp...
advlog 26575 The antiderivative of the ...
advlogexp 26576 The antiderivative of a po...
efopnlem1 26577 Lemma for ~ efopn . (Cont...
efopnlem2 26578 Lemma for ~ efopn . (Cont...
efopn 26579 The exponential map is an ...
logtayllem 26580 Lemma for ~ logtayl . (Co...
logtayl 26581 The Taylor series for ` -u...
logtaylsum 26582 The Taylor series for ` -u...
logtayl2 26583 Power series expression fo...
logccv 26584 The natural logarithm func...
cxpval 26585 Value of the complex power...
cxpef 26586 Value of the complex power...
0cxp 26587 Value of the complex power...
cxpexpz 26588 Relate the complex power f...
cxpexp 26589 Relate the complex power f...
logcxp 26590 Logarithm of a complex pow...
cxp0 26591 Value of the complex power...
cxp1 26592 Value of the complex power...
1cxp 26593 Value of the complex power...
ecxp 26594 Write the exponential func...
cxpcl 26595 Closure of the complex pow...
recxpcl 26596 Real closure of the comple...
rpcxpcl 26597 Positive real closure of t...
cxpne0 26598 Complex exponentiation is ...
cxpeq0 26599 Complex exponentiation is ...
cxpadd 26600 Sum of exponents law for c...
cxpp1 26601 Value of a nonzero complex...
cxpneg 26602 Value of a complex number ...
cxpsub 26603 Exponent subtraction law f...
cxpge0 26604 Nonnegative exponentiation...
mulcxplem 26605 Lemma for ~ mulcxp . (Con...
mulcxp 26606 Complex exponentiation of ...
cxprec 26607 Complex exponentiation of ...
divcxp 26608 Complex exponentiation of ...
cxpmul 26609 Product of exponents law f...
cxpmul2 26610 Product of exponents law f...
cxproot 26611 The complex power function...
cxpmul2z 26612 Generalize ~ cxpmul2 to ne...
abscxp 26613 Absolute value of a power,...
abscxp2 26614 Absolute value of a power,...
cxplt 26615 Ordering property for comp...
cxple 26616 Ordering property for comp...
cxplea 26617 Ordering property for comp...
cxple2 26618 Ordering property for comp...
cxplt2 26619 Ordering property for comp...
cxple2a 26620 Ordering property for comp...
cxplt3 26621 Ordering property for comp...
cxple3 26622 Ordering property for comp...
cxpsqrtlem 26623 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 26624 The complex exponential fu...
logsqrt 26625 Logarithm of a square root...
cxp0d 26626 Value of the complex power...
cxp1d 26627 Value of the complex power...
1cxpd 26628 Value of the complex power...
cxpcld 26629 Closure of the complex pow...
cxpmul2d 26630 Product of exponents law f...
0cxpd 26631 Value of the complex power...
cxpexpzd 26632 Relate the complex power f...
cxpefd 26633 Value of the complex power...
cxpne0d 26634 Complex exponentiation is ...
cxpp1d 26635 Value of a nonzero complex...
cxpnegd 26636 Value of a complex number ...
cxpmul2zd 26637 Generalize ~ cxpmul2 to ne...
cxpaddd 26638 Sum of exponents law for c...
cxpsubd 26639 Exponent subtraction law f...
cxpltd 26640 Ordering property for comp...
cxpled 26641 Ordering property for comp...
cxplead 26642 Ordering property for comp...
divcxpd 26643 Complex exponentiation of ...
recxpcld 26644 Positive real closure of t...
cxpge0d 26645 Nonnegative exponentiation...
cxple2ad 26646 Ordering property for comp...
cxplt2d 26647 Ordering property for comp...
cxple2d 26648 Ordering property for comp...
mulcxpd 26649 Complex exponentiation of ...
recxpf1lem 26650 Complex exponentiation on ...
cxpsqrtth 26651 Square root theorem over t...
2irrexpq 26652 There exist irrational num...
cxprecd 26653 Complex exponentiation of ...
rpcxpcld 26654 Positive real closure of t...
logcxpd 26655 Logarithm of a complex pow...
cxplt3d 26656 Ordering property for comp...
cxple3d 26657 Ordering property for comp...
cxpmuld 26658 Product of exponents law f...
cxpgt0d 26659 A positive real raised to ...
cxpcom 26660 Commutative law for real e...
dvcxp1 26661 The derivative of a comple...
dvcxp2 26662 The derivative of a comple...
dvsqrt 26663 The derivative of the real...
dvcncxp1 26664 Derivative of complex powe...
dvcnsqrt 26665 Derivative of square root ...
cxpcn 26666 Domain of continuity of th...
cxpcnOLD 26667 Obsolete version of ~ cxpc...
cxpcn2 26668 Continuity of the complex ...
cxpcn3lem 26669 Lemma for ~ cxpcn3 . (Con...
cxpcn3 26670 Extend continuity of the c...
resqrtcn 26671 Continuity of the real squ...
sqrtcn 26672 Continuity of the square r...
cxpaddlelem 26673 Lemma for ~ cxpaddle . (C...
cxpaddle 26674 Ordering property for comp...
abscxpbnd 26675 Bound on the absolute valu...
root1id 26676 Property of an ` N ` -th r...
root1eq1 26677 The only powers of an ` N ...
root1cj 26678 Within the ` N ` -th roots...
cxpeq 26679 Solve an equation involvin...
loglesqrt 26680 An upper bound on the loga...
logreclem 26681 Symmetry of the natural lo...
logrec 26682 Logarithm of a reciprocal ...
logbval 26685 Define the value of the ` ...
logbcl 26686 General logarithm closure....
logbid1 26687 General logarithm is 1 whe...
logb1 26688 The logarithm of ` 1 ` to ...
elogb 26689 The general logarithm of a...
logbchbase 26690 Change of base for logarit...
relogbval 26691 Value of the general logar...
relogbcl 26692 Closure of the general log...
relogbzcl 26693 Closure of the general log...
relogbreexp 26694 Power law for the general ...
relogbzexp 26695 Power law for the general ...
relogbmul 26696 The logarithm of the produ...
relogbmulexp 26697 The logarithm of the produ...
relogbdiv 26698 The logarithm of the quoti...
relogbexp 26699 Identity law for general l...
nnlogbexp 26700 Identity law for general l...
logbrec 26701 Logarithm of a reciprocal ...
logbleb 26702 The general logarithm func...
logblt 26703 The general logarithm func...
relogbcxp 26704 Identity law for the gener...
cxplogb 26705 Identity law for the gener...
relogbcxpb 26706 The logarithm is the inver...
logbmpt 26707 The general logarithm to a...
logbf 26708 The general logarithm to a...
logbfval 26709 The general logarithm of a...
relogbf 26710 The general logarithm to a...
logblog 26711 The general logarithm to t...
logbgt0b 26712 The logarithm of a positiv...
logbgcd1irr 26713 The logarithm of an intege...
2logb9irr 26714 Example for ~ logbgcd1irr ...
logbprmirr 26715 The logarithm of a prime t...
2logb3irr 26716 Example for ~ logbprmirr ....
2logb9irrALT 26717 Alternate proof of ~ 2logb...
sqrt2cxp2logb9e3 26718 The square root of two to ...
2irrexpqALT 26719 Alternate proof of ~ 2irre...
angval 26720 Define the angle function,...
angcan 26721 Cancel a constant multipli...
angneg 26722 Cancel a negative sign in ...
angvald 26723 The (signed) angle between...
angcld 26724 The (signed) angle between...
angrteqvd 26725 Two vectors are at a right...
cosangneg2d 26726 The cosine of the angle be...
angrtmuld 26727 Perpendicularity of two ve...
ang180lem1 26728 Lemma for ~ ang180 . Show...
ang180lem2 26729 Lemma for ~ ang180 . Show...
ang180lem3 26730 Lemma for ~ ang180 . Sinc...
ang180lem4 26731 Lemma for ~ ang180 . Redu...
ang180lem5 26732 Lemma for ~ ang180 : Redu...
ang180 26733 The sum of angles ` m A B ...
lawcoslem1 26734 Lemma for ~ lawcos . Here...
lawcos 26735 Law of cosines (also known...
pythag 26736 Pythagorean theorem. Give...
isosctrlem1 26737 Lemma for ~ isosctr . (Co...
isosctrlem2 26738 Lemma for ~ isosctr . Cor...
isosctrlem3 26739 Lemma for ~ isosctr . Cor...
isosctr 26740 Isosceles triangle theorem...
ssscongptld 26741 If two triangles have equa...
affineequiv 26742 Equivalence between two wa...
affineequiv2 26743 Equivalence between two wa...
affineequiv3 26744 Equivalence between two wa...
affineequiv4 26745 Equivalence between two wa...
affineequivne 26746 Equivalence between two wa...
angpieqvdlem 26747 Equivalence used in the pr...
angpieqvdlem2 26748 Equivalence used in ~ angp...
angpined 26749 If the angle at ABC is ` _...
angpieqvd 26750 The angle ABC is ` _pi ` i...
chordthmlem 26751 If ` M ` is the midpoint o...
chordthmlem2 26752 If M is the midpoint of AB...
chordthmlem3 26753 If M is the midpoint of AB...
chordthmlem4 26754 If P is on the segment AB ...
chordthmlem5 26755 If P is on the segment AB ...
chordthm 26756 The intersecting chords th...
heron 26757 Heron's formula gives the ...
quad2 26758 The quadratic equation, wi...
quad 26759 The quadratic equation. (...
1cubrlem 26760 The cube roots of unity. ...
1cubr 26761 The cube roots of unity. ...
dcubic1lem 26762 Lemma for ~ dcubic1 and ~ ...
dcubic2 26763 Reverse direction of ~ dcu...
dcubic1 26764 Forward direction of ~ dcu...
dcubic 26765 Solutions to the depressed...
mcubic 26766 Solutions to a monic cubic...
cubic2 26767 The solution to the genera...
cubic 26768 The cubic equation, which ...
binom4 26769 Work out a quartic binomia...
dquartlem1 26770 Lemma for ~ dquart . (Con...
dquartlem2 26771 Lemma for ~ dquart . (Con...
dquart 26772 Solve a depressed quartic ...
quart1cl 26773 Closure lemmas for ~ quart...
quart1lem 26774 Lemma for ~ quart1 . (Con...
quart1 26775 Depress a quartic equation...
quartlem1 26776 Lemma for ~ quart . (Cont...
quartlem2 26777 Closure lemmas for ~ quart...
quartlem3 26778 Closure lemmas for ~ quart...
quartlem4 26779 Closure lemmas for ~ quart...
quart 26780 The quartic equation, writ...
asinlem 26787 The argument to the logari...
asinlem2 26788 The argument to the logari...
asinlem3a 26789 Lemma for ~ asinlem3 . (C...
asinlem3 26790 The argument to the logari...
asinf 26791 Domain and codomain of the...
asincl 26792 Closure for the arcsin fun...
acosf 26793 Domain and codoamin of the...
acoscl 26794 Closure for the arccos fun...
atandm 26795 Since the property is a li...
atandm2 26796 This form of ~ atandm is a...
atandm3 26797 A compact form of ~ atandm...
atandm4 26798 A compact form of ~ atandm...
atanf 26799 Domain and codoamin of the...
atancl 26800 Closure for the arctan fun...
asinval 26801 Value of the arcsin functi...
acosval 26802 Value of the arccos functi...
atanval 26803 Value of the arctan functi...
atanre 26804 A real number is in the do...
asinneg 26805 The arcsine function is od...
acosneg 26806 The negative symmetry rela...
efiasin 26807 The exponential of the arc...
sinasin 26808 The arcsine function is an...
cosacos 26809 The arccosine function is ...
asinsinlem 26810 Lemma for ~ asinsin . (Co...
asinsin 26811 The arcsine function compo...
acoscos 26812 The arccosine function is ...
asin1 26813 The arcsine of ` 1 ` is ` ...
acos1 26814 The arccosine of ` 1 ` is ...
reasinsin 26815 The arcsine function compo...
asinsinb 26816 Relationship between sine ...
acoscosb 26817 Relationship between cosin...
asinbnd 26818 The arcsine function has r...
acosbnd 26819 The arccosine function has...
asinrebnd 26820 Bounds on the arcsine func...
asinrecl 26821 The arcsine function is re...
acosrecl 26822 The arccosine function is ...
cosasin 26823 The cosine of the arcsine ...
sinacos 26824 The sine of the arccosine ...
atandmneg 26825 The domain of the arctange...
atanneg 26826 The arctangent function is...
atan0 26827 The arctangent of zero is ...
atandmcj 26828 The arctangent function di...
atancj 26829 The arctangent function di...
atanrecl 26830 The arctangent function is...
efiatan 26831 Value of the exponential o...
atanlogaddlem 26832 Lemma for ~ atanlogadd . ...
atanlogadd 26833 The rule ` sqrt ( z w ) = ...
atanlogsublem 26834 Lemma for ~ atanlogsub . ...
atanlogsub 26835 A variation on ~ atanlogad...
efiatan2 26836 Value of the exponential o...
2efiatan 26837 Value of the exponential o...
tanatan 26838 The arctangent function is...
atandmtan 26839 The tangent function has r...
cosatan 26840 The cosine of an arctangen...
cosatanne0 26841 The arctangent function ha...
atantan 26842 The arctangent function is...
atantanb 26843 Relationship between tange...
atanbndlem 26844 Lemma for ~ atanbnd . (Co...
atanbnd 26845 The arctangent function is...
atanord 26846 The arctangent function is...
atan1 26847 The arctangent of ` 1 ` is...
bndatandm 26848 A point in the open unit d...
atans 26849 The "domain of continuity"...
atans2 26850 It suffices to show that `...
atansopn 26851 The domain of continuity o...
atansssdm 26852 The domain of continuity o...
ressatans 26853 The real number line is a ...
dvatan 26854 The derivative of the arct...
atancn 26855 The arctangent is a contin...
atantayl 26856 The Taylor series for ` ar...
atantayl2 26857 The Taylor series for ` ar...
atantayl3 26858 The Taylor series for ` ar...
leibpilem1 26859 Lemma for ~ leibpi . (Con...
leibpilem2 26860 The Leibniz formula for ` ...
leibpi 26861 The Leibniz formula for ` ...
leibpisum 26862 The Leibniz formula for ` ...
log2cnv 26863 Using the Taylor series fo...
log2tlbnd 26864 Bound the error term in th...
log2ublem1 26865 Lemma for ~ log2ub . The ...
log2ublem2 26866 Lemma for ~ log2ub . (Con...
log2ublem3 26867 Lemma for ~ log2ub . In d...
log2ub 26868 ` log 2 ` is less than ` 2...
log2le1 26869 ` log 2 ` is less than ` 1...
birthdaylem1 26870 Lemma for ~ birthday . (C...
birthdaylem2 26871 For general ` N ` and ` K ...
birthdaylem3 26872 For general ` N ` and ` K ...
birthday 26873 The Birthday Problem. The...
dmarea 26876 The domain of the area fun...
areambl 26877 The fibers of a measurable...
areass 26878 A measurable region is a s...
dfarea 26879 Rewrite ~ df-area self-ref...
areaf 26880 Area measurement is a func...
areacl 26881 The area of a measurable r...
areage0 26882 The area of a measurable r...
areaval 26883 The area of a measurable r...
rlimcnp 26884 Relate a limit of a real-v...
rlimcnp2 26885 Relate a limit of a real-v...
rlimcnp3 26886 Relate a limit of a real-v...
xrlimcnp 26887 Relate a limit of a real-v...
efrlim 26888 The limit of the sequence ...
efrlimOLD 26889 Obsolete version of ~ efrl...
dfef2 26890 The limit of the sequence ...
cxplim 26891 A power to a negative expo...
sqrtlim 26892 The inverse square root fu...
rlimcxp 26893 Any power to a positive ex...
o1cxp 26894 An eventually bounded func...
cxp2limlem 26895 A linear factor grows slow...
cxp2lim 26896 Any power grows slower tha...
cxploglim 26897 The logarithm grows slower...
cxploglim2 26898 Every power of the logarit...
divsqrtsumlem 26899 Lemma for ~ divsqrsum and ...
divsqrsumf 26900 The function ` F ` used in...
divsqrsum 26901 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 26902 A bound on the distance of...
divsqrtsumo1 26903 The sum ` sum_ n <_ x ( 1 ...
cvxcl 26904 Closure of a 0-1 linear co...
scvxcvx 26905 A strictly convex function...
jensenlem1 26906 Lemma for ~ jensen . (Con...
jensenlem2 26907 Lemma for ~ jensen . (Con...
jensen 26908 Jensen's inequality, a fin...
amgmlem 26909 Lemma for ~ amgm . (Contr...
amgm 26910 Inequality of arithmetic a...
logdifbnd 26913 Bound on the difference of...
logdiflbnd 26914 Lower bound on the differe...
emcllem1 26915 Lemma for ~ emcl . The se...
emcllem2 26916 Lemma for ~ emcl . ` F ` i...
emcllem3 26917 Lemma for ~ emcl . The fu...
emcllem4 26918 Lemma for ~ emcl . The di...
emcllem5 26919 Lemma for ~ emcl . The pa...
emcllem6 26920 Lemma for ~ emcl . By the...
emcllem7 26921 Lemma for ~ emcl and ~ har...
emcl 26922 Closure and bounds for the...
harmonicbnd 26923 A bound on the harmonic se...
harmonicbnd2 26924 A bound on the harmonic se...
emre 26925 The Euler-Mascheroni const...
emgt0 26926 The Euler-Mascheroni const...
harmonicbnd3 26927 A bound on the harmonic se...
harmoniclbnd 26928 A bound on the harmonic se...
harmonicubnd 26929 A bound on the harmonic se...
harmonicbnd4 26930 The asymptotic behavior of...
fsumharmonic 26931 Bound a finite sum based o...
zetacvg 26934 The zeta series is converg...
eldmgm 26941 Elementhood in the set of ...
dmgmaddn0 26942 If ` A ` is not a nonposit...
dmlogdmgm 26943 If ` A ` is in the continu...
rpdmgm 26944 A positive real number is ...
dmgmn0 26945 If ` A ` is not a nonposit...
dmgmaddnn0 26946 If ` A ` is not a nonposit...
dmgmdivn0 26947 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 26948 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 26949 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 26950 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 26951 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 26952 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 26953 The series ` G ` is unifor...
lgamgulm 26954 The series ` G ` is unifor...
lgamgulm2 26955 Rewrite the limit of the s...
lgambdd 26956 The log-Gamma function is ...
lgamucov 26957 The ` U ` regions used in ...
lgamucov2 26958 The ` U ` regions used in ...
lgamcvglem 26959 Lemma for ~ lgamf and ~ lg...
lgamcl 26960 The log-Gamma function is ...
lgamf 26961 The log-Gamma function is ...
gamf 26962 The Gamma function is a co...
gamcl 26963 The exponential of the log...
eflgam 26964 The exponential of the log...
gamne0 26965 The Gamma function is neve...
igamval 26966 Value of the inverse Gamma...
igamz 26967 Value of the inverse Gamma...
igamgam 26968 Value of the inverse Gamma...
igamlgam 26969 Value of the inverse Gamma...
igamf 26970 Closure of the inverse Gam...
igamcl 26971 Closure of the inverse Gam...
gamigam 26972 The Gamma function is the ...
lgamcvg 26973 The series ` G ` converges...
lgamcvg2 26974 The series ` G ` converges...
gamcvg 26975 The pointwise exponential ...
lgamp1 26976 The functional equation of...
gamp1 26977 The functional equation of...
gamcvg2lem 26978 Lemma for ~ gamcvg2 . (Co...
gamcvg2 26979 An infinite product expres...
regamcl 26980 The Gamma function is real...
relgamcl 26981 The log-Gamma function is ...
rpgamcl 26982 The log-Gamma function is ...
lgam1 26983 The log-Gamma function at ...
gam1 26984 The log-Gamma function at ...
facgam 26985 The Gamma function general...
gamfac 26986 The Gamma function general...
wilthlem1 26987 The only elements that are...
wilthlem2 26988 Lemma for ~ wilth : induct...
wilthlem3 26989 Lemma for ~ wilth . Here ...
wilth 26990 Wilson's theorem. A numbe...
wilthimp 26991 The forward implication of...
ftalem1 26992 Lemma for ~ fta : "growth...
ftalem2 26993 Lemma for ~ fta . There e...
ftalem3 26994 Lemma for ~ fta . There e...
ftalem4 26995 Lemma for ~ fta : Closure...
ftalem5 26996 Lemma for ~ fta : Main pr...
ftalem6 26997 Lemma for ~ fta : Dischar...
ftalem7 26998 Lemma for ~ fta . Shift t...
fta 26999 The Fundamental Theorem of...
basellem1 27000 Lemma for ~ basel . Closu...
basellem2 27001 Lemma for ~ basel . Show ...
basellem3 27002 Lemma for ~ basel . Using...
basellem4 27003 Lemma for ~ basel . By ~ ...
basellem5 27004 Lemma for ~ basel . Using...
basellem6 27005 Lemma for ~ basel . The f...
basellem7 27006 Lemma for ~ basel . The f...
basellem8 27007 Lemma for ~ basel . The f...
basellem9 27008 Lemma for ~ basel . Since...
basel 27009 The sum of the inverse squ...
efnnfsumcl 27022 Finite sum closure in the ...
ppisval 27023 The set of primes less tha...
ppisval2 27024 The set of primes less tha...
ppifi 27025 The set of primes less tha...
prmdvdsfi 27026 The set of prime divisors ...
chtf 27027 Domain and codoamin of the...
chtcl 27028 Real closure of the Chebys...
chtval 27029 Value of the Chebyshev fun...
efchtcl 27030 The Chebyshev function is ...
chtge0 27031 The Chebyshev function is ...
vmaval 27032 Value of the von Mangoldt ...
isppw 27033 Two ways to say that ` A `...
isppw2 27034 Two ways to say that ` A `...
vmappw 27035 Value of the von Mangoldt ...
vmaprm 27036 Value of the von Mangoldt ...
vmacl 27037 Closure for the von Mangol...
vmaf 27038 Functionality of the von M...
efvmacl 27039 The von Mangoldt is closed...
vmage0 27040 The von Mangoldt function ...
chpval 27041 Value of the second Chebys...
chpf 27042 Functionality of the secon...
chpcl 27043 Closure for the second Che...
efchpcl 27044 The second Chebyshev funct...
chpge0 27045 The second Chebyshev funct...
ppival 27046 Value of the prime-countin...
ppival2 27047 Value of the prime-countin...
ppival2g 27048 Value of the prime-countin...
ppif 27049 Domain and codomain of the...
ppicl 27050 Real closure of the prime-...
muval 27051 The value of the Möbi...
muval1 27052 The value of the Möbi...
muval2 27053 The value of the Möbi...
isnsqf 27054 Two ways to say that a num...
issqf 27055 Two ways to say that a num...
sqfpc 27056 The prime count of a squar...
dvdssqf 27057 A divisor of a squarefree ...
sqf11 27058 A squarefree number is com...
muf 27059 The Möbius function i...
mucl 27060 Closure of the Möbius...
sgmval 27061 The value of the divisor f...
sgmval2 27062 The value of the divisor f...
0sgm 27063 The value of the sum-of-di...
sgmf 27064 The divisor function is a ...
sgmcl 27065 Closure of the divisor fun...
sgmnncl 27066 Closure of the divisor fun...
mule1 27067 The Möbius function t...
chtfl 27068 The Chebyshev function doe...
chpfl 27069 The second Chebyshev funct...
ppiprm 27070 The prime-counting functio...
ppinprm 27071 The prime-counting functio...
chtprm 27072 The Chebyshev function at ...
chtnprm 27073 The Chebyshev function at ...
chpp1 27074 The second Chebyshev funct...
chtwordi 27075 The Chebyshev function is ...
chpwordi 27076 The second Chebyshev funct...
chtdif 27077 The difference of the Cheb...
efchtdvds 27078 The exponentiated Chebyshe...
ppifl 27079 The prime-counting functio...
ppip1le 27080 The prime-counting functio...
ppiwordi 27081 The prime-counting functio...
ppidif 27082 The difference of the prim...
ppi1 27083 The prime-counting functio...
cht1 27084 The Chebyshev function at ...
vma1 27085 The von Mangoldt function ...
chp1 27086 The second Chebyshev funct...
ppi1i 27087 Inference form of ~ ppiprm...
ppi2i 27088 Inference form of ~ ppinpr...
ppi2 27089 The prime-counting functio...
ppi3 27090 The prime-counting functio...
cht2 27091 The Chebyshev function at ...
cht3 27092 The Chebyshev function at ...
ppinncl 27093 Closure of the prime-count...
chtrpcl 27094 Closure of the Chebyshev f...
ppieq0 27095 The prime-counting functio...
ppiltx 27096 The prime-counting functio...
prmorcht 27097 Relate the primorial (prod...
mumullem1 27098 Lemma for ~ mumul . A mul...
mumullem2 27099 Lemma for ~ mumul . The p...
mumul 27100 The Möbius function i...
sqff1o 27101 There is a bijection from ...
fsumdvdsdiaglem 27102 A "diagonal commutation" o...
fsumdvdsdiag 27103 A "diagonal commutation" o...
fsumdvdscom 27104 A double commutation of di...
dvdsppwf1o 27105 A bijection from the divis...
dvdsflf1o 27106 A bijection from the numbe...
dvdsflsumcom 27107 A sum commutation from ` s...
fsumfldivdiaglem 27108 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 27109 The right-hand side of ~ d...
musum 27110 The sum of the Möbius...
musumsum 27111 Evaluate a collapsing sum ...
muinv 27112 The Möbius inversion ...
mpodvdsmulf1o 27113 If ` M ` and ` N ` are two...
fsumdvdsmul 27114 Product of two divisor sum...
dvdsmulf1o 27115 If ` M ` and ` N ` are two...
fsumdvdsmulOLD 27116 Obsolete version of ~ fsum...
sgmppw 27117 The value of the divisor f...
0sgmppw 27118 A prime power ` P ^ K ` ha...
1sgmprm 27119 The sum of divisors for a ...
1sgm2ppw 27120 The sum of the divisors of...
sgmmul 27121 The divisor function for f...
ppiublem1 27122 Lemma for ~ ppiub . (Cont...
ppiublem2 27123 A prime greater than ` 3 `...
ppiub 27124 An upper bound on the prim...
vmalelog 27125 The von Mangoldt function ...
chtlepsi 27126 The first Chebyshev functi...
chprpcl 27127 Closure of the second Cheb...
chpeq0 27128 The second Chebyshev funct...
chteq0 27129 The first Chebyshev functi...
chtleppi 27130 Upper bound on the ` theta...
chtublem 27131 Lemma for ~ chtub . (Cont...
chtub 27132 An upper bound on the Cheb...
fsumvma 27133 Rewrite a sum over the von...
fsumvma2 27134 Apply ~ fsumvma for the co...
pclogsum 27135 The logarithmic analogue o...
vmasum 27136 The sum of the von Mangold...
logfac2 27137 Another expression for the...
chpval2 27138 Express the second Chebysh...
chpchtsum 27139 The second Chebyshev funct...
chpub 27140 An upper bound on the seco...
logfacubnd 27141 A simple upper bound on th...
logfaclbnd 27142 A lower bound on the logar...
logfacbnd3 27143 Show the stronger statemen...
logfacrlim 27144 Combine the estimates ~ lo...
logexprlim 27145 The sum ` sum_ n <_ x , lo...
logfacrlim2 27146 Write out ~ logfacrlim as ...
mersenne 27147 A Mersenne prime is a prim...
perfect1 27148 Euclid's contribution to t...
perfectlem1 27149 Lemma for ~ perfect . (Co...
perfectlem2 27150 Lemma for ~ perfect . (Co...
perfect 27151 The Euclid-Euler theorem, ...
dchrval 27154 Value of the group of Diri...
dchrbas 27155 Base set of the group of D...
dchrelbas 27156 A Dirichlet character is a...
dchrelbas2 27157 A Dirichlet character is a...
dchrelbas3 27158 A Dirichlet character is a...
dchrelbasd 27159 A Dirichlet character is a...
dchrrcl 27160 Reverse closure for a Diri...
dchrmhm 27161 A Dirichlet character is a...
dchrf 27162 A Dirichlet character is a...
dchrelbas4 27163 A Dirichlet character is a...
dchrzrh1 27164 Value of a Dirichlet chara...
dchrzrhcl 27165 A Dirichlet character take...
dchrzrhmul 27166 A Dirichlet character is c...
dchrplusg 27167 Group operation on the gro...
dchrmul 27168 Group operation on the gro...
dchrmulcl 27169 Closure of the group opera...
dchrn0 27170 A Dirichlet character is n...
dchr1cl 27171 Closure of the principal D...
dchrmullid 27172 Left identity for the prin...
dchrinvcl 27173 Closure of the group inver...
dchrabl 27174 The set of Dirichlet chara...
dchrfi 27175 The group of Dirichlet cha...
dchrghm 27176 A Dirichlet character rest...
dchr1 27177 Value of the principal Dir...
dchreq 27178 A Dirichlet character is d...
dchrresb 27179 A Dirichlet character is d...
dchrabs 27180 A Dirichlet character take...
dchrinv 27181 The inverse of a Dirichlet...
dchrabs2 27182 A Dirichlet character take...
dchr1re 27183 The principal Dirichlet ch...
dchrptlem1 27184 Lemma for ~ dchrpt . (Con...
dchrptlem2 27185 Lemma for ~ dchrpt . (Con...
dchrptlem3 27186 Lemma for ~ dchrpt . (Con...
dchrpt 27187 For any element other than...
dchrsum2 27188 An orthogonality relation ...
dchrsum 27189 An orthogonality relation ...
sumdchr2 27190 Lemma for ~ sumdchr . (Co...
dchrhash 27191 There are exactly ` phi ( ...
sumdchr 27192 An orthogonality relation ...
dchr2sum 27193 An orthogonality relation ...
sum2dchr 27194 An orthogonality relation ...
bcctr 27195 Value of the central binom...
pcbcctr 27196 Prime count of a central b...
bcmono 27197 The binomial coefficient i...
bcmax 27198 The binomial coefficient t...
bcp1ctr 27199 Ratio of two central binom...
bclbnd 27200 A bound on the binomial co...
efexple 27201 Convert a bound on a power...
bpos1lem 27202 Lemma for ~ bpos1 . (Cont...
bpos1 27203 Bertrand's postulate, chec...
bposlem1 27204 An upper bound on the prim...
bposlem2 27205 There are no odd primes in...
bposlem3 27206 Lemma for ~ bpos . Since ...
bposlem4 27207 Lemma for ~ bpos . (Contr...
bposlem5 27208 Lemma for ~ bpos . Bound ...
bposlem6 27209 Lemma for ~ bpos . By usi...
bposlem7 27210 Lemma for ~ bpos . The fu...
bposlem8 27211 Lemma for ~ bpos . Evalua...
bposlem9 27212 Lemma for ~ bpos . Derive...
bpos 27213 Bertrand's postulate: ther...
zabsle1 27216 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 27217 When ` a ` is coprime to t...
lgslem2 27218 The set ` Z ` of all integ...
lgslem3 27219 The set ` Z ` of all integ...
lgslem4 27220 Lemma for ~ lgsfcl2 . (Co...
lgsval 27221 Value of the Legendre symb...
lgsfval 27222 Value of the function ` F ...
lgsfcl2 27223 The function ` F ` is clos...
lgscllem 27224 The Legendre symbol is an ...
lgsfcl 27225 Closure of the function ` ...
lgsfle1 27226 The function ` F ` has mag...
lgsval2lem 27227 Lemma for ~ lgsval2 . (Co...
lgsval4lem 27228 Lemma for ~ lgsval4 . (Co...
lgscl2 27229 The Legendre symbol is an ...
lgs0 27230 The Legendre symbol when t...
lgscl 27231 The Legendre symbol is an ...
lgsle1 27232 The Legendre symbol has ab...
lgsval2 27233 The Legendre symbol at a p...
lgs2 27234 The Legendre symbol at ` 2...
lgsval3 27235 The Legendre symbol at an ...
lgsvalmod 27236 The Legendre symbol is equ...
lgsval4 27237 Restate ~ lgsval for nonze...
lgsfcl3 27238 Closure of the function ` ...
lgsval4a 27239 Same as ~ lgsval4 for posi...
lgscl1 27240 The value of the Legendre ...
lgsneg 27241 The Legendre symbol is eit...
lgsneg1 27242 The Legendre symbol for no...
lgsmod 27243 The Legendre (Jacobi) symb...
lgsdilem 27244 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 27245 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 27246 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 27247 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 27248 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 27249 Lemma for ~ lgsdir2 . (Co...
lgsdir2 27250 The Legendre symbol is com...
lgsdirprm 27251 The Legendre symbol is com...
lgsdir 27252 The Legendre symbol is com...
lgsdilem2 27253 Lemma for ~ lgsdi . (Cont...
lgsdi 27254 The Legendre symbol is com...
lgsne0 27255 The Legendre symbol is non...
lgsabs1 27256 The Legendre symbol is non...
lgssq 27257 The Legendre symbol at a s...
lgssq2 27258 The Legendre symbol at a s...
lgsprme0 27259 The Legendre symbol at any...
1lgs 27260 The Legendre symbol at ` 1...
lgs1 27261 The Legendre symbol at ` 1...
lgsmodeq 27262 The Legendre (Jacobi) symb...
lgsmulsqcoprm 27263 The Legendre (Jacobi) symb...
lgsdirnn0 27264 Variation on ~ lgsdir vali...
lgsdinn0 27265 Variation on ~ lgsdi valid...
lgsqrlem1 27266 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 27267 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 27268 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 27269 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 27270 Lemma for ~ lgsqr . (Cont...
lgsqr 27271 The Legendre symbol for od...
lgsqrmod 27272 If the Legendre symbol of ...
lgsqrmodndvds 27273 If the Legendre symbol of ...
lgsdchrval 27274 The Legendre symbol functi...
lgsdchr 27275 The Legendre symbol functi...
gausslemma2dlem0a 27276 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 27277 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 27278 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 27279 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 27280 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 27281 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 27282 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 27283 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 27284 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 27285 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 27286 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 27287 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 27288 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 27289 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 27290 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 27291 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 27292 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 27293 Lemma 7 for ~ gausslemma2d...
gausslemma2d 27294 Gauss' Lemma (see also the...
lgseisenlem1 27295 Lemma for ~ lgseisen . If...
lgseisenlem2 27296 Lemma for ~ lgseisen . Th...
lgseisenlem3 27297 Lemma for ~ lgseisen . (C...
lgseisenlem4 27298 Lemma for ~ lgseisen . Th...
lgseisen 27299 Eisenstein's lemma, an exp...
lgsquadlem1 27300 Lemma for ~ lgsquad . Cou...
lgsquadlem2 27301 Lemma for ~ lgsquad . Cou...
lgsquadlem3 27302 Lemma for ~ lgsquad . (Co...
lgsquad 27303 The Law of Quadratic Recip...
lgsquad2lem1 27304 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 27305 Lemma for ~ lgsquad2 . (C...
lgsquad2 27306 Extend ~ lgsquad to coprim...
lgsquad3 27307 Extend ~ lgsquad2 to integ...
m1lgs 27308 The first supplement to th...
2lgslem1a1 27309 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 27310 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 27311 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 27312 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 27313 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 27314 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 27315 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 27316 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 27317 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 27318 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 27319 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 27320 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 27321 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 27322 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 27323 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 27324 Lemma 3 for ~ 2lgs . (Con...
2lgs2 27325 The Legendre symbol for ` ...
2lgslem4 27326 Lemma 4 for ~ 2lgs : speci...
2lgs 27327 The second supplement to t...
2lgsoddprmlem1 27328 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 27329 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 27330 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 27331 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 27332 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 27333 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 27334 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 27335 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 27336 The second supplement to t...
2sqlem1 27337 Lemma for ~ 2sq . (Contri...
2sqlem2 27338 Lemma for ~ 2sq . (Contri...
mul2sq 27339 Fibonacci's identity (actu...
2sqlem3 27340 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 27341 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 27342 Lemma for ~ 2sq . If a nu...
2sqlem6 27343 Lemma for ~ 2sq . If a nu...
2sqlem7 27344 Lemma for ~ 2sq . (Contri...
2sqlem8a 27345 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 27346 Lemma for ~ 2sq . (Contri...
2sqlem9 27347 Lemma for ~ 2sq . (Contri...
2sqlem10 27348 Lemma for ~ 2sq . Every f...
2sqlem11 27349 Lemma for ~ 2sq . (Contri...
2sq 27350 All primes of the form ` 4...
2sqblem 27351 Lemma for ~ 2sqb . (Contr...
2sqb 27352 The converse to ~ 2sq . (...
2sq2 27353 ` 2 ` is the sum of square...
2sqn0 27354 If the sum of two squares ...
2sqcoprm 27355 If the sum of two squares ...
2sqmod 27356 Given two decompositions o...
2sqmo 27357 There exists at most one d...
2sqnn0 27358 All primes of the form ` 4...
2sqnn 27359 All primes of the form ` 4...
addsq2reu 27360 For each complex number ` ...
addsqn2reu 27361 For each complex number ` ...
addsqrexnreu 27362 For each complex number, t...
addsqnreup 27363 There is no unique decompo...
addsq2nreurex 27364 For each complex number ` ...
addsqn2reurex2 27365 For each complex number ` ...
2sqreulem1 27366 Lemma 1 for ~ 2sqreu . (C...
2sqreultlem 27367 Lemma for ~ 2sqreult . (C...
2sqreultblem 27368 Lemma for ~ 2sqreultb . (...
2sqreunnlem1 27369 Lemma 1 for ~ 2sqreunn . ...
2sqreunnltlem 27370 Lemma for ~ 2sqreunnlt . ...
2sqreunnltblem 27371 Lemma for ~ 2sqreunnltb . ...
2sqreulem2 27372 Lemma 2 for ~ 2sqreu etc. ...
2sqreulem3 27373 Lemma 3 for ~ 2sqreu etc. ...
2sqreulem4 27374 Lemma 4 for ~ 2sqreu et. ...
2sqreunnlem2 27375 Lemma 2 for ~ 2sqreunn . ...
2sqreu 27376 There exists a unique deco...
2sqreunn 27377 There exists a unique deco...
2sqreult 27378 There exists a unique deco...
2sqreultb 27379 There exists a unique deco...
2sqreunnlt 27380 There exists a unique deco...
2sqreunnltb 27381 There exists a unique deco...
2sqreuop 27382 There exists a unique deco...
2sqreuopnn 27383 There exists a unique deco...
2sqreuoplt 27384 There exists a unique deco...
2sqreuopltb 27385 There exists a unique deco...
2sqreuopnnlt 27386 There exists a unique deco...
2sqreuopnnltb 27387 There exists a unique deco...
2sqreuopb 27388 There exists a unique deco...
chebbnd1lem1 27389 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 27390 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 27391 Lemma for ~ chebbnd1 : get...
chebbnd1 27392 The Chebyshev bound: The ...
chtppilimlem1 27393 Lemma for ~ chtppilim . (...
chtppilimlem2 27394 Lemma for ~ chtppilim . (...
chtppilim 27395 The ` theta ` function is ...
chto1ub 27396 The ` theta ` function is ...
chebbnd2 27397 The Chebyshev bound, part ...
chto1lb 27398 The ` theta ` function is ...
chpchtlim 27399 The ` psi ` and ` theta ` ...
chpo1ub 27400 The ` psi ` function is up...
chpo1ubb 27401 The ` psi ` function is up...
vmadivsum 27402 The sum of the von Mangold...
vmadivsumb 27403 Give a total bound on the ...
rplogsumlem1 27404 Lemma for ~ rplogsum . (C...
rplogsumlem2 27405 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 27406 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 27407 Lemma for ~ rpvmasum . Ca...
dchrisumlema 27408 Lemma for ~ dchrisum . Le...
dchrisumlem1 27409 Lemma for ~ dchrisum . Le...
dchrisumlem2 27410 Lemma for ~ dchrisum . Le...
dchrisumlem3 27411 Lemma for ~ dchrisum . Le...
dchrisum 27412 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 27413 Lemma for ~ dchrmusum and ...
dchrmusum2 27414 The sum of the Möbius...
dchrvmasumlem1 27415 An alternative expression ...
dchrvmasum2lem 27416 Give an expression for ` l...
dchrvmasum2if 27417 Combine the results of ~ d...
dchrvmasumlem2 27418 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 27419 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 27420 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 27421 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 27422 Lemma for ~ dchrvmasum . ...
dchrvmasumif 27423 An asymptotic approximatio...
dchrvmaeq0 27424 The set ` W ` is the colle...
dchrisum0fval 27425 Value of the function ` F ...
dchrisum0fmul 27426 The function ` F ` , the d...
dchrisum0ff 27427 The function ` F ` is a re...
dchrisum0flblem1 27428 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 27429 Lemma for ~ dchrisum0flb ....
dchrisum0flb 27430 The divisor sum of a real ...
dchrisum0fno1 27431 The sum ` sum_ k <_ x , F ...
rpvmasum2 27432 A partial result along the...
dchrisum0re 27433 Suppose ` X ` is a non-pri...
dchrisum0lema 27434 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 27435 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 27436 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 27437 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 27438 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 27439 Lemma for ~ dchrisum0 . (...
dchrisum0 27440 The sum ` sum_ n e. NN , X...
dchrisumn0 27441 The sum ` sum_ n e. NN , X...
dchrmusumlem 27442 The sum of the Möbius...
dchrvmasumlem 27443 The sum of the Möbius...
dchrmusum 27444 The sum of the Möbius...
dchrvmasum 27445 The sum of the von Mangold...
rpvmasum 27446 The sum of the von Mangold...
rplogsum 27447 The sum of ` log p / p ` o...
dirith2 27448 Dirichlet's theorem: there...
dirith 27449 Dirichlet's theorem: there...
mudivsum 27450 Asymptotic formula for ` s...
mulogsumlem 27451 Lemma for ~ mulogsum . (C...
mulogsum 27452 Asymptotic formula for ...
logdivsum 27453 Asymptotic analysis of ...
mulog2sumlem1 27454 Asymptotic formula for ...
mulog2sumlem2 27455 Lemma for ~ mulog2sum . (...
mulog2sumlem3 27456 Lemma for ~ mulog2sum . (...
mulog2sum 27457 Asymptotic formula for ...
vmalogdivsum2 27458 The sum ` sum_ n <_ x , La...
vmalogdivsum 27459 The sum ` sum_ n <_ x , La...
2vmadivsumlem 27460 Lemma for ~ 2vmadivsum . ...
2vmadivsum 27461 The sum ` sum_ m n <_ x , ...
logsqvma 27462 A formula for ` log ^ 2 ( ...
logsqvma2 27463 The Möbius inverse of...
log2sumbnd 27464 Bound on the difference be...
selberglem1 27465 Lemma for ~ selberg . Est...
selberglem2 27466 Lemma for ~ selberg . (Co...
selberglem3 27467 Lemma for ~ selberg . Est...
selberg 27468 Selberg's symmetry formula...
selbergb 27469 Convert eventual boundedne...
selberg2lem 27470 Lemma for ~ selberg2 . Eq...
selberg2 27471 Selberg's symmetry formula...
selberg2b 27472 Convert eventual boundedne...
chpdifbndlem1 27473 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 27474 Lemma for ~ chpdifbnd . (...
chpdifbnd 27475 A bound on the difference ...
logdivbnd 27476 A bound on a sum of logs, ...
selberg3lem1 27477 Introduce a log weighting ...
selberg3lem2 27478 Lemma for ~ selberg3 . Eq...
selberg3 27479 Introduce a log weighting ...
selberg4lem1 27480 Lemma for ~ selberg4 . Eq...
selberg4 27481 The Selberg symmetry formu...
pntrval 27482 Define the residual of the...
pntrf 27483 Functionality of the resid...
pntrmax 27484 There is a bound on the re...
pntrsumo1 27485 A bound on a sum over ` R ...
pntrsumbnd 27486 A bound on a sum over ` R ...
pntrsumbnd2 27487 A bound on a sum over ` R ...
selbergr 27488 Selberg's symmetry formula...
selberg3r 27489 Selberg's symmetry formula...
selberg4r 27490 Selberg's symmetry formula...
selberg34r 27491 The sum of ~ selberg3r and...
pntsval 27492 Define the "Selberg functi...
pntsf 27493 Functionality of the Selbe...
selbergs 27494 Selberg's symmetry formula...
selbergsb 27495 Selberg's symmetry formula...
pntsval2 27496 The Selberg function can b...
pntrlog2bndlem1 27497 The sum of ~ selberg3r and...
pntrlog2bndlem2 27498 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 27499 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 27500 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 27501 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 27502 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 27503 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 27504 A bound on ` R ( x ) log ^...
pntpbnd1a 27505 Lemma for ~ pntpbnd . (Co...
pntpbnd1 27506 Lemma for ~ pntpbnd . (Co...
pntpbnd2 27507 Lemma for ~ pntpbnd . (Co...
pntpbnd 27508 Lemma for ~ pnt . Establi...
pntibndlem1 27509 Lemma for ~ pntibnd . (Co...
pntibndlem2a 27510 Lemma for ~ pntibndlem2 . ...
pntibndlem2 27511 Lemma for ~ pntibnd . The...
pntibndlem3 27512 Lemma for ~ pntibnd . Pac...
pntibnd 27513 Lemma for ~ pnt . Establi...
pntlemd 27514 Lemma for ~ pnt . Closure...
pntlemc 27515 Lemma for ~ pnt . Closure...
pntlema 27516 Lemma for ~ pnt . Closure...
pntlemb 27517 Lemma for ~ pnt . Unpack ...
pntlemg 27518 Lemma for ~ pnt . Closure...
pntlemh 27519 Lemma for ~ pnt . Bounds ...
pntlemn 27520 Lemma for ~ pnt . The "na...
pntlemq 27521 Lemma for ~ pntlemj . (Co...
pntlemr 27522 Lemma for ~ pntlemj . (Co...
pntlemj 27523 Lemma for ~ pnt . The ind...
pntlemi 27524 Lemma for ~ pnt . Elimina...
pntlemf 27525 Lemma for ~ pnt . Add up ...
pntlemk 27526 Lemma for ~ pnt . Evaluat...
pntlemo 27527 Lemma for ~ pnt . Combine...
pntleme 27528 Lemma for ~ pnt . Package...
pntlem3 27529 Lemma for ~ pnt . Equatio...
pntlemp 27530 Lemma for ~ pnt . Wrappin...
pntleml 27531 Lemma for ~ pnt . Equatio...
pnt3 27532 The Prime Number Theorem, ...
pnt2 27533 The Prime Number Theorem, ...
pnt 27534 The Prime Number Theorem: ...
abvcxp 27535 Raising an absolute value ...
padicfval 27536 Value of the p-adic absolu...
padicval 27537 Value of the p-adic absolu...
ostth2lem1 27538 Lemma for ~ ostth2 , altho...
qrngbas 27539 The base set of the field ...
qdrng 27540 The rationals form a divis...
qrng0 27541 The zero element of the fi...
qrng1 27542 The unity element of the f...
qrngneg 27543 The additive inverse in th...
qrngdiv 27544 The division operation in ...
qabvle 27545 By using induction on ` N ...
qabvexp 27546 Induct the product rule ~ ...
ostthlem1 27547 Lemma for ~ ostth . If tw...
ostthlem2 27548 Lemma for ~ ostth . Refin...
qabsabv 27549 The regular absolute value...
padicabv 27550 The p-adic absolute value ...
padicabvf 27551 The p-adic absolute value ...
padicabvcxp 27552 All positive powers of the...
ostth1 27553 - Lemma for ~ ostth : triv...
ostth2lem2 27554 Lemma for ~ ostth2 . (Con...
ostth2lem3 27555 Lemma for ~ ostth2 . (Con...
ostth2lem4 27556 Lemma for ~ ostth2 . (Con...
ostth2 27557 - Lemma for ~ ostth : regu...
ostth3 27558 - Lemma for ~ ostth : p-ad...
ostth 27559 Ostrowski's theorem, which...
elno 27566 Membership in the surreals...
sltval 27567 The value of the surreal l...
bdayval 27568 The value of the birthday ...
nofun 27569 A surreal is a function. ...
nodmon 27570 The domain of a surreal is...
norn 27571 The range of a surreal is ...
nofnbday 27572 A surreal is a function ov...
nodmord 27573 The domain of a surreal ha...
elno2 27574 An alternative condition f...
elno3 27575 Another condition for memb...
sltval2 27576 Alternate expression for s...
nofv 27577 The function value of a su...
nosgnn0 27578 ` (/) ` is not a surreal s...
nosgnn0i 27579 If ` X ` is a surreal sign...
noreson 27580 The restriction of a surre...
sltintdifex 27581 If ` A
sltres 27582 If the restrictions of two...
noxp1o 27583 The Cartesian product of a...
noseponlem 27584 Lemma for ~ nosepon . Con...
nosepon 27585 Given two unequal surreals...
noextend 27586 Extending a surreal by one...
noextendseq 27587 Extend a surreal by a sequ...
noextenddif 27588 Calculate the place where ...
noextendlt 27589 Extending a surreal with a...
noextendgt 27590 Extending a surreal with a...
nolesgn2o 27591 Given ` A ` less-than or e...
nolesgn2ores 27592 Given ` A ` less-than or e...
nogesgn1o 27593 Given ` A ` greater than o...
nogesgn1ores 27594 Given ` A ` greater than o...
sltsolem1 27595 Lemma for ~ sltso . The "...
sltso 27596 Less-than totally orders t...
bdayfo 27597 The birthday function maps...
fvnobday 27598 The value of a surreal at ...
nosepnelem 27599 Lemma for ~ nosepne . (Co...
nosepne 27600 The value of two non-equal...
nosep1o 27601 If the value of a surreal ...
nosep2o 27602 If the value of a surreal ...
nosepdmlem 27603 Lemma for ~ nosepdm . (Co...
nosepdm 27604 The first place two surrea...
nosepeq 27605 The values of two surreals...
nosepssdm 27606 Given two non-equal surrea...
nodenselem4 27607 Lemma for ~ nodense . Sho...
nodenselem5 27608 Lemma for ~ nodense . If ...
nodenselem6 27609 The restriction of a surre...
nodenselem7 27610 Lemma for ~ nodense . ` A ...
nodenselem8 27611 Lemma for ~ nodense . Giv...
nodense 27612 Given two distinct surreal...
bdayimaon 27613 Lemma for full-eta propert...
nolt02olem 27614 Lemma for ~ nolt02o . If ...
nolt02o 27615 Given ` A ` less-than ` B ...
nogt01o 27616 Given ` A ` greater than `...
noresle 27617 Restriction law for surrea...
nomaxmo 27618 A class of surreals has at...
nominmo 27619 A class of surreals has at...
nosupprefixmo 27620 In any class of surreals, ...
noinfprefixmo 27621 In any class of surreals, ...
nosupcbv 27622 Lemma to change bound vari...
nosupno 27623 The next several theorems ...
nosupdm 27624 The domain of the surreal ...
nosupbday 27625 Birthday bounding law for ...
nosupfv 27626 The value of surreal supre...
nosupres 27627 A restriction law for surr...
nosupbnd1lem1 27628 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 27629 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 27630 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 27631 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 27632 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 27633 Lemma for ~ nosupbnd1 . E...
nosupbnd1 27634 Bounding law from below fo...
nosupbnd2lem1 27635 Bounding law from above wh...
nosupbnd2 27636 Bounding law from above fo...
noinfcbv 27637 Change bound variables for...
noinfno 27638 The next several theorems ...
noinfdm 27639 Next, we calculate the dom...
noinfbday 27640 Birthday bounding law for ...
noinffv 27641 The value of surreal infim...
noinfres 27642 The restriction of surreal...
noinfbnd1lem1 27643 Lemma for ~ noinfbnd1 . E...
noinfbnd1lem2 27644 Lemma for ~ noinfbnd1 . W...
noinfbnd1lem3 27645 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem4 27646 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem5 27647 Lemma for ~ noinfbnd1 . I...
noinfbnd1lem6 27648 Lemma for ~ noinfbnd1 . E...
noinfbnd1 27649 Bounding law from above fo...
noinfbnd2lem1 27650 Bounding law from below wh...
noinfbnd2 27651 Bounding law from below fo...
nosupinfsep 27652 Given two sets of surreals...
noetasuplem1 27653 Lemma for ~ noeta . Estab...
noetasuplem2 27654 Lemma for ~ noeta . The r...
noetasuplem3 27655 Lemma for ~ noeta . ` Z ` ...
noetasuplem4 27656 Lemma for ~ noeta . When ...
noetainflem1 27657 Lemma for ~ noeta . Estab...
noetainflem2 27658 Lemma for ~ noeta . The r...
noetainflem3 27659 Lemma for ~ noeta . ` W ` ...
noetainflem4 27660 Lemma for ~ noeta . If ` ...
noetalem1 27661 Lemma for ~ noeta . Eithe...
noetalem2 27662 Lemma for ~ noeta . The f...
noeta 27663 The full-eta axiom for the...
sltirr 27666 Surreal less-than is irref...
slttr 27667 Surreal less-than is trans...
sltasym 27668 Surreal less-than is asymm...
sltlin 27669 Surreal less-than obeys tr...
slttrieq2 27670 Trichotomy law for surreal...
slttrine 27671 Trichotomy law for surreal...
slenlt 27672 Surreal less-than or equal...
sltnle 27673 Surreal less-than in terms...
sleloe 27674 Surreal less-than or equal...
sletri3 27675 Trichotomy law for surreal...
sltletr 27676 Surreal transitive law. (...
slelttr 27677 Surreal transitive law. (...
sletr 27678 Surreal transitive law. (...
slttrd 27679 Surreal less-than is trans...
sltletrd 27680 Surreal less-than is trans...
slelttrd 27681 Surreal less-than is trans...
sletrd 27682 Surreal less-than or equal...
slerflex 27683 Surreal less-than or equal...
sletric 27684 Surreal trichotomy law. (...
maxs1 27685 A surreal is less than or ...
maxs2 27686 A surreal is less than or ...
mins1 27687 The minimum of two surreal...
mins2 27688 The minimum of two surreal...
sltled 27689 Surreal less-than implies ...
sltne 27690 Surreal less-than implies ...
sltlend 27691 Surreal less-than in terms...
bdayfun 27692 The birthday function is a...
bdayfn 27693 The birthday function is a...
bdaydm 27694 The birthday function's do...
bdayrn 27695 The birthday function's ra...
bdayelon 27696 The value of the birthday ...
nocvxminlem 27697 Lemma for ~ nocvxmin . Gi...
nocvxmin 27698 Given a nonempty convex cl...
noprc 27699 The surreal numbers are a ...
noeta2 27704 A version of ~ noeta with ...
brsslt 27705 Binary relation form of th...
ssltex1 27706 The first argument of surr...
ssltex2 27707 The second argument of sur...
ssltss1 27708 The first argument of surr...
ssltss2 27709 The second argument of sur...
ssltsep 27710 The separation property of...
ssltd 27711 Deduce surreal set less-th...
ssltsn 27712 Surreal set less-than of t...
ssltsepc 27713 Two elements of separated ...
ssltsepcd 27714 Two elements of separated ...
sssslt1 27715 Relation between surreal s...
sssslt2 27716 Relation between surreal s...
nulsslt 27717 The empty set is less-than...
nulssgt 27718 The empty set is greater t...
conway 27719 Conway's Simplicity Theore...
scutval 27720 The value of the surreal c...
scutcut 27721 Cut properties of the surr...
scutcl 27722 Closure law for surreal cu...
scutcld 27723 Closure law for surreal cu...
scutbday 27724 The birthday of the surrea...
eqscut 27725 Condition for equality to ...
eqscut2 27726 Condition for equality to ...
sslttr 27727 Transitive law for surreal...
ssltun1 27728 Union law for surreal set ...
ssltun2 27729 Union law for surreal set ...
scutun12 27730 Union law for surreal cuts...
dmscut 27731 The domain of the surreal ...
scutf 27732 Functionality statement fo...
etasslt 27733 A restatement of ~ noeta u...
etasslt2 27734 A version of ~ etasslt wit...
scutbdaybnd 27735 An upper bound on the birt...
scutbdaybnd2 27736 An upper bound on the birt...
scutbdaybnd2lim 27737 An upper bound on the birt...
scutbdaylt 27738 If a surreal lies in a gap...
slerec 27739 A comparison law for surre...
sltrec 27740 A comparison law for surre...
ssltdisj 27741 If ` A ` preceeds ` B ` , ...
0sno 27746 Surreal zero is a surreal....
1sno 27747 Surreal one is a surreal. ...
bday0s 27748 Calculate the birthday of ...
0slt1s 27749 Surreal zero is less than ...
bday0b 27750 The only surreal with birt...
bday1s 27751 The birthday of surreal on...
cuteq0 27752 Condition for a surreal cu...
cuteq1 27753 Condition for a surreal cu...
sgt0ne0 27754 A positive surreal is not ...
sgt0ne0d 27755 A positive surreal is not ...
madeval 27766 The value of the made by f...
madeval2 27767 Alternative characterizati...
oldval 27768 The value of the old optio...
newval 27769 The value of the new optio...
madef 27770 The made function is a fun...
oldf 27771 The older function is a fu...
newf 27772 The new function is a func...
old0 27773 No surreal is older than `...
madessno 27774 Made sets are surreals. (...
oldssno 27775 Old sets are surreals. (C...
newssno 27776 New sets are surreals. (C...
leftval 27777 The value of the left opti...
rightval 27778 The value of the right opt...
leftf 27779 The functionality of the l...
rightf 27780 The functionality of the r...
elmade 27781 Membership in the made fun...
elmade2 27782 Membership in the made fun...
elold 27783 Membership in an old set. ...
ssltleft 27784 A surreal is greater than ...
ssltright 27785 A surreal is less than its...
lltropt 27786 The left options of a surr...
made0 27787 The only surreal made on d...
new0 27788 The only surreal new on da...
old1 27789 The only surreal older tha...
madess 27790 If ` A ` is less than or e...
oldssmade 27791 The older-than set is a su...
leftssold 27792 The left options are a sub...
rightssold 27793 The right options are a su...
leftssno 27794 The left set of a surreal ...
rightssno 27795 The right set of a surreal...
madecut 27796 Given a section that is a ...
madeun 27797 The made set is the union ...
madeoldsuc 27798 The made set is the old se...
oldsuc 27799 The value of the old set a...
oldlim 27800 The value of the old set a...
madebdayim 27801 If a surreal is a member o...
oldbdayim 27802 If ` X ` is in the old set...
oldirr 27803 No surreal is a member of ...
leftirr 27804 No surreal is a member of ...
rightirr 27805 No surreal is a member of ...
left0s 27806 The left set of ` 0s ` is ...
right0s 27807 The right set of ` 0s ` is...
left1s 27808 The left set of ` 1s ` is ...
right1s 27809 The right set of ` 1s ` is...
lrold 27810 The union of the left and ...
madebdaylemold 27811 Lemma for ~ madebday . If...
madebdaylemlrcut 27812 Lemma for ~ madebday . If...
madebday 27813 A surreal is part of the s...
oldbday 27814 A surreal is part of the s...
newbday 27815 A surreal is an element of...
lrcut 27816 A surreal is equal to the ...
scutfo 27817 The surreal cut function i...
sltn0 27818 If ` X ` is less than ` Y ...
lruneq 27819 If two surreals share a bi...
sltlpss 27820 If two surreals share a bi...
slelss 27821 If two surreals ` A ` and ...
0elold 27822 Zero is in the old set of ...
0elleft 27823 Zero is in the left set of...
0elright 27824 Zero is in the right set o...
cofsslt 27825 If every element of ` A ` ...
coinitsslt 27826 If ` B ` is coinitial with...
cofcut1 27827 If ` C ` is cofinal with `...
cofcut1d 27828 If ` C ` is cofinal with `...
cofcut2 27829 If ` A ` and ` C ` are mut...
cofcut2d 27830 If ` A ` and ` C ` are mut...
cofcutr 27831 If ` X ` is the cut of ` A...
cofcutr1d 27832 If ` X ` is the cut of ` A...
cofcutr2d 27833 If ` X ` is the cut of ` A...
cofcutrtime 27834 If ` X ` is the cut of ` A...
cofcutrtime1d 27835 If ` X ` is a timely cut o...
cofcutrtime2d 27836 If ` X ` is a timely cut o...
cofss 27837 Cofinality for a subset. ...
coiniss 27838 Coinitiality for a subset....
cutlt 27839 Eliminating all elements b...
cutpos 27840 Reduce the elements of a c...
lrrecval 27843 The next step in the devel...
lrrecval2 27844 Next, we establish an alte...
lrrecpo 27845 Now, we establish that ` R...
lrrecse 27846 Next, we show that ` R ` i...
lrrecfr 27847 Now we show that ` R ` is ...
lrrecpred 27848 Finally, we calculate the ...
noinds 27849 Induction principle for a ...
norecfn 27850 Surreal recursion over one...
norecov 27851 Calculate the value of the...
noxpordpo 27854 To get through most of the...
noxpordfr 27855 Next we establish the foun...
noxpordse 27856 Next we establish the set-...
noxpordpred 27857 Next we calculate the pred...
no2indslem 27858 Double induction on surrea...
no2inds 27859 Double induction on surrea...
norec2fn 27860 The double-recursion opera...
norec2ov 27861 The value of the double-re...
no3inds 27862 Triple induction over surr...
addsfn 27865 Surreal addition is a func...
addsval 27866 The value of surreal addit...
addsval2 27867 The value of surreal addit...
addsrid 27868 Surreal addition to zero i...
addsridd 27869 Surreal addition to zero i...
addscom 27870 Surreal addition commutes....
addscomd 27871 Surreal addition commutes....
addslid 27872 Surreal addition to zero i...
addsproplem1 27873 Lemma for surreal addition...
addsproplem2 27874 Lemma for surreal addition...
addsproplem3 27875 Lemma for surreal addition...
addsproplem4 27876 Lemma for surreal addition...
addsproplem5 27877 Lemma for surreal addition...
addsproplem6 27878 Lemma for surreal addition...
addsproplem7 27879 Lemma for surreal addition...
addsprop 27880 Inductively show that surr...
addscutlem 27881 Lemma for ~ addscut . Sho...
addscut 27882 Demonstrate the cut proper...
addscut2 27883 Show that the cut involved...
addscld 27884 Surreal numbers are closed...
addscl 27885 Surreal numbers are closed...
addsf 27886 Function statement for sur...
addsfo 27887 Surreal addition is onto. ...
peano2no 27888 A theorem for surreals tha...
sltadd1im 27889 Surreal less-than is prese...
sltadd2im 27890 Surreal less-than is prese...
sleadd1im 27891 Surreal less-than or equal...
sleadd2im 27892 Surreal less-than or equal...
sleadd1 27893 Addition to both sides of ...
sleadd2 27894 Addition to both sides of ...
sltadd2 27895 Addition to both sides of ...
sltadd1 27896 Addition to both sides of ...
addscan2 27897 Cancellation law for surre...
addscan1 27898 Cancellation law for surre...
sleadd1d 27899 Addition to both sides of ...
sleadd2d 27900 Addition to both sides of ...
sltadd2d 27901 Addition to both sides of ...
sltadd1d 27902 Addition to both sides of ...
addscan2d 27903 Cancellation law for surre...
addscan1d 27904 Cancellation law for surre...
addsuniflem 27905 Lemma for ~ addsunif . St...
addsunif 27906 Uniformity theorem for sur...
addsasslem1 27907 Lemma for addition associa...
addsasslem2 27908 Lemma for addition associa...
addsass 27909 Surreal addition is associ...
addsassd 27910 Surreal addition is associ...
adds32d 27911 Commutative/associative la...
adds12d 27912 Commutative/associative la...
adds4d 27913 Rearrangement of four term...
adds42d 27914 Rearrangement of four term...
sltaddpos1d 27915 Addition of a positive num...
sltaddpos2d 27916 Addition of a positive num...
slt2addd 27917 Adding both sides of two s...
addsgt0d 27918 The sum of two positive su...
negsfn 27923 Surreal negation is a func...
subsfn 27924 Surreal subtraction is a f...
negsval 27925 The value of the surreal n...
negs0s 27926 Negative surreal zero is s...
negsproplem1 27927 Lemma for surreal negation...
negsproplem2 27928 Lemma for surreal negation...
negsproplem3 27929 Lemma for surreal negation...
negsproplem4 27930 Lemma for surreal negation...
negsproplem5 27931 Lemma for surreal negation...
negsproplem6 27932 Lemma for surreal negation...
negsproplem7 27933 Lemma for surreal negation...
negsprop 27934 Show closure and ordering ...
negscl 27935 The surreals are closed un...
negscld 27936 The surreals are closed un...
sltnegim 27937 The forward direction of t...
negscut 27938 The cut properties of surr...
negscut2 27939 The cut that defines surre...
negsid 27940 Surreal addition of a numb...
negsidd 27941 Surreal addition of a numb...
negsex 27942 Every surreal has a negati...
negnegs 27943 A surreal is equal to the ...
sltneg 27944 Negative of both sides of ...
sleneg 27945 Negative of both sides of ...
sltnegd 27946 Negative of both sides of ...
slenegd 27947 Negative of both sides of ...
negs11 27948 Surreal negation is one-to...
negsdi 27949 Distribution of surreal ne...
slt0neg2d 27950 Comparison of a surreal an...
negsf 27951 Function statement for sur...
negsfo 27952 Function statement for sur...
negsf1o 27953 Surreal negation is a bije...
negsunif 27954 Uniformity property for su...
negsbdaylem 27955 Lemma for ~ negsbday . Bo...
negsbday 27956 Negation of a surreal numb...
subsval 27957 The value of surreal subtr...
subsvald 27958 The value of surreal subtr...
subscl 27959 Closure law for surreal su...
subscld 27960 Closure law for surreal su...
negsval2 27961 Surreal negation in terms ...
negsval2d 27962 Surreal negation in terms ...
subsid1 27963 Identity law for subtracti...
subsid 27964 Subtraction of a surreal f...
subadds 27965 Relationship between addit...
subaddsd 27966 Relationship between addit...
pncans 27967 Cancellation law for surre...
pncan3s 27968 Subtraction and addition o...
pncan2s 27969 Cancellation law for surre...
npcans 27970 Cancellation law for surre...
sltsub1 27971 Subtraction from both side...
sltsub2 27972 Subtraction from both side...
sltsub1d 27973 Subtraction from both side...
sltsub2d 27974 Subtraction from both side...
negsubsdi2d 27975 Distribution of negative o...
addsubsassd 27976 Associative-type law for s...
addsubsd 27977 Law for surreal addition a...
sltsubsubbd 27978 Equivalence for the surrea...
sltsubsub2bd 27979 Equivalence for the surrea...
sltsubsub3bd 27980 Equivalence for the surrea...
slesubsubbd 27981 Equivalence for the surrea...
slesubsub2bd 27982 Equivalence for the surrea...
slesubsub3bd 27983 Equivalence for the surrea...
sltsubaddd 27984 Surreal less-than relation...
sltsubadd2d 27985 Surreal less-than relation...
sltaddsubd 27986 Surreal less-than relation...
sltaddsub2d 27987 Surreal less-than relation...
subsubs4d 27988 Law for double surreal sub...
subsubs2d 27989 Law for double surreal sub...
nncansd 27990 Cancellation law for surre...
posdifsd 27991 Comparison of two surreals...
sltsubposd 27992 Subtraction of a positive ...
mulsfn 27995 Surreal multiplication is ...
mulsval 27996 The value of surreal multi...
mulsval2lem 27997 Lemma for ~ mulsval2 . Ch...
mulsval2 27998 The value of surreal multi...
muls01 27999 Surreal multiplication by ...
mulsrid 28000 Surreal one is a right ide...
mulsridd 28001 Surreal one is a right ide...
mulsproplemcbv 28002 Lemma for surreal multipli...
mulsproplem1 28003 Lemma for surreal multipli...
mulsproplem2 28004 Lemma for surreal multipli...
mulsproplem3 28005 Lemma for surreal multipli...
mulsproplem4 28006 Lemma for surreal multipli...
mulsproplem5 28007 Lemma for surreal multipli...
mulsproplem6 28008 Lemma for surreal multipli...
mulsproplem7 28009 Lemma for surreal multipli...
mulsproplem8 28010 Lemma for surreal multipli...
mulsproplem9 28011 Lemma for surreal multipli...
mulsproplem10 28012 Lemma for surreal multipli...
mulsproplem11 28013 Lemma for surreal multipli...
mulsproplem12 28014 Lemma for surreal multipli...
mulsproplem13 28015 Lemma for surreal multipli...
mulsproplem14 28016 Lemma for surreal multipli...
mulsprop 28017 Surreals are closed under ...
mulscutlem 28018 Lemma for ~ mulscut . Sta...
mulscut 28019 Show the cut properties of...
mulscut2 28020 Show that the cut involved...
mulscl 28021 The surreals are closed un...
mulscld 28022 The surreals are closed un...
sltmul 28023 An ordering relationship f...
sltmuld 28024 An ordering relationship f...
slemuld 28025 An ordering relationship f...
mulscom 28026 Surreal multiplication com...
mulscomd 28027 Surreal multiplication com...
muls02 28028 Surreal multiplication by ...
mulslid 28029 Surreal one is a left iden...
mulslidd 28030 Surreal one is a left iden...
mulsgt0 28031 The product of two positiv...
mulsgt0d 28032 The product of two positiv...
mulsge0d 28033 The product of two non-neg...
ssltmul1 28034 One surreal set less-than ...
ssltmul2 28035 One surreal set less-than ...
mulsuniflem 28036 Lemma for ~ mulsunif . St...
mulsunif 28037 Surreal multiplication has...
addsdilem1 28038 Lemma for surreal distribu...
addsdilem2 28039 Lemma for surreal distribu...
addsdilem3 28040 Lemma for ~ addsdi . Show...
addsdilem4 28041 Lemma for ~ addsdi . Show...
addsdi 28042 Distributive law for surre...
addsdid 28043 Distributive law for surre...
addsdird 28044 Distributive law for surre...
subsdid 28045 Distribution of surreal mu...
subsdird 28046 Distribution of surreal mu...
mulnegs1d 28047 Product with negative is n...
mulnegs2d 28048 Product with negative is n...
mul2negsd 28049 Surreal product of two neg...
mulsasslem1 28050 Lemma for ~ mulsass . Exp...
mulsasslem2 28051 Lemma for ~ mulsass . Exp...
mulsasslem3 28052 Lemma for ~ mulsass . Dem...
mulsass 28053 Associative law for surrea...
mulsassd 28054 Associative law for surrea...
muls4d 28055 Rearrangement of four surr...
mulsunif2lem 28056 Lemma for ~ mulsunif2 . S...
mulsunif2 28057 Alternate expression for s...
sltmul2 28058 Multiplication of both sid...
sltmul2d 28059 Multiplication of both sid...
sltmul1d 28060 Multiplication of both sid...
slemul2d 28061 Multiplication of both sid...
slemul1d 28062 Multiplication of both sid...
sltmulneg1d 28063 Multiplication of both sid...
sltmulneg2d 28064 Multiplication of both sid...
mulscan2dlem 28065 Lemma for ~ mulscan2d . C...
mulscan2d 28066 Cancellation of surreal mu...
mulscan1d 28067 Cancellation of surreal mu...
muls12d 28068 Commutative/associative la...
slemul1ad 28069 Multiplication of both sid...
sltmul12ad 28070 Comparison of the product ...
divsmo 28071 Uniqueness of surreal inve...
muls0ord 28072 If a surreal product is ze...
mulsne0bd 28073 The product of two non-zer...
divsval 28076 The value of surreal divis...
norecdiv 28077 If a surreal has a recipro...
noreceuw 28078 If a surreal has a recipro...
divsmulw 28079 Relationship between surre...
divsmulwd 28080 Relationship between surre...
divsclw 28081 Weak division closure law....
divsclwd 28082 Weak division closure law....
divscan2wd 28083 A weak cancellation law fo...
divscan1wd 28084 A weak cancellation law fo...
sltdivmulwd 28085 Surreal less-than relation...
sltdivmul2wd 28086 Surreal less-than relation...
sltmuldivwd 28087 Surreal less-than relation...
sltmuldiv2wd 28088 Surreal less-than relation...
divsasswd 28089 An associative law for sur...
divs1 28090 A surreal divided by one i...
precsexlemcbv 28091 Lemma for surreal reciproc...
precsexlem1 28092 Lemma for surreal reciproc...
precsexlem2 28093 Lemma for surreal reciproc...
precsexlem3 28094 Lemma for surreal reciproc...
precsexlem4 28095 Lemma for surreal reciproc...
precsexlem5 28096 Lemma for surreal reciproc...
precsexlem6 28097 Lemma for surreal reciproc...
precsexlem7 28098 Lemma for surreal reciproc...
precsexlem8 28099 Lemma for surreal reciproc...
precsexlem9 28100 Lemma for surreal reciproc...
precsexlem10 28101 Lemma for surreal reciproc...
precsexlem11 28102 Lemma for surreal reciproc...
precsex 28103 Every positive surreal has...
recsex 28104 A non-zero surreal has a r...
recsexd 28105 A non-zero surreal has a r...
divsmul 28106 Relationship between surre...
divsmuld 28107 Relationship between surre...
divscl 28108 Surreal division closure l...
divscld 28109 Surreal division closure l...
divscan2d 28110 A cancellation law for sur...
divscan1d 28111 A cancellation law for sur...
sltdivmuld 28112 Surreal less-than relation...
sltdivmul2d 28113 Surreal less-than relation...
sltmuldivd 28114 Surreal less-than relation...
sltmuldiv2d 28115 Surreal less-than relation...
divsassd 28116 An associative law for sur...
divmuldivsd 28117 Multiplication of two surr...
abssval 28120 The value of surreal absol...
absscl 28121 Closure law for surreal ab...
abssid 28122 The absolute value of a no...
abs0s 28123 The absolute value of surr...
abssnid 28124 For a negative surreal, it...
absmuls 28125 Surreal absolute value dis...
abssge0 28126 The absolute value of a su...
abssor 28127 The absolute value of a su...
abssneg 28128 Surreal absolute value of ...
sleabs 28129 A surreal is less than or ...
absslt 28130 Surreal absolute value and...
elons 28133 Membership in the class of...
onssno 28134 The surreal ordinals are a...
onsno 28135 A surreal ordinal is a sur...
0ons 28136 Surreal zero is a surreal ...
1ons 28137 Surreal one is a surreal o...
elons2 28138 A surreal is ordinal iff i...
elons2d 28139 The cut of any set of surr...
sltonold 28140 The class of ordinals less...
sltonex 28141 The class of ordinals less...
onscutleft 28142 A surreal ordinal is equal...
seqsex 28145 Existence of the surreal s...
seqseq123d 28146 Equality deduction for the...
nfseqs 28147 Hypothesis builder for the...
seqsval 28148 The value of the surreal s...
noseqex 28149 The next several theorems ...
noseq0 28150 The surreal ` A ` is a mem...
noseqp1 28151 One plus an element of ` Z...
noseqind 28152 Peano's inductive postulat...
noseqinds 28153 Induction schema for surre...
noseqssno 28154 A surreal sequence is a su...
noseqno 28155 An element of a surreal se...
om2noseq0 28156 The mapping ` G ` is a one...
om2noseqsuc 28157 The value of ` G ` at a su...
om2noseqfo 28158 Function statement for ` G...
om2noseqlt 28159 Surreal less-than relation...
om2noseqlt2 28160 The mapping ` G ` preserve...
om2noseqf1o 28161 ` G ` is a bijection. (Co...
om2noseqiso 28162 ` G ` is an isomorphism fr...
om2noseqoi 28163 An alternative definition ...
om2noseqrdg 28164 A helper lemma for the val...
noseqrdglem 28165 A helper lemma for the val...
noseqrdgfn 28166 The recursive definition g...
noseqrdg0 28167 Initial value of a recursi...
noseqrdgsuc 28168 Successor value of a recur...
seqsfn 28169 The surreal sequence build...
seqs1 28170 The value of the surreal s...
seqsp1 28171 The value of the surreal s...
n0sex 28176 The set of all non-negativ...
nnsex 28177 The set of all positive su...
peano5n0s 28178 Peano's inductive postulat...
n0ssno 28179 The non-negative surreal i...
nnssn0s 28180 The positive surreal integ...
nnssno 28181 The positive surreal integ...
n0sno 28182 A non-negative surreal int...
nnsno 28183 A positive surreal integer...
n0snod 28184 A non-negative surreal int...
nnsnod 28185 A positive surreal integer...
0n0s 28186 Peano postulate: ` 0s ` is...
peano2n0s 28187 Peano postulate: the succe...
dfn0s2 28188 Alternate definition of th...
n0sind 28189 Principle of Mathematical ...
n0scut 28190 A cut form for surreal nat...
n0ons 28191 A surreal natural is a sur...
nnne0s 28192 A surreal positive integer...
n0sge0 28193 A non-negative integer is ...
nnsgt0 28194 A positive integer is grea...
elnns 28195 Membership in the positive...
elnns2 28196 A positive surreal integer...
n0addscl 28197 The non-negative surreal i...
n0mulscl 28198 The non-negative surreal i...
nnaddscl 28199 The positive surreal integ...
nnmulscl 28200 The positive surreal integ...
1n0s 28201 Surreal one is a non-negat...
1nns 28202 Surreal one is a positive ...
peano2nns 28203 Peano postulate for positi...
n0sbday 28204 A non-negative surreal int...
n0ssold 28205 The non-negative surreal i...
nnsrecgt0d 28206 The reciprocal of a positi...
seqn0sfn 28207 The surreal sequence build...
elreno 28210 Membership in the set of s...
recut 28211 The cut involved in defini...
0reno 28212 Surreal zero is a surreal ...
renegscl 28213 The surreal reals are clos...
readdscl 28214 The surreal reals are clos...
remulscllem1 28215 Lemma for ~ remulscl . Sp...
remulscllem2 28216 Lemma for ~ remulscl . Bo...
remulscl 28217 The surreal reals are clos...
itvndx 28228 Index value of the Interva...
lngndx 28229 Index value of the "line" ...
itvid 28230 Utility theorem: index-ind...
lngid 28231 Utility theorem: index-ind...
slotsinbpsd 28232 The slots ` Base ` , ` +g ...
slotslnbpsd 28233 The slots ` Base ` , ` +g ...
lngndxnitvndx 28234 The slot for the line is n...
trkgstr 28235 Functionality of a Tarski ...
trkgbas 28236 The base set of a Tarski g...
trkgdist 28237 The measure of a distance ...
trkgitv 28238 The congruence relation in...
istrkgc 28245 Property of being a Tarski...
istrkgb 28246 Property of being a Tarski...
istrkgcb 28247 Property of being a Tarski...
istrkge 28248 Property of fulfilling Euc...
istrkgl 28249 Building lines from the se...
istrkgld 28250 Property of fulfilling the...
istrkg2ld 28251 Property of fulfilling the...
istrkg3ld 28252 Property of fulfilling the...
axtgcgrrflx 28253 Axiom of reflexivity of co...
axtgcgrid 28254 Axiom of identity of congr...
axtgsegcon 28255 Axiom of segment construct...
axtg5seg 28256 Five segments axiom, Axiom...
axtgbtwnid 28257 Identity of Betweenness. ...
axtgpasch 28258 Axiom of (Inner) Pasch, Ax...
axtgcont1 28259 Axiom of Continuity. Axio...
axtgcont 28260 Axiom of Continuity. Axio...
axtglowdim2 28261 Lower dimension axiom for ...
axtgupdim2 28262 Upper dimension axiom for ...
axtgeucl 28263 Euclid's Axiom. Axiom A10...
tgjustf 28264 Given any function ` F ` ,...
tgjustr 28265 Given any equivalence rela...
tgjustc1 28266 A justification for using ...
tgjustc2 28267 A justification for using ...
tgcgrcomimp 28268 Congruence commutes on the...
tgcgrcomr 28269 Congruence commutes on the...
tgcgrcoml 28270 Congruence commutes on the...
tgcgrcomlr 28271 Congruence commutes on bot...
tgcgreqb 28272 Congruence and equality. ...
tgcgreq 28273 Congruence and equality. ...
tgcgrneq 28274 Congruence and equality. ...
tgcgrtriv 28275 Degenerate segments are co...
tgcgrextend 28276 Link congruence over a pai...
tgsegconeq 28277 Two points that satisfy th...
tgbtwntriv2 28278 Betweenness always holds f...
tgbtwncom 28279 Betweenness commutes. The...
tgbtwncomb 28280 Betweenness commutes, bico...
tgbtwnne 28281 Betweenness and inequality...
tgbtwntriv1 28282 Betweenness always holds f...
tgbtwnswapid 28283 If you can swap the first ...
tgbtwnintr 28284 Inner transitivity law for...
tgbtwnexch3 28285 Exchange the first endpoin...
tgbtwnouttr2 28286 Outer transitivity law for...
tgbtwnexch2 28287 Exchange the outer point o...
tgbtwnouttr 28288 Outer transitivity law for...
tgbtwnexch 28289 Outer transitivity law for...
tgtrisegint 28290 A line segment between two...
tglowdim1 28291 Lower dimension axiom for ...
tglowdim1i 28292 Lower dimension axiom for ...
tgldimor 28293 Excluded-middle like state...
tgldim0eq 28294 In dimension zero, any two...
tgldim0itv 28295 In dimension zero, any two...
tgldim0cgr 28296 In dimension zero, any two...
tgbtwndiff 28297 There is always a ` c ` di...
tgdim01 28298 In geometries of dimension...
tgifscgr 28299 Inner five segment congrue...
tgcgrsub 28300 Removing identical parts f...
iscgrg 28303 The congruence property fo...
iscgrgd 28304 The property for two seque...
iscgrglt 28305 The property for two seque...
trgcgrg 28306 The property for two trian...
trgcgr 28307 Triangle congruence. (Con...
ercgrg 28308 The shape congruence relat...
tgcgrxfr 28309 A line segment can be divi...
cgr3id 28310 Reflexivity law for three-...
cgr3simp1 28311 Deduce segment congruence ...
cgr3simp2 28312 Deduce segment congruence ...
cgr3simp3 28313 Deduce segment congruence ...
cgr3swap12 28314 Permutation law for three-...
cgr3swap23 28315 Permutation law for three-...
cgr3swap13 28316 Permutation law for three-...
cgr3rotr 28317 Permutation law for three-...
cgr3rotl 28318 Permutation law for three-...
trgcgrcom 28319 Commutative law for three-...
cgr3tr 28320 Transitivity law for three...
tgbtwnxfr 28321 A condition for extending ...
tgcgr4 28322 Two quadrilaterals to be c...
isismt 28325 Property of being an isome...
ismot 28326 Property of being an isome...
motcgr 28327 Property of a motion: dist...
idmot 28328 The identity is a motion. ...
motf1o 28329 Motions are bijections. (...
motcl 28330 Closure of motions. (Cont...
motco 28331 The composition of two mot...
cnvmot 28332 The converse of a motion i...
motplusg 28333 The operation for motions ...
motgrp 28334 The motions of a geometry ...
motcgrg 28335 Property of a motion: dist...
motcgr3 28336 Property of a motion: dist...
tglng 28337 Lines of a Tarski Geometry...
tglnfn 28338 Lines as functions. (Cont...
tglnunirn 28339 Lines are sets of points. ...
tglnpt 28340 Lines are sets of points. ...
tglngne 28341 It takes two different poi...
tglngval 28342 The line going through poi...
tglnssp 28343 Lines are subset of the ge...
tgellng 28344 Property of lying on the l...
tgcolg 28345 We choose the notation ` (...
btwncolg1 28346 Betweenness implies coline...
btwncolg2 28347 Betweenness implies coline...
btwncolg3 28348 Betweenness implies coline...
colcom 28349 Swapping the points defini...
colrot1 28350 Rotating the points defini...
colrot2 28351 Rotating the points defini...
ncolcom 28352 Swapping non-colinear poin...
ncolrot1 28353 Rotating non-colinear poin...
ncolrot2 28354 Rotating non-colinear poin...
tgdim01ln 28355 In geometries of dimension...
ncoltgdim2 28356 If there are three non-col...
lnxfr 28357 Transfer law for colineari...
lnext 28358 Extend a line with a missi...
tgfscgr 28359 Congruence law for the gen...
lncgr 28360 Congruence rule for lines....
lnid 28361 Identity law for points on...
tgidinside 28362 Law for finding a point in...
tgbtwnconn1lem1 28363 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 28364 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 28365 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 28366 Connectivity law for betwe...
tgbtwnconn2 28367 Another connectivity law f...
tgbtwnconn3 28368 Inner connectivity law for...
tgbtwnconnln3 28369 Derive colinearity from be...
tgbtwnconn22 28370 Double connectivity law fo...
tgbtwnconnln1 28371 Derive colinearity from be...
tgbtwnconnln2 28372 Derive colinearity from be...
legval 28375 Value of the less-than rel...
legov 28376 Value of the less-than rel...
legov2 28377 An equivalent definition o...
legid 28378 Reflexivity of the less-th...
btwnleg 28379 Betweenness implies less-t...
legtrd 28380 Transitivity of the less-t...
legtri3 28381 Equality from the less-tha...
legtrid 28382 Trichotomy law for the les...
leg0 28383 Degenerated (zero-length) ...
legeq 28384 Deduce equality from "less...
legbtwn 28385 Deduce betweenness from "l...
tgcgrsub2 28386 Removing identical parts f...
ltgseg 28387 The set ` E ` denotes the ...
ltgov 28388 Strict "shorter than" geom...
legov3 28389 An equivalent definition o...
legso 28390 The "shorter than" relatio...
ishlg 28393 Rays : Definition 6.1 of ...
hlcomb 28394 The half-line relation com...
hlcomd 28395 The half-line relation com...
hlne1 28396 The half-line relation imp...
hlne2 28397 The half-line relation imp...
hlln 28398 The half-line relation imp...
hleqnid 28399 The endpoint does not belo...
hlid 28400 The half-line relation is ...
hltr 28401 The half-line relation is ...
hlbtwn 28402 Betweenness is a sufficien...
btwnhl1 28403 Deduce half-line from betw...
btwnhl2 28404 Deduce half-line from betw...
btwnhl 28405 Swap betweenness for a hal...
lnhl 28406 Either a point ` C ` on th...
hlcgrex 28407 Construct a point on a hal...
hlcgreulem 28408 Lemma for ~ hlcgreu . (Co...
hlcgreu 28409 The point constructed in ~...
btwnlng1 28410 Betweenness implies coline...
btwnlng2 28411 Betweenness implies coline...
btwnlng3 28412 Betweenness implies coline...
lncom 28413 Swapping the points defini...
lnrot1 28414 Rotating the points defini...
lnrot2 28415 Rotating the points defini...
ncolne1 28416 Non-colinear points are di...
ncolne2 28417 Non-colinear points are di...
tgisline 28418 The property of being a pr...
tglnne 28419 It takes two different poi...
tglndim0 28420 There are no lines in dime...
tgelrnln 28421 The property of being a pr...
tglineeltr 28422 Transitivity law for lines...
tglineelsb2 28423 If ` S ` lies on PQ , then...
tglinerflx1 28424 Reflexivity law for line m...
tglinerflx2 28425 Reflexivity law for line m...
tglinecom 28426 Commutativity law for line...
tglinethru 28427 If ` A ` is a line contain...
tghilberti1 28428 There is a line through an...
tghilberti2 28429 There is at most one line ...
tglinethrueu 28430 There is a unique line goi...
tglnne0 28431 A line ` A ` has at least ...
tglnpt2 28432 Find a second point on a l...
tglineintmo 28433 Two distinct lines interse...
tglineineq 28434 Two distinct lines interse...
tglineneq 28435 Given three non-colinear p...
tglineinteq 28436 Two distinct lines interse...
ncolncol 28437 Deduce non-colinearity fro...
coltr 28438 A transitivity law for col...
coltr3 28439 A transitivity law for col...
colline 28440 Three points are colinear ...
tglowdim2l 28441 Reformulation of the lower...
tglowdim2ln 28442 There is always one point ...
mirreu3 28445 Existential uniqueness of ...
mirval 28446 Value of the point inversi...
mirfv 28447 Value of the point inversi...
mircgr 28448 Property of the image by t...
mirbtwn 28449 Property of the image by t...
ismir 28450 Property of the image by t...
mirf 28451 Point inversion as functio...
mircl 28452 Closure of the point inver...
mirmir 28453 The point inversion functi...
mircom 28454 Variation on ~ mirmir . (...
mirreu 28455 Any point has a unique ant...
mireq 28456 Equality deduction for poi...
mirinv 28457 The only invariant point o...
mirne 28458 Mirror of non-center point...
mircinv 28459 The center point is invari...
mirf1o 28460 The point inversion functi...
miriso 28461 The point inversion functi...
mirbtwni 28462 Point inversion preserves ...
mirbtwnb 28463 Point inversion preserves ...
mircgrs 28464 Point inversion preserves ...
mirmir2 28465 Point inversion of a point...
mirmot 28466 Point investion is a motio...
mirln 28467 If two points are on the s...
mirln2 28468 If a point and its mirror ...
mirconn 28469 Point inversion of connect...
mirhl 28470 If two points ` X ` and ` ...
mirbtwnhl 28471 If the center of the point...
mirhl2 28472 Deduce half-line relation ...
mircgrextend 28473 Link congruence over a pai...
mirtrcgr 28474 Point inversion of one poi...
mirauto 28475 Point inversion preserves ...
miduniq 28476 Uniqueness of the middle p...
miduniq1 28477 Uniqueness of the middle p...
miduniq2 28478 If two point inversions co...
colmid 28479 Colinearity and equidistan...
symquadlem 28480 Lemma of the symetrial qua...
krippenlem 28481 Lemma for ~ krippen . We ...
krippen 28482 Krippenlemma (German for c...
midexlem 28483 Lemma for the existence of...
israg 28488 Property for 3 points A, B...
ragcom 28489 Commutative rule for right...
ragcol 28490 The right angle property i...
ragmir 28491 Right angle property is pr...
mirrag 28492 Right angle is conserved b...
ragtrivb 28493 Trivial right angle. Theo...
ragflat2 28494 Deduce equality from two r...
ragflat 28495 Deduce equality from two r...
ragtriva 28496 Trivial right angle. Theo...
ragflat3 28497 Right angle and colinearit...
ragcgr 28498 Right angle and colinearit...
motrag 28499 Right angles are preserved...
ragncol 28500 Right angle implies non-co...
perpln1 28501 Derive a line from perpend...
perpln2 28502 Derive a line from perpend...
isperp 28503 Property for 2 lines A, B ...
perpcom 28504 The "perpendicular" relati...
perpneq 28505 Two perpendicular lines ar...
isperp2 28506 Property for 2 lines A, B,...
isperp2d 28507 One direction of ~ isperp2...
ragperp 28508 Deduce that two lines are ...
footexALT 28509 Alternative version of ~ f...
footexlem1 28510 Lemma for ~ footex . (Con...
footexlem2 28511 Lemma for ~ footex . (Con...
footex 28512 From a point ` C ` outside...
foot 28513 From a point ` C ` outside...
footne 28514 Uniqueness of the foot poi...
footeq 28515 Uniqueness of the foot poi...
hlperpnel 28516 A point on a half-line whi...
perprag 28517 Deduce a right angle from ...
perpdragALT 28518 Deduce a right angle from ...
perpdrag 28519 Deduce a right angle from ...
colperp 28520 Deduce a perpendicularity ...
colperpexlem1 28521 Lemma for ~ colperp . Fir...
colperpexlem2 28522 Lemma for ~ colperpex . S...
colperpexlem3 28523 Lemma for ~ colperpex . C...
colperpex 28524 In dimension 2 and above, ...
mideulem2 28525 Lemma for ~ opphllem , whi...
opphllem 28526 Lemma 8.24 of [Schwabhause...
mideulem 28527 Lemma for ~ mideu . We ca...
midex 28528 Existence of the midpoint,...
mideu 28529 Existence and uniqueness o...
islnopp 28530 The property for two point...
islnoppd 28531 Deduce that ` A ` and ` B ...
oppne1 28532 Points lying on opposite s...
oppne2 28533 Points lying on opposite s...
oppne3 28534 Points lying on opposite s...
oppcom 28535 Commutativity rule for "op...
opptgdim2 28536 If two points opposite to ...
oppnid 28537 The "opposite to a line" r...
opphllem1 28538 Lemma for ~ opphl . (Cont...
opphllem2 28539 Lemma for ~ opphl . Lemma...
opphllem3 28540 Lemma for ~ opphl : We as...
opphllem4 28541 Lemma for ~ opphl . (Cont...
opphllem5 28542 Second part of Lemma 9.4 o...
opphllem6 28543 First part of Lemma 9.4 of...
oppperpex 28544 Restating ~ colperpex usin...
opphl 28545 If two points ` A ` and ` ...
outpasch 28546 Axiom of Pasch, outer form...
hlpasch 28547 An application of the axio...
ishpg 28550 Value of the half-plane re...
hpgbr 28551 Half-planes : property for...
hpgne1 28552 Points on the open half pl...
hpgne2 28553 Points on the open half pl...
lnopp2hpgb 28554 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 28555 If two points lie on the o...
hpgerlem 28556 Lemma for the proof that t...
hpgid 28557 The half-plane relation is...
hpgcom 28558 The half-plane relation co...
hpgtr 28559 The half-plane relation is...
colopp 28560 Opposite sides of a line f...
colhp 28561 Half-plane relation for co...
hphl 28562 If two points are on the s...
midf 28567 Midpoint as a function. (...
midcl 28568 Closure of the midpoint. ...
ismidb 28569 Property of the midpoint. ...
midbtwn 28570 Betweenness of midpoint. ...
midcgr 28571 Congruence of midpoint. (...
midid 28572 Midpoint of a null segment...
midcom 28573 Commutativity rule for the...
mirmid 28574 Point inversion preserves ...
lmieu 28575 Uniqueness of the line mir...
lmif 28576 Line mirror as a function....
lmicl 28577 Closure of the line mirror...
islmib 28578 Property of the line mirro...
lmicom 28579 The line mirroring functio...
lmilmi 28580 Line mirroring is an invol...
lmireu 28581 Any point has a unique ant...
lmieq 28582 Equality deduction for lin...
lmiinv 28583 The invariants of the line...
lmicinv 28584 The mirroring line is an i...
lmimid 28585 If we have a right angle, ...
lmif1o 28586 The line mirroring functio...
lmiisolem 28587 Lemma for ~ lmiiso . (Con...
lmiiso 28588 The line mirroring functio...
lmimot 28589 Line mirroring is a motion...
hypcgrlem1 28590 Lemma for ~ hypcgr , case ...
hypcgrlem2 28591 Lemma for ~ hypcgr , case ...
hypcgr 28592 If the catheti of two righ...
lmiopp 28593 Line mirroring produces po...
lnperpex 28594 Existence of a perpendicul...
trgcopy 28595 Triangle construction: a c...
trgcopyeulem 28596 Lemma for ~ trgcopyeu . (...
trgcopyeu 28597 Triangle construction: a c...
iscgra 28600 Property for two angles AB...
iscgra1 28601 A special version of ~ isc...
iscgrad 28602 Sufficient conditions for ...
cgrane1 28603 Angles imply inequality. ...
cgrane2 28604 Angles imply inequality. ...
cgrane3 28605 Angles imply inequality. ...
cgrane4 28606 Angles imply inequality. ...
cgrahl1 28607 Angle congruence is indepe...
cgrahl2 28608 Angle congruence is indepe...
cgracgr 28609 First direction of proposi...
cgraid 28610 Angle congruence is reflex...
cgraswap 28611 Swap rays in a congruence ...
cgrcgra 28612 Triangle congruence implie...
cgracom 28613 Angle congruence commutes....
cgratr 28614 Angle congruence is transi...
flatcgra 28615 Flat angles are congruent....
cgraswaplr 28616 Swap both side of angle co...
cgrabtwn 28617 Angle congruence preserves...
cgrahl 28618 Angle congruence preserves...
cgracol 28619 Angle congruence preserves...
cgrancol 28620 Angle congruence preserves...
dfcgra2 28621 This is the full statement...
sacgr 28622 Supplementary angles of co...
oacgr 28623 Vertical angle theorem. V...
acopy 28624 Angle construction. Theor...
acopyeu 28625 Angle construction. Theor...
isinag 28629 Property for point ` X ` t...
isinagd 28630 Sufficient conditions for ...
inagflat 28631 Any point lies in a flat a...
inagswap 28632 Swap the order of the half...
inagne1 28633 Deduce inequality from the...
inagne2 28634 Deduce inequality from the...
inagne3 28635 Deduce inequality from the...
inaghl 28636 The "point lie in angle" r...
isleag 28638 Geometrical "less than" pr...
isleagd 28639 Sufficient condition for "...
leagne1 28640 Deduce inequality from the...
leagne2 28641 Deduce inequality from the...
leagne3 28642 Deduce inequality from the...
leagne4 28643 Deduce inequality from the...
cgrg3col4 28644 Lemma 11.28 of [Schwabhaus...
tgsas1 28645 First congruence theorem: ...
tgsas 28646 First congruence theorem: ...
tgsas2 28647 First congruence theorem: ...
tgsas3 28648 First congruence theorem: ...
tgasa1 28649 Second congruence theorem:...
tgasa 28650 Second congruence theorem:...
tgsss1 28651 Third congruence theorem: ...
tgsss2 28652 Third congruence theorem: ...
tgsss3 28653 Third congruence theorem: ...
dfcgrg2 28654 Congruence for two triangl...
isoas 28655 Congruence theorem for iso...
iseqlg 28658 Property of a triangle bei...
iseqlgd 28659 Condition for a triangle t...
f1otrgds 28660 Convenient lemma for ~ f1o...
f1otrgitv 28661 Convenient lemma for ~ f1o...
f1otrg 28662 A bijection between bases ...
f1otrge 28663 A bijection between bases ...
ttgval 28666 Define a function to augme...
ttgvalOLD 28667 Obsolete proof of ~ ttgval...
ttglem 28668 Lemma for ~ ttgbas , ~ ttg...
ttglemOLD 28669 Obsolete version of ~ ttgl...
ttgbas 28670 The base set of a subcompl...
ttgbasOLD 28671 Obsolete proof of ~ ttgbas...
ttgplusg 28672 The addition operation of ...
ttgplusgOLD 28673 Obsolete proof of ~ ttgplu...
ttgsub 28674 The subtraction operation ...
ttgvsca 28675 The scalar product of a su...
ttgvscaOLD 28676 Obsolete proof of ~ ttgvsc...
ttgds 28677 The metric of a subcomplex...
ttgdsOLD 28678 Obsolete proof of ~ ttgds ...
ttgitvval 28679 Betweenness for a subcompl...
ttgelitv 28680 Betweenness for a subcompl...
ttgbtwnid 28681 Any subcomplex module equi...
ttgcontlem1 28682 Lemma for % ttgcont . (Co...
xmstrkgc 28683 Any metric space fulfills ...
cchhllem 28684 Lemma for chlbas and chlvs...
cchhllemOLD 28685 Obsolete version of ~ cchh...
elee 28692 Membership in a Euclidean ...
mptelee 28693 A condition for a mapping ...
eleenn 28694 If ` A ` is in ` ( EE `` N...
eleei 28695 The forward direction of ~...
eedimeq 28696 A point belongs to at most...
brbtwn 28697 The binary relation form o...
brcgr 28698 The binary relation form o...
fveere 28699 The function value of a po...
fveecn 28700 The function value of a po...
eqeefv 28701 Two points are equal iff t...
eqeelen 28702 Two points are equal iff t...
brbtwn2 28703 Alternate characterization...
colinearalglem1 28704 Lemma for ~ colinearalg . ...
colinearalglem2 28705 Lemma for ~ colinearalg . ...
colinearalglem3 28706 Lemma for ~ colinearalg . ...
colinearalglem4 28707 Lemma for ~ colinearalg . ...
colinearalg 28708 An algebraic characterizat...
eleesub 28709 Membership of a subtractio...
eleesubd 28710 Membership of a subtractio...
axdimuniq 28711 The unique dimension axiom...
axcgrrflx 28712 ` A ` is as far from ` B `...
axcgrtr 28713 Congruence is transitive. ...
axcgrid 28714 If there is no distance be...
axsegconlem1 28715 Lemma for ~ axsegcon . Ha...
axsegconlem2 28716 Lemma for ~ axsegcon . Sh...
axsegconlem3 28717 Lemma for ~ axsegcon . Sh...
axsegconlem4 28718 Lemma for ~ axsegcon . Sh...
axsegconlem5 28719 Lemma for ~ axsegcon . Sh...
axsegconlem6 28720 Lemma for ~ axsegcon . Sh...
axsegconlem7 28721 Lemma for ~ axsegcon . Sh...
axsegconlem8 28722 Lemma for ~ axsegcon . Sh...
axsegconlem9 28723 Lemma for ~ axsegcon . Sh...
axsegconlem10 28724 Lemma for ~ axsegcon . Sh...
axsegcon 28725 Any segment ` A B ` can be...
ax5seglem1 28726 Lemma for ~ ax5seg . Rexp...
ax5seglem2 28727 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 28728 Lemma for ~ ax5seg . (Con...
ax5seglem3 28729 Lemma for ~ ax5seg . Comb...
ax5seglem4 28730 Lemma for ~ ax5seg . Give...
ax5seglem5 28731 Lemma for ~ ax5seg . If `...
ax5seglem6 28732 Lemma for ~ ax5seg . Give...
ax5seglem7 28733 Lemma for ~ ax5seg . An a...
ax5seglem8 28734 Lemma for ~ ax5seg . Use ...
ax5seglem9 28735 Lemma for ~ ax5seg . Take...
ax5seg 28736 The five segment axiom. T...
axbtwnid 28737 Points are indivisible. T...
axpaschlem 28738 Lemma for ~ axpasch . Set...
axpasch 28739 The inner Pasch axiom. Ta...
axlowdimlem1 28740 Lemma for ~ axlowdim . Es...
axlowdimlem2 28741 Lemma for ~ axlowdim . Sh...
axlowdimlem3 28742 Lemma for ~ axlowdim . Se...
axlowdimlem4 28743 Lemma for ~ axlowdim . Se...
axlowdimlem5 28744 Lemma for ~ axlowdim . Sh...
axlowdimlem6 28745 Lemma for ~ axlowdim . Sh...
axlowdimlem7 28746 Lemma for ~ axlowdim . Se...
axlowdimlem8 28747 Lemma for ~ axlowdim . Ca...
axlowdimlem9 28748 Lemma for ~ axlowdim . Ca...
axlowdimlem10 28749 Lemma for ~ axlowdim . Se...
axlowdimlem11 28750 Lemma for ~ axlowdim . Ca...
axlowdimlem12 28751 Lemma for ~ axlowdim . Ca...
axlowdimlem13 28752 Lemma for ~ axlowdim . Es...
axlowdimlem14 28753 Lemma for ~ axlowdim . Ta...
axlowdimlem15 28754 Lemma for ~ axlowdim . Se...
axlowdimlem16 28755 Lemma for ~ axlowdim . Se...
axlowdimlem17 28756 Lemma for ~ axlowdim . Es...
axlowdim1 28757 The lower dimension axiom ...
axlowdim2 28758 The lower two-dimensional ...
axlowdim 28759 The general lower dimensio...
axeuclidlem 28760 Lemma for ~ axeuclid . Ha...
axeuclid 28761 Euclid's axiom. Take an a...
axcontlem1 28762 Lemma for ~ axcont . Chan...
axcontlem2 28763 Lemma for ~ axcont . The ...
axcontlem3 28764 Lemma for ~ axcont . Give...
axcontlem4 28765 Lemma for ~ axcont . Give...
axcontlem5 28766 Lemma for ~ axcont . Comp...
axcontlem6 28767 Lemma for ~ axcont . Stat...
axcontlem7 28768 Lemma for ~ axcont . Give...
axcontlem8 28769 Lemma for ~ axcont . A po...
axcontlem9 28770 Lemma for ~ axcont . Give...
axcontlem10 28771 Lemma for ~ axcont . Give...
axcontlem11 28772 Lemma for ~ axcont . Elim...
axcontlem12 28773 Lemma for ~ axcont . Elim...
axcont 28774 The axiom of continuity. ...
eengv 28777 The value of the Euclidean...
eengstr 28778 The Euclidean geometry as ...
eengbas 28779 The Base of the Euclidean ...
ebtwntg 28780 The betweenness relation u...
ecgrtg 28781 The congruence relation us...
elntg 28782 The line definition in the...
elntg2 28783 The line definition in the...
eengtrkg 28784 The geometry structure for...
eengtrkge 28785 The geometry structure for...
edgfid 28788 Utility theorem: index-ind...
edgfndx 28789 Index value of the ~ df-ed...
edgfndxnn 28790 The index value of the edg...
edgfndxid 28791 The value of the edge func...
edgfndxidOLD 28792 Obsolete version of ~ edgf...
basendxltedgfndx 28793 The index value of the ` B...
baseltedgfOLD 28794 Obsolete proof of ~ basend...
basendxnedgfndx 28795 The slots ` Base ` and ` ....
vtxval 28800 The set of vertices of a g...
iedgval 28801 The set of indexed edges o...
1vgrex 28802 A graph with at least one ...
opvtxval 28803 The set of vertices of a g...
opvtxfv 28804 The set of vertices of a g...
opvtxov 28805 The set of vertices of a g...
opiedgval 28806 The set of indexed edges o...
opiedgfv 28807 The set of indexed edges o...
opiedgov 28808 The set of indexed edges o...
opvtxfvi 28809 The set of vertices of a g...
opiedgfvi 28810 The set of indexed edges o...
funvtxdmge2val 28811 The set of vertices of an ...
funiedgdmge2val 28812 The set of indexed edges o...
funvtxdm2val 28813 The set of vertices of an ...
funiedgdm2val 28814 The set of indexed edges o...
funvtxval0 28815 The set of vertices of an ...
basvtxval 28816 The set of vertices of a g...
edgfiedgval 28817 The set of indexed edges o...
funvtxval 28818 The set of vertices of a g...
funiedgval 28819 The set of indexed edges o...
structvtxvallem 28820 Lemma for ~ structvtxval a...
structvtxval 28821 The set of vertices of an ...
structiedg0val 28822 The set of indexed edges o...
structgrssvtxlem 28823 Lemma for ~ structgrssvtx ...
structgrssvtx 28824 The set of vertices of a g...
structgrssiedg 28825 The set of indexed edges o...
struct2grstr 28826 A graph represented as an ...
struct2grvtx 28827 The set of vertices of a g...
struct2griedg 28828 The set of indexed edges o...
graop 28829 Any representation of a gr...
grastruct 28830 Any representation of a gr...
gropd 28831 If any representation of a...
grstructd 28832 If any representation of a...
gropeld 28833 If any representation of a...
grstructeld 28834 If any representation of a...
setsvtx 28835 The vertices of a structur...
setsiedg 28836 The (indexed) edges of a s...
snstrvtxval 28837 The set of vertices of a g...
snstriedgval 28838 The set of indexed edges o...
vtxval0 28839 Degenerated case 1 for ver...
iedgval0 28840 Degenerated case 1 for edg...
vtxvalsnop 28841 Degenerated case 2 for ver...
iedgvalsnop 28842 Degenerated case 2 for edg...
vtxval3sn 28843 Degenerated case 3 for ver...
iedgval3sn 28844 Degenerated case 3 for edg...
vtxvalprc 28845 Degenerated case 4 for ver...
iedgvalprc 28846 Degenerated case 4 for edg...
edgval 28849 The edges of a graph. (Co...
iedgedg 28850 An indexed edge is an edge...
edgopval 28851 The edges of a graph repre...
edgov 28852 The edges of a graph repre...
edgstruct 28853 The edges of a graph repre...
edgiedgb 28854 A set is an edge iff it is...
edg0iedg0 28855 There is no edge in a grap...
isuhgr 28860 The predicate "is an undir...
isushgr 28861 The predicate "is an undir...
uhgrf 28862 The edge function of an un...
ushgrf 28863 The edge function of an un...
uhgrss 28864 An edge is a subset of ver...
uhgreq12g 28865 If two sets have the same ...
uhgrfun 28866 The edge function of an un...
uhgrn0 28867 An edge is a nonempty subs...
lpvtx 28868 The endpoints of a loop (w...
ushgruhgr 28869 An undirected simple hyper...
isuhgrop 28870 The property of being an u...
uhgr0e 28871 The empty graph, with vert...
uhgr0vb 28872 The null graph, with no ve...
uhgr0 28873 The null graph represented...
uhgrun 28874 The union ` U ` of two (un...
uhgrunop 28875 The union of two (undirect...
ushgrun 28876 The union ` U ` of two (un...
ushgrunop 28877 The union of two (undirect...
uhgrstrrepe 28878 Replacing (or adding) the ...
incistruhgr 28879 An _incidence structure_ `...
isupgr 28884 The property of being an u...
wrdupgr 28885 The property of being an u...
upgrf 28886 The edge function of an un...
upgrfn 28887 The edge function of an un...
upgrss 28888 An edge is a subset of ver...
upgrn0 28889 An edge is a nonempty subs...
upgrle 28890 An edge of an undirected p...
upgrfi 28891 An edge is a finite subset...
upgrex 28892 An edge is an unordered pa...
upgrbi 28893 Show that an unordered pai...
upgrop 28894 A pseudograph represented ...
isumgr 28895 The property of being an u...
isumgrs 28896 The simplified property of...
wrdumgr 28897 The property of being an u...
umgrf 28898 The edge function of an un...
umgrfn 28899 The edge function of an un...
umgredg2 28900 An edge of a multigraph ha...
umgrbi 28901 Show that an unordered pai...
upgruhgr 28902 An undirected pseudograph ...
umgrupgr 28903 An undirected multigraph i...
umgruhgr 28904 An undirected multigraph i...
upgrle2 28905 An edge of an undirected p...
umgrnloopv 28906 In a multigraph, there is ...
umgredgprv 28907 In a multigraph, an edge i...
umgrnloop 28908 In a multigraph, there is ...
umgrnloop0 28909 A multigraph has no loops....
umgr0e 28910 The empty graph, with vert...
upgr0e 28911 The empty graph, with vert...
upgr1elem 28912 Lemma for ~ upgr1e and ~ u...
upgr1e 28913 A pseudograph with one edg...
upgr0eop 28914 The empty graph, with vert...
upgr1eop 28915 A pseudograph with one edg...
upgr0eopALT 28916 Alternate proof of ~ upgr0...
upgr1eopALT 28917 Alternate proof of ~ upgr1...
upgrun 28918 The union ` U ` of two pse...
upgrunop 28919 The union of two pseudogra...
umgrun 28920 The union ` U ` of two mul...
umgrunop 28921 The union of two multigrap...
umgrislfupgrlem 28922 Lemma for ~ umgrislfupgr a...
umgrislfupgr 28923 A multigraph is a loop-fre...
lfgredgge2 28924 An edge of a loop-free gra...
lfgrnloop 28925 A loop-free graph has no l...
uhgredgiedgb 28926 In a hypergraph, a set is ...
uhgriedg0edg0 28927 A hypergraph has no edges ...
uhgredgn0 28928 An edge of a hypergraph is...
edguhgr 28929 An edge of a hypergraph is...
uhgredgrnv 28930 An edge of a hypergraph co...
uhgredgss 28931 The set of edges of a hype...
upgredgss 28932 The set of edges of a pseu...
umgredgss 28933 The set of edges of a mult...
edgupgr 28934 Properties of an edge of a...
edgumgr 28935 Properties of an edge of a...
uhgrvtxedgiedgb 28936 In a hypergraph, a vertex ...
upgredg 28937 For each edge in a pseudog...
umgredg 28938 For each edge in a multigr...
upgrpredgv 28939 An edge of a pseudograph a...
umgrpredgv 28940 An edge of a multigraph al...
upgredg2vtx 28941 For a vertex incident to a...
upgredgpr 28942 If a proper pair (of verti...
edglnl 28943 The edges incident with a ...
numedglnl 28944 The number of edges incide...
umgredgne 28945 An edge of a multigraph al...
umgrnloop2 28946 A multigraph has no loops....
umgredgnlp 28947 An edge of a multigraph is...
isuspgr 28952 The property of being a si...
isusgr 28953 The property of being a si...
uspgrf 28954 The edge function of a sim...
usgrf 28955 The edge function of a sim...
isusgrs 28956 The property of being a si...
usgrfs 28957 The edge function of a sim...
usgrfun 28958 The edge function of a sim...
usgredgss 28959 The set of edges of a simp...
edgusgr 28960 An edge of a simple graph ...
isuspgrop 28961 The property of being an u...
isusgrop 28962 The property of being an u...
usgrop 28963 A simple graph represented...
isausgr 28964 The property of an unorder...
ausgrusgrb 28965 The equivalence of the def...
usgrausgri 28966 A simple graph represented...
ausgrumgri 28967 If an alternatively define...
ausgrusgri 28968 The equivalence of the def...
usgrausgrb 28969 The equivalence of the def...
usgredgop 28970 An edge of a simple graph ...
usgrf1o 28971 The edge function of a sim...
usgrf1 28972 The edge function of a sim...
uspgrf1oedg 28973 The edge function of a sim...
usgrss 28974 An edge is a subset of ver...
uspgredgiedg 28975 In a simple pseudograph, f...
uspgriedgedg 28976 In a simple pseudograph, f...
uspgrushgr 28977 A simple pseudograph is an...
uspgrupgr 28978 A simple pseudograph is an...
uspgrupgrushgr 28979 A graph is a simple pseudo...
usgruspgr 28980 A simple graph is a simple...
usgrumgr 28981 A simple graph is an undir...
usgrumgruspgr 28982 A graph is a simple graph ...
usgruspgrb 28983 A class is a simple graph ...
uspgruhgr 28984 An undirected simple pseud...
usgrupgr 28985 A simple graph is an undir...
usgruhgr 28986 A simple graph is an undir...
usgrislfuspgr 28987 A simple graph is a loop-f...
uspgrun 28988 The union ` U ` of two sim...
uspgrunop 28989 The union of two simple ps...
usgrun 28990 The union ` U ` of two sim...
usgrunop 28991 The union of two simple gr...
usgredg2 28992 The value of the "edge fun...
usgredg2ALT 28993 Alternate proof of ~ usgre...
usgredgprv 28994 In a simple graph, an edge...
usgredgprvALT 28995 Alternate proof of ~ usgre...
usgredgppr 28996 An edge of a simple graph ...
usgrpredgv 28997 An edge of a simple graph ...
edgssv2 28998 An edge of a simple graph ...
usgredg 28999 For each edge in a simple ...
usgrnloopv 29000 In a simple graph, there i...
usgrnloopvALT 29001 Alternate proof of ~ usgrn...
usgrnloop 29002 In a simple graph, there i...
usgrnloopALT 29003 Alternate proof of ~ usgrn...
usgrnloop0 29004 A simple graph has no loop...
usgrnloop0ALT 29005 Alternate proof of ~ usgrn...
usgredgne 29006 An edge of a simple graph ...
usgrf1oedg 29007 The edge function of a sim...
uhgr2edg 29008 If a vertex is adjacent to...
umgr2edg 29009 If a vertex is adjacent to...
usgr2edg 29010 If a vertex is adjacent to...
umgr2edg1 29011 If a vertex is adjacent to...
usgr2edg1 29012 If a vertex is adjacent to...
umgrvad2edg 29013 If a vertex is adjacent to...
umgr2edgneu 29014 If a vertex is adjacent to...
usgrsizedg 29015 In a simple graph, the siz...
usgredg3 29016 The value of the "edge fun...
usgredg4 29017 For a vertex incident to a...
usgredgreu 29018 For a vertex incident to a...
usgredg2vtx 29019 For a vertex incident to a...
uspgredg2vtxeu 29020 For a vertex incident to a...
usgredg2vtxeu 29021 For a vertex incident to a...
usgredg2vtxeuALT 29022 Alternate proof of ~ usgre...
uspgredg2vlem 29023 Lemma for ~ uspgredg2v . ...
uspgredg2v 29024 In a simple pseudograph, t...
usgredg2vlem1 29025 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 29026 Lemma 2 for ~ usgredg2v . ...
usgredg2v 29027 In a simple graph, the map...
usgriedgleord 29028 Alternate version of ~ usg...
ushgredgedg 29029 In a simple hypergraph the...
usgredgedg 29030 In a simple graph there is...
ushgredgedgloop 29031 In a simple hypergraph the...
uspgredgleord 29032 In a simple pseudograph th...
usgredgleord 29033 In a simple graph the numb...
usgredgleordALT 29034 Alternate proof for ~ usgr...
usgrstrrepe 29035 Replacing (or adding) the ...
usgr0e 29036 The empty graph, with vert...
usgr0vb 29037 The null graph, with no ve...
uhgr0v0e 29038 The null graph, with no ve...
uhgr0vsize0 29039 The size of a hypergraph w...
uhgr0edgfi 29040 A graph of order 0 (i.e. w...
usgr0v 29041 The null graph, with no ve...
uhgr0vusgr 29042 The null graph, with no ve...
usgr0 29043 The null graph represented...
uspgr1e 29044 A simple pseudograph with ...
usgr1e 29045 A simple graph with one ed...
usgr0eop 29046 The empty graph, with vert...
uspgr1eop 29047 A simple pseudograph with ...
uspgr1ewop 29048 A simple pseudograph with ...
uspgr1v1eop 29049 A simple pseudograph with ...
usgr1eop 29050 A simple graph with (at le...
uspgr2v1e2w 29051 A simple pseudograph with ...
usgr2v1e2w 29052 A simple graph with two ve...
edg0usgr 29053 A class without edges is a...
lfuhgr1v0e 29054 A loop-free hypergraph wit...
usgr1vr 29055 A simple graph with one ve...
usgr1v 29056 A class with one (or no) v...
usgr1v0edg 29057 A class with one (or no) v...
usgrexmpldifpr 29058 Lemma for ~ usgrexmpledg :...
usgrexmplef 29059 Lemma for ~ usgrexmpl . (...
usgrexmpllem 29060 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 29061 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 29062 The edges ` { 0 , 1 } , { ...
usgrexmpl 29063 ` G ` is a simple graph of...
griedg0prc 29064 The class of empty graphs ...
griedg0ssusgr 29065 The class of all simple gr...
usgrprc 29066 The class of simple graphs...
relsubgr 29069 The class of the subgraph ...
subgrv 29070 If a class is a subgraph o...
issubgr 29071 The property of a set to b...
issubgr2 29072 The property of a set to b...
subgrprop 29073 The properties of a subgra...
subgrprop2 29074 The properties of a subgra...
uhgrissubgr 29075 The property of a hypergra...
subgrprop3 29076 The properties of a subgra...
egrsubgr 29077 An empty graph consisting ...
0grsubgr 29078 The null graph (represente...
0uhgrsubgr 29079 The null graph (as hypergr...
uhgrsubgrself 29080 A hypergraph is a subgraph...
subgrfun 29081 The edge function of a sub...
subgruhgrfun 29082 The edge function of a sub...
subgreldmiedg 29083 An element of the domain o...
subgruhgredgd 29084 An edge of a subgraph of a...
subumgredg2 29085 An edge of a subgraph of a...
subuhgr 29086 A subgraph of a hypergraph...
subupgr 29087 A subgraph of a pseudograp...
subumgr 29088 A subgraph of a multigraph...
subusgr 29089 A subgraph of a simple gra...
uhgrspansubgrlem 29090 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 29091 A spanning subgraph ` S ` ...
uhgrspan 29092 A spanning subgraph ` S ` ...
upgrspan 29093 A spanning subgraph ` S ` ...
umgrspan 29094 A spanning subgraph ` S ` ...
usgrspan 29095 A spanning subgraph ` S ` ...
uhgrspanop 29096 A spanning subgraph of a h...
upgrspanop 29097 A spanning subgraph of a p...
umgrspanop 29098 A spanning subgraph of a m...
usgrspanop 29099 A spanning subgraph of a s...
uhgrspan1lem1 29100 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 29101 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 29102 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 29103 The induced subgraph ` S `...
upgrreslem 29104 Lemma for ~ upgrres . (Co...
umgrreslem 29105 Lemma for ~ umgrres and ~ ...
upgrres 29106 A subgraph obtained by rem...
umgrres 29107 A subgraph obtained by rem...
usgrres 29108 A subgraph obtained by rem...
upgrres1lem1 29109 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 29110 Lemma for ~ umgrres1 . (C...
upgrres1lem2 29111 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 29112 Lemma 3 for ~ upgrres1 . ...
upgrres1 29113 A pseudograph obtained by ...
umgrres1 29114 A multigraph obtained by r...
usgrres1 29115 Restricting a simple graph...
isfusgr 29118 The property of being a fi...
fusgrvtxfi 29119 A finite simple graph has ...
isfusgrf1 29120 The property of being a fi...
isfusgrcl 29121 The property of being a fi...
fusgrusgr 29122 A finite simple graph is a...
opfusgr 29123 A finite simple graph repr...
usgredgffibi 29124 The number of edges in a s...
fusgredgfi 29125 In a finite simple graph t...
usgr1v0e 29126 The size of a (finite) sim...
usgrfilem 29127 In a finite simple graph, ...
fusgrfisbase 29128 Induction base for ~ fusgr...
fusgrfisstep 29129 Induction step in ~ fusgrf...
fusgrfis 29130 A finite simple graph is o...
fusgrfupgrfs 29131 A finite simple graph is a...
nbgrprc0 29134 The set of neighbors is em...
nbgrcl 29135 If a class ` X ` has at le...
nbgrval 29136 The set of neighbors of a ...
dfnbgr2 29137 Alternate definition of th...
dfnbgr3 29138 Alternate definition of th...
nbgrnvtx0 29139 If a class ` X ` is not a ...
nbgrel 29140 Characterization of a neig...
nbgrisvtx 29141 Every neighbor ` N ` of a ...
nbgrssvtx 29142 The neighbors of a vertex ...
nbuhgr 29143 The set of neighbors of a ...
nbupgr 29144 The set of neighbors of a ...
nbupgrel 29145 A neighbor of a vertex in ...
nbumgrvtx 29146 The set of neighbors of a ...
nbumgr 29147 The set of neighbors of an...
nbusgrvtx 29148 The set of neighbors of a ...
nbusgr 29149 The set of neighbors of an...
nbgr2vtx1edg 29150 If a graph has two vertice...
nbuhgr2vtx1edgblem 29151 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 29152 If a hypergraph has two ve...
nbusgreledg 29153 A class/vertex is a neighb...
uhgrnbgr0nb 29154 A vertex which is not endp...
nbgr0vtxlem 29155 Lemma for ~ nbgr0vtx and ~...
nbgr0vtx 29156 In a null graph (with no v...
nbgr0edg 29157 In an empty graph (with no...
nbgr1vtx 29158 In a graph with one vertex...
nbgrnself 29159 A vertex in a graph is not...
nbgrnself2 29160 A class ` X ` is not a nei...
nbgrssovtx 29161 The neighbors of a vertex ...
nbgrssvwo2 29162 The neighbors of a vertex ...
nbgrsym 29163 In a graph, the neighborho...
nbupgrres 29164 The neighborhood of a vert...
usgrnbcnvfv 29165 Applying the edge function...
nbusgredgeu 29166 For each neighbor of a ver...
edgnbusgreu 29167 For each edge incident to ...
nbusgredgeu0 29168 For each neighbor of a ver...
nbusgrf1o0 29169 The mapping of neighbors o...
nbusgrf1o1 29170 The set of neighbors of a ...
nbusgrf1o 29171 The set of neighbors of a ...
nbedgusgr 29172 The number of neighbors of...
edgusgrnbfin 29173 The number of neighbors of...
nbusgrfi 29174 The class of neighbors of ...
nbfiusgrfi 29175 The class of neighbors of ...
hashnbusgrnn0 29176 The number of neighbors of...
nbfusgrlevtxm1 29177 The number of neighbors of...
nbfusgrlevtxm2 29178 If there is a vertex which...
nbusgrvtxm1 29179 If the number of neighbors...
nb3grprlem1 29180 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 29181 Lemma 2 for ~ nb3grpr . (...
nb3grpr 29182 The neighbors of a vertex ...
nb3grpr2 29183 The neighbors of a vertex ...
nb3gr2nb 29184 If the neighbors of two ve...
uvtxval 29187 The set of all universal v...
uvtxel 29188 A universal vertex, i.e. a...
uvtxisvtx 29189 A universal vertex is a ve...
uvtxssvtx 29190 The set of the universal v...
vtxnbuvtx 29191 A universal vertex has all...
uvtxnbgrss 29192 A universal vertex has all...
uvtxnbgrvtx 29193 A universal vertex is neig...
uvtx0 29194 There is no universal vert...
isuvtx 29195 The set of all universal v...
uvtxel1 29196 Characterization of a univ...
uvtx01vtx 29197 If a graph/class has no ed...
uvtx2vtx1edg 29198 If a graph has two vertice...
uvtx2vtx1edgb 29199 If a hypergraph has two ve...
uvtxnbgr 29200 A universal vertex has all...
uvtxnbgrb 29201 A vertex is universal iff ...
uvtxusgr 29202 The set of all universal v...
uvtxusgrel 29203 A universal vertex, i.e. a...
uvtxnm1nbgr 29204 A universal vertex has ` n...
nbusgrvtxm1uvtx 29205 If the number of neighbors...
uvtxnbvtxm1 29206 A universal vertex has ` n...
nbupgruvtxres 29207 The neighborhood of a univ...
uvtxupgrres 29208 A universal vertex is univ...
cplgruvtxb 29213 A graph ` G ` is complete ...
prcliscplgr 29214 A proper class (representi...
iscplgr 29215 The property of being a co...
iscplgrnb 29216 A graph is complete iff al...
iscplgredg 29217 A graph ` G ` is complete ...
iscusgr 29218 The property of being a co...
cusgrusgr 29219 A complete simple graph is...
cusgrcplgr 29220 A complete simple graph is...
iscusgrvtx 29221 A simple graph is complete...
cusgruvtxb 29222 A simple graph is complete...
iscusgredg 29223 A simple graph is complete...
cusgredg 29224 In a complete simple graph...
cplgr0 29225 The null graph (with no ve...
cusgr0 29226 The null graph (with no ve...
cplgr0v 29227 A null graph (with no vert...
cusgr0v 29228 A graph with no vertices a...
cplgr1vlem 29229 Lemma for ~ cplgr1v and ~ ...
cplgr1v 29230 A graph with one vertex is...
cusgr1v 29231 A graph with one vertex an...
cplgr2v 29232 An undirected hypergraph w...
cplgr2vpr 29233 An undirected hypergraph w...
nbcplgr 29234 In a complete graph, each ...
cplgr3v 29235 A pseudograph with three (...
cusgr3vnbpr 29236 The neighbors of a vertex ...
cplgrop 29237 A complete graph represent...
cusgrop 29238 A complete simple graph re...
cusgrexilem1 29239 Lemma 1 for ~ cusgrexi . ...
usgrexilem 29240 Lemma for ~ usgrexi . (Co...
usgrexi 29241 An arbitrary set regarded ...
cusgrexilem2 29242 Lemma 2 for ~ cusgrexi . ...
cusgrexi 29243 An arbitrary set ` V ` reg...
cusgrexg 29244 For each set there is a se...
structtousgr 29245 Any (extensible) structure...
structtocusgr 29246 Any (extensible) structure...
cffldtocusgr 29247 The field of complex numbe...
cffldtocusgrOLD 29248 Obsolete version of ~ cffl...
cusgrres 29249 Restricting a complete sim...
cusgrsizeindb0 29250 Base case of the induction...
cusgrsizeindb1 29251 Base case of the induction...
cusgrsizeindslem 29252 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 29253 Part 1 of induction step i...
cusgrsize2inds 29254 Induction step in ~ cusgrs...
cusgrsize 29255 The size of a finite compl...
cusgrfilem1 29256 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 29257 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 29258 Lemma 3 for ~ cusgrfi . (...
cusgrfi 29259 If the size of a complete ...
usgredgsscusgredg 29260 A simple graph is a subgra...
usgrsscusgr 29261 A simple graph is a subgra...
sizusglecusglem1 29262 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 29263 Lemma 2 for ~ sizusglecusg...
sizusglecusg 29264 The size of a simple graph...
fusgrmaxsize 29265 The maximum size of a fini...
vtxdgfval 29268 The value of the vertex de...
vtxdgval 29269 The degree of a vertex. (...
vtxdgfival 29270 The degree of a vertex for...
vtxdgop 29271 The vertex degree expresse...
vtxdgf 29272 The vertex degree function...
vtxdgelxnn0 29273 The degree of a vertex is ...
vtxdg0v 29274 The degree of a vertex in ...
vtxdg0e 29275 The degree of a vertex in ...
vtxdgfisnn0 29276 The degree of a vertex in ...
vtxdgfisf 29277 The vertex degree function...
vtxdeqd 29278 Equality theorem for the v...
vtxduhgr0e 29279 The degree of a vertex in ...
vtxdlfuhgr1v 29280 The degree of the vertex i...
vdumgr0 29281 A vertex in a multigraph h...
vtxdun 29282 The degree of a vertex in ...
vtxdfiun 29283 The degree of a vertex in ...
vtxduhgrun 29284 The degree of a vertex in ...
vtxduhgrfiun 29285 The degree of a vertex in ...
vtxdlfgrval 29286 The value of the vertex de...
vtxdumgrval 29287 The value of the vertex de...
vtxdusgrval 29288 The value of the vertex de...
vtxd0nedgb 29289 A vertex has degree 0 iff ...
vtxdushgrfvedglem 29290 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 29291 The value of the vertex de...
vtxdusgrfvedg 29292 The value of the vertex de...
vtxduhgr0nedg 29293 If a vertex in a hypergrap...
vtxdumgr0nedg 29294 If a vertex in a multigrap...
vtxduhgr0edgnel 29295 A vertex in a hypergraph h...
vtxdusgr0edgnel 29296 A vertex in a simple graph...
vtxdusgr0edgnelALT 29297 Alternate proof of ~ vtxdu...
vtxdgfusgrf 29298 The vertex degree function...
vtxdgfusgr 29299 In a finite simple graph, ...
fusgrn0degnn0 29300 In a nonempty, finite grap...
1loopgruspgr 29301 A graph with one edge whic...
1loopgredg 29302 The set of edges in a grap...
1loopgrnb0 29303 In a graph (simple pseudog...
1loopgrvd2 29304 The vertex degree of a one...
1loopgrvd0 29305 The vertex degree of a one...
1hevtxdg0 29306 The vertex degree of verte...
1hevtxdg1 29307 The vertex degree of verte...
1hegrvtxdg1 29308 The vertex degree of a gra...
1hegrvtxdg1r 29309 The vertex degree of a gra...
1egrvtxdg1 29310 The vertex degree of a one...
1egrvtxdg1r 29311 The vertex degree of a one...
1egrvtxdg0 29312 The vertex degree of a one...
p1evtxdeqlem 29313 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 29314 If an edge ` E ` which doe...
p1evtxdp1 29315 If an edge ` E ` (not bein...
uspgrloopvtx 29316 The set of vertices in a g...
uspgrloopvtxel 29317 A vertex in a graph (simpl...
uspgrloopiedg 29318 The set of edges in a grap...
uspgrloopedg 29319 The set of edges in a grap...
uspgrloopnb0 29320 In a graph (simple pseudog...
uspgrloopvd2 29321 The vertex degree of a one...
umgr2v2evtx 29322 The set of vertices in a m...
umgr2v2evtxel 29323 A vertex in a multigraph w...
umgr2v2eiedg 29324 The edge function in a mul...
umgr2v2eedg 29325 The set of edges in a mult...
umgr2v2e 29326 A multigraph with two edge...
umgr2v2enb1 29327 In a multigraph with two e...
umgr2v2evd2 29328 In a multigraph with two e...
hashnbusgrvd 29329 In a simple graph, the num...
usgruvtxvdb 29330 In a finite simple graph w...
vdiscusgrb 29331 A finite simple graph with...
vdiscusgr 29332 In a finite complete simpl...
vtxdusgradjvtx 29333 The degree of a vertex in ...
usgrvd0nedg 29334 If a vertex in a simple gr...
uhgrvd00 29335 If every vertex in a hyper...
usgrvd00 29336 If every vertex in a simpl...
vdegp1ai 29337 The induction step for a v...
vdegp1bi 29338 The induction step for a v...
vdegp1ci 29339 The induction step for a v...
vtxdginducedm1lem1 29340 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 29341 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 29342 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 29343 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 29344 The degree of a vertex ` v...
vtxdginducedm1fi 29345 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 29346 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 29347 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 29348 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 29349 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 29350 Induction step of ~ finsum...
finsumvtxdg2size 29351 The sum of the degrees of ...
fusgr1th 29352 The sum of the degrees of ...
finsumvtxdgeven 29353 The sum of the degrees of ...
vtxdgoddnumeven 29354 The number of vertices of ...
fusgrvtxdgonume 29355 The number of vertices of ...
isrgr 29360 The property of a class be...
rgrprop 29361 The properties of a k-regu...
isrusgr 29362 The property of being a k-...
rusgrprop 29363 The properties of a k-regu...
rusgrrgr 29364 A k-regular simple graph i...
rusgrusgr 29365 A k-regular simple graph i...
finrusgrfusgr 29366 A finite regular simple gr...
isrusgr0 29367 The property of being a k-...
rusgrprop0 29368 The properties of a k-regu...
usgreqdrusgr 29369 If all vertices in a simpl...
fusgrregdegfi 29370 In a nonempty finite simpl...
fusgrn0eqdrusgr 29371 If all vertices in a nonem...
frusgrnn0 29372 In a nonempty finite k-reg...
0edg0rgr 29373 A graph is 0-regular if it...
uhgr0edg0rgr 29374 A hypergraph is 0-regular ...
uhgr0edg0rgrb 29375 A hypergraph is 0-regular ...
usgr0edg0rusgr 29376 A simple graph is 0-regula...
0vtxrgr 29377 A null graph (with no vert...
0vtxrusgr 29378 A graph with no vertices a...
0uhgrrusgr 29379 The null graph as hypergra...
0grrusgr 29380 The null graph represented...
0grrgr 29381 The null graph represented...
cusgrrusgr 29382 A complete simple graph wi...
cusgrm1rusgr 29383 A finite simple graph with...
rusgrpropnb 29384 The properties of a k-regu...
rusgrpropedg 29385 The properties of a k-regu...
rusgrpropadjvtx 29386 The properties of a k-regu...
rusgrnumwrdl2 29387 In a k-regular simple grap...
rusgr1vtxlem 29388 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 29389 If a k-regular simple grap...
rgrusgrprc 29390 The class of 0-regular sim...
rusgrprc 29391 The class of 0-regular sim...
rgrprc 29392 The class of 0-regular gra...
rgrprcx 29393 The class of 0-regular gra...
rgrx0ndm 29394 0 is not in the domain of ...
rgrx0nd 29395 The potentially alternativ...
ewlksfval 29402 The set of s-walks of edge...
isewlk 29403 Conditions for a function ...
ewlkprop 29404 Properties of an s-walk of...
ewlkinedg 29405 The intersection (common v...
ewlkle 29406 An s-walk of edges is also...
upgrewlkle2 29407 In a pseudograph, there is...
wkslem1 29408 Lemma 1 for walks to subst...
wkslem2 29409 Lemma 2 for walks to subst...
wksfval 29410 The set of walks (in an un...
iswlk 29411 Properties of a pair of fu...
wlkprop 29412 Properties of a walk. (Co...
wlkv 29413 The classes involved in a ...
iswlkg 29414 Generalization of ~ iswlk ...
wlkf 29415 The mapping enumerating th...
wlkcl 29416 A walk has length ` # ( F ...
wlkp 29417 The mapping enumerating th...
wlkpwrd 29418 The sequence of vertices o...
wlklenvp1 29419 The number of vertices of ...
wksv 29420 The class of walks is a se...
wksvOLD 29421 Obsolete version of ~ wksv...
wlkn0 29422 The sequence of vertices o...
wlklenvm1 29423 The number of edges of a w...
ifpsnprss 29424 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 29425 Each pair of adjacent vert...
wlkvtxiedg 29426 The vertices of a walk are...
relwlk 29427 The set ` ( Walks `` G ) `...
wlkvv 29428 If there is at least one w...
wlkop 29429 A walk is an ordered pair....
wlkcpr 29430 A walk as class with two c...
wlk2f 29431 If there is a walk ` W ` t...
wlkcomp 29432 A walk expressed by proper...
wlkcompim 29433 Implications for the prope...
wlkelwrd 29434 The components of a walk a...
wlkeq 29435 Conditions for two walks (...
edginwlk 29436 The value of the edge func...
upgredginwlk 29437 The value of the edge func...
iedginwlk 29438 The value of the edge func...
wlkl1loop 29439 A walk of length 1 from a ...
wlk1walk 29440 A walk is a 1-walk "on the...
wlk1ewlk 29441 A walk is an s-walk "on th...
upgriswlk 29442 Properties of a pair of fu...
upgrwlkedg 29443 The edges of a walk in a p...
upgrwlkcompim 29444 Implications for the prope...
wlkvtxedg 29445 The vertices of a walk are...
upgrwlkvtxedg 29446 The pairs of connected ver...
uspgr2wlkeq 29447 Conditions for two walks w...
uspgr2wlkeq2 29448 Conditions for two walks w...
uspgr2wlkeqi 29449 Conditions for two walks w...
umgrwlknloop 29450 In a multigraph, each walk...
wlkResOLD 29451 Obsolete version of ~ opab...
wlkv0 29452 If there is a walk in the ...
g0wlk0 29453 There is no walk in a null...
0wlk0 29454 There is no walk for the e...
wlk0prc 29455 There is no walk in a null...
wlklenvclwlk 29456 The number of vertices in ...
wlkson 29457 The set of walks between t...
iswlkon 29458 Properties of a pair of fu...
wlkonprop 29459 Properties of a walk betwe...
wlkpvtx 29460 A walk connects vertices. ...
wlkepvtx 29461 The endpoints of a walk ar...
wlkoniswlk 29462 A walk between two vertice...
wlkonwlk 29463 A walk is a walk between i...
wlkonwlk1l 29464 A walk is a walk from its ...
wlksoneq1eq2 29465 Two walks with identical s...
wlkonl1iedg 29466 If there is a walk between...
wlkon2n0 29467 The length of a walk betwe...
2wlklem 29468 Lemma for theorems for wal...
upgr2wlk 29469 Properties of a pair of fu...
wlkreslem 29470 Lemma for ~ wlkres . (Con...
wlkres 29471 The restriction ` <. H , Q...
redwlklem 29472 Lemma for ~ redwlk . (Con...
redwlk 29473 A walk ending at the last ...
wlkp1lem1 29474 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 29475 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 29476 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 29477 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 29478 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 29479 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 29480 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 29481 Lemma for ~ wlkp1 . (Cont...
wlkp1 29482 Append one path segment (e...
wlkdlem1 29483 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 29484 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 29485 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 29486 Lemma 4 for ~ wlkd . (Con...
wlkd 29487 Two words representing a w...
lfgrwlkprop 29488 Two adjacent vertices in a...
lfgriswlk 29489 Conditions for a pair of f...
lfgrwlknloop 29490 In a loop-free graph, each...
reltrls 29495 The set ` ( Trails `` G ) ...
trlsfval 29496 The set of trails (in an u...
istrl 29497 Conditions for a pair of c...
trliswlk 29498 A trail is a walk. (Contr...
trlf1 29499 The enumeration ` F ` of a...
trlreslem 29500 Lemma for ~ trlres . Form...
trlres 29501 The restriction ` <. H , Q...
upgrtrls 29502 The set of trails in a pse...
upgristrl 29503 Properties of a pair of fu...
upgrf1istrl 29504 Properties of a pair of a ...
wksonproplem 29505 Lemma for theorems for pro...
wksonproplemOLD 29506 Obsolete version of ~ wkso...
trlsonfval 29507 The set of trails between ...
istrlson 29508 Properties of a pair of fu...
trlsonprop 29509 Properties of a trail betw...
trlsonistrl 29510 A trail between two vertic...
trlsonwlkon 29511 A trail between two vertic...
trlontrl 29512 A trail is a trail between...
relpths 29521 The set ` ( Paths `` G ) `...
pthsfval 29522 The set of paths (in an un...
spthsfval 29523 The set of simple paths (i...
ispth 29524 Conditions for a pair of c...
isspth 29525 Conditions for a pair of c...
pthistrl 29526 A path is a trail (in an u...
spthispth 29527 A simple path is a path (i...
pthiswlk 29528 A path is a walk (in an un...
spthiswlk 29529 A simple path is a walk (i...
pthdivtx 29530 The inner vertices of a pa...
pthdadjvtx 29531 The adjacent vertices of a...
2pthnloop 29532 A path of length at least ...
upgr2pthnlp 29533 A path of length at least ...
spthdifv 29534 The vertices of a simple p...
spthdep 29535 A simple path (at least of...
pthdepisspth 29536 A path with different star...
upgrwlkdvdelem 29537 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 29538 In a pseudograph, all edge...
upgrspthswlk 29539 The set of simple paths in...
upgrwlkdvspth 29540 A walk consisting of diffe...
pthsonfval 29541 The set of paths between t...
spthson 29542 The set of simple paths be...
ispthson 29543 Properties of a pair of fu...
isspthson 29544 Properties of a pair of fu...
pthsonprop 29545 Properties of a path betwe...
spthonprop 29546 Properties of a simple pat...
pthonispth 29547 A path between two vertice...
pthontrlon 29548 A path between two vertice...
pthonpth 29549 A path is a path between i...
isspthonpth 29550 A pair of functions is a s...
spthonisspth 29551 A simple path between to v...
spthonpthon 29552 A simple path between two ...
spthonepeq 29553 The endpoints of a simple ...
uhgrwkspthlem1 29554 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 29555 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 29556 Any walk of length 1 betwe...
usgr2wlkneq 29557 The vertices and edges are...
usgr2wlkspthlem1 29558 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 29559 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 29560 In a simple graph, any wal...
usgr2trlncl 29561 In a simple graph, any tra...
usgr2trlspth 29562 In a simple graph, any tra...
usgr2pthspth 29563 In a simple graph, any pat...
usgr2pthlem 29564 Lemma for ~ usgr2pth . (C...
usgr2pth 29565 In a simple graph, there i...
usgr2pth0 29566 In a simply graph, there i...
pthdlem1 29567 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 29568 Lemma for ~ pthdlem2 . (C...
pthdlem2 29569 Lemma 2 for ~ pthd . (Con...
pthd 29570 Two words representing a t...
clwlks 29573 The set of closed walks (i...
isclwlk 29574 A pair of functions repres...
clwlkiswlk 29575 A closed walk is a walk (i...
clwlkwlk 29576 Closed walks are walks (in...
clwlkswks 29577 Closed walks are walks (in...
isclwlke 29578 Properties of a pair of fu...
isclwlkupgr 29579 Properties of a pair of fu...
clwlkcomp 29580 A closed walk expressed by...
clwlkcompim 29581 Implications for the prope...
upgrclwlkcompim 29582 Implications for the prope...
clwlkcompbp 29583 Basic properties of the co...
clwlkl1loop 29584 A closed walk of length 1 ...
crcts 29589 The set of circuits (in an...
cycls 29590 The set of cycles (in an u...
iscrct 29591 Sufficient and necessary c...
iscycl 29592 Sufficient and necessary c...
crctprop 29593 The properties of a circui...
cyclprop 29594 The properties of a cycle:...
crctisclwlk 29595 A circuit is a closed walk...
crctistrl 29596 A circuit is a trail. (Co...
crctiswlk 29597 A circuit is a walk. (Con...
cyclispth 29598 A cycle is a path. (Contr...
cycliswlk 29599 A cycle is a walk. (Contr...
cycliscrct 29600 A cycle is a circuit. (Co...
cyclnspth 29601 A (non-trivial) cycle is n...
cyclispthon 29602 A cycle is a path starting...
lfgrn1cycl 29603 In a loop-free graph there...
usgr2trlncrct 29604 In a simple graph, any tra...
umgrn1cycl 29605 In a multigraph graph (wit...
uspgrn2crct 29606 In a simple pseudograph th...
usgrn2cycl 29607 In a simple graph there ar...
crctcshwlkn0lem1 29608 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 29609 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 29610 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 29611 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 29612 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 29613 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 29614 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 29615 Lemma for ~ crctcsh . (Co...
crctcshlem2 29616 Lemma for ~ crctcsh . (Co...
crctcshlem3 29617 Lemma for ~ crctcsh . (Co...
crctcshlem4 29618 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 29619 Cyclically shifting the in...
crctcshwlk 29620 Cyclically shifting the in...
crctcshtrl 29621 Cyclically shifting the in...
crctcsh 29622 Cyclically shifting the in...
wwlks 29633 The set of walks (in an un...
iswwlks 29634 A word over the set of ver...
wwlksn 29635 The set of walks (in an un...
iswwlksn 29636 A word over the set of ver...
wwlksnprcl 29637 Derivation of the length o...
iswwlksnx 29638 Properties of a word to re...
wwlkbp 29639 Basic properties of a walk...
wwlknbp 29640 Basic properties of a walk...
wwlknp 29641 Properties of a set being ...
wwlknbp1 29642 Other basic properties of ...
wwlknvtx 29643 The symbols of a word ` W ...
wwlknllvtx 29644 If a word ` W ` represents...
wwlknlsw 29645 If a word represents a wal...
wspthsn 29646 The set of simple paths of...
iswspthn 29647 An element of the set of s...
wspthnp 29648 Properties of a set being ...
wwlksnon 29649 The set of walks of a fixe...
wspthsnon 29650 The set of simple paths of...
iswwlksnon 29651 The set of walks of a fixe...
wwlksnon0 29652 Sufficient conditions for ...
wwlksonvtx 29653 If a word ` W ` represents...
iswspthsnon 29654 The set of simple paths of...
wwlknon 29655 An element of the set of w...
wspthnon 29656 An element of the set of s...
wspthnonp 29657 Properties of a set being ...
wspthneq1eq2 29658 Two simple paths with iden...
wwlksn0s 29659 The set of all walks as wo...
wwlkssswrd 29660 Walks (represented by word...
wwlksn0 29661 A walk of length 0 is repr...
0enwwlksnge1 29662 In graphs without edges, t...
wwlkswwlksn 29663 A walk of a fixed length a...
wwlkssswwlksn 29664 The walks of a fixed lengt...
wlkiswwlks1 29665 The sequence of vertices i...
wlklnwwlkln1 29666 The sequence of vertices i...
wlkiswwlks2lem1 29667 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 29668 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 29669 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 29670 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 29671 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 29672 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 29673 A walk as word corresponds...
wlkiswwlks 29674 A walk as word corresponds...
wlkiswwlksupgr2 29675 A walk as word corresponds...
wlkiswwlkupgr 29676 A walk as word corresponds...
wlkswwlksf1o 29677 The mapping of (ordinary) ...
wlkswwlksen 29678 The set of walks as words ...
wwlksm1edg 29679 Removing the trailing edge...
wlklnwwlkln2lem 29680 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 29681 A walk of length ` N ` as ...
wlklnwwlkn 29682 A walk of length ` N ` as ...
wlklnwwlklnupgr2 29683 A walk of length ` N ` as ...
wlklnwwlknupgr 29684 A walk of length ` N ` as ...
wlknewwlksn 29685 If a walk in a pseudograph...
wlknwwlksnbij 29686 The mapping ` ( t e. T |->...
wlknwwlksnen 29687 In a simple pseudograph, t...
wlknwwlksneqs 29688 The set of walks of a fixe...
wwlkseq 29689 Equality of two walks (as ...
wwlksnred 29690 Reduction of a walk (as wo...
wwlksnext 29691 Extension of a walk (as wo...
wwlksnextbi 29692 Extension of a walk (as wo...
wwlksnredwwlkn 29693 For each walk (as word) of...
wwlksnredwwlkn0 29694 For each walk (as word) of...
wwlksnextwrd 29695 Lemma for ~ wwlksnextbij ....
wwlksnextfun 29696 Lemma for ~ wwlksnextbij ....
wwlksnextinj 29697 Lemma for ~ wwlksnextbij ....
wwlksnextsurj 29698 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 29699 Lemma for ~ wwlksnextbij ....
wwlksnextbij 29700 There is a bijection betwe...
wwlksnexthasheq 29701 The number of the extensio...
disjxwwlksn 29702 Sets of walks (as words) e...
wwlksnndef 29703 Conditions for ` WWalksN `...
wwlksnfi 29704 The number of walks repres...
wlksnfi 29705 The number of walks of fix...
wlksnwwlknvbij 29706 There is a bijection betwe...
wwlksnextproplem1 29707 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 29708 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 29709 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 29710 Adding additional properti...
disjxwwlkn 29711 Sets of walks (as words) e...
hashwwlksnext 29712 Number of walks (as words)...
wwlksnwwlksnon 29713 A walk of fixed length is ...
wspthsnwspthsnon 29714 A simple path of fixed len...
wspthsnonn0vne 29715 If the set of simple paths...
wspthsswwlkn 29716 The set of simple paths of...
wspthnfi 29717 In a finite graph, the set...
wwlksnonfi 29718 In a finite graph, the set...
wspthsswwlknon 29719 The set of simple paths of...
wspthnonfi 29720 In a finite graph, the set...
wspniunwspnon 29721 The set of nonempty simple...
wspn0 29722 If there are no vertices, ...
2wlkdlem1 29723 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 29724 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 29725 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 29726 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 29727 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 29728 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 29729 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 29730 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 29731 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 29732 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 29733 Lemma 10 for ~ 3wlkd . (C...
2wlkd 29734 Construction of a walk fro...
2wlkond 29735 A walk of length 2 from on...
2trld 29736 Construction of a trail fr...
2trlond 29737 A trail of length 2 from o...
2pthd 29738 A path of length 2 from on...
2spthd 29739 A simple path of length 2 ...
2pthond 29740 A simple path of length 2 ...
2pthon3v 29741 For a vertex adjacent to t...
umgr2adedgwlklem 29742 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 29743 In a multigraph, two adjac...
umgr2adedgwlkon 29744 In a multigraph, two adjac...
umgr2adedgwlkonALT 29745 Alternate proof for ~ umgr...
umgr2adedgspth 29746 In a multigraph, two adjac...
umgr2wlk 29747 In a multigraph, there is ...
umgr2wlkon 29748 For each pair of adjacent ...
elwwlks2s3 29749 A walk of length 2 as word...
midwwlks2s3 29750 There is a vertex between ...
wwlks2onv 29751 If a length 3 string repre...
elwwlks2ons3im 29752 A walk as word of length 2...
elwwlks2ons3 29753 For each walk of length 2 ...
s3wwlks2on 29754 A length 3 string which re...
umgrwwlks2on 29755 A walk of length 2 between...
wwlks2onsym 29756 There is a walk of length ...
elwwlks2on 29757 A walk of length 2 between...
elwspths2on 29758 A simple path of length 2 ...
wpthswwlks2on 29759 For two different vertices...
2wspdisj 29760 All simple paths of length...
2wspiundisj 29761 All simple paths of length...
usgr2wspthons3 29762 A simple path of length 2 ...
usgr2wspthon 29763 A simple path of length 2 ...
elwwlks2 29764 A walk of length 2 between...
elwspths2spth 29765 A simple path of length 2 ...
rusgrnumwwlkl1 29766 In a k-regular graph, ther...
rusgrnumwwlkslem 29767 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 29768 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 29769 Induction base 0 for ~ rus...
rusgrnumwwlkb1 29770 Induction base 1 for ~ rus...
rusgr0edg 29771 Special case for graphs wi...
rusgrnumwwlks 29772 Induction step for ~ rusgr...
rusgrnumwwlk 29773 In a ` K `-regular graph, ...
rusgrnumwwlkg 29774 In a ` K `-regular graph, ...
rusgrnumwlkg 29775 In a k-regular graph, the ...
clwwlknclwwlkdif 29776 The set ` A ` of walks of ...
clwwlknclwwlkdifnum 29777 In a ` K `-regular graph, ...
clwwlk 29780 The set of closed walks (i...
isclwwlk 29781 Properties of a word to re...
clwwlkbp 29782 Basic properties of a clos...
clwwlkgt0 29783 There is no empty closed w...
clwwlksswrd 29784 Closed walks (represented ...
clwwlk1loop 29785 A closed walk of length 1 ...
clwwlkccatlem 29786 Lemma for ~ clwwlkccat : i...
clwwlkccat 29787 The concatenation of two w...
umgrclwwlkge2 29788 A closed walk in a multigr...
clwlkclwwlklem2a1 29789 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 29790 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 29791 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 29792 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 29793 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 29794 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 29795 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 29796 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 29797 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 29798 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 29799 A closed walk as word of l...
clwlkclwwlk2 29800 A closed walk corresponds ...
clwlkclwwlkflem 29801 Lemma for ~ clwlkclwwlkf ....
clwlkclwwlkf1lem2 29802 Lemma 2 for ~ clwlkclwwlkf...
clwlkclwwlkf1lem3 29803 Lemma 3 for ~ clwlkclwwlkf...
clwlkclwwlkfolem 29804 Lemma for ~ clwlkclwwlkfo ...
clwlkclwwlkf 29805 ` F ` is a function from t...
clwlkclwwlkfo 29806 ` F ` is a function from t...
clwlkclwwlkf1 29807 ` F ` is a one-to-one func...
clwlkclwwlkf1o 29808 ` F ` is a bijection betwe...
clwlkclwwlken 29809 The set of the nonempty cl...
clwwisshclwwslemlem 29810 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 29811 Lemma for ~ clwwisshclwws ...
clwwisshclwws 29812 Cyclically shifting a clos...
clwwisshclwwsn 29813 Cyclically shifting a clos...
erclwwlkrel 29814 ` .~ ` is a relation. (Co...
erclwwlkeq 29815 Two classes are equivalent...
erclwwlkeqlen 29816 If two classes are equival...
erclwwlkref 29817 ` .~ ` is a reflexive rela...
erclwwlksym 29818 ` .~ ` is a symmetric rela...
erclwwlktr 29819 ` .~ ` is a transitive rel...
erclwwlk 29820 ` .~ ` is an equivalence r...
clwwlkn 29823 The set of closed walks of...
isclwwlkn 29824 A word over the set of ver...
clwwlkn0 29825 There is no closed walk of...
clwwlkneq0 29826 Sufficient conditions for ...
clwwlkclwwlkn 29827 A closed walk of a fixed l...
clwwlksclwwlkn 29828 The closed walks of a fixe...
clwwlknlen 29829 The length of a word repre...
clwwlknnn 29830 The length of a closed wal...
clwwlknwrd 29831 A closed walk of a fixed l...
clwwlknbp 29832 Basic properties of a clos...
isclwwlknx 29833 Characterization of a word...
clwwlknp 29834 Properties of a set being ...
clwwlknwwlksn 29835 A word representing a clos...
clwwlknlbonbgr1 29836 The last but one vertex in...
clwwlkinwwlk 29837 If the initial vertex of a...
clwwlkn1 29838 A closed walk of length 1 ...
loopclwwlkn1b 29839 The singleton word consist...
clwwlkn1loopb 29840 A word represents a closed...
clwwlkn2 29841 A closed walk of length 2 ...
clwwlknfi 29842 If there is only a finite ...
clwwlkel 29843 Obtaining a closed walk (a...
clwwlkf 29844 Lemma 1 for ~ clwwlkf1o : ...
clwwlkfv 29845 Lemma 2 for ~ clwwlkf1o : ...
clwwlkf1 29846 Lemma 3 for ~ clwwlkf1o : ...
clwwlkfo 29847 Lemma 4 for ~ clwwlkf1o : ...
clwwlkf1o 29848 F is a 1-1 onto function, ...
clwwlken 29849 The set of closed walks of...
clwwlknwwlkncl 29850 Obtaining a closed walk (a...
clwwlkwwlksb 29851 A nonempty word over verti...
clwwlknwwlksnb 29852 A word over vertices repre...
clwwlkext2edg 29853 If a word concatenated wit...
wwlksext2clwwlk 29854 If a word represents a wal...
wwlksubclwwlk 29855 Any prefix of a word repre...
clwwnisshclwwsn 29856 Cyclically shifting a clos...
eleclclwwlknlem1 29857 Lemma 1 for ~ eleclclwwlkn...
eleclclwwlknlem2 29858 Lemma 2 for ~ eleclclwwlkn...
clwwlknscsh 29859 The set of cyclical shifts...
clwwlknccat 29860 The concatenation of two w...
umgr2cwwk2dif 29861 If a word represents a clo...
umgr2cwwkdifex 29862 If a word represents a clo...
erclwwlknrel 29863 ` .~ ` is a relation. (Co...
erclwwlkneq 29864 Two classes are equivalent...
erclwwlkneqlen 29865 If two classes are equival...
erclwwlknref 29866 ` .~ ` is a reflexive rela...
erclwwlknsym 29867 ` .~ ` is a symmetric rela...
erclwwlkntr 29868 ` .~ ` is a transitive rel...
erclwwlkn 29869 ` .~ ` is an equivalence r...
qerclwwlknfi 29870 The quotient set of the se...
hashclwwlkn0 29871 The number of closed walks...
eclclwwlkn1 29872 An equivalence class accor...
eleclclwwlkn 29873 A member of an equivalence...
hashecclwwlkn1 29874 The size of every equivale...
umgrhashecclwwlk 29875 The size of every equivale...
fusgrhashclwwlkn 29876 The size of the set of clo...
clwwlkndivn 29877 The size of the set of clo...
clwlknf1oclwwlknlem1 29878 Lemma 1 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem2 29879 Lemma 2 for ~ clwlknf1oclw...
clwlknf1oclwwlknlem3 29880 Lemma 3 for ~ clwlknf1oclw...
clwlknf1oclwwlkn 29881 There is a one-to-one onto...
clwlkssizeeq 29882 The size of the set of clo...
clwlksndivn 29883 The size of the set of clo...
clwwlknonmpo 29886 ` ( ClWWalksNOn `` G ) ` i...
clwwlknon 29887 The set of closed walks on...
isclwwlknon 29888 A word over the set of ver...
clwwlk0on0 29889 There is no word over the ...
clwwlknon0 29890 Sufficient conditions for ...
clwwlknonfin 29891 In a finite graph ` G ` , ...
clwwlknonel 29892 Characterization of a word...
clwwlknonccat 29893 The concatenation of two w...
clwwlknon1 29894 The set of closed walks on...
clwwlknon1loop 29895 If there is a loop at vert...
clwwlknon1nloop 29896 If there is no loop at ver...
clwwlknon1sn 29897 The set of (closed) walks ...
clwwlknon1le1 29898 There is at most one (clos...
clwwlknon2 29899 The set of closed walks on...
clwwlknon2x 29900 The set of closed walks on...
s2elclwwlknon2 29901 Sufficient conditions of a...
clwwlknon2num 29902 In a ` K `-regular graph `...
clwwlknonwwlknonb 29903 A word over vertices repre...
clwwlknonex2lem1 29904 Lemma 1 for ~ clwwlknonex2...
clwwlknonex2lem2 29905 Lemma 2 for ~ clwwlknonex2...
clwwlknonex2 29906 Extending a closed walk ` ...
clwwlknonex2e 29907 Extending a closed walk ` ...
clwwlknondisj 29908 The sets of closed walks o...
clwwlknun 29909 The set of closed walks of...
clwwlkvbij 29910 There is a bijection betwe...
0ewlk 29911 The empty set (empty seque...
1ewlk 29912 A sequence of 1 edge is an...
0wlk 29913 A pair of an empty set (of...
is0wlk 29914 A pair of an empty set (of...
0wlkonlem1 29915 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 29916 Lemma 2 for ~ 0wlkon and ~...
0wlkon 29917 A walk of length 0 from a ...
0wlkons1 29918 A walk of length 0 from a ...
0trl 29919 A pair of an empty set (of...
is0trl 29920 A pair of an empty set (of...
0trlon 29921 A trail of length 0 from a...
0pth 29922 A pair of an empty set (of...
0spth 29923 A pair of an empty set (of...
0pthon 29924 A path of length 0 from a ...
0pthon1 29925 A path of length 0 from a ...
0pthonv 29926 For each vertex there is a...
0clwlk 29927 A pair of an empty set (of...
0clwlkv 29928 Any vertex (more precisely...
0clwlk0 29929 There is no closed walk in...
0crct 29930 A pair of an empty set (of...
0cycl 29931 A pair of an empty set (of...
1pthdlem1 29932 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 29933 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 29934 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 29935 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 29936 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 29937 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 29938 In a graph with two vertic...
1trld 29939 In a graph with two vertic...
1pthd 29940 In a graph with two vertic...
1pthond 29941 In a graph with two vertic...
upgr1wlkdlem1 29942 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 29943 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 29944 In a pseudograph with two ...
upgr1trld 29945 In a pseudograph with two ...
upgr1pthd 29946 In a pseudograph with two ...
upgr1pthond 29947 In a pseudograph with two ...
lppthon 29948 A loop (which is an edge a...
lp1cycl 29949 A loop (which is an edge a...
1pthon2v 29950 For each pair of adjacent ...
1pthon2ve 29951 For each pair of adjacent ...
wlk2v2elem1 29952 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 29953 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 29954 In a graph with two vertic...
ntrl2v2e 29955 A walk which is not a trai...
3wlkdlem1 29956 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 29957 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 29958 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 29959 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 29960 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 29961 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 29962 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 29963 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 29964 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 29965 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 29966 Lemma 10 for ~ 3wlkd . (C...
3wlkd 29967 Construction of a walk fro...
3wlkond 29968 A walk of length 3 from on...
3trld 29969 Construction of a trail fr...
3trlond 29970 A trail of length 3 from o...
3pthd 29971 A path of length 3 from on...
3pthond 29972 A path of length 3 from on...
3spthd 29973 A simple path of length 3 ...
3spthond 29974 A simple path of length 3 ...
3cycld 29975 Construction of a 3-cycle ...
3cyclpd 29976 Construction of a 3-cycle ...
upgr3v3e3cycl 29977 If there is a cycle of len...
uhgr3cyclexlem 29978 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 29979 If there are three differe...
umgr3cyclex 29980 If there are three (differ...
umgr3v3e3cycl 29981 If and only if there is a ...
upgr4cycl4dv4e 29982 If there is a cycle of len...
dfconngr1 29985 Alternative definition of ...
isconngr 29986 The property of being a co...
isconngr1 29987 The property of being a co...
cusconngr 29988 A complete hypergraph is c...
0conngr 29989 A graph without vertices i...
0vconngr 29990 A graph without vertices i...
1conngr 29991 A graph with (at most) one...
conngrv2edg 29992 A vertex in a connected gr...
vdn0conngrumgrv2 29993 A vertex in a connected mu...
releupth 29996 The set ` ( EulerPaths `` ...
eupths 29997 The Eulerian paths on the ...
iseupth 29998 The property " ` <. F , P ...
iseupthf1o 29999 The property " ` <. F , P ...
eupthi 30000 Properties of an Eulerian ...
eupthf1o 30001 The ` F ` function in an E...
eupthfi 30002 Any graph with an Eulerian...
eupthseg 30003 The ` N ` -th edge in an e...
upgriseupth 30004 The property " ` <. F , P ...
upgreupthi 30005 Properties of an Eulerian ...
upgreupthseg 30006 The ` N ` -th edge in an e...
eupthcl 30007 An Eulerian path has lengt...
eupthistrl 30008 An Eulerian path is a trai...
eupthiswlk 30009 An Eulerian path is a walk...
eupthpf 30010 The ` P ` function in an E...
eupth0 30011 There is an Eulerian path ...
eupthres 30012 The restriction ` <. H , Q...
eupthp1 30013 Append one path segment to...
eupth2eucrct 30014 Append one path segment to...
eupth2lem1 30015 Lemma for ~ eupth2 . (Con...
eupth2lem2 30016 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 30017 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 30018 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 30019 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 30020 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 30021 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 30022 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 30023 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 30024 Formerly part of proof of ...
eupth2lem3lem1 30025 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 30026 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 30027 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 30028 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 30029 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 30030 Formerly part of proof of ...
eupth2lem3lem7 30031 Lemma for ~ eupth2lem3 : ...
eupthvdres 30032 Formerly part of proof of ...
eupth2lem3 30033 Lemma for ~ eupth2 . (Con...
eupth2lemb 30034 Lemma for ~ eupth2 (induct...
eupth2lems 30035 Lemma for ~ eupth2 (induct...
eupth2 30036 The only vertices of odd d...
eulerpathpr 30037 A graph with an Eulerian p...
eulerpath 30038 A pseudograph with an Eule...
eulercrct 30039 A pseudograph with an Eule...
eucrctshift 30040 Cyclically shifting the in...
eucrct2eupth1 30041 Removing one edge ` ( I ``...
eucrct2eupth 30042 Removing one edge ` ( I ``...
konigsbergvtx 30043 The set of vertices of the...
konigsbergiedg 30044 The indexed edges of the K...
konigsbergiedgw 30045 The indexed edges of the K...
konigsbergssiedgwpr 30046 Each subset of the indexed...
konigsbergssiedgw 30047 Each subset of the indexed...
konigsbergumgr 30048 The Königsberg graph ...
konigsberglem1 30049 Lemma 1 for ~ konigsberg :...
konigsberglem2 30050 Lemma 2 for ~ konigsberg :...
konigsberglem3 30051 Lemma 3 for ~ konigsberg :...
konigsberglem4 30052 Lemma 4 for ~ konigsberg :...
konigsberglem5 30053 Lemma 5 for ~ konigsberg :...
konigsberg 30054 The Königsberg Bridge...
isfrgr 30057 The property of being a fr...
frgrusgr 30058 A friendship graph is a si...
frgr0v 30059 Any null graph (set with n...
frgr0vb 30060 Any null graph (without ve...
frgruhgr0v 30061 Any null graph (without ve...
frgr0 30062 The null graph (graph with...
frcond1 30063 The friendship condition: ...
frcond2 30064 The friendship condition: ...
frgreu 30065 Variant of ~ frcond2 : An...
frcond3 30066 The friendship condition, ...
frcond4 30067 The friendship condition, ...
frgr1v 30068 Any graph with (at most) o...
nfrgr2v 30069 Any graph with two (differ...
frgr3vlem1 30070 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 30071 Lemma 2 for ~ frgr3v . (C...
frgr3v 30072 Any graph with three verti...
1vwmgr 30073 Every graph with one verte...
3vfriswmgrlem 30074 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 30075 Every friendship graph wit...
1to2vfriswmgr 30076 Every friendship graph wit...
1to3vfriswmgr 30077 Every friendship graph wit...
1to3vfriendship 30078 The friendship theorem for...
2pthfrgrrn 30079 Between any two (different...
2pthfrgrrn2 30080 Between any two (different...
2pthfrgr 30081 Between any two (different...
3cyclfrgrrn1 30082 Every vertex in a friendsh...
3cyclfrgrrn 30083 Every vertex in a friendsh...
3cyclfrgrrn2 30084 Every vertex in a friendsh...
3cyclfrgr 30085 Every vertex in a friendsh...
4cycl2v2nb 30086 In a (maybe degenerate) 4-...
4cycl2vnunb 30087 In a 4-cycle, two distinct...
n4cyclfrgr 30088 There is no 4-cycle in a f...
4cyclusnfrgr 30089 A graph with a 4-cycle is ...
frgrnbnb 30090 If two neighbors ` U ` and...
frgrconngr 30091 A friendship graph is conn...
vdgn0frgrv2 30092 A vertex in a friendship g...
vdgn1frgrv2 30093 Any vertex in a friendship...
vdgn1frgrv3 30094 Any vertex in a friendship...
vdgfrgrgt2 30095 Any vertex in a friendship...
frgrncvvdeqlem1 30096 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 30097 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 30098 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 30099 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 30100 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 30101 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 30102 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 30103 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 30104 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 30105 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 30106 In a friendship graph, two...
frgrwopreglem4a 30107 In a friendship graph any ...
frgrwopreglem5a 30108 If a friendship graph has ...
frgrwopreglem1 30109 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 30110 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 30111 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 30112 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 30113 According to statement 5 i...
frgrwopregbsn 30114 According to statement 5 i...
frgrwopreg1 30115 According to statement 5 i...
frgrwopreg2 30116 According to statement 5 i...
frgrwopreglem5lem 30117 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 30118 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 30119 Alternate direct proof of ...
frgrwopreg 30120 In a friendship graph ther...
frgrregorufr0 30121 In a friendship graph ther...
frgrregorufr 30122 If there is a vertex havin...
frgrregorufrg 30123 If there is a vertex havin...
frgr2wwlkeu 30124 For two different vertices...
frgr2wwlkn0 30125 In a friendship graph, the...
frgr2wwlk1 30126 In a friendship graph, the...
frgr2wsp1 30127 In a friendship graph, the...
frgr2wwlkeqm 30128 If there is a (simple) pat...
frgrhash2wsp 30129 The number of simple paths...
fusgreg2wsplem 30130 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 30131 The set of paths of length...
fusgreghash2wspv 30132 According to statement 7 i...
fusgreg2wsp 30133 In a finite simple graph, ...
2wspmdisj 30134 The sets of paths of lengt...
fusgreghash2wsp 30135 In a finite k-regular grap...
frrusgrord0lem 30136 Lemma for ~ frrusgrord0 . ...
frrusgrord0 30137 If a nonempty finite frien...
frrusgrord 30138 If a nonempty finite frien...
numclwwlk2lem1lem 30139 Lemma for ~ numclwwlk2lem1...
2clwwlklem 30140 Lemma for ~ clwwnonrepclww...
clwwnrepclwwn 30141 If the initial vertex of a...
clwwnonrepclwwnon 30142 If the initial vertex of a...
2clwwlk2clwwlklem 30143 Lemma for ~ 2clwwlk2clwwlk...
2clwwlk 30144 Value of operation ` C ` ,...
2clwwlk2 30145 The set ` ( X C 2 ) ` of d...
2clwwlkel 30146 Characterization of an ele...
2clwwlk2clwwlk 30147 An element of the value of...
numclwwlk1lem2foalem 30148 Lemma for ~ numclwwlk1lem2...
extwwlkfab 30149 The set ` ( X C N ) ` of d...
extwwlkfabel 30150 Characterization of an ele...
numclwwlk1lem2foa 30151 Going forth and back from ...
numclwwlk1lem2f 30152 ` T ` is a function, mappi...
numclwwlk1lem2fv 30153 Value of the function ` T ...
numclwwlk1lem2f1 30154 ` T ` is a 1-1 function. ...
numclwwlk1lem2fo 30155 ` T ` is an onto function....
numclwwlk1lem2f1o 30156 ` T ` is a 1-1 onto functi...
numclwwlk1lem2 30157 The set of double loops of...
numclwwlk1 30158 Statement 9 in [Huneke] p....
clwwlknonclwlknonf1o 30159 ` F ` is a bijection betwe...
clwwlknonclwlknonen 30160 The sets of the two repres...
dlwwlknondlwlknonf1olem1 30161 Lemma 1 for ~ dlwwlknondlw...
dlwwlknondlwlknonf1o 30162 ` F ` is a bijection betwe...
dlwwlknondlwlknonen 30163 The sets of the two repres...
wlkl0 30164 There is exactly one walk ...
clwlknon2num 30165 There are k walks of lengt...
numclwlk1lem1 30166 Lemma 1 for ~ numclwlk1 (S...
numclwlk1lem2 30167 Lemma 2 for ~ numclwlk1 (S...
numclwlk1 30168 Statement 9 in [Huneke] p....
numclwwlkovh0 30169 Value of operation ` H ` ,...
numclwwlkovh 30170 Value of operation ` H ` ,...
numclwwlkovq 30171 Value of operation ` Q ` ,...
numclwwlkqhash 30172 In a ` K `-regular graph, ...
numclwwlk2lem1 30173 In a friendship graph, for...
numclwlk2lem2f 30174 ` R ` is a function mappin...
numclwlk2lem2fv 30175 Value of the function ` R ...
numclwlk2lem2f1o 30176 ` R ` is a 1-1 onto functi...
numclwwlk2lem3 30177 In a friendship graph, the...
numclwwlk2 30178 Statement 10 in [Huneke] p...
numclwwlk3lem1 30179 Lemma 2 for ~ numclwwlk3 ....
numclwwlk3lem2lem 30180 Lemma for ~ numclwwlk3lem2...
numclwwlk3lem2 30181 Lemma 1 for ~ numclwwlk3 :...
numclwwlk3 30182 Statement 12 in [Huneke] p...
numclwwlk4 30183 The total number of closed...
numclwwlk5lem 30184 Lemma for ~ numclwwlk5 . ...
numclwwlk5 30185 Statement 13 in [Huneke] p...
numclwwlk7lem 30186 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 30187 For a prime divisor ` P ` ...
numclwwlk7 30188 Statement 14 in [Huneke] p...
numclwwlk8 30189 The size of the set of clo...
frgrreggt1 30190 If a finite nonempty frien...
frgrreg 30191 If a finite nonempty frien...
frgrregord013 30192 If a finite friendship gra...
frgrregord13 30193 If a nonempty finite frien...
frgrogt3nreg 30194 If a finite friendship gra...
friendshipgt3 30195 The friendship theorem for...
friendship 30196 The friendship theorem: I...
conventions 30197

H...

conventions-labels 30198

...

conventions-comments 30199

...

natded 30200 Here are typical n...
ex-natded5.2 30201 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 30202 A more efficient proof of ...
ex-natded5.2i 30203 The same as ~ ex-natded5.2...
ex-natded5.3 30204 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 30205 A more efficient proof of ...
ex-natded5.3i 30206 The same as ~ ex-natded5.3...
ex-natded5.5 30207 Theorem 5.5 of [Clemente] ...
ex-natded5.7 30208 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 30209 A more efficient proof of ...
ex-natded5.8 30210 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 30211 A more efficient proof of ...
ex-natded5.13 30212 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 30213 A more efficient proof of ...
ex-natded9.20 30214 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 30215 A more efficient proof of ...
ex-natded9.26 30216 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 30217 A more efficient proof of ...
ex-or 30218 Example for ~ df-or . Exa...
ex-an 30219 Example for ~ df-an . Exa...
ex-dif 30220 Example for ~ df-dif . Ex...
ex-un 30221 Example for ~ df-un . Exa...
ex-in 30222 Example for ~ df-in . Exa...
ex-uni 30223 Example for ~ df-uni . Ex...
ex-ss 30224 Example for ~ df-ss . Exa...
ex-pss 30225 Example for ~ df-pss . Ex...
ex-pw 30226 Example for ~ df-pw . Exa...
ex-pr 30227 Example for ~ df-pr . (Co...
ex-br 30228 Example for ~ df-br . Exa...
ex-opab 30229 Example for ~ df-opab . E...
ex-eprel 30230 Example for ~ df-eprel . ...
ex-id 30231 Example for ~ df-id . Exa...
ex-po 30232 Example for ~ df-po . Exa...
ex-xp 30233 Example for ~ df-xp . Exa...
ex-cnv 30234 Example for ~ df-cnv . Ex...
ex-co 30235 Example for ~ df-co . Exa...
ex-dm 30236 Example for ~ df-dm . Exa...
ex-rn 30237 Example for ~ df-rn . Exa...
ex-res 30238 Example for ~ df-res . Ex...
ex-ima 30239 Example for ~ df-ima . Ex...
ex-fv 30240 Example for ~ df-fv . Exa...
ex-1st 30241 Example for ~ df-1st . Ex...
ex-2nd 30242 Example for ~ df-2nd . Ex...
1kp2ke3k 30243 Example for ~ df-dec , 100...
ex-fl 30244 Example for ~ df-fl . Exa...
ex-ceil 30245 Example for ~ df-ceil . (...
ex-mod 30246 Example for ~ df-mod . (C...
ex-exp 30247 Example for ~ df-exp . (C...
ex-fac 30248 Example for ~ df-fac . (C...
ex-bc 30249 Example for ~ df-bc . (Co...
ex-hash 30250 Example for ~ df-hash . (...
ex-sqrt 30251 Example for ~ df-sqrt . (...
ex-abs 30252 Example for ~ df-abs . (C...
ex-dvds 30253 Example for ~ df-dvds : 3 ...
ex-gcd 30254 Example for ~ df-gcd . (C...
ex-lcm 30255 Example for ~ df-lcm . (C...
ex-prmo 30256 Example for ~ df-prmo : ` ...
aevdemo 30257 Proof illustrating the com...
ex-ind-dvds 30258 Example of a proof by indu...
ex-fpar 30259 Formalized example provide...
avril1 30260 Poisson d'Avril's Theorem....
2bornot2b 30261 The law of excluded middle...
helloworld 30262 The classic "Hello world" ...
1p1e2apr1 30263 One plus one equals two. ...
eqid1 30264 Law of identity (reflexivi...
1div0apr 30265 Division by zero is forbid...
topnfbey 30266 Nothing seems to be imposs...
9p10ne21 30267 9 + 10 is not equal to 21....
9p10ne21fool 30268 9 + 10 equals 21. This as...
nrt2irr 30270 The ` N ` -th root of 2 is...
isplig 30273 The predicate "is a planar...
ispligb 30274 The predicate "is a planar...
tncp 30275 In any planar incidence ge...
l2p 30276 For any line in a planar i...
lpni 30277 For any line in a planar i...
nsnlplig 30278 There is no "one-point lin...
nsnlpligALT 30279 Alternate version of ~ nsn...
n0lplig 30280 There is no "empty line" i...
n0lpligALT 30281 Alternate version of ~ n0l...
eulplig 30282 Through two distinct point...
pliguhgr 30283 Any planar incidence geome...
dummylink 30284 Alias for ~ a1ii that may ...
id1 30285 Alias for ~ idALT that may...
isgrpo 30294 The predicate "is a group ...
isgrpoi 30295 Properties that determine ...
grpofo 30296 A group operation maps ont...
grpocl 30297 Closure law for a group op...
grpolidinv 30298 A group has a left identit...
grpon0 30299 The base set of a group is...
grpoass 30300 A group operation is assoc...
grpoidinvlem1 30301 Lemma for ~ grpoidinv . (...
grpoidinvlem2 30302 Lemma for ~ grpoidinv . (...
grpoidinvlem3 30303 Lemma for ~ grpoidinv . (...
grpoidinvlem4 30304 Lemma for ~ grpoidinv . (...
grpoidinv 30305 A group has a left and rig...
grpoideu 30306 The left identity element ...
grporndm 30307 A group's range in terms o...
0ngrp 30308 The empty set is not a gro...
gidval 30309 The value of the identity ...
grpoidval 30310 Lemma for ~ grpoidcl and o...
grpoidcl 30311 The identity element of a ...
grpoidinv2 30312 A group's properties using...
grpolid 30313 The identity element of a ...
grporid 30314 The identity element of a ...
grporcan 30315 Right cancellation law for...
grpoinveu 30316 The left inverse element o...
grpoid 30317 Two ways of saying that an...
grporn 30318 The range of a group opera...
grpoinvfval 30319 The inverse function of a ...
grpoinvval 30320 The inverse of a group ele...
grpoinvcl 30321 A group element's inverse ...
grpoinv 30322 The properties of a group ...
grpolinv 30323 The left inverse of a grou...
grporinv 30324 The right inverse of a gro...
grpoinvid1 30325 The inverse of a group ele...
grpoinvid2 30326 The inverse of a group ele...
grpolcan 30327 Left cancellation law for ...
grpo2inv 30328 Double inverse law for gro...
grpoinvf 30329 Mapping of the inverse fun...
grpoinvop 30330 The inverse of the group o...
grpodivfval 30331 Group division (or subtrac...
grpodivval 30332 Group division (or subtrac...
grpodivinv 30333 Group division by an inver...
grpoinvdiv 30334 Inverse of a group divisio...
grpodivf 30335 Mapping for group division...
grpodivcl 30336 Closure of group division ...
grpodivdiv 30337 Double group division. (C...
grpomuldivass 30338 Associative-type law for m...
grpodivid 30339 Division of a group member...
grponpcan 30340 Cancellation law for group...
isablo 30343 The predicate "is an Abeli...
ablogrpo 30344 An Abelian group operation...
ablocom 30345 An Abelian group operation...
ablo32 30346 Commutative/associative la...
ablo4 30347 Commutative/associative la...
isabloi 30348 Properties that determine ...
ablomuldiv 30349 Law for group multiplicati...
ablodivdiv 30350 Law for double group divis...
ablodivdiv4 30351 Law for double group divis...
ablodiv32 30352 Swap the second and third ...
ablonncan 30353 Cancellation law for group...
ablonnncan1 30354 Cancellation law for group...
vcrel 30357 The class of all complex v...
vciOLD 30358 Obsolete version of ~ cvsi...
vcsm 30359 Functionality of th scalar...
vccl 30360 Closure of the scalar prod...
vcidOLD 30361 Identity element for the s...
vcdi 30362 Distributive law for the s...
vcdir 30363 Distributive law for the s...
vcass 30364 Associative law for the sc...
vc2OLD 30365 A vector plus itself is tw...
vcablo 30366 Vector addition is an Abel...
vcgrp 30367 Vector addition is a group...
vclcan 30368 Left cancellation law for ...
vczcl 30369 The zero vector is a vecto...
vc0rid 30370 The zero vector is a right...
vc0 30371 Zero times a vector is the...
vcz 30372 Anything times the zero ve...
vcm 30373 Minus 1 times a vector is ...
isvclem 30374 Lemma for ~ isvcOLD . (Co...
vcex 30375 The components of a comple...
isvcOLD 30376 The predicate "is a comple...
isvciOLD 30377 Properties that determine ...
cnaddabloOLD 30378 Obsolete version of ~ cnad...
cnidOLD 30379 Obsolete version of ~ cnad...
cncvcOLD 30380 Obsolete version of ~ cncv...
nvss 30390 Structure of the class of ...
nvvcop 30391 A normed complex vector sp...
nvrel 30399 The class of all normed co...
vafval 30400 Value of the function for ...
bafval 30401 Value of the function for ...
smfval 30402 Value of the function for ...
0vfval 30403 Value of the function for ...
nmcvfval 30404 Value of the norm function...
nvop2 30405 A normed complex vector sp...
nvvop 30406 The vector space component...
isnvlem 30407 Lemma for ~ isnv . (Contr...
nvex 30408 The components of a normed...
isnv 30409 The predicate "is a normed...
isnvi 30410 Properties that determine ...
nvi 30411 The properties of a normed...
nvvc 30412 The vector space component...
nvablo 30413 The vector addition operat...
nvgrp 30414 The vector addition operat...
nvgf 30415 Mapping for the vector add...
nvsf 30416 Mapping for the scalar mul...
nvgcl 30417 Closure law for the vector...
nvcom 30418 The vector addition (group...
nvass 30419 The vector addition (group...
nvadd32 30420 Commutative/associative la...
nvrcan 30421 Right cancellation law for...
nvadd4 30422 Rearrangement of 4 terms i...
nvscl 30423 Closure law for the scalar...
nvsid 30424 Identity element for the s...
nvsass 30425 Associative law for the sc...
nvscom 30426 Commutative law for the sc...
nvdi 30427 Distributive law for the s...
nvdir 30428 Distributive law for the s...
nv2 30429 A vector plus itself is tw...
vsfval 30430 Value of the function for ...
nvzcl 30431 Closure law for the zero v...
nv0rid 30432 The zero vector is a right...
nv0lid 30433 The zero vector is a left ...
nv0 30434 Zero times a vector is the...
nvsz 30435 Anything times the zero ve...
nvinv 30436 Minus 1 times a vector is ...
nvinvfval 30437 Function for the negative ...
nvm 30438 Vector subtraction in term...
nvmval 30439 Value of vector subtractio...
nvmval2 30440 Value of vector subtractio...
nvmfval 30441 Value of the function for ...
nvmf 30442 Mapping for the vector sub...
nvmcl 30443 Closure law for the vector...
nvnnncan1 30444 Cancellation law for vecto...
nvmdi 30445 Distributive law for scala...
nvnegneg 30446 Double negative of a vecto...
nvmul0or 30447 If a scalar product is zer...
nvrinv 30448 A vector minus itself. (C...
nvlinv 30449 Minus a vector plus itself...
nvpncan2 30450 Cancellation law for vecto...
nvpncan 30451 Cancellation law for vecto...
nvaddsub 30452 Commutative/associative la...
nvnpcan 30453 Cancellation law for a nor...
nvaddsub4 30454 Rearrangement of 4 terms i...
nvmeq0 30455 The difference between two...
nvmid 30456 A vector minus itself is t...
nvf 30457 Mapping for the norm funct...
nvcl 30458 The norm of a normed compl...
nvcli 30459 The norm of a normed compl...
nvs 30460 Proportionality property o...
nvsge0 30461 The norm of a scalar produ...
nvm1 30462 The norm of the negative o...
nvdif 30463 The norm of the difference...
nvpi 30464 The norm of a vector plus ...
nvz0 30465 The norm of a zero vector ...
nvz 30466 The norm of a vector is ze...
nvtri 30467 Triangle inequality for th...
nvmtri 30468 Triangle inequality for th...
nvabs 30469 Norm difference property o...
nvge0 30470 The norm of a normed compl...
nvgt0 30471 A nonzero norm is positive...
nv1 30472 From any nonzero vector, c...
nvop 30473 A complex inner product sp...
cnnv 30474 The set of complex numbers...
cnnvg 30475 The vector addition (group...
cnnvba 30476 The base set of the normed...
cnnvs 30477 The scalar product operati...
cnnvnm 30478 The norm operation of the ...
cnnvm 30479 The vector subtraction ope...
elimnv 30480 Hypothesis elimination lem...
elimnvu 30481 Hypothesis elimination lem...
imsval 30482 Value of the induced metri...
imsdval 30483 Value of the induced metri...
imsdval2 30484 Value of the distance func...
nvnd 30485 The norm of a normed compl...
imsdf 30486 Mapping for the induced me...
imsmetlem 30487 Lemma for ~ imsmet . (Con...
imsmet 30488 The induced metric of a no...
imsxmet 30489 The induced metric of a no...
cnims 30490 The metric induced on the ...
vacn 30491 Vector addition is jointly...
nmcvcn 30492 The norm of a normed compl...
nmcnc 30493 The norm of a normed compl...
smcnlem 30494 Lemma for ~ smcn . (Contr...
smcn 30495 Scalar multiplication is j...
vmcn 30496 Vector subtraction is join...
dipfval 30499 The inner product function...
ipval 30500 Value of the inner product...
ipval2lem2 30501 Lemma for ~ ipval3 . (Con...
ipval2lem3 30502 Lemma for ~ ipval3 . (Con...
ipval2lem4 30503 Lemma for ~ ipval3 . (Con...
ipval2 30504 Expansion of the inner pro...
4ipval2 30505 Four times the inner produ...
ipval3 30506 Expansion of the inner pro...
ipidsq 30507 The inner product of a vec...
ipnm 30508 Norm expressed in terms of...
dipcl 30509 An inner product is a comp...
ipf 30510 Mapping for the inner prod...
dipcj 30511 The complex conjugate of a...
ipipcj 30512 An inner product times its...
diporthcom 30513 Orthogonality (meaning inn...
dip0r 30514 Inner product with a zero ...
dip0l 30515 Inner product with a zero ...
ipz 30516 The inner product of a vec...
dipcn 30517 Inner product is jointly c...
sspval 30520 The set of all subspaces o...
isssp 30521 The predicate "is a subspa...
sspid 30522 A normed complex vector sp...
sspnv 30523 A subspace is a normed com...
sspba 30524 The base set of a subspace...
sspg 30525 Vector addition on a subsp...
sspgval 30526 Vector addition on a subsp...
ssps 30527 Scalar multiplication on a...
sspsval 30528 Scalar multiplication on a...
sspmlem 30529 Lemma for ~ sspm and other...
sspmval 30530 Vector addition on a subsp...
sspm 30531 Vector subtraction on a su...
sspz 30532 The zero vector of a subsp...
sspn 30533 The norm on a subspace is ...
sspnval 30534 The norm on a subspace in ...
sspimsval 30535 The induced metric on a su...
sspims 30536 The induced metric on a su...
lnoval 30549 The set of linear operator...
islno 30550 The predicate "is a linear...
lnolin 30551 Basic linearity property o...
lnof 30552 A linear operator is a map...
lno0 30553 The value of a linear oper...
lnocoi 30554 The composition of two lin...
lnoadd 30555 Addition property of a lin...
lnosub 30556 Subtraction property of a ...
lnomul 30557 Scalar multiplication prop...
nvo00 30558 Two ways to express a zero...
nmoofval 30559 The operator norm function...
nmooval 30560 The operator norm function...
nmosetre 30561 The set in the supremum of...
nmosetn0 30562 The set in the supremum of...
nmoxr 30563 The norm of an operator is...
nmooge0 30564 The norm of an operator is...
nmorepnf 30565 The norm of an operator is...
nmoreltpnf 30566 The norm of any operator i...
nmogtmnf 30567 The norm of an operator is...
nmoolb 30568 A lower bound for an opera...
nmoubi 30569 An upper bound for an oper...
nmoub3i 30570 An upper bound for an oper...
nmoub2i 30571 An upper bound for an oper...
nmobndi 30572 Two ways to express that a...
nmounbi 30573 Two ways two express that ...
nmounbseqi 30574 An unbounded operator dete...
nmounbseqiALT 30575 Alternate shorter proof of...
nmobndseqi 30576 A bounded sequence determi...
nmobndseqiALT 30577 Alternate shorter proof of...
bloval 30578 The class of bounded linea...
isblo 30579 The predicate "is a bounde...
isblo2 30580 The predicate "is a bounde...
bloln 30581 A bounded operator is a li...
blof 30582 A bounded operator is an o...
nmblore 30583 The norm of a bounded oper...
0ofval 30584 The zero operator between ...
0oval 30585 Value of the zero operator...
0oo 30586 The zero operator is an op...
0lno 30587 The zero operator is linea...
nmoo0 30588 The operator norm of the z...
0blo 30589 The zero operator is a bou...
nmlno0lem 30590 Lemma for ~ nmlno0i . (Co...
nmlno0i 30591 The norm of a linear opera...
nmlno0 30592 The norm of a linear opera...
nmlnoubi 30593 An upper bound for the ope...
nmlnogt0 30594 The norm of a nonzero line...
lnon0 30595 The domain of a nonzero li...
nmblolbii 30596 A lower bound for the norm...
nmblolbi 30597 A lower bound for the norm...
isblo3i 30598 The predicate "is a bounde...
blo3i 30599 Properties that determine ...
blometi 30600 Upper bound for the distan...
blocnilem 30601 Lemma for ~ blocni and ~ l...
blocni 30602 A linear operator is conti...
lnocni 30603 If a linear operator is co...
blocn 30604 A linear operator is conti...
blocn2 30605 A bounded linear operator ...
ajfval 30606 The adjoint function. (Co...
hmoval 30607 The set of Hermitian (self...
ishmo 30608 The predicate "is a hermit...
phnv 30611 Every complex inner produc...
phrel 30612 The class of all complex i...
phnvi 30613 Every complex inner produc...
isphg 30614 The predicate "is a comple...
phop 30615 A complex inner product sp...
cncph 30616 The set of complex numbers...
elimph 30617 Hypothesis elimination lem...
elimphu 30618 Hypothesis elimination lem...
isph 30619 The predicate "is an inner...
phpar2 30620 The parallelogram law for ...
phpar 30621 The parallelogram law for ...
ip0i 30622 A slight variant of Equati...
ip1ilem 30623 Lemma for ~ ip1i . (Contr...
ip1i 30624 Equation 6.47 of [Ponnusam...
ip2i 30625 Equation 6.48 of [Ponnusam...
ipdirilem 30626 Lemma for ~ ipdiri . (Con...
ipdiri 30627 Distributive law for inner...
ipasslem1 30628 Lemma for ~ ipassi . Show...
ipasslem2 30629 Lemma for ~ ipassi . Show...
ipasslem3 30630 Lemma for ~ ipassi . Show...
ipasslem4 30631 Lemma for ~ ipassi . Show...
ipasslem5 30632 Lemma for ~ ipassi . Show...
ipasslem7 30633 Lemma for ~ ipassi . Show...
ipasslem8 30634 Lemma for ~ ipassi . By ~...
ipasslem9 30635 Lemma for ~ ipassi . Conc...
ipasslem10 30636 Lemma for ~ ipassi . Show...
ipasslem11 30637 Lemma for ~ ipassi . Show...
ipassi 30638 Associative law for inner ...
dipdir 30639 Distributive law for inner...
dipdi 30640 Distributive law for inner...
ip2dii 30641 Inner product of two sums....
dipass 30642 Associative law for inner ...
dipassr 30643 "Associative" law for seco...
dipassr2 30644 "Associative" law for inne...
dipsubdir 30645 Distributive law for inner...
dipsubdi 30646 Distributive law for inner...
pythi 30647 The Pythagorean theorem fo...
siilem1 30648 Lemma for ~ sii . (Contri...
siilem2 30649 Lemma for ~ sii . (Contri...
siii 30650 Inference from ~ sii . (C...
sii 30651 Obsolete version of ~ ipca...
ipblnfi 30652 A function ` F ` generated...
ip2eqi 30653 Two vectors are equal iff ...
phoeqi 30654 A condition implying that ...
ajmoi 30655 Every operator has at most...
ajfuni 30656 The adjoint function is a ...
ajfun 30657 The adjoint function is a ...
ajval 30658 Value of the adjoint funct...
iscbn 30661 A complex Banach space is ...
cbncms 30662 The induced metric on comp...
bnnv 30663 Every complex Banach space...
bnrel 30664 The class of all complex B...
bnsscmcl 30665 A subspace of a Banach spa...
cnbn 30666 The set of complex numbers...
ubthlem1 30667 Lemma for ~ ubth . The fu...
ubthlem2 30668 Lemma for ~ ubth . Given ...
ubthlem3 30669 Lemma for ~ ubth . Prove ...
ubth 30670 Uniform Boundedness Theore...
minvecolem1 30671 Lemma for ~ minveco . The...
minvecolem2 30672 Lemma for ~ minveco . Any...
minvecolem3 30673 Lemma for ~ minveco . The...
minvecolem4a 30674 Lemma for ~ minveco . ` F ...
minvecolem4b 30675 Lemma for ~ minveco . The...
minvecolem4c 30676 Lemma for ~ minveco . The...
minvecolem4 30677 Lemma for ~ minveco . The...
minvecolem5 30678 Lemma for ~ minveco . Dis...
minvecolem6 30679 Lemma for ~ minveco . Any...
minvecolem7 30680 Lemma for ~ minveco . Sin...
minveco 30681 Minimizing vector theorem,...
ishlo 30684 The predicate "is a comple...
hlobn 30685 Every complex Hilbert spac...
hlph 30686 Every complex Hilbert spac...
hlrel 30687 The class of all complex H...
hlnv 30688 Every complex Hilbert spac...
hlnvi 30689 Every complex Hilbert spac...
hlvc 30690 Every complex Hilbert spac...
hlcmet 30691 The induced metric on a co...
hlmet 30692 The induced metric on a co...
hlpar2 30693 The parallelogram law sati...
hlpar 30694 The parallelogram law sati...
hlex 30695 The base set of a Hilbert ...
hladdf 30696 Mapping for Hilbert space ...
hlcom 30697 Hilbert space vector addit...
hlass 30698 Hilbert space vector addit...
hl0cl 30699 The Hilbert space zero vec...
hladdid 30700 Hilbert space addition wit...
hlmulf 30701 Mapping for Hilbert space ...
hlmulid 30702 Hilbert space scalar multi...
hlmulass 30703 Hilbert space scalar multi...
hldi 30704 Hilbert space scalar multi...
hldir 30705 Hilbert space scalar multi...
hlmul0 30706 Hilbert space scalar multi...
hlipf 30707 Mapping for Hilbert space ...
hlipcj 30708 Conjugate law for Hilbert ...
hlipdir 30709 Distributive law for Hilbe...
hlipass 30710 Associative law for Hilber...
hlipgt0 30711 The inner product of a Hil...
hlcompl 30712 Completeness of a Hilbert ...
cnchl 30713 The set of complex numbers...
htthlem 30714 Lemma for ~ htth . The co...
htth 30715 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 30771 The group (addition) opera...
h2hsm 30772 The scalar product operati...
h2hnm 30773 The norm function of Hilbe...
h2hvs 30774 The vector subtraction ope...
h2hmetdval 30775 Value of the distance func...
h2hcau 30776 The Cauchy sequences of Hi...
h2hlm 30777 The limit sequences of Hil...
axhilex-zf 30778 Derive Axiom ~ ax-hilex fr...
axhfvadd-zf 30779 Derive Axiom ~ ax-hfvadd f...
axhvcom-zf 30780 Derive Axiom ~ ax-hvcom fr...
axhvass-zf 30781 Derive Axiom ~ ax-hvass fr...
axhv0cl-zf 30782 Derive Axiom ~ ax-hv0cl fr...
axhvaddid-zf 30783 Derive Axiom ~ ax-hvaddid ...
axhfvmul-zf 30784 Derive Axiom ~ ax-hfvmul f...
axhvmulid-zf 30785 Derive Axiom ~ ax-hvmulid ...
axhvmulass-zf 30786 Derive Axiom ~ ax-hvmulass...
axhvdistr1-zf 30787 Derive Axiom ~ ax-hvdistr1...
axhvdistr2-zf 30788 Derive Axiom ~ ax-hvdistr2...
axhvmul0-zf 30789 Derive Axiom ~ ax-hvmul0 f...
axhfi-zf 30790 Derive Axiom ~ ax-hfi from...
axhis1-zf 30791 Derive Axiom ~ ax-his1 fro...
axhis2-zf 30792 Derive Axiom ~ ax-his2 fro...
axhis3-zf 30793 Derive Axiom ~ ax-his3 fro...
axhis4-zf 30794 Derive Axiom ~ ax-his4 fro...
axhcompl-zf 30795 Derive Axiom ~ ax-hcompl f...
hvmulex 30808 The Hilbert space scalar p...
hvaddcl 30809 Closure of vector addition...
hvmulcl 30810 Closure of scalar multipli...
hvmulcli 30811 Closure inference for scal...
hvsubf 30812 Mapping domain and codomai...
hvsubval 30813 Value of vector subtractio...
hvsubcl 30814 Closure of vector subtract...
hvaddcli 30815 Closure of vector addition...
hvcomi 30816 Commutation of vector addi...
hvsubvali 30817 Value of vector subtractio...
hvsubcli 30818 Closure of vector subtract...
ifhvhv0 30819 Prove ` if ( A e. ~H , A ,...
hvaddlid 30820 Addition with the zero vec...
hvmul0 30821 Scalar multiplication with...
hvmul0or 30822 If a scalar product is zer...
hvsubid 30823 Subtraction of a vector fr...
hvnegid 30824 Addition of negative of a ...
hv2neg 30825 Two ways to express the ne...
hvaddlidi 30826 Addition with the zero vec...
hvnegidi 30827 Addition of negative of a ...
hv2negi 30828 Two ways to express the ne...
hvm1neg 30829 Convert minus one times a ...
hvaddsubval 30830 Value of vector addition i...
hvadd32 30831 Commutative/associative la...
hvadd12 30832 Commutative/associative la...
hvadd4 30833 Hilbert vector space addit...
hvsub4 30834 Hilbert vector space addit...
hvaddsub12 30835 Commutative/associative la...
hvpncan 30836 Addition/subtraction cance...
hvpncan2 30837 Addition/subtraction cance...
hvaddsubass 30838 Associativity of sum and d...
hvpncan3 30839 Subtraction and addition o...
hvmulcom 30840 Scalar multiplication comm...
hvsubass 30841 Hilbert vector space assoc...
hvsub32 30842 Hilbert vector space commu...
hvmulassi 30843 Scalar multiplication asso...
hvmulcomi 30844 Scalar multiplication comm...
hvmul2negi 30845 Double negative in scalar ...
hvsubdistr1 30846 Scalar multiplication dist...
hvsubdistr2 30847 Scalar multiplication dist...
hvdistr1i 30848 Scalar multiplication dist...
hvsubdistr1i 30849 Scalar multiplication dist...
hvassi 30850 Hilbert vector space assoc...
hvadd32i 30851 Hilbert vector space commu...
hvsubassi 30852 Hilbert vector space assoc...
hvsub32i 30853 Hilbert vector space commu...
hvadd12i 30854 Hilbert vector space commu...
hvadd4i 30855 Hilbert vector space addit...
hvsubsub4i 30856 Hilbert vector space addit...
hvsubsub4 30857 Hilbert vector space addit...
hv2times 30858 Two times a vector. (Cont...
hvnegdii 30859 Distribution of negative o...
hvsubeq0i 30860 If the difference between ...
hvsubcan2i 30861 Vector cancellation law. ...
hvaddcani 30862 Cancellation law for vecto...
hvsubaddi 30863 Relationship between vecto...
hvnegdi 30864 Distribution of negative o...
hvsubeq0 30865 If the difference between ...
hvaddeq0 30866 If the sum of two vectors ...
hvaddcan 30867 Cancellation law for vecto...
hvaddcan2 30868 Cancellation law for vecto...
hvmulcan 30869 Cancellation law for scala...
hvmulcan2 30870 Cancellation law for scala...
hvsubcan 30871 Cancellation law for vecto...
hvsubcan2 30872 Cancellation law for vecto...
hvsub0 30873 Subtraction of a zero vect...
hvsubadd 30874 Relationship between vecto...
hvaddsub4 30875 Hilbert vector space addit...
hicl 30877 Closure of inner product. ...
hicli 30878 Closure inference for inne...
his5 30883 Associative law for inner ...
his52 30884 Associative law for inner ...
his35 30885 Move scalar multiplication...
his35i 30886 Move scalar multiplication...
his7 30887 Distributive law for inner...
hiassdi 30888 Distributive/associative l...
his2sub 30889 Distributive law for inner...
his2sub2 30890 Distributive law for inner...
hire 30891 A necessary and sufficient...
hiidrcl 30892 Real closure of inner prod...
hi01 30893 Inner product with the 0 v...
hi02 30894 Inner product with the 0 v...
hiidge0 30895 Inner product with self is...
his6 30896 Zero inner product with se...
his1i 30897 Conjugate law for inner pr...
abshicom 30898 Commuted inner products ha...
hial0 30899 A vector whose inner produ...
hial02 30900 A vector whose inner produ...
hisubcomi 30901 Two vector subtractions si...
hi2eq 30902 Lemma used to prove equali...
hial2eq 30903 Two vectors whose inner pr...
hial2eq2 30904 Two vectors whose inner pr...
orthcom 30905 Orthogonality commutes. (...
normlem0 30906 Lemma used to derive prope...
normlem1 30907 Lemma used to derive prope...
normlem2 30908 Lemma used to derive prope...
normlem3 30909 Lemma used to derive prope...
normlem4 30910 Lemma used to derive prope...
normlem5 30911 Lemma used to derive prope...
normlem6 30912 Lemma used to derive prope...
normlem7 30913 Lemma used to derive prope...
normlem8 30914 Lemma used to derive prope...
normlem9 30915 Lemma used to derive prope...
normlem7tALT 30916 Lemma used to derive prope...
bcseqi 30917 Equality case of Bunjakova...
normlem9at 30918 Lemma used to derive prope...
dfhnorm2 30919 Alternate definition of th...
normf 30920 The norm function maps fro...
normval 30921 The value of the norm of a...
normcl 30922 Real closure of the norm o...
normge0 30923 The norm of a vector is no...
normgt0 30924 The norm of nonzero vector...
norm0 30925 The norm of a zero vector....
norm-i 30926 Theorem 3.3(i) of [Beran] ...
normne0 30927 A norm is nonzero iff its ...
normcli 30928 Real closure of the norm o...
normsqi 30929 The square of a norm. (Co...
norm-i-i 30930 Theorem 3.3(i) of [Beran] ...
normsq 30931 The square of a norm. (Co...
normsub0i 30932 Two vectors are equal iff ...
normsub0 30933 Two vectors are equal iff ...
norm-ii-i 30934 Triangle inequality for no...
norm-ii 30935 Triangle inequality for no...
norm-iii-i 30936 Theorem 3.3(iii) of [Beran...
norm-iii 30937 Theorem 3.3(iii) of [Beran...
normsubi 30938 Negative doesn't change th...
normpythi 30939 Analogy to Pythagorean the...
normsub 30940 Swapping order of subtract...
normneg 30941 The norm of a vector equal...
normpyth 30942 Analogy to Pythagorean the...
normpyc 30943 Corollary to Pythagorean t...
norm3difi 30944 Norm of differences around...
norm3adifii 30945 Norm of differences around...
norm3lem 30946 Lemma involving norm of di...
norm3dif 30947 Norm of differences around...
norm3dif2 30948 Norm of differences around...
norm3lemt 30949 Lemma involving norm of di...
norm3adifi 30950 Norm of differences around...
normpari 30951 Parallelogram law for norm...
normpar 30952 Parallelogram law for norm...
normpar2i 30953 Corollary of parallelogram...
polid2i 30954 Generalized polarization i...
polidi 30955 Polarization identity. Re...
polid 30956 Polarization identity. Re...
hilablo 30957 Hilbert space vector addit...
hilid 30958 The group identity element...
hilvc 30959 Hilbert space is a complex...
hilnormi 30960 Hilbert space norm in term...
hilhhi 30961 Deduce the structure of Hi...
hhnv 30962 Hilbert space is a normed ...
hhva 30963 The group (addition) opera...
hhba 30964 The base set of Hilbert sp...
hh0v 30965 The zero vector of Hilbert...
hhsm 30966 The scalar product operati...
hhvs 30967 The vector subtraction ope...
hhnm 30968 The norm function of Hilbe...
hhims 30969 The induced metric of Hilb...
hhims2 30970 Hilbert space distance met...
hhmet 30971 The induced metric of Hilb...
hhxmet 30972 The induced metric of Hilb...
hhmetdval 30973 Value of the distance func...
hhip 30974 The inner product operatio...
hhph 30975 The Hilbert space of the H...
bcsiALT 30976 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 30977 Bunjakovaskij-Cauchy-Schwa...
bcs 30978 Bunjakovaskij-Cauchy-Schwa...
bcs2 30979 Corollary of the Bunjakova...
bcs3 30980 Corollary of the Bunjakova...
hcau 30981 Member of the set of Cauch...
hcauseq 30982 A Cauchy sequences on a Hi...
hcaucvg 30983 A Cauchy sequence on a Hil...
seq1hcau 30984 A sequence on a Hilbert sp...
hlimi 30985 Express the predicate: Th...
hlimseqi 30986 A sequence with a limit on...
hlimveci 30987 Closure of the limit of a ...
hlimconvi 30988 Convergence of a sequence ...
hlim2 30989 The limit of a sequence on...
hlimadd 30990 Limit of the sum of two se...
hilmet 30991 The Hilbert space norm det...
hilxmet 30992 The Hilbert space norm det...
hilmetdval 30993 Value of the distance func...
hilims 30994 Hilbert space distance met...
hhcau 30995 The Cauchy sequences of Hi...
hhlm 30996 The limit sequences of Hil...
hhcmpl 30997 Lemma used for derivation ...
hilcompl 30998 Lemma used for derivation ...
hhcms 31000 The Hilbert space induced ...
hhhl 31001 The Hilbert space structur...
hilcms 31002 The Hilbert space norm det...
hilhl 31003 The Hilbert space of the H...
issh 31005 Subspace ` H ` of a Hilber...
issh2 31006 Subspace ` H ` of a Hilber...
shss 31007 A subspace is a subset of ...
shel 31008 A member of a subspace of ...
shex 31009 The set of subspaces of a ...
shssii 31010 A closed subspace of a Hil...
sheli 31011 A member of a subspace of ...
shelii 31012 A member of a subspace of ...
sh0 31013 The zero vector belongs to...
shaddcl 31014 Closure of vector addition...
shmulcl 31015 Closure of vector scalar m...
issh3 31016 Subspace ` H ` of a Hilber...
shsubcl 31017 Closure of vector subtract...
isch 31019 Closed subspace ` H ` of a...
isch2 31020 Closed subspace ` H ` of a...
chsh 31021 A closed subspace is a sub...
chsssh 31022 Closed subspaces are subsp...
chex 31023 The set of closed subspace...
chshii 31024 A closed subspace is a sub...
ch0 31025 The zero vector belongs to...
chss 31026 A closed subspace of a Hil...
chel 31027 A member of a closed subsp...
chssii 31028 A closed subspace of a Hil...
cheli 31029 A member of a closed subsp...
chelii 31030 A member of a closed subsp...
chlimi 31031 The limit property of a cl...
hlim0 31032 The zero sequence in Hilbe...
hlimcaui 31033 If a sequence in Hilbert s...
hlimf 31034 Function-like behavior of ...
hlimuni 31035 A Hilbert space sequence c...
hlimreui 31036 The limit of a Hilbert spa...
hlimeui 31037 The limit of a Hilbert spa...
isch3 31038 A Hilbert subspace is clos...
chcompl 31039 Completeness of a closed s...
helch 31040 The Hilbert lattice one (w...
ifchhv 31041 Prove ` if ( A e. CH , A ,...
helsh 31042 Hilbert space is a subspac...
shsspwh 31043 Subspaces are subsets of H...
chsspwh 31044 Closed subspaces are subse...
hsn0elch 31045 The zero subspace belongs ...
norm1 31046 From any nonzero Hilbert s...
norm1exi 31047 A normalized vector exists...
norm1hex 31048 A normalized vector can ex...
elch0 31051 Membership in zero for clo...
h0elch 31052 The zero subspace is a clo...
h0elsh 31053 The zero subspace is a sub...
hhssva 31054 The vector addition operat...
hhsssm 31055 The scalar multiplication ...
hhssnm 31056 The norm operation on a su...
issubgoilem 31057 Lemma for ~ hhssabloilem ....
hhssabloilem 31058 Lemma for ~ hhssabloi . F...
hhssabloi 31059 Abelian group property of ...
hhssablo 31060 Abelian group property of ...
hhssnv 31061 Normed complex vector spac...
hhssnvt 31062 Normed complex vector spac...
hhsst 31063 A member of ` SH ` is a su...
hhshsslem1 31064 Lemma for ~ hhsssh . (Con...
hhshsslem2 31065 Lemma for ~ hhsssh . (Con...
hhsssh 31066 The predicate " ` H ` is a...
hhsssh2 31067 The predicate " ` H ` is a...
hhssba 31068 The base set of a subspace...
hhssvs 31069 The vector subtraction ope...
hhssvsf 31070 Mapping of the vector subt...
hhssims 31071 Induced metric of a subspa...
hhssims2 31072 Induced metric of a subspa...
hhssmet 31073 Induced metric of a subspa...
hhssmetdval 31074 Value of the distance func...
hhsscms 31075 The induced metric of a cl...
hhssbnOLD 31076 Obsolete version of ~ cssb...
ocval 31077 Value of orthogonal comple...
ocel 31078 Membership in orthogonal c...
shocel 31079 Membership in orthogonal c...
ocsh 31080 The orthogonal complement ...
shocsh 31081 The orthogonal complement ...
ocss 31082 An orthogonal complement i...
shocss 31083 An orthogonal complement i...
occon 31084 Contraposition law for ort...
occon2 31085 Double contraposition for ...
occon2i 31086 Double contraposition for ...
oc0 31087 The zero vector belongs to...
ocorth 31088 Members of a subset and it...
shocorth 31089 Members of a subspace and ...
ococss 31090 Inclusion in complement of...
shococss 31091 Inclusion in complement of...
shorth 31092 Members of orthogonal subs...
ocin 31093 Intersection of a Hilbert ...
occon3 31094 Hilbert lattice contraposi...
ocnel 31095 A nonzero vector in the co...
chocvali 31096 Value of the orthogonal co...
shuni 31097 Two subspaces with trivial...
chocunii 31098 Lemma for uniqueness part ...
pjhthmo 31099 Projection Theorem, unique...
occllem 31100 Lemma for ~ occl . (Contr...
occl 31101 Closure of complement of H...
shoccl 31102 Closure of complement of H...
choccl 31103 Closure of complement of H...
choccli 31104 Closure of ` CH ` orthocom...
shsval 31109 Value of subspace sum of t...
shsss 31110 The subspace sum is a subs...
shsel 31111 Membership in the subspace...
shsel3 31112 Membership in the subspace...
shseli 31113 Membership in subspace sum...
shscli 31114 Closure of subspace sum. ...
shscl 31115 Closure of subspace sum. ...
shscom 31116 Commutative law for subspa...
shsva 31117 Vector sum belongs to subs...
shsel1 31118 A subspace sum contains a ...
shsel2 31119 A subspace sum contains a ...
shsvs 31120 Vector subtraction belongs...
shsub1 31121 Subspace sum is an upper b...
shsub2 31122 Subspace sum is an upper b...
choc0 31123 The orthocomplement of the...
choc1 31124 The orthocomplement of the...
chocnul 31125 Orthogonal complement of t...
shintcli 31126 Closure of intersection of...
shintcl 31127 The intersection of a none...
chintcli 31128 The intersection of a none...
chintcl 31129 The intersection (infimum)...
spanval 31130 Value of the linear span o...
hsupval 31131 Value of supremum of set o...
chsupval 31132 The value of the supremum ...
spancl 31133 The span of a subset of Hi...
elspancl 31134 A member of a span is a ve...
shsupcl 31135 Closure of the subspace su...
hsupcl 31136 Closure of supremum of set...
chsupcl 31137 Closure of supremum of sub...
hsupss 31138 Subset relation for suprem...
chsupss 31139 Subset relation for suprem...
hsupunss 31140 The union of a set of Hilb...
chsupunss 31141 The union of a set of clos...
spanss2 31142 A subset of Hilbert space ...
shsupunss 31143 The union of a set of subs...
spanid 31144 A subspace of Hilbert spac...
spanss 31145 Ordering relationship for ...
spanssoc 31146 The span of a subset of Hi...
sshjval 31147 Value of join for subsets ...
shjval 31148 Value of join in ` SH ` . ...
chjval 31149 Value of join in ` CH ` . ...
chjvali 31150 Value of join in ` CH ` . ...
sshjval3 31151 Value of join for subsets ...
sshjcl 31152 Closure of join for subset...
shjcl 31153 Closure of join in ` SH ` ...
chjcl 31154 Closure of join in ` CH ` ...
shjcom 31155 Commutative law for Hilber...
shless 31156 Subset implies subset of s...
shlej1 31157 Add disjunct to both sides...
shlej2 31158 Add disjunct to both sides...
shincli 31159 Closure of intersection of...
shscomi 31160 Commutative law for subspa...
shsvai 31161 Vector sum belongs to subs...
shsel1i 31162 A subspace sum contains a ...
shsel2i 31163 A subspace sum contains a ...
shsvsi 31164 Vector subtraction belongs...
shunssi 31165 Union is smaller than subs...
shunssji 31166 Union is smaller than Hilb...
shsleji 31167 Subspace sum is smaller th...
shjcomi 31168 Commutative law for join i...
shsub1i 31169 Subspace sum is an upper b...
shsub2i 31170 Subspace sum is an upper b...
shub1i 31171 Hilbert lattice join is an...
shjcli 31172 Closure of ` CH ` join. (...
shjshcli 31173 ` SH ` closure of join. (...
shlessi 31174 Subset implies subset of s...
shlej1i 31175 Add disjunct to both sides...
shlej2i 31176 Add disjunct to both sides...
shslej 31177 Subspace sum is smaller th...
shincl 31178 Closure of intersection of...
shub1 31179 Hilbert lattice join is an...
shub2 31180 A subspace is a subset of ...
shsidmi 31181 Idempotent law for Hilbert...
shslubi 31182 The least upper bound law ...
shlesb1i 31183 Hilbert lattice ordering i...
shsval2i 31184 An alternate way to expres...
shsval3i 31185 An alternate way to expres...
shmodsi 31186 The modular law holds for ...
shmodi 31187 The modular law is implied...
pjhthlem1 31188 Lemma for ~ pjhth . (Cont...
pjhthlem2 31189 Lemma for ~ pjhth . (Cont...
pjhth 31190 Projection Theorem: Any H...
pjhtheu 31191 Projection Theorem: Any H...
pjhfval 31193 The value of the projectio...
pjhval 31194 Value of a projection. (C...
pjpreeq 31195 Equality with a projection...
pjeq 31196 Equality with a projection...
axpjcl 31197 Closure of a projection in...
pjhcl 31198 Closure of a projection in...
omlsilem 31199 Lemma for orthomodular law...
omlsii 31200 Subspace inference form of...
omlsi 31201 Subspace form of orthomodu...
ococi 31202 Complement of complement o...
ococ 31203 Complement of complement o...
dfch2 31204 Alternate definition of th...
ococin 31205 The double complement is t...
hsupval2 31206 Alternate definition of su...
chsupval2 31207 The value of the supremum ...
sshjval2 31208 Value of join in the set o...
chsupid 31209 A subspace is the supremum...
chsupsn 31210 Value of supremum of subse...
shlub 31211 Hilbert lattice join is th...
shlubi 31212 Hilbert lattice join is th...
pjhtheu2 31213 Uniqueness of ` y ` for th...
pjcli 31214 Closure of a projection in...
pjhcli 31215 Closure of a projection in...
pjpjpre 31216 Decomposition of a vector ...
axpjpj 31217 Decomposition of a vector ...
pjclii 31218 Closure of a projection in...
pjhclii 31219 Closure of a projection in...
pjpj0i 31220 Decomposition of a vector ...
pjpji 31221 Decomposition of a vector ...
pjpjhth 31222 Projection Theorem: Any H...
pjpjhthi 31223 Projection Theorem: Any H...
pjop 31224 Orthocomplement projection...
pjpo 31225 Projection in terms of ort...
pjopi 31226 Orthocomplement projection...
pjpoi 31227 Projection in terms of ort...
pjoc1i 31228 Projection of a vector in ...
pjchi 31229 Projection of a vector in ...
pjoccl 31230 The part of a vector that ...
pjoc1 31231 Projection of a vector in ...
pjomli 31232 Subspace form of orthomodu...
pjoml 31233 Subspace form of orthomodu...
pjococi 31234 Proof of orthocomplement t...
pjoc2i 31235 Projection of a vector in ...
pjoc2 31236 Projection of a vector in ...
sh0le 31237 The zero subspace is the s...
ch0le 31238 The zero subspace is the s...
shle0 31239 No subspace is smaller tha...
chle0 31240 No Hilbert lattice element...
chnlen0 31241 A Hilbert lattice element ...
ch0pss 31242 The zero subspace is a pro...
orthin 31243 The intersection of orthog...
ssjo 31244 The lattice join of a subs...
shne0i 31245 A nonzero subspace has a n...
shs0i 31246 Hilbert subspace sum with ...
shs00i 31247 Two subspaces are zero iff...
ch0lei 31248 The closed subspace zero i...
chle0i 31249 No Hilbert closed subspace...
chne0i 31250 A nonzero closed subspace ...
chocini 31251 Intersection of a closed s...
chj0i 31252 Join with lattice zero in ...
chm1i 31253 Meet with lattice one in `...
chjcli 31254 Closure of ` CH ` join. (...
chsleji 31255 Subspace sum is smaller th...
chseli 31256 Membership in subspace sum...
chincli 31257 Closure of Hilbert lattice...
chsscon3i 31258 Hilbert lattice contraposi...
chsscon1i 31259 Hilbert lattice contraposi...
chsscon2i 31260 Hilbert lattice contraposi...
chcon2i 31261 Hilbert lattice contraposi...
chcon1i 31262 Hilbert lattice contraposi...
chcon3i 31263 Hilbert lattice contraposi...
chunssji 31264 Union is smaller than ` CH...
chjcomi 31265 Commutative law for join i...
chub1i 31266 ` CH ` join is an upper bo...
chub2i 31267 ` CH ` join is an upper bo...
chlubi 31268 Hilbert lattice join is th...
chlubii 31269 Hilbert lattice join is th...
chlej1i 31270 Add join to both sides of ...
chlej2i 31271 Add join to both sides of ...
chlej12i 31272 Add join to both sides of ...
chlejb1i 31273 Hilbert lattice ordering i...
chdmm1i 31274 De Morgan's law for meet i...
chdmm2i 31275 De Morgan's law for meet i...
chdmm3i 31276 De Morgan's law for meet i...
chdmm4i 31277 De Morgan's law for meet i...
chdmj1i 31278 De Morgan's law for join i...
chdmj2i 31279 De Morgan's law for join i...
chdmj3i 31280 De Morgan's law for join i...
chdmj4i 31281 De Morgan's law for join i...
chnlei 31282 Equivalent expressions for...
chjassi 31283 Associative law for Hilber...
chj00i 31284 Two Hilbert lattice elemen...
chjoi 31285 The join of a closed subsp...
chj1i 31286 Join with Hilbert lattice ...
chm0i 31287 Meet with Hilbert lattice ...
chm0 31288 Meet with Hilbert lattice ...
shjshsi 31289 Hilbert lattice join equal...
shjshseli 31290 A closed subspace sum equa...
chne0 31291 A nonzero closed subspace ...
chocin 31292 Intersection of a closed s...
chssoc 31293 A closed subspace less tha...
chj0 31294 Join with Hilbert lattice ...
chslej 31295 Subspace sum is smaller th...
chincl 31296 Closure of Hilbert lattice...
chsscon3 31297 Hilbert lattice contraposi...
chsscon1 31298 Hilbert lattice contraposi...
chsscon2 31299 Hilbert lattice contraposi...
chpsscon3 31300 Hilbert lattice contraposi...
chpsscon1 31301 Hilbert lattice contraposi...
chpsscon2 31302 Hilbert lattice contraposi...
chjcom 31303 Commutative law for Hilber...
chub1 31304 Hilbert lattice join is gr...
chub2 31305 Hilbert lattice join is gr...
chlub 31306 Hilbert lattice join is th...
chlej1 31307 Add join to both sides of ...
chlej2 31308 Add join to both sides of ...
chlejb1 31309 Hilbert lattice ordering i...
chlejb2 31310 Hilbert lattice ordering i...
chnle 31311 Equivalent expressions for...
chjo 31312 The join of a closed subsp...
chabs1 31313 Hilbert lattice absorption...
chabs2 31314 Hilbert lattice absorption...
chabs1i 31315 Hilbert lattice absorption...
chabs2i 31316 Hilbert lattice absorption...
chjidm 31317 Idempotent law for Hilbert...
chjidmi 31318 Idempotent law for Hilbert...
chj12i 31319 A rearrangement of Hilbert...
chj4i 31320 Rearrangement of the join ...
chjjdiri 31321 Hilbert lattice join distr...
chdmm1 31322 De Morgan's law for meet i...
chdmm2 31323 De Morgan's law for meet i...
chdmm3 31324 De Morgan's law for meet i...
chdmm4 31325 De Morgan's law for meet i...
chdmj1 31326 De Morgan's law for join i...
chdmj2 31327 De Morgan's law for join i...
chdmj3 31328 De Morgan's law for join i...
chdmj4 31329 De Morgan's law for join i...
chjass 31330 Associative law for Hilber...
chj12 31331 A rearrangement of Hilbert...
chj4 31332 Rearrangement of the join ...
ledii 31333 An ortholattice is distrib...
lediri 31334 An ortholattice is distrib...
lejdii 31335 An ortholattice is distrib...
lejdiri 31336 An ortholattice is distrib...
ledi 31337 An ortholattice is distrib...
spansn0 31338 The span of the singleton ...
span0 31339 The span of the empty set ...
elspani 31340 Membership in the span of ...
spanuni 31341 The span of a union is the...
spanun 31342 The span of a union is the...
sshhococi 31343 The join of two Hilbert sp...
hne0 31344 Hilbert space has a nonzer...
chsup0 31345 The supremum of the empty ...
h1deoi 31346 Membership in orthocomplem...
h1dei 31347 Membership in 1-dimensiona...
h1did 31348 A generating vector belong...
h1dn0 31349 A nonzero vector generates...
h1de2i 31350 Membership in 1-dimensiona...
h1de2bi 31351 Membership in 1-dimensiona...
h1de2ctlem 31352 Lemma for ~ h1de2ci . (Co...
h1de2ci 31353 Membership in 1-dimensiona...
spansni 31354 The span of a singleton in...
elspansni 31355 Membership in the span of ...
spansn 31356 The span of a singleton in...
spansnch 31357 The span of a Hilbert spac...
spansnsh 31358 The span of a Hilbert spac...
spansnchi 31359 The span of a singleton in...
spansnid 31360 A vector belongs to the sp...
spansnmul 31361 A scalar product with a ve...
elspansncl 31362 A member of a span of a si...
elspansn 31363 Membership in the span of ...
elspansn2 31364 Membership in the span of ...
spansncol 31365 The singletons of collinea...
spansneleqi 31366 Membership relation implie...
spansneleq 31367 Membership relation that i...
spansnss 31368 The span of the singleton ...
elspansn3 31369 A member of the span of th...
elspansn4 31370 A span membership conditio...
elspansn5 31371 A vector belonging to both...
spansnss2 31372 The span of the singleton ...
normcan 31373 Cancellation-type law that...
pjspansn 31374 A projection on the span o...
spansnpji 31375 A subset of Hilbert space ...
spanunsni 31376 The span of the union of a...
spanpr 31377 The span of a pair of vect...
h1datomi 31378 A 1-dimensional subspace i...
h1datom 31379 A 1-dimensional subspace i...
cmbr 31381 Binary relation expressing...
pjoml2i 31382 Variation of orthomodular ...
pjoml3i 31383 Variation of orthomodular ...
pjoml4i 31384 Variation of orthomodular ...
pjoml5i 31385 The orthomodular law. Rem...
pjoml6i 31386 An equivalent of the ortho...
cmbri 31387 Binary relation expressing...
cmcmlem 31388 Commutation is symmetric. ...
cmcmi 31389 Commutation is symmetric. ...
cmcm2i 31390 Commutation with orthocomp...
cmcm3i 31391 Commutation with orthocomp...
cmcm4i 31392 Commutation with orthocomp...
cmbr2i 31393 Alternate definition of th...
cmcmii 31394 Commutation is symmetric. ...
cmcm2ii 31395 Commutation with orthocomp...
cmcm3ii 31396 Commutation with orthocomp...
cmbr3i 31397 Alternate definition for t...
cmbr4i 31398 Alternate definition for t...
lecmi 31399 Comparable Hilbert lattice...
lecmii 31400 Comparable Hilbert lattice...
cmj1i 31401 A Hilbert lattice element ...
cmj2i 31402 A Hilbert lattice element ...
cmm1i 31403 A Hilbert lattice element ...
cmm2i 31404 A Hilbert lattice element ...
cmbr3 31405 Alternate definition for t...
cm0 31406 The zero Hilbert lattice e...
cmidi 31407 The commutes relation is r...
pjoml2 31408 Variation of orthomodular ...
pjoml3 31409 Variation of orthomodular ...
pjoml5 31410 The orthomodular law. Rem...
cmcm 31411 Commutation is symmetric. ...
cmcm3 31412 Commutation with orthocomp...
cmcm2 31413 Commutation with orthocomp...
lecm 31414 Comparable Hilbert lattice...
fh1 31415 Foulis-Holland Theorem. I...
fh2 31416 Foulis-Holland Theorem. I...
cm2j 31417 A lattice element that com...
fh1i 31418 Foulis-Holland Theorem. I...
fh2i 31419 Foulis-Holland Theorem. I...
fh3i 31420 Variation of the Foulis-Ho...
fh4i 31421 Variation of the Foulis-Ho...
cm2ji 31422 A lattice element that com...
cm2mi 31423 A lattice element that com...
qlax1i 31424 One of the equations showi...
qlax2i 31425 One of the equations showi...
qlax3i 31426 One of the equations showi...
qlax4i 31427 One of the equations showi...
qlax5i 31428 One of the equations showi...
qlaxr1i 31429 One of the conditions show...
qlaxr2i 31430 One of the conditions show...
qlaxr4i 31431 One of the conditions show...
qlaxr5i 31432 One of the conditions show...
qlaxr3i 31433 A variation of the orthomo...
chscllem1 31434 Lemma for ~ chscl . (Cont...
chscllem2 31435 Lemma for ~ chscl . (Cont...
chscllem3 31436 Lemma for ~ chscl . (Cont...
chscllem4 31437 Lemma for ~ chscl . (Cont...
chscl 31438 The subspace sum of two cl...
osumi 31439 If two closed subspaces of...
osumcori 31440 Corollary of ~ osumi . (C...
osumcor2i 31441 Corollary of ~ osumi , sho...
osum 31442 If two closed subspaces of...
spansnji 31443 The subspace sum of a clos...
spansnj 31444 The subspace sum of a clos...
spansnscl 31445 The subspace sum of a clos...
sumspansn 31446 The sum of two vectors bel...
spansnm0i 31447 The meet of different one-...
nonbooli 31448 A Hilbert lattice with two...
spansncvi 31449 Hilbert space has the cove...
spansncv 31450 Hilbert space has the cove...
5oalem1 31451 Lemma for orthoarguesian l...
5oalem2 31452 Lemma for orthoarguesian l...
5oalem3 31453 Lemma for orthoarguesian l...
5oalem4 31454 Lemma for orthoarguesian l...
5oalem5 31455 Lemma for orthoarguesian l...
5oalem6 31456 Lemma for orthoarguesian l...
5oalem7 31457 Lemma for orthoarguesian l...
5oai 31458 Orthoarguesian law 5OA. Th...
3oalem1 31459 Lemma for 3OA (weak) ortho...
3oalem2 31460 Lemma for 3OA (weak) ortho...
3oalem3 31461 Lemma for 3OA (weak) ortho...
3oalem4 31462 Lemma for 3OA (weak) ortho...
3oalem5 31463 Lemma for 3OA (weak) ortho...
3oalem6 31464 Lemma for 3OA (weak) ortho...
3oai 31465 3OA (weak) orthoarguesian ...
pjorthi 31466 Projection components on o...
pjch1 31467 Property of identity proje...
pjo 31468 The orthogonal projection....
pjcompi 31469 Component of a projection....
pjidmi 31470 A projection is idempotent...
pjadjii 31471 A projection is self-adjoi...
pjaddii 31472 Projection of vector sum i...
pjinormii 31473 The inner product of a pro...
pjmulii 31474 Projection of (scalar) pro...
pjsubii 31475 Projection of vector diffe...
pjsslem 31476 Lemma for subset relations...
pjss2i 31477 Subset relationship for pr...
pjssmii 31478 Projection meet property. ...
pjssge0ii 31479 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 31480 Theorem 4.5(v)<->(vi) of [...
pjcji 31481 The projection on a subspa...
pjadji 31482 A projection is self-adjoi...
pjaddi 31483 Projection of vector sum i...
pjinormi 31484 The inner product of a pro...
pjsubi 31485 Projection of vector diffe...
pjmuli 31486 Projection of scalar produ...
pjige0i 31487 The inner product of a pro...
pjige0 31488 The inner product of a pro...
pjcjt2 31489 The projection on a subspa...
pj0i 31490 The projection of the zero...
pjch 31491 Projection of a vector in ...
pjid 31492 The projection of a vector...
pjvec 31493 The set of vectors belongi...
pjocvec 31494 The set of vectors belongi...
pjocini 31495 Membership of projection i...
pjini 31496 Membership of projection i...
pjjsi 31497 A sufficient condition for...
pjfni 31498 Functionality of a project...
pjrni 31499 The range of a projection....
pjfoi 31500 A projection maps onto its...
pjfi 31501 The mapping of a projectio...
pjvi 31502 The value of a projection ...
pjhfo 31503 A projection maps onto its...
pjrn 31504 The range of a projection....
pjhf 31505 The mapping of a projectio...
pjfn 31506 Functionality of a project...
pjsumi 31507 The projection on a subspa...
pj11i 31508 One-to-one correspondence ...
pjdsi 31509 Vector decomposition into ...
pjds3i 31510 Vector decomposition into ...
pj11 31511 One-to-one correspondence ...
pjmfn 31512 Functionality of the proje...
pjmf1 31513 The projector function map...
pjoi0 31514 The inner product of proje...
pjoi0i 31515 The inner product of proje...
pjopythi 31516 Pythagorean theorem for pr...
pjopyth 31517 Pythagorean theorem for pr...
pjnormi 31518 The norm of the projection...
pjpythi 31519 Pythagorean theorem for pr...
pjneli 31520 If a vector does not belon...
pjnorm 31521 The norm of the projection...
pjpyth 31522 Pythagorean theorem for pr...
pjnel 31523 If a vector does not belon...
pjnorm2 31524 A vector belongs to the su...
mayete3i 31525 Mayet's equation E_3. Par...
mayetes3i 31526 Mayet's equation E^*_3, de...
hosmval 31532 Value of the sum of two Hi...
hommval 31533 Value of the scalar produc...
hodmval 31534 Value of the difference of...
hfsmval 31535 Value of the sum of two Hi...
hfmmval 31536 Value of the scalar produc...
hosval 31537 Value of the sum of two Hi...
homval 31538 Value of the scalar produc...
hodval 31539 Value of the difference of...
hfsval 31540 Value of the sum of two Hi...
hfmval 31541 Value of the scalar produc...
hoscl 31542 Closure of the sum of two ...
homcl 31543 Closure of the scalar prod...
hodcl 31544 Closure of the difference ...
ho0val 31547 Value of the zero Hilbert ...
ho0f 31548 Functionality of the zero ...
df0op2 31549 Alternate definition of Hi...
dfiop2 31550 Alternate definition of Hi...
hoif 31551 Functionality of the Hilbe...
hoival 31552 The value of the Hilbert s...
hoico1 31553 Composition with the Hilbe...
hoico2 31554 Composition with the Hilbe...
hoaddcl 31555 The sum of Hilbert space o...
homulcl 31556 The scalar product of a Hi...
hoeq 31557 Equality of Hilbert space ...
hoeqi 31558 Equality of Hilbert space ...
hoscli 31559 Closure of Hilbert space o...
hodcli 31560 Closure of Hilbert space o...
hocoi 31561 Composition of Hilbert spa...
hococli 31562 Closure of composition of ...
hocofi 31563 Mapping of composition of ...
hocofni 31564 Functionality of compositi...
hoaddcli 31565 Mapping of sum of Hilbert ...
hosubcli 31566 Mapping of difference of H...
hoaddfni 31567 Functionality of sum of Hi...
hosubfni 31568 Functionality of differenc...
hoaddcomi 31569 Commutativity of sum of Hi...
hosubcl 31570 Mapping of difference of H...
hoaddcom 31571 Commutativity of sum of Hi...
hodsi 31572 Relationship between Hilbe...
hoaddassi 31573 Associativity of sum of Hi...
hoadd12i 31574 Commutative/associative la...
hoadd32i 31575 Commutative/associative la...
hocadddiri 31576 Distributive law for Hilbe...
hocsubdiri 31577 Distributive law for Hilbe...
ho2coi 31578 Double composition of Hilb...
hoaddass 31579 Associativity of sum of Hi...
hoadd32 31580 Commutative/associative la...
hoadd4 31581 Rearrangement of 4 terms i...
hocsubdir 31582 Distributive law for Hilbe...
hoaddridi 31583 Sum of a Hilbert space ope...
hodidi 31584 Difference of a Hilbert sp...
ho0coi 31585 Composition of the zero op...
hoid1i 31586 Composition of Hilbert spa...
hoid1ri 31587 Composition of Hilbert spa...
hoaddrid 31588 Sum of a Hilbert space ope...
hodid 31589 Difference of a Hilbert sp...
hon0 31590 A Hilbert space operator i...
hodseqi 31591 Subtraction and addition o...
ho0subi 31592 Subtraction of Hilbert spa...
honegsubi 31593 Relationship between Hilbe...
ho0sub 31594 Subtraction of Hilbert spa...
hosubid1 31595 The zero operator subtract...
honegsub 31596 Relationship between Hilbe...
homullid 31597 An operator equals its sca...
homco1 31598 Associative law for scalar...
homulass 31599 Scalar product associative...
hoadddi 31600 Scalar product distributiv...
hoadddir 31601 Scalar product reverse dis...
homul12 31602 Swap first and second fact...
honegneg 31603 Double negative of a Hilbe...
hosubneg 31604 Relationship between opera...
hosubdi 31605 Scalar product distributiv...
honegdi 31606 Distribution of negative o...
honegsubdi 31607 Distribution of negative o...
honegsubdi2 31608 Distribution of negative o...
hosubsub2 31609 Law for double subtraction...
hosub4 31610 Rearrangement of 4 terms i...
hosubadd4 31611 Rearrangement of 4 terms i...
hoaddsubass 31612 Associative-type law for a...
hoaddsub 31613 Law for operator addition ...
hosubsub 31614 Law for double subtraction...
hosubsub4 31615 Law for double subtraction...
ho2times 31616 Two times a Hilbert space ...
hoaddsubassi 31617 Associativity of sum and d...
hoaddsubi 31618 Law for sum and difference...
hosd1i 31619 Hilbert space operator sum...
hosd2i 31620 Hilbert space operator sum...
hopncani 31621 Hilbert space operator can...
honpcani 31622 Hilbert space operator can...
hosubeq0i 31623 If the difference between ...
honpncani 31624 Hilbert space operator can...
ho01i 31625 A condition implying that ...
ho02i 31626 A condition implying that ...
hoeq1 31627 A condition implying that ...
hoeq2 31628 A condition implying that ...
adjmo 31629 Every Hilbert space operat...
adjsym 31630 Symmetry property of an ad...
eigrei 31631 A necessary and sufficient...
eigre 31632 A necessary and sufficient...
eigposi 31633 A sufficient condition (fi...
eigorthi 31634 A necessary and sufficient...
eigorth 31635 A necessary and sufficient...
nmopval 31653 Value of the norm of a Hil...
elcnop 31654 Property defining a contin...
ellnop 31655 Property defining a linear...
lnopf 31656 A linear Hilbert space ope...
elbdop 31657 Property defining a bounde...
bdopln 31658 A bounded linear Hilbert s...
bdopf 31659 A bounded linear Hilbert s...
nmopsetretALT 31660 The set in the supremum of...
nmopsetretHIL 31661 The set in the supremum of...
nmopsetn0 31662 The set in the supremum of...
nmopxr 31663 The norm of a Hilbert spac...
nmoprepnf 31664 The norm of a Hilbert spac...
nmopgtmnf 31665 The norm of a Hilbert spac...
nmopreltpnf 31666 The norm of a Hilbert spac...
nmopre 31667 The norm of a bounded oper...
elbdop2 31668 Property defining a bounde...
elunop 31669 Property defining a unitar...
elhmop 31670 Property defining a Hermit...
hmopf 31671 A Hermitian operator is a ...
hmopex 31672 The class of Hermitian ope...
nmfnval 31673 Value of the norm of a Hil...
nmfnsetre 31674 The set in the supremum of...
nmfnsetn0 31675 The set in the supremum of...
nmfnxr 31676 The norm of any Hilbert sp...
nmfnrepnf 31677 The norm of a Hilbert spac...
nlfnval 31678 Value of the null space of...
elcnfn 31679 Property defining a contin...
ellnfn 31680 Property defining a linear...
lnfnf 31681 A linear Hilbert space fun...
dfadj2 31682 Alternate definition of th...
funadj 31683 Functionality of the adjoi...
dmadjss 31684 The domain of the adjoint ...
dmadjop 31685 A member of the domain of ...
adjeu 31686 Elementhood in the domain ...
adjval 31687 Value of the adjoint funct...
adjval2 31688 Value of the adjoint funct...
cnvadj 31689 The adjoint function equal...
funcnvadj 31690 The converse of the adjoin...
adj1o 31691 The adjoint function maps ...
dmadjrn 31692 The adjoint of an operator...
eigvecval 31693 The set of eigenvectors of...
eigvalfval 31694 The eigenvalues of eigenve...
specval 31695 The value of the spectrum ...
speccl 31696 The spectrum of an operato...
hhlnoi 31697 The linear operators of Hi...
hhnmoi 31698 The norm of an operator in...
hhbloi 31699 A bounded linear operator ...
hh0oi 31700 The zero operator in Hilbe...
hhcno 31701 The continuous operators o...
hhcnf 31702 The continuous functionals...
dmadjrnb 31703 The adjoint of an operator...
nmoplb 31704 A lower bound for an opera...
nmopub 31705 An upper bound for an oper...
nmopub2tALT 31706 An upper bound for an oper...
nmopub2tHIL 31707 An upper bound for an oper...
nmopge0 31708 The norm of any Hilbert sp...
nmopgt0 31709 A linear Hilbert space ope...
cnopc 31710 Basic continuity property ...
lnopl 31711 Basic linearity property o...
unop 31712 Basic inner product proper...
unopf1o 31713 A unitary operator in Hilb...
unopnorm 31714 A unitary operator is idem...
cnvunop 31715 The inverse (converse) of ...
unopadj 31716 The inverse (converse) of ...
unoplin 31717 A unitary operator is line...
counop 31718 The composition of two uni...
hmop 31719 Basic inner product proper...
hmopre 31720 The inner product of the v...
nmfnlb 31721 A lower bound for a functi...
nmfnleub 31722 An upper bound for the nor...
nmfnleub2 31723 An upper bound for the nor...
nmfnge0 31724 The norm of any Hilbert sp...
elnlfn 31725 Membership in the null spa...
elnlfn2 31726 Membership in the null spa...
cnfnc 31727 Basic continuity property ...
lnfnl 31728 Basic linearity property o...
adjcl 31729 Closure of the adjoint of ...
adj1 31730 Property of an adjoint Hil...
adj2 31731 Property of an adjoint Hil...
adjeq 31732 A property that determines...
adjadj 31733 Double adjoint. Theorem 3...
adjvalval 31734 Value of the value of the ...
unopadj2 31735 The adjoint of a unitary o...
hmopadj 31736 A Hermitian operator is se...
hmdmadj 31737 Every Hermitian operator h...
hmopadj2 31738 An operator is Hermitian i...
hmoplin 31739 A Hermitian operator is li...
brafval 31740 The bra of a vector, expre...
braval 31741 A bra-ket juxtaposition, e...
braadd 31742 Linearity property of bra ...
bramul 31743 Linearity property of bra ...
brafn 31744 The bra function is a func...
bralnfn 31745 The Dirac bra function is ...
bracl 31746 Closure of the bra functio...
bra0 31747 The Dirac bra of the zero ...
brafnmul 31748 Anti-linearity property of...
kbfval 31749 The outer product of two v...
kbop 31750 The outer product of two v...
kbval 31751 The value of the operator ...
kbmul 31752 Multiplication property of...
kbpj 31753 If a vector ` A ` has norm...
eleigvec 31754 Membership in the set of e...
eleigvec2 31755 Membership in the set of e...
eleigveccl 31756 Closure of an eigenvector ...
eigvalval 31757 The eigenvalue of an eigen...
eigvalcl 31758 An eigenvalue is a complex...
eigvec1 31759 Property of an eigenvector...
eighmre 31760 The eigenvalues of a Hermi...
eighmorth 31761 Eigenvectors of a Hermitia...
nmopnegi 31762 Value of the norm of the n...
lnop0 31763 The value of a linear Hilb...
lnopmul 31764 Multiplicative property of...
lnopli 31765 Basic scalar product prope...
lnopfi 31766 A linear Hilbert space ope...
lnop0i 31767 The value of a linear Hilb...
lnopaddi 31768 Additive property of a lin...
lnopmuli 31769 Multiplicative property of...
lnopaddmuli 31770 Sum/product property of a ...
lnopsubi 31771 Subtraction property for a...
lnopsubmuli 31772 Subtraction/product proper...
lnopmulsubi 31773 Product/subtraction proper...
homco2 31774 Move a scalar product out ...
idunop 31775 The identity function (res...
0cnop 31776 The identically zero funct...
0cnfn 31777 The identically zero funct...
idcnop 31778 The identity function (res...
idhmop 31779 The Hilbert space identity...
0hmop 31780 The identically zero funct...
0lnop 31781 The identically zero funct...
0lnfn 31782 The identically zero funct...
nmop0 31783 The norm of the zero opera...
nmfn0 31784 The norm of the identicall...
hmopbdoptHIL 31785 A Hermitian operator is a ...
hoddii 31786 Distributive law for Hilbe...
hoddi 31787 Distributive law for Hilbe...
nmop0h 31788 The norm of any operator o...
idlnop 31789 The identity function (res...
0bdop 31790 The identically zero opera...
adj0 31791 Adjoint of the zero operat...
nmlnop0iALT 31792 A linear operator with a z...
nmlnop0iHIL 31793 A linear operator with a z...
nmlnopgt0i 31794 A linear Hilbert space ope...
nmlnop0 31795 A linear operator with a z...
nmlnopne0 31796 A linear operator with a n...
lnopmi 31797 The scalar product of a li...
lnophsi 31798 The sum of two linear oper...
lnophdi 31799 The difference of two line...
lnopcoi 31800 The composition of two lin...
lnopco0i 31801 The composition of a linea...
lnopeq0lem1 31802 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 31803 Lemma for ~ lnopeq0i . (C...
lnopeq0i 31804 A condition implying that ...
lnopeqi 31805 Two linear Hilbert space o...
lnopeq 31806 Two linear Hilbert space o...
lnopunilem1 31807 Lemma for ~ lnopunii . (C...
lnopunilem2 31808 Lemma for ~ lnopunii . (C...
lnopunii 31809 If a linear operator (whos...
elunop2 31810 An operator is unitary iff...
nmopun 31811 Norm of a unitary Hilbert ...
unopbd 31812 A unitary operator is a bo...
lnophmlem1 31813 Lemma for ~ lnophmi . (Co...
lnophmlem2 31814 Lemma for ~ lnophmi . (Co...
lnophmi 31815 A linear operator is Hermi...
lnophm 31816 A linear operator is Hermi...
hmops 31817 The sum of two Hermitian o...
hmopm 31818 The scalar product of a He...
hmopd 31819 The difference of two Herm...
hmopco 31820 The composition of two com...
nmbdoplbi 31821 A lower bound for the norm...
nmbdoplb 31822 A lower bound for the norm...
nmcexi 31823 Lemma for ~ nmcopexi and ~...
nmcopexi 31824 The norm of a continuous l...
nmcoplbi 31825 A lower bound for the norm...
nmcopex 31826 The norm of a continuous l...
nmcoplb 31827 A lower bound for the norm...
nmophmi 31828 The norm of the scalar pro...
bdophmi 31829 The scalar product of a bo...
lnconi 31830 Lemma for ~ lnopconi and ~...
lnopconi 31831 A condition equivalent to ...
lnopcon 31832 A condition equivalent to ...
lnopcnbd 31833 A linear operator is conti...
lncnopbd 31834 A continuous linear operat...
lncnbd 31835 A continuous linear operat...
lnopcnre 31836 A linear operator is conti...
lnfnli 31837 Basic property of a linear...
lnfnfi 31838 A linear Hilbert space fun...
lnfn0i 31839 The value of a linear Hilb...
lnfnaddi 31840 Additive property of a lin...
lnfnmuli 31841 Multiplicative property of...
lnfnaddmuli 31842 Sum/product property of a ...
lnfnsubi 31843 Subtraction property for a...
lnfn0 31844 The value of a linear Hilb...
lnfnmul 31845 Multiplicative property of...
nmbdfnlbi 31846 A lower bound for the norm...
nmbdfnlb 31847 A lower bound for the norm...
nmcfnexi 31848 The norm of a continuous l...
nmcfnlbi 31849 A lower bound for the norm...
nmcfnex 31850 The norm of a continuous l...
nmcfnlb 31851 A lower bound of the norm ...
lnfnconi 31852 A condition equivalent to ...
lnfncon 31853 A condition equivalent to ...
lnfncnbd 31854 A linear functional is con...
imaelshi 31855 The image of a subspace un...
rnelshi 31856 The range of a linear oper...
nlelshi 31857 The null space of a linear...
nlelchi 31858 The null space of a contin...
riesz3i 31859 A continuous linear functi...
riesz4i 31860 A continuous linear functi...
riesz4 31861 A continuous linear functi...
riesz1 31862 Part 1 of the Riesz repres...
riesz2 31863 Part 2 of the Riesz repres...
cnlnadjlem1 31864 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 31865 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 31866 Lemma for ~ cnlnadji . By...
cnlnadjlem4 31867 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 31868 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 31869 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 31870 Lemma for ~ cnlnadji . He...
cnlnadjlem8 31871 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 31872 Lemma for ~ cnlnadji . ` F...
cnlnadji 31873 Every continuous linear op...
cnlnadjeui 31874 Every continuous linear op...
cnlnadjeu 31875 Every continuous linear op...
cnlnadj 31876 Every continuous linear op...
cnlnssadj 31877 Every continuous linear Hi...
bdopssadj 31878 Every bounded linear Hilbe...
bdopadj 31879 Every bounded linear Hilbe...
adjbdln 31880 The adjoint of a bounded l...
adjbdlnb 31881 An operator is bounded and...
adjbd1o 31882 The mapping of adjoints of...
adjlnop 31883 The adjoint of an operator...
adjsslnop 31884 Every operator with an adj...
nmopadjlei 31885 Property of the norm of an...
nmopadjlem 31886 Lemma for ~ nmopadji . (C...
nmopadji 31887 Property of the norm of an...
adjeq0 31888 An operator is zero iff it...
adjmul 31889 The adjoint of the scalar ...
adjadd 31890 The adjoint of the sum of ...
nmoptrii 31891 Triangle inequality for th...
nmopcoi 31892 Upper bound for the norm o...
bdophsi 31893 The sum of two bounded lin...
bdophdi 31894 The difference between two...
bdopcoi 31895 The composition of two bou...
nmoptri2i 31896 Triangle-type inequality f...
adjcoi 31897 The adjoint of a compositi...
nmopcoadji 31898 The norm of an operator co...
nmopcoadj2i 31899 The norm of an operator co...
nmopcoadj0i 31900 An operator composed with ...
unierri 31901 If we approximate a chain ...
branmfn 31902 The norm of the bra functi...
brabn 31903 The bra of a vector is a b...
rnbra 31904 The set of bras equals the...
bra11 31905 The bra function maps vect...
bracnln 31906 A bra is a continuous line...
cnvbraval 31907 Value of the converse of t...
cnvbracl 31908 Closure of the converse of...
cnvbrabra 31909 The converse bra of the br...
bracnvbra 31910 The bra of the converse br...
bracnlnval 31911 The vector that a continuo...
cnvbramul 31912 Multiplication property of...
kbass1 31913 Dirac bra-ket associative ...
kbass2 31914 Dirac bra-ket associative ...
kbass3 31915 Dirac bra-ket associative ...
kbass4 31916 Dirac bra-ket associative ...
kbass5 31917 Dirac bra-ket associative ...
kbass6 31918 Dirac bra-ket associative ...
leopg 31919 Ordering relation for posi...
leop 31920 Ordering relation for oper...
leop2 31921 Ordering relation for oper...
leop3 31922 Operator ordering in terms...
leoppos 31923 Binary relation defining a...
leoprf2 31924 The ordering relation for ...
leoprf 31925 The ordering relation for ...
leopsq 31926 The square of a Hermitian ...
0leop 31927 The zero operator is a pos...
idleop 31928 The identity operator is a...
leopadd 31929 The sum of two positive op...
leopmuli 31930 The scalar product of a no...
leopmul 31931 The scalar product of a po...
leopmul2i 31932 Scalar product applied to ...
leoptri 31933 The positive operator orde...
leoptr 31934 The positive operator orde...
leopnmid 31935 A bounded Hermitian operat...
nmopleid 31936 A nonzero, bounded Hermiti...
opsqrlem1 31937 Lemma for opsqri . (Contr...
opsqrlem2 31938 Lemma for opsqri . ` F `` ...
opsqrlem3 31939 Lemma for opsqri . (Contr...
opsqrlem4 31940 Lemma for opsqri . (Contr...
opsqrlem5 31941 Lemma for opsqri . (Contr...
opsqrlem6 31942 Lemma for opsqri . (Contr...
pjhmopi 31943 A projector is a Hermitian...
pjlnopi 31944 A projector is a linear op...
pjnmopi 31945 The operator norm of a pro...
pjbdlni 31946 A projector is a bounded l...
pjhmop 31947 A projection is a Hermitia...
hmopidmchi 31948 An idempotent Hermitian op...
hmopidmpji 31949 An idempotent Hermitian op...
hmopidmch 31950 An idempotent Hermitian op...
hmopidmpj 31951 An idempotent Hermitian op...
pjsdii 31952 Distributive law for Hilbe...
pjddii 31953 Distributive law for Hilbe...
pjsdi2i 31954 Chained distributive law f...
pjcoi 31955 Composition of projections...
pjcocli 31956 Closure of composition of ...
pjcohcli 31957 Closure of composition of ...
pjadjcoi 31958 Adjoint of composition of ...
pjcofni 31959 Functionality of compositi...
pjss1coi 31960 Subset relationship for pr...
pjss2coi 31961 Subset relationship for pr...
pjssmi 31962 Projection meet property. ...
pjssge0i 31963 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 31964 Theorem 4.5(v)<->(vi) of [...
pjnormssi 31965 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 31966 Composition of projections...
pjscji 31967 The projection of orthogon...
pjssumi 31968 The projection on a subspa...
pjssposi 31969 Projector ordering can be ...
pjordi 31970 The definition of projecto...
pjssdif2i 31971 The projection subspace of...
pjssdif1i 31972 A necessary and sufficient...
pjimai 31973 The image of a projection....
pjidmcoi 31974 A projection is idempotent...
pjoccoi 31975 Composition of projections...
pjtoi 31976 Subspace sum of projection...
pjoci 31977 Projection of orthocomplem...
pjidmco 31978 A projection operator is i...
dfpjop 31979 Definition of projection o...
pjhmopidm 31980 Two ways to express the se...
elpjidm 31981 A projection operator is i...
elpjhmop 31982 A projection operator is H...
0leopj 31983 A projector is a positive ...
pjadj2 31984 A projector is self-adjoin...
pjadj3 31985 A projector is self-adjoin...
elpjch 31986 Reconstruction of the subs...
elpjrn 31987 Reconstruction of the subs...
pjinvari 31988 A closed subspace ` H ` wi...
pjin1i 31989 Lemma for Theorem 1.22 of ...
pjin2i 31990 Lemma for Theorem 1.22 of ...
pjin3i 31991 Lemma for Theorem 1.22 of ...
pjclem1 31992 Lemma for projection commu...
pjclem2 31993 Lemma for projection commu...
pjclem3 31994 Lemma for projection commu...
pjclem4a 31995 Lemma for projection commu...
pjclem4 31996 Lemma for projection commu...
pjci 31997 Two subspaces commute iff ...
pjcmul1i 31998 A necessary and sufficient...
pjcmul2i 31999 The projection subspace of...
pjcohocli 32000 Closure of composition of ...
pjadj2coi 32001 Adjoint of double composit...
pj2cocli 32002 Closure of double composit...
pj3lem1 32003 Lemma for projection tripl...
pj3si 32004 Stronger projection triple...
pj3i 32005 Projection triplet theorem...
pj3cor1i 32006 Projection triplet corolla...
pjs14i 32007 Theorem S-14 of Watanabe, ...
isst 32010 Property of a state. (Con...
ishst 32011 Property of a complex Hilb...
sticl 32012 ` [ 0 , 1 ] ` closure of t...
stcl 32013 Real closure of the value ...
hstcl 32014 Closure of the value of a ...
hst1a 32015 Unit value of a Hilbert-sp...
hstel2 32016 Properties of a Hilbert-sp...
hstorth 32017 Orthogonality property of ...
hstosum 32018 Orthogonal sum property of...
hstoc 32019 Sum of a Hilbert-space-val...
hstnmoc 32020 Sum of norms of a Hilbert-...
stge0 32021 The value of a state is no...
stle1 32022 The value of a state is le...
hstle1 32023 The norm of the value of a...
hst1h 32024 The norm of a Hilbert-spac...
hst0h 32025 The norm of a Hilbert-spac...
hstpyth 32026 Pythagorean property of a ...
hstle 32027 Ordering property of a Hil...
hstles 32028 Ordering property of a Hil...
hstoh 32029 A Hilbert-space-valued sta...
hst0 32030 A Hilbert-space-valued sta...
sthil 32031 The value of a state at th...
stj 32032 The value of a state on a ...
sto1i 32033 The state of a subspace pl...
sto2i 32034 The state of the orthocomp...
stge1i 32035 If a state is greater than...
stle0i 32036 If a state is less than or...
stlei 32037 Ordering law for states. ...
stlesi 32038 Ordering law for states. ...
stji1i 32039 Join of components of Sasa...
stm1i 32040 State of component of unit...
stm1ri 32041 State of component of unit...
stm1addi 32042 Sum of states whose meet i...
staddi 32043 If the sum of 2 states is ...
stm1add3i 32044 Sum of states whose meet i...
stadd3i 32045 If the sum of 3 states is ...
st0 32046 The state of the zero subs...
strlem1 32047 Lemma for strong state the...
strlem2 32048 Lemma for strong state the...
strlem3a 32049 Lemma for strong state the...
strlem3 32050 Lemma for strong state the...
strlem4 32051 Lemma for strong state the...
strlem5 32052 Lemma for strong state the...
strlem6 32053 Lemma for strong state the...
stri 32054 Strong state theorem. The...
strb 32055 Strong state theorem (bidi...
hstrlem2 32056 Lemma for strong set of CH...
hstrlem3a 32057 Lemma for strong set of CH...
hstrlem3 32058 Lemma for strong set of CH...
hstrlem4 32059 Lemma for strong set of CH...
hstrlem5 32060 Lemma for strong set of CH...
hstrlem6 32061 Lemma for strong set of CH...
hstri 32062 Hilbert space admits a str...
hstrbi 32063 Strong CH-state theorem (b...
largei 32064 A Hilbert lattice admits a...
jplem1 32065 Lemma for Jauch-Piron theo...
jplem2 32066 Lemma for Jauch-Piron theo...
jpi 32067 The function ` S ` , that ...
golem1 32068 Lemma for Godowski's equat...
golem2 32069 Lemma for Godowski's equat...
goeqi 32070 Godowski's equation, shown...
stcltr1i 32071 Property of a strong class...
stcltr2i 32072 Property of a strong class...
stcltrlem1 32073 Lemma for strong classical...
stcltrlem2 32074 Lemma for strong classical...
stcltrthi 32075 Theorem for classically st...
cvbr 32079 Binary relation expressing...
cvbr2 32080 Binary relation expressing...
cvcon3 32081 Contraposition law for the...
cvpss 32082 The covers relation implie...
cvnbtwn 32083 The covers relation implie...
cvnbtwn2 32084 The covers relation implie...
cvnbtwn3 32085 The covers relation implie...
cvnbtwn4 32086 The covers relation implie...
cvnsym 32087 The covers relation is not...
cvnref 32088 The covers relation is not...
cvntr 32089 The covers relation is not...
spansncv2 32090 Hilbert space has the cove...
mdbr 32091 Binary relation expressing...
mdi 32092 Consequence of the modular...
mdbr2 32093 Binary relation expressing...
mdbr3 32094 Binary relation expressing...
mdbr4 32095 Binary relation expressing...
dmdbr 32096 Binary relation expressing...
dmdmd 32097 The dual modular pair prop...
mddmd 32098 The modular pair property ...
dmdi 32099 Consequence of the dual mo...
dmdbr2 32100 Binary relation expressing...
dmdi2 32101 Consequence of the dual mo...
dmdbr3 32102 Binary relation expressing...
dmdbr4 32103 Binary relation expressing...
dmdi4 32104 Consequence of the dual mo...
dmdbr5 32105 Binary relation expressing...
mddmd2 32106 Relationship between modul...
mdsl0 32107 A sublattice condition tha...
ssmd1 32108 Ordering implies the modul...
ssmd2 32109 Ordering implies the modul...
ssdmd1 32110 Ordering implies the dual ...
ssdmd2 32111 Ordering implies the dual ...
dmdsl3 32112 Sublattice mapping for a d...
mdsl3 32113 Sublattice mapping for a m...
mdslle1i 32114 Order preservation of the ...
mdslle2i 32115 Order preservation of the ...
mdslj1i 32116 Join preservation of the o...
mdslj2i 32117 Meet preservation of the r...
mdsl1i 32118 If the modular pair proper...
mdsl2i 32119 If the modular pair proper...
mdsl2bi 32120 If the modular pair proper...
cvmdi 32121 The covering property impl...
mdslmd1lem1 32122 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 32123 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 32124 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 32125 Lemma for ~ mdslmd1i . (C...
mdslmd1i 32126 Preservation of the modula...
mdslmd2i 32127 Preservation of the modula...
mdsldmd1i 32128 Preservation of the dual m...
mdslmd3i 32129 Modular pair conditions th...
mdslmd4i 32130 Modular pair condition tha...
csmdsymi 32131 Cross-symmetry implies M-s...
mdexchi 32132 An exchange lemma for modu...
cvmd 32133 The covering property impl...
cvdmd 32134 The covering property impl...
ela 32136 Atoms in a Hilbert lattice...
elat2 32137 Expanded membership relati...
elatcv0 32138 A Hilbert lattice element ...
atcv0 32139 An atom covers the zero su...
atssch 32140 Atoms are a subset of the ...
atelch 32141 An atom is a Hilbert latti...
atne0 32142 An atom is not the Hilbert...
atss 32143 A lattice element smaller ...
atsseq 32144 Two atoms in a subset rela...
atcveq0 32145 A Hilbert lattice element ...
h1da 32146 A 1-dimensional subspace i...
spansna 32147 The span of the singleton ...
sh1dle 32148 A 1-dimensional subspace i...
ch1dle 32149 A 1-dimensional subspace i...
atom1d 32150 The 1-dimensional subspace...
superpos 32151 Superposition Principle. ...
chcv1 32152 The Hilbert lattice has th...
chcv2 32153 The Hilbert lattice has th...
chjatom 32154 The join of a closed subsp...
shatomici 32155 The lattice of Hilbert sub...
hatomici 32156 The Hilbert lattice is ato...
hatomic 32157 A Hilbert lattice is atomi...
shatomistici 32158 The lattice of Hilbert sub...
hatomistici 32159 ` CH ` is atomistic, i.e. ...
chpssati 32160 Two Hilbert lattice elemen...
chrelati 32161 The Hilbert lattice is rel...
chrelat2i 32162 A consequence of relative ...
cvati 32163 If a Hilbert lattice eleme...
cvbr4i 32164 An alternate way to expres...
cvexchlem 32165 Lemma for ~ cvexchi . (Co...
cvexchi 32166 The Hilbert lattice satisf...
chrelat2 32167 A consequence of relative ...
chrelat3 32168 A consequence of relative ...
chrelat3i 32169 A consequence of the relat...
chrelat4i 32170 A consequence of relative ...
cvexch 32171 The Hilbert lattice satisf...
cvp 32172 The Hilbert lattice satisf...
atnssm0 32173 The meet of a Hilbert latt...
atnemeq0 32174 The meet of distinct atoms...
atssma 32175 The meet with an atom's su...
atcv0eq 32176 Two atoms covering the zer...
atcv1 32177 Two atoms covering the zer...
atexch 32178 The Hilbert lattice satisf...
atomli 32179 An assertion holding in at...
atoml2i 32180 An assertion holding in at...
atordi 32181 An ordering law for a Hilb...
atcvatlem 32182 Lemma for ~ atcvati . (Co...
atcvati 32183 A nonzero Hilbert lattice ...
atcvat2i 32184 A Hilbert lattice element ...
atord 32185 An ordering law for a Hilb...
atcvat2 32186 A Hilbert lattice element ...
chirredlem1 32187 Lemma for ~ chirredi . (C...
chirredlem2 32188 Lemma for ~ chirredi . (C...
chirredlem3 32189 Lemma for ~ chirredi . (C...
chirredlem4 32190 Lemma for ~ chirredi . (C...
chirredi 32191 The Hilbert lattice is irr...
chirred 32192 The Hilbert lattice is irr...
atcvat3i 32193 A condition implying that ...
atcvat4i 32194 A condition implying exist...
atdmd 32195 Two Hilbert lattice elemen...
atmd 32196 Two Hilbert lattice elemen...
atmd2 32197 Two Hilbert lattice elemen...
atabsi 32198 Absorption of an incompara...
atabs2i 32199 Absorption of an incompara...
mdsymlem1 32200 Lemma for ~ mdsymi . (Con...
mdsymlem2 32201 Lemma for ~ mdsymi . (Con...
mdsymlem3 32202 Lemma for ~ mdsymi . (Con...
mdsymlem4 32203 Lemma for ~ mdsymi . This...
mdsymlem5 32204 Lemma for ~ mdsymi . (Con...
mdsymlem6 32205 Lemma for ~ mdsymi . This...
mdsymlem7 32206 Lemma for ~ mdsymi . Lemm...
mdsymlem8 32207 Lemma for ~ mdsymi . Lemm...
mdsymi 32208 M-symmetry of the Hilbert ...
mdsym 32209 M-symmetry of the Hilbert ...
dmdsym 32210 Dual M-symmetry of the Hil...
atdmd2 32211 Two Hilbert lattice elemen...
sumdmdii 32212 If the subspace sum of two...
cmmdi 32213 Commuting subspaces form a...
cmdmdi 32214 Commuting subspaces form a...
sumdmdlem 32215 Lemma for ~ sumdmdi . The...
sumdmdlem2 32216 Lemma for ~ sumdmdi . (Co...
sumdmdi 32217 The subspace sum of two Hi...
dmdbr4ati 32218 Dual modular pair property...
dmdbr5ati 32219 Dual modular pair property...
dmdbr6ati 32220 Dual modular pair property...
dmdbr7ati 32221 Dual modular pair property...
mdoc1i 32222 Orthocomplements form a mo...
mdoc2i 32223 Orthocomplements form a mo...
dmdoc1i 32224 Orthocomplements form a du...
dmdoc2i 32225 Orthocomplements form a du...
mdcompli 32226 A condition equivalent to ...
dmdcompli 32227 A condition equivalent to ...
mddmdin0i 32228 If dual modular implies mo...
cdjreui 32229 A member of the sum of dis...
cdj1i 32230 Two ways to express " ` A ...
cdj3lem1 32231 A property of " ` A ` and ...
cdj3lem2 32232 Lemma for ~ cdj3i . Value...
cdj3lem2a 32233 Lemma for ~ cdj3i . Closu...
cdj3lem2b 32234 Lemma for ~ cdj3i . The f...
cdj3lem3 32235 Lemma for ~ cdj3i . Value...
cdj3lem3a 32236 Lemma for ~ cdj3i . Closu...
cdj3lem3b 32237 Lemma for ~ cdj3i . The s...
cdj3i 32238 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 32239 (_This theorem is a dummy ...
sa-abvi 32240 A theorem about the univer...
xfree 32241 A partial converse to ~ 19...
xfree2 32242 A partial converse to ~ 19...
addltmulALT 32243 A proof readability experi...
bian1d 32244 Adding a superfluous conju...
or3di 32245 Distributive law for disju...
or3dir 32246 Distributive law for disju...
3o1cs 32247 Deduction eliminating disj...
3o2cs 32248 Deduction eliminating disj...
3o3cs 32249 Deduction eliminating disj...
13an22anass 32250 Associative law for four c...
sbc2iedf 32251 Conversion of implicit sub...
rspc2daf 32252 Double restricted speciali...
ralcom4f 32253 Commutation of restricted ...
rexcom4f 32254 Commutation of restricted ...
19.9d2rf 32255 A deduction version of one...
19.9d2r 32256 A deduction version of one...
r19.29ffa 32257 A commonly used pattern ba...
eqtrb 32258 A transposition of equalit...
eqelbid 32259 A variable elimination law...
opsbc2ie 32260 Conversion of implicit sub...
opreu2reuALT 32261 Correspondence between uni...
2reucom 32264 Double restricted existent...
2reu2rex1 32265 Double restricted existent...
2reureurex 32266 Double restricted existent...
2reu2reu2 32267 Double restricted existent...
opreu2reu1 32268 Equivalent definition of t...
sq2reunnltb 32269 There exists a unique deco...
addsqnot2reu 32270 For each complex number ` ...
sbceqbidf 32271 Equality theorem for class...
sbcies 32272 A special version of class...
mo5f 32273 Alternate definition of "a...
nmo 32274 Negation of "at most one"....
reuxfrdf 32275 Transfer existential uniqu...
rexunirn 32276 Restricted existential qua...
rmoxfrd 32277 Transfer "at most one" res...
rmoun 32278 "At most one" restricted e...
rmounid 32279 A case where an "at most o...
riotaeqbidva 32280 Equivalent wff's yield equ...
dmrab 32281 Domain of a restricted cla...
difrab2 32282 Difference of two restrict...
rabexgfGS 32283 Separation Scheme in terms...
rabsnel 32284 Truth implied by equality ...
eqrrabd 32285 Deduce equality with a res...
foresf1o 32286 From a surjective function...
rabfodom 32287 Domination relation for re...
abrexdomjm 32288 An indexed set is dominate...
abrexdom2jm 32289 An indexed set is dominate...
abrexexd 32290 Existence of a class abstr...
elabreximd 32291 Class substitution in an i...
elabreximdv 32292 Class substitution in an i...
abrexss 32293 A necessary condition for ...
elunsn 32294 Elementhood to a union wit...
nelun 32295 Negated membership for a u...
snsssng 32296 If a singleton is a subset...
inin 32297 Intersection with an inter...
inindif 32298 See ~ inundif . (Contribu...
difininv 32299 Condition for the intersec...
difeq 32300 Rewriting an equation with...
eqdif 32301 If both set differences of...
indifbi 32302 Two ways to express equali...
diffib 32303 Case where ~ diffi is a bi...
difxp1ss 32304 Difference law for Cartesi...
difxp2ss 32305 Difference law for Cartesi...
indifundif 32306 A remarkable equation with...
elpwincl1 32307 Closure of intersection wi...
elpwdifcl 32308 Closure of class differenc...
elpwiuncl 32309 Closure of indexed union w...
eqsnd 32310 Deduce that a set is a sin...
elpreq 32311 Equality wihin a pair. (C...
nelpr 32312 A set ` A ` not in a pair ...
inpr0 32313 Rewrite an empty intersect...
neldifpr1 32314 The first element of a pai...
neldifpr2 32315 The second element of a pa...
unidifsnel 32316 The other element of a pai...
unidifsnne 32317 The other element of a pai...
ifeqeqx 32318 An equality theorem tailor...
elimifd 32319 Elimination of a condition...
elim2if 32320 Elimination of two conditi...
elim2ifim 32321 Elimination of two conditi...
ifeq3da 32322 Given an expression ` C ` ...
ifnetrue 32323 Deduce truth from a condit...
ifnefals 32324 Deduce falsehood from a co...
ifnebib 32325 The converse of ~ ifbi hol...
uniinn0 32326 Sufficient and necessary c...
uniin1 32327 Union of intersection. Ge...
uniin2 32328 Union of intersection. Ge...
difuncomp 32329 Express a class difference...
elpwunicl 32330 Closure of a set union wit...
cbviunf 32331 Rule used to change the bo...
iuneq12daf 32332 Equality deduction for ind...
iunin1f 32333 Indexed union of intersect...
ssiun3 32334 Subset equivalence for an ...
ssiun2sf 32335 Subset relationship for an...
iuninc 32336 The union of an increasing...
iundifdifd 32337 The intersection of a set ...
iundifdif 32338 The intersection of a set ...
iunrdx 32339 Re-index an indexed union....
iunpreima 32340 Preimage of an indexed uni...
iunrnmptss 32341 A subset relation for an i...
iunxunsn 32342 Appending a set to an inde...
iunxunpr 32343 Appending two sets to an i...
iinabrex 32344 Rewriting an indexed inter...
disjnf 32345 In case ` x ` is not free ...
cbvdisjf 32346 Change bound variables in ...
disjss1f 32347 A subset of a disjoint col...
disjeq1f 32348 Equality theorem for disjo...
disjxun0 32349 Simplify a disjoint union....
disjdifprg 32350 A trivial partition into a...
disjdifprg2 32351 A trivial partition of a s...
disji2f 32352 Property of a disjoint col...
disjif 32353 Property of a disjoint col...
disjorf 32354 Two ways to say that a col...
disjorsf 32355 Two ways to say that a col...
disjif2 32356 Property of a disjoint col...
disjabrex 32357 Rewriting a disjoint colle...
disjabrexf 32358 Rewriting a disjoint colle...
disjpreima 32359 A preimage of a disjoint s...
disjrnmpt 32360 Rewriting a disjoint colle...
disjin 32361 If a collection is disjoin...
disjin2 32362 If a collection is disjoin...
disjxpin 32363 Derive a disjunction over ...
iundisjf 32364 Rewrite a countable union ...
iundisj2f 32365 A disjoint union is disjoi...
disjrdx 32366 Re-index a disjunct collec...
disjex 32367 Two ways to say that two c...
disjexc 32368 A variant of ~ disjex , ap...
disjunsn 32369 Append an element to a dis...
disjun0 32370 Adding the empty element p...
disjiunel 32371 A set of elements B of a d...
disjuniel 32372 A set of elements B of a d...
xpdisjres 32373 Restriction of a constant ...
opeldifid 32374 Ordered pair elementhood o...
difres 32375 Case when class difference...
imadifxp 32376 Image of the difference wi...
relfi 32377 A relation (set) is finite...
0res 32378 Restriction of the empty f...
fcoinver 32379 Build an equivalence relat...
fcoinvbr 32380 Binary relation for the eq...
brabgaf 32381 The law of concretion for ...
brelg 32382 Two things in a binary rel...
br8d 32383 Substitution for an eight-...
opabdm 32384 Domain of an ordered-pair ...
opabrn 32385 Range of an ordered-pair c...
opabssi 32386 Sufficient condition for a...
opabid2ss 32387 One direction of ~ opabid2...
ssrelf 32388 A subclass relationship de...
eqrelrd2 32389 A version of ~ eqrelrdv2 w...
erbr3b 32390 Biconditional for equivale...
iunsnima 32391 Image of a singleton by an...
iunsnima2 32392 Version of ~ iunsnima with...
ac6sf2 32393 Alternate version of ~ ac6...
fnresin 32394 Restriction of a function ...
f1o3d 32395 Describe an implicit one-t...
eldmne0 32396 A function of nonempty dom...
f1rnen 32397 Equinumerosity of the rang...
rinvf1o 32398 Sufficient conditions for ...
fresf1o 32399 Conditions for a restricti...
nfpconfp 32400 The set of fixed points of...
fmptco1f1o 32401 The action of composing (t...
cofmpt2 32402 Express composition of a m...
f1mptrn 32403 Express injection for a ma...
dfimafnf 32404 Alternate definition of th...
funimass4f 32405 Membership relation for th...
elimampt 32406 Membership in the image of...
suppss2f 32407 Show that the support of a...
ofrn 32408 The range of the function ...
ofrn2 32409 The range of the function ...
off2 32410 The function operation pro...
ofresid 32411 Applying an operation rest...
fimarab 32412 Expressing the image of a ...
unipreima 32413 Preimage of a class union....
opfv 32414 Value of a function produc...
xppreima 32415 The preimage of a Cartesia...
2ndimaxp 32416 Image of a cartesian produ...
djussxp2 32417 Stronger version of ~ djus...
2ndresdju 32418 The ` 2nd ` function restr...
2ndresdjuf1o 32419 The ` 2nd ` function restr...
xppreima2 32420 The preimage of a Cartesia...
abfmpunirn 32421 Membership in a union of a...
rabfmpunirn 32422 Membership in a union of a...
abfmpeld 32423 Membership in an element o...
abfmpel 32424 Membership in an element o...
fmptdF 32425 Domain and codomain of the...
fmptcof2 32426 Composition of two functio...
fcomptf 32427 Express composition of two...
acunirnmpt 32428 Axiom of choice for the un...
acunirnmpt2 32429 Axiom of choice for the un...
acunirnmpt2f 32430 Axiom of choice for the un...
aciunf1lem 32431 Choice in an index union. ...
aciunf1 32432 Choice in an index union. ...
ofoprabco 32433 Function operation as a co...
ofpreima 32434 Express the preimage of a ...
ofpreima2 32435 Express the preimage of a ...
funcnvmpt 32436 Condition for a function i...
funcnv5mpt 32437 Two ways to say that a fun...
funcnv4mpt 32438 Two ways to say that a fun...
preimane 32439 Different elements have di...
fnpreimac 32440 Choose a set ` x ` contain...
fgreu 32441 Exactly one point of a fun...
fcnvgreu 32442 If the converse of a relat...
rnmposs 32443 The range of an operation ...
mptssALT 32444 Deduce subset relation of ...
dfcnv2 32445 Alternative definition of ...
fnimatp 32446 The image of an unordered ...
mpomptxf 32447 Express a two-argument fun...
suppovss 32448 A bound for the support of...
fvdifsupp 32449 Function value is zero out...
suppiniseg 32450 Relation between the suppo...
fsuppinisegfi 32451 The initial segment ` ( ``...
fressupp 32452 The restriction of a funct...
fdifsuppconst 32453 A function is a zero const...
ressupprn 32454 The range of a function re...
supppreima 32455 Express the support of a f...
fsupprnfi 32456 Finite support implies fin...
mptiffisupp 32457 Conditions for a mapping f...
cosnopne 32458 Composition of two ordered...
cosnop 32459 Composition of two ordered...
cnvprop 32460 Converse of a pair of orde...
brprop 32461 Binary relation for a pair...
mptprop 32462 Rewrite pairs of ordered p...
coprprop 32463 Composition of two pairs o...
gtiso 32464 Two ways to write a strict...
isoun 32465 Infer an isomorphism from ...
disjdsct 32466 A disjoint collection is d...
df1stres 32467 Definition for a restricti...
df2ndres 32468 Definition for a restricti...
1stpreimas 32469 The preimage of a singleto...
1stpreima 32470 The preimage by ` 1st ` is...
2ndpreima 32471 The preimage by ` 2nd ` is...
curry2ima 32472 The image of a curried fun...
preiman0 32473 The preimage of a nonempty...
intimafv 32474 The intersection of an ima...
supssd 32475 Inequality deduction for s...
infssd 32476 Inequality deduction for i...
imafi2 32477 The image by a finite set ...
unifi3 32478 If a union is finite, then...
snct 32479 A singleton is countable. ...
prct 32480 An unordered pair is count...
mpocti 32481 An operation is countable ...
abrexct 32482 An image set of a countabl...
mptctf 32483 A countable mapping set is...
abrexctf 32484 An image set of a countabl...
padct 32485 Index a countable set with...
cnvoprabOLD 32486 The converse of a class ab...
f1od2 32487 Sufficient condition for a...
fcobij 32488 Composing functions with a...
fcobijfs 32489 Composing finitely support...
suppss3 32490 Deduce a function's suppor...
fsuppcurry1 32491 Finite support of a currie...
fsuppcurry2 32492 Finite support of a currie...
offinsupp1 32493 Finite support for a funct...
ffs2 32494 Rewrite a function's suppo...
ffsrn 32495 The range of a finitely su...
resf1o 32496 Restriction of functions t...
maprnin 32497 Restricting the range of t...
fpwrelmapffslem 32498 Lemma for ~ fpwrelmapffs ....
fpwrelmap 32499 Define a canonical mapping...
fpwrelmapffs 32500 Define a canonical mapping...
creq0 32501 The real representation of...
1nei 32502 The imaginary unit ` _i ` ...
1neg1t1neg1 32503 An integer unit times itse...
nnmulge 32504 Multiplying by a positive ...
lt2addrd 32505 If the right-hand side of ...
xrlelttric 32506 Trichotomy law for extende...
xaddeq0 32507 Two extended reals which a...
xrinfm 32508 The extended real numbers ...
le2halvesd 32509 A sum is less than the who...
xraddge02 32510 A number is less than or e...
xrge0addge 32511 A number is less than or e...
xlt2addrd 32512 If the right-hand side of ...
xrsupssd 32513 Inequality deduction for s...
xrge0infss 32514 Any subset of nonnegative ...
xrge0infssd 32515 Inequality deduction for i...
xrge0addcld 32516 Nonnegative extended reals...
xrge0subcld 32517 Condition for closure of n...
infxrge0lb 32518 A member of a set of nonne...
infxrge0glb 32519 The infimum of a set of no...
infxrge0gelb 32520 The infimum of a set of no...
xrofsup 32521 The supremum is preserved ...
supxrnemnf 32522 The supremum of a nonempty...
xnn0gt0 32523 Nonzero extended nonnegati...
xnn01gt 32524 An extended nonnegative in...
nn0xmulclb 32525 Finite multiplication in t...
joiniooico 32526 Disjoint joining an open i...
ubico 32527 A right-open interval does...
xeqlelt 32528 Equality in terms of 'less...
eliccelico 32529 Relate elementhood to a cl...
elicoelioo 32530 Relate elementhood to a cl...
iocinioc2 32531 Intersection between two o...
xrdifh 32532 Class difference of a half...
iocinif 32533 Relate intersection of two...
difioo 32534 The difference between two...
difico 32535 The difference between two...
uzssico 32536 Upper integer sets are a s...
fz2ssnn0 32537 A finite set of sequential...
nndiffz1 32538 Upper set of the positive ...
ssnnssfz 32539 For any finite subset of `...
fzne1 32540 Elementhood in a finite se...
fzm1ne1 32541 Elementhood of an integer ...
fzspl 32542 Split the last element of ...
fzdif2 32543 Split the last element of ...
fzodif2 32544 Split the last element of ...
fzodif1 32545 Set difference of two half...
fzsplit3 32546 Split a finite interval of...
bcm1n 32547 The proportion of one bino...
iundisjfi 32548 Rewrite a countable union ...
iundisj2fi 32549 A disjoint union is disjoi...
iundisjcnt 32550 Rewrite a countable union ...
iundisj2cnt 32551 A countable disjoint union...
fzone1 32552 Elementhood in a half-open...
fzom1ne1 32553 Elementhood in a half-open...
f1ocnt 32554 Given a countable set ` A ...
fz1nnct 32555 NN and integer ranges star...
fz1nntr 32556 NN and integer ranges star...
nn0difffzod 32557 A nonnegative integer that...
suppssnn0 32558 Show that the support of a...
hashunif 32559 The cardinality of a disjo...
hashxpe 32560 The size of the Cartesian ...
hashgt1 32561 Restate "set contains at l...
numdenneg 32562 Numerator and denominator ...
divnumden2 32563 Calculate the reduced form...
nnindf 32564 Principle of Mathematical ...
nn0min 32565 Extracting the minimum pos...
subne0nn 32566 A nonnegative difference i...
ltesubnnd 32567 Subtracting an integer num...
fprodeq02 32568 If one of the factors is z...
pr01ssre 32569 The range of the indicator...
fprodex01 32570 A product of factors equal...
prodpr 32571 A product over a pair is t...
prodtp 32572 A product over a triple is...
fsumub 32573 An upper bound for a term ...
fsumiunle 32574 Upper bound for a sum of n...
dfdec100 32575 Split the hundreds from a ...
dp2eq1 32578 Equality theorem for the d...
dp2eq2 32579 Equality theorem for the d...
dp2eq1i 32580 Equality theorem for the d...
dp2eq2i 32581 Equality theorem for the d...
dp2eq12i 32582 Equality theorem for the d...
dp20u 32583 Add a zero in the tenths (...
dp20h 32584 Add a zero in the unit pla...
dp2cl 32585 Closure for the decimal fr...
dp2clq 32586 Closure for a decimal frac...
rpdp2cl 32587 Closure for a decimal frac...
rpdp2cl2 32588 Closure for a decimal frac...
dp2lt10 32589 Decimal fraction builds re...
dp2lt 32590 Comparing two decimal frac...
dp2ltsuc 32591 Comparing a decimal fracti...
dp2ltc 32592 Comparing two decimal expa...
dpval 32595 Define the value of the de...
dpcl 32596 Prove that the closure of ...
dpfrac1 32597 Prove a simple equivalence...
dpval2 32598 Value of the decimal point...
dpval3 32599 Value of the decimal point...
dpmul10 32600 Multiply by 10 a decimal e...
decdiv10 32601 Divide a decimal number by...
dpmul100 32602 Multiply by 100 a decimal ...
dp3mul10 32603 Multiply by 10 a decimal e...
dpmul1000 32604 Multiply by 1000 a decimal...
dpval3rp 32605 Value of the decimal point...
dp0u 32606 Add a zero in the tenths p...
dp0h 32607 Remove a zero in the units...
rpdpcl 32608 Closure of the decimal poi...
dplt 32609 Comparing two decimal expa...
dplti 32610 Comparing a decimal expans...
dpgti 32611 Comparing a decimal expans...
dpltc 32612 Comparing two decimal inte...
dpexpp1 32613 Add one zero to the mantis...
0dp2dp 32614 Multiply by 10 a decimal e...
dpadd2 32615 Addition with one decimal,...
dpadd 32616 Addition with one decimal....
dpadd3 32617 Addition with two decimals...
dpmul 32618 Multiplication with one de...
dpmul4 32619 An upper bound to multipli...
threehalves 32620 Example theorem demonstrat...
1mhdrd 32621 Example theorem demonstrat...
xdivval 32624 Value of division: the (un...
xrecex 32625 Existence of reciprocal of...
xmulcand 32626 Cancellation law for exten...
xreceu 32627 Existential uniqueness of ...
xdivcld 32628 Closure law for the extend...
xdivcl 32629 Closure law for the extend...
xdivmul 32630 Relationship between divis...
rexdiv 32631 The extended real division...
xdivrec 32632 Relationship between divis...
xdivid 32633 A number divided by itself...
xdiv0 32634 Division into zero is zero...
xdiv0rp 32635 Division into zero is zero...
eliccioo 32636 Membership in a closed int...
elxrge02 32637 Elementhood in the set of ...
xdivpnfrp 32638 Plus infinity divided by a...
rpxdivcld 32639 Closure law for extended d...
xrpxdivcld 32640 Closure law for extended d...
wrdfd 32641 A word is a zero-based seq...
wrdres 32642 Condition for the restrict...
wrdsplex 32643 Existence of a split of a ...
pfx1s2 32644 The prefix of length 1 of ...
pfxrn2 32645 The range of a prefix of a...
pfxrn3 32646 Express the range of a pre...
pfxf1 32647 Condition for a prefix to ...
s1f1 32648 Conditions for a length 1 ...
s2rn 32649 Range of a length 2 string...
s2f1 32650 Conditions for a length 2 ...
s3rn 32651 Range of a length 3 string...
s3f1 32652 Conditions for a length 3 ...
s3clhash 32653 Closure of the words of le...
ccatf1 32654 Conditions for a concatena...
pfxlsw2ccat 32655 Reconstruct a word from it...
wrdt2ind 32656 Perform an induction over ...
swrdrn2 32657 The range of a subword is ...
swrdrn3 32658 Express the range of a sub...
swrdf1 32659 Condition for a subword to...
swrdrndisj 32660 Condition for the range of...
splfv3 32661 Symbols to the right of a ...
1cshid 32662 Cyclically shifting a sing...
cshw1s2 32663 Cyclically shifting a leng...
cshwrnid 32664 Cyclically shifting a word...
cshf1o 32665 Condition for the cyclic s...
ressplusf 32666 The group operation functi...
ressnm 32667 The norm in a restricted s...
abvpropd2 32668 Weaker version of ~ abvpro...
oppgle 32669 less-than relation of an o...
oppgleOLD 32670 Obsolete version of ~ oppg...
oppglt 32671 less-than relation of an o...
ressprs 32672 The restriction of a prose...
oduprs 32673 Being a proset is a self-d...
posrasymb 32674 A poset ordering is asymet...
resspos 32675 The restriction of a Poset...
resstos 32676 The restriction of a Toset...
odutos 32677 Being a toset is a self-du...
tlt2 32678 In a Toset, two elements m...
tlt3 32679 In a Toset, two elements m...
trleile 32680 In a Toset, two elements m...
toslublem 32681 Lemma for ~ toslub and ~ x...
toslub 32682 In a toset, the lowest upp...
tosglblem 32683 Lemma for ~ tosglb and ~ x...
tosglb 32684 Same theorem as ~ toslub ,...
clatp0cl 32685 The poset zero of a comple...
clatp1cl 32686 The poset one of a complet...
mntoval 32691 Operation value of the mon...
ismnt 32692 Express the statement " ` ...
ismntd 32693 Property of being a monoto...
mntf 32694 A monotone function is a f...
mgcoval 32695 Operation value of the mon...
mgcval 32696 Monotone Galois connection...
mgcf1 32697 The lower adjoint ` F ` of...
mgcf2 32698 The upper adjoint ` G ` of...
mgccole1 32699 An inequality for the kern...
mgccole2 32700 Inequality for the closure...
mgcmnt1 32701 The lower adjoint ` F ` of...
mgcmnt2 32702 The upper adjoint ` G ` of...
mgcmntco 32703 A Galois connection like s...
dfmgc2lem 32704 Lemma for dfmgc2, backward...
dfmgc2 32705 Alternate definition of th...
mgcmnt1d 32706 Galois connection implies ...
mgcmnt2d 32707 Galois connection implies ...
mgccnv 32708 The inverse Galois connect...
pwrssmgc 32709 Given a function ` F ` , e...
mgcf1olem1 32710 Property of a Galois conne...
mgcf1olem2 32711 Property of a Galois conne...
mgcf1o 32712 Given a Galois connection,...
xrs0 32715 The zero of the extended r...
xrslt 32716 The "strictly less than" r...
xrsinvgval 32717 The inversion operation in...
xrsmulgzz 32718 The "multiple" function in...
xrstos 32719 The extended real numbers ...
xrsclat 32720 The extended real numbers ...
xrsp0 32721 The poset 0 of the extende...
xrsp1 32722 The poset 1 of the extende...
xrge0base 32723 The base of the extended n...
xrge00 32724 The zero of the extended n...
xrge0plusg 32725 The additive law of the ex...
xrge0le 32726 The "less than or equal to...
xrge0mulgnn0 32727 The group multiple functio...
xrge0addass 32728 Associativity of extended ...
xrge0addgt0 32729 The sum of nonnegative and...
xrge0adddir 32730 Right-distributivity of ex...
xrge0adddi 32731 Left-distributivity of ext...
xrge0npcan 32732 Extended nonnegative real ...
fsumrp0cl 32733 Closure of a finite sum of...
abliso 32734 The image of an Abelian gr...
lmhmghmd 32735 A module homomorphism is a...
mhmimasplusg 32736 Value of the operation of ...
lmhmimasvsca 32737 Value of the scalar produc...
gsumsubg 32738 The group sum in a subgrou...
gsumsra 32739 The group sum in a subring...
gsummpt2co 32740 Split a finite sum into a ...
gsummpt2d 32741 Express a finite sum over ...
lmodvslmhm 32742 Scalar multiplication in a...
gsumvsmul1 32743 Pull a scalar multiplicati...
gsummptres 32744 Extend a finite group sum ...
gsummptres2 32745 Extend a finite group sum ...
gsumzresunsn 32746 Append an element to a fin...
gsumpart 32747 Express a group sum as a d...
gsumhashmul 32748 Express a group sum by gro...
xrge0tsmsd 32749 Any finite or infinite sum...
xrge0tsmsbi 32750 Any limit of a finite or i...
xrge0tsmseq 32751 Any limit of a finite or i...
cntzun 32752 The centralizer of a union...
cntzsnid 32753 The centralizer of the ide...
cntrcrng 32754 The center of a ring is a ...
isomnd 32759 A (left) ordered monoid is...
isogrp 32760 A (left-)ordered group is ...
ogrpgrp 32761 A left-ordered group is a ...
omndmnd 32762 A left-ordered monoid is a...
omndtos 32763 A left-ordered monoid is a...
omndadd 32764 In an ordered monoid, the ...
omndaddr 32765 In a right ordered monoid,...
omndadd2d 32766 In a commutative left orde...
omndadd2rd 32767 In a left- and right- orde...
submomnd 32768 A submonoid of an ordered ...
xrge0omnd 32769 The nonnegative extended r...
omndmul2 32770 In an ordered monoid, the ...
omndmul3 32771 In an ordered monoid, the ...
omndmul 32772 In a commutative ordered m...
ogrpinv0le 32773 In an ordered group, the o...
ogrpsub 32774 In an ordered group, the o...
ogrpaddlt 32775 In an ordered group, stric...
ogrpaddltbi 32776 In a right ordered group, ...
ogrpaddltrd 32777 In a right ordered group, ...
ogrpaddltrbid 32778 In a right ordered group, ...
ogrpsublt 32779 In an ordered group, stric...
ogrpinv0lt 32780 In an ordered group, the o...
ogrpinvlt 32781 In an ordered group, the o...
gsumle 32782 A finite sum in an ordered...
symgfcoeu 32783 Uniqueness property of per...
symgcom 32784 Two permutations ` X ` and...
symgcom2 32785 Two permutations ` X ` and...
symgcntz 32786 All elements of a (finite)...
odpmco 32787 The composition of two odd...
symgsubg 32788 The value of the group sub...
pmtrprfv2 32789 In a transposition of two ...
pmtrcnel 32790 Composing a permutation ` ...
pmtrcnel2 32791 Variation on ~ pmtrcnel . ...
pmtrcnelor 32792 Composing a permutation ` ...
pmtridf1o 32793 Transpositions of ` X ` an...
pmtridfv1 32794 Value at X of the transpos...
pmtridfv2 32795 Value at Y of the transpos...
psgnid 32796 Permutation sign of the id...
psgndmfi 32797 For a finite base set, the...
pmtrto1cl 32798 Useful lemma for the follo...
psgnfzto1stlem 32799 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 32800 Value of our permutation `...
fzto1st1 32801 Special case where the per...
fzto1st 32802 The function moving one el...
fzto1stinvn 32803 Value of the inverse of ou...
psgnfzto1st 32804 The permutation sign for m...
tocycval 32807 Value of the cycle builder...
tocycfv 32808 Function value of a permut...
tocycfvres1 32809 A cyclic permutation is a ...
tocycfvres2 32810 A cyclic permutation is th...
cycpmfvlem 32811 Lemma for ~ cycpmfv1 and ~...
cycpmfv1 32812 Value of a cycle function ...
cycpmfv2 32813 Value of a cycle function ...
cycpmfv3 32814 Values outside of the orbi...
cycpmcl 32815 Cyclic permutations are pe...
tocycf 32816 The permutation cycle buil...
tocyc01 32817 Permutation cycles built f...
cycpm2tr 32818 A cyclic permutation of 2 ...
cycpm2cl 32819 Closure for the 2-cycles. ...
cyc2fv1 32820 Function value of a 2-cycl...
cyc2fv2 32821 Function value of a 2-cycl...
trsp2cyc 32822 Exhibit the word a transpo...
cycpmco2f1 32823 The word U used in ~ cycpm...
cycpmco2rn 32824 The orbit of the compositi...
cycpmco2lem1 32825 Lemma for ~ cycpmco2 . (C...
cycpmco2lem2 32826 Lemma for ~ cycpmco2 . (C...
cycpmco2lem3 32827 Lemma for ~ cycpmco2 . (C...
cycpmco2lem4 32828 Lemma for ~ cycpmco2 . (C...
cycpmco2lem5 32829 Lemma for ~ cycpmco2 . (C...
cycpmco2lem6 32830 Lemma for ~ cycpmco2 . (C...
cycpmco2lem7 32831 Lemma for ~ cycpmco2 . (C...
cycpmco2 32832 The composition of a cycli...
cyc2fvx 32833 Function value of a 2-cycl...
cycpm3cl 32834 Closure of the 3-cycles in...
cycpm3cl2 32835 Closure of the 3-cycles in...
cyc3fv1 32836 Function value of a 3-cycl...
cyc3fv2 32837 Function value of a 3-cycl...
cyc3fv3 32838 Function value of a 3-cycl...
cyc3co2 32839 Represent a 3-cycle as a c...
cycpmconjvlem 32840 Lemma for ~ cycpmconjv . ...
cycpmconjv 32841 A formula for computing co...
cycpmrn 32842 The range of the word used...
tocyccntz 32843 All elements of a (finite)...
evpmval 32844 Value of the set of even p...
cnmsgn0g 32845 The neutral element of the...
evpmsubg 32846 The alternating group is a...
evpmid 32847 The identity is an even pe...
altgnsg 32848 The alternating group ` ( ...
cyc3evpm 32849 3-Cycles are even permutat...
cyc3genpmlem 32850 Lemma for ~ cyc3genpm . (...
cyc3genpm 32851 The alternating group ` A ...
cycpmgcl 32852 Cyclic permutations are pe...
cycpmconjslem1 32853 Lemma for ~ cycpmconjs . ...
cycpmconjslem2 32854 Lemma for ~ cycpmconjs . ...
cycpmconjs 32855 All cycles of the same len...
cyc3conja 32856 All 3-cycles are conjugate...
sgnsv 32859 The sign mapping. (Contri...
sgnsval 32860 The sign value. (Contribu...
sgnsf 32861 The sign function. (Contr...
inftmrel 32866 The infinitesimal relation...
isinftm 32867 Express ` x ` is infinites...
isarchi 32868 Express the predicate " ` ...
pnfinf 32869 Plus infinity is an infini...
xrnarchi 32870 The completed real line is...
isarchi2 32871 Alternative way to express...
submarchi 32872 A submonoid is archimedean...
isarchi3 32873 This is the usual definiti...
archirng 32874 Property of Archimedean or...
archirngz 32875 Property of Archimedean le...
archiexdiv 32876 In an Archimedean group, g...
archiabllem1a 32877 Lemma for ~ archiabl : In...
archiabllem1b 32878 Lemma for ~ archiabl . (C...
archiabllem1 32879 Archimedean ordered groups...
archiabllem2a 32880 Lemma for ~ archiabl , whi...
archiabllem2c 32881 Lemma for ~ archiabl . (C...
archiabllem2b 32882 Lemma for ~ archiabl . (C...
archiabllem2 32883 Archimedean ordered groups...
archiabl 32884 Archimedean left- and righ...
isslmd 32887 The predicate "is a semimo...
slmdlema 32888 Lemma for properties of a ...
lmodslmd 32889 Left semimodules generaliz...
slmdcmn 32890 A semimodule is a commutat...
slmdmnd 32891 A semimodule is a monoid. ...
slmdsrg 32892 The scalar component of a ...
slmdbn0 32893 The base set of a semimodu...
slmdacl 32894 Closure of ring addition f...
slmdmcl 32895 Closure of ring multiplica...
slmdsn0 32896 The set of scalars in a se...
slmdvacl 32897 Closure of vector addition...
slmdass 32898 Semiring left module vecto...
slmdvscl 32899 Closure of scalar product ...
slmdvsdi 32900 Distributive law for scala...
slmdvsdir 32901 Distributive law for scala...
slmdvsass 32902 Associative law for scalar...
slmd0cl 32903 The ring zero in a semimod...
slmd1cl 32904 The ring unity in a semiri...
slmdvs1 32905 Scalar product with ring u...
slmd0vcl 32906 The zero vector is a vecto...
slmd0vlid 32907 Left identity law for the ...
slmd0vrid 32908 Right identity law for the...
slmd0vs 32909 Zero times a vector is the...
slmdvs0 32910 Anything times the zero ve...
gsumvsca1 32911 Scalar product of a finite...
gsumvsca2 32912 Scalar product of a finite...
prmsimpcyc 32913 A group of prime order is ...
domnlcan 32914 Left-cancellation law for ...
idomrcan 32915 Right-cancellation law for...
urpropd 32916 Sufficient condition for r...
0ringsubrg 32917 A subring of a zero ring i...
frobrhm 32918 In a commutative ring with...
ress1r 32919 ` 1r ` is unaffected by re...
ringinvval 32920 The ring inverse expressed...
dvrcan5 32921 Cancellation law for commo...
subrgchr 32922 If ` A ` is a subring of `...
rmfsupp2 32923 A mapping of a multiplicat...
unitnz 32924 In a nonzero ring, a unit ...
eufndx 32927 Index value of the Euclide...
eufid 32928 Utility theorem: index-ind...
ringinveu 32931 If a ring unit element ` X...
isdrng4 32932 A division ring is a ring ...
rndrhmcl 32933 The image of a division ri...
sdrgdvcl 32934 A sub-division-ring is clo...
sdrginvcl 32935 A sub-division-ring is clo...
primefldchr 32936 The characteristic of a pr...
fldgenval 32939 Value of the field generat...
fldgenssid 32940 The field generated by a s...
fldgensdrg 32941 A generated subfield is a ...
fldgenssv 32942 A generated subfield is a ...
fldgenss 32943 Generated subfields preser...
fldgenidfld 32944 The subfield generated by ...
fldgenssp 32945 The field generated by a s...
fldgenid 32946 The subfield of a field ` ...
fldgenfld 32947 A generated subfield is a ...
primefldgen1 32948 The prime field of a divis...
1fldgenq 32949 The field of rational numb...
isorng 32954 An ordered ring is a ring ...
orngring 32955 An ordered ring is a ring....
orngogrp 32956 An ordered ring is an orde...
isofld 32957 An ordered field is a fiel...
orngmul 32958 In an ordered ring, the or...
orngsqr 32959 In an ordered ring, all sq...
ornglmulle 32960 In an ordered ring, multip...
orngrmulle 32961 In an ordered ring, multip...
ornglmullt 32962 In an ordered ring, multip...
orngrmullt 32963 In an ordered ring, multip...
orngmullt 32964 In an ordered ring, the st...
ofldfld 32965 An ordered field is a fiel...
ofldtos 32966 An ordered field is a tota...
orng0le1 32967 In an ordered ring, the ri...
ofldlt1 32968 In an ordered field, the r...
ofldchr 32969 The characteristic of an o...
suborng 32970 Every subring of an ordere...
subofld 32971 Every subfield of an order...
isarchiofld 32972 Axiom of Archimedes : a ch...
rhmdvd 32973 A ring homomorphism preser...
kerunit 32974 If a unit element lies in ...
reldmresv 32977 The scalar restriction is ...
resvval 32978 Value of structure restric...
resvid2 32979 General behavior of trivia...
resvval2 32980 Value of nontrivial struct...
resvsca 32981 Base set of a structure re...
resvlem 32982 Other elements of a scalar...
resvlemOLD 32983 Obsolete version of ~ resv...
resvbas 32984 ` Base ` is unaffected by ...
resvbasOLD 32985 Obsolete proof of ~ resvba...
resvplusg 32986 ` +g ` is unaffected by sc...
resvplusgOLD 32987 Obsolete proof of ~ resvpl...
resvvsca 32988 ` .s ` is unaffected by sc...
resvvscaOLD 32989 Obsolete proof of ~ resvvs...
resvmulr 32990 ` .r ` is unaffected by sc...
resvmulrOLD 32991 Obsolete proof of ~ resvmu...
resv0g 32992 ` 0g ` is unaffected by sc...
resv1r 32993 ` 1r ` is unaffected by sc...
resvcmn 32994 Scalar restriction preserv...
gzcrng 32995 The gaussian integers form...
reofld 32996 The real numbers form an o...
nn0omnd 32997 The nonnegative integers f...
rearchi 32998 The field of the real numb...
nn0archi 32999 The monoid of the nonnegat...
xrge0slmod 33000 The extended nonnegative r...
qusker 33001 The kernel of a quotient m...
eqgvscpbl 33002 The left coset equivalence...
qusvscpbl 33003 The quotient map distribut...
qusvsval 33004 Value of the scalar multip...
imaslmod 33005 The image structure of a l...
imasmhm 33006 Given a function ` F ` wit...
imasghm 33007 Given a function ` F ` wit...
imasrhm 33008 Given a function ` F ` wit...
imaslmhm 33009 Given a function ` F ` wit...
quslmod 33010 If ` G ` is a submodule in...
quslmhm 33011 If ` G ` is a submodule of...
quslvec 33012 If ` S ` is a vector subsp...
ecxpid 33013 The equivalence class of a...
qsxpid 33014 The quotient set of a cart...
qusxpid 33015 The Group quotient equival...
qustriv 33016 The quotient of a group ` ...
qustrivr 33017 Converse of ~ qustriv . (...
znfermltl 33018 Fermat's little theorem in...
islinds5 33019 A set is linearly independ...
ellspds 33020 Variation on ~ ellspd . (...
0ellsp 33021 Zero is in all spans. (Co...
0nellinds 33022 The group identity cannot ...
rspsnel 33023 Membership in a principal ...
rspsnid 33024 A principal ideal contains...
elrsp 33025 Write the elements of a ri...
rspidlid 33026 The ideal span of an ideal...
pidlnz 33027 A principal ideal generate...
dvdsruassoi 33028 If two elements ` X ` and ...
dvdsruasso 33029 Two elements ` X ` and ` Y...
dvdsrspss 33030 In a ring, an element ` X ...
rspsnasso 33031 Two elements ` X ` and ` Y...
lbslsp 33032 Any element of a left modu...
lindssn 33033 Any singleton of a nonzero...
lindflbs 33034 Conditions for an independ...
islbs5 33035 An equivalent formulation ...
linds2eq 33036 Deduce equality of element...
lindfpropd 33037 Property deduction for lin...
lindspropd 33038 Property deduction for lin...
elgrplsmsn 33039 Membership in a sumset wit...
lsmsnorb 33040 The sumset of a group with...
lsmsnorb2 33041 The sumset of a single ele...
elringlsm 33042 Membership in a product of...
elringlsmd 33043 Membership in a product of...
ringlsmss 33044 Closure of the product of ...
ringlsmss1 33045 The product of an ideal ` ...
ringlsmss2 33046 The product with an ideal ...
lsmsnpridl 33047 The product of the ring wi...
lsmsnidl 33048 The product of the ring wi...
lsmidllsp 33049 The sum of two ideals is t...
lsmidl 33050 The sum of two ideals is a...
lsmssass 33051 Group sum is associative, ...
grplsm0l 33052 Sumset with the identity s...
grplsmid 33053 The direct sum of an eleme...
qusmul 33054 Value of the ring operatio...
quslsm 33055 Express the image by the q...
qusbas2 33056 Alternate definition of th...
qus0g 33057 The identity element of a ...
qusima 33058 The image of a subgroup by...
qusrn 33059 The natural map from eleme...
nsgqus0 33060 A normal subgroup ` N ` is...
nsgmgclem 33061 Lemma for ~ nsgmgc . (Con...
nsgmgc 33062 There is a monotone Galois...
nsgqusf1olem1 33063 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem2 33064 Lemma for ~ nsgqusf1o . (...
nsgqusf1olem3 33065 Lemma for ~ nsgqusf1o . (...
nsgqusf1o 33066 The canonical projection h...
lmhmqusker 33067 A surjective module homomo...
lmicqusker 33068 The image ` H ` of a modul...
intlidl 33069 The intersection of a none...
rhmpreimaidl 33070 The preimage of an ideal b...
kerlidl 33071 The kernel of a ring homom...
0ringidl 33072 The zero ideal is the only...
pidlnzb 33073 A principal ideal is nonze...
lidlunitel 33074 If an ideal ` I ` contains...
unitpidl1 33075 The ideal ` I ` generated ...
rhmquskerlem 33076 The mapping ` J ` induced ...
rhmqusker 33077 A surjective ring homomorp...
ricqusker 33078 The image ` H ` of a ring ...
elrspunidl 33079 Elementhood in the span of...
elrspunsn 33080 Membership to the span of ...
lidlincl 33081 Ideals are closed under in...
idlinsubrg 33082 The intersection between a...
rhmimaidl 33083 The image of an ideal ` I ...
drngidl 33084 A nonzero ring is a divisi...
drngidlhash 33085 A ring is a division ring ...
prmidlval 33088 The class of prime ideals ...
isprmidl 33089 The predicate "is a prime ...
prmidlnr 33090 A prime ideal is a proper ...
prmidl 33091 The main property of a pri...
prmidl2 33092 A condition that shows an ...
idlmulssprm 33093 Let ` P ` be a prime ideal...
pridln1 33094 A proper ideal cannot cont...
prmidlidl 33095 A prime ideal is an ideal....
prmidlssidl 33096 Prime ideals as a subset o...
lidlnsg 33097 An ideal is a normal subgr...
cringm4 33098 Commutative/associative la...
isprmidlc 33099 The predicate "is prime id...
prmidlc 33100 Property of a prime ideal ...
0ringprmidl 33101 The trivial ring does not ...
prmidl0 33102 The zero ideal of a commut...
rhmpreimaprmidl 33103 The preimage of a prime id...
qsidomlem1 33104 If the quotient ring of a ...
qsidomlem2 33105 A quotient by a prime idea...
qsidom 33106 An ideal ` I ` in the comm...
qsnzr 33107 A quotient of a non-zero r...
mxidlval 33110 The set of maximal ideals ...
ismxidl 33111 The predicate "is a maxima...
mxidlidl 33112 A maximal ideal is an idea...
mxidlnr 33113 A maximal ideal is proper....
mxidlmax 33114 A maximal ideal is a maxim...
mxidln1 33115 One is not contained in an...
mxidlnzr 33116 A ring with a maximal idea...
mxidlmaxv 33117 An ideal ` I ` strictly co...
crngmxidl 33118 In a commutative ring, max...
mxidlprm 33119 Every maximal ideal is pri...
mxidlirredi 33120 In an integral domain, the...
mxidlirred 33121 In a principal ideal domai...
ssmxidllem 33122 The set ` P ` used in the ...
ssmxidl 33123 Let ` R ` be a ring, and l...
drnglidl1ne0 33124 In a nonzero ring, the zer...
drng0mxidl 33125 In a division ring, the ze...
drngmxidl 33126 The zero ideal is the only...
krull 33127 Krull's theorem: Any nonz...
mxidlnzrb 33128 A ring is nonzero if and o...
opprabs 33129 The opposite ring of the o...
oppreqg 33130 Group coset equivalence re...
opprnsg 33131 Normal subgroups of the op...
opprlidlabs 33132 The ideals of the opposite...
oppr2idl 33133 Two sided ideal of the opp...
opprmxidlabs 33134 The maximal ideal of the o...
opprqusbas 33135 The base of the quotient o...
opprqusplusg 33136 The group operation of the...
opprqus0g 33137 The group identity element...
opprqusmulr 33138 The multiplication operati...
opprqus1r 33139 The ring unity of the quot...
opprqusdrng 33140 The quotient of the opposi...
qsdrngilem 33141 Lemma for ~ qsdrngi . (Co...
qsdrngi 33142 A quotient by a maximal le...
qsdrnglem2 33143 Lemma for ~ qsdrng . (Con...
qsdrng 33144 An ideal ` M ` is both lef...
qsfld 33145 An ideal ` M ` in the comm...
mxidlprmALT 33146 Every maximal ideal is pri...
idlsrgstr 33149 A constructed semiring of ...
idlsrgval 33150 Lemma for ~ idlsrgbas thro...
idlsrgbas 33151 Base of the ideals of a ri...
idlsrgplusg 33152 Additive operation of the ...
idlsrg0g 33153 The zero ideal is the addi...
idlsrgmulr 33154 Multiplicative operation o...
idlsrgtset 33155 Topology component of the ...
idlsrgmulrval 33156 Value of the ring multipli...
idlsrgmulrcl 33157 Ideals of a ring ` R ` are...
idlsrgmulrss1 33158 In a commutative ring, the...
idlsrgmulrss2 33159 The product of two ideals ...
idlsrgmulrssin 33160 In a commutative ring, the...
idlsrgmnd 33161 The ideals of a ring form ...
idlsrgcmnd 33162 The ideals of a ring form ...
isufd 33165 The property of being a Un...
rprmval 33166 The prime elements of a ri...
isrprm 33167 Property for ` P ` to be a...
0ringmon1p 33168 There are no monic polynom...
fply1 33169 Conditions for a function ...
ply1lvec 33170 In a division ring, the un...
evls1fn 33171 Functionality of the subri...
evls1dm 33172 The domain of the subring ...
evls1fvf 33173 The subring evaluation fun...
evls1scafv 33174 Value of the univariate po...
evls1expd 33175 Univariate polynomial eval...
evls1varpwval 33176 Univariate polynomial eval...
ressdeg1 33177 The degree of a univariate...
ressply10g 33178 A restricted polynomial al...
ressply1mon1p 33179 The monic polynomials of a...
ressply1invg 33180 An element of a restricted...
ressply1sub 33181 A restricted polynomial al...
evls1fpws 33182 Evaluation of a univariate...
ressply1evl 33183 Evaluation of a univariate...
evls1addd 33184 Univariate polynomial eval...
evls1subd 33185 Univariate polynomial eval...
evls1muld 33186 Univariate polynomial eval...
evls1vsca 33187 Univariate polynomial eval...
ply1ascl1 33188 The multiplicative unit sc...
deg1le0eq0 33189 A polynomial with nonposit...
ply1asclunit 33190 A non-zero scalar polynomi...
ply1unit 33191 In a field ` F ` , a polyn...
m1pmeq 33192 If two monic polynomials `...
asclply1subcl 33193 Closure of the algebra sca...
ply1fermltl 33194 Fermat's little theorem fo...
coe1mon 33195 Coefficient vector of a mo...
ply1moneq 33196 Two monomials are equal if...
ply1degltel 33197 Characterize elementhood i...
ply1degleel 33198 Characterize elementhood i...
ply1degltlss 33199 The space ` S ` of the uni...
gsummoncoe1fzo 33200 A coefficient of the polyn...
ply1gsumz 33201 If a polynomial given as a...
deg1addlt 33202 If both factors have degre...
ig1pnunit 33203 The polynomial ideal gener...
ig1pmindeg 33204 The polynomial ideal gener...
q1pdir 33205 Distribution of univariate...
q1pvsca 33206 Scalar multiplication prop...
r1pvsca 33207 Scalar multiplication prop...
r1p0 33208 Polynomial remainder opera...
r1pcyc 33209 The polynomial remainder o...
r1padd1 33210 Addition property of the p...
r1pid2 33211 Identity law for polynomia...
r1plmhm 33212 The univariate polynomial ...
r1pquslmic 33213 The univariate polynomial ...
sra1r 33214 The unity element of a sub...
sradrng 33215 Condition for a subring al...
srasubrg 33216 A subring of the original ...
sralvec 33217 Given a sub division ring ...
srafldlvec 33218 Given a subfield ` F ` of ...
resssra 33219 The subring algebra of a r...
lsssra 33220 A subring is a subspace of...
drgext0g 33221 The additive neutral eleme...
drgextvsca 33222 The scalar multiplication ...
drgext0gsca 33223 The additive neutral eleme...
drgextsubrg 33224 The scalar field is a subr...
drgextlsp 33225 The scalar field is a subs...
drgextgsum 33226 Group sum in a division ri...
lvecdimfi 33227 Finite version of ~ lvecdi...
dimval 33230 The dimension of a vector ...
dimvalfi 33231 The dimension of a vector ...
dimcl 33232 Closure of the vector spac...
lmimdim 33233 Module isomorphisms preser...
lmicdim 33234 Module isomorphisms preser...
lvecdim0i 33235 A vector space of dimensio...
lvecdim0 33236 A vector space of dimensio...
lssdimle 33237 The dimension of a linear ...
dimpropd 33238 If two structures have the...
rlmdim 33239 The left vector space indu...
rgmoddimOLD 33240 Obsolete version of ~ rlmd...
frlmdim 33241 Dimension of a free left m...
tnglvec 33242 Augmenting a structure wit...
tngdim 33243 Dimension of a left vector...
rrxdim 33244 Dimension of the generaliz...
matdim 33245 Dimension of the space of ...
lbslsat 33246 A nonzero vector ` X ` is ...
lsatdim 33247 A line, spanned by a nonze...
drngdimgt0 33248 The dimension of a vector ...
lmhmlvec2 33249 A homomorphism of left vec...
kerlmhm 33250 The kernel of a vector spa...
imlmhm 33251 The image of a vector spac...
ply1degltdimlem 33252 Lemma for ~ ply1degltdim ....
ply1degltdim 33253 The space ` S ` of the uni...
lindsunlem 33254 Lemma for ~ lindsun . (Co...
lindsun 33255 Condition for the union of...
lbsdiflsp0 33256 The linear spans of two di...
dimkerim 33257 Given a linear map ` F ` b...
qusdimsum 33258 Let ` W ` be a vector spac...
fedgmullem1 33259 Lemma for ~ fedgmul . (Co...
fedgmullem2 33260 Lemma for ~ fedgmul . (Co...
fedgmul 33261 The multiplicativity formu...
relfldext 33270 The field extension is a r...
brfldext 33271 The field extension relati...
ccfldextrr 33272 The field of the complex n...
fldextfld1 33273 A field extension is only ...
fldextfld2 33274 A field extension is only ...
fldextsubrg 33275 Field extension implies a ...
fldextress 33276 Field extension implies a ...
brfinext 33277 The finite field extension...
extdgval 33278 Value of the field extensi...
fldextsralvec 33279 The subring algebra associ...
extdgcl 33280 Closure of the field exten...
extdggt0 33281 Degrees of field extension...
fldexttr 33282 Field extension is a trans...
fldextid 33283 The field extension relati...
extdgid 33284 A trivial field extension ...
extdgmul 33285 The multiplicativity formu...
finexttrb 33286 The extension ` E ` of ` K...
extdg1id 33287 If the degree of the exten...
extdg1b 33288 The degree of the extensio...
fldextchr 33289 The characteristic of a su...
evls1fldgencl 33290 Closure of the subring pol...
ccfldsrarelvec 33291 The subring algebra of the...
ccfldextdgrr 33292 The degree of the field ex...
irngval 33295 The elements of a field ` ...
elirng 33296 Property for an element ` ...
irngss 33297 All elements of a subring ...
irngssv 33298 An integral element is an ...
0ringirng 33299 A zero ring ` R ` has no i...
irngnzply1lem 33300 In the case of a field ` E...
irngnzply1 33301 In the case of a field ` E...
evls1fvcl 33304 Variant of ~ fveval1fvcl f...
evls1maprhm 33305 The function ` F ` mapping...
evls1maplmhm 33306 The function ` F ` mapping...
evls1maprnss 33307 The function ` F ` mapping...
ply1annidllem 33308 Write the set ` Q ` of pol...
ply1annidl 33309 The set ` Q ` of polynomia...
ply1annnr 33310 The set ` Q ` of polynomia...
ply1annig1p 33311 The ideal ` Q ` of polynom...
minplyval 33312 Expand the value of the mi...
minplycl 33313 The minimal polynomial is ...
ply1annprmidl 33314 The set ` Q ` of polynomia...
minplyann 33315 The minimal polynomial for...
minplyirredlem 33316 Lemma for ~ minplyirred . ...
minplyirred 33317 A nonzero minimal polynomi...
irngnminplynz 33318 Integral elements have non...
minplym1p 33319 A minimal polynomial is mo...
irredminply 33320 An irreductible, monic, an...
algextdeglem1 33321 Lemma for ~ algextdeg . (...
algextdeglem2 33322 Lemma for ~ algextdeg . B...
algextdeglem3 33323 Lemma for ~ algextdeg . T...
algextdeglem4 33324 Lemma for ~ algextdeg . B...
algextdeglem5 33325 Lemma for ~ algextdeg . T...
algextdeglem6 33326 Lemma for ~ algextdeg . B...
algextdeglem7 33327 Lemma for ~ algextdeg . T...
algextdeglem8 33328 Lemma for ~ algextdeg . T...
algextdeg 33329 The degree of an algebraic...
smatfval 33332 Value of the submatrix. (...
smatrcl 33333 Closure of the rectangular...
smatlem 33334 Lemma for the next theorem...
smattl 33335 Entries of a submatrix, to...
smattr 33336 Entries of a submatrix, to...
smatbl 33337 Entries of a submatrix, bo...
smatbr 33338 Entries of a submatrix, bo...
smatcl 33339 Closure of the square subm...
matmpo 33340 Write a square matrix as a...
1smat1 33341 The submatrix of the ident...
submat1n 33342 One case where the submatr...
submatres 33343 Special case where the sub...
submateqlem1 33344 Lemma for ~ submateq . (C...
submateqlem2 33345 Lemma for ~ submateq . (C...
submateq 33346 Sufficient condition for t...
submatminr1 33347 If we take a submatrix by ...
lmatval 33350 Value of the literal matri...
lmatfval 33351 Entries of a literal matri...
lmatfvlem 33352 Useful lemma to extract li...
lmatcl 33353 Closure of the literal mat...
lmat22lem 33354 Lemma for ~ lmat22e11 and ...
lmat22e11 33355 Entry of a 2x2 literal mat...
lmat22e12 33356 Entry of a 2x2 literal mat...
lmat22e21 33357 Entry of a 2x2 literal mat...
lmat22e22 33358 Entry of a 2x2 literal mat...
lmat22det 33359 The determinant of a liter...
mdetpmtr1 33360 The determinant of a matri...
mdetpmtr2 33361 The determinant of a matri...
mdetpmtr12 33362 The determinant of a matri...
mdetlap1 33363 A Laplace expansion of the...
madjusmdetlem1 33364 Lemma for ~ madjusmdet . ...
madjusmdetlem2 33365 Lemma for ~ madjusmdet . ...
madjusmdetlem3 33366 Lemma for ~ madjusmdet . ...
madjusmdetlem4 33367 Lemma for ~ madjusmdet . ...
madjusmdet 33368 Express the cofactor of th...
mdetlap 33369 Laplace expansion of the d...
ist0cld 33370 The predicate "is a T_0 sp...
txomap 33371 Given two open maps ` F ` ...
qtopt1 33372 If every equivalence class...
qtophaus 33373 If an open map's graph in ...
circtopn 33374 The topology of the unit c...
circcn 33375 The function gluing the re...
reff 33376 For any cover refinement, ...
locfinreflem 33377 A locally finite refinemen...
locfinref 33378 A locally finite refinemen...
iscref 33381 The property that every op...
crefeq 33382 Equality theorem for the "...
creftop 33383 A space where every open c...
crefi 33384 The property that every op...
crefdf 33385 A formulation of ~ crefi e...
crefss 33386 The "every open cover has ...
cmpcref 33387 Equivalent definition of c...
cmpfiref 33388 Every open cover of a Comp...
ldlfcntref 33391 Every open cover of a Lind...
ispcmp 33394 The predicate "is a paraco...
cmppcmp 33395 Every compact space is par...
dispcmp 33396 Every discrete space is pa...
pcmplfin 33397 Given a paracompact topolo...
pcmplfinf 33398 Given a paracompact topolo...
rspecval 33401 Value of the spectrum of t...
rspecbas 33402 The prime ideals form the ...
rspectset 33403 Topology component of the ...
rspectopn 33404 The topology component of ...
zarcls0 33405 The closure of the identit...
zarcls1 33406 The unit ideal ` B ` is th...
zarclsun 33407 The union of two closed se...
zarclsiin 33408 In a Zariski topology, the...
zarclsint 33409 The intersection of a fami...
zarclssn 33410 The closed points of Zaris...
zarcls 33411 The open sets of the Zaris...
zartopn 33412 The Zariski topology is a ...
zartop 33413 The Zariski topology is a ...
zartopon 33414 The points of the Zariski ...
zar0ring 33415 The Zariski Topology of th...
zart0 33416 The Zariski topology is T_...
zarmxt1 33417 The Zariski topology restr...
zarcmplem 33418 Lemma for ~ zarcmp . (Con...
zarcmp 33419 The Zariski topology is co...
rspectps 33420 The spectrum of a ring ` R...
rhmpreimacnlem 33421 Lemma for ~ rhmpreimacn . ...
rhmpreimacn 33422 The function mapping a pri...
metidval 33427 Value of the metric identi...
metidss 33428 As a relation, the metric ...
metidv 33429 ` A ` and ` B ` identify b...
metideq 33430 Basic property of the metr...
metider 33431 The metric identification ...
pstmval 33432 Value of the metric induce...
pstmfval 33433 Function value of the metr...
pstmxmet 33434 The metric induced by a ps...
hauseqcn 33435 In a Hausdorff topology, t...
elunitge0 33436 An element of the closed u...
unitssxrge0 33437 The closed unit interval i...
unitdivcld 33438 Necessary conditions for a...
iistmd 33439 The closed unit interval f...
unicls 33440 The union of the closed se...
tpr2tp 33441 The usual topology on ` ( ...
tpr2uni 33442 The usual topology on ` ( ...
xpinpreima 33443 Rewrite the cartesian prod...
xpinpreima2 33444 Rewrite the cartesian prod...
sqsscirc1 33445 The complex square of side...
sqsscirc2 33446 The complex square of side...
cnre2csqlem 33447 Lemma for ~ cnre2csqima . ...
cnre2csqima 33448 Image of a centered square...
tpr2rico 33449 For any point of an open s...
cnvordtrestixx 33450 The restriction of the 'gr...
prsdm 33451 Domain of the relation of ...
prsrn 33452 Range of the relation of a...
prsss 33453 Relation of a subproset. ...
prsssdm 33454 Domain of a subproset rela...
ordtprsval 33455 Value of the order topolog...
ordtprsuni 33456 Value of the order topolog...
ordtcnvNEW 33457 The order dual generates t...
ordtrestNEW 33458 The subspace topology of a...
ordtrest2NEWlem 33459 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 33460 An interval-closed set ` A...
ordtconnlem1 33461 Connectedness in the order...
ordtconn 33462 Connectedness in the order...
mndpluscn 33463 A mapping that is both a h...
mhmhmeotmd 33464 Deduce a Topological Monoi...
rmulccn 33465 Multiplication by a real c...
raddcn 33466 Addition in the real numbe...
xrmulc1cn 33467 The operation multiplying ...
fmcncfil 33468 The image of a Cauchy filt...
xrge0hmph 33469 The extended nonnegative r...
xrge0iifcnv 33470 Define a bijection from ` ...
xrge0iifcv 33471 The defined function's val...
xrge0iifiso 33472 The defined bijection from...
xrge0iifhmeo 33473 Expose a homeomorphism fro...
xrge0iifhom 33474 The defined function from ...
xrge0iif1 33475 Condition for the defined ...
xrge0iifmhm 33476 The defined function from ...
xrge0pluscn 33477 The addition operation of ...
xrge0mulc1cn 33478 The operation multiplying ...
xrge0tps 33479 The extended nonnegative r...
xrge0topn 33480 The topology of the extend...
xrge0haus 33481 The topology of the extend...
xrge0tmd 33482 The extended nonnegative r...
xrge0tmdALT 33483 Alternate proof of ~ xrge0...
lmlim 33484 Relate a limit in a given ...
lmlimxrge0 33485 Relate a limit in the nonn...
rge0scvg 33486 Implication of convergence...
fsumcvg4 33487 A serie with finite suppor...
pnfneige0 33488 A neighborhood of ` +oo ` ...
lmxrge0 33489 Express "sequence ` F ` co...
lmdvg 33490 If a monotonic sequence of...
lmdvglim 33491 If a monotonic real number...
pl1cn 33492 A univariate polynomial is...
zringnm 33495 The norm (function) for a ...
zzsnm 33496 The norm of the ring of th...
zlm0 33497 Zero of a ` ZZ ` -module. ...
zlm1 33498 Unity element of a ` ZZ ` ...
zlmds 33499 Distance in a ` ZZ ` -modu...
zlmdsOLD 33500 Obsolete proof of ~ zlmds ...
zlmtset 33501 Topology in a ` ZZ ` -modu...
zlmtsetOLD 33502 Obsolete proof of ~ zlmtse...
zlmnm 33503 Norm of a ` ZZ ` -module (...
zhmnrg 33504 The ` ZZ ` -module built f...
nmmulg 33505 The norm of a group produc...
zrhnm 33506 The norm of the image by `...
cnzh 33507 The ` ZZ ` -module of ` CC...
rezh 33508 The ` ZZ ` -module of ` RR...
qqhval 33511 Value of the canonical hom...
zrhf1ker 33512 The kernel of the homomorp...
zrhchr 33513 The kernel of the homomorp...
zrhker 33514 The kernel of the homomorp...
zrhunitpreima 33515 The preimage by ` ZRHom ` ...
elzrhunit 33516 Condition for the image by...
elzdif0 33517 Lemma for ~ qqhval2 . (Co...
qqhval2lem 33518 Lemma for ~ qqhval2 . (Co...
qqhval2 33519 Value of the canonical hom...
qqhvval 33520 Value of the canonical hom...
qqh0 33521 The image of ` 0 ` by the ...
qqh1 33522 The image of ` 1 ` by the ...
qqhf 33523 ` QQHom ` as a function. ...
qqhvq 33524 The image of a quotient by...
qqhghm 33525 The ` QQHom ` homomorphism...
qqhrhm 33526 The ` QQHom ` homomorphism...
qqhnm 33527 The norm of the image by `...
qqhcn 33528 The ` QQHom ` homomorphism...
qqhucn 33529 The ` QQHom ` homomorphism...
rrhval 33533 Value of the canonical hom...
rrhcn 33534 If the topology of ` R ` i...
rrhf 33535 If the topology of ` R ` i...
isrrext 33537 Express the property " ` R...
rrextnrg 33538 An extension of ` RR ` is ...
rrextdrg 33539 An extension of ` RR ` is ...
rrextnlm 33540 The norm of an extension o...
rrextchr 33541 The ring characteristic of...
rrextcusp 33542 An extension of ` RR ` is ...
rrexttps 33543 An extension of ` RR ` is ...
rrexthaus 33544 The topology of an extensi...
rrextust 33545 The uniformity of an exten...
rerrext 33546 The field of the real numb...
cnrrext 33547 The field of the complex n...
qqtopn 33548 The topology of the field ...
rrhfe 33549 If ` R ` is an extension o...
rrhcne 33550 If ` R ` is an extension o...
rrhqima 33551 The ` RRHom ` homomorphism...
rrh0 33552 The image of ` 0 ` by the ...
xrhval 33555 The value of the embedding...
zrhre 33556 The ` ZRHom ` homomorphism...
qqhre 33557 The ` QQHom ` homomorphism...
rrhre 33558 The ` RRHom ` homomorphism...
relmntop 33561 Manifold is a relation. (...
ismntoplly 33562 Property of being a manifo...
ismntop 33563 Property of being a manifo...
nexple 33564 A lower bound for an expon...
indv 33567 Value of the indicator fun...
indval 33568 Value of the indicator fun...
indval2 33569 Alternate value of the ind...
indf 33570 An indicator function as a...
indfval 33571 Value of the indicator fun...
ind1 33572 Value of the indicator fun...
ind0 33573 Value of the indicator fun...
ind1a 33574 Value of the indicator fun...
indpi1 33575 Preimage of the singleton ...
indsum 33576 Finite sum of a product wi...
indsumin 33577 Finite sum of a product wi...
prodindf 33578 The product of indicators ...
indf1o 33579 The bijection between a po...
indpreima 33580 A function with range ` { ...
indf1ofs 33581 The bijection between fini...
esumex 33584 An extended sum is a set b...
esumcl 33585 Closure for extended sum i...
esumeq12dvaf 33586 Equality deduction for ext...
esumeq12dva 33587 Equality deduction for ext...
esumeq12d 33588 Equality deduction for ext...
esumeq1 33589 Equality theorem for an ex...
esumeq1d 33590 Equality theorem for an ex...
esumeq2 33591 Equality theorem for exten...
esumeq2d 33592 Equality deduction for ext...
esumeq2dv 33593 Equality deduction for ext...
esumeq2sdv 33594 Equality deduction for ext...
nfesum1 33595 Bound-variable hypothesis ...
nfesum2 33596 Bound-variable hypothesis ...
cbvesum 33597 Change bound variable in a...
cbvesumv 33598 Change bound variable in a...
esumid 33599 Identify the extended sum ...
esumgsum 33600 A finite extended sum is t...
esumval 33601 Develop the value of the e...
esumel 33602 The extended sum is a limi...
esumnul 33603 Extended sum over the empt...
esum0 33604 Extended sum of zero. (Co...
esumf1o 33605 Re-index an extended sum u...
esumc 33606 Convert from the collectio...
esumrnmpt 33607 Rewrite an extended sum in...
esumsplit 33608 Split an extended sum into...
esummono 33609 Extended sum is monotonic....
esumpad 33610 Extend an extended sum by ...
esumpad2 33611 Remove zeroes from an exte...
esumadd 33612 Addition of infinite sums....
esumle 33613 If all of the terms of an ...
gsumesum 33614 Relate a group sum on ` ( ...
esumlub 33615 The extended sum is the lo...
esumaddf 33616 Addition of infinite sums....
esumlef 33617 If all of the terms of an ...
esumcst 33618 The extended sum of a cons...
esumsnf 33619 The extended sum of a sing...
esumsn 33620 The extended sum of a sing...
esumpr 33621 Extended sum over a pair. ...
esumpr2 33622 Extended sum over a pair, ...
esumrnmpt2 33623 Rewrite an extended sum in...
esumfzf 33624 Formulating a partial exte...
esumfsup 33625 Formulating an extended su...
esumfsupre 33626 Formulating an extended su...
esumss 33627 Change the index set to a ...
esumpinfval 33628 The value of the extended ...
esumpfinvallem 33629 Lemma for ~ esumpfinval . ...
esumpfinval 33630 The value of the extended ...
esumpfinvalf 33631 Same as ~ esumpfinval , mi...
esumpinfsum 33632 The value of the extended ...
esumpcvgval 33633 The value of the extended ...
esumpmono 33634 The partial sums in an ext...
esumcocn 33635 Lemma for ~ esummulc2 and ...
esummulc1 33636 An extended sum multiplied...
esummulc2 33637 An extended sum multiplied...
esumdivc 33638 An extended sum divided by...
hashf2 33639 Lemma for ~ hasheuni . (C...
hasheuni 33640 The cardinality of a disjo...
esumcvg 33641 The sequence of partial su...
esumcvg2 33642 Simpler version of ~ esumc...
esumcvgsum 33643 The value of the extended ...
esumsup 33644 Express an extended sum as...
esumgect 33645 "Send ` n ` to ` +oo ` " i...
esumcvgre 33646 All terms of a converging ...
esum2dlem 33647 Lemma for ~ esum2d (finite...
esum2d 33648 Write a double extended su...
esumiun 33649 Sum over a nonnecessarily ...
ofceq 33652 Equality theorem for funct...
ofcfval 33653 Value of an operation appl...
ofcval 33654 Evaluate a function/consta...
ofcfn 33655 The function operation pro...
ofcfeqd2 33656 Equality theorem for funct...
ofcfval3 33657 General value of ` ( F oFC...
ofcf 33658 The function/constant oper...
ofcfval2 33659 The function operation exp...
ofcfval4 33660 The function/constant oper...
ofcc 33661 Left operation by a consta...
ofcof 33662 Relate function operation ...
sigaex 33665 Lemma for ~ issiga and ~ i...
sigaval 33666 The set of sigma-algebra w...
issiga 33667 An alternative definition ...
isrnsiga 33668 The property of being a si...
0elsiga 33669 A sigma-algebra contains t...
baselsiga 33670 A sigma-algebra contains i...
sigasspw 33671 A sigma-algebra is a set o...
sigaclcu 33672 A sigma-algebra is closed ...
sigaclcuni 33673 A sigma-algebra is closed ...
sigaclfu 33674 A sigma-algebra is closed ...
sigaclcu2 33675 A sigma-algebra is closed ...
sigaclfu2 33676 A sigma-algebra is closed ...
sigaclcu3 33677 A sigma-algebra is closed ...
issgon 33678 Property of being a sigma-...
sgon 33679 A sigma-algebra is a sigma...
elsigass 33680 An element of a sigma-alge...
elrnsiga 33681 Dropping the base informat...
isrnsigau 33682 The property of being a si...
unielsiga 33683 A sigma-algebra contains i...
dmvlsiga 33684 Lebesgue-measurable subset...
pwsiga 33685 Any power set forms a sigm...
prsiga 33686 The smallest possible sigm...
sigaclci 33687 A sigma-algebra is closed ...
difelsiga 33688 A sigma-algebra is closed ...
unelsiga 33689 A sigma-algebra is closed ...
inelsiga 33690 A sigma-algebra is closed ...
sigainb 33691 Building a sigma-algebra f...
insiga 33692 The intersection of a coll...
sigagenval 33695 Value of the generated sig...
sigagensiga 33696 A generated sigma-algebra ...
sgsiga 33697 A generated sigma-algebra ...
unisg 33698 The sigma-algebra generate...
dmsigagen 33699 A sigma-algebra can be gen...
sssigagen 33700 A set is a subset of the s...
sssigagen2 33701 A subset of the generating...
elsigagen 33702 Any element of a set is al...
elsigagen2 33703 Any countable union of ele...
sigagenss 33704 The generated sigma-algebr...
sigagenss2 33705 Sufficient condition for i...
sigagenid 33706 The sigma-algebra generate...
ispisys 33707 The property of being a pi...
ispisys2 33708 The property of being a pi...
inelpisys 33709 Pi-systems are closed unde...
sigapisys 33710 All sigma-algebras are pi-...
isldsys 33711 The property of being a la...
pwldsys 33712 The power set of the unive...
unelldsys 33713 Lambda-systems are closed ...
sigaldsys 33714 All sigma-algebras are lam...
ldsysgenld 33715 The intersection of all la...
sigapildsyslem 33716 Lemma for ~ sigapildsys . ...
sigapildsys 33717 Sigma-algebra are exactly ...
ldgenpisyslem1 33718 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 33719 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 33720 Lemma for ~ ldgenpisys . ...
ldgenpisys 33721 The lambda system ` E ` ge...
dynkin 33722 Dynkin's lambda-pi theorem...
isros 33723 The property of being a ri...
rossspw 33724 A ring of sets is a collec...
0elros 33725 A ring of sets contains th...
unelros 33726 A ring of sets is closed u...
difelros 33727 A ring of sets is closed u...
inelros 33728 A ring of sets is closed u...
fiunelros 33729 A ring of sets is closed u...
issros 33730 The property of being a se...
srossspw 33731 A semiring of sets is a co...
0elsros 33732 A semiring of sets contain...
inelsros 33733 A semiring of sets is clos...
diffiunisros 33734 In semiring of sets, compl...
rossros 33735 Rings of sets are semiring...
brsiga 33738 The Borel Algebra on real ...
brsigarn 33739 The Borel Algebra is a sig...
brsigasspwrn 33740 The Borel Algebra is a set...
unibrsiga 33741 The union of the Borel Alg...
cldssbrsiga 33742 A Borel Algebra contains a...
sxval 33745 Value of the product sigma...
sxsiga 33746 A product sigma-algebra is...
sxsigon 33747 A product sigma-algebra is...
sxuni 33748 The base set of a product ...
elsx 33749 The cartesian product of t...
measbase 33752 The base set of a measure ...
measval 33753 The value of the ` measure...
ismeas 33754 The property of being a me...
isrnmeas 33755 The property of being a me...
dmmeas 33756 The domain of a measure is...
measbasedom 33757 The base set of a measure ...
measfrge0 33758 A measure is a function ov...
measfn 33759 A measure is a function on...
measvxrge0 33760 The values of a measure ar...
measvnul 33761 The measure of the empty s...
measge0 33762 A measure is nonnegative. ...
measle0 33763 If the measure of a given ...
measvun 33764 The measure of a countable...
measxun2 33765 The measure the union of t...
measun 33766 The measure the union of t...
measvunilem 33767 Lemma for ~ measvuni . (C...
measvunilem0 33768 Lemma for ~ measvuni . (C...
measvuni 33769 The measure of a countable...
measssd 33770 A measure is monotone with...
measunl 33771 A measure is sub-additive ...
measiuns 33772 The measure of the union o...
measiun 33773 A measure is sub-additive....
meascnbl 33774 A measure is continuous fr...
measinblem 33775 Lemma for ~ measinb . (Co...
measinb 33776 Building a measure restric...
measres 33777 Building a measure restric...
measinb2 33778 Building a measure restric...
measdivcst 33779 Division of a measure by a...
measdivcstALTV 33780 Alternate version of ~ mea...
cntmeas 33781 The Counting measure is a ...
pwcntmeas 33782 The counting measure is a ...
cntnevol 33783 Counting and Lebesgue meas...
voliune 33784 The Lebesgue measure funct...
volfiniune 33785 The Lebesgue measure funct...
volmeas 33786 The Lebesgue measure is a ...
ddeval1 33789 Value of the delta measure...
ddeval0 33790 Value of the delta measure...
ddemeas 33791 The Dirac delta measure is...
relae 33795 'almost everywhere' is a r...
brae 33796 'almost everywhere' relati...
braew 33797 'almost everywhere' relati...
truae 33798 A truth holds almost every...
aean 33799 A conjunction holds almost...
faeval 33801 Value of the 'almost every...
relfae 33802 The 'almost everywhere' bu...
brfae 33803 'almost everywhere' relati...
ismbfm 33806 The predicate " ` F ` is a...
elunirnmbfm 33807 The property of being a me...
mbfmfun 33808 A measurable function is a...
mbfmf 33809 A measurable function as a...
isanmbfmOLD 33810 Obsolete version of ~ isan...
mbfmcnvima 33811 The preimage by a measurab...
isanmbfm 33812 The predicate to be a meas...
mbfmbfmOLD 33813 A measurable function to a...
mbfmbfm 33814 A measurable function to a...
mbfmcst 33815 A constant function is mea...
1stmbfm 33816 The first projection map i...
2ndmbfm 33817 The second projection map ...
imambfm 33818 If the sigma-algebra in th...
cnmbfm 33819 A continuous function is m...
mbfmco 33820 The composition of two mea...
mbfmco2 33821 The pair building of two m...
mbfmvolf 33822 Measurable functions with ...
elmbfmvol2 33823 Measurable functions with ...
mbfmcnt 33824 All functions are measurab...
br2base 33825 The base set for the gener...
dya2ub 33826 An upper bound for a dyadi...
sxbrsigalem0 33827 The closed half-spaces of ...
sxbrsigalem3 33828 The sigma-algebra generate...
dya2iocival 33829 The function ` I ` returns...
dya2iocress 33830 Dyadic intervals are subse...
dya2iocbrsiga 33831 Dyadic intervals are Borel...
dya2icobrsiga 33832 Dyadic intervals are Borel...
dya2icoseg 33833 For any point and any clos...
dya2icoseg2 33834 For any point and any open...
dya2iocrfn 33835 The function returning dya...
dya2iocct 33836 The dyadic rectangle set i...
dya2iocnrect 33837 For any point of an open r...
dya2iocnei 33838 For any point of an open s...
dya2iocuni 33839 Every open set of ` ( RR X...
dya2iocucvr 33840 The dyadic rectangular set...
sxbrsigalem1 33841 The Borel algebra on ` ( R...
sxbrsigalem2 33842 The sigma-algebra generate...
sxbrsigalem4 33843 The Borel algebra on ` ( R...
sxbrsigalem5 33844 First direction for ~ sxbr...
sxbrsigalem6 33845 First direction for ~ sxbr...
sxbrsiga 33846 The product sigma-algebra ...
omsval 33849 Value of the function mapp...
omsfval 33850 Value of the outer measure...
omscl 33851 A closure lemma for the co...
omsf 33852 A constructed outer measur...
oms0 33853 A constructed outer measur...
omsmon 33854 A constructed outer measur...
omssubaddlem 33855 For any small margin ` E `...
omssubadd 33856 A constructed outer measur...
carsgval 33859 Value of the Caratheodory ...
carsgcl 33860 Closure of the Caratheodor...
elcarsg 33861 Property of being a Carath...
baselcarsg 33862 The universe set, ` O ` , ...
0elcarsg 33863 The empty set is Caratheod...
carsguni 33864 The union of all Caratheod...
elcarsgss 33865 Caratheodory measurable se...
difelcarsg 33866 The Caratheodory measurabl...
inelcarsg 33867 The Caratheodory measurabl...
unelcarsg 33868 The Caratheodory-measurabl...
difelcarsg2 33869 The Caratheodory-measurabl...
carsgmon 33870 Utility lemma: Apply mono...
carsgsigalem 33871 Lemma for the following th...
fiunelcarsg 33872 The Caratheodory measurabl...
carsgclctunlem1 33873 Lemma for ~ carsgclctun . ...
carsggect 33874 The outer measure is count...
carsgclctunlem2 33875 Lemma for ~ carsgclctun . ...
carsgclctunlem3 33876 Lemma for ~ carsgclctun . ...
carsgclctun 33877 The Caratheodory measurabl...
carsgsiga 33878 The Caratheodory measurabl...
omsmeas 33879 The restriction of a const...
pmeasmono 33880 This theorem's hypotheses ...
pmeasadd 33881 A premeasure on a ring of ...
itgeq12dv 33882 Equality theorem for an in...
sitgval 33888 Value of the simple functi...
issibf 33889 The predicate " ` F ` is a...
sibf0 33890 The constant zero function...
sibfmbl 33891 A simple function is measu...
sibff 33892 A simple function is a fun...
sibfrn 33893 A simple function has fini...
sibfima 33894 Any preimage of a singleto...
sibfinima 33895 The measure of the interse...
sibfof 33896 Applying function operatio...
sitgfval 33897 Value of the Bochner integ...
sitgclg 33898 Closure of the Bochner int...
sitgclbn 33899 Closure of the Bochner int...
sitgclcn 33900 Closure of the Bochner int...
sitgclre 33901 Closure of the Bochner int...
sitg0 33902 The integral of the consta...
sitgf 33903 The integral for simple fu...
sitgaddlemb 33904 Lemma for * sitgadd . (Co...
sitmval 33905 Value of the simple functi...
sitmfval 33906 Value of the integral dist...
sitmcl 33907 Closure of the integral di...
sitmf 33908 The integral metric as a f...
oddpwdc 33910 Lemma for ~ eulerpart . T...
oddpwdcv 33911 Lemma for ~ eulerpart : va...
eulerpartlemsv1 33912 Lemma for ~ eulerpart . V...
eulerpartlemelr 33913 Lemma for ~ eulerpart . (...
eulerpartlemsv2 33914 Lemma for ~ eulerpart . V...
eulerpartlemsf 33915 Lemma for ~ eulerpart . (...
eulerpartlems 33916 Lemma for ~ eulerpart . (...
eulerpartlemsv3 33917 Lemma for ~ eulerpart . V...
eulerpartlemgc 33918 Lemma for ~ eulerpart . (...
eulerpartleme 33919 Lemma for ~ eulerpart . (...
eulerpartlemv 33920 Lemma for ~ eulerpart . (...
eulerpartlemo 33921 Lemma for ~ eulerpart : ` ...
eulerpartlemd 33922 Lemma for ~ eulerpart : ` ...
eulerpartlem1 33923 Lemma for ~ eulerpart . (...
eulerpartlemb 33924 Lemma for ~ eulerpart . T...
eulerpartlemt0 33925 Lemma for ~ eulerpart . (...
eulerpartlemf 33926 Lemma for ~ eulerpart : O...
eulerpartlemt 33927 Lemma for ~ eulerpart . (...
eulerpartgbij 33928 Lemma for ~ eulerpart : T...
eulerpartlemgv 33929 Lemma for ~ eulerpart : va...
eulerpartlemr 33930 Lemma for ~ eulerpart . (...
eulerpartlemmf 33931 Lemma for ~ eulerpart . (...
eulerpartlemgvv 33932 Lemma for ~ eulerpart : va...
eulerpartlemgu 33933 Lemma for ~ eulerpart : R...
eulerpartlemgh 33934 Lemma for ~ eulerpart : T...
eulerpartlemgf 33935 Lemma for ~ eulerpart : I...
eulerpartlemgs2 33936 Lemma for ~ eulerpart : T...
eulerpartlemn 33937 Lemma for ~ eulerpart . (...
eulerpart 33938 Euler's theorem on partiti...
subiwrd 33941 Lemma for ~ sseqp1 . (Con...
subiwrdlen 33942 Length of a subword of an ...
iwrdsplit 33943 Lemma for ~ sseqp1 . (Con...
sseqval 33944 Value of the strong sequen...
sseqfv1 33945 Value of the strong sequen...
sseqfn 33946 A strong recursive sequenc...
sseqmw 33947 Lemma for ~ sseqf amd ~ ss...
sseqf 33948 A strong recursive sequenc...
sseqfres 33949 The first elements in the ...
sseqfv2 33950 Value of the strong sequen...
sseqp1 33951 Value of the strong sequen...
fiblem 33954 Lemma for ~ fib0 , ~ fib1 ...
fib0 33955 Value of the Fibonacci seq...
fib1 33956 Value of the Fibonacci seq...
fibp1 33957 Value of the Fibonacci seq...
fib2 33958 Value of the Fibonacci seq...
fib3 33959 Value of the Fibonacci seq...
fib4 33960 Value of the Fibonacci seq...
fib5 33961 Value of the Fibonacci seq...
fib6 33962 Value of the Fibonacci seq...
elprob 33965 The property of being a pr...
domprobmeas 33966 A probability measure is a...
domprobsiga 33967 The domain of a probabilit...
probtot 33968 The probability of the uni...
prob01 33969 A probability is an elemen...
probnul 33970 The probability of the emp...
unveldomd 33971 The universe is an element...
unveldom 33972 The universe is an element...
nuleldmp 33973 The empty set is an elemen...
probcun 33974 The probability of the uni...
probun 33975 The probability of the uni...
probdif 33976 The probability of the dif...
probinc 33977 A probability law is incre...
probdsb 33978 The probability of the com...
probmeasd 33979 A probability measure is a...
probvalrnd 33980 The value of a probability...
probtotrnd 33981 The probability of the uni...
totprobd 33982 Law of total probability, ...
totprob 33983 Law of total probability. ...
probfinmeasb 33984 Build a probability measur...
probfinmeasbALTV 33985 Alternate version of ~ pro...
probmeasb 33986 Build a probability from a...
cndprobval 33989 The value of the condition...
cndprobin 33990 An identity linking condit...
cndprob01 33991 The conditional probabilit...
cndprobtot 33992 The conditional probabilit...
cndprobnul 33993 The conditional probabilit...
cndprobprob 33994 The conditional probabilit...
bayesth 33995 Bayes Theorem. (Contribut...
rrvmbfm 33998 A real-valued random varia...
isrrvv 33999 Elementhood to the set of ...
rrvvf 34000 A real-valued random varia...
rrvfn 34001 A real-valued random varia...
rrvdm 34002 The domain of a random var...
rrvrnss 34003 The range of a random vari...
rrvf2 34004 A real-valued random varia...
rrvdmss 34005 The domain of a random var...
rrvfinvima 34006 For a real-value random va...
0rrv 34007 The constant function equa...
rrvadd 34008 The sum of two random vari...
rrvmulc 34009 A random variable multipli...
rrvsum 34010 An indexed sum of random v...
orvcval 34013 Value of the preimage mapp...
orvcval2 34014 Another way to express the...
elorvc 34015 Elementhood of a preimage....
orvcval4 34016 The value of the preimage ...
orvcoel 34017 If the relation produces o...
orvccel 34018 If the relation produces c...
elorrvc 34019 Elementhood of a preimage ...
orrvcval4 34020 The value of the preimage ...
orrvcoel 34021 If the relation produces o...
orrvccel 34022 If the relation produces c...
orvcgteel 34023 Preimage maps produced by ...
orvcelval 34024 Preimage maps produced by ...
orvcelel 34025 Preimage maps produced by ...
dstrvval 34026 The value of the distribut...
dstrvprob 34027 The distribution of a rand...
orvclteel 34028 Preimage maps produced by ...
dstfrvel 34029 Elementhood of preimage ma...
dstfrvunirn 34030 The limit of all preimage ...
orvclteinc 34031 Preimage maps produced by ...
dstfrvinc 34032 A cumulative distribution ...
dstfrvclim1 34033 The limit of the cumulativ...
coinfliplem 34034 Division in the extended r...
coinflipprob 34035 The ` P ` we defined for c...
coinflipspace 34036 The space of our coin-flip...
coinflipuniv 34037 The universe of our coin-f...
coinfliprv 34038 The ` X ` we defined for c...
coinflippv 34039 The probability of heads i...
coinflippvt 34040 The probability of tails i...
ballotlemoex 34041 ` O ` is a set. (Contribu...
ballotlem1 34042 The size of the universe i...
ballotlemelo 34043 Elementhood in ` O ` . (C...
ballotlem2 34044 The probability that the f...
ballotlemfval 34045 The value of ` F ` . (Con...
ballotlemfelz 34046 ` ( F `` C ) ` has values ...
ballotlemfp1 34047 If the ` J ` th ballot is ...
ballotlemfc0 34048 ` F ` takes value 0 betwee...
ballotlemfcc 34049 ` F ` takes value 0 betwee...
ballotlemfmpn 34050 ` ( F `` C ) ` finishes co...
ballotlemfval0 34051 ` ( F `` C ) ` always star...
ballotleme 34052 Elements of ` E ` . (Cont...
ballotlemodife 34053 Elements of ` ( O \ E ) ` ...
ballotlem4 34054 If the first pick is a vot...
ballotlem5 34055 If A is not ahead througho...
ballotlemi 34056 Value of ` I ` for a given...
ballotlemiex 34057 Properties of ` ( I `` C )...
ballotlemi1 34058 The first tie cannot be re...
ballotlemii 34059 The first tie cannot be re...
ballotlemsup 34060 The set of zeroes of ` F `...
ballotlemimin 34061 ` ( I `` C ) ` is the firs...
ballotlemic 34062 If the first vote is for B...
ballotlem1c 34063 If the first vote is for A...
ballotlemsval 34064 Value of ` S ` . (Contrib...
ballotlemsv 34065 Value of ` S ` evaluated a...
ballotlemsgt1 34066 ` S ` maps values less tha...
ballotlemsdom 34067 Domain of ` S ` for a give...
ballotlemsel1i 34068 The range ` ( 1 ... ( I ``...
ballotlemsf1o 34069 The defined ` S ` is a bij...
ballotlemsi 34070 The image by ` S ` of the ...
ballotlemsima 34071 The image by ` S ` of an i...
ballotlemieq 34072 If two countings share the...
ballotlemrval 34073 Value of ` R ` . (Contrib...
ballotlemscr 34074 The image of ` ( R `` C ) ...
ballotlemrv 34075 Value of ` R ` evaluated a...
ballotlemrv1 34076 Value of ` R ` before the ...
ballotlemrv2 34077 Value of ` R ` after the t...
ballotlemro 34078 Range of ` R ` is included...
ballotlemgval 34079 Expand the value of ` .^ `...
ballotlemgun 34080 A property of the defined ...
ballotlemfg 34081 Express the value of ` ( F...
ballotlemfrc 34082 Express the value of ` ( F...
ballotlemfrci 34083 Reverse counting preserves...
ballotlemfrceq 34084 Value of ` F ` for a rever...
ballotlemfrcn0 34085 Value of ` F ` for a rever...
ballotlemrc 34086 Range of ` R ` . (Contrib...
ballotlemirc 34087 Applying ` R ` does not ch...
ballotlemrinv0 34088 Lemma for ~ ballotlemrinv ...
ballotlemrinv 34089 ` R ` is its own inverse :...
ballotlem1ri 34090 When the vote on the first...
ballotlem7 34091 ` R ` is a bijection betwe...
ballotlem8 34092 There are as many counting...
ballotth 34093 Bertrand's ballot problem ...
sgncl 34094 Closure of the signum. (C...
sgnclre 34095 Closure of the signum. (C...
sgnneg 34096 Negation of the signum. (...
sgn3da 34097 A conditional containing a...
sgnmul 34098 Signum of a product. (Con...
sgnmulrp2 34099 Multiplication by a positi...
sgnsub 34100 Subtraction of a number of...
sgnnbi 34101 Negative signum. (Contrib...
sgnpbi 34102 Positive signum. (Contrib...
sgn0bi 34103 Zero signum. (Contributed...
sgnsgn 34104 Signum is idempotent. (Co...
sgnmulsgn 34105 If two real numbers are of...
sgnmulsgp 34106 If two real numbers are of...
fzssfzo 34107 Condition for an integer i...
gsumncl 34108 Closure of a group sum in ...
gsumnunsn 34109 Closure of a group sum in ...
ccatmulgnn0dir 34110 Concatenation of words fol...
ofcccat 34111 Letterwise operations on w...
ofcs1 34112 Letterwise operations on a...
ofcs2 34113 Letterwise operations on a...
plymul02 34114 Product of a polynomial wi...
plymulx0 34115 Coefficients of a polynomi...
plymulx 34116 Coefficients of a polynomi...
plyrecld 34117 Closure of a polynomial wi...
signsplypnf 34118 The quotient of a polynomi...
signsply0 34119 Lemma for the rule of sign...
signspval 34120 The value of the skipping ...
signsw0glem 34121 Neutral element property o...
signswbase 34122 The base of ` W ` is the u...
signswplusg 34123 The operation of ` W ` . ...
signsw0g 34124 The neutral element of ` W...
signswmnd 34125 ` W ` is a monoid structur...
signswrid 34126 The zero-skipping operatio...
signswlid 34127 The zero-skipping operatio...
signswn0 34128 The zero-skipping operatio...
signswch 34129 The zero-skipping operatio...
signslema 34130 Computational part of ~~? ...
signstfv 34131 Value of the zero-skipping...
signstfval 34132 Value of the zero-skipping...
signstcl 34133 Closure of the zero skippi...
signstf 34134 The zero skipping sign wor...
signstlen 34135 Length of the zero skippin...
signstf0 34136 Sign of a single letter wo...
signstfvn 34137 Zero-skipping sign in a wo...
signsvtn0 34138 If the last letter is nonz...
signstfvp 34139 Zero-skipping sign in a wo...
signstfvneq0 34140 In case the first letter i...
signstfvcl 34141 Closure of the zero skippi...
signstfvc 34142 Zero-skipping sign in a wo...
signstres 34143 Restriction of a zero skip...
signstfveq0a 34144 Lemma for ~ signstfveq0 . ...
signstfveq0 34145 In case the last letter is...
signsvvfval 34146 The value of ` V ` , which...
signsvvf 34147 ` V ` is a function. (Con...
signsvf0 34148 There is no change of sign...
signsvf1 34149 In a single-letter word, w...
signsvfn 34150 Number of changes in a wor...
signsvtp 34151 Adding a letter of the sam...
signsvtn 34152 Adding a letter of a diffe...
signsvfpn 34153 Adding a letter of the sam...
signsvfnn 34154 Adding a letter of a diffe...
signlem0 34155 Adding a zero as the highe...
signshf 34156 ` H ` , corresponding to t...
signshwrd 34157 ` H ` , corresponding to t...
signshlen 34158 Length of ` H ` , correspo...
signshnz 34159 ` H ` is not the empty wor...
iblidicc 34160 The identity function is i...
rpsqrtcn 34161 Continuity of the real pos...
divsqrtid 34162 A real number divided by i...
cxpcncf1 34163 The power function on comp...
efmul2picn 34164 Multiplying by ` ( _i x. (...
fct2relem 34165 Lemma for ~ ftc2re . (Con...
ftc2re 34166 The Fundamental Theorem of...
fdvposlt 34167 Functions with a positive ...
fdvneggt 34168 Functions with a negative ...
fdvposle 34169 Functions with a nonnegati...
fdvnegge 34170 Functions with a nonpositi...
prodfzo03 34171 A product of three factors...
actfunsnf1o 34172 The action ` F ` of extend...
actfunsnrndisj 34173 The action ` F ` of extend...
itgexpif 34174 The basis for the circle m...
fsum2dsub 34175 Lemma for ~ breprexp - Re-...
reprval 34178 Value of the representatio...
repr0 34179 There is exactly one repre...
reprf 34180 Members of the representat...
reprsum 34181 Sums of values of the memb...
reprle 34182 Upper bound to the terms i...
reprsuc 34183 Express the representation...
reprfi 34184 Bounded representations ar...
reprss 34185 Representations with terms...
reprinrn 34186 Representations with term ...
reprlt 34187 There are no representatio...
hashreprin 34188 Express a sum of represent...
reprgt 34189 There are no representatio...
reprinfz1 34190 For the representation of ...
reprfi2 34191 Corollary of ~ reprinfz1 ....
reprfz1 34192 Corollary of ~ reprinfz1 ....
hashrepr 34193 Develop the number of repr...
reprpmtf1o 34194 Transposing ` 0 ` and ` X ...
reprdifc 34195 Express the representation...
chpvalz 34196 Value of the second Chebys...
chtvalz 34197 Value of the Chebyshev fun...
breprexplema 34198 Lemma for ~ breprexp (indu...
breprexplemb 34199 Lemma for ~ breprexp (clos...
breprexplemc 34200 Lemma for ~ breprexp (indu...
breprexp 34201 Express the ` S ` th power...
breprexpnat 34202 Express the ` S ` th power...
vtsval 34205 Value of the Vinogradov tr...
vtscl 34206 Closure of the Vinogradov ...
vtsprod 34207 Express the Vinogradov tri...
circlemeth 34208 The Hardy, Littlewood and ...
circlemethnat 34209 The Hardy, Littlewood and ...
circlevma 34210 The Circle Method, where t...
circlemethhgt 34211 The circle method, where t...
hgt750lemc 34215 An upper bound to the summ...
hgt750lemd 34216 An upper bound to the summ...
hgt749d 34217 A deduction version of ~ a...
logdivsqrle 34218 Conditions for ` ( ( log `...
hgt750lem 34219 Lemma for ~ tgoldbachgtd ....
hgt750lem2 34220 Decimal multiplication gal...
hgt750lemf 34221 Lemma for the statement 7....
hgt750lemg 34222 Lemma for the statement 7....
oddprm2 34223 Two ways to write the set ...
hgt750lemb 34224 An upper bound on the cont...
hgt750lema 34225 An upper bound on the cont...
hgt750leme 34226 An upper bound on the cont...
tgoldbachgnn 34227 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 34228 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 34229 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 34230 Odd integers greater than ...
tgoldbachgt 34231 Odd integers greater than ...
istrkg2d 34234 Property of fulfilling dim...
axtglowdim2ALTV 34235 Alternate version of ~ axt...
axtgupdim2ALTV 34236 Alternate version of ~ axt...
afsval 34239 Value of the AFS relation ...
brafs 34240 Binary relation form of th...
tg5segofs 34241 Rephrase ~ axtg5seg using ...
lpadval 34244 Value of the ` leftpad ` f...
lpadlem1 34245 Lemma for the ` leftpad ` ...
lpadlem3 34246 Lemma for ~ lpadlen1 . (C...
lpadlen1 34247 Length of a left-padded wo...
lpadlem2 34248 Lemma for the ` leftpad ` ...
lpadlen2 34249 Length of a left-padded wo...
lpadmax 34250 Length of a left-padded wo...
lpadleft 34251 The contents of prefix of ...
lpadright 34252 The suffix of a left-padde...
bnj170 34265 ` /\ ` -manipulation. (Co...
bnj240 34266 ` /\ ` -manipulation. (Co...
bnj248 34267 ` /\ ` -manipulation. (Co...
bnj250 34268 ` /\ ` -manipulation. (Co...
bnj251 34269 ` /\ ` -manipulation. (Co...
bnj252 34270 ` /\ ` -manipulation. (Co...
bnj253 34271 ` /\ ` -manipulation. (Co...
bnj255 34272 ` /\ ` -manipulation. (Co...
bnj256 34273 ` /\ ` -manipulation. (Co...
bnj257 34274 ` /\ ` -manipulation. (Co...
bnj258 34275 ` /\ ` -manipulation. (Co...
bnj268 34276 ` /\ ` -manipulation. (Co...
bnj290 34277 ` /\ ` -manipulation. (Co...
bnj291 34278 ` /\ ` -manipulation. (Co...
bnj312 34279 ` /\ ` -manipulation. (Co...
bnj334 34280 ` /\ ` -manipulation. (Co...
bnj345 34281 ` /\ ` -manipulation. (Co...
bnj422 34282 ` /\ ` -manipulation. (Co...
bnj432 34283 ` /\ ` -manipulation. (Co...
bnj446 34284 ` /\ ` -manipulation. (Co...
bnj23 34285 First-order logic and set ...
bnj31 34286 First-order logic and set ...
bnj62 34287 First-order logic and set ...
bnj89 34288 First-order logic and set ...
bnj90 34289 First-order logic and set ...
bnj101 34290 First-order logic and set ...
bnj105 34291 First-order logic and set ...
bnj115 34292 First-order logic and set ...
bnj132 34293 First-order logic and set ...
bnj133 34294 First-order logic and set ...
bnj156 34295 First-order logic and set ...
bnj158 34296 First-order logic and set ...
bnj168 34297 First-order logic and set ...
bnj206 34298 First-order logic and set ...
bnj216 34299 First-order logic and set ...
bnj219 34300 First-order logic and set ...
bnj226 34301 First-order logic and set ...
bnj228 34302 First-order logic and set ...
bnj519 34303 First-order logic and set ...
bnj524 34304 First-order logic and set ...
bnj525 34305 First-order logic and set ...
bnj534 34306 First-order logic and set ...
bnj538 34307 First-order logic and set ...
bnj529 34308 First-order logic and set ...
bnj551 34309 First-order logic and set ...
bnj563 34310 First-order logic and set ...
bnj564 34311 First-order logic and set ...
bnj593 34312 First-order logic and set ...
bnj596 34313 First-order logic and set ...
bnj610 34314 Pass from equality ( ` x =...
bnj642 34315 ` /\ ` -manipulation. (Co...
bnj643 34316 ` /\ ` -manipulation. (Co...
bnj645 34317 ` /\ ` -manipulation. (Co...
bnj658 34318 ` /\ ` -manipulation. (Co...
bnj667 34319 ` /\ ` -manipulation. (Co...
bnj705 34320 ` /\ ` -manipulation. (Co...
bnj706 34321 ` /\ ` -manipulation. (Co...
bnj707 34322 ` /\ ` -manipulation. (Co...
bnj708 34323 ` /\ ` -manipulation. (Co...
bnj721 34324 ` /\ ` -manipulation. (Co...
bnj832 34325 ` /\ ` -manipulation. (Co...
bnj835 34326 ` /\ ` -manipulation. (Co...
bnj836 34327 ` /\ ` -manipulation. (Co...
bnj837 34328 ` /\ ` -manipulation. (Co...
bnj769 34329 ` /\ ` -manipulation. (Co...
bnj770 34330 ` /\ ` -manipulation. (Co...
bnj771 34331 ` /\ ` -manipulation. (Co...
bnj887 34332 ` /\ ` -manipulation. (Co...
bnj918 34333 First-order logic and set ...
bnj919 34334 First-order logic and set ...
bnj923 34335 First-order logic and set ...
bnj927 34336 First-order logic and set ...
bnj931 34337 First-order logic and set ...
bnj937 34338 First-order logic and set ...
bnj941 34339 First-order logic and set ...
bnj945 34340 Technical lemma for ~ bnj6...
bnj946 34341 First-order logic and set ...
bnj951 34342 ` /\ ` -manipulation. (Co...
bnj956 34343 First-order logic and set ...
bnj976 34344 First-order logic and set ...
bnj982 34345 First-order logic and set ...
bnj1019 34346 First-order logic and set ...
bnj1023 34347 First-order logic and set ...
bnj1095 34348 First-order logic and set ...
bnj1096 34349 First-order logic and set ...
bnj1098 34350 First-order logic and set ...
bnj1101 34351 First-order logic and set ...
bnj1113 34352 First-order logic and set ...
bnj1109 34353 First-order logic and set ...
bnj1131 34354 First-order logic and set ...
bnj1138 34355 First-order logic and set ...
bnj1142 34356 First-order logic and set ...
bnj1143 34357 First-order logic and set ...
bnj1146 34358 First-order logic and set ...
bnj1149 34359 First-order logic and set ...
bnj1185 34360 First-order logic and set ...
bnj1196 34361 First-order logic and set ...
bnj1198 34362 First-order logic and set ...
bnj1209 34363 First-order logic and set ...
bnj1211 34364 First-order logic and set ...
bnj1213 34365 First-order logic and set ...
bnj1212 34366 First-order logic and set ...
bnj1219 34367 First-order logic and set ...
bnj1224 34368 First-order logic and set ...
bnj1230 34369 First-order logic and set ...
bnj1232 34370 First-order logic and set ...
bnj1235 34371 First-order logic and set ...
bnj1239 34372 First-order logic and set ...
bnj1238 34373 First-order logic and set ...
bnj1241 34374 First-order logic and set ...
bnj1247 34375 First-order logic and set ...
bnj1254 34376 First-order logic and set ...
bnj1262 34377 First-order logic and set ...
bnj1266 34378 First-order logic and set ...
bnj1265 34379 First-order logic and set ...
bnj1275 34380 First-order logic and set ...
bnj1276 34381 First-order logic and set ...
bnj1292 34382 First-order logic and set ...
bnj1293 34383 First-order logic and set ...
bnj1294 34384 First-order logic and set ...
bnj1299 34385 First-order logic and set ...
bnj1304 34386 First-order logic and set ...
bnj1316 34387 First-order logic and set ...
bnj1317 34388 First-order logic and set ...
bnj1322 34389 First-order logic and set ...
bnj1340 34390 First-order logic and set ...
bnj1345 34391 First-order logic and set ...
bnj1350 34392 First-order logic and set ...
bnj1351 34393 First-order logic and set ...
bnj1352 34394 First-order logic and set ...
bnj1361 34395 First-order logic and set ...
bnj1366 34396 First-order logic and set ...
bnj1379 34397 First-order logic and set ...
bnj1383 34398 First-order logic and set ...
bnj1385 34399 First-order logic and set ...
bnj1386 34400 First-order logic and set ...
bnj1397 34401 First-order logic and set ...
bnj1400 34402 First-order logic and set ...
bnj1405 34403 First-order logic and set ...
bnj1422 34404 First-order logic and set ...
bnj1424 34405 First-order logic and set ...
bnj1436 34406 First-order logic and set ...
bnj1441 34407 First-order logic and set ...
bnj1441g 34408 First-order logic and set ...
bnj1454 34409 First-order logic and set ...
bnj1459 34410 First-order logic and set ...
bnj1464 34411 Conversion of implicit sub...
bnj1465 34412 First-order logic and set ...
bnj1468 34413 Conversion of implicit sub...
bnj1476 34414 First-order logic and set ...
bnj1502 34415 First-order logic and set ...
bnj1503 34416 First-order logic and set ...
bnj1517 34417 First-order logic and set ...
bnj1521 34418 First-order logic and set ...
bnj1533 34419 First-order logic and set ...
bnj1534 34420 First-order logic and set ...
bnj1536 34421 First-order logic and set ...
bnj1538 34422 First-order logic and set ...
bnj1541 34423 First-order logic and set ...
bnj1542 34424 First-order logic and set ...
bnj110 34425 Well-founded induction res...
bnj157 34426 Well-founded induction res...
bnj66 34427 Technical lemma for ~ bnj6...
bnj91 34428 First-order logic and set ...
bnj92 34429 First-order logic and set ...
bnj93 34430 Technical lemma for ~ bnj9...
bnj95 34431 Technical lemma for ~ bnj1...
bnj96 34432 Technical lemma for ~ bnj1...
bnj97 34433 Technical lemma for ~ bnj1...
bnj98 34434 Technical lemma for ~ bnj1...
bnj106 34435 First-order logic and set ...
bnj118 34436 First-order logic and set ...
bnj121 34437 First-order logic and set ...
bnj124 34438 Technical lemma for ~ bnj1...
bnj125 34439 Technical lemma for ~ bnj1...
bnj126 34440 Technical lemma for ~ bnj1...
bnj130 34441 Technical lemma for ~ bnj1...
bnj149 34442 Technical lemma for ~ bnj1...
bnj150 34443 Technical lemma for ~ bnj1...
bnj151 34444 Technical lemma for ~ bnj1...
bnj154 34445 Technical lemma for ~ bnj1...
bnj155 34446 Technical lemma for ~ bnj1...
bnj153 34447 Technical lemma for ~ bnj8...
bnj207 34448 Technical lemma for ~ bnj8...
bnj213 34449 First-order logic and set ...
bnj222 34450 Technical lemma for ~ bnj2...
bnj229 34451 Technical lemma for ~ bnj5...
bnj517 34452 Technical lemma for ~ bnj5...
bnj518 34453 Technical lemma for ~ bnj8...
bnj523 34454 Technical lemma for ~ bnj8...
bnj526 34455 Technical lemma for ~ bnj8...
bnj528 34456 Technical lemma for ~ bnj8...
bnj535 34457 Technical lemma for ~ bnj8...
bnj539 34458 Technical lemma for ~ bnj8...
bnj540 34459 Technical lemma for ~ bnj8...
bnj543 34460 Technical lemma for ~ bnj8...
bnj544 34461 Technical lemma for ~ bnj8...
bnj545 34462 Technical lemma for ~ bnj8...
bnj546 34463 Technical lemma for ~ bnj8...
bnj548 34464 Technical lemma for ~ bnj8...
bnj553 34465 Technical lemma for ~ bnj8...
bnj554 34466 Technical lemma for ~ bnj8...
bnj556 34467 Technical lemma for ~ bnj8...
bnj557 34468 Technical lemma for ~ bnj8...
bnj558 34469 Technical lemma for ~ bnj8...
bnj561 34470 Technical lemma for ~ bnj8...
bnj562 34471 Technical lemma for ~ bnj8...
bnj570 34472 Technical lemma for ~ bnj8...
bnj571 34473 Technical lemma for ~ bnj8...
bnj605 34474 Technical lemma. This lem...
bnj581 34475 Technical lemma for ~ bnj5...
bnj589 34476 Technical lemma for ~ bnj8...
bnj590 34477 Technical lemma for ~ bnj8...
bnj591 34478 Technical lemma for ~ bnj8...
bnj594 34479 Technical lemma for ~ bnj8...
bnj580 34480 Technical lemma for ~ bnj5...
bnj579 34481 Technical lemma for ~ bnj8...
bnj602 34482 Equality theorem for the `...
bnj607 34483 Technical lemma for ~ bnj8...
bnj609 34484 Technical lemma for ~ bnj8...
bnj611 34485 Technical lemma for ~ bnj8...
bnj600 34486 Technical lemma for ~ bnj8...
bnj601 34487 Technical lemma for ~ bnj8...
bnj852 34488 Technical lemma for ~ bnj6...
bnj864 34489 Technical lemma for ~ bnj6...
bnj865 34490 Technical lemma for ~ bnj6...
bnj873 34491 Technical lemma for ~ bnj6...
bnj849 34492 Technical lemma for ~ bnj6...
bnj882 34493 Definition (using hypothes...
bnj18eq1 34494 Equality theorem for trans...
bnj893 34495 Property of ` _trCl ` . U...
bnj900 34496 Technical lemma for ~ bnj6...
bnj906 34497 Property of ` _trCl ` . (...
bnj908 34498 Technical lemma for ~ bnj6...
bnj911 34499 Technical lemma for ~ bnj6...
bnj916 34500 Technical lemma for ~ bnj6...
bnj917 34501 Technical lemma for ~ bnj6...
bnj934 34502 Technical lemma for ~ bnj6...
bnj929 34503 Technical lemma for ~ bnj6...
bnj938 34504 Technical lemma for ~ bnj6...
bnj944 34505 Technical lemma for ~ bnj6...
bnj953 34506 Technical lemma for ~ bnj6...
bnj958 34507 Technical lemma for ~ bnj6...
bnj1000 34508 Technical lemma for ~ bnj8...
bnj965 34509 Technical lemma for ~ bnj8...
bnj964 34510 Technical lemma for ~ bnj6...
bnj966 34511 Technical lemma for ~ bnj6...
bnj967 34512 Technical lemma for ~ bnj6...
bnj969 34513 Technical lemma for ~ bnj6...
bnj970 34514 Technical lemma for ~ bnj6...
bnj910 34515 Technical lemma for ~ bnj6...
bnj978 34516 Technical lemma for ~ bnj6...
bnj981 34517 Technical lemma for ~ bnj6...
bnj983 34518 Technical lemma for ~ bnj6...
bnj984 34519 Technical lemma for ~ bnj6...
bnj985v 34520 Version of ~ bnj985 with a...
bnj985 34521 Technical lemma for ~ bnj6...
bnj986 34522 Technical lemma for ~ bnj6...
bnj996 34523 Technical lemma for ~ bnj6...
bnj998 34524 Technical lemma for ~ bnj6...
bnj999 34525 Technical lemma for ~ bnj6...
bnj1001 34526 Technical lemma for ~ bnj6...
bnj1006 34527 Technical lemma for ~ bnj6...
bnj1014 34528 Technical lemma for ~ bnj6...
bnj1015 34529 Technical lemma for ~ bnj6...
bnj1018g 34530 Version of ~ bnj1018 with ...
bnj1018 34531 Technical lemma for ~ bnj6...
bnj1020 34532 Technical lemma for ~ bnj6...
bnj1021 34533 Technical lemma for ~ bnj6...
bnj907 34534 Technical lemma for ~ bnj6...
bnj1029 34535 Property of ` _trCl ` . (...
bnj1033 34536 Technical lemma for ~ bnj6...
bnj1034 34537 Technical lemma for ~ bnj6...
bnj1039 34538 Technical lemma for ~ bnj6...
bnj1040 34539 Technical lemma for ~ bnj6...
bnj1047 34540 Technical lemma for ~ bnj6...
bnj1049 34541 Technical lemma for ~ bnj6...
bnj1052 34542 Technical lemma for ~ bnj6...
bnj1053 34543 Technical lemma for ~ bnj6...
bnj1071 34544 Technical lemma for ~ bnj6...
bnj1083 34545 Technical lemma for ~ bnj6...
bnj1090 34546 Technical lemma for ~ bnj6...
bnj1093 34547 Technical lemma for ~ bnj6...
bnj1097 34548 Technical lemma for ~ bnj6...
bnj1110 34549 Technical lemma for ~ bnj6...
bnj1112 34550 Technical lemma for ~ bnj6...
bnj1118 34551 Technical lemma for ~ bnj6...
bnj1121 34552 Technical lemma for ~ bnj6...
bnj1123 34553 Technical lemma for ~ bnj6...
bnj1030 34554 Technical lemma for ~ bnj6...
bnj1124 34555 Property of ` _trCl ` . (...
bnj1133 34556 Technical lemma for ~ bnj6...
bnj1128 34557 Technical lemma for ~ bnj6...
bnj1127 34558 Property of ` _trCl ` . (...
bnj1125 34559 Property of ` _trCl ` . (...
bnj1145 34560 Technical lemma for ~ bnj6...
bnj1147 34561 Property of ` _trCl ` . (...
bnj1137 34562 Property of ` _trCl ` . (...
bnj1148 34563 Property of ` _pred ` . (...
bnj1136 34564 Technical lemma for ~ bnj6...
bnj1152 34565 Technical lemma for ~ bnj6...
bnj1154 34566 Property of ` Fr ` . (Con...
bnj1171 34567 Technical lemma for ~ bnj6...
bnj1172 34568 Technical lemma for ~ bnj6...
bnj1173 34569 Technical lemma for ~ bnj6...
bnj1174 34570 Technical lemma for ~ bnj6...
bnj1175 34571 Technical lemma for ~ bnj6...
bnj1176 34572 Technical lemma for ~ bnj6...
bnj1177 34573 Technical lemma for ~ bnj6...
bnj1186 34574 Technical lemma for ~ bnj6...
bnj1190 34575 Technical lemma for ~ bnj6...
bnj1189 34576 Technical lemma for ~ bnj6...
bnj69 34577 Existence of a minimal ele...
bnj1228 34578 Existence of a minimal ele...
bnj1204 34579 Well-founded induction. T...
bnj1234 34580 Technical lemma for ~ bnj6...
bnj1245 34581 Technical lemma for ~ bnj6...
bnj1256 34582 Technical lemma for ~ bnj6...
bnj1259 34583 Technical lemma for ~ bnj6...
bnj1253 34584 Technical lemma for ~ bnj6...
bnj1279 34585 Technical lemma for ~ bnj6...
bnj1286 34586 Technical lemma for ~ bnj6...
bnj1280 34587 Technical lemma for ~ bnj6...
bnj1296 34588 Technical lemma for ~ bnj6...
bnj1309 34589 Technical lemma for ~ bnj6...
bnj1307 34590 Technical lemma for ~ bnj6...
bnj1311 34591 Technical lemma for ~ bnj6...
bnj1318 34592 Technical lemma for ~ bnj6...
bnj1326 34593 Technical lemma for ~ bnj6...
bnj1321 34594 Technical lemma for ~ bnj6...
bnj1364 34595 Property of ` _FrSe ` . (...
bnj1371 34596 Technical lemma for ~ bnj6...
bnj1373 34597 Technical lemma for ~ bnj6...
bnj1374 34598 Technical lemma for ~ bnj6...
bnj1384 34599 Technical lemma for ~ bnj6...
bnj1388 34600 Technical lemma for ~ bnj6...
bnj1398 34601 Technical lemma for ~ bnj6...
bnj1413 34602 Property of ` _trCl ` . (...
bnj1408 34603 Technical lemma for ~ bnj1...
bnj1414 34604 Property of ` _trCl ` . (...
bnj1415 34605 Technical lemma for ~ bnj6...
bnj1416 34606 Technical lemma for ~ bnj6...
bnj1418 34607 Property of ` _pred ` . (...
bnj1417 34608 Technical lemma for ~ bnj6...
bnj1421 34609 Technical lemma for ~ bnj6...
bnj1444 34610 Technical lemma for ~ bnj6...
bnj1445 34611 Technical lemma for ~ bnj6...
bnj1446 34612 Technical lemma for ~ bnj6...
bnj1447 34613 Technical lemma for ~ bnj6...
bnj1448 34614 Technical lemma for ~ bnj6...
bnj1449 34615 Technical lemma for ~ bnj6...
bnj1442 34616 Technical lemma for ~ bnj6...
bnj1450 34617 Technical lemma for ~ bnj6...
bnj1423 34618 Technical lemma for ~ bnj6...
bnj1452 34619 Technical lemma for ~ bnj6...
bnj1466 34620 Technical lemma for ~ bnj6...
bnj1467 34621 Technical lemma for ~ bnj6...
bnj1463 34622 Technical lemma for ~ bnj6...
bnj1489 34623 Technical lemma for ~ bnj6...
bnj1491 34624 Technical lemma for ~ bnj6...
bnj1312 34625 Technical lemma for ~ bnj6...
bnj1493 34626 Technical lemma for ~ bnj6...
bnj1497 34627 Technical lemma for ~ bnj6...
bnj1498 34628 Technical lemma for ~ bnj6...
bnj60 34629 Well-founded recursion, pa...
bnj1514 34630 Technical lemma for ~ bnj1...
bnj1518 34631 Technical lemma for ~ bnj1...
bnj1519 34632 Technical lemma for ~ bnj1...
bnj1520 34633 Technical lemma for ~ bnj1...
bnj1501 34634 Technical lemma for ~ bnj1...
bnj1500 34635 Well-founded recursion, pa...
bnj1525 34636 Technical lemma for ~ bnj1...
bnj1529 34637 Technical lemma for ~ bnj1...
bnj1523 34638 Technical lemma for ~ bnj1...
bnj1522 34639 Well-founded recursion, pa...
exdifsn 34640 There exists an element in...
srcmpltd 34641 If a statement is true for...
prsrcmpltd 34642 If a statement is true for...
dff15 34643 A one-to-one function in t...
f1resveqaeq 34644 If a function restricted t...
f1resrcmplf1dlem 34645 Lemma for ~ f1resrcmplf1d ...
f1resrcmplf1d 34646 If a function's restrictio...
funen1cnv 34647 If a function is equinumer...
fnrelpredd 34648 A function that preserves ...
cardpred 34649 The cardinality function p...
nummin 34650 Every nonempty class of nu...
fineqvrep 34651 If the Axiom of Infinity i...
fineqvpow 34652 If the Axiom of Infinity i...
fineqvac 34653 If the Axiom of Infinity i...
fineqvacALT 34654 Shorter proof of ~ fineqva...
zltp1ne 34655 Integer ordering relation....
nnltp1ne 34656 Positive integer ordering ...
nn0ltp1ne 34657 Nonnegative integer orderi...
0nn0m1nnn0 34658 A number is zero if and on...
f1resfz0f1d 34659 If a function with a seque...
fisshasheq 34660 A finite set is equal to i...
revpfxsfxrev 34661 The reverse of a prefix of...
swrdrevpfx 34662 A subword expressed in ter...
lfuhgr 34663 A hypergraph is loop-free ...
lfuhgr2 34664 A hypergraph is loop-free ...
lfuhgr3 34665 A hypergraph is loop-free ...
cplgredgex 34666 Any two (distinct) vertice...
cusgredgex 34667 Any two (distinct) vertice...
cusgredgex2 34668 Any two distinct vertices ...
pfxwlk 34669 A prefix of a walk is a wa...
revwlk 34670 The reverse of a walk is a...
revwlkb 34671 Two words represent a walk...
swrdwlk 34672 Two matching subwords of a...
pthhashvtx 34673 A graph containing a path ...
pthisspthorcycl 34674 A path is either a simple ...
spthcycl 34675 A walk is a trivial path i...
usgrgt2cycl 34676 A non-trivial cycle in a s...
usgrcyclgt2v 34677 A simple graph with a non-...
subgrwlk 34678 If a walk exists in a subg...
subgrtrl 34679 If a trail exists in a sub...
subgrpth 34680 If a path exists in a subg...
subgrcycl 34681 If a cycle exists in a sub...
cusgr3cyclex 34682 Every complete simple grap...
loop1cycl 34683 A hypergraph has a cycle o...
2cycld 34684 Construction of a 2-cycle ...
2cycl2d 34685 Construction of a 2-cycle ...
umgr2cycllem 34686 Lemma for ~ umgr2cycl . (...
umgr2cycl 34687 A multigraph with two dist...
dfacycgr1 34690 An alternate definition of...
isacycgr 34691 The property of being an a...
isacycgr1 34692 The property of being an a...
acycgrcycl 34693 Any cycle in an acyclic gr...
acycgr0v 34694 A null graph (with no vert...
acycgr1v 34695 A multigraph with one vert...
acycgr2v 34696 A simple graph with two ve...
prclisacycgr 34697 A proper class (representi...
acycgrislfgr 34698 An acyclic hypergraph is a...
upgracycumgr 34699 An acyclic pseudograph is ...
umgracycusgr 34700 An acyclic multigraph is a...
upgracycusgr 34701 An acyclic pseudograph is ...
cusgracyclt3v 34702 A complete simple graph is...
pthacycspth 34703 A path in an acyclic graph...
acycgrsubgr 34704 The subgraph of an acyclic...
quartfull 34711 The quartic equation, writ...
deranglem 34712 Lemma for derangements. (...
derangval 34713 Define the derangement fun...
derangf 34714 The derangement number is ...
derang0 34715 The derangement number of ...
derangsn 34716 The derangement number of ...
derangenlem 34717 One half of ~ derangen . ...
derangen 34718 The derangement number is ...
subfacval 34719 The subfactorial is define...
derangen2 34720 Write the derangement numb...
subfacf 34721 The subfactorial is a func...
subfaclefac 34722 The subfactorial is less t...
subfac0 34723 The subfactorial at zero. ...
subfac1 34724 The subfactorial at one. ...
subfacp1lem1 34725 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 34726 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 34727 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 34728 Lemma for ~ subfacp1 . In...
subfacp1lem4 34729 Lemma for ~ subfacp1 . Th...
subfacp1lem5 34730 Lemma for ~ subfacp1 . In...
subfacp1lem6 34731 Lemma for ~ subfacp1 . By...
subfacp1 34732 A two-term recurrence for ...
subfacval2 34733 A closed-form expression f...
subfaclim 34734 The subfactorial converges...
subfacval3 34735 Another closed form expres...
derangfmla 34736 The derangements formula, ...
erdszelem1 34737 Lemma for ~ erdsze . (Con...
erdszelem2 34738 Lemma for ~ erdsze . (Con...
erdszelem3 34739 Lemma for ~ erdsze . (Con...
erdszelem4 34740 Lemma for ~ erdsze . (Con...
erdszelem5 34741 Lemma for ~ erdsze . (Con...
erdszelem6 34742 Lemma for ~ erdsze . (Con...
erdszelem7 34743 Lemma for ~ erdsze . (Con...
erdszelem8 34744 Lemma for ~ erdsze . (Con...
erdszelem9 34745 Lemma for ~ erdsze . (Con...
erdszelem10 34746 Lemma for ~ erdsze . (Con...
erdszelem11 34747 Lemma for ~ erdsze . (Con...
erdsze 34748 The ErdÅ‘s-Szekeres th...
erdsze2lem1 34749 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 34750 Lemma for ~ erdsze2 . (Co...
erdsze2 34751 Generalize the statement o...
kur14lem1 34752 Lemma for ~ kur14 . (Cont...
kur14lem2 34753 Lemma for ~ kur14 . Write...
kur14lem3 34754 Lemma for ~ kur14 . A clo...
kur14lem4 34755 Lemma for ~ kur14 . Compl...
kur14lem5 34756 Lemma for ~ kur14 . Closu...
kur14lem6 34757 Lemma for ~ kur14 . If ` ...
kur14lem7 34758 Lemma for ~ kur14 : main p...
kur14lem8 34759 Lemma for ~ kur14 . Show ...
kur14lem9 34760 Lemma for ~ kur14 . Since...
kur14lem10 34761 Lemma for ~ kur14 . Disch...
kur14 34762 Kuratowski's closure-compl...
ispconn 34769 The property of being a pa...
pconncn 34770 The property of being a pa...
pconntop 34771 A simply connected space i...
issconn 34772 The property of being a si...
sconnpconn 34773 A simply connected space i...
sconntop 34774 A simply connected space i...
sconnpht 34775 A closed path in a simply ...
cnpconn 34776 An image of a path-connect...
pconnconn 34777 A path-connected space is ...
txpconn 34778 The topological product of...
ptpconn 34779 The topological product of...
indispconn 34780 The indiscrete topology (o...
connpconn 34781 A connected and locally pa...
qtoppconn 34782 A quotient of a path-conne...
pconnpi1 34783 All fundamental groups in ...
sconnpht2 34784 Any two paths in a simply ...
sconnpi1 34785 A path-connected topologic...
txsconnlem 34786 Lemma for ~ txsconn . (Co...
txsconn 34787 The topological product of...
cvxpconn 34788 A convex subset of the com...
cvxsconn 34789 A convex subset of the com...
blsconn 34790 An open ball in the comple...
cnllysconn 34791 The topology of the comple...
resconn 34792 A subset of ` RR ` is simp...
ioosconn 34793 An open interval is simply...
iccsconn 34794 A closed interval is simpl...
retopsconn 34795 The real numbers are simpl...
iccllysconn 34796 A closed interval is local...
rellysconn 34797 The real numbers are local...
iisconn 34798 The unit interval is simpl...
iillysconn 34799 The unit interval is local...
iinllyconn 34800 The unit interval is local...
fncvm 34803 Lemma for covering maps. ...
cvmscbv 34804 Change bound variables in ...
iscvm 34805 The property of being a co...
cvmtop1 34806 Reverse closure for a cove...
cvmtop2 34807 Reverse closure for a cove...
cvmcn 34808 A covering map is a contin...
cvmcov 34809 Property of a covering map...
cvmsrcl 34810 Reverse closure for an eve...
cvmsi 34811 One direction of ~ cvmsval...
cvmsval 34812 Elementhood in the set ` S...
cvmsss 34813 An even covering is a subs...
cvmsn0 34814 An even covering is nonemp...
cvmsuni 34815 An even covering of ` U ` ...
cvmsdisj 34816 An even covering of ` U ` ...
cvmshmeo 34817 Every element of an even c...
cvmsf1o 34818 ` F ` , localized to an el...
cvmscld 34819 The sets of an even coveri...
cvmsss2 34820 An open subset of an evenl...
cvmcov2 34821 The covering map property ...
cvmseu 34822 Every element in ` U. T ` ...
cvmsiota 34823 Identify the unique elemen...
cvmopnlem 34824 Lemma for ~ cvmopn . (Con...
cvmfolem 34825 Lemma for ~ cvmfo . (Cont...
cvmopn 34826 A covering map is an open ...
cvmliftmolem1 34827 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 34828 Lemma for ~ cvmliftmo . (...
cvmliftmoi 34829 A lift of a continuous fun...
cvmliftmo 34830 A lift of a continuous fun...
cvmliftlem1 34831 Lemma for ~ cvmlift . In ...
cvmliftlem2 34832 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 34833 Lemma for ~ cvmlift . Sin...
cvmliftlem4 34834 Lemma for ~ cvmlift . The...
cvmliftlem5 34835 Lemma for ~ cvmlift . Def...
cvmliftlem6 34836 Lemma for ~ cvmlift . Ind...
cvmliftlem7 34837 Lemma for ~ cvmlift . Pro...
cvmliftlem8 34838 Lemma for ~ cvmlift . The...
cvmliftlem9 34839 Lemma for ~ cvmlift . The...
cvmliftlem10 34840 Lemma for ~ cvmlift . The...
cvmliftlem11 34841 Lemma for ~ cvmlift . (Co...
cvmliftlem13 34842 Lemma for ~ cvmlift . The...
cvmliftlem14 34843 Lemma for ~ cvmlift . Put...
cvmliftlem15 34844 Lemma for ~ cvmlift . Dis...
cvmlift 34845 One of the important prope...
cvmfo 34846 A covering map is an onto ...
cvmliftiota 34847 Write out a function ` H `...
cvmlift2lem1 34848 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 34849 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 34850 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 34851 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 34852 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 34853 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 34854 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 34855 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 34856 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 34857 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 34858 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 34859 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 34860 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 34861 Lemma for ~ cvmlift2 . (C...
cvmlift2 34862 A two-dimensional version ...
cvmliftphtlem 34863 Lemma for ~ cvmliftpht . ...
cvmliftpht 34864 If ` G ` and ` H ` are pat...
cvmlift3lem1 34865 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 34866 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 34867 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 34868 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 34869 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 34870 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 34871 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 34872 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 34873 Lemma for ~ cvmlift2 . (C...
cvmlift3 34874 A general version of ~ cvm...
snmlff 34875 The function ` F ` from ~ ...
snmlfval 34876 The function ` F ` from ~ ...
snmlval 34877 The property " ` A ` is si...
snmlflim 34878 If ` A ` is simply normal,...
goel 34893 A "Godel-set of membership...
goelel3xp 34894 A "Godel-set of membership...
goeleq12bg 34895 Two "Godel-set of membersh...
gonafv 34896 The "Godel-set for the She...
goaleq12d 34897 Equality of the "Godel-set...
gonanegoal 34898 The Godel-set for the Shef...
satf 34899 The satisfaction predicate...
satfsucom 34900 The satisfaction predicate...
satfn 34901 The satisfaction predicate...
satom 34902 The satisfaction predicate...
satfvsucom 34903 The satisfaction predicate...
satfv0 34904 The value of the satisfact...
satfvsuclem1 34905 Lemma 1 for ~ satfvsuc . ...
satfvsuclem2 34906 Lemma 2 for ~ satfvsuc . ...
satfvsuc 34907 The value of the satisfact...
satfv1lem 34908 Lemma for ~ satfv1 . (Con...
satfv1 34909 The value of the satisfact...
satfsschain 34910 The binary relation of a s...
satfvsucsuc 34911 The satisfaction predicate...
satfbrsuc 34912 The binary relation of a s...
satfrel 34913 The value of the satisfact...
satfdmlem 34914 Lemma for ~ satfdm . (Con...
satfdm 34915 The domain of the satisfac...
satfrnmapom 34916 The range of the satisfact...
satfv0fun 34917 The value of the satisfact...
satf0 34918 The satisfaction predicate...
satf0sucom 34919 The satisfaction predicate...
satf00 34920 The value of the satisfact...
satf0suclem 34921 Lemma for ~ satf0suc , ~ s...
satf0suc 34922 The value of the satisfact...
satf0op 34923 An element of a value of t...
satf0n0 34924 The value of the satisfact...
sat1el2xp 34925 The first component of an ...
fmlafv 34926 The valid Godel formulas o...
fmla 34927 The set of all valid Godel...
fmla0 34928 The valid Godel formulas o...
fmla0xp 34929 The valid Godel formulas o...
fmlasuc0 34930 The valid Godel formulas o...
fmlafvel 34931 A class is a valid Godel f...
fmlasuc 34932 The valid Godel formulas o...
fmla1 34933 The valid Godel formulas o...
isfmlasuc 34934 The characterization of a ...
fmlasssuc 34935 The Godel formulas of heig...
fmlaomn0 34936 The empty set is not a God...
fmlan0 34937 The empty set is not a God...
gonan0 34938 The "Godel-set of NAND" is...
goaln0 34939 The "Godel-set of universa...
gonarlem 34940 Lemma for ~ gonar (inducti...
gonar 34941 If the "Godel-set of NAND"...
goalrlem 34942 Lemma for ~ goalr (inducti...
goalr 34943 If the "Godel-set of unive...
fmla0disjsuc 34944 The set of valid Godel for...
fmlasucdisj 34945 The valid Godel formulas o...
satfdmfmla 34946 The domain of the satisfac...
satffunlem 34947 Lemma for ~ satffunlem1lem...
satffunlem1lem1 34948 Lemma for ~ satffunlem1 . ...
satffunlem1lem2 34949 Lemma 2 for ~ satffunlem1 ...
satffunlem2lem1 34950 Lemma 1 for ~ satffunlem2 ...
dmopab3rexdif 34951 The domain of an ordered p...
satffunlem2lem2 34952 Lemma 2 for ~ satffunlem2 ...
satffunlem1 34953 Lemma 1 for ~ satffun : in...
satffunlem2 34954 Lemma 2 for ~ satffun : in...
satffun 34955 The value of the satisfact...
satff 34956 The satisfaction predicate...
satfun 34957 The satisfaction predicate...
satfvel 34958 An element of the value of...
satfv0fvfmla0 34959 The value of the satisfact...
satefv 34960 The simplified satisfactio...
sate0 34961 The simplified satisfactio...
satef 34962 The simplified satisfactio...
sate0fv0 34963 A simplified satisfaction ...
satefvfmla0 34964 The simplified satisfactio...
sategoelfvb 34965 Characterization of a valu...
sategoelfv 34966 Condition of a valuation `...
ex-sategoelel 34967 Example of a valuation of ...
ex-sategoel 34968 Instance of ~ sategoelfv f...
satfv1fvfmla1 34969 The value of the satisfact...
2goelgoanfmla1 34970 Two Godel-sets of membersh...
satefvfmla1 34971 The simplified satisfactio...
ex-sategoelelomsuc 34972 Example of a valuation of ...
ex-sategoelel12 34973 Example of a valuation of ...
prv 34974 The "proves" relation on a...
elnanelprv 34975 The wff ` ( A e. B -/\ B e...
prv0 34976 Every wff encoded as ` U `...
prv1n 34977 No wff encoded as a Godel-...
mvtval 35046 The set of variable typeco...
mrexval 35047 The set of "raw expression...
mexval 35048 The set of expressions, wh...
mexval2 35049 The set of expressions, wh...
mdvval 35050 The set of disjoint variab...
mvrsval 35051 The set of variables in an...
mvrsfpw 35052 The set of variables in an...
mrsubffval 35053 The substitution of some v...
mrsubfval 35054 The substitution of some v...
mrsubval 35055 The substitution of some v...
mrsubcv 35056 The value of a substituted...
mrsubvr 35057 The value of a substituted...
mrsubff 35058 A substitution is a functi...
mrsubrn 35059 Although it is defined for...
mrsubff1 35060 When restricted to complet...
mrsubff1o 35061 When restricted to complet...
mrsub0 35062 The value of the substitut...
mrsubf 35063 A substitution is a functi...
mrsubccat 35064 Substitution distributes o...
mrsubcn 35065 A substitution does not ch...
elmrsubrn 35066 Characterization of the su...
mrsubco 35067 The composition of two sub...
mrsubvrs 35068 The set of variables in a ...
msubffval 35069 A substitution applied to ...
msubfval 35070 A substitution applied to ...
msubval 35071 A substitution applied to ...
msubrsub 35072 A substitution applied to ...
msubty 35073 The type of a substituted ...
elmsubrn 35074 Characterization of substi...
msubrn 35075 Although it is defined for...
msubff 35076 A substitution is a functi...
msubco 35077 The composition of two sub...
msubf 35078 A substitution is a functi...
mvhfval 35079 Value of the function mapp...
mvhval 35080 Value of the function mapp...
mpstval 35081 A pre-statement is an orde...
elmpst 35082 Property of being a pre-st...
msrfval 35083 Value of the reduct of a p...
msrval 35084 Value of the reduct of a p...
mpstssv 35085 A pre-statement is an orde...
mpst123 35086 Decompose a pre-statement ...
mpstrcl 35087 The elements of a pre-stat...
msrf 35088 The reduct of a pre-statem...
msrrcl 35089 If ` X ` and ` Y ` have th...
mstaval 35090 Value of the set of statem...
msrid 35091 The reduct of a statement ...
msrfo 35092 The reduct of a pre-statem...
mstapst 35093 A statement is a pre-state...
elmsta 35094 Property of being a statem...
ismfs 35095 A formal system is a tuple...
mfsdisj 35096 The constants and variable...
mtyf2 35097 The type function maps var...
mtyf 35098 The type function maps var...
mvtss 35099 The set of variable typeco...
maxsta 35100 An axiom is a statement. ...
mvtinf 35101 Each variable typecode has...
msubff1 35102 When restricted to complet...
msubff1o 35103 When restricted to complet...
mvhf 35104 The function mapping varia...
mvhf1 35105 The function mapping varia...
msubvrs 35106 The set of variables in a ...
mclsrcl 35107 Reverse closure for the cl...
mclsssvlem 35108 Lemma for ~ mclsssv . (Co...
mclsval 35109 The function mapping varia...
mclsssv 35110 The closure of a set of ex...
ssmclslem 35111 Lemma for ~ ssmcls . (Con...
vhmcls 35112 All variable hypotheses ar...
ssmcls 35113 The original expressions a...
ss2mcls 35114 The closure is monotonic u...
mclsax 35115 The closure is closed unde...
mclsind 35116 Induction theorem for clos...
mppspstlem 35117 Lemma for ~ mppspst . (Co...
mppsval 35118 Definition of a provable p...
elmpps 35119 Definition of a provable p...
mppspst 35120 A provable pre-statement i...
mthmval 35121 A theorem is a pre-stateme...
elmthm 35122 A theorem is a pre-stateme...
mthmi 35123 A statement whose reduct i...
mthmsta 35124 A theorem is a pre-stateme...
mppsthm 35125 A provable pre-statement i...
mthmblem 35126 Lemma for ~ mthmb . (Cont...
mthmb 35127 If two statements have the...
mthmpps 35128 Given a theorem, there is ...
mclsppslem 35129 The closure is closed unde...
mclspps 35130 The closure is closed unde...
problem1 35205 Practice problem 1. Clues...
problem2 35206 Practice problem 2. Clues...
problem3 35207 Practice problem 3. Clues...
problem4 35208 Practice problem 4. Clues...
problem5 35209 Practice problem 5. Clues...
quad3 35210 Variant of quadratic equat...
climuzcnv 35211 Utility lemma to convert b...
sinccvglem 35212 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 35213 ` ( ( sin `` x ) / x ) ~~>...
circum 35214 The circumference of a cir...
elfzm12 35215 Membership in a curtailed ...
nn0seqcvg 35216 A strictly-decreasing nonn...
lediv2aALT 35217 Division of both sides of ...
abs2sqlei 35218 The absolute values of two...
abs2sqlti 35219 The absolute values of two...
abs2sqle 35220 The absolute values of two...
abs2sqlt 35221 The absolute values of two...
abs2difi 35222 Difference of absolute val...
abs2difabsi 35223 Absolute value of differen...
currybi 35224 Biconditional version of C...
axextprim 35231 ~ ax-ext without distinct ...
axrepprim 35232 ~ ax-rep without distinct ...
axunprim 35233 ~ ax-un without distinct v...
axpowprim 35234 ~ ax-pow without distinct ...
axregprim 35235 ~ ax-reg without distinct ...
axinfprim 35236 ~ ax-inf without distinct ...
axacprim 35237 ~ ax-ac without distinct v...
untelirr 35238 We call a class "untanged"...
untuni 35239 The union of a class is un...
untsucf 35240 If a class is untangled, t...
unt0 35241 The null set is untangled....
untint 35242 If there is an untangled e...
efrunt 35243 If ` A ` is well-founded b...
untangtr 35244 A transitive class is unta...
3jaodd 35245 Double deduction form of ~...
3orit 35246 Closed form of ~ 3ori . (...
biimpexp 35247 A biconditional in the ant...
nepss 35248 Two classes are unequal if...
3ccased 35249 Triple disjunction form of...
dfso3 35250 Expansion of the definitio...
brtpid1 35251 A binary relation involvin...
brtpid2 35252 A binary relation involvin...
brtpid3 35253 A binary relation involvin...
iota5f 35254 A method for computing iot...
jath 35255 Closed form of ~ ja . Pro...
xpab 35256 Cartesian product of two c...
nnuni 35257 The union of a finite ordi...
sqdivzi 35258 Distribution of square ove...
supfz 35259 The supremum of a finite s...
inffz 35260 The infimum of a finite se...
fz0n 35261 The sequence ` ( 0 ... ( N...
shftvalg 35262 Value of a sequence shifte...
divcnvlin 35263 Limit of the ratio of two ...
climlec3 35264 Comparison of a constant t...
iexpire 35265 ` _i ` raised to itself is...
bcneg1 35266 The binomial coefficent ov...
bcm1nt 35267 The proportion of one bion...
bcprod 35268 A product identity for bin...
bccolsum 35269 A column-sum rule for bino...
iprodefisumlem 35270 Lemma for ~ iprodefisum . ...
iprodefisum 35271 Applying the exponential f...
iprodgam 35272 An infinite product versio...
faclimlem1 35273 Lemma for ~ faclim . Clos...
faclimlem2 35274 Lemma for ~ faclim . Show...
faclimlem3 35275 Lemma for ~ faclim . Alge...
faclim 35276 An infinite product expres...
iprodfac 35277 An infinite product expres...
faclim2 35278 Another factorial limit du...
gcd32 35279 Swap the second and third ...
gcdabsorb 35280 Absorption law for gcd. (...
dftr6 35281 A potential definition of ...
coep 35282 Composition with the membe...
coepr 35283 Composition with the conve...
dffr5 35284 A quantifier-free definiti...
dfso2 35285 Quantifier-free definition...
br8 35286 Substitution for an eight-...
br6 35287 Substitution for a six-pla...
br4 35288 Substitution for a four-pl...
cnvco1 35289 Another distributive law o...
cnvco2 35290 Another distributive law o...
eldm3 35291 Quantifier-free definition...
elrn3 35292 Quantifier-free definition...
pocnv 35293 The converse of a partial ...
socnv 35294 The converse of a strict o...
sotrd 35295 Transitivity law for stric...
elintfv 35296 Membership in an intersect...
funpsstri 35297 A condition for subset tri...
fundmpss 35298 If a class ` F ` is a prop...
funsseq 35299 Given two functions with e...
fununiq 35300 The uniqueness condition o...
funbreq 35301 An equality condition for ...
br1steq 35302 Uniqueness condition for t...
br2ndeq 35303 Uniqueness condition for t...
dfdm5 35304 Definition of domain in te...
dfrn5 35305 Definition of range in ter...
opelco3 35306 Alternate way of saying th...
elima4 35307 Quantifier-free expression...
fv1stcnv 35308 The value of the converse ...
fv2ndcnv 35309 The value of the converse ...
setinds 35310 Principle of set induction...
setinds2f 35311 ` _E ` induction schema, u...
setinds2 35312 ` _E ` induction schema, u...
elpotr 35313 A class of transitive sets...
dford5reg 35314 Given ~ ax-reg , an ordina...
dfon2lem1 35315 Lemma for ~ dfon2 . (Cont...
dfon2lem2 35316 Lemma for ~ dfon2 . (Cont...
dfon2lem3 35317 Lemma for ~ dfon2 . All s...
dfon2lem4 35318 Lemma for ~ dfon2 . If tw...
dfon2lem5 35319 Lemma for ~ dfon2 . Two s...
dfon2lem6 35320 Lemma for ~ dfon2 . A tra...
dfon2lem7 35321 Lemma for ~ dfon2 . All e...
dfon2lem8 35322 Lemma for ~ dfon2 . The i...
dfon2lem9 35323 Lemma for ~ dfon2 . A cla...
dfon2 35324 ` On ` consists of all set...
rdgprc0 35325 The value of the recursive...
rdgprc 35326 The value of the recursive...
dfrdg2 35327 Alternate definition of th...
dfrdg3 35328 Generalization of ~ dfrdg2...
axextdfeq 35329 A version of ~ ax-ext for ...
ax8dfeq 35330 A version of ~ ax-8 for us...
axextdist 35331 ~ ax-ext with distinctors ...
axextbdist 35332 ~ axextb with distinctors ...
19.12b 35333 Version of ~ 19.12vv with ...
exnel 35334 There is always a set not ...
distel 35335 Distinctors in terms of me...
axextndbi 35336 ~ axextnd as a bicondition...
hbntg 35337 A more general form of ~ h...
hbimtg 35338 A more general and closed ...
hbaltg 35339 A more general and closed ...
hbng 35340 A more general form of ~ h...
hbimg 35341 A more general form of ~ h...
wsuceq123 35346 Equality theorem for well-...
wsuceq1 35347 Equality theorem for well-...
wsuceq2 35348 Equality theorem for well-...
wsuceq3 35349 Equality theorem for well-...
nfwsuc 35350 Bound-variable hypothesis ...
wlimeq12 35351 Equality theorem for the l...
wlimeq1 35352 Equality theorem for the l...
wlimeq2 35353 Equality theorem for the l...
nfwlim 35354 Bound-variable hypothesis ...
elwlim 35355 Membership in the limit cl...
wzel 35356 The zero of a well-founded...
wsuclem 35357 Lemma for the supremum pro...
wsucex 35358 Existence theorem for well...
wsuccl 35359 If ` X ` is a set with an ...
wsuclb 35360 A well-founded successor i...
wlimss 35361 The class of limit points ...
txpss3v 35410 A tail Cartesian product i...
txprel 35411 A tail Cartesian product i...
brtxp 35412 Characterize a ternary rel...
brtxp2 35413 The binary relation over a...
dfpprod2 35414 Expanded definition of par...
pprodcnveq 35415 A converse law for paralle...
pprodss4v 35416 The parallel product is a ...
brpprod 35417 Characterize a quaternary ...
brpprod3a 35418 Condition for parallel pro...
brpprod3b 35419 Condition for parallel pro...
relsset 35420 The subset class is a bina...
brsset 35421 For sets, the ` SSet ` bin...
idsset 35422 ` _I ` is equal to the int...
eltrans 35423 Membership in the class of...
dfon3 35424 A quantifier-free definiti...
dfon4 35425 Another quantifier-free de...
brtxpsd 35426 Expansion of a common form...
brtxpsd2 35427 Another common abbreviatio...
brtxpsd3 35428 A third common abbreviatio...
relbigcup 35429 The ` Bigcup ` relationshi...
brbigcup 35430 Binary relation over ` Big...
dfbigcup2 35431 ` Bigcup ` using maps-to n...
fobigcup 35432 ` Bigcup ` maps the univer...
fnbigcup 35433 ` Bigcup ` is a function o...
fvbigcup 35434 For sets, ` Bigcup ` yield...
elfix 35435 Membership in the fixpoint...
elfix2 35436 Alternative membership in ...
dffix2 35437 The fixpoints of a class i...
fixssdm 35438 The fixpoints of a class a...
fixssrn 35439 The fixpoints of a class a...
fixcnv 35440 The fixpoints of a class a...
fixun 35441 The fixpoint operator dist...
ellimits 35442 Membership in the class of...
limitssson 35443 The class of all limit ord...
dfom5b 35444 A quantifier-free definiti...
sscoid 35445 A condition for subset and...
dffun10 35446 Another potential definiti...
elfuns 35447 Membership in the class of...
elfunsg 35448 Closed form of ~ elfuns . ...
brsingle 35449 The binary relation form o...
elsingles 35450 Membership in the class of...
fnsingle 35451 The singleton relationship...
fvsingle 35452 The value of the singleton...
dfsingles2 35453 Alternate definition of th...
snelsingles 35454 A singleton is a member of...
dfiota3 35455 A definition of iota using...
dffv5 35456 Another quantifier-free de...
unisnif 35457 Express union of singleton...
brimage 35458 Binary relation form of th...
brimageg 35459 Closed form of ~ brimage ....
funimage 35460 ` Image A ` is a function....
fnimage 35461 ` Image R ` is a function ...
imageval 35462 The image functor in maps-...
fvimage 35463 Value of the image functor...
brcart 35464 Binary relation form of th...
brdomain 35465 Binary relation form of th...
brrange 35466 Binary relation form of th...
brdomaing 35467 Closed form of ~ brdomain ...
brrangeg 35468 Closed form of ~ brrange ....
brimg 35469 Binary relation form of th...
brapply 35470 Binary relation form of th...
brcup 35471 Binary relation form of th...
brcap 35472 Binary relation form of th...
brsuccf 35473 Binary relation form of th...
funpartlem 35474 Lemma for ~ funpartfun . ...
funpartfun 35475 The functional part of ` F...
funpartss 35476 The functional part of ` F...
funpartfv 35477 The function value of the ...
fullfunfnv 35478 The full functional part o...
fullfunfv 35479 The function value of the ...
brfullfun 35480 A binary relation form con...
brrestrict 35481 Binary relation form of th...
dfrecs2 35482 A quantifier-free definiti...
dfrdg4 35483 A quantifier-free definiti...
dfint3 35484 Quantifier-free definition...
imagesset 35485 The Image functor applied ...
brub 35486 Binary relation form of th...
brlb 35487 Binary relation form of th...
altopex 35492 Alternative ordered pairs ...
altopthsn 35493 Two alternate ordered pair...
altopeq12 35494 Equality for alternate ord...
altopeq1 35495 Equality for alternate ord...
altopeq2 35496 Equality for alternate ord...
altopth1 35497 Equality of the first memb...
altopth2 35498 Equality of the second mem...
altopthg 35499 Alternate ordered pair the...
altopthbg 35500 Alternate ordered pair the...
altopth 35501 The alternate ordered pair...
altopthb 35502 Alternate ordered pair the...
altopthc 35503 Alternate ordered pair the...
altopthd 35504 Alternate ordered pair the...
altxpeq1 35505 Equality for alternate Car...
altxpeq2 35506 Equality for alternate Car...
elaltxp 35507 Membership in alternate Ca...
altopelaltxp 35508 Alternate ordered pair mem...
altxpsspw 35509 An inclusion rule for alte...
altxpexg 35510 The alternate Cartesian pr...
rankaltopb 35511 Compute the rank of an alt...
nfaltop 35512 Bound-variable hypothesis ...
sbcaltop 35513 Distribution of class subs...
cgrrflx2d 35516 Deduction form of ~ axcgrr...
cgrtr4d 35517 Deduction form of ~ axcgrt...
cgrtr4and 35518 Deduction form of ~ axcgrt...
cgrrflx 35519 Reflexivity law for congru...
cgrrflxd 35520 Deduction form of ~ cgrrfl...
cgrcomim 35521 Congruence commutes on the...
cgrcom 35522 Congruence commutes betwee...
cgrcomand 35523 Deduction form of ~ cgrcom...
cgrtr 35524 Transitivity law for congr...
cgrtrand 35525 Deduction form of ~ cgrtr ...
cgrtr3 35526 Transitivity law for congr...
cgrtr3and 35527 Deduction form of ~ cgrtr3...
cgrcoml 35528 Congruence commutes on the...
cgrcomr 35529 Congruence commutes on the...
cgrcomlr 35530 Congruence commutes on bot...
cgrcomland 35531 Deduction form of ~ cgrcom...
cgrcomrand 35532 Deduction form of ~ cgrcom...
cgrcomlrand 35533 Deduction form of ~ cgrcom...
cgrtriv 35534 Degenerate segments are co...
cgrid2 35535 Identity law for congruenc...
cgrdegen 35536 Two congruent segments are...
brofs 35537 Binary relation form of th...
5segofs 35538 Rephrase ~ ax5seg using th...
ofscom 35539 The outer five segment pre...
cgrextend 35540 Link congruence over a pai...
cgrextendand 35541 Deduction form of ~ cgrext...
segconeq 35542 Two points that satisfy th...
segconeu 35543 Existential uniqueness ver...
btwntriv2 35544 Betweenness always holds f...
btwncomim 35545 Betweenness commutes. Imp...
btwncom 35546 Betweenness commutes. (Co...
btwncomand 35547 Deduction form of ~ btwnco...
btwntriv1 35548 Betweenness always holds f...
btwnswapid 35549 If you can swap the first ...
btwnswapid2 35550 If you can swap arguments ...
btwnintr 35551 Inner transitivity law for...
btwnexch3 35552 Exchange the first endpoin...
btwnexch3and 35553 Deduction form of ~ btwnex...
btwnouttr2 35554 Outer transitivity law for...
btwnexch2 35555 Exchange the outer point o...
btwnouttr 35556 Outer transitivity law for...
btwnexch 35557 Outer transitivity law for...
btwnexchand 35558 Deduction form of ~ btwnex...
btwndiff 35559 There is always a ` c ` di...
trisegint 35560 A line segment between two...
funtransport 35563 The ` TransportTo ` relati...
fvtransport 35564 Calculate the value of the...
transportcl 35565 Closure law for segment tr...
transportprops 35566 Calculate the defining pro...
brifs 35575 Binary relation form of th...
ifscgr 35576 Inner five segment congrue...
cgrsub 35577 Removing identical parts f...
brcgr3 35578 Binary relation form of th...
cgr3permute3 35579 Permutation law for three-...
cgr3permute1 35580 Permutation law for three-...
cgr3permute2 35581 Permutation law for three-...
cgr3permute4 35582 Permutation law for three-...
cgr3permute5 35583 Permutation law for three-...
cgr3tr4 35584 Transitivity law for three...
cgr3com 35585 Commutativity law for thre...
cgr3rflx 35586 Identity law for three-pla...
cgrxfr 35587 A line segment can be divi...
btwnxfr 35588 A condition for extending ...
colinrel 35589 Colinearity is a relations...
brcolinear2 35590 Alternate colinearity bina...
brcolinear 35591 The binary relation form o...
colinearex 35592 The colinear predicate exi...
colineardim1 35593 If ` A ` is colinear with ...
colinearperm1 35594 Permutation law for coline...
colinearperm3 35595 Permutation law for coline...
colinearperm2 35596 Permutation law for coline...
colinearperm4 35597 Permutation law for coline...
colinearperm5 35598 Permutation law for coline...
colineartriv1 35599 Trivial case of colinearit...
colineartriv2 35600 Trivial case of colinearit...
btwncolinear1 35601 Betweenness implies coline...
btwncolinear2 35602 Betweenness implies coline...
btwncolinear3 35603 Betweenness implies coline...
btwncolinear4 35604 Betweenness implies coline...
btwncolinear5 35605 Betweenness implies coline...
btwncolinear6 35606 Betweenness implies coline...
colinearxfr 35607 Transfer law for colineari...
lineext 35608 Extend a line with a missi...
brofs2 35609 Change some conditions for...
brifs2 35610 Change some conditions for...
brfs 35611 Binary relation form of th...
fscgr 35612 Congruence law for the gen...
linecgr 35613 Congruence rule for lines....
linecgrand 35614 Deduction form of ~ linecg...
lineid 35615 Identity law for points on...
idinside 35616 Law for finding a point in...
endofsegid 35617 If ` A ` , ` B ` , and ` C...
endofsegidand 35618 Deduction form of ~ endofs...
btwnconn1lem1 35619 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 35620 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 35621 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 35622 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 35623 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 35624 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 35625 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 35626 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 35627 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 35628 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 35629 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 35630 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 35631 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 35632 Lemma for ~ btwnconn1 . F...
btwnconn1 35633 Connectitivy law for betwe...
btwnconn2 35634 Another connectivity law f...
btwnconn3 35635 Inner connectivity law for...
midofsegid 35636 If two points fall in the ...
segcon2 35637 Generalization of ~ axsegc...
brsegle 35640 Binary relation form of th...
brsegle2 35641 Alternate characterization...
seglecgr12im 35642 Substitution law for segme...
seglecgr12 35643 Substitution law for segme...
seglerflx 35644 Segment comparison is refl...
seglemin 35645 Any segment is at least as...
segletr 35646 Segment less than is trans...
segleantisym 35647 Antisymmetry law for segme...
seglelin 35648 Linearity law for segment ...
btwnsegle 35649 If ` B ` falls between ` A...
colinbtwnle 35650 Given three colinear point...
broutsideof 35653 Binary relation form of ` ...
broutsideof2 35654 Alternate form of ` Outsid...
outsidene1 35655 Outsideness implies inequa...
outsidene2 35656 Outsideness implies inequa...
btwnoutside 35657 A principle linking outsid...
broutsideof3 35658 Characterization of outsid...
outsideofrflx 35659 Reflexivity of outsideness...
outsideofcom 35660 Commutativity law for outs...
outsideoftr 35661 Transitivity law for outsi...
outsideofeq 35662 Uniqueness law for ` Outsi...
outsideofeu 35663 Given a nondegenerate ray,...
outsidele 35664 Relate ` OutsideOf ` to ` ...
outsideofcol 35665 Outside of implies colinea...
funray 35672 Show that the ` Ray ` rela...
fvray 35673 Calculate the value of the...
funline 35674 Show that the ` Line ` rel...
linedegen 35675 When ` Line ` is applied w...
fvline 35676 Calculate the value of the...
liness 35677 A line is a subset of the ...
fvline2 35678 Alternate definition of a ...
lineunray 35679 A line is composed of a po...
lineelsb2 35680 If ` S ` lies on ` P Q ` ,...
linerflx1 35681 Reflexivity law for line m...
linecom 35682 Commutativity law for line...
linerflx2 35683 Reflexivity law for line m...
ellines 35684 Membership in the set of a...
linethru 35685 If ` A ` is a line contain...
hilbert1.1 35686 There is a line through an...
hilbert1.2 35687 There is at most one line ...
linethrueu 35688 There is a unique line goi...
lineintmo 35689 Two distinct lines interse...
fwddifval 35694 Calculate the value of the...
fwddifnval 35695 The value of the forward d...
fwddifn0 35696 The value of the n-iterate...
fwddifnp1 35697 The value of the n-iterate...
rankung 35698 The rank of the union of t...
ranksng 35699 The rank of a singleton. ...
rankelg 35700 The membership relation is...
rankpwg 35701 The rank of a power set. ...
rank0 35702 The rank of the empty set ...
rankeq1o 35703 The only set with rank ` 1...
elhf 35706 Membership in the heredita...
elhf2 35707 Alternate form of membersh...
elhf2g 35708 Hereditarily finiteness vi...
0hf 35709 The empty set is a heredit...
hfun 35710 The union of two HF sets i...
hfsn 35711 The singleton of an HF set...
hfadj 35712 Adjoining one HF element t...
hfelhf 35713 Any member of an HF set is...
hftr 35714 The class of all hereditar...
hfext 35715 Extensionality for HF sets...
hfuni 35716 The union of an HF set is ...
hfpw 35717 The power class of an HF s...
hfninf 35718 ` _om ` is not hereditaril...
mpomulnzcnf 35719 Multiplication maps nonzer...
a1i14 35720 Add two antecedents to a w...
a1i24 35721 Add two antecedents to a w...
exp5d 35722 An exportation inference. ...
exp5g 35723 An exportation inference. ...
exp5k 35724 An exportation inference. ...
exp56 35725 An exportation inference. ...
exp58 35726 An exportation inference. ...
exp510 35727 An exportation inference. ...
exp511 35728 An exportation inference. ...
exp512 35729 An exportation inference. ...
3com12d 35730 Commutation in consequent....
imp5p 35731 A triple importation infer...
imp5q 35732 A triple importation infer...
ecase13d 35733 Deduction for elimination ...
subtr 35734 Transitivity of implicit s...
subtr2 35735 Transitivity of implicit s...
trer 35736 A relation intersected wit...
elicc3 35737 An equivalent membership c...
finminlem 35738 A useful lemma about finit...
gtinf 35739 Any number greater than an...
opnrebl 35740 A set is open in the stand...
opnrebl2 35741 A set is open in the stand...
nn0prpwlem 35742 Lemma for ~ nn0prpw . Use...
nn0prpw 35743 Two nonnegative integers a...
topbnd 35744 Two equivalent expressions...
opnbnd 35745 A set is open iff it is di...
cldbnd 35746 A set is closed iff it con...
ntruni 35747 A union of interiors is a ...
clsun 35748 A pairwise union of closur...
clsint2 35749 The closure of an intersec...
opnregcld 35750 A set is regularly closed ...
cldregopn 35751 A set if regularly open if...
neiin 35752 Two neighborhoods intersec...
hmeoclda 35753 Homeomorphisms preserve cl...
hmeocldb 35754 Homeomorphisms preserve cl...
ivthALT 35755 An alternate proof of the ...
fnerel 35758 Fineness is a relation. (...
isfne 35759 The predicate " ` B ` is f...
isfne4 35760 The predicate " ` B ` is f...
isfne4b 35761 A condition for a topology...
isfne2 35762 The predicate " ` B ` is f...
isfne3 35763 The predicate " ` B ` is f...
fnebas 35764 A finer cover covers the s...
fnetg 35765 A finer cover generates a ...
fnessex 35766 If ` B ` is finer than ` A...
fneuni 35767 If ` B ` is finer than ` A...
fneint 35768 If a cover is finer than a...
fness 35769 A cover is finer than its ...
fneref 35770 Reflexivity of the finenes...
fnetr 35771 Transitivity of the finene...
fneval 35772 Two covers are finer than ...
fneer 35773 Fineness intersected with ...
topfne 35774 Fineness for covers corres...
topfneec 35775 A cover is equivalent to a...
topfneec2 35776 A topology is precisely id...
fnessref 35777 A cover is finer iff it ha...
refssfne 35778 A cover is a refinement if...
neibastop1 35779 A collection of neighborho...
neibastop2lem 35780 Lemma for ~ neibastop2 . ...
neibastop2 35781 In the topology generated ...
neibastop3 35782 The topology generated by ...
topmtcl 35783 The meet of a collection o...
topmeet 35784 Two equivalent formulation...
topjoin 35785 Two equivalent formulation...
fnemeet1 35786 The meet of a collection o...
fnemeet2 35787 The meet of equivalence cl...
fnejoin1 35788 Join of equivalence classe...
fnejoin2 35789 Join of equivalence classe...
fgmin 35790 Minimality property of a g...
neifg 35791 The neighborhood filter of...
tailfval 35792 The tail function for a di...
tailval 35793 The tail of an element in ...
eltail 35794 An element of a tail. (Co...
tailf 35795 The tail function of a dir...
tailini 35796 A tail contains its initia...
tailfb 35797 The collection of tails of...
filnetlem1 35798 Lemma for ~ filnet . Chan...
filnetlem2 35799 Lemma for ~ filnet . The ...
filnetlem3 35800 Lemma for ~ filnet . (Con...
filnetlem4 35801 Lemma for ~ filnet . (Con...
filnet 35802 A filter has the same conv...
tb-ax1 35803 The first of three axioms ...
tb-ax2 35804 The second of three axioms...
tb-ax3 35805 The third of three axioms ...
tbsyl 35806 The weak syllogism from Ta...
re1ax2lem 35807 Lemma for ~ re1ax2 . (Con...
re1ax2 35808 ~ ax-2 rederived from the ...
naim1 35809 Constructor theorem for ` ...
naim2 35810 Constructor theorem for ` ...
naim1i 35811 Constructor rule for ` -/\...
naim2i 35812 Constructor rule for ` -/\...
naim12i 35813 Constructor rule for ` -/\...
nabi1i 35814 Constructor rule for ` -/\...
nabi2i 35815 Constructor rule for ` -/\...
nabi12i 35816 Constructor rule for ` -/\...
df3nandALT1 35819 The double nand expressed ...
df3nandALT2 35820 The double nand expressed ...
andnand1 35821 Double and in terms of dou...
imnand2 35822 An ` -> ` nand relation. ...
nalfal 35823 Not all sets hold ` F. ` a...
nexntru 35824 There does not exist a set...
nexfal 35825 There does not exist a set...
neufal 35826 There does not exist exact...
neutru 35827 There does not exist exact...
nmotru 35828 There does not exist at mo...
mofal 35829 There exist at most one se...
nrmo 35830 "At most one" restricted e...
meran1 35831 A single axiom for proposi...
meran2 35832 A single axiom for proposi...
meran3 35833 A single axiom for proposi...
waj-ax 35834 A single axiom for proposi...
lukshef-ax2 35835 A single axiom for proposi...
arg-ax 35836 A single axiom for proposi...
negsym1 35837 In the paper "On Variable ...
imsym1 35838 A symmetry with ` -> ` . ...
bisym1 35839 A symmetry with ` <-> ` . ...
consym1 35840 A symmetry with ` /\ ` . ...
dissym1 35841 A symmetry with ` \/ ` . ...
nandsym1 35842 A symmetry with ` -/\ ` . ...
unisym1 35843 A symmetry with ` A. ` . ...
exisym1 35844 A symmetry with ` E. ` . ...
unqsym1 35845 A symmetry with ` E! ` . ...
amosym1 35846 A symmetry with ` E* ` . ...
subsym1 35847 A symmetry with ` [ x / y ...
ontopbas 35848 An ordinal number is a top...
onsstopbas 35849 The class of ordinal numbe...
onpsstopbas 35850 The class of ordinal numbe...
ontgval 35851 The topology generated fro...
ontgsucval 35852 The topology generated fro...
onsuctop 35853 A successor ordinal number...
onsuctopon 35854 One of the topologies on a...
ordtoplem 35855 Membership of the class of...
ordtop 35856 An ordinal is a topology i...
onsucconni 35857 A successor ordinal number...
onsucconn 35858 A successor ordinal number...
ordtopconn 35859 An ordinal topology is con...
onintopssconn 35860 An ordinal topology is con...
onsuct0 35861 A successor ordinal number...
ordtopt0 35862 An ordinal topology is T_0...
onsucsuccmpi 35863 The successor of a success...
onsucsuccmp 35864 The successor of a success...
limsucncmpi 35865 The successor of a limit o...
limsucncmp 35866 The successor of a limit o...
ordcmp 35867 An ordinal topology is com...
ssoninhaus 35868 The ordinal topologies ` 1...
onint1 35869 The ordinal T_1 spaces are...
oninhaus 35870 The ordinal Hausdorff spac...
fveleq 35871 Please add description her...
findfvcl 35872 Please add description her...
findreccl 35873 Please add description her...
findabrcl 35874 Please add description her...
nnssi2 35875 Convert a theorem for real...
nnssi3 35876 Convert a theorem for real...
nndivsub 35877 Please add description her...
nndivlub 35878 A factor of a positive int...
ee7.2aOLD 35881 Lemma for Euclid's Element...
dnival 35882 Value of the "distance to ...
dnicld1 35883 Closure theorem for the "d...
dnicld2 35884 Closure theorem for the "d...
dnif 35885 The "distance to nearest i...
dnizeq0 35886 The distance to nearest in...
dnizphlfeqhlf 35887 The distance to nearest in...
rddif2 35888 Variant of ~ rddif . (Con...
dnibndlem1 35889 Lemma for ~ dnibnd . (Con...
dnibndlem2 35890 Lemma for ~ dnibnd . (Con...
dnibndlem3 35891 Lemma for ~ dnibnd . (Con...
dnibndlem4 35892 Lemma for ~ dnibnd . (Con...
dnibndlem5 35893 Lemma for ~ dnibnd . (Con...
dnibndlem6 35894 Lemma for ~ dnibnd . (Con...
dnibndlem7 35895 Lemma for ~ dnibnd . (Con...
dnibndlem8 35896 Lemma for ~ dnibnd . (Con...
dnibndlem9 35897 Lemma for ~ dnibnd . (Con...
dnibndlem10 35898 Lemma for ~ dnibnd . (Con...
dnibndlem11 35899 Lemma for ~ dnibnd . (Con...
dnibndlem12 35900 Lemma for ~ dnibnd . (Con...
dnibndlem13 35901 Lemma for ~ dnibnd . (Con...
dnibnd 35902 The "distance to nearest i...
dnicn 35903 The "distance to nearest i...
knoppcnlem1 35904 Lemma for ~ knoppcn . (Co...
knoppcnlem2 35905 Lemma for ~ knoppcn . (Co...
knoppcnlem3 35906 Lemma for ~ knoppcn . (Co...
knoppcnlem4 35907 Lemma for ~ knoppcn . (Co...
knoppcnlem5 35908 Lemma for ~ knoppcn . (Co...
knoppcnlem6 35909 Lemma for ~ knoppcn . (Co...
knoppcnlem7 35910 Lemma for ~ knoppcn . (Co...
knoppcnlem8 35911 Lemma for ~ knoppcn . (Co...
knoppcnlem9 35912 Lemma for ~ knoppcn . (Co...
knoppcnlem10 35913 Lemma for ~ knoppcn . (Co...
knoppcnlem11 35914 Lemma for ~ knoppcn . (Co...
knoppcn 35915 The continuous nowhere dif...
knoppcld 35916 Closure theorem for Knopp'...
unblimceq0lem 35917 Lemma for ~ unblimceq0 . ...
unblimceq0 35918 If ` F ` is unbounded near...
unbdqndv1 35919 If the difference quotient...
unbdqndv2lem1 35920 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 35921 Lemma for ~ unbdqndv2 . (...
unbdqndv2 35922 Variant of ~ unbdqndv1 wit...
knoppndvlem1 35923 Lemma for ~ knoppndv . (C...
knoppndvlem2 35924 Lemma for ~ knoppndv . (C...
knoppndvlem3 35925 Lemma for ~ knoppndv . (C...
knoppndvlem4 35926 Lemma for ~ knoppndv . (C...
knoppndvlem5 35927 Lemma for ~ knoppndv . (C...
knoppndvlem6 35928 Lemma for ~ knoppndv . (C...
knoppndvlem7 35929 Lemma for ~ knoppndv . (C...
knoppndvlem8 35930 Lemma for ~ knoppndv . (C...
knoppndvlem9 35931 Lemma for ~ knoppndv . (C...
knoppndvlem10 35932 Lemma for ~ knoppndv . (C...
knoppndvlem11 35933 Lemma for ~ knoppndv . (C...
knoppndvlem12 35934 Lemma for ~ knoppndv . (C...
knoppndvlem13 35935 Lemma for ~ knoppndv . (C...
knoppndvlem14 35936 Lemma for ~ knoppndv . (C...
knoppndvlem15 35937 Lemma for ~ knoppndv . (C...
knoppndvlem16 35938 Lemma for ~ knoppndv . (C...
knoppndvlem17 35939 Lemma for ~ knoppndv . (C...
knoppndvlem18 35940 Lemma for ~ knoppndv . (C...
knoppndvlem19 35941 Lemma for ~ knoppndv . (C...
knoppndvlem20 35942 Lemma for ~ knoppndv . (C...
knoppndvlem21 35943 Lemma for ~ knoppndv . (C...
knoppndvlem22 35944 Lemma for ~ knoppndv . (C...
knoppndv 35945 The continuous nowhere dif...
knoppf 35946 Knopp's function is a func...
knoppcn2 35947 Variant of ~ knoppcn with ...
cnndvlem1 35948 Lemma for ~ cnndv . (Cont...
cnndvlem2 35949 Lemma for ~ cnndv . (Cont...
cnndv 35950 There exists a continuous ...
bj-mp2c 35951 A double modus ponens infe...
bj-mp2d 35952 A double modus ponens infe...
bj-0 35953 A syntactic theorem. See ...
bj-1 35954 In this proof, the use of ...
bj-a1k 35955 Weakening of ~ ax-1 . As ...
bj-poni 35956 Inference associated with ...
bj-nnclav 35957 When ` F. ` is substituted...
bj-nnclavi 35958 Inference associated with ...
bj-nnclavc 35959 Commuted form of ~ bj-nncl...
bj-nnclavci 35960 Inference associated with ...
bj-jarrii 35961 Inference associated with ...
bj-imim21 35962 The propositional function...
bj-imim21i 35963 Inference associated with ...
bj-peircestab 35964 Over minimal implicational...
bj-stabpeirce 35965 This minimal implicational...
bj-syl66ib 35966 A mixed syllogism inferenc...
bj-orim2 35967 Proof of ~ orim2 from the ...
bj-currypeirce 35968 Curry's axiom ~ curryax (a...
bj-peircecurry 35969 Peirce's axiom ~ peirce im...
bj-animbi 35970 Conjunction in terms of im...
bj-currypara 35971 Curry's paradox. Note tha...
bj-con2com 35972 A commuted form of the con...
bj-con2comi 35973 Inference associated with ...
bj-pm2.01i 35974 Inference associated with ...
bj-nimn 35975 If a formula is true, then...
bj-nimni 35976 Inference associated with ...
bj-peircei 35977 Inference associated with ...
bj-looinvi 35978 Inference associated with ...
bj-looinvii 35979 Inference associated with ...
bj-mt2bi 35980 Version of ~ mt2 where the...
bj-ntrufal 35981 The negation of a theorem ...
bj-fal 35982 Shortening of ~ fal using ...
bj-jaoi1 35983 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 35984 Shortens ~ consensus (110>...
bj-dfbi4 35985 Alternate definition of th...
bj-dfbi5 35986 Alternate definition of th...
bj-dfbi6 35987 Alternate definition of th...
bj-bijust0ALT 35988 Alternate proof of ~ bijus...
bj-bijust00 35989 A self-implication does no...
bj-consensus 35990 Version of ~ consensus exp...
bj-consensusALT 35991 Alternate proof of ~ bj-co...
bj-df-ifc 35992 Candidate definition for t...
bj-dfif 35993 Alternate definition of th...
bj-ififc 35994 A biconditional connecting...
bj-imbi12 35995 Uncurried (imported) form ...
bj-biorfi 35996 This should be labeled "bi...
bj-falor 35997 Dual of ~ truan (which has...
bj-falor2 35998 Dual of ~ truan . (Contri...
bj-bibibi 35999 A property of the bicondit...
bj-imn3ani 36000 Duplication of ~ bnj1224 ....
bj-andnotim 36001 Two ways of expressing a c...
bj-bi3ant 36002 This used to be in the mai...
bj-bisym 36003 This used to be in the mai...
bj-bixor 36004 Equivalence of two ternary...
bj-axdd2 36005 This implication, proved u...
bj-axd2d 36006 This implication, proved u...
bj-axtd 36007 This implication, proved f...
bj-gl4 36008 In a normal modal logic, t...
bj-axc4 36009 Over minimal calculus, the...
prvlem1 36014 An elementary property of ...
prvlem2 36015 An elementary property of ...
bj-babygodel 36016 See the section header com...
bj-babylob 36017 See the section header com...
bj-godellob 36018 Proof of Gödel's theo...
bj-genr 36019 Generalization rule on the...
bj-genl 36020 Generalization rule on the...
bj-genan 36021 Generalization rule on a c...
bj-mpgs 36022 From a closed form theorem...
bj-2alim 36023 Closed form of ~ 2alimi . ...
bj-2exim 36024 Closed form of ~ 2eximi . ...
bj-alanim 36025 Closed form of ~ alanimi ....
bj-2albi 36026 Closed form of ~ 2albii . ...
bj-notalbii 36027 Equivalence of universal q...
bj-2exbi 36028 Closed form of ~ 2exbii . ...
bj-3exbi 36029 Closed form of ~ 3exbii . ...
bj-sylgt2 36030 Uncurried (imported) form ...
bj-alrimg 36031 The general form of the *a...
bj-alrimd 36032 A slightly more general ~ ...
bj-sylget 36033 Dual statement of ~ sylgt ...
bj-sylget2 36034 Uncurried (imported) form ...
bj-exlimg 36035 The general form of the *e...
bj-sylge 36036 Dual statement of ~ sylg (...
bj-exlimd 36037 A slightly more general ~ ...
bj-nfimexal 36038 A weak from of nonfreeness...
bj-alexim 36039 Closed form of ~ aleximi ....
bj-nexdh 36040 Closed form of ~ nexdh (ac...
bj-nexdh2 36041 Uncurried (imported) form ...
bj-hbxfrbi 36042 Closed form of ~ hbxfrbi ....
bj-hbyfrbi 36043 Version of ~ bj-hbxfrbi wi...
bj-exalim 36044 Distribute quantifiers ove...
bj-exalimi 36045 An inference for distribut...
bj-exalims 36046 Distributing quantifiers o...
bj-exalimsi 36047 An inference for distribut...
bj-ax12ig 36048 A lemma used to prove a we...
bj-ax12i 36049 A weakening of ~ bj-ax12ig...
bj-nfimt 36050 Closed form of ~ nfim and ...
bj-cbvalimt 36051 A lemma in closed form use...
bj-cbveximt 36052 A lemma in closed form use...
bj-eximALT 36053 Alternate proof of ~ exim ...
bj-aleximiALT 36054 Alternate proof of ~ alexi...
bj-eximcom 36055 A commuted form of ~ exim ...
bj-ax12wlem 36056 A lemma used to prove a we...
bj-cbvalim 36057 A lemma used to prove ~ bj...
bj-cbvexim 36058 A lemma used to prove ~ bj...
bj-cbvalimi 36059 An equality-free general i...
bj-cbveximi 36060 An equality-free general i...
bj-cbval 36061 Changing a bound variable ...
bj-cbvex 36062 Changing a bound variable ...
bj-ssbeq 36065 Substitution in an equalit...
bj-ssblem1 36066 A lemma for the definiens ...
bj-ssblem2 36067 An instance of ~ ax-11 pro...
bj-ax12v 36068 A weaker form of ~ ax-12 a...
bj-ax12 36069 Remove a DV condition from...
bj-ax12ssb 36070 Axiom ~ bj-ax12 expressed ...
bj-19.41al 36071 Special case of ~ 19.41 pr...
bj-equsexval 36072 Special case of ~ equsexv ...
bj-subst 36073 Proof of ~ sbalex from cor...
bj-ssbid2 36074 A special case of ~ sbequ2...
bj-ssbid2ALT 36075 Alternate proof of ~ bj-ss...
bj-ssbid1 36076 A special case of ~ sbequ1...
bj-ssbid1ALT 36077 Alternate proof of ~ bj-ss...
bj-ax6elem1 36078 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 36079 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 36080 Proof of ~ ax6e (hence ~ a...
bj-spimvwt 36081 Closed form of ~ spimvw . ...
bj-spnfw 36082 Theorem close to a closed ...
bj-cbvexiw 36083 Change bound variable. Th...
bj-cbvexivw 36084 Change bound variable. Th...
bj-modald 36085 A short form of the axiom ...
bj-denot 36086 A weakening of ~ ax-6 and ...
bj-eqs 36087 A lemma for substitutions,...
bj-cbvexw 36088 Change bound variable. Th...
bj-ax12w 36089 The general statement that...
bj-ax89 36090 A theorem which could be u...
bj-elequ12 36091 An identity law for the no...
bj-cleljusti 36092 One direction of ~ cleljus...
bj-alcomexcom 36093 Commutation of two existen...
bj-hbalt 36094 Closed form of ~ hbal . W...
axc11n11 36095 Proof of ~ axc11n from { ~...
axc11n11r 36096 Proof of ~ axc11n from { ~...
bj-axc16g16 36097 Proof of ~ axc16g from { ~...
bj-ax12v3 36098 A weak version of ~ ax-12 ...
bj-ax12v3ALT 36099 Alternate proof of ~ bj-ax...
bj-sb 36100 A weak variant of ~ sbid2 ...
bj-modalbe 36101 The predicate-calculus ver...
bj-spst 36102 Closed form of ~ sps . On...
bj-19.21bit 36103 Closed form of ~ 19.21bi ....
bj-19.23bit 36104 Closed form of ~ 19.23bi ....
bj-nexrt 36105 Closed form of ~ nexr . C...
bj-alrim 36106 Closed form of ~ alrimi . ...
bj-alrim2 36107 Uncurried (imported) form ...
bj-nfdt0 36108 A theorem close to a close...
bj-nfdt 36109 Closed form of ~ nf5d and ...
bj-nexdt 36110 Closed form of ~ nexd . (...
bj-nexdvt 36111 Closed form of ~ nexdv . ...
bj-alexbiex 36112 Adding a second quantifier...
bj-exexbiex 36113 Adding a second quantifier...
bj-alalbial 36114 Adding a second quantifier...
bj-exalbial 36115 Adding a second quantifier...
bj-19.9htbi 36116 Strengthening ~ 19.9ht by ...
bj-hbntbi 36117 Strengthening ~ hbnt by re...
bj-biexal1 36118 A general FOL biconditiona...
bj-biexal2 36119 When ` ph ` is substituted...
bj-biexal3 36120 When ` ph ` is substituted...
bj-bialal 36121 When ` ph ` is substituted...
bj-biexex 36122 When ` ph ` is substituted...
bj-hbext 36123 Closed form of ~ hbex . (...
bj-nfalt 36124 Closed form of ~ nfal . (...
bj-nfext 36125 Closed form of ~ nfex . (...
bj-eeanvw 36126 Version of ~ exdistrv with...
bj-modal4 36127 First-order logic form of ...
bj-modal4e 36128 First-order logic form of ...
bj-modalb 36129 A short form of the axiom ...
bj-wnf1 36130 When ` ph ` is substituted...
bj-wnf2 36131 When ` ph ` is substituted...
bj-wnfanf 36132 When ` ph ` is substituted...
bj-wnfenf 36133 When ` ph ` is substituted...
bj-substax12 36134 Equivalent form of the axi...
bj-substw 36135 Weak form of the LHS of ~ ...
bj-nnfbi 36138 If two formulas are equiva...
bj-nnfbd 36139 If two formulas are equiva...
bj-nnfbii 36140 If two formulas are equiva...
bj-nnfa 36141 Nonfreeness implies the eq...
bj-nnfad 36142 Nonfreeness implies the eq...
bj-nnfai 36143 Nonfreeness implies the eq...
bj-nnfe 36144 Nonfreeness implies the eq...
bj-nnfed 36145 Nonfreeness implies the eq...
bj-nnfei 36146 Nonfreeness implies the eq...
bj-nnfea 36147 Nonfreeness implies the eq...
bj-nnfead 36148 Nonfreeness implies the eq...
bj-nnfeai 36149 Nonfreeness implies the eq...
bj-dfnnf2 36150 Alternate definition of ~ ...
bj-nnfnfTEMP 36151 New nonfreeness implies ol...
bj-wnfnf 36152 When ` ph ` is substituted...
bj-nnfnt 36153 A variable is nonfree in a...
bj-nnftht 36154 A variable is nonfree in a...
bj-nnfth 36155 A variable is nonfree in a...
bj-nnfnth 36156 A variable is nonfree in t...
bj-nnfim1 36157 A consequence of nonfreene...
bj-nnfim2 36158 A consequence of nonfreene...
bj-nnfim 36159 Nonfreeness in the anteced...
bj-nnfimd 36160 Nonfreeness in the anteced...
bj-nnfan 36161 Nonfreeness in both conjun...
bj-nnfand 36162 Nonfreeness in both conjun...
bj-nnfor 36163 Nonfreeness in both disjun...
bj-nnford 36164 Nonfreeness in both disjun...
bj-nnfbit 36165 Nonfreeness in both sides ...
bj-nnfbid 36166 Nonfreeness in both sides ...
bj-nnfv 36167 A non-occurring variable i...
bj-nnf-alrim 36168 Proof of the closed form o...
bj-nnf-exlim 36169 Proof of the closed form o...
bj-dfnnf3 36170 Alternate definition of no...
bj-nfnnfTEMP 36171 New nonfreeness is equival...
bj-nnfa1 36172 See ~ nfa1 . (Contributed...
bj-nnfe1 36173 See ~ nfe1 . (Contributed...
bj-19.12 36174 See ~ 19.12 . Could be la...
bj-nnflemaa 36175 One of four lemmas for non...
bj-nnflemee 36176 One of four lemmas for non...
bj-nnflemae 36177 One of four lemmas for non...
bj-nnflemea 36178 One of four lemmas for non...
bj-nnfalt 36179 See ~ nfal and ~ bj-nfalt ...
bj-nnfext 36180 See ~ nfex and ~ bj-nfext ...
bj-stdpc5t 36181 Alias of ~ bj-nnf-alrim fo...
bj-19.21t 36182 Statement ~ 19.21t proved ...
bj-19.23t 36183 Statement ~ 19.23t proved ...
bj-19.36im 36184 One direction of ~ 19.36 f...
bj-19.37im 36185 One direction of ~ 19.37 f...
bj-19.42t 36186 Closed form of ~ 19.42 fro...
bj-19.41t 36187 Closed form of ~ 19.41 fro...
bj-sbft 36188 Version of ~ sbft using ` ...
bj-pm11.53vw 36189 Version of ~ pm11.53v with...
bj-pm11.53v 36190 Version of ~ pm11.53v with...
bj-pm11.53a 36191 A variant of ~ pm11.53v . ...
bj-equsvt 36192 A variant of ~ equsv . (C...
bj-equsalvwd 36193 Variant of ~ equsalvw . (...
bj-equsexvwd 36194 Variant of ~ equsexvw . (...
bj-sbievwd 36195 Variant of ~ sbievw . (Co...
bj-axc10 36196 Alternate proof of ~ axc10...
bj-alequex 36197 A fol lemma. See ~ aleque...
bj-spimt2 36198 A step in the proof of ~ s...
bj-cbv3ta 36199 Closed form of ~ cbv3 . (...
bj-cbv3tb 36200 Closed form of ~ cbv3 . (...
bj-hbsb3t 36201 A theorem close to a close...
bj-hbsb3 36202 Shorter proof of ~ hbsb3 ....
bj-nfs1t 36203 A theorem close to a close...
bj-nfs1t2 36204 A theorem close to a close...
bj-nfs1 36205 Shorter proof of ~ nfs1 (t...
bj-axc10v 36206 Version of ~ axc10 with a ...
bj-spimtv 36207 Version of ~ spimt with a ...
bj-cbv3hv2 36208 Version of ~ cbv3h with tw...
bj-cbv1hv 36209 Version of ~ cbv1h with a ...
bj-cbv2hv 36210 Version of ~ cbv2h with a ...
bj-cbv2v 36211 Version of ~ cbv2 with a d...
bj-cbvaldv 36212 Version of ~ cbvald with a...
bj-cbvexdv 36213 Version of ~ cbvexd with a...
bj-cbval2vv 36214 Version of ~ cbval2vv with...
bj-cbvex2vv 36215 Version of ~ cbvex2vv with...
bj-cbvaldvav 36216 Version of ~ cbvaldva with...
bj-cbvexdvav 36217 Version of ~ cbvexdva with...
bj-cbvex4vv 36218 Version of ~ cbvex4v with ...
bj-equsalhv 36219 Version of ~ equsalh with ...
bj-axc11nv 36220 Version of ~ axc11n with a...
bj-aecomsv 36221 Version of ~ aecoms with a...
bj-axc11v 36222 Version of ~ axc11 with a ...
bj-drnf2v 36223 Version of ~ drnf2 with a ...
bj-equs45fv 36224 Version of ~ equs45f with ...
bj-hbs1 36225 Version of ~ hbsb2 with a ...
bj-nfs1v 36226 Version of ~ nfsb2 with a ...
bj-hbsb2av 36227 Version of ~ hbsb2a with a...
bj-hbsb3v 36228 Version of ~ hbsb3 with a ...
bj-nfsab1 36229 Remove dependency on ~ ax-...
bj-dtrucor2v 36230 Version of ~ dtrucor2 with...
bj-hbaeb2 36231 Biconditional version of a...
bj-hbaeb 36232 Biconditional version of ~...
bj-hbnaeb 36233 Biconditional version of ~...
bj-dvv 36234 A special instance of ~ bj...
bj-equsal1t 36235 Duplication of ~ wl-equsal...
bj-equsal1ti 36236 Inference associated with ...
bj-equsal1 36237 One direction of ~ equsal ...
bj-equsal2 36238 One direction of ~ equsal ...
bj-equsal 36239 Shorter proof of ~ equsal ...
stdpc5t 36240 Closed form of ~ stdpc5 . ...
bj-stdpc5 36241 More direct proof of ~ std...
2stdpc5 36242 A double ~ stdpc5 (one dir...
bj-19.21t0 36243 Proof of ~ 19.21t from ~ s...
exlimii 36244 Inference associated with ...
ax11-pm 36245 Proof of ~ ax-11 similar t...
ax6er 36246 Commuted form of ~ ax6e . ...
exlimiieq1 36247 Inferring a theorem when i...
exlimiieq2 36248 Inferring a theorem when i...
ax11-pm2 36249 Proof of ~ ax-11 from the ...
bj-sbsb 36250 Biconditional showing two ...
bj-dfsb2 36251 Alternate (dual) definitio...
bj-sbf3 36252 Substitution has no effect...
bj-sbf4 36253 Substitution has no effect...
bj-eu3f 36254 Version of ~ eu3v where th...
bj-sblem1 36255 Lemma for substitution. (...
bj-sblem2 36256 Lemma for substitution. (...
bj-sblem 36257 Lemma for substitution. (...
bj-sbievw1 36258 Lemma for substitution. (...
bj-sbievw2 36259 Lemma for substitution. (...
bj-sbievw 36260 Lemma for substitution. C...
bj-sbievv 36261 Version of ~ sbie with a s...
bj-moeub 36262 Uniqueness is equivalent t...
bj-sbidmOLD 36263 Obsolete proof of ~ sbidm ...
bj-dvelimdv 36264 Deduction form of ~ dvelim...
bj-dvelimdv1 36265 Curried (exported) form of...
bj-dvelimv 36266 A version of ~ dvelim usin...
bj-nfeel2 36267 Nonfreeness in a membershi...
bj-axc14nf 36268 Proof of a version of ~ ax...
bj-axc14 36269 Alternate proof of ~ axc14...
mobidvALT 36270 Alternate proof of ~ mobid...
sbn1ALT 36271 Alternate proof of ~ sbn1 ...
eliminable1 36272 A theorem used to prove th...
eliminable2a 36273 A theorem used to prove th...
eliminable2b 36274 A theorem used to prove th...
eliminable2c 36275 A theorem used to prove th...
eliminable3a 36276 A theorem used to prove th...
eliminable3b 36277 A theorem used to prove th...
eliminable-velab 36278 A theorem used to prove th...
eliminable-veqab 36279 A theorem used to prove th...
eliminable-abeqv 36280 A theorem used to prove th...
eliminable-abeqab 36281 A theorem used to prove th...
eliminable-abelv 36282 A theorem used to prove th...
eliminable-abelab 36283 A theorem used to prove th...
bj-denoteslem 36284 Lemma for ~ bj-denotes . ...
bj-denotes 36285 This would be the justific...
bj-issettru 36286 Weak version of ~ isset wi...
bj-elabtru 36287 This is as close as we can...
bj-issetwt 36288 Closed form of ~ bj-issetw...
bj-issetw 36289 The closest one can get to...
bj-elissetALT 36290 Alternate proof of ~ eliss...
bj-issetiv 36291 Version of ~ bj-isseti wit...
bj-isseti 36292 Version of ~ isseti with a...
bj-ralvw 36293 A weak version of ~ ralv n...
bj-rexvw 36294 A weak version of ~ rexv n...
bj-rababw 36295 A weak version of ~ rabab ...
bj-rexcom4bv 36296 Version of ~ rexcom4b and ...
bj-rexcom4b 36297 Remove from ~ rexcom4b dep...
bj-ceqsalt0 36298 The FOL content of ~ ceqsa...
bj-ceqsalt1 36299 The FOL content of ~ ceqsa...
bj-ceqsalt 36300 Remove from ~ ceqsalt depe...
bj-ceqsaltv 36301 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 36302 The FOL content of ~ ceqsa...
bj-ceqsalg 36303 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 36304 Alternate proof of ~ bj-ce...
bj-ceqsalgv 36305 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 36306 Alternate proof of ~ bj-ce...
bj-ceqsal 36307 Remove from ~ ceqsal depen...
bj-ceqsalv 36308 Remove from ~ ceqsalv depe...
bj-spcimdv 36309 Remove from ~ spcimdv depe...
bj-spcimdvv 36310 Remove from ~ spcimdv depe...
elelb 36311 Equivalence between two co...
bj-pwvrelb 36312 Characterization of the el...
bj-nfcsym 36313 The nonfreeness quantifier...
bj-sbeqALT 36314 Substitution in an equalit...
bj-sbeq 36315 Distribute proper substitu...
bj-sbceqgALT 36316 Distribute proper substitu...
bj-csbsnlem 36317 Lemma for ~ bj-csbsn (in t...
bj-csbsn 36318 Substitution in a singleto...
bj-sbel1 36319 Version of ~ sbcel1g when ...
bj-abv 36320 The class of sets verifyin...
bj-abvALT 36321 Alternate version of ~ bj-...
bj-ab0 36322 The class of sets verifyin...
bj-abf 36323 Shorter proof of ~ abf (wh...
bj-csbprc 36324 More direct proof of ~ csb...
bj-exlimvmpi 36325 A Fol lemma ( ~ exlimiv fo...
bj-exlimmpi 36326 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 36327 Lemma for theorems of the ...
bj-exlimmpbir 36328 Lemma for theorems of the ...
bj-vtoclf 36329 Remove dependency on ~ ax-...
bj-vtocl 36330 Remove dependency on ~ ax-...
bj-vtoclg1f1 36331 The FOL content of ~ vtocl...
bj-vtoclg1f 36332 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 36333 Version of ~ bj-vtoclg1f w...
bj-vtoclg 36334 A version of ~ vtoclg with...
bj-rabeqbid 36335 Version of ~ rabeqbidv wit...
bj-seex 36336 Version of ~ seex with a d...
bj-nfcf 36337 Version of ~ df-nfc with a...
bj-zfauscl 36338 General version of ~ zfaus...
bj-elabd2ALT 36339 Alternate proof of ~ elabd...
bj-unrab 36340 Generalization of ~ unrab ...
bj-inrab 36341 Generalization of ~ inrab ...
bj-inrab2 36342 Shorter proof of ~ inrab ....
bj-inrab3 36343 Generalization of ~ dfrab3...
bj-rabtr 36344 Restricted class abstracti...
bj-rabtrALT 36345 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 36346 Proof of ~ bj-rabtr found ...
bj-gabss 36349 Inclusion of generalized c...
bj-gabssd 36350 Inclusion of generalized c...
bj-gabeqd 36351 Equality of generalized cl...
bj-gabeqis 36352 Equality of generalized cl...
bj-elgab 36353 Elements of a generalized ...
bj-gabima 36354 Generalized class abstract...
bj-ru0 36357 The FOL part of Russell's ...
bj-ru1 36358 A version of Russell's par...
bj-ru 36359 Remove dependency on ~ ax-...
currysetlem 36360 Lemma for ~ currysetlem , ...
curryset 36361 Curry's paradox in set the...
currysetlem1 36362 Lemma for ~ currysetALT . ...
currysetlem2 36363 Lemma for ~ currysetALT . ...
currysetlem3 36364 Lemma for ~ currysetALT . ...
currysetALT 36365 Alternate proof of ~ curry...
bj-n0i 36366 Inference associated with ...
bj-disjsn01 36367 Disjointness of the single...
bj-0nel1 36368 The empty set does not bel...
bj-1nel0 36369 ` 1o ` does not belong to ...
bj-xpimasn 36370 The image of a singleton, ...
bj-xpima1sn 36371 The image of a singleton b...
bj-xpima1snALT 36372 Alternate proof of ~ bj-xp...
bj-xpima2sn 36373 The image of a singleton b...
bj-xpnzex 36374 If the first factor of a p...
bj-xpexg2 36375 Curried (exported) form of...
bj-xpnzexb 36376 If the first factor of a p...
bj-cleq 36377 Substitution property for ...
bj-snsetex 36378 The class of sets "whose s...
bj-clexab 36379 Sethood of certain classes...
bj-sngleq 36382 Substitution property for ...
bj-elsngl 36383 Characterization of the el...
bj-snglc 36384 Characterization of the el...
bj-snglss 36385 The singletonization of a ...
bj-0nelsngl 36386 The empty set is not a mem...
bj-snglinv 36387 Inverse of singletonizatio...
bj-snglex 36388 A class is a set if and on...
bj-tageq 36391 Substitution property for ...
bj-eltag 36392 Characterization of the el...
bj-0eltag 36393 The empty set belongs to t...
bj-tagn0 36394 The tagging of a class is ...
bj-tagss 36395 The tagging of a class is ...
bj-snglsstag 36396 The singletonization is in...
bj-sngltagi 36397 The singletonization is in...
bj-sngltag 36398 The singletonization and t...
bj-tagci 36399 Characterization of the el...
bj-tagcg 36400 Characterization of the el...
bj-taginv 36401 Inverse of tagging. (Cont...
bj-tagex 36402 A class is a set if and on...
bj-xtageq 36403 The products of a given cl...
bj-xtagex 36404 The product of a set and t...
bj-projeq 36407 Substitution property for ...
bj-projeq2 36408 Substitution property for ...
bj-projun 36409 The class projection on a ...
bj-projex 36410 Sethood of the class proje...
bj-projval 36411 Value of the class project...
bj-1upleq 36414 Substitution property for ...
bj-pr1eq 36417 Substitution property for ...
bj-pr1un 36418 The first projection prese...
bj-pr1val 36419 Value of the first project...
bj-pr11val 36420 Value of the first project...
bj-pr1ex 36421 Sethood of the first proje...
bj-1uplth 36422 The characteristic propert...
bj-1uplex 36423 A monuple is a set if and ...
bj-1upln0 36424 A monuple is nonempty. (C...
bj-2upleq 36427 Substitution property for ...
bj-pr21val 36428 Value of the first project...
bj-pr2eq 36431 Substitution property for ...
bj-pr2un 36432 The second projection pres...
bj-pr2val 36433 Value of the second projec...
bj-pr22val 36434 Value of the second projec...
bj-pr2ex 36435 Sethood of the second proj...
bj-2uplth 36436 The characteristic propert...
bj-2uplex 36437 A couple is a set if and o...
bj-2upln0 36438 A couple is nonempty. (Co...
bj-2upln1upl 36439 A couple is never equal to...
bj-rcleqf 36440 Relative version of ~ cleq...
bj-rcleq 36441 Relative version of ~ dfcl...
bj-reabeq 36442 Relative form of ~ eqabb ....
bj-disj2r 36443 Relative version of ~ ssdi...
bj-sscon 36444 Contraposition law for rel...
bj-abex 36445 Two ways of stating that t...
bj-clex 36446 Two ways of stating that a...
bj-axsn 36447 Two ways of stating the ax...
bj-snexg 36449 A singleton built on a set...
bj-snex 36450 A singleton is a set. See...
bj-axbun 36451 Two ways of stating the ax...
bj-unexg 36453 Existence of binary unions...
bj-prexg 36454 Existence of unordered pai...
bj-prex 36455 Existence of unordered pai...
bj-axadj 36456 Two ways of stating the ax...
bj-adjg1 36458 Existence of the result of...
bj-snfromadj 36459 Singleton from adjunction ...
bj-prfromadj 36460 Unordered pair from adjunc...
bj-adjfrombun 36461 Adjunction from singleton ...
eleq2w2ALT 36462 Alternate proof of ~ eleq2...
bj-clel3gALT 36463 Alternate proof of ~ clel3...
bj-pw0ALT 36464 Alternate proof of ~ pw0 ....
bj-sselpwuni 36465 Quantitative version of ~ ...
bj-unirel 36466 Quantitative version of ~ ...
bj-elpwg 36467 If the intersection of two...
bj-velpwALT 36468 This theorem ~ bj-velpwALT...
bj-elpwgALT 36469 Alternate proof of ~ elpwg...
bj-vjust 36470 Justification theorem for ...
bj-nul 36471 Two formulations of the ax...
bj-nuliota 36472 Definition of the empty se...
bj-nuliotaALT 36473 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 36474 Alternate proof of ~ vtocl...
bj-elsn12g 36475 Join of ~ elsng and ~ elsn...
bj-elsnb 36476 Biconditional version of ~...
bj-pwcfsdom 36477 Remove hypothesis from ~ p...
bj-grur1 36478 Remove hypothesis from ~ g...
bj-bm1.3ii 36479 The extension of a predica...
bj-dfid2ALT 36480 Alternate version of ~ dfi...
bj-0nelopab 36481 The empty set is never an ...
bj-brrelex12ALT 36482 Two classes related by a b...
bj-epelg 36483 The membership relation an...
bj-epelb 36484 Two classes are related by...
bj-nsnid 36485 A set does not contain the...
bj-rdg0gALT 36486 Alternate proof of ~ rdg0g...
bj-evaleq 36487 Equality theorem for the `...
bj-evalfun 36488 The evaluation at a class ...
bj-evalfn 36489 The evaluation at a class ...
bj-evalval 36490 Value of the evaluation at...
bj-evalid 36491 The evaluation at a set of...
bj-ndxarg 36492 Proof of ~ ndxarg from ~ b...
bj-evalidval 36493 Closed general form of ~ s...
bj-rest00 36496 An elementwise intersectio...
bj-restsn 36497 An elementwise intersectio...
bj-restsnss 36498 Special case of ~ bj-rests...
bj-restsnss2 36499 Special case of ~ bj-rests...
bj-restsn0 36500 An elementwise intersectio...
bj-restsn10 36501 Special case of ~ bj-rests...
bj-restsnid 36502 The elementwise intersecti...
bj-rest10 36503 An elementwise intersectio...
bj-rest10b 36504 Alternate version of ~ bj-...
bj-restn0 36505 An elementwise intersectio...
bj-restn0b 36506 Alternate version of ~ bj-...
bj-restpw 36507 The elementwise intersecti...
bj-rest0 36508 An elementwise intersectio...
bj-restb 36509 An elementwise intersectio...
bj-restv 36510 An elementwise intersectio...
bj-resta 36511 An elementwise intersectio...
bj-restuni 36512 The union of an elementwis...
bj-restuni2 36513 The union of an elementwis...
bj-restreg 36514 A reformulation of the axi...
bj-raldifsn 36515 All elements in a set sati...
bj-0int 36516 If ` A ` is a collection o...
bj-mooreset 36517 A Moore collection is a se...
bj-ismoore 36520 Characterization of Moore ...
bj-ismoored0 36521 Necessary condition to be ...
bj-ismoored 36522 Necessary condition to be ...
bj-ismoored2 36523 Necessary condition to be ...
bj-ismooredr 36524 Sufficient condition to be...
bj-ismooredr2 36525 Sufficient condition to be...
bj-discrmoore 36526 The powerclass ` ~P A ` is...
bj-0nmoore 36527 The empty set is not a Moo...
bj-snmoore 36528 A singleton is a Moore col...
bj-snmooreb 36529 A singleton is a Moore col...
bj-prmoore 36530 A pair formed of two neste...
bj-0nelmpt 36531 The empty set is not an el...
bj-mptval 36532 Value of a function given ...
bj-dfmpoa 36533 An equivalent definition o...
bj-mpomptALT 36534 Alternate proof of ~ mpomp...
setsstrset 36551 Relation between ~ df-sets...
bj-nfald 36552 Variant of ~ nfald . (Con...
bj-nfexd 36553 Variant of ~ nfexd . (Con...
copsex2d 36554 Implicit substitution dedu...
copsex2b 36555 Biconditional form of ~ co...
opelopabd 36556 Membership of an ordere pa...
opelopabb 36557 Membership of an ordered p...
opelopabbv 36558 Membership of an ordered p...
bj-opelrelex 36559 The coordinates of an orde...
bj-opelresdm 36560 If an ordered pair is in a...
bj-brresdm 36561 If two classes are related...
brabd0 36562 Expressing that two sets a...
brabd 36563 Expressing that two sets a...
bj-brab2a1 36564 "Unbounded" version of ~ b...
bj-opabssvv 36565 A variant of ~ relopabiv (...
bj-funidres 36566 The restricted identity re...
bj-opelidb 36567 Characterization of the or...
bj-opelidb1 36568 Characterization of the or...
bj-inexeqex 36569 Lemma for ~ bj-opelid (but...
bj-elsn0 36570 If the intersection of two...
bj-opelid 36571 Characterization of the or...
bj-ideqg 36572 Characterization of the cl...
bj-ideqgALT 36573 Alternate proof of ~ bj-id...
bj-ideqb 36574 Characterization of classe...
bj-idres 36575 Alternate expression for t...
bj-opelidres 36576 Characterization of the or...
bj-idreseq 36577 Sufficient condition for t...
bj-idreseqb 36578 Characterization for two c...
bj-ideqg1 36579 For sets, the identity rel...
bj-ideqg1ALT 36580 Alternate proof of bj-ideq...
bj-opelidb1ALT 36581 Characterization of the co...
bj-elid3 36582 Characterization of the co...
bj-elid4 36583 Characterization of the el...
bj-elid5 36584 Characterization of the el...
bj-elid6 36585 Characterization of the el...
bj-elid7 36586 Characterization of the el...
bj-diagval 36589 Value of the functionalize...
bj-diagval2 36590 Value of the functionalize...
bj-eldiag 36591 Characterization of the el...
bj-eldiag2 36592 Characterization of the el...
bj-imdirvallem 36595 Lemma for ~ bj-imdirval an...
bj-imdirval 36596 Value of the functionalize...
bj-imdirval2lem 36597 Lemma for ~ bj-imdirval2 a...
bj-imdirval2 36598 Value of the functionalize...
bj-imdirval3 36599 Value of the functionalize...
bj-imdiridlem 36600 Lemma for ~ bj-imdirid and...
bj-imdirid 36601 Functorial property of the...
bj-opelopabid 36602 Membership in an ordered-p...
bj-opabco 36603 Composition of ordered-pai...
bj-xpcossxp 36604 The composition of two Car...
bj-imdirco 36605 Functorial property of the...
bj-iminvval 36608 Value of the functionalize...
bj-iminvval2 36609 Value of the functionalize...
bj-iminvid 36610 Functorial property of the...
bj-inftyexpitaufo 36617 The function ` inftyexpita...
bj-inftyexpitaudisj 36620 An element of the circle a...
bj-inftyexpiinv 36623 Utility theorem for the in...
bj-inftyexpiinj 36624 Injectivity of the paramet...
bj-inftyexpidisj 36625 An element of the circle a...
bj-ccinftydisj 36628 The circle at infinity is ...
bj-elccinfty 36629 A lemma for infinite exten...
bj-ccssccbar 36632 Complex numbers are extend...
bj-ccinftyssccbar 36633 Infinite extended complex ...
bj-pinftyccb 36636 The class ` pinfty ` is an...
bj-pinftynrr 36637 The extended complex numbe...
bj-minftyccb 36640 The class ` minfty ` is an...
bj-minftynrr 36641 The extended complex numbe...
bj-pinftynminfty 36642 The extended complex numbe...
bj-rrhatsscchat 36651 The real projective line i...
bj-imafv 36666 If the direct image of a s...
bj-funun 36667 Value of a function expres...
bj-fununsn1 36668 Value of a function expres...
bj-fununsn2 36669 Value of a function expres...
bj-fvsnun1 36670 The value of a function wi...
bj-fvsnun2 36671 The value of a function wi...
bj-fvmptunsn1 36672 Value of a function expres...
bj-fvmptunsn2 36673 Value of a function expres...
bj-iomnnom 36674 The canonical bijection fr...
bj-smgrpssmgm 36683 Semigroups are magmas. (C...
bj-smgrpssmgmel 36684 Semigroups are magmas (ele...
bj-mndsssmgrp 36685 Monoids are semigroups. (...
bj-mndsssmgrpel 36686 Monoids are semigroups (el...
bj-cmnssmnd 36687 Commutative monoids are mo...
bj-cmnssmndel 36688 Commutative monoids are mo...
bj-grpssmnd 36689 Groups are monoids. (Cont...
bj-grpssmndel 36690 Groups are monoids (elemen...
bj-ablssgrp 36691 Abelian groups are groups....
bj-ablssgrpel 36692 Abelian groups are groups ...
bj-ablsscmn 36693 Abelian groups are commuta...
bj-ablsscmnel 36694 Abelian groups are commuta...
bj-modssabl 36695 (The additive groups of) m...
bj-vecssmod 36696 Vector spaces are modules....
bj-vecssmodel 36697 Vector spaces are modules ...
bj-finsumval0 36700 Value of a finite sum. (C...
bj-fvimacnv0 36701 Variant of ~ fvimacnv wher...
bj-isvec 36702 The predicate "is a vector...
bj-fldssdrng 36703 Fields are division rings....
bj-flddrng 36704 Fields are division rings ...
bj-rrdrg 36705 The field of real numbers ...
bj-isclm 36706 The predicate "is a subcom...
bj-isrvec 36709 The predicate "is a real v...
bj-rvecmod 36710 Real vector spaces are mod...
bj-rvecssmod 36711 Real vector spaces are mod...
bj-rvecrr 36712 The field of scalars of a ...
bj-isrvecd 36713 The predicate "is a real v...
bj-rvecvec 36714 Real vector spaces are vec...
bj-isrvec2 36715 The predicate "is a real v...
bj-rvecssvec 36716 Real vector spaces are vec...
bj-rveccmod 36717 Real vector spaces are sub...
bj-rvecsscmod 36718 Real vector spaces are sub...
bj-rvecsscvec 36719 Real vector spaces are sub...
bj-rveccvec 36720 Real vector spaces are sub...
bj-rvecssabl 36721 (The additive groups of) r...
bj-rvecabl 36722 (The additive groups of) r...
bj-subcom 36723 A consequence of commutati...
bj-lineqi 36724 Solution of a (scalar) lin...
bj-bary1lem 36725 Lemma for ~ bj-bary1 : exp...
bj-bary1lem1 36726 Lemma for bj-bary1: comput...
bj-bary1 36727 Barycentric coordinates in...
bj-endval 36730 Value of the monoid of end...
bj-endbase 36731 Base set of the monoid of ...
bj-endcomp 36732 Composition law of the mon...
bj-endmnd 36733 The monoid of endomorphism...
taupilem3 36734 Lemma for tau-related theo...
taupilemrplb 36735 A set of positive reals ha...
taupilem1 36736 Lemma for ~ taupi . A pos...
taupilem2 36737 Lemma for ~ taupi . The s...
taupi 36738 Relationship between ` _ta...
dfgcd3 36739 Alternate definition of th...
irrdifflemf 36740 Lemma for ~ irrdiff . The...
irrdiff 36741 The irrationals are exactl...
iccioo01 36742 The closed unit interval i...
csbrecsg 36743 Move class substitution in...
csbrdgg 36744 Move class substitution in...
csboprabg 36745 Move class substitution in...
csbmpo123 36746 Move class substitution in...
con1bii2 36747 A contraposition inference...
con2bii2 36748 A contraposition inference...
vtoclefex 36749 Implicit substitution of a...
rnmptsn 36750 The range of a function ma...
f1omptsnlem 36751 This is the core of the pr...
f1omptsn 36752 A function mapping to sing...
mptsnunlem 36753 This is the core of the pr...
mptsnun 36754 A class ` B ` is equal to ...
dissneqlem 36755 This is the core of the pr...
dissneq 36756 Any topology that contains...
exlimim 36757 Closed form of ~ exlimimd ...
exlimimd 36758 Existential elimination ru...
exellim 36759 Closed form of ~ exellimdd...
exellimddv 36760 Eliminate an antecedent wh...
topdifinfindis 36761 Part of Exercise 3 of [Mun...
topdifinffinlem 36762 This is the core of the pr...
topdifinffin 36763 Part of Exercise 3 of [Mun...
topdifinf 36764 Part of Exercise 3 of [Mun...
topdifinfeq 36765 Two different ways of defi...
icorempo 36766 Closed-below, open-above i...
icoreresf 36767 Closed-below, open-above i...
icoreval 36768 Value of the closed-below,...
icoreelrnab 36769 Elementhood in the set of ...
isbasisrelowllem1 36770 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 36771 Lemma for ~ isbasisrelowl ...
icoreclin 36772 The set of closed-below, o...
isbasisrelowl 36773 The set of all closed-belo...
icoreunrn 36774 The union of all closed-be...
istoprelowl 36775 The set of all closed-belo...
icoreelrn 36776 A class abstraction which ...
iooelexlt 36777 An element of an open inte...
relowlssretop 36778 The lower limit topology o...
relowlpssretop 36779 The lower limit topology o...
sucneqond 36780 Inequality of an ordinal s...
sucneqoni 36781 Inequality of an ordinal s...
onsucuni3 36782 If an ordinal number has a...
1oequni2o 36783 The ordinal number ` 1o ` ...
rdgsucuni 36784 If an ordinal number has a...
rdgeqoa 36785 If a recursive function wi...
elxp8 36786 Membership in a Cartesian ...
cbveud 36787 Deduction used to change b...
cbvreud 36788 Deduction used to change b...
difunieq 36789 The difference of unions i...
inunissunidif 36790 Theorem about subsets of t...
rdgellim 36791 Elementhood in a recursive...
rdglimss 36792 A recursive definition at ...
rdgssun 36793 In a recursive definition ...
exrecfnlem 36794 Lemma for ~ exrecfn . (Co...
exrecfn 36795 Theorem about the existenc...
exrecfnpw 36796 For any base set, a set wh...
finorwe 36797 If the Axiom of Infinity i...
dffinxpf 36800 This theorem is the same a...
finxpeq1 36801 Equality theorem for Carte...
finxpeq2 36802 Equality theorem for Carte...
csbfinxpg 36803 Distribute proper substitu...
finxpreclem1 36804 Lemma for ` ^^ ` recursion...
finxpreclem2 36805 Lemma for ` ^^ ` recursion...
finxp0 36806 The value of Cartesian exp...
finxp1o 36807 The value of Cartesian exp...
finxpreclem3 36808 Lemma for ` ^^ ` recursion...
finxpreclem4 36809 Lemma for ` ^^ ` recursion...
finxpreclem5 36810 Lemma for ` ^^ ` recursion...
finxpreclem6 36811 Lemma for ` ^^ ` recursion...
finxpsuclem 36812 Lemma for ~ finxpsuc . (C...
finxpsuc 36813 The value of Cartesian exp...
finxp2o 36814 The value of Cartesian exp...
finxp3o 36815 The value of Cartesian exp...
finxpnom 36816 Cartesian exponentiation w...
finxp00 36817 Cartesian exponentiation o...
iunctb2 36818 Using the axiom of countab...
domalom 36819 A class which dominates ev...
isinf2 36820 The converse of ~ isinf . ...
ctbssinf 36821 Using the axiom of choice,...
ralssiun 36822 The index set of an indexe...
nlpineqsn 36823 For every point ` p ` of a...
nlpfvineqsn 36824 Given a subset ` A ` of ` ...
fvineqsnf1 36825 A theorem about functions ...
fvineqsneu 36826 A theorem about functions ...
fvineqsneq 36827 A theorem about functions ...
pibp16 36828 Property P000016 of pi-bas...
pibp19 36829 Property P000019 of pi-bas...
pibp21 36830 Property P000021 of pi-bas...
pibt1 36831 Theorem T000001 of pi-base...
pibt2 36832 Theorem T000002 of pi-base...
wl-section-prop 36833 Intuitionistic logic is no...
wl-section-boot 36837 In this section, I provide...
wl-luk-imim1i 36838 Inference adding common co...
wl-luk-syl 36839 An inference version of th...
wl-luk-imtrid 36840 A syllogism rule of infere...
wl-luk-pm2.18d 36841 Deduction based on reducti...
wl-luk-con4i 36842 Inference rule. Copy of ~...
wl-luk-pm2.24i 36843 Inference rule. Copy of ~...
wl-luk-a1i 36844 Inference rule. Copy of ~...
wl-luk-mpi 36845 A nested modus ponens infe...
wl-luk-imim2i 36846 Inference adding common an...
wl-luk-imtrdi 36847 A syllogism rule of infere...
wl-luk-ax3 36848 ~ ax-3 proved from Lukasie...
wl-luk-ax1 36849 ~ ax-1 proved from Lukasie...
wl-luk-pm2.27 36850 This theorem, called "Asse...
wl-luk-com12 36851 Inference that swaps (comm...
wl-luk-pm2.21 36852 From a wff and its negatio...
wl-luk-con1i 36853 A contraposition inference...
wl-luk-ja 36854 Inference joining the ante...
wl-luk-imim2 36855 A closed form of syllogism...
wl-luk-a1d 36856 Deduction introducing an e...
wl-luk-ax2 36857 ~ ax-2 proved from Lukasie...
wl-luk-id 36858 Principle of identity. Th...
wl-luk-notnotr 36859 Converse of double negatio...
wl-luk-pm2.04 36860 Swap antecedents. Theorem...
wl-section-impchain 36861 An implication like ` ( ps...
wl-impchain-mp-x 36862 This series of theorems pr...
wl-impchain-mp-0 36863 This theorem is the start ...
wl-impchain-mp-1 36864 This theorem is in fact a ...
wl-impchain-mp-2 36865 This theorem is in fact a ...
wl-impchain-com-1.x 36866 It is often convenient to ...
wl-impchain-com-1.1 36867 A degenerate form of antec...
wl-impchain-com-1.2 36868 This theorem is in fact a ...
wl-impchain-com-1.3 36869 This theorem is in fact a ...
wl-impchain-com-1.4 36870 This theorem is in fact a ...
wl-impchain-com-n.m 36871 This series of theorems al...
wl-impchain-com-2.3 36872 This theorem is in fact a ...
wl-impchain-com-2.4 36873 This theorem is in fact a ...
wl-impchain-com-3.2.1 36874 This theorem is in fact a ...
wl-impchain-a1-x 36875 If an implication chain is...
wl-impchain-a1-1 36876 Inference rule, a copy of ...
wl-impchain-a1-2 36877 Inference rule, a copy of ...
wl-impchain-a1-3 36878 Inference rule, a copy of ...
wl-ifp-ncond1 36879 If one case of an ` if- ` ...
wl-ifp-ncond2 36880 If one case of an ` if- ` ...
wl-ifpimpr 36881 If one case of an ` if- ` ...
wl-ifp4impr 36882 If one case of an ` if- ` ...
wl-df-3xor 36883 Alternative definition of ...
wl-df3xor2 36884 Alternative definition of ...
wl-df3xor3 36885 Alternative form of ~ wl-d...
wl-3xortru 36886 If the first input is true...
wl-3xorfal 36887 If the first input is fals...
wl-3xorbi 36888 Triple xor can be replaced...
wl-3xorbi2 36889 Alternative form of ~ wl-3...
wl-3xorbi123d 36890 Equivalence theorem for tr...
wl-3xorbi123i 36891 Equivalence theorem for tr...
wl-3xorrot 36892 Rotation law for triple xo...
wl-3xorcoma 36893 Commutative law for triple...
wl-3xorcomb 36894 Commutative law for triple...
wl-3xornot1 36895 Flipping the first input f...
wl-3xornot 36896 Triple xor distributes ove...
wl-1xor 36897 In the recursive scheme ...
wl-2xor 36898 In the recursive scheme ...
wl-df-3mintru2 36899 Alternative definition of ...
wl-df2-3mintru2 36900 The adder carry in disjunc...
wl-df3-3mintru2 36901 The adder carry in conjunc...
wl-df4-3mintru2 36902 An alternative definition ...
wl-1mintru1 36903 Using the recursion formul...
wl-1mintru2 36904 Using the recursion formul...
wl-2mintru1 36905 Using the recursion formul...
wl-2mintru2 36906 Using the recursion formul...
wl-df3maxtru1 36907 Assuming "(n+1)-maxtru1" `...
wl-ax13lem1 36909 A version of ~ ax-wl-13v w...
wl-mps 36910 Replacing a nested consequ...
wl-syls1 36911 Replacing a nested consequ...
wl-syls2 36912 Replacing a nested anteced...
wl-embant 36913 A true wff can always be a...
wl-orel12 36914 In a conjunctive normal fo...
wl-cases2-dnf 36915 A particular instance of ~...
wl-cbvmotv 36916 Change bound variable. Us...
wl-moteq 36917 Change bound variable. Us...
wl-motae 36918 Change bound variable. Us...
wl-moae 36919 Two ways to express "at mo...
wl-euae 36920 Two ways to express "exact...
wl-nax6im 36921 The following series of th...
wl-hbae1 36922 This specialization of ~ h...
wl-naevhba1v 36923 An instance of ~ hbn1w app...
wl-spae 36924 Prove an instance of ~ sp ...
wl-speqv 36925 Under the assumption ` -. ...
wl-19.8eqv 36926 Under the assumption ` -. ...
wl-19.2reqv 36927 Under the assumption ` -. ...
wl-nfalv 36928 If ` x ` is not present in...
wl-nfimf1 36929 An antecedent is irrelevan...
wl-nfae1 36930 Unlike ~ nfae , this speci...
wl-nfnae1 36931 Unlike ~ nfnae , this spec...
wl-aetr 36932 A transitive law for varia...
wl-axc11r 36933 Same as ~ axc11r , but usi...
wl-dral1d 36934 A version of ~ dral1 with ...
wl-cbvalnaed 36935 ~ wl-cbvalnae with a conte...
wl-cbvalnae 36936 A more general version of ...
wl-exeq 36937 The semantics of ` E. x y ...
wl-aleq 36938 The semantics of ` A. x y ...
wl-nfeqfb 36939 Extend ~ nfeqf to an equiv...
wl-nfs1t 36940 If ` y ` is not free in ` ...
wl-equsalvw 36941 Version of ~ equsalv with ...
wl-equsald 36942 Deduction version of ~ equ...
wl-equsal 36943 A useful equivalence relat...
wl-equsal1t 36944 The expression ` x = y ` i...
wl-equsalcom 36945 This simple equivalence ea...
wl-equsal1i 36946 The antecedent ` x = y ` i...
wl-sb6rft 36947 A specialization of ~ wl-e...
wl-cbvalsbi 36948 Change bounded variables i...
wl-sbrimt 36949 Substitution with a variab...
wl-sblimt 36950 Substitution with a variab...
wl-sb9v 36951 Commutation of quantificat...
wl-sb8ft 36952 Substitution of variable i...
wl-sb8eft 36953 Substitution of variable i...
wl-sb8t 36954 Substitution of variable i...
wl-sb8et 36955 Substitution of variable i...
wl-sbhbt 36956 Closed form of ~ sbhb . C...
wl-sbnf1 36957 Two ways expressing that `...
wl-equsb3 36958 ~ equsb3 with a distinctor...
wl-equsb4 36959 Substitution applied to an...
wl-2sb6d 36960 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 36961 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 36962 Lemma used to prove ~ wl-s...
wl-sbcom2d 36963 Version of ~ sbcom2 with a...
wl-sbalnae 36964 A theorem used in eliminat...
wl-sbal1 36965 A theorem used in eliminat...
wl-sbal2 36966 Move quantifier in and out...
wl-2spsbbi 36967 ~ spsbbi applied twice. (...
wl-lem-exsb 36968 This theorem provides a ba...
wl-lem-nexmo 36969 This theorem provides a ba...
wl-lem-moexsb 36970 The antecedent ` A. x ( ph...
wl-alanbii 36971 This theorem extends ~ ala...
wl-mo2df 36972 Version of ~ mof with a co...
wl-mo2tf 36973 Closed form of ~ mof with ...
wl-eudf 36974 Version of ~ eu6 with a co...
wl-eutf 36975 Closed form of ~ eu6 with ...
wl-euequf 36976 ~ euequ proved with a dist...
wl-mo2t 36977 Closed form of ~ mof . (C...
wl-mo3t 36978 Closed form of ~ mo3 . (C...
wl-nfsbtv 36979 Closed form of ~ nfsbv . ...
wl-sb8eut 36980 Substitution of variable i...
wl-sb8eutv 36981 Substitution of variable i...
wl-sb8mot 36982 Substitution of variable i...
wl-sb8motv 36983 Substitution of variable i...
wl-issetft 36984 A closed form of ~ issetf ...
wl-axc11rc11 36985 Proving ~ axc11r from ~ ax...
wl-ax11-lem1 36987 A transitive law for varia...
wl-ax11-lem2 36988 Lemma. (Contributed by Wo...
wl-ax11-lem3 36989 Lemma. (Contributed by Wo...
wl-ax11-lem4 36990 Lemma. (Contributed by Wo...
wl-ax11-lem5 36991 Lemma. (Contributed by Wo...
wl-ax11-lem6 36992 Lemma. (Contributed by Wo...
wl-ax11-lem7 36993 Lemma. (Contributed by Wo...
wl-ax11-lem8 36994 Lemma. (Contributed by Wo...
wl-ax11-lem9 36995 The easy part when ` x ` c...
wl-ax11-lem10 36996 We now have prepared every...
wl-clabv 36997 Variant of ~ df-clab , whe...
wl-dfclab 36998 Rederive ~ df-clab from ~ ...
wl-clabtv 36999 Using class abstraction in...
wl-clabt 37000 Using class abstraction in...
rabiun 37001 Abstraction restricted to ...
iundif1 37002 Indexed union of class dif...
imadifss 37003 The difference of images i...
cureq 37004 Equality theorem for curry...
unceq 37005 Equality theorem for uncur...
curf 37006 Functional property of cur...
uncf 37007 Functional property of unc...
curfv 37008 Value of currying. (Contr...
uncov 37009 Value of uncurrying. (Con...
curunc 37010 Currying of uncurrying. (...
unccur 37011 Uncurrying of currying. (...
phpreu 37012 Theorem related to pigeonh...
finixpnum 37013 A finite Cartesian product...
fin2solem 37014 Lemma for ~ fin2so . (Con...
fin2so 37015 Any totally ordered Tarski...
ltflcei 37016 Theorem to move the floor ...
leceifl 37017 Theorem to move the floor ...
sin2h 37018 Half-angle rule for sine. ...
cos2h 37019 Half-angle rule for cosine...
tan2h 37020 Half-angle rule for tangen...
lindsadd 37021 In a vector space, the uni...
lindsdom 37022 A linearly independent set...
lindsenlbs 37023 A maximal linearly indepen...
matunitlindflem1 37024 One direction of ~ matunit...
matunitlindflem2 37025 One direction of ~ matunit...
matunitlindf 37026 A matrix over a field is i...
ptrest 37027 Expressing a restriction o...
ptrecube 37028 Any point in an open set o...
poimirlem1 37029 Lemma for ~ poimir - the v...
poimirlem2 37030 Lemma for ~ poimir - conse...
poimirlem3 37031 Lemma for ~ poimir to add ...
poimirlem4 37032 Lemma for ~ poimir connect...
poimirlem5 37033 Lemma for ~ poimir to esta...
poimirlem6 37034 Lemma for ~ poimir establi...
poimirlem7 37035 Lemma for ~ poimir , simil...
poimirlem8 37036 Lemma for ~ poimir , estab...
poimirlem9 37037 Lemma for ~ poimir , estab...
poimirlem10 37038 Lemma for ~ poimir establi...
poimirlem11 37039 Lemma for ~ poimir connect...
poimirlem12 37040 Lemma for ~ poimir connect...
poimirlem13 37041 Lemma for ~ poimir - for a...
poimirlem14 37042 Lemma for ~ poimir - for a...
poimirlem15 37043 Lemma for ~ poimir , that ...
poimirlem16 37044 Lemma for ~ poimir establi...
poimirlem17 37045 Lemma for ~ poimir establi...
poimirlem18 37046 Lemma for ~ poimir stating...
poimirlem19 37047 Lemma for ~ poimir establi...
poimirlem20 37048 Lemma for ~ poimir establi...
poimirlem21 37049 Lemma for ~ poimir stating...
poimirlem22 37050 Lemma for ~ poimir , that ...
poimirlem23 37051 Lemma for ~ poimir , two w...
poimirlem24 37052 Lemma for ~ poimir , two w...
poimirlem25 37053 Lemma for ~ poimir stating...
poimirlem26 37054 Lemma for ~ poimir showing...
poimirlem27 37055 Lemma for ~ poimir showing...
poimirlem28 37056 Lemma for ~ poimir , a var...
poimirlem29 37057 Lemma for ~ poimir connect...
poimirlem30 37058 Lemma for ~ poimir combini...
poimirlem31 37059 Lemma for ~ poimir , assig...
poimirlem32 37060 Lemma for ~ poimir , combi...
poimir 37061 Poincare-Miranda theorem. ...
broucube 37062 Brouwer - or as Kulpa call...
heicant 37063 Heine-Cantor theorem: a co...
opnmbllem0 37064 Lemma for ~ ismblfin ; cou...
mblfinlem1 37065 Lemma for ~ ismblfin , ord...
mblfinlem2 37066 Lemma for ~ ismblfin , eff...
mblfinlem3 37067 The difference between two...
mblfinlem4 37068 Backward direction of ~ is...
ismblfin 37069 Measurability in terms of ...
ovoliunnfl 37070 ~ ovoliun is incompatible ...
ex-ovoliunnfl 37071 Demonstration of ~ ovoliun...
voliunnfl 37072 ~ voliun is incompatible w...
volsupnfl 37073 ~ volsup is incompatible w...
mbfresfi 37074 Measurability of a piecewi...
mbfposadd 37075 If the sum of two measurab...
cnambfre 37076 A real-valued, a.e. contin...
dvtanlem 37077 Lemma for ~ dvtan - the do...
dvtan 37078 Derivative of tangent. (C...
itg2addnclem 37079 An alternate expression fo...
itg2addnclem2 37080 Lemma for ~ itg2addnc . T...
itg2addnclem3 37081 Lemma incomprehensible in ...
itg2addnc 37082 Alternate proof of ~ itg2a...
itg2gt0cn 37083 ~ itg2gt0 holds on functio...
ibladdnclem 37084 Lemma for ~ ibladdnc ; cf ...
ibladdnc 37085 Choice-free analogue of ~ ...
itgaddnclem1 37086 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 37087 Lemma for ~ itgaddnc ; cf....
itgaddnc 37088 Choice-free analogue of ~ ...
iblsubnc 37089 Choice-free analogue of ~ ...
itgsubnc 37090 Choice-free analogue of ~ ...
iblabsnclem 37091 Lemma for ~ iblabsnc ; cf....
iblabsnc 37092 Choice-free analogue of ~ ...
iblmulc2nc 37093 Choice-free analogue of ~ ...
itgmulc2nclem1 37094 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 37095 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 37096 Choice-free analogue of ~ ...
itgabsnc 37097 Choice-free analogue of ~ ...
itggt0cn 37098 ~ itggt0 holds for continu...
ftc1cnnclem 37099 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 37100 Choice-free proof of ~ ftc...
ftc1anclem1 37101 Lemma for ~ ftc1anc - the ...
ftc1anclem2 37102 Lemma for ~ ftc1anc - rest...
ftc1anclem3 37103 Lemma for ~ ftc1anc - the ...
ftc1anclem4 37104 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 37105 Lemma for ~ ftc1anc , the ...
ftc1anclem6 37106 Lemma for ~ ftc1anc - cons...
ftc1anclem7 37107 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 37108 Lemma for ~ ftc1anc . (Co...
ftc1anc 37109 ~ ftc1a holds for function...
ftc2nc 37110 Choice-free proof of ~ ftc...
asindmre 37111 Real part of domain of dif...
dvasin 37112 Derivative of arcsine. (C...
dvacos 37113 Derivative of arccosine. ...
dvreasin 37114 Real derivative of arcsine...
dvreacos 37115 Real derivative of arccosi...
areacirclem1 37116 Antiderivative of cross-se...
areacirclem2 37117 Endpoint-inclusive continu...
areacirclem3 37118 Integrability of cross-sec...
areacirclem4 37119 Endpoint-inclusive continu...
areacirclem5 37120 Finding the cross-section ...
areacirc 37121 The area of a circle of ra...
unirep 37122 Define a quantity whose de...
cover2 37123 Two ways of expressing the...
cover2g 37124 Two ways of expressing the...
brabg2 37125 Relation by a binary relat...
opelopab3 37126 Ordered pair membership in...
cocanfo 37127 Cancellation of a surjecti...
brresi2 37128 Restriction of a binary re...
fnopabeqd 37129 Equality deduction for fun...
fvopabf4g 37130 Function value of an opera...
fnopabco 37131 Composition of a function ...
opropabco 37132 Composition of an operator...
cocnv 37133 Composition with a functio...
f1ocan1fv 37134 Cancel a composition by a ...
f1ocan2fv 37135 Cancel a composition by th...
inixp 37136 Intersection of Cartesian ...
upixp 37137 Universal property of the ...
abrexdom 37138 An indexed set is dominate...
abrexdom2 37139 An indexed set is dominate...
ac6gf 37140 Axiom of Choice. (Contrib...
indexa 37141 If for every element of an...
indexdom 37142 If for every element of an...
frinfm 37143 A subset of a well-founded...
welb 37144 A nonempty subset of a wel...
supex2g 37145 Existence of supremum. (C...
supclt 37146 Closure of supremum. (Con...
supubt 37147 Upper bound property of su...
filbcmb 37148 Combine a finite set of lo...
fzmul 37149 Membership of a product in...
sdclem2 37150 Lemma for ~ sdc . (Contri...
sdclem1 37151 Lemma for ~ sdc . (Contri...
sdc 37152 Strong dependent choice. ...
fdc 37153 Finite version of dependen...
fdc1 37154 Variant of ~ fdc with no s...
seqpo 37155 Two ways to say that a seq...
incsequz 37156 An increasing sequence of ...
incsequz2 37157 An increasing sequence of ...
nnubfi 37158 A bounded above set of pos...
nninfnub 37159 An infinite set of positiv...
subspopn 37160 An open set is open in the...
neificl 37161 Neighborhoods are closed u...
lpss2 37162 Limit points of a subset a...
metf1o 37163 Use a bijection with a met...
blssp 37164 A ball in the subspace met...
mettrifi 37165 Generalized triangle inequ...
lmclim2 37166 A sequence in a metric spa...
geomcau 37167 If the distance between co...
caures 37168 The restriction of a Cauch...
caushft 37169 A shifted Cauchy sequence ...
constcncf 37170 A constant function is a c...
cnres2 37171 The restriction of a conti...
cnresima 37172 A continuous function is c...
cncfres 37173 A continuous function on c...
istotbnd 37177 The predicate "is a totall...
istotbnd2 37178 The predicate "is a totall...
istotbnd3 37179 A metric space is totally ...
totbndmet 37180 The predicate "totally bou...
0totbnd 37181 The metric (there is only ...
sstotbnd2 37182 Condition for a subset of ...
sstotbnd 37183 Condition for a subset of ...
sstotbnd3 37184 Use a net that is not nece...
totbndss 37185 A subset of a totally boun...
equivtotbnd 37186 If the metric ` M ` is "st...
isbnd 37188 The predicate "is a bounde...
bndmet 37189 A bounded metric space is ...
isbndx 37190 A "bounded extended metric...
isbnd2 37191 The predicate "is a bounde...
isbnd3 37192 A metric space is bounded ...
isbnd3b 37193 A metric space is bounded ...
bndss 37194 A subset of a bounded metr...
blbnd 37195 A ball is bounded. (Contr...
ssbnd 37196 A subset of a metric space...
totbndbnd 37197 A totally bounded metric s...
equivbnd 37198 If the metric ` M ` is "st...
bnd2lem 37199 Lemma for ~ equivbnd2 and ...
equivbnd2 37200 If balls are totally bound...
prdsbnd 37201 The product metric over fi...
prdstotbnd 37202 The product metric over fi...
prdsbnd2 37203 If balls are totally bound...
cntotbnd 37204 A subset of the complex nu...
cnpwstotbnd 37205 A subset of ` A ^ I ` , wh...
ismtyval 37208 The set of isometries betw...
isismty 37209 The condition "is an isome...
ismtycnv 37210 The inverse of an isometry...
ismtyima 37211 The image of a ball under ...
ismtyhmeolem 37212 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 37213 An isometry is a homeomorp...
ismtybndlem 37214 Lemma for ~ ismtybnd . (C...
ismtybnd 37215 Isometries preserve bounde...
ismtyres 37216 A restriction of an isomet...
heibor1lem 37217 Lemma for ~ heibor1 . A c...
heibor1 37218 One half of ~ heibor , tha...
heiborlem1 37219 Lemma for ~ heibor . We w...
heiborlem2 37220 Lemma for ~ heibor . Subs...
heiborlem3 37221 Lemma for ~ heibor . Usin...
heiborlem4 37222 Lemma for ~ heibor . Usin...
heiborlem5 37223 Lemma for ~ heibor . The ...
heiborlem6 37224 Lemma for ~ heibor . Sinc...
heiborlem7 37225 Lemma for ~ heibor . Sinc...
heiborlem8 37226 Lemma for ~ heibor . The ...
heiborlem9 37227 Lemma for ~ heibor . Disc...
heiborlem10 37228 Lemma for ~ heibor . The ...
heibor 37229 Generalized Heine-Borel Th...
bfplem1 37230 Lemma for ~ bfp . The seq...
bfplem2 37231 Lemma for ~ bfp . Using t...
bfp 37232 Banach fixed point theorem...
rrnval 37235 The n-dimensional Euclidea...
rrnmval 37236 The value of the Euclidean...
rrnmet 37237 Euclidean space is a metri...
rrndstprj1 37238 The distance between two p...
rrndstprj2 37239 Bound on the distance betw...
rrncmslem 37240 Lemma for ~ rrncms . (Con...
rrncms 37241 Euclidean space is complet...
repwsmet 37242 The supremum metric on ` R...
rrnequiv 37243 The supremum metric on ` R...
rrntotbnd 37244 A set in Euclidean space i...
rrnheibor 37245 Heine-Borel theorem for Eu...
ismrer1 37246 An isometry between ` RR `...
reheibor 37247 Heine-Borel theorem for re...
iccbnd 37248 A closed interval in ` RR ...
icccmpALT 37249 A closed interval in ` RR ...
isass 37254 The predicate "is an assoc...
isexid 37255 The predicate ` G ` has a ...
ismgmOLD 37258 Obsolete version of ~ ismg...
clmgmOLD 37259 Obsolete version of ~ mgmc...
opidonOLD 37260 Obsolete version of ~ mndp...
rngopidOLD 37261 Obsolete version of ~ mndp...
opidon2OLD 37262 Obsolete version of ~ mndp...
isexid2 37263 If ` G e. ( Magma i^i ExId...
exidu1 37264 Uniqueness of the left and...
idrval 37265 The value of the identity ...
iorlid 37266 A magma right and left ide...
cmpidelt 37267 A magma right and left ide...
smgrpismgmOLD 37270 Obsolete version of ~ sgrp...
issmgrpOLD 37271 Obsolete version of ~ issg...
smgrpmgm 37272 A semigroup is a magma. (...
smgrpassOLD 37273 Obsolete version of ~ sgrp...
mndoissmgrpOLD 37276 Obsolete version of ~ mnds...
mndoisexid 37277 A monoid has an identity e...
mndoismgmOLD 37278 Obsolete version of ~ mndm...
mndomgmid 37279 A monoid is a magma with a...
ismndo 37280 The predicate "is a monoid...
ismndo1 37281 The predicate "is a monoid...
ismndo2 37282 The predicate "is a monoid...
grpomndo 37283 A group is a monoid. (Con...
exidcl 37284 Closure of the binary oper...
exidreslem 37285 Lemma for ~ exidres and ~ ...
exidres 37286 The restriction of a binar...
exidresid 37287 The restriction of a binar...
ablo4pnp 37288 A commutative/associative ...
grpoeqdivid 37289 Two group elements are equ...
grposnOLD 37290 The group operation for th...
elghomlem1OLD 37293 Obsolete as of 15-Mar-2020...
elghomlem2OLD 37294 Obsolete as of 15-Mar-2020...
elghomOLD 37295 Obsolete version of ~ isgh...
ghomlinOLD 37296 Obsolete version of ~ ghml...
ghomidOLD 37297 Obsolete version of ~ ghmi...
ghomf 37298 Mapping property of a grou...
ghomco 37299 The composition of two gro...
ghomdiv 37300 Group homomorphisms preser...
grpokerinj 37301 A group homomorphism is in...
relrngo 37304 The class of all unital ri...
isrngo 37305 The predicate "is a (unita...
isrngod 37306 Conditions that determine ...
rngoi 37307 The properties of a unital...
rngosm 37308 Functionality of the multi...
rngocl 37309 Closure of the multiplicat...
rngoid 37310 The multiplication operati...
rngoideu 37311 The unity element of a rin...
rngodi 37312 Distributive law for the m...
rngodir 37313 Distributive law for the m...
rngoass 37314 Associative law for the mu...
rngo2 37315 A ring element plus itself...
rngoablo 37316 A ring's addition operatio...
rngoablo2 37317 In a unital ring the addit...
rngogrpo 37318 A ring's addition operatio...
rngone0 37319 The base set of a ring is ...
rngogcl 37320 Closure law for the additi...
rngocom 37321 The addition operation of ...
rngoaass 37322 The addition operation of ...
rngoa32 37323 The addition operation of ...
rngoa4 37324 Rearrangement of 4 terms i...
rngorcan 37325 Right cancellation law for...
rngolcan 37326 Left cancellation law for ...
rngo0cl 37327 A ring has an additive ide...
rngo0rid 37328 The additive identity of a...
rngo0lid 37329 The additive identity of a...
rngolz 37330 The zero of a unital ring ...
rngorz 37331 The zero of a unital ring ...
rngosn3 37332 Obsolete as of 25-Jan-2020...
rngosn4 37333 Obsolete as of 25-Jan-2020...
rngosn6 37334 Obsolete as of 25-Jan-2020...
rngonegcl 37335 A ring is closed under neg...
rngoaddneg1 37336 Adding the negative in a r...
rngoaddneg2 37337 Adding the negative in a r...
rngosub 37338 Subtraction in a ring, in ...
rngmgmbs4 37339 The range of an internal o...
rngodm1dm2 37340 In a unital ring the domai...
rngorn1 37341 In a unital ring the range...
rngorn1eq 37342 In a unital ring the range...
rngomndo 37343 In a unital ring the multi...
rngoidmlem 37344 The unity element of a rin...
rngolidm 37345 The unity element of a rin...
rngoridm 37346 The unity element of a rin...
rngo1cl 37347 The unity element of a rin...
rngoueqz 37348 Obsolete as of 23-Jan-2020...
rngonegmn1l 37349 Negation in a ring is the ...
rngonegmn1r 37350 Negation in a ring is the ...
rngoneglmul 37351 Negation of a product in a...
rngonegrmul 37352 Negation of a product in a...
rngosubdi 37353 Ring multiplication distri...
rngosubdir 37354 Ring multiplication distri...
zerdivemp1x 37355 In a unital ring a left in...
isdivrngo 37358 The predicate "is a divisi...
drngoi 37359 The properties of a divisi...
gidsn 37360 Obsolete as of 23-Jan-2020...
zrdivrng 37361 The zero ring is not a div...
dvrunz 37362 In a division ring the rin...
isgrpda 37363 Properties that determine ...
isdrngo1 37364 The predicate "is a divisi...
divrngcl 37365 The product of two nonzero...
isdrngo2 37366 A division ring is a ring ...
isdrngo3 37367 A division ring is a ring ...
rngohomval 37372 The set of ring homomorphi...
isrngohom 37373 The predicate "is a ring h...
rngohomf 37374 A ring homomorphism is a f...
rngohomcl 37375 Closure law for a ring hom...
rngohom1 37376 A ring homomorphism preser...
rngohomadd 37377 Ring homomorphisms preserv...
rngohommul 37378 Ring homomorphisms preserv...
rngogrphom 37379 A ring homomorphism is a g...
rngohom0 37380 A ring homomorphism preser...
rngohomsub 37381 Ring homomorphisms preserv...
rngohomco 37382 The composition of two rin...
rngokerinj 37383 A ring homomorphism is inj...
rngoisoval 37385 The set of ring isomorphis...
isrngoiso 37386 The predicate "is a ring i...
rngoiso1o 37387 A ring isomorphism is a bi...
rngoisohom 37388 A ring isomorphism is a ri...
rngoisocnv 37389 The inverse of a ring isom...
rngoisoco 37390 The composition of two rin...
isriscg 37392 The ring isomorphism relat...
isrisc 37393 The ring isomorphism relat...
risc 37394 The ring isomorphism relat...
risci 37395 Determine that two rings a...
riscer 37396 Ring isomorphism is an equ...
iscom2 37403 A device to add commutativ...
iscrngo 37404 The predicate "is a commut...
iscrngo2 37405 The predicate "is a commut...
iscringd 37406 Conditions that determine ...
flddivrng 37407 A field is a division ring...
crngorngo 37408 A commutative ring is a ri...
crngocom 37409 The multiplication operati...
crngm23 37410 Commutative/associative la...
crngm4 37411 Commutative/associative la...
fldcrngo 37412 A field is a commutative r...
isfld2 37413 The predicate "is a field"...
crngohomfo 37414 The image of a homomorphis...
idlval 37421 The class of ideals of a r...
isidl 37422 The predicate "is an ideal...
isidlc 37423 The predicate "is an ideal...
idlss 37424 An ideal of ` R ` is a sub...
idlcl 37425 An element of an ideal is ...
idl0cl 37426 An ideal contains ` 0 ` . ...
idladdcl 37427 An ideal is closed under a...
idllmulcl 37428 An ideal is closed under m...
idlrmulcl 37429 An ideal is closed under m...
idlnegcl 37430 An ideal is closed under n...
idlsubcl 37431 An ideal is closed under s...
rngoidl 37432 A ring ` R ` is an ` R ` i...
0idl 37433 The set containing only ` ...
1idl 37434 Two ways of expressing the...
0rngo 37435 In a ring, ` 0 = 1 ` iff t...
divrngidl 37436 The only ideals in a divis...
intidl 37437 The intersection of a none...
inidl 37438 The intersection of two id...
unichnidl 37439 The union of a nonempty ch...
keridl 37440 The kernel of a ring homom...
pridlval 37441 The class of prime ideals ...
ispridl 37442 The predicate "is a prime ...
pridlidl 37443 A prime ideal is an ideal....
pridlnr 37444 A prime ideal is a proper ...
pridl 37445 The main property of a pri...
ispridl2 37446 A condition that shows an ...
maxidlval 37447 The set of maximal ideals ...
ismaxidl 37448 The predicate "is a maxima...
maxidlidl 37449 A maximal ideal is an idea...
maxidlnr 37450 A maximal ideal is proper....
maxidlmax 37451 A maximal ideal is a maxim...
maxidln1 37452 One is not contained in an...
maxidln0 37453 A ring with a maximal idea...
isprrngo 37458 The predicate "is a prime ...
prrngorngo 37459 A prime ring is a ring. (...
smprngopr 37460 A simple ring (one whose o...
divrngpr 37461 A division ring is a prime...
isdmn 37462 The predicate "is a domain...
isdmn2 37463 The predicate "is a domain...
dmncrng 37464 A domain is a commutative ...
dmnrngo 37465 A domain is a ring. (Cont...
flddmn 37466 A field is a domain. (Con...
igenval 37469 The ideal generated by a s...
igenss 37470 A set is a subset of the i...
igenidl 37471 The ideal generated by a s...
igenmin 37472 The ideal generated by a s...
igenidl2 37473 The ideal generated by an ...
igenval2 37474 The ideal generated by a s...
prnc 37475 A principal ideal (an idea...
isfldidl 37476 Determine if a ring is a f...
isfldidl2 37477 Determine if a ring is a f...
ispridlc 37478 The predicate "is a prime ...
pridlc 37479 Property of a prime ideal ...
pridlc2 37480 Property of a prime ideal ...
pridlc3 37481 Property of a prime ideal ...
isdmn3 37482 The predicate "is a domain...
dmnnzd 37483 A domain has no zero-divis...
dmncan1 37484 Cancellation law for domai...
dmncan2 37485 Cancellation law for domai...
efald2 37486 A proof by contradiction. ...
notbinot1 37487 Simplification rule of neg...
bicontr 37488 Biconditional of its own n...
impor 37489 An equivalent formula for ...
orfa 37490 The falsum ` F. ` can be r...
notbinot2 37491 Commutation rule between n...
biimpor 37492 A rewriting rule for bicon...
orfa1 37493 Add a contradicting disjun...
orfa2 37494 Remove a contradicting dis...
bifald 37495 Infer the equivalence to a...
orsild 37496 A lemma for not-or-not eli...
orsird 37497 A lemma for not-or-not eli...
cnf1dd 37498 A lemma for Conjunctive No...
cnf2dd 37499 A lemma for Conjunctive No...
cnfn1dd 37500 A lemma for Conjunctive No...
cnfn2dd 37501 A lemma for Conjunctive No...
or32dd 37502 A rearrangement of disjunc...
notornotel1 37503 A lemma for not-or-not eli...
notornotel2 37504 A lemma for not-or-not eli...
contrd 37505 A proof by contradiction, ...
an12i 37506 An inference from commutin...
exmid2 37507 An excluded middle law. (...
selconj 37508 An inference for selecting...
truconj 37509 Add true as a conjunct. (...
orel 37510 An inference for disjuncti...
negel 37511 An inference for negation ...
botel 37512 An inference for bottom el...
tradd 37513 Add top ad a conjunct. (C...
gm-sbtru 37514 Substitution does not chan...
sbfal 37515 Substitution does not chan...
sbcani 37516 Distribution of class subs...
sbcori 37517 Distribution of class subs...
sbcimi 37518 Distribution of class subs...
sbcni 37519 Move class substitution in...
sbali 37520 Discard class substitution...
sbexi 37521 Discard class substitution...
sbcalf 37522 Move universal quantifier ...
sbcexf 37523 Move existential quantifie...
sbcalfi 37524 Move universal quantifier ...
sbcexfi 37525 Move existential quantifie...
spsbcdi 37526 A lemma for eliminating a ...
alrimii 37527 A lemma for introducing a ...
spesbcdi 37528 A lemma for introducing an...
exlimddvf 37529 A lemma for eliminating an...
exlimddvfi 37530 A lemma for eliminating an...
sbceq1ddi 37531 A lemma for eliminating in...
sbccom2lem 37532 Lemma for ~ sbccom2 . (Co...
sbccom2 37533 Commutative law for double...
sbccom2f 37534 Commutative law for double...
sbccom2fi 37535 Commutative law for double...
csbcom2fi 37536 Commutative law for double...
fald 37537 Refutation of falsity, in ...
tsim1 37538 A Tseitin axiom for logica...
tsim2 37539 A Tseitin axiom for logica...
tsim3 37540 A Tseitin axiom for logica...
tsbi1 37541 A Tseitin axiom for logica...
tsbi2 37542 A Tseitin axiom for logica...
tsbi3 37543 A Tseitin axiom for logica...
tsbi4 37544 A Tseitin axiom for logica...
tsxo1 37545 A Tseitin axiom for logica...
tsxo2 37546 A Tseitin axiom for logica...
tsxo3 37547 A Tseitin axiom for logica...
tsxo4 37548 A Tseitin axiom for logica...
tsan1 37549 A Tseitin axiom for logica...
tsan2 37550 A Tseitin axiom for logica...
tsan3 37551 A Tseitin axiom for logica...
tsna1 37552 A Tseitin axiom for logica...
tsna2 37553 A Tseitin axiom for logica...
tsna3 37554 A Tseitin axiom for logica...
tsor1 37555 A Tseitin axiom for logica...
tsor2 37556 A Tseitin axiom for logica...
tsor3 37557 A Tseitin axiom for logica...
ts3an1 37558 A Tseitin axiom for triple...
ts3an2 37559 A Tseitin axiom for triple...
ts3an3 37560 A Tseitin axiom for triple...
ts3or1 37561 A Tseitin axiom for triple...
ts3or2 37562 A Tseitin axiom for triple...
ts3or3 37563 A Tseitin axiom for triple...
iuneq2f 37564 Equality deduction for ind...
rabeq12f 37565 Equality deduction for res...
csbeq12 37566 Equality deduction for sub...
sbeqi 37567 Equality deduction for sub...
ralbi12f 37568 Equality deduction for res...
oprabbi 37569 Equality deduction for cla...
mpobi123f 37570 Equality deduction for map...
iuneq12f 37571 Equality deduction for ind...
iineq12f 37572 Equality deduction for ind...
opabbi 37573 Equality deduction for cla...
mptbi12f 37574 Equality deduction for map...
orcomdd 37575 Commutativity of logic dis...
scottexf 37576 A version of ~ scottex wit...
scott0f 37577 A version of ~ scott0 with...
scottn0f 37578 A version of ~ scott0f wit...
ac6s3f 37579 Generalization of the Axio...
ac6s6 37580 Generalization of the Axio...
ac6s6f 37581 Generalization of the Axio...
el2v1 37625 New way ( ~ elv , and the ...
el3v 37626 New way ( ~ elv , and the ...
el3v1 37627 New way ( ~ elv , and the ...
el3v2 37628 New way ( ~ elv , and the ...
el3v3 37629 New way ( ~ elv , and the ...
el3v12 37630 New way ( ~ elv , and the ...
el3v13 37631 New way ( ~ elv , and the ...
el3v23 37632 New way ( ~ elv , and the ...
anan 37633 Multiple commutations in c...
triantru3 37634 A wff is equivalent to its...
bianim 37635 Exchanging conjunction in ...
biorfd 37636 A wff is equivalent to its...
eqbrtr 37637 Substitution of equal clas...
eqbrb 37638 Substitution of equal clas...
eqeltr 37639 Substitution of equal clas...
eqelb 37640 Substitution of equal clas...
eqeqan2d 37641 Implication of introducing...
suceqsneq 37642 One-to-one relationship be...
sucdifsn2 37643 Absorption of union with a...
sucdifsn 37644 The difference between the...
disjresin 37645 The restriction to a disjo...
disjresdisj 37646 The intersection of restri...
disjresdif 37647 The difference between res...
disjresundif 37648 Lemma for ~ ressucdifsn2 ....
ressucdifsn2 37649 The difference between res...
ressucdifsn 37650 The difference between res...
inres2 37651 Two ways of expressing the...
coideq 37652 Equality theorem for compo...
nexmo1 37653 If there is no case where ...
ralin 37654 Restricted universal quant...
r2alan 37655 Double restricted universa...
ssrabi 37656 Inference of restricted ab...
rabbieq 37657 Equivalent wff's correspon...
rabimbieq 37658 Restricted equivalent wff'...
abeqin 37659 Intersection with class ab...
abeqinbi 37660 Intersection with class ab...
rabeqel 37661 Class element of a restric...
eqrelf 37662 The equality connective be...
br1cnvinxp 37663 Binary relation on the con...
releleccnv 37664 Elementhood in a converse ...
releccnveq 37665 Equality of converse ` R `...
opelvvdif 37666 Negated elementhood of ord...
vvdifopab 37667 Ordered-pair class abstrac...
brvdif 37668 Binary relation with unive...
brvdif2 37669 Binary relation with unive...
brvvdif 37670 Binary relation with the c...
brvbrvvdif 37671 Binary relation with the c...
brcnvep 37672 The converse of the binary...
elecALTV 37673 Elementhood in the ` R ` -...
brcnvepres 37674 Restricted converse epsilo...
brres2 37675 Binary relation on a restr...
br1cnvres 37676 Binary relation on the con...
eldmres 37677 Elementhood in the domain ...
elrnres 37678 Element of the range of a ...
eldmressnALTV 37679 Element of the domain of a...
elrnressn 37680 Element of the range of a ...
eldm4 37681 Elementhood in a domain. ...
eldmres2 37682 Elementhood in the domain ...
eceq1i 37683 Equality theorem for ` C `...
elecres 37684 Elementhood in the restric...
ecres 37685 Restricted coset of ` B ` ...
ecres2 37686 The restricted coset of ` ...
eccnvepres 37687 Restricted converse epsilo...
eleccnvep 37688 Elementhood in the convers...
eccnvep 37689 The converse epsilon coset...
extep 37690 Property of epsilon relati...
disjeccnvep 37691 Property of the epsilon re...
eccnvepres2 37692 The restricted converse ep...
eccnvepres3 37693 Condition for a restricted...
eldmqsres 37694 Elementhood in a restricte...
eldmqsres2 37695 Elementhood in a restricte...
qsss1 37696 Subclass theorem for quoti...
qseq1i 37697 Equality theorem for quoti...
qseq1d 37698 Equality theorem for quoti...
brinxprnres 37699 Binary relation on a restr...
inxprnres 37700 Restriction of a class as ...
dfres4 37701 Alternate definition of th...
exan3 37702 Equivalent expressions wit...
exanres 37703 Equivalent expressions wit...
exanres3 37704 Equivalent expressions wit...
exanres2 37705 Equivalent expressions wit...
cnvepres 37706 Restricted converse epsilo...
eqrel2 37707 Equality of relations. (C...
rncnv 37708 Range of converse is the d...
dfdm6 37709 Alternate definition of do...
dfrn6 37710 Alternate definition of ra...
rncnvepres 37711 The range of the restricte...
dmecd 37712 Equality of the coset of `...
dmec2d 37713 Equality of the coset of `...
brid 37714 Property of the identity b...
ideq2 37715 For sets, the identity bin...
idresssidinxp 37716 Condition for the identity...
idreseqidinxp 37717 Condition for the identity...
extid 37718 Property of identity relat...
inxpss 37719 Two ways to say that an in...
idinxpss 37720 Two ways to say that an in...
ref5 37721 Two ways to say that an in...
inxpss3 37722 Two ways to say that an in...
inxpss2 37723 Two ways to say that inter...
inxpssidinxp 37724 Two ways to say that inter...
idinxpssinxp 37725 Two ways to say that inter...
idinxpssinxp2 37726 Identity intersection with...
idinxpssinxp3 37727 Identity intersection with...
idinxpssinxp4 37728 Identity intersection with...
relcnveq3 37729 Two ways of saying a relat...
relcnveq 37730 Two ways of saying a relat...
relcnveq2 37731 Two ways of saying a relat...
relcnveq4 37732 Two ways of saying a relat...
qsresid 37733 Simplification of a specia...
n0elqs 37734 Two ways of expressing tha...
n0elqs2 37735 Two ways of expressing tha...
ecex2 37736 Condition for a coset to b...
uniqsALTV 37737 The union of a quotient se...
imaexALTV 37738 Existence of an image of a...
ecexALTV 37739 Existence of a coset, like...
rnresequniqs 37740 The range of a restriction...
n0el2 37741 Two ways of expressing tha...
cnvepresex 37742 Sethood condition for the ...
eccnvepex 37743 The converse epsilon coset...
cnvepimaex 37744 The image of converse epsi...
cnvepima 37745 The image of converse epsi...
inex3 37746 Sufficient condition for t...
inxpex 37747 Sufficient condition for a...
eqres 37748 Converting a class constan...
brrabga 37749 The law of concretion for ...
brcnvrabga 37750 The law of concretion for ...
opideq 37751 Equality conditions for or...
iss2 37752 A subclass of the identity...
eldmcnv 37753 Elementhood in a domain of...
dfrel5 37754 Alternate definition of th...
dfrel6 37755 Alternate definition of th...
cnvresrn 37756 Converse restricted to ran...
relssinxpdmrn 37757 Subset of restriction, spe...
cnvref4 37758 Two ways to say that a rel...
cnvref5 37759 Two ways to say that a rel...
ecin0 37760 Two ways of saying that th...
ecinn0 37761 Two ways of saying that th...
ineleq 37762 Equivalence of restricted ...
inecmo 37763 Equivalence of a double re...
inecmo2 37764 Equivalence of a double re...
ineccnvmo 37765 Equivalence of a double re...
alrmomorn 37766 Equivalence of an "at most...
alrmomodm 37767 Equivalence of an "at most...
ineccnvmo2 37768 Equivalence of a double un...
inecmo3 37769 Equivalence of a double un...
moeu2 37770 Uniqueness is equivalent t...
mopickr 37771 "At most one" picks a vari...
moantr 37772 Sufficient condition for t...
brabidgaw 37773 The law of concretion for ...
brabidga 37774 The law of concretion for ...
inxp2 37775 Intersection with a Cartes...
opabf 37776 A class abstraction of a c...
ec0 37777 The empty-coset of a class...
0qs 37778 Quotient set with the empt...
brcnvin 37779 Intersection with a conver...
xrnss3v 37781 A range Cartesian product ...
xrnrel 37782 A range Cartesian product ...
brxrn 37783 Characterize a ternary rel...
brxrn2 37784 A characterization of the ...
dfxrn2 37785 Alternate definition of th...
xrneq1 37786 Equality theorem for the r...
xrneq1i 37787 Equality theorem for the r...
xrneq1d 37788 Equality theorem for the r...
xrneq2 37789 Equality theorem for the r...
xrneq2i 37790 Equality theorem for the r...
xrneq2d 37791 Equality theorem for the r...
xrneq12 37792 Equality theorem for the r...
xrneq12i 37793 Equality theorem for the r...
xrneq12d 37794 Equality theorem for the r...
elecxrn 37795 Elementhood in the ` ( R |...
ecxrn 37796 The ` ( R |X. S ) ` -coset...
disjressuc2 37797 Double restricted quantifi...
disjecxrn 37798 Two ways of saying that ` ...
disjecxrncnvep 37799 Two ways of saying that co...
disjsuc2 37800 Double restricted quantifi...
xrninxp 37801 Intersection of a range Ca...
xrninxp2 37802 Intersection of a range Ca...
xrninxpex 37803 Sufficient condition for t...
inxpxrn 37804 Two ways to express the in...
br1cnvxrn2 37805 The converse of a binary r...
elec1cnvxrn2 37806 Elementhood in the convers...
rnxrn 37807 Range of the range Cartesi...
rnxrnres 37808 Range of a range Cartesian...
rnxrncnvepres 37809 Range of a range Cartesian...
rnxrnidres 37810 Range of a range Cartesian...
xrnres 37811 Two ways to express restri...
xrnres2 37812 Two ways to express restri...
xrnres3 37813 Two ways to express restri...
xrnres4 37814 Two ways to express restri...
xrnresex 37815 Sufficient condition for a...
xrnidresex 37816 Sufficient condition for a...
xrncnvepresex 37817 Sufficient condition for a...
brin2 37818 Binary relation on an inte...
brin3 37819 Binary relation on an inte...
dfcoss2 37822 Alternate definition of th...
dfcoss3 37823 Alternate definition of th...
dfcoss4 37824 Alternate definition of th...
cosscnv 37825 Class of cosets by the con...
coss1cnvres 37826 Class of cosets by the con...
coss2cnvepres 37827 Special case of ~ coss1cnv...
cossex 37828 If ` A ` is a set then the...
cosscnvex 37829 If ` A ` is a set then the...
1cosscnvepresex 37830 Sufficient condition for a...
1cossxrncnvepresex 37831 Sufficient condition for a...
relcoss 37832 Cosets by ` R ` is a relat...
relcoels 37833 Coelements on ` A ` is a r...
cossss 37834 Subclass theorem for the c...
cosseq 37835 Equality theorem for the c...
cosseqi 37836 Equality theorem for the c...
cosseqd 37837 Equality theorem for the c...
1cossres 37838 The class of cosets by a r...
dfcoels 37839 Alternate definition of th...
brcoss 37840 ` A ` and ` B ` are cosets...
brcoss2 37841 Alternate form of the ` A ...
brcoss3 37842 Alternate form of the ` A ...
brcosscnvcoss 37843 For sets, the ` A ` and ` ...
brcoels 37844 ` B ` and ` C ` are coelem...
cocossss 37845 Two ways of saying that co...
cnvcosseq 37846 The converse of cosets by ...
br2coss 37847 Cosets by ` ,~ R ` binary ...
br1cossres 37848 ` B ` and ` C ` are cosets...
br1cossres2 37849 ` B ` and ` C ` are cosets...
brressn 37850 Binary relation on a restr...
ressn2 37851 A class ' R ' restricted t...
refressn 37852 Any class ' R ' restricted...
antisymressn 37853 Every class ' R ' restrict...
trressn 37854 Any class ' R ' restricted...
relbrcoss 37855 ` A ` and ` B ` are cosets...
br1cossinres 37856 ` B ` and ` C ` are cosets...
br1cossxrnres 37857 ` <. B , C >. ` and ` <. D...
br1cossinidres 37858 ` B ` and ` C ` are cosets...
br1cossincnvepres 37859 ` B ` and ` C ` are cosets...
br1cossxrnidres 37860 ` <. B , C >. ` and ` <. D...
br1cossxrncnvepres 37861 ` <. B , C >. ` and ` <. D...
dmcoss3 37862 The domain of cosets is th...
dmcoss2 37863 The domain of cosets is th...
rncossdmcoss 37864 The range of cosets is the...
dm1cosscnvepres 37865 The domain of cosets of th...
dmcoels 37866 The domain of coelements i...
eldmcoss 37867 Elementhood in the domain ...
eldmcoss2 37868 Elementhood in the domain ...
eldm1cossres 37869 Elementhood in the domain ...
eldm1cossres2 37870 Elementhood in the domain ...
refrelcosslem 37871 Lemma for the left side of...
refrelcoss3 37872 The class of cosets by ` R...
refrelcoss2 37873 The class of cosets by ` R...
symrelcoss3 37874 The class of cosets by ` R...
symrelcoss2 37875 The class of cosets by ` R...
cossssid 37876 Equivalent expressions for...
cossssid2 37877 Equivalent expressions for...
cossssid3 37878 Equivalent expressions for...
cossssid4 37879 Equivalent expressions for...
cossssid5 37880 Equivalent expressions for...
brcosscnv 37881 ` A ` and ` B ` are cosets...
brcosscnv2 37882 ` A ` and ` B ` are cosets...
br1cosscnvxrn 37883 ` A ` and ` B ` are cosets...
1cosscnvxrn 37884 Cosets by the converse ran...
cosscnvssid3 37885 Equivalent expressions for...
cosscnvssid4 37886 Equivalent expressions for...
cosscnvssid5 37887 Equivalent expressions for...
coss0 37888 Cosets by the empty set ar...
cossid 37889 Cosets by the identity rel...
cosscnvid 37890 Cosets by the converse ide...
trcoss 37891 Sufficient condition for t...
eleccossin 37892 Two ways of saying that th...
trcoss2 37893 Equivalent expressions for...
elrels2 37895 The element of the relatio...
elrelsrel 37896 The element of the relatio...
elrelsrelim 37897 The element of the relatio...
elrels5 37898 Equivalent expressions for...
elrels6 37899 Equivalent expressions for...
elrelscnveq3 37900 Two ways of saying a relat...
elrelscnveq 37901 Two ways of saying a relat...
elrelscnveq2 37902 Two ways of saying a relat...
elrelscnveq4 37903 Two ways of saying a relat...
cnvelrels 37904 The converse of a set is a...
cosselrels 37905 Cosets of sets are element...
cosscnvelrels 37906 Cosets of converse sets ar...
dfssr2 37908 Alternate definition of th...
relssr 37909 The subset relation is a r...
brssr 37910 The subset relation and su...
brssrid 37911 Any set is a subset of its...
issetssr 37912 Two ways of expressing set...
brssrres 37913 Restricted subset binary r...
br1cnvssrres 37914 Restricted converse subset...
brcnvssr 37915 The converse of a subset r...
brcnvssrid 37916 Any set is a converse subs...
br1cossxrncnvssrres 37917 ` <. B , C >. ` and ` <. D...
extssr 37918 Property of subset relatio...
dfrefrels2 37922 Alternate definition of th...
dfrefrels3 37923 Alternate definition of th...
dfrefrel2 37924 Alternate definition of th...
dfrefrel3 37925 Alternate definition of th...
dfrefrel5 37926 Alternate definition of th...
elrefrels2 37927 Element of the class of re...
elrefrels3 37928 Element of the class of re...
elrefrelsrel 37929 For sets, being an element...
refreleq 37930 Equality theorem for refle...
refrelid 37931 Identity relation is refle...
refrelcoss 37932 The class of cosets by ` R...
refrelressn 37933 Any class ' R ' restricted...
dfcnvrefrels2 37937 Alternate definition of th...
dfcnvrefrels3 37938 Alternate definition of th...
dfcnvrefrel2 37939 Alternate definition of th...
dfcnvrefrel3 37940 Alternate definition of th...
dfcnvrefrel4 37941 Alternate definition of th...
dfcnvrefrel5 37942 Alternate definition of th...
elcnvrefrels2 37943 Element of the class of co...
elcnvrefrels3 37944 Element of the class of co...
elcnvrefrelsrel 37945 For sets, being an element...
cnvrefrelcoss2 37946 Necessary and sufficient c...
cosselcnvrefrels2 37947 Necessary and sufficient c...
cosselcnvrefrels3 37948 Necessary and sufficient c...
cosselcnvrefrels4 37949 Necessary and sufficient c...
cosselcnvrefrels5 37950 Necessary and sufficient c...
dfsymrels2 37954 Alternate definition of th...
dfsymrels3 37955 Alternate definition of th...
dfsymrels4 37956 Alternate definition of th...
dfsymrels5 37957 Alternate definition of th...
dfsymrel2 37958 Alternate definition of th...
dfsymrel3 37959 Alternate definition of th...
dfsymrel4 37960 Alternate definition of th...
dfsymrel5 37961 Alternate definition of th...
elsymrels2 37962 Element of the class of sy...
elsymrels3 37963 Element of the class of sy...
elsymrels4 37964 Element of the class of sy...
elsymrels5 37965 Element of the class of sy...
elsymrelsrel 37966 For sets, being an element...
symreleq 37967 Equality theorem for symme...
symrelim 37968 Symmetric relation implies...
symrelcoss 37969 The class of cosets by ` R...
idsymrel 37970 The identity relation is s...
epnsymrel 37971 The membership (epsilon) r...
symrefref2 37972 Symmetry is a sufficient c...
symrefref3 37973 Symmetry is a sufficient c...
refsymrels2 37974 Elements of the class of r...
refsymrels3 37975 Elements of the class of r...
refsymrel2 37976 A relation which is reflex...
refsymrel3 37977 A relation which is reflex...
elrefsymrels2 37978 Elements of the class of r...
elrefsymrels3 37979 Elements of the class of r...
elrefsymrelsrel 37980 For sets, being an element...
dftrrels2 37984 Alternate definition of th...
dftrrels3 37985 Alternate definition of th...
dftrrel2 37986 Alternate definition of th...
dftrrel3 37987 Alternate definition of th...
eltrrels2 37988 Element of the class of tr...
eltrrels3 37989 Element of the class of tr...
eltrrelsrel 37990 For sets, being an element...
trreleq 37991 Equality theorem for the t...
trrelressn 37992 Any class ' R ' restricted...
dfeqvrels2 37997 Alternate definition of th...
dfeqvrels3 37998 Alternate definition of th...
dfeqvrel2 37999 Alternate definition of th...
dfeqvrel3 38000 Alternate definition of th...
eleqvrels2 38001 Element of the class of eq...
eleqvrels3 38002 Element of the class of eq...
eleqvrelsrel 38003 For sets, being an element...
elcoeleqvrels 38004 Elementhood in the coeleme...
elcoeleqvrelsrel 38005 For sets, being an element...
eqvrelrel 38006 An equivalence relation is...
eqvrelrefrel 38007 An equivalence relation is...
eqvrelsymrel 38008 An equivalence relation is...
eqvreltrrel 38009 An equivalence relation is...
eqvrelim 38010 Equivalence relation impli...
eqvreleq 38011 Equality theorem for equiv...
eqvreleqi 38012 Equality theorem for equiv...
eqvreleqd 38013 Equality theorem for equiv...
eqvrelsym 38014 An equivalence relation is...
eqvrelsymb 38015 An equivalence relation is...
eqvreltr 38016 An equivalence relation is...
eqvreltrd 38017 A transitivity relation fo...
eqvreltr4d 38018 A transitivity relation fo...
eqvrelref 38019 An equivalence relation is...
eqvrelth 38020 Basic property of equivale...
eqvrelcl 38021 Elementhood in the field o...
eqvrelthi 38022 Basic property of equivale...
eqvreldisj 38023 Equivalence classes do not...
qsdisjALTV 38024 Elements of a quotient set...
eqvrelqsel 38025 If an element of a quotien...
eqvrelcoss 38026 Two ways to express equiva...
eqvrelcoss3 38027 Two ways to express equiva...
eqvrelcoss2 38028 Two ways to express equiva...
eqvrelcoss4 38029 Two ways to express equiva...
dfcoeleqvrels 38030 Alternate definition of th...
dfcoeleqvrel 38031 Alternate definition of th...
brredunds 38035 Binary relation on the cla...
brredundsredund 38036 For sets, binary relation ...
redundss3 38037 Implication of redundancy ...
redundeq1 38038 Equivalence of redundancy ...
redundpim3 38039 Implication of redundancy ...
redundpbi1 38040 Equivalence of redundancy ...
refrelsredund4 38041 The naive version of the c...
refrelsredund2 38042 The naive version of the c...
refrelsredund3 38043 The naive version of the c...
refrelredund4 38044 The naive version of the d...
refrelredund2 38045 The naive version of the d...
refrelredund3 38046 The naive version of the d...
dmqseq 38049 Equality theorem for domai...
dmqseqi 38050 Equality theorem for domai...
dmqseqd 38051 Equality theorem for domai...
dmqseqeq1 38052 Equality theorem for domai...
dmqseqeq1i 38053 Equality theorem for domai...
dmqseqeq1d 38054 Equality theorem for domai...
brdmqss 38055 The domain quotient binary...
brdmqssqs 38056 If ` A ` and ` R ` are set...
n0eldmqs 38057 The empty set is not an el...
n0eldmqseq 38058 The empty set is not an el...
n0elim 38059 Implication of that the em...
n0el3 38060 Two ways of expressing tha...
cnvepresdmqss 38061 The domain quotient binary...
cnvepresdmqs 38062 The domain quotient predic...
unidmqs 38063 The range of a relation is...
unidmqseq 38064 The union of the domain qu...
dmqseqim 38065 If the domain quotient of ...
dmqseqim2 38066 Lemma for ~ erimeq2 . (Co...
releldmqs 38067 Elementhood in the domain ...
eldmqs1cossres 38068 Elementhood in the domain ...
releldmqscoss 38069 Elementhood in the domain ...
dmqscoelseq 38070 Two ways to express the eq...
dmqs1cosscnvepreseq 38071 Two ways to express the eq...
brers 38076 Binary equivalence relatio...
dferALTV2 38077 Equivalence relation with ...
erALTVeq1 38078 Equality theorem for equiv...
erALTVeq1i 38079 Equality theorem for equiv...
erALTVeq1d 38080 Equality theorem for equiv...
dfcomember 38081 Alternate definition of th...
dfcomember2 38082 Alternate definition of th...
dfcomember3 38083 Alternate definition of th...
eqvreldmqs 38084 Two ways to express comemb...
eqvreldmqs2 38085 Two ways to express comemb...
brerser 38086 Binary equivalence relatio...
erimeq2 38087 Equivalence relation on it...
erimeq 38088 Equivalence relation on it...
dffunsALTV 38092 Alternate definition of th...
dffunsALTV2 38093 Alternate definition of th...
dffunsALTV3 38094 Alternate definition of th...
dffunsALTV4 38095 Alternate definition of th...
dffunsALTV5 38096 Alternate definition of th...
dffunALTV2 38097 Alternate definition of th...
dffunALTV3 38098 Alternate definition of th...
dffunALTV4 38099 Alternate definition of th...
dffunALTV5 38100 Alternate definition of th...
elfunsALTV 38101 Elementhood in the class o...
elfunsALTV2 38102 Elementhood in the class o...
elfunsALTV3 38103 Elementhood in the class o...
elfunsALTV4 38104 Elementhood in the class o...
elfunsALTV5 38105 Elementhood in the class o...
elfunsALTVfunALTV 38106 The element of the class o...
funALTVfun 38107 Our definition of the func...
funALTVss 38108 Subclass theorem for funct...
funALTVeq 38109 Equality theorem for funct...
funALTVeqi 38110 Equality inference for the...
funALTVeqd 38111 Equality deduction for the...
dfdisjs 38117 Alternate definition of th...
dfdisjs2 38118 Alternate definition of th...
dfdisjs3 38119 Alternate definition of th...
dfdisjs4 38120 Alternate definition of th...
dfdisjs5 38121 Alternate definition of th...
dfdisjALTV 38122 Alternate definition of th...
dfdisjALTV2 38123 Alternate definition of th...
dfdisjALTV3 38124 Alternate definition of th...
dfdisjALTV4 38125 Alternate definition of th...
dfdisjALTV5 38126 Alternate definition of th...
dfeldisj2 38127 Alternate definition of th...
dfeldisj3 38128 Alternate definition of th...
dfeldisj4 38129 Alternate definition of th...
dfeldisj5 38130 Alternate definition of th...
eldisjs 38131 Elementhood in the class o...
eldisjs2 38132 Elementhood in the class o...
eldisjs3 38133 Elementhood in the class o...
eldisjs4 38134 Elementhood in the class o...
eldisjs5 38135 Elementhood in the class o...
eldisjsdisj 38136 The element of the class o...
eleldisjs 38137 Elementhood in the disjoin...
eleldisjseldisj 38138 The element of the disjoin...
disjrel 38139 Disjoint relation is a rel...
disjss 38140 Subclass theorem for disjo...
disjssi 38141 Subclass theorem for disjo...
disjssd 38142 Subclass theorem for disjo...
disjeq 38143 Equality theorem for disjo...
disjeqi 38144 Equality theorem for disjo...
disjeqd 38145 Equality theorem for disjo...
disjdmqseqeq1 38146 Lemma for the equality the...
eldisjss 38147 Subclass theorem for disjo...
eldisjssi 38148 Subclass theorem for disjo...
eldisjssd 38149 Subclass theorem for disjo...
eldisjeq 38150 Equality theorem for disjo...
eldisjeqi 38151 Equality theorem for disjo...
eldisjeqd 38152 Equality theorem for disjo...
disjres 38153 Disjoint restriction. (Co...
eldisjn0elb 38154 Two forms of disjoint elem...
disjxrn 38155 Two ways of saying that a ...
disjxrnres5 38156 Disjoint range Cartesian p...
disjorimxrn 38157 Disjointness condition for...
disjimxrn 38158 Disjointness condition for...
disjimres 38159 Disjointness condition for...
disjimin 38160 Disjointness condition for...
disjiminres 38161 Disjointness condition for...
disjimxrnres 38162 Disjointness condition for...
disjALTV0 38163 The null class is disjoint...
disjALTVid 38164 The class of identity rela...
disjALTVidres 38165 The class of identity rela...
disjALTVinidres 38166 The intersection with rest...
disjALTVxrnidres 38167 The class of range Cartesi...
disjsuc 38168 Disjoint range Cartesian p...
dfantisymrel4 38170 Alternate definition of th...
dfantisymrel5 38171 Alternate definition of th...
antisymrelres 38172 (Contributed by Peter Mazs...
antisymrelressn 38173 (Contributed by Peter Mazs...
dfpart2 38178 Alternate definition of th...
dfmembpart2 38179 Alternate definition of th...
brparts 38180 Binary partitions relation...
brparts2 38181 Binary partitions relation...
brpartspart 38182 Binary partition and the p...
parteq1 38183 Equality theorem for parti...
parteq2 38184 Equality theorem for parti...
parteq12 38185 Equality theorem for parti...
parteq1i 38186 Equality theorem for parti...
parteq1d 38187 Equality theorem for parti...
partsuc2 38188 Property of the partition....
partsuc 38189 Property of the partition....
disjim 38190 The "Divide et Aequivalere...
disjimi 38191 Every disjoint relation ge...
detlem 38192 If a relation is disjoint,...
eldisjim 38193 If the elements of ` A ` a...
eldisjim2 38194 Alternate form of ~ eldisj...
eqvrel0 38195 The null class is an equiv...
det0 38196 The cosets by the null cla...
eqvrelcoss0 38197 The cosets by the null cla...
eqvrelid 38198 The identity relation is a...
eqvrel1cossidres 38199 The cosets by a restricted...
eqvrel1cossinidres 38200 The cosets by an intersect...
eqvrel1cossxrnidres 38201 The cosets by a range Cart...
detid 38202 The cosets by the identity...
eqvrelcossid 38203 The cosets by the identity...
detidres 38204 The cosets by the restrict...
detinidres 38205 The cosets by the intersec...
detxrnidres 38206 The cosets by the range Ca...
disjlem14 38207 Lemma for ~ disjdmqseq , ~...
disjlem17 38208 Lemma for ~ disjdmqseq , ~...
disjlem18 38209 Lemma for ~ disjdmqseq , ~...
disjlem19 38210 Lemma for ~ disjdmqseq , ~...
disjdmqsss 38211 Lemma for ~ disjdmqseq via...
disjdmqscossss 38212 Lemma for ~ disjdmqseq via...
disjdmqs 38213 If a relation is disjoint,...
disjdmqseq 38214 If a relation is disjoint,...
eldisjn0el 38215 Special case of ~ disjdmqs...
partim2 38216 Disjoint relation on its n...
partim 38217 Partition implies equivale...
partimeq 38218 Partition implies that the...
eldisjlem19 38219 Special case of ~ disjlem1...
membpartlem19 38220 Together with ~ disjlem19 ...
petlem 38221 If you can prove that the ...
petlemi 38222 If you can prove disjointn...
pet02 38223 Class ` A ` is a partition...
pet0 38224 Class ` A ` is a partition...
petid2 38225 Class ` A ` is a partition...
petid 38226 A class is a partition by ...
petidres2 38227 Class ` A ` is a partition...
petidres 38228 A class is a partition by ...
petinidres2 38229 Class ` A ` is a partition...
petinidres 38230 A class is a partition by ...
petxrnidres2 38231 Class ` A ` is a partition...
petxrnidres 38232 A class is a partition by ...
eqvreldisj1 38233 The elements of the quotie...
eqvreldisj2 38234 The elements of the quotie...
eqvreldisj3 38235 The elements of the quotie...
eqvreldisj4 38236 Intersection with the conv...
eqvreldisj5 38237 Range Cartesian product wi...
eqvrelqseqdisj2 38238 Implication of ~ eqvreldis...
fences3 38239 Implication of ~ eqvrelqse...
eqvrelqseqdisj3 38240 Implication of ~ eqvreldis...
eqvrelqseqdisj4 38241 Lemma for ~ petincnvepres2...
eqvrelqseqdisj5 38242 Lemma for the Partition-Eq...
mainer 38243 The Main Theorem of Equiva...
partimcomember 38244 Partition with general ` R...
mpet3 38245 Member Partition-Equivalen...
cpet2 38246 The conventional form of t...
cpet 38247 The conventional form of M...
mpet 38248 Member Partition-Equivalen...
mpet2 38249 Member Partition-Equivalen...
mpets2 38250 Member Partition-Equivalen...
mpets 38251 Member Partition-Equivalen...
mainpart 38252 Partition with general ` R...
fences 38253 The Theorem of Fences by E...
fences2 38254 The Theorem of Fences by E...
mainer2 38255 The Main Theorem of Equiva...
mainerim 38256 Every equivalence relation...
petincnvepres2 38257 A partition-equivalence th...
petincnvepres 38258 The shortest form of a par...
pet2 38259 Partition-Equivalence Theo...
pet 38260 Partition-Equivalence Theo...
pets 38261 Partition-Equivalence Theo...
prtlem60 38262 Lemma for ~ prter3 . (Con...
bicomdd 38263 Commute two sides of a bic...
jca2r 38264 Inference conjoining the c...
jca3 38265 Inference conjoining the c...
prtlem70 38266 Lemma for ~ prter3 : a rea...
ibdr 38267 Reverse of ~ ibd . (Contr...
prtlem100 38268 Lemma for ~ prter3 . (Con...
prtlem5 38269 Lemma for ~ prter1 , ~ prt...
prtlem80 38270 Lemma for ~ prter2 . (Con...
brabsb2 38271 A closed form of ~ brabsb ...
eqbrrdv2 38272 Other version of ~ eqbrrdi...
prtlem9 38273 Lemma for ~ prter3 . (Con...
prtlem10 38274 Lemma for ~ prter3 . (Con...
prtlem11 38275 Lemma for ~ prter2 . (Con...
prtlem12 38276 Lemma for ~ prtex and ~ pr...
prtlem13 38277 Lemma for ~ prter1 , ~ prt...
prtlem16 38278 Lemma for ~ prtex , ~ prte...
prtlem400 38279 Lemma for ~ prter2 and als...
erprt 38282 The quotient set of an equ...
prtlem14 38283 Lemma for ~ prter1 , ~ prt...
prtlem15 38284 Lemma for ~ prter1 and ~ p...
prtlem17 38285 Lemma for ~ prter2 . (Con...
prtlem18 38286 Lemma for ~ prter2 . (Con...
prtlem19 38287 Lemma for ~ prter2 . (Con...
prter1 38288 Every partition generates ...
prtex 38289 The equivalence relation g...
prter2 38290 The quotient set of the eq...
prter3 38291 For every partition there ...
axc5 38302 This theorem repeats ~ sp ...
ax4fromc4 38303 Rederivation of Axiom ~ ax...
ax10fromc7 38304 Rederivation of Axiom ~ ax...
ax6fromc10 38305 Rederivation of Axiom ~ ax...
hba1-o 38306 The setvar ` x ` is not fr...
axc4i-o 38307 Inference version of ~ ax-...
equid1 38308 Proof of ~ equid from our ...
equcomi1 38309 Proof of ~ equcomi from ~ ...
aecom-o 38310 Commutation law for identi...
aecoms-o 38311 A commutation rule for ide...
hbae-o 38312 All variables are effectiv...
dral1-o 38313 Formula-building lemma for...
ax12fromc15 38314 Rederivation of Axiom ~ ax...
ax13fromc9 38315 Derive ~ ax-13 from ~ ax-c...
ax5ALT 38316 Axiom to quantify a variab...
sps-o 38317 Generalization of antecede...
hbequid 38318 Bound-variable hypothesis ...
nfequid-o 38319 Bound-variable hypothesis ...
axc5c7 38320 Proof of a single axiom th...
axc5c7toc5 38321 Rederivation of ~ ax-c5 fr...
axc5c7toc7 38322 Rederivation of ~ ax-c7 fr...
axc711 38323 Proof of a single axiom th...
nfa1-o 38324 ` x ` is not free in ` A. ...
axc711toc7 38325 Rederivation of ~ ax-c7 fr...
axc711to11 38326 Rederivation of ~ ax-11 fr...
axc5c711 38327 Proof of a single axiom th...
axc5c711toc5 38328 Rederivation of ~ ax-c5 fr...
axc5c711toc7 38329 Rederivation of ~ ax-c7 fr...
axc5c711to11 38330 Rederivation of ~ ax-11 fr...
equidqe 38331 ~ equid with existential q...
axc5sp1 38332 A special case of ~ ax-c5 ...
equidq 38333 ~ equid with universal qua...
equid1ALT 38334 Alternate proof of ~ equid...
axc11nfromc11 38335 Rederivation of ~ ax-c11n ...
naecoms-o 38336 A commutation rule for dis...
hbnae-o 38337 All variables are effectiv...
dvelimf-o 38338 Proof of ~ dvelimh that us...
dral2-o 38339 Formula-building lemma for...
aev-o 38340 A "distinctor elimination"...
ax5eq 38341 Theorem to add distinct qu...
dveeq2-o 38342 Quantifier introduction wh...
axc16g-o 38343 A generalization of Axiom ...
dveeq1-o 38344 Quantifier introduction wh...
dveeq1-o16 38345 Version of ~ dveeq1 using ...
ax5el 38346 Theorem to add distinct qu...
axc11n-16 38347 This theorem shows that, g...
dveel2ALT 38348 Alternate proof of ~ dveel...
ax12f 38349 Basis step for constructin...
ax12eq 38350 Basis step for constructin...
ax12el 38351 Basis step for constructin...
ax12indn 38352 Induction step for constru...
ax12indi 38353 Induction step for constru...
ax12indalem 38354 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 38355 Alternate proof of ~ ax12i...
ax12inda2 38356 Induction step for constru...
ax12inda 38357 Induction step for constru...
ax12v2-o 38358 Rederivation of ~ ax-c15 f...
ax12a2-o 38359 Derive ~ ax-c15 from a hyp...
axc11-o 38360 Show that ~ ax-c11 can be ...
fsumshftd 38361 Index shift of a finite su...
riotaclbgBAD 38363 Closure of restricted iota...
riotaclbBAD 38364 Closure of restricted iota...
riotasvd 38365 Deduction version of ~ rio...
riotasv2d 38366 Value of description binde...
riotasv2s 38367 The value of description b...
riotasv 38368 Value of description binde...
riotasv3d 38369 A property ` ch ` holding ...
elimhyps 38370 A version of ~ elimhyp usi...
dedths 38371 A version of weak deductio...
renegclALT 38372 Closure law for negative o...
elimhyps2 38373 Generalization of ~ elimhy...
dedths2 38374 Generalization of ~ dedths...
nfcxfrdf 38375 A utility lemma to transfe...
nfded 38376 A deduction theorem that c...
nfded2 38377 A deduction theorem that c...
nfunidALT2 38378 Deduction version of ~ nfu...
nfunidALT 38379 Deduction version of ~ nfu...
nfopdALT 38380 Deduction version of bound...
cnaddcom 38381 Recover the commutative la...
toycom 38382 Show the commutative law f...
lshpset 38387 The set of all hyperplanes...
islshp 38388 The predicate "is a hyperp...
islshpsm 38389 Hyperplane properties expr...
lshplss 38390 A hyperplane is a subspace...
lshpne 38391 A hyperplane is not equal ...
lshpnel 38392 A hyperplane's generating ...
lshpnelb 38393 The subspace sum of a hype...
lshpnel2N 38394 Condition that determines ...
lshpne0 38395 The member of the span in ...
lshpdisj 38396 A hyperplane and the span ...
lshpcmp 38397 If two hyperplanes are com...
lshpinN 38398 The intersection of two di...
lsatset 38399 The set of all 1-dim subsp...
islsat 38400 The predicate "is a 1-dim ...
lsatlspsn2 38401 The span of a nonzero sing...
lsatlspsn 38402 The span of a nonzero sing...
islsati 38403 A 1-dim subspace (atom) (o...
lsateln0 38404 A 1-dim subspace (atom) (o...
lsatlss 38405 The set of 1-dim subspaces...
lsatlssel 38406 An atom is a subspace. (C...
lsatssv 38407 An atom is a set of vector...
lsatn0 38408 A 1-dim subspace (atom) of...
lsatspn0 38409 The span of a vector is an...
lsator0sp 38410 The span of a vector is ei...
lsatssn0 38411 A subspace (or any class) ...
lsatcmp 38412 If two atoms are comparabl...
lsatcmp2 38413 If an atom is included in ...
lsatel 38414 A nonzero vector in an ato...
lsatelbN 38415 A nonzero vector in an ato...
lsat2el 38416 Two atoms sharing a nonzer...
lsmsat 38417 Convert comparison of atom...
lsatfixedN 38418 Show equality with the spa...
lsmsatcv 38419 Subspace sum has the cover...
lssatomic 38420 The lattice of subspaces i...
lssats 38421 The lattice of subspaces i...
lpssat 38422 Two subspaces in a proper ...
lrelat 38423 Subspaces are relatively a...
lssatle 38424 The ordering of two subspa...
lssat 38425 Two subspaces in a proper ...
islshpat 38426 Hyperplane properties expr...
lcvfbr 38429 The covers relation for a ...
lcvbr 38430 The covers relation for a ...
lcvbr2 38431 The covers relation for a ...
lcvbr3 38432 The covers relation for a ...
lcvpss 38433 The covers relation implie...
lcvnbtwn 38434 The covers relation implie...
lcvntr 38435 The covers relation is not...
lcvnbtwn2 38436 The covers relation implie...
lcvnbtwn3 38437 The covers relation implie...
lsmcv2 38438 Subspace sum has the cover...
lcvat 38439 If a subspace covers anoth...
lsatcv0 38440 An atom covers the zero su...
lsatcveq0 38441 A subspace covered by an a...
lsat0cv 38442 A subspace is an atom iff ...
lcvexchlem1 38443 Lemma for ~ lcvexch . (Co...
lcvexchlem2 38444 Lemma for ~ lcvexch . (Co...
lcvexchlem3 38445 Lemma for ~ lcvexch . (Co...
lcvexchlem4 38446 Lemma for ~ lcvexch . (Co...
lcvexchlem5 38447 Lemma for ~ lcvexch . (Co...
lcvexch 38448 Subspaces satisfy the exch...
lcvp 38449 Covering property of Defin...
lcv1 38450 Covering property of a sub...
lcv2 38451 Covering property of a sub...
lsatexch 38452 The atom exchange property...
lsatnle 38453 The meet of a subspace and...
lsatnem0 38454 The meet of distinct atoms...
lsatexch1 38455 The atom exch1ange propert...
lsatcv0eq 38456 If the sum of two atoms co...
lsatcv1 38457 Two atoms covering the zer...
lsatcvatlem 38458 Lemma for ~ lsatcvat . (C...
lsatcvat 38459 A nonzero subspace less th...
lsatcvat2 38460 A subspace covered by the ...
lsatcvat3 38461 A condition implying that ...
islshpcv 38462 Hyperplane properties expr...
l1cvpat 38463 A subspace covered by the ...
l1cvat 38464 Create an atom under an el...
lshpat 38465 Create an atom under a hyp...
lflset 38468 The set of linear function...
islfl 38469 The predicate "is a linear...
lfli 38470 Property of a linear funct...
islfld 38471 Properties that determine ...
lflf 38472 A linear functional is a f...
lflcl 38473 A linear functional value ...
lfl0 38474 A linear functional is zer...
lfladd 38475 Property of a linear funct...
lflsub 38476 Property of a linear funct...
lflmul 38477 Property of a linear funct...
lfl0f 38478 The zero function is a fun...
lfl1 38479 A nonzero functional has a...
lfladdcl 38480 Closure of addition of two...
lfladdcom 38481 Commutativity of functiona...
lfladdass 38482 Associativity of functiona...
lfladd0l 38483 Functional addition with t...
lflnegcl 38484 Closure of the negative of...
lflnegl 38485 A functional plus its nega...
lflvscl 38486 Closure of a scalar produc...
lflvsdi1 38487 Distributive law for (righ...
lflvsdi2 38488 Reverse distributive law f...
lflvsdi2a 38489 Reverse distributive law f...
lflvsass 38490 Associative law for (right...
lfl0sc 38491 The (right vector space) s...
lflsc0N 38492 The scalar product with th...
lfl1sc 38493 The (right vector space) s...
lkrfval 38496 The kernel of a functional...
lkrval 38497 Value of the kernel of a f...
ellkr 38498 Membership in the kernel o...
lkrval2 38499 Value of the kernel of a f...
ellkr2 38500 Membership in the kernel o...
lkrcl 38501 A member of the kernel of ...
lkrf0 38502 The value of a functional ...
lkr0f 38503 The kernel of the zero fun...
lkrlss 38504 The kernel of a linear fun...
lkrssv 38505 The kernel of a linear fun...
lkrsc 38506 The kernel of a nonzero sc...
lkrscss 38507 The kernel of a scalar pro...
eqlkr 38508 Two functionals with the s...
eqlkr2 38509 Two functionals with the s...
eqlkr3 38510 Two functionals with the s...
lkrlsp 38511 The subspace sum of a kern...
lkrlsp2 38512 The subspace sum of a kern...
lkrlsp3 38513 The subspace sum of a kern...
lkrshp 38514 The kernel of a nonzero fu...
lkrshp3 38515 The kernels of nonzero fun...
lkrshpor 38516 The kernel of a functional...
lkrshp4 38517 A kernel is a hyperplane i...
lshpsmreu 38518 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 38519 Lemma for ~ lshpkrex . Th...
lshpkrlem2 38520 Lemma for ~ lshpkrex . Th...
lshpkrlem3 38521 Lemma for ~ lshpkrex . De...
lshpkrlem4 38522 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 38523 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 38524 Lemma for ~ lshpkrex . Sh...
lshpkrcl 38525 The set ` G ` defined by h...
lshpkr 38526 The kernel of functional `...
lshpkrex 38527 There exists a functional ...
lshpset2N 38528 The set of all hyperplanes...
islshpkrN 38529 The predicate "is a hyperp...
lfl1dim 38530 Equivalent expressions for...
lfl1dim2N 38531 Equivalent expressions for...
ldualset 38534 Define the (left) dual of ...
ldualvbase 38535 The vectors of a dual spac...
ldualelvbase 38536 Utility theorem for conver...
ldualfvadd 38537 Vector addition in the dua...
ldualvadd 38538 Vector addition in the dua...
ldualvaddcl 38539 The value of vector additi...
ldualvaddval 38540 The value of the value of ...
ldualsca 38541 The ring of scalars of the...
ldualsbase 38542 Base set of scalar ring fo...
ldualsaddN 38543 Scalar addition for the du...
ldualsmul 38544 Scalar multiplication for ...
ldualfvs 38545 Scalar product operation f...
ldualvs 38546 Scalar product operation v...
ldualvsval 38547 Value of scalar product op...
ldualvscl 38548 The scalar product operati...
ldualvaddcom 38549 Commutative law for vector...
ldualvsass 38550 Associative law for scalar...
ldualvsass2 38551 Associative law for scalar...
ldualvsdi1 38552 Distributive law for scala...
ldualvsdi2 38553 Reverse distributive law f...
ldualgrplem 38554 Lemma for ~ ldualgrp . (C...
ldualgrp 38555 The dual of a vector space...
ldual0 38556 The zero scalar of the dua...
ldual1 38557 The unit scalar of the dua...
ldualneg 38558 The negative of a scalar o...
ldual0v 38559 The zero vector of the dua...
ldual0vcl 38560 The dual zero vector is a ...
lduallmodlem 38561 Lemma for ~ lduallmod . (...
lduallmod 38562 The dual of a left module ...
lduallvec 38563 The dual of a left vector ...
ldualvsub 38564 The value of vector subtra...
ldualvsubcl 38565 Closure of vector subtract...
ldualvsubval 38566 The value of the value of ...
ldualssvscl 38567 Closure of scalar product ...
ldualssvsubcl 38568 Closure of vector subtract...
ldual0vs 38569 Scalar zero times a functi...
lkr0f2 38570 The kernel of the zero fun...
lduallkr3 38571 The kernels of nonzero fun...
lkrpssN 38572 Proper subset relation bet...
lkrin 38573 Intersection of the kernel...
eqlkr4 38574 Two functionals with the s...
ldual1dim 38575 Equivalent expressions for...
ldualkrsc 38576 The kernel of a nonzero sc...
lkrss 38577 The kernel of a scalar pro...
lkrss2N 38578 Two functionals with kerne...
lkreqN 38579 Proportional functionals h...
lkrlspeqN 38580 Condition for colinear fun...
isopos 38589 The predicate "is an ortho...
opposet 38590 Every orthoposet is a pose...
oposlem 38591 Lemma for orthoposet prope...
op01dm 38592 Conditions necessary for z...
op0cl 38593 An orthoposet has a zero e...
op1cl 38594 An orthoposet has a unity ...
op0le 38595 Orthoposet zero is less th...
ople0 38596 An element less than or eq...
opnlen0 38597 An element not less than a...
lub0N 38598 The least upper bound of t...
opltn0 38599 A lattice element greater ...
ople1 38600 Any element is less than t...
op1le 38601 If the orthoposet unity is...
glb0N 38602 The greatest lower bound o...
opoccl 38603 Closure of orthocomplement...
opococ 38604 Double negative law for or...
opcon3b 38605 Contraposition law for ort...
opcon2b 38606 Orthocomplement contraposi...
opcon1b 38607 Orthocomplement contraposi...
oplecon3 38608 Contraposition law for ort...
oplecon3b 38609 Contraposition law for ort...
oplecon1b 38610 Contraposition law for str...
opoc1 38611 Orthocomplement of orthopo...
opoc0 38612 Orthocomplement of orthopo...
opltcon3b 38613 Contraposition law for str...
opltcon1b 38614 Contraposition law for str...
opltcon2b 38615 Contraposition law for str...
opexmid 38616 Law of excluded middle for...
opnoncon 38617 Law of contradiction for o...
riotaocN 38618 The orthocomplement of the...
cmtfvalN 38619 Value of commutes relation...
cmtvalN 38620 Equivalence for commutes r...
isolat 38621 The predicate "is an ortho...
ollat 38622 An ortholattice is a latti...
olop 38623 An ortholattice is an orth...
olposN 38624 An ortholattice is a poset...
isolatiN 38625 Properties that determine ...
oldmm1 38626 De Morgan's law for meet i...
oldmm2 38627 De Morgan's law for meet i...
oldmm3N 38628 De Morgan's law for meet i...
oldmm4 38629 De Morgan's law for meet i...
oldmj1 38630 De Morgan's law for join i...
oldmj2 38631 De Morgan's law for join i...
oldmj3 38632 De Morgan's law for join i...
oldmj4 38633 De Morgan's law for join i...
olj01 38634 An ortholattice element jo...
olj02 38635 An ortholattice element jo...
olm11 38636 The meet of an ortholattic...
olm12 38637 The meet of an ortholattic...
latmassOLD 38638 Ortholattice meet is assoc...
latm12 38639 A rearrangement of lattice...
latm32 38640 A rearrangement of lattice...
latmrot 38641 Rotate lattice meet of 3 c...
latm4 38642 Rearrangement of lattice m...
latmmdiN 38643 Lattice meet distributes o...
latmmdir 38644 Lattice meet distributes o...
olm01 38645 Meet with lattice zero is ...
olm02 38646 Meet with lattice zero is ...
isoml 38647 The predicate "is an ortho...
isomliN 38648 Properties that determine ...
omlol 38649 An orthomodular lattice is...
omlop 38650 An orthomodular lattice is...
omllat 38651 An orthomodular lattice is...
omllaw 38652 The orthomodular law. (Co...
omllaw2N 38653 Variation of orthomodular ...
omllaw3 38654 Orthomodular law equivalen...
omllaw4 38655 Orthomodular law equivalen...
omllaw5N 38656 The orthomodular law. Rem...
cmtcomlemN 38657 Lemma for ~ cmtcomN . ( ~...
cmtcomN 38658 Commutation is symmetric. ...
cmt2N 38659 Commutation with orthocomp...
cmt3N 38660 Commutation with orthocomp...
cmt4N 38661 Commutation with orthocomp...
cmtbr2N 38662 Alternate definition of th...
cmtbr3N 38663 Alternate definition for t...
cmtbr4N 38664 Alternate definition for t...
lecmtN 38665 Ordered elements commute. ...
cmtidN 38666 Any element commutes with ...
omlfh1N 38667 Foulis-Holland Theorem, pa...
omlfh3N 38668 Foulis-Holland Theorem, pa...
omlmod1i2N 38669 Analogue of modular law ~ ...
omlspjN 38670 Contraction of a Sasaki pr...
cvrfval 38677 Value of covers relation "...
cvrval 38678 Binary relation expressing...
cvrlt 38679 The covers relation implie...
cvrnbtwn 38680 There is no element betwee...
ncvr1 38681 No element covers the latt...
cvrletrN 38682 Property of an element abo...
cvrval2 38683 Binary relation expressing...
cvrnbtwn2 38684 The covers relation implie...
cvrnbtwn3 38685 The covers relation implie...
cvrcon3b 38686 Contraposition law for the...
cvrle 38687 The covers relation implie...
cvrnbtwn4 38688 The covers relation implie...
cvrnle 38689 The covers relation implie...
cvrne 38690 The covers relation implie...
cvrnrefN 38691 The covers relation is not...
cvrcmp 38692 If two lattice elements th...
cvrcmp2 38693 If two lattice elements co...
pats 38694 The set of atoms in a pose...
isat 38695 The predicate "is an atom"...
isat2 38696 The predicate "is an atom"...
atcvr0 38697 An atom covers zero. ( ~ ...
atbase 38698 An atom is a member of the...
atssbase 38699 The set of atoms is a subs...
0ltat 38700 An atom is greater than ze...
leatb 38701 A poset element less than ...
leat 38702 A poset element less than ...
leat2 38703 A nonzero poset element le...
leat3 38704 A poset element less than ...
meetat 38705 The meet of any element wi...
meetat2 38706 The meet of any element wi...
isatl 38708 The predicate "is an atomi...
atllat 38709 An atomic lattice is a lat...
atlpos 38710 An atomic lattice is a pos...
atl0dm 38711 Condition necessary for ze...
atl0cl 38712 An atomic lattice has a ze...
atl0le 38713 Orthoposet zero is less th...
atlle0 38714 An element less than or eq...
atlltn0 38715 A lattice element greater ...
isat3 38716 The predicate "is an atom"...
atn0 38717 An atom is not zero. ( ~ ...
atnle0 38718 An atom is not less than o...
atlen0 38719 A lattice element is nonze...
atcmp 38720 If two atoms are comparabl...
atncmp 38721 Frequently-used variation ...
atnlt 38722 Two atoms cannot satisfy t...
atcvreq0 38723 An element covered by an a...
atncvrN 38724 Two atoms cannot satisfy t...
atlex 38725 Every nonzero element of a...
atnle 38726 Two ways of expressing "an...
atnem0 38727 The meet of distinct atoms...
atlatmstc 38728 An atomic, complete, ortho...
atlatle 38729 The ordering of two Hilber...
atlrelat1 38730 An atomistic lattice with ...
iscvlat 38732 The predicate "is an atomi...
iscvlat2N 38733 The predicate "is an atomi...
cvlatl 38734 An atomic lattice with the...
cvllat 38735 An atomic lattice with the...
cvlposN 38736 An atomic lattice with the...
cvlexch1 38737 An atomic covering lattice...
cvlexch2 38738 An atomic covering lattice...
cvlexchb1 38739 An atomic covering lattice...
cvlexchb2 38740 An atomic covering lattice...
cvlexch3 38741 An atomic covering lattice...
cvlexch4N 38742 An atomic covering lattice...
cvlatexchb1 38743 A version of ~ cvlexchb1 f...
cvlatexchb2 38744 A version of ~ cvlexchb2 f...
cvlatexch1 38745 Atom exchange property. (...
cvlatexch2 38746 Atom exchange property. (...
cvlatexch3 38747 Atom exchange property. (...
cvlcvr1 38748 The covering property. Pr...
cvlcvrp 38749 A Hilbert lattice satisfie...
cvlatcvr1 38750 An atom is covered by its ...
cvlatcvr2 38751 An atom is covered by its ...
cvlsupr2 38752 Two equivalent ways of exp...
cvlsupr3 38753 Two equivalent ways of exp...
cvlsupr4 38754 Consequence of superpositi...
cvlsupr5 38755 Consequence of superpositi...
cvlsupr6 38756 Consequence of superpositi...
cvlsupr7 38757 Consequence of superpositi...
cvlsupr8 38758 Consequence of superpositi...
ishlat1 38761 The predicate "is a Hilber...
ishlat2 38762 The predicate "is a Hilber...
ishlat3N 38763 The predicate "is a Hilber...
ishlatiN 38764 Properties that determine ...
hlomcmcv 38765 A Hilbert lattice is ortho...
hloml 38766 A Hilbert lattice is ortho...
hlclat 38767 A Hilbert lattice is compl...
hlcvl 38768 A Hilbert lattice is an at...
hlatl 38769 A Hilbert lattice is atomi...
hlol 38770 A Hilbert lattice is an or...
hlop 38771 A Hilbert lattice is an or...
hllat 38772 A Hilbert lattice is a lat...
hllatd 38773 Deduction form of ~ hllat ...
hlomcmat 38774 A Hilbert lattice is ortho...
hlpos 38775 A Hilbert lattice is a pos...
hlatjcl 38776 Closure of join operation....
hlatjcom 38777 Commutatitivity of join op...
hlatjidm 38778 Idempotence of join operat...
hlatjass 38779 Lattice join is associativ...
hlatj12 38780 Swap 1st and 2nd members o...
hlatj32 38781 Swap 2nd and 3rd members o...
hlatjrot 38782 Rotate lattice join of 3 c...
hlatj4 38783 Rearrangement of lattice j...
hlatlej1 38784 A join's first argument is...
hlatlej2 38785 A join's second argument i...
glbconN 38786 De Morgan's law for GLB an...
glbconNOLD 38787 Obsolete version of ~ glbc...
glbconxN 38788 De Morgan's law for GLB an...
atnlej1 38789 If an atom is not less tha...
atnlej2 38790 If an atom is not less tha...
hlsuprexch 38791 A Hilbert lattice has the ...
hlexch1 38792 A Hilbert lattice has the ...
hlexch2 38793 A Hilbert lattice has the ...
hlexchb1 38794 A Hilbert lattice has the ...
hlexchb2 38795 A Hilbert lattice has the ...
hlsupr 38796 A Hilbert lattice has the ...
hlsupr2 38797 A Hilbert lattice has the ...
hlhgt4 38798 A Hilbert lattice has a he...
hlhgt2 38799 A Hilbert lattice has a he...
hl0lt1N 38800 Lattice 0 is less than lat...
hlexch3 38801 A Hilbert lattice has the ...
hlexch4N 38802 A Hilbert lattice has the ...
hlatexchb1 38803 A version of ~ hlexchb1 fo...
hlatexchb2 38804 A version of ~ hlexchb2 fo...
hlatexch1 38805 Atom exchange property. (...
hlatexch2 38806 Atom exchange property. (...
hlatmstcOLDN 38807 An atomic, complete, ortho...
hlatle 38808 The ordering of two Hilber...
hlateq 38809 The equality of two Hilber...
hlrelat1 38810 An atomistic lattice with ...
hlrelat5N 38811 An atomistic lattice with ...
hlrelat 38812 A Hilbert lattice is relat...
hlrelat2 38813 A consequence of relative ...
exatleN 38814 A condition for an atom to...
hl2at 38815 A Hilbert lattice has at l...
atex 38816 At least one atom exists. ...
intnatN 38817 If the intersection with a...
2llnne2N 38818 Condition implying that tw...
2llnneN 38819 Condition implying that tw...
cvr1 38820 A Hilbert lattice has the ...
cvr2N 38821 Less-than and covers equiv...
hlrelat3 38822 The Hilbert lattice is rel...
cvrval3 38823 Binary relation expressing...
cvrval4N 38824 Binary relation expressing...
cvrval5 38825 Binary relation expressing...
cvrp 38826 A Hilbert lattice satisfie...
atcvr1 38827 An atom is covered by its ...
atcvr2 38828 An atom is covered by its ...
cvrexchlem 38829 Lemma for ~ cvrexch . ( ~...
cvrexch 38830 A Hilbert lattice satisfie...
cvratlem 38831 Lemma for ~ cvrat . ( ~ a...
cvrat 38832 A nonzero Hilbert lattice ...
ltltncvr 38833 A chained strong ordering ...
ltcvrntr 38834 Non-transitive condition f...
cvrntr 38835 The covers relation is not...
atcvr0eq 38836 The covers relation is not...
lnnat 38837 A line (the join of two di...
atcvrj0 38838 Two atoms covering the zer...
cvrat2 38839 A Hilbert lattice element ...
atcvrneN 38840 Inequality derived from at...
atcvrj1 38841 Condition for an atom to b...
atcvrj2b 38842 Condition for an atom to b...
atcvrj2 38843 Condition for an atom to b...
atleneN 38844 Inequality derived from at...
atltcvr 38845 An equivalence of less-tha...
atle 38846 Any nonzero element has an...
atlt 38847 Two atoms are unequal iff ...
atlelt 38848 Transfer less-than relatio...
2atlt 38849 Given an atom less than an...
atexchcvrN 38850 Atom exchange property. V...
atexchltN 38851 Atom exchange property. V...
cvrat3 38852 A condition implying that ...
cvrat4 38853 A condition implying exist...
cvrat42 38854 Commuted version of ~ cvra...
2atjm 38855 The meet of a line (expres...
atbtwn 38856 Property of a 3rd atom ` R...
atbtwnexOLDN 38857 There exists a 3rd atom ` ...
atbtwnex 38858 Given atoms ` P ` in ` X `...
3noncolr2 38859 Two ways to express 3 non-...
3noncolr1N 38860 Two ways to express 3 non-...
hlatcon3 38861 Atom exchange combined wit...
hlatcon2 38862 Atom exchange combined wit...
4noncolr3 38863 A way to express 4 non-col...
4noncolr2 38864 A way to express 4 non-col...
4noncolr1 38865 A way to express 4 non-col...
athgt 38866 A Hilbert lattice, whose h...
3dim0 38867 There exists a 3-dimension...
3dimlem1 38868 Lemma for ~ 3dim1 . (Cont...
3dimlem2 38869 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 38870 Lemma for ~ 3dim3 . (Cont...
3dimlem3 38871 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 38872 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 38873 Lemma for ~ 3dim3 . (Cont...
3dimlem4 38874 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 38875 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 38876 Lemma for ~ 3dim1 . (Cont...
3dim1 38877 Construct a 3-dimensional ...
3dim2 38878 Construct 2 new layers on ...
3dim3 38879 Construct a new layer on t...
2dim 38880 Generate a height-3 elemen...
1dimN 38881 An atom is covered by a he...
1cvrco 38882 The orthocomplement of an ...
1cvratex 38883 There exists an atom less ...
1cvratlt 38884 An atom less than or equal...
1cvrjat 38885 An element covered by the ...
1cvrat 38886 Create an atom under an el...
ps-1 38887 The join of two atoms ` R ...
ps-2 38888 Lattice analogue for the p...
2atjlej 38889 Two atoms are different if...
hlatexch3N 38890 Rearrange join of atoms in...
hlatexch4 38891 Exchange 2 atoms. (Contri...
ps-2b 38892 Variation of projective ge...
3atlem1 38893 Lemma for ~ 3at . (Contri...
3atlem2 38894 Lemma for ~ 3at . (Contri...
3atlem3 38895 Lemma for ~ 3at . (Contri...
3atlem4 38896 Lemma for ~ 3at . (Contri...
3atlem5 38897 Lemma for ~ 3at . (Contri...
3atlem6 38898 Lemma for ~ 3at . (Contri...
3atlem7 38899 Lemma for ~ 3at . (Contri...
3at 38900 Any three non-colinear ato...
llnset 38915 The set of lattice lines i...
islln 38916 The predicate "is a lattic...
islln4 38917 The predicate "is a lattic...
llni 38918 Condition implying a latti...
llnbase 38919 A lattice line is a lattic...
islln3 38920 The predicate "is a lattic...
islln2 38921 The predicate "is a lattic...
llni2 38922 The join of two different ...
llnnleat 38923 An atom cannot majorize a ...
llnneat 38924 A lattice line is not an a...
2atneat 38925 The join of two distinct a...
llnn0 38926 A lattice line is nonzero....
islln2a 38927 The predicate "is a lattic...
llnle 38928 Any element greater than 0...
atcvrlln2 38929 An atom under a line is co...
atcvrlln 38930 An element covering an ato...
llnexatN 38931 Given an atom on a line, t...
llncmp 38932 If two lattice lines are c...
llnnlt 38933 Two lattice lines cannot s...
2llnmat 38934 Two intersecting lines int...
2at0mat0 38935 Special case of ~ 2atmat0 ...
2atmat0 38936 The meet of two unequal li...
2atm 38937 An atom majorized by two d...
ps-2c 38938 Variation of projective ge...
lplnset 38939 The set of lattice planes ...
islpln 38940 The predicate "is a lattic...
islpln4 38941 The predicate "is a lattic...
lplni 38942 Condition implying a latti...
islpln3 38943 The predicate "is a lattic...
lplnbase 38944 A lattice plane is a latti...
islpln5 38945 The predicate "is a lattic...
islpln2 38946 The predicate "is a lattic...
lplni2 38947 The join of 3 different at...
lvolex3N 38948 There is an atom outside o...
llnmlplnN 38949 The intersection of a line...
lplnle 38950 Any element greater than 0...
lplnnle2at 38951 A lattice line (or atom) c...
lplnnleat 38952 A lattice plane cannot maj...
lplnnlelln 38953 A lattice plane is not les...
2atnelpln 38954 The join of two atoms is n...
lplnneat 38955 No lattice plane is an ato...
lplnnelln 38956 No lattice plane is a latt...
lplnn0N 38957 A lattice plane is nonzero...
islpln2a 38958 The predicate "is a lattic...
islpln2ah 38959 The predicate "is a lattic...
lplnriaN 38960 Property of a lattice plan...
lplnribN 38961 Property of a lattice plan...
lplnric 38962 Property of a lattice plan...
lplnri1 38963 Property of a lattice plan...
lplnri2N 38964 Property of a lattice plan...
lplnri3N 38965 Property of a lattice plan...
lplnllnneN 38966 Two lattice lines defined ...
llncvrlpln2 38967 A lattice line under a lat...
llncvrlpln 38968 An element covering a latt...
2lplnmN 38969 If the join of two lattice...
2llnmj 38970 The meet of two lattice li...
2atmat 38971 The meet of two intersecti...
lplncmp 38972 If two lattice planes are ...
lplnexatN 38973 Given a lattice line on a ...
lplnexllnN 38974 Given an atom on a lattice...
lplnnlt 38975 Two lattice planes cannot ...
2llnjaN 38976 The join of two different ...
2llnjN 38977 The join of two different ...
2llnm2N 38978 The meet of two different ...
2llnm3N 38979 Two lattice lines in a lat...
2llnm4 38980 Two lattice lines that maj...
2llnmeqat 38981 An atom equals the interse...
lvolset 38982 The set of 3-dim lattice v...
islvol 38983 The predicate "is a 3-dim ...
islvol4 38984 The predicate "is a 3-dim ...
lvoli 38985 Condition implying a 3-dim...
islvol3 38986 The predicate "is a 3-dim ...
lvoli3 38987 Condition implying a 3-dim...
lvolbase 38988 A 3-dim lattice volume is ...
islvol5 38989 The predicate "is a 3-dim ...
islvol2 38990 The predicate "is a 3-dim ...
lvoli2 38991 The join of 4 different at...
lvolnle3at 38992 A lattice plane (or lattic...
lvolnleat 38993 An atom cannot majorize a ...
lvolnlelln 38994 A lattice line cannot majo...
lvolnlelpln 38995 A lattice plane cannot maj...
3atnelvolN 38996 The join of 3 atoms is not...
2atnelvolN 38997 The join of two atoms is n...
lvolneatN 38998 No lattice volume is an at...
lvolnelln 38999 No lattice volume is a lat...
lvolnelpln 39000 No lattice volume is a lat...
lvoln0N 39001 A lattice volume is nonzer...
islvol2aN 39002 The predicate "is a lattic...
4atlem0a 39003 Lemma for ~ 4at . (Contri...
4atlem0ae 39004 Lemma for ~ 4at . (Contri...
4atlem0be 39005 Lemma for ~ 4at . (Contri...
4atlem3 39006 Lemma for ~ 4at . Break i...
4atlem3a 39007 Lemma for ~ 4at . Break i...
4atlem3b 39008 Lemma for ~ 4at . Break i...
4atlem4a 39009 Lemma for ~ 4at . Frequen...
4atlem4b 39010 Lemma for ~ 4at . Frequen...
4atlem4c 39011 Lemma for ~ 4at . Frequen...
4atlem4d 39012 Lemma for ~ 4at . Frequen...
4atlem9 39013 Lemma for ~ 4at . Substit...
4atlem10a 39014 Lemma for ~ 4at . Substit...
4atlem10b 39015 Lemma for ~ 4at . Substit...
4atlem10 39016 Lemma for ~ 4at . Combine...
4atlem11a 39017 Lemma for ~ 4at . Substit...
4atlem11b 39018 Lemma for ~ 4at . Substit...
4atlem11 39019 Lemma for ~ 4at . Combine...
4atlem12a 39020 Lemma for ~ 4at . Substit...
4atlem12b 39021 Lemma for ~ 4at . Substit...
4atlem12 39022 Lemma for ~ 4at . Combine...
4at 39023 Four atoms determine a lat...
4at2 39024 Four atoms determine a lat...
lplncvrlvol2 39025 A lattice line under a lat...
lplncvrlvol 39026 An element covering a latt...
lvolcmp 39027 If two lattice planes are ...
lvolnltN 39028 Two lattice volumes cannot...
2lplnja 39029 The join of two different ...
2lplnj 39030 The join of two different ...
2lplnm2N 39031 The meet of two different ...
2lplnmj 39032 The meet of two lattice pl...
dalemkehl 39033 Lemma for ~ dath . Freque...
dalemkelat 39034 Lemma for ~ dath . Freque...
dalemkeop 39035 Lemma for ~ dath . Freque...
dalempea 39036 Lemma for ~ dath . Freque...
dalemqea 39037 Lemma for ~ dath . Freque...
dalemrea 39038 Lemma for ~ dath . Freque...
dalemsea 39039 Lemma for ~ dath . Freque...
dalemtea 39040 Lemma for ~ dath . Freque...
dalemuea 39041 Lemma for ~ dath . Freque...
dalemyeo 39042 Lemma for ~ dath . Freque...
dalemzeo 39043 Lemma for ~ dath . Freque...
dalemclpjs 39044 Lemma for ~ dath . Freque...
dalemclqjt 39045 Lemma for ~ dath . Freque...
dalemclrju 39046 Lemma for ~ dath . Freque...
dalem-clpjq 39047 Lemma for ~ dath . Freque...
dalemceb 39048 Lemma for ~ dath . Freque...
dalempeb 39049 Lemma for ~ dath . Freque...
dalemqeb 39050 Lemma for ~ dath . Freque...
dalemreb 39051 Lemma for ~ dath . Freque...
dalemseb 39052 Lemma for ~ dath . Freque...
dalemteb 39053 Lemma for ~ dath . Freque...
dalemueb 39054 Lemma for ~ dath . Freque...
dalempjqeb 39055 Lemma for ~ dath . Freque...
dalemsjteb 39056 Lemma for ~ dath . Freque...
dalemtjueb 39057 Lemma for ~ dath . Freque...
dalemqrprot 39058 Lemma for ~ dath . Freque...
dalemyeb 39059 Lemma for ~ dath . Freque...
dalemcnes 39060 Lemma for ~ dath . Freque...
dalempnes 39061 Lemma for ~ dath . Freque...
dalemqnet 39062 Lemma for ~ dath . Freque...
dalempjsen 39063 Lemma for ~ dath . Freque...
dalemply 39064 Lemma for ~ dath . Freque...
dalemsly 39065 Lemma for ~ dath . Freque...
dalemswapyz 39066 Lemma for ~ dath . Swap t...
dalemrot 39067 Lemma for ~ dath . Rotate...
dalemrotyz 39068 Lemma for ~ dath . Rotate...
dalem1 39069 Lemma for ~ dath . Show t...
dalemcea 39070 Lemma for ~ dath . Freque...
dalem2 39071 Lemma for ~ dath . Show t...
dalemdea 39072 Lemma for ~ dath . Freque...
dalemeea 39073 Lemma for ~ dath . Freque...
dalem3 39074 Lemma for ~ dalemdnee . (...
dalem4 39075 Lemma for ~ dalemdnee . (...
dalemdnee 39076 Lemma for ~ dath . Axis o...
dalem5 39077 Lemma for ~ dath . Atom `...
dalem6 39078 Lemma for ~ dath . Analog...
dalem7 39079 Lemma for ~ dath . Analog...
dalem8 39080 Lemma for ~ dath . Plane ...
dalem-cly 39081 Lemma for ~ dalem9 . Cent...
dalem9 39082 Lemma for ~ dath . Since ...
dalem10 39083 Lemma for ~ dath . Atom `...
dalem11 39084 Lemma for ~ dath . Analog...
dalem12 39085 Lemma for ~ dath . Analog...
dalem13 39086 Lemma for ~ dalem14 . (Co...
dalem14 39087 Lemma for ~ dath . Planes...
dalem15 39088 Lemma for ~ dath . The ax...
dalem16 39089 Lemma for ~ dath . The at...
dalem17 39090 Lemma for ~ dath . When p...
dalem18 39091 Lemma for ~ dath . Show t...
dalem19 39092 Lemma for ~ dath . Show t...
dalemccea 39093 Lemma for ~ dath . Freque...
dalemddea 39094 Lemma for ~ dath . Freque...
dalem-ccly 39095 Lemma for ~ dath . Freque...
dalem-ddly 39096 Lemma for ~ dath . Freque...
dalemccnedd 39097 Lemma for ~ dath . Freque...
dalemclccjdd 39098 Lemma for ~ dath . Freque...
dalemcceb 39099 Lemma for ~ dath . Freque...
dalemswapyzps 39100 Lemma for ~ dath . Swap t...
dalemrotps 39101 Lemma for ~ dath . Rotate...
dalemcjden 39102 Lemma for ~ dath . Show t...
dalem20 39103 Lemma for ~ dath . Show t...
dalem21 39104 Lemma for ~ dath . Show t...
dalem22 39105 Lemma for ~ dath . Show t...
dalem23 39106 Lemma for ~ dath . Show t...
dalem24 39107 Lemma for ~ dath . Show t...
dalem25 39108 Lemma for ~ dath . Show t...
dalem27 39109 Lemma for ~ dath . Show t...
dalem28 39110 Lemma for ~ dath . Lemma ...
dalem29 39111 Lemma for ~ dath . Analog...
dalem30 39112 Lemma for ~ dath . Analog...
dalem31N 39113 Lemma for ~ dath . Analog...
dalem32 39114 Lemma for ~ dath . Analog...
dalem33 39115 Lemma for ~ dath . Analog...
dalem34 39116 Lemma for ~ dath . Analog...
dalem35 39117 Lemma for ~ dath . Analog...
dalem36 39118 Lemma for ~ dath . Analog...
dalem37 39119 Lemma for ~ dath . Analog...
dalem38 39120 Lemma for ~ dath . Plane ...
dalem39 39121 Lemma for ~ dath . Auxili...
dalem40 39122 Lemma for ~ dath . Analog...
dalem41 39123 Lemma for ~ dath . (Contr...
dalem42 39124 Lemma for ~ dath . Auxili...
dalem43 39125 Lemma for ~ dath . Planes...
dalem44 39126 Lemma for ~ dath . Dummy ...
dalem45 39127 Lemma for ~ dath . Dummy ...
dalem46 39128 Lemma for ~ dath . Analog...
dalem47 39129 Lemma for ~ dath . Analog...
dalem48 39130 Lemma for ~ dath . Analog...
dalem49 39131 Lemma for ~ dath . Analog...
dalem50 39132 Lemma for ~ dath . Analog...
dalem51 39133 Lemma for ~ dath . Constr...
dalem52 39134 Lemma for ~ dath . Lines ...
dalem53 39135 Lemma for ~ dath . The au...
dalem54 39136 Lemma for ~ dath . Line `...
dalem55 39137 Lemma for ~ dath . Lines ...
dalem56 39138 Lemma for ~ dath . Analog...
dalem57 39139 Lemma for ~ dath . Axis o...
dalem58 39140 Lemma for ~ dath . Analog...
dalem59 39141 Lemma for ~ dath . Analog...
dalem60 39142 Lemma for ~ dath . ` B ` i...
dalem61 39143 Lemma for ~ dath . Show t...
dalem62 39144 Lemma for ~ dath . Elimin...
dalem63 39145 Lemma for ~ dath . Combin...
dath 39146 Desargues's theorem of pro...
dath2 39147 Version of Desargues's the...
lineset 39148 The set of lines in a Hilb...
isline 39149 The predicate "is a line"....
islinei 39150 Condition implying "is a l...
pointsetN 39151 The set of points in a Hil...
ispointN 39152 The predicate "is a point"...
atpointN 39153 The singleton of an atom i...
psubspset 39154 The set of projective subs...
ispsubsp 39155 The predicate "is a projec...
ispsubsp2 39156 The predicate "is a projec...
psubspi 39157 Property of a projective s...
psubspi2N 39158 Property of a projective s...
0psubN 39159 The empty set is a project...
snatpsubN 39160 The singleton of an atom i...
pointpsubN 39161 A point (singleton of an a...
linepsubN 39162 A line is a projective sub...
atpsubN 39163 The set of all atoms is a ...
psubssat 39164 A projective subspace cons...
psubatN 39165 A member of a projective s...
pmapfval 39166 The projective map of a Hi...
pmapval 39167 Value of the projective ma...
elpmap 39168 Member of a projective map...
pmapssat 39169 The projective map of a Hi...
pmapssbaN 39170 A weakening of ~ pmapssat ...
pmaple 39171 The projective map of a Hi...
pmap11 39172 The projective map of a Hi...
pmapat 39173 The projective map of an a...
elpmapat 39174 Member of the projective m...
pmap0 39175 Value of the projective ma...
pmapeq0 39176 A projective map value is ...
pmap1N 39177 Value of the projective ma...
pmapsub 39178 The projective map of a Hi...
pmapglbx 39179 The projective map of the ...
pmapglb 39180 The projective map of the ...
pmapglb2N 39181 The projective map of the ...
pmapglb2xN 39182 The projective map of the ...
pmapmeet 39183 The projective map of a me...
isline2 39184 Definition of line in term...
linepmap 39185 A line described with a pr...
isline3 39186 Definition of line in term...
isline4N 39187 Definition of line in term...
lneq2at 39188 A line equals the join of ...
lnatexN 39189 There is an atom in a line...
lnjatN 39190 Given an atom in a line, t...
lncvrelatN 39191 A lattice element covered ...
lncvrat 39192 A line covers the atoms it...
lncmp 39193 If two lines are comparabl...
2lnat 39194 Two intersecting lines int...
2atm2atN 39195 Two joins with a common at...
2llnma1b 39196 Generalization of ~ 2llnma...
2llnma1 39197 Two different intersecting...
2llnma3r 39198 Two different intersecting...
2llnma2 39199 Two different intersecting...
2llnma2rN 39200 Two different intersecting...
cdlema1N 39201 A condition for required f...
cdlema2N 39202 A condition for required f...
cdlemblem 39203 Lemma for ~ cdlemb . (Con...
cdlemb 39204 Given two atoms not less t...
paddfval 39207 Projective subspace sum op...
paddval 39208 Projective subspace sum op...
elpadd 39209 Member of a projective sub...
elpaddn0 39210 Member of projective subsp...
paddvaln0N 39211 Projective subspace sum op...
elpaddri 39212 Condition implying members...
elpaddatriN 39213 Condition implying members...
elpaddat 39214 Membership in a projective...
elpaddatiN 39215 Consequence of membership ...
elpadd2at 39216 Membership in a projective...
elpadd2at2 39217 Membership in a projective...
paddunssN 39218 Projective subspace sum in...
elpadd0 39219 Member of projective subsp...
paddval0 39220 Projective subspace sum wi...
padd01 39221 Projective subspace sum wi...
padd02 39222 Projective subspace sum wi...
paddcom 39223 Projective subspace sum co...
paddssat 39224 A projective subspace sum ...
sspadd1 39225 A projective subspace sum ...
sspadd2 39226 A projective subspace sum ...
paddss1 39227 Subset law for projective ...
paddss2 39228 Subset law for projective ...
paddss12 39229 Subset law for projective ...
paddasslem1 39230 Lemma for ~ paddass . (Co...
paddasslem2 39231 Lemma for ~ paddass . (Co...
paddasslem3 39232 Lemma for ~ paddass . Res...
paddasslem4 39233 Lemma for ~ paddass . Com...
paddasslem5 39234 Lemma for ~ paddass . Sho...
paddasslem6 39235 Lemma for ~ paddass . (Co...
paddasslem7 39236 Lemma for ~ paddass . Com...
paddasslem8 39237 Lemma for ~ paddass . (Co...
paddasslem9 39238 Lemma for ~ paddass . Com...
paddasslem10 39239 Lemma for ~ paddass . Use...
paddasslem11 39240 Lemma for ~ paddass . The...
paddasslem12 39241 Lemma for ~ paddass . The...
paddasslem13 39242 Lemma for ~ paddass . The...
paddasslem14 39243 Lemma for ~ paddass . Rem...
paddasslem15 39244 Lemma for ~ paddass . Use...
paddasslem16 39245 Lemma for ~ paddass . Use...
paddasslem17 39246 Lemma for ~ paddass . The...
paddasslem18 39247 Lemma for ~ paddass . Com...
paddass 39248 Projective subspace sum is...
padd12N 39249 Commutative/associative la...
padd4N 39250 Rearrangement of 4 terms i...
paddidm 39251 Projective subspace sum is...
paddclN 39252 The projective sum of two ...
paddssw1 39253 Subset law for projective ...
paddssw2 39254 Subset law for projective ...
paddss 39255 Subset law for projective ...
pmodlem1 39256 Lemma for ~ pmod1i . (Con...
pmodlem2 39257 Lemma for ~ pmod1i . (Con...
pmod1i 39258 The modular law holds in a...
pmod2iN 39259 Dual of the modular law. ...
pmodN 39260 The modular law for projec...
pmodl42N 39261 Lemma derived from modular...
pmapjoin 39262 The projective map of the ...
pmapjat1 39263 The projective map of the ...
pmapjat2 39264 The projective map of the ...
pmapjlln1 39265 The projective map of the ...
hlmod1i 39266 A version of the modular l...
atmod1i1 39267 Version of modular law ~ p...
atmod1i1m 39268 Version of modular law ~ p...
atmod1i2 39269 Version of modular law ~ p...
llnmod1i2 39270 Version of modular law ~ p...
atmod2i1 39271 Version of modular law ~ p...
atmod2i2 39272 Version of modular law ~ p...
llnmod2i2 39273 Version of modular law ~ p...
atmod3i1 39274 Version of modular law tha...
atmod3i2 39275 Version of modular law tha...
atmod4i1 39276 Version of modular law tha...
atmod4i2 39277 Version of modular law tha...
llnexchb2lem 39278 Lemma for ~ llnexchb2 . (...
llnexchb2 39279 Line exchange property (co...
llnexch2N 39280 Line exchange property (co...
dalawlem1 39281 Lemma for ~ dalaw . Speci...
dalawlem2 39282 Lemma for ~ dalaw . Utili...
dalawlem3 39283 Lemma for ~ dalaw . First...
dalawlem4 39284 Lemma for ~ dalaw . Secon...
dalawlem5 39285 Lemma for ~ dalaw . Speci...
dalawlem6 39286 Lemma for ~ dalaw . First...
dalawlem7 39287 Lemma for ~ dalaw . Secon...
dalawlem8 39288 Lemma for ~ dalaw . Speci...
dalawlem9 39289 Lemma for ~ dalaw . Speci...
dalawlem10 39290 Lemma for ~ dalaw . Combi...
dalawlem11 39291 Lemma for ~ dalaw . First...
dalawlem12 39292 Lemma for ~ dalaw . Secon...
dalawlem13 39293 Lemma for ~ dalaw . Speci...
dalawlem14 39294 Lemma for ~ dalaw . Combi...
dalawlem15 39295 Lemma for ~ dalaw . Swap ...
dalaw 39296 Desargues's law, derived f...
pclfvalN 39299 The projective subspace cl...
pclvalN 39300 Value of the projective su...
pclclN 39301 Closure of the projective ...
elpclN 39302 Membership in the projecti...
elpcliN 39303 Implication of membership ...
pclssN 39304 Ordering is preserved by s...
pclssidN 39305 A set of atoms is included...
pclidN 39306 The projective subspace cl...
pclbtwnN 39307 A projective subspace sand...
pclunN 39308 The projective subspace cl...
pclun2N 39309 The projective subspace cl...
pclfinN 39310 The projective subspace cl...
pclcmpatN 39311 The set of projective subs...
polfvalN 39314 The projective subspace po...
polvalN 39315 Value of the projective su...
polval2N 39316 Alternate expression for v...
polsubN 39317 The polarity of a set of a...
polssatN 39318 The polarity of a set of a...
pol0N 39319 The polarity of the empty ...
pol1N 39320 The polarity of the whole ...
2pol0N 39321 The closed subspace closur...
polpmapN 39322 The polarity of a projecti...
2polpmapN 39323 Double polarity of a proje...
2polvalN 39324 Value of double polarity. ...
2polssN 39325 A set of atoms is a subset...
3polN 39326 Triple polarity cancels to...
polcon3N 39327 Contraposition law for pol...
2polcon4bN 39328 Contraposition law for pol...
polcon2N 39329 Contraposition law for pol...
polcon2bN 39330 Contraposition law for pol...
pclss2polN 39331 The projective subspace cl...
pcl0N 39332 The projective subspace cl...
pcl0bN 39333 The projective subspace cl...
pmaplubN 39334 The LUB of a projective ma...
sspmaplubN 39335 A set of atoms is a subset...
2pmaplubN 39336 Double projective map of a...
paddunN 39337 The closure of the project...
poldmj1N 39338 De Morgan's law for polari...
pmapj2N 39339 The projective map of the ...
pmapocjN 39340 The projective map of the ...
polatN 39341 The polarity of the single...
2polatN 39342 Double polarity of the sin...
pnonsingN 39343 The intersection of a set ...
psubclsetN 39346 The set of closed projecti...
ispsubclN 39347 The predicate "is a closed...
psubcliN 39348 Property of a closed proje...
psubcli2N 39349 Property of a closed proje...
psubclsubN 39350 A closed projective subspa...
psubclssatN 39351 A closed projective subspa...
pmapidclN 39352 Projective map of the LUB ...
0psubclN 39353 The empty set is a closed ...
1psubclN 39354 The set of all atoms is a ...
atpsubclN 39355 A point (singleton of an a...
pmapsubclN 39356 A projective map value is ...
ispsubcl2N 39357 Alternate predicate for "i...
psubclinN 39358 The intersection of two cl...
paddatclN 39359 The projective sum of a cl...
pclfinclN 39360 The projective subspace cl...
linepsubclN 39361 A line is a closed project...
polsubclN 39362 A polarity is a closed pro...
poml4N 39363 Orthomodular law for proje...
poml5N 39364 Orthomodular law for proje...
poml6N 39365 Orthomodular law for proje...
osumcllem1N 39366 Lemma for ~ osumclN . (Co...
osumcllem2N 39367 Lemma for ~ osumclN . (Co...
osumcllem3N 39368 Lemma for ~ osumclN . (Co...
osumcllem4N 39369 Lemma for ~ osumclN . (Co...
osumcllem5N 39370 Lemma for ~ osumclN . (Co...
osumcllem6N 39371 Lemma for ~ osumclN . Use...
osumcllem7N 39372 Lemma for ~ osumclN . (Co...
osumcllem8N 39373 Lemma for ~ osumclN . (Co...
osumcllem9N 39374 Lemma for ~ osumclN . (Co...
osumcllem10N 39375 Lemma for ~ osumclN . Con...
osumcllem11N 39376 Lemma for ~ osumclN . (Co...
osumclN 39377 Closure of orthogonal sum....
pmapojoinN 39378 For orthogonal elements, p...
pexmidN 39379 Excluded middle law for cl...
pexmidlem1N 39380 Lemma for ~ pexmidN . Hol...
pexmidlem2N 39381 Lemma for ~ pexmidN . (Co...
pexmidlem3N 39382 Lemma for ~ pexmidN . Use...
pexmidlem4N 39383 Lemma for ~ pexmidN . (Co...
pexmidlem5N 39384 Lemma for ~ pexmidN . (Co...
pexmidlem6N 39385 Lemma for ~ pexmidN . (Co...
pexmidlem7N 39386 Lemma for ~ pexmidN . Con...
pexmidlem8N 39387 Lemma for ~ pexmidN . The...
pexmidALTN 39388 Excluded middle law for cl...
pl42lem1N 39389 Lemma for ~ pl42N . (Cont...
pl42lem2N 39390 Lemma for ~ pl42N . (Cont...
pl42lem3N 39391 Lemma for ~ pl42N . (Cont...
pl42lem4N 39392 Lemma for ~ pl42N . (Cont...
pl42N 39393 Law holding in a Hilbert l...
watfvalN 39402 The W atoms function. (Co...
watvalN 39403 Value of the W atoms funct...
iswatN 39404 The predicate "is a W atom...
lhpset 39405 The set of co-atoms (latti...
islhp 39406 The predicate "is a co-ato...
islhp2 39407 The predicate "is a co-ato...
lhpbase 39408 A co-atom is a member of t...
lhp1cvr 39409 The lattice unity covers a...
lhplt 39410 An atom under a co-atom is...
lhp2lt 39411 The join of two atoms unde...
lhpexlt 39412 There exists an atom less ...
lhp0lt 39413 A co-atom is greater than ...
lhpn0 39414 A co-atom is nonzero. TOD...
lhpexle 39415 There exists an atom under...
lhpexnle 39416 There exists an atom not u...
lhpexle1lem 39417 Lemma for ~ lhpexle1 and o...
lhpexle1 39418 There exists an atom under...
lhpexle2lem 39419 Lemma for ~ lhpexle2 . (C...
lhpexle2 39420 There exists atom under a ...
lhpexle3lem 39421 There exists atom under a ...
lhpexle3 39422 There exists atom under a ...
lhpex2leN 39423 There exist at least two d...
lhpoc 39424 The orthocomplement of a c...
lhpoc2N 39425 The orthocomplement of an ...
lhpocnle 39426 The orthocomplement of a c...
lhpocat 39427 The orthocomplement of a c...
lhpocnel 39428 The orthocomplement of a c...
lhpocnel2 39429 The orthocomplement of a c...
lhpjat1 39430 The join of a co-atom (hyp...
lhpjat2 39431 The join of a co-atom (hyp...
lhpj1 39432 The join of a co-atom (hyp...
lhpmcvr 39433 The meet of a lattice hype...
lhpmcvr2 39434 Alternate way to express t...
lhpmcvr3 39435 Specialization of ~ lhpmcv...
lhpmcvr4N 39436 Specialization of ~ lhpmcv...
lhpmcvr5N 39437 Specialization of ~ lhpmcv...
lhpmcvr6N 39438 Specialization of ~ lhpmcv...
lhpm0atN 39439 If the meet of a lattice h...
lhpmat 39440 An element covered by the ...
lhpmatb 39441 An element covered by the ...
lhp2at0 39442 Join and meet with differe...
lhp2atnle 39443 Inequality for 2 different...
lhp2atne 39444 Inequality for joins with ...
lhp2at0nle 39445 Inequality for 2 different...
lhp2at0ne 39446 Inequality for joins with ...
lhpelim 39447 Eliminate an atom not unde...
lhpmod2i2 39448 Modular law for hyperplane...
lhpmod6i1 39449 Modular law for hyperplane...
lhprelat3N 39450 The Hilbert lattice is rel...
cdlemb2 39451 Given two atoms not under ...
lhple 39452 Property of a lattice elem...
lhpat 39453 Create an atom under a co-...
lhpat4N 39454 Property of an atom under ...
lhpat2 39455 Create an atom under a co-...
lhpat3 39456 There is only one atom und...
4atexlemk 39457 Lemma for ~ 4atexlem7 . (...
4atexlemw 39458 Lemma for ~ 4atexlem7 . (...
4atexlempw 39459 Lemma for ~ 4atexlem7 . (...
4atexlemp 39460 Lemma for ~ 4atexlem7 . (...
4atexlemq 39461 Lemma for ~ 4atexlem7 . (...
4atexlems 39462 Lemma for ~ 4atexlem7 . (...
4atexlemt 39463 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 39464 Lemma for ~ 4atexlem7 . (...
4atexlempnq 39465 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 39466 Lemma for ~ 4atexlem7 . (...
4atexlemkl 39467 Lemma for ~ 4atexlem7 . (...
4atexlemkc 39468 Lemma for ~ 4atexlem7 . (...
4atexlemwb 39469 Lemma for ~ 4atexlem7 . (...
4atexlempsb 39470 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 39471 Lemma for ~ 4atexlem7 . (...
4atexlempns 39472 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 39473 Lemma for ~ 4atexlem7 . S...
4atexlemu 39474 Lemma for ~ 4atexlem7 . (...
4atexlemv 39475 Lemma for ~ 4atexlem7 . (...
4atexlemunv 39476 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 39477 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 39478 Lemma for ~ 4atexlem7 . (...
4atexlemc 39479 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 39480 Lemma for ~ 4atexlem7 . (...
4atexlemex2 39481 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 39482 Lemma for ~ 4atexlem7 . (...
4atexlemex4 39483 Lemma for ~ 4atexlem7 . S...
4atexlemex6 39484 Lemma for ~ 4atexlem7 . (...
4atexlem7 39485 Whenever there are at leas...
4atex 39486 Whenever there are at leas...
4atex2 39487 More general version of ~ ...
4atex2-0aOLDN 39488 Same as ~ 4atex2 except th...
4atex2-0bOLDN 39489 Same as ~ 4atex2 except th...
4atex2-0cOLDN 39490 Same as ~ 4atex2 except th...
4atex3 39491 More general version of ~ ...
lautset 39492 The set of lattice automor...
islaut 39493 The predicate "is a lattic...
lautle 39494 Less-than or equal propert...
laut1o 39495 A lattice automorphism is ...
laut11 39496 One-to-one property of a l...
lautcl 39497 A lattice automorphism val...
lautcnvclN 39498 Reverse closure of a latti...
lautcnvle 39499 Less-than or equal propert...
lautcnv 39500 The converse of a lattice ...
lautlt 39501 Less-than property of a la...
lautcvr 39502 Covering property of a lat...
lautj 39503 Meet property of a lattice...
lautm 39504 Meet property of a lattice...
lauteq 39505 A lattice automorphism arg...
idlaut 39506 The identity function is a...
lautco 39507 The composition of two lat...
pautsetN 39508 The set of projective auto...
ispautN 39509 The predicate "is a projec...
ldilfset 39518 The mapping from fiducial ...
ldilset 39519 The set of lattice dilatio...
isldil 39520 The predicate "is a lattic...
ldillaut 39521 A lattice dilation is an a...
ldil1o 39522 A lattice dilation is a on...
ldilval 39523 Value of a lattice dilatio...
idldil 39524 The identity function is a...
ldilcnv 39525 The converse of a lattice ...
ldilco 39526 The composition of two lat...
ltrnfset 39527 The set of all lattice tra...
ltrnset 39528 The set of lattice transla...
isltrn 39529 The predicate "is a lattic...
isltrn2N 39530 The predicate "is a lattic...
ltrnu 39531 Uniqueness property of a l...
ltrnldil 39532 A lattice translation is a...
ltrnlaut 39533 A lattice translation is a...
ltrn1o 39534 A lattice translation is a...
ltrncl 39535 Closure of a lattice trans...
ltrn11 39536 One-to-one property of a l...
ltrncnvnid 39537 If a translation is differ...
ltrncoidN 39538 Two translations are equal...
ltrnle 39539 Less-than or equal propert...
ltrncnvleN 39540 Less-than or equal propert...
ltrnm 39541 Lattice translation of a m...
ltrnj 39542 Lattice translation of a m...
ltrncvr 39543 Covering property of a lat...
ltrnval1 39544 Value of a lattice transla...
ltrnid 39545 A lattice translation is t...
ltrnnid 39546 If a lattice translation i...
ltrnatb 39547 The lattice translation of...
ltrncnvatb 39548 The converse of the lattic...
ltrnel 39549 The lattice translation of...
ltrnat 39550 The lattice translation of...
ltrncnvat 39551 The converse of the lattic...
ltrncnvel 39552 The converse of the lattic...
ltrncoelN 39553 Composition of lattice tra...
ltrncoat 39554 Composition of lattice tra...
ltrncoval 39555 Two ways to express value ...
ltrncnv 39556 The converse of a lattice ...
ltrn11at 39557 Frequently used one-to-one...
ltrneq2 39558 The equality of two transl...
ltrneq 39559 The equality of two transl...
idltrn 39560 The identity function is a...
ltrnmw 39561 Property of lattice transl...
dilfsetN 39562 The mapping from fiducial ...
dilsetN 39563 The set of dilations for a...
isdilN 39564 The predicate "is a dilati...
trnfsetN 39565 The mapping from fiducial ...
trnsetN 39566 The set of translations fo...
istrnN 39567 The predicate "is a transl...
trlfset 39570 The set of all traces of l...
trlset 39571 The set of traces of latti...
trlval 39572 The value of the trace of ...
trlval2 39573 The value of the trace of ...
trlcl 39574 Closure of the trace of a ...
trlcnv 39575 The trace of the converse ...
trljat1 39576 The value of a translation...
trljat2 39577 The value of a translation...
trljat3 39578 The value of a translation...
trlat 39579 If an atom differs from it...
trl0 39580 If an atom not under the f...
trlator0 39581 The trace of a lattice tra...
trlatn0 39582 The trace of a lattice tra...
trlnidat 39583 The trace of a lattice tra...
ltrnnidn 39584 If a lattice translation i...
ltrnideq 39585 Property of the identity l...
trlid0 39586 The trace of the identity ...
trlnidatb 39587 A lattice translation is n...
trlid0b 39588 A lattice translation is t...
trlnid 39589 Different translations wit...
ltrn2ateq 39590 Property of the equality o...
ltrnateq 39591 If any atom (under ` W ` )...
ltrnatneq 39592 If any atom (under ` W ` )...
ltrnatlw 39593 If the value of an atom eq...
trlle 39594 The trace of a lattice tra...
trlne 39595 The trace of a lattice tra...
trlnle 39596 The atom not under the fid...
trlval3 39597 The value of the trace of ...
trlval4 39598 The value of the trace of ...
trlval5 39599 The value of the trace of ...
arglem1N 39600 Lemma for Desargues's law....
cdlemc1 39601 Part of proof of Lemma C i...
cdlemc2 39602 Part of proof of Lemma C i...
cdlemc3 39603 Part of proof of Lemma C i...
cdlemc4 39604 Part of proof of Lemma C i...
cdlemc5 39605 Lemma for ~ cdlemc . (Con...
cdlemc6 39606 Lemma for ~ cdlemc . (Con...
cdlemc 39607 Lemma C in [Crawley] p. 11...
cdlemd1 39608 Part of proof of Lemma D i...
cdlemd2 39609 Part of proof of Lemma D i...
cdlemd3 39610 Part of proof of Lemma D i...
cdlemd4 39611 Part of proof of Lemma D i...
cdlemd5 39612 Part of proof of Lemma D i...
cdlemd6 39613 Part of proof of Lemma D i...
cdlemd7 39614 Part of proof of Lemma D i...
cdlemd8 39615 Part of proof of Lemma D i...
cdlemd9 39616 Part of proof of Lemma D i...
cdlemd 39617 If two translations agree ...
ltrneq3 39618 Two translations agree at ...
cdleme00a 39619 Part of proof of Lemma E i...
cdleme0aa 39620 Part of proof of Lemma E i...
cdleme0a 39621 Part of proof of Lemma E i...
cdleme0b 39622 Part of proof of Lemma E i...
cdleme0c 39623 Part of proof of Lemma E i...
cdleme0cp 39624 Part of proof of Lemma E i...
cdleme0cq 39625 Part of proof of Lemma E i...
cdleme0dN 39626 Part of proof of Lemma E i...
cdleme0e 39627 Part of proof of Lemma E i...
cdleme0fN 39628 Part of proof of Lemma E i...
cdleme0gN 39629 Part of proof of Lemma E i...
cdlemeulpq 39630 Part of proof of Lemma E i...
cdleme01N 39631 Part of proof of Lemma E i...
cdleme02N 39632 Part of proof of Lemma E i...
cdleme0ex1N 39633 Part of proof of Lemma E i...
cdleme0ex2N 39634 Part of proof of Lemma E i...
cdleme0moN 39635 Part of proof of Lemma E i...
cdleme1b 39636 Part of proof of Lemma E i...
cdleme1 39637 Part of proof of Lemma E i...
cdleme2 39638 Part of proof of Lemma E i...
cdleme3b 39639 Part of proof of Lemma E i...
cdleme3c 39640 Part of proof of Lemma E i...
cdleme3d 39641 Part of proof of Lemma E i...
cdleme3e 39642 Part of proof of Lemma E i...
cdleme3fN 39643 Part of proof of Lemma E i...
cdleme3g 39644 Part of proof of Lemma E i...
cdleme3h 39645 Part of proof of Lemma E i...
cdleme3fa 39646 Part of proof of Lemma E i...
cdleme3 39647 Part of proof of Lemma E i...
cdleme4 39648 Part of proof of Lemma E i...
cdleme4a 39649 Part of proof of Lemma E i...
cdleme5 39650 Part of proof of Lemma E i...
cdleme6 39651 Part of proof of Lemma E i...
cdleme7aa 39652 Part of proof of Lemma E i...
cdleme7a 39653 Part of proof of Lemma E i...
cdleme7b 39654 Part of proof of Lemma E i...
cdleme7c 39655 Part of proof of Lemma E i...
cdleme7d 39656 Part of proof of Lemma E i...
cdleme7e 39657 Part of proof of Lemma E i...
cdleme7ga 39658 Part of proof of Lemma E i...
cdleme7 39659 Part of proof of Lemma E i...
cdleme8 39660 Part of proof of Lemma E i...
cdleme9a 39661 Part of proof of Lemma E i...
cdleme9b 39662 Utility lemma for Lemma E ...
cdleme9 39663 Part of proof of Lemma E i...
cdleme10 39664 Part of proof of Lemma E i...
cdleme8tN 39665 Part of proof of Lemma E i...
cdleme9taN 39666 Part of proof of Lemma E i...
cdleme9tN 39667 Part of proof of Lemma E i...
cdleme10tN 39668 Part of proof of Lemma E i...
cdleme16aN 39669 Part of proof of Lemma E i...
cdleme11a 39670 Part of proof of Lemma E i...
cdleme11c 39671 Part of proof of Lemma E i...
cdleme11dN 39672 Part of proof of Lemma E i...
cdleme11e 39673 Part of proof of Lemma E i...
cdleme11fN 39674 Part of proof of Lemma E i...
cdleme11g 39675 Part of proof of Lemma E i...
cdleme11h 39676 Part of proof of Lemma E i...
cdleme11j 39677 Part of proof of Lemma E i...
cdleme11k 39678 Part of proof of Lemma E i...
cdleme11l 39679 Part of proof of Lemma E i...
cdleme11 39680 Part of proof of Lemma E i...
cdleme12 39681 Part of proof of Lemma E i...
cdleme13 39682 Part of proof of Lemma E i...
cdleme14 39683 Part of proof of Lemma E i...
cdleme15a 39684 Part of proof of Lemma E i...
cdleme15b 39685 Part of proof of Lemma E i...
cdleme15c 39686 Part of proof of Lemma E i...
cdleme15d 39687 Part of proof of Lemma E i...
cdleme15 39688 Part of proof of Lemma E i...
cdleme16b 39689 Part of proof of Lemma E i...
cdleme16c 39690 Part of proof of Lemma E i...
cdleme16d 39691 Part of proof of Lemma E i...
cdleme16e 39692 Part of proof of Lemma E i...
cdleme16f 39693 Part of proof of Lemma E i...
cdleme16g 39694 Part of proof of Lemma E i...
cdleme16 39695 Part of proof of Lemma E i...
cdleme17a 39696 Part of proof of Lemma E i...
cdleme17b 39697 Lemma leading to ~ cdleme1...
cdleme17c 39698 Part of proof of Lemma E i...
cdleme17d1 39699 Part of proof of Lemma E i...
cdleme0nex 39700 Part of proof of Lemma E i...
cdleme18a 39701 Part of proof of Lemma E i...
cdleme18b 39702 Part of proof of Lemma E i...
cdleme18c 39703 Part of proof of Lemma E i...
cdleme22gb 39704 Utility lemma for Lemma E ...
cdleme18d 39705 Part of proof of Lemma E i...
cdlemesner 39706 Part of proof of Lemma E i...
cdlemedb 39707 Part of proof of Lemma E i...
cdlemeda 39708 Part of proof of Lemma E i...
cdlemednpq 39709 Part of proof of Lemma E i...
cdlemednuN 39710 Part of proof of Lemma E i...
cdleme20zN 39711 Part of proof of Lemma E i...
cdleme20y 39712 Part of proof of Lemma E i...
cdleme19a 39713 Part of proof of Lemma E i...
cdleme19b 39714 Part of proof of Lemma E i...
cdleme19c 39715 Part of proof of Lemma E i...
cdleme19d 39716 Part of proof of Lemma E i...
cdleme19e 39717 Part of proof of Lemma E i...
cdleme19f 39718 Part of proof of Lemma E i...
cdleme20aN 39719 Part of proof of Lemma E i...
cdleme20bN 39720 Part of proof of Lemma E i...
cdleme20c 39721 Part of proof of Lemma E i...
cdleme20d 39722 Part of proof of Lemma E i...
cdleme20e 39723 Part of proof of Lemma E i...
cdleme20f 39724 Part of proof of Lemma E i...
cdleme20g 39725 Part of proof of Lemma E i...
cdleme20h 39726 Part of proof of Lemma E i...
cdleme20i 39727 Part of proof of Lemma E i...
cdleme20j 39728 Part of proof of Lemma E i...
cdleme20k 39729 Part of proof of Lemma E i...
cdleme20l1 39730 Part of proof of Lemma E i...
cdleme20l2 39731 Part of proof of Lemma E i...
cdleme20l 39732 Part of proof of Lemma E i...
cdleme20m 39733 Part of proof of Lemma E i...
cdleme20 39734 Combine ~ cdleme19f and ~ ...
cdleme21a 39735 Part of proof of Lemma E i...
cdleme21b 39736 Part of proof of Lemma E i...
cdleme21c 39737 Part of proof of Lemma E i...
cdleme21at 39738 Part of proof of Lemma E i...
cdleme21ct 39739 Part of proof of Lemma E i...
cdleme21d 39740 Part of proof of Lemma E i...
cdleme21e 39741 Part of proof of Lemma E i...
cdleme21f 39742 Part of proof of Lemma E i...
cdleme21g 39743 Part of proof of Lemma E i...
cdleme21h 39744 Part of proof of Lemma E i...
cdleme21i 39745 Part of proof of Lemma E i...
cdleme21j 39746 Combine ~ cdleme20 and ~ c...
cdleme21 39747 Part of proof of Lemma E i...
cdleme21k 39748 Eliminate ` S =/= T ` cond...
cdleme22aa 39749 Part of proof of Lemma E i...
cdleme22a 39750 Part of proof of Lemma E i...
cdleme22b 39751 Part of proof of Lemma E i...
cdleme22cN 39752 Part of proof of Lemma E i...
cdleme22d 39753 Part of proof of Lemma E i...
cdleme22e 39754 Part of proof of Lemma E i...
cdleme22eALTN 39755 Part of proof of Lemma E i...
cdleme22f 39756 Part of proof of Lemma E i...
cdleme22f2 39757 Part of proof of Lemma E i...
cdleme22g 39758 Part of proof of Lemma E i...
cdleme23a 39759 Part of proof of Lemma E i...
cdleme23b 39760 Part of proof of Lemma E i...
cdleme23c 39761 Part of proof of Lemma E i...
cdleme24 39762 Quantified version of ~ cd...
cdleme25a 39763 Lemma for ~ cdleme25b . (...
cdleme25b 39764 Transform ~ cdleme24 . TO...
cdleme25c 39765 Transform ~ cdleme25b . (...
cdleme25dN 39766 Transform ~ cdleme25c . (...
cdleme25cl 39767 Show closure of the unique...
cdleme25cv 39768 Change bound variables in ...
cdleme26e 39769 Part of proof of Lemma E i...
cdleme26ee 39770 Part of proof of Lemma E i...
cdleme26eALTN 39771 Part of proof of Lemma E i...
cdleme26fALTN 39772 Part of proof of Lemma E i...
cdleme26f 39773 Part of proof of Lemma E i...
cdleme26f2ALTN 39774 Part of proof of Lemma E i...
cdleme26f2 39775 Part of proof of Lemma E i...
cdleme27cl 39776 Part of proof of Lemma E i...
cdleme27a 39777 Part of proof of Lemma E i...
cdleme27b 39778 Lemma for ~ cdleme27N . (...
cdleme27N 39779 Part of proof of Lemma E i...
cdleme28a 39780 Lemma for ~ cdleme25b . T...
cdleme28b 39781 Lemma for ~ cdleme25b . T...
cdleme28c 39782 Part of proof of Lemma E i...
cdleme28 39783 Quantified version of ~ cd...
cdleme29ex 39784 Lemma for ~ cdleme29b . (...
cdleme29b 39785 Transform ~ cdleme28 . (C...
cdleme29c 39786 Transform ~ cdleme28b . (...
cdleme29cl 39787 Show closure of the unique...
cdleme30a 39788 Part of proof of Lemma E i...
cdleme31so 39789 Part of proof of Lemma E i...
cdleme31sn 39790 Part of proof of Lemma E i...
cdleme31sn1 39791 Part of proof of Lemma E i...
cdleme31se 39792 Part of proof of Lemma D i...
cdleme31se2 39793 Part of proof of Lemma D i...
cdleme31sc 39794 Part of proof of Lemma E i...
cdleme31sde 39795 Part of proof of Lemma D i...
cdleme31snd 39796 Part of proof of Lemma D i...
cdleme31sdnN 39797 Part of proof of Lemma E i...
cdleme31sn1c 39798 Part of proof of Lemma E i...
cdleme31sn2 39799 Part of proof of Lemma E i...
cdleme31fv 39800 Part of proof of Lemma E i...
cdleme31fv1 39801 Part of proof of Lemma E i...
cdleme31fv1s 39802 Part of proof of Lemma E i...
cdleme31fv2 39803 Part of proof of Lemma E i...
cdleme31id 39804 Part of proof of Lemma E i...
cdlemefrs29pre00 39805 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 39806 TODO fix comment. (Contri...
cdlemefrs29bpre1 39807 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 39808 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 39809 TODO: NOT USED? Show clo...
cdlemefrs32fva 39810 Part of proof of Lemma E i...
cdlemefrs32fva1 39811 Part of proof of Lemma E i...
cdlemefr29exN 39812 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 39813 Part of proof of Lemma E i...
cdlemefr32sn2aw 39814 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 39815 Show closure of ` [_ R / s...
cdlemefr29bpre0N 39816 TODO fix comment. (Contri...
cdlemefr29clN 39817 Show closure of the unique...
cdleme43frv1snN 39818 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 39819 Part of proof of Lemma E i...
cdlemefr32fva1 39820 Part of proof of Lemma E i...
cdlemefr31fv1 39821 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 39822 FIX COMMENT. TODO: see if ...
cdlemefs27cl 39823 Part of proof of Lemma E i...
cdlemefs32sn1aw 39824 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 39825 Show closure of ` [_ R / s...
cdlemefs29bpre0N 39826 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 39827 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 39828 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 39829 Show closure of the unique...
cdleme43fsv1snlem 39830 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 39831 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 39832 Part of proof of Lemma E i...
cdlemefs32fva1 39833 Part of proof of Lemma E i...
cdlemefs31fv1 39834 Value of ` ( F `` R ) ` wh...
cdlemefr44 39835 Value of f(r) when r is an...
cdlemefs44 39836 Value of f_s(r) when r is ...
cdlemefr45 39837 Value of f(r) when r is an...
cdlemefr45e 39838 Explicit expansion of ~ cd...
cdlemefs45 39839 Value of f_s(r) when r is ...
cdlemefs45ee 39840 Explicit expansion of ~ cd...
cdlemefs45eN 39841 Explicit expansion of ~ cd...
cdleme32sn1awN 39842 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 39843 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 39844 Show that ` [_ R / s ]_ N ...
cdleme32snaw 39845 Show that ` [_ R / s ]_ N ...
cdleme32snb 39846 Show closure of ` [_ R / s...
cdleme32fva 39847 Part of proof of Lemma D i...
cdleme32fva1 39848 Part of proof of Lemma D i...
cdleme32fvaw 39849 Show that ` ( F `` R ) ` i...
cdleme32fvcl 39850 Part of proof of Lemma D i...
cdleme32a 39851 Part of proof of Lemma D i...
cdleme32b 39852 Part of proof of Lemma D i...
cdleme32c 39853 Part of proof of Lemma D i...
cdleme32d 39854 Part of proof of Lemma D i...
cdleme32e 39855 Part of proof of Lemma D i...
cdleme32f 39856 Part of proof of Lemma D i...
cdleme32le 39857 Part of proof of Lemma D i...
cdleme35a 39858 Part of proof of Lemma E i...
cdleme35fnpq 39859 Part of proof of Lemma E i...
cdleme35b 39860 Part of proof of Lemma E i...
cdleme35c 39861 Part of proof of Lemma E i...
cdleme35d 39862 Part of proof of Lemma E i...
cdleme35e 39863 Part of proof of Lemma E i...
cdleme35f 39864 Part of proof of Lemma E i...
cdleme35g 39865 Part of proof of Lemma E i...
cdleme35h 39866 Part of proof of Lemma E i...
cdleme35h2 39867 Part of proof of Lemma E i...
cdleme35sn2aw 39868 Part of proof of Lemma E i...
cdleme35sn3a 39869 Part of proof of Lemma E i...
cdleme36a 39870 Part of proof of Lemma E i...
cdleme36m 39871 Part of proof of Lemma E i...
cdleme37m 39872 Part of proof of Lemma E i...
cdleme38m 39873 Part of proof of Lemma E i...
cdleme38n 39874 Part of proof of Lemma E i...
cdleme39a 39875 Part of proof of Lemma E i...
cdleme39n 39876 Part of proof of Lemma E i...
cdleme40m 39877 Part of proof of Lemma E i...
cdleme40n 39878 Part of proof of Lemma E i...
cdleme40v 39879 Part of proof of Lemma E i...
cdleme40w 39880 Part of proof of Lemma E i...
cdleme42a 39881 Part of proof of Lemma E i...
cdleme42c 39882 Part of proof of Lemma E i...
cdleme42d 39883 Part of proof of Lemma E i...
cdleme41sn3aw 39884 Part of proof of Lemma E i...
cdleme41sn4aw 39885 Part of proof of Lemma E i...
cdleme41snaw 39886 Part of proof of Lemma E i...
cdleme41fva11 39887 Part of proof of Lemma E i...
cdleme42b 39888 Part of proof of Lemma E i...
cdleme42e 39889 Part of proof of Lemma E i...
cdleme42f 39890 Part of proof of Lemma E i...
cdleme42g 39891 Part of proof of Lemma E i...
cdleme42h 39892 Part of proof of Lemma E i...
cdleme42i 39893 Part of proof of Lemma E i...
cdleme42k 39894 Part of proof of Lemma E i...
cdleme42ke 39895 Part of proof of Lemma E i...
cdleme42keg 39896 Part of proof of Lemma E i...
cdleme42mN 39897 Part of proof of Lemma E i...
cdleme42mgN 39898 Part of proof of Lemma E i...
cdleme43aN 39899 Part of proof of Lemma E i...
cdleme43bN 39900 Lemma for Lemma E in [Craw...
cdleme43cN 39901 Part of proof of Lemma E i...
cdleme43dN 39902 Part of proof of Lemma E i...
cdleme46f2g2 39903 Conversion for ` G ` to re...
cdleme46f2g1 39904 Conversion for ` G ` to re...
cdleme17d2 39905 Part of proof of Lemma E i...
cdleme17d3 39906 TODO: FIX COMMENT. (Contr...
cdleme17d4 39907 TODO: FIX COMMENT. (Contr...
cdleme17d 39908 Part of proof of Lemma E i...
cdleme48fv 39909 Part of proof of Lemma D i...
cdleme48fvg 39910 Remove ` P =/= Q ` conditi...
cdleme46fvaw 39911 Show that ` ( F `` R ) ` i...
cdleme48bw 39912 TODO: fix comment. TODO: ...
cdleme48b 39913 TODO: fix comment. (Contr...
cdleme46frvlpq 39914 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 39915 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 39916 TODO: fix comment. (Contr...
cdleme4gfv 39917 Part of proof of Lemma D i...
cdlemeg47b 39918 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 39919 Value of g_s(r) when r is ...
cdlemeg47rv2 39920 Value of g_s(r) when r is ...
cdlemeg49le 39921 Part of proof of Lemma D i...
cdlemeg46bOLDN 39922 TODO FIX COMMENT. (Contrib...
cdlemeg46c 39923 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 39924 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 39925 Value of g_s(r) when r is ...
cdlemeg46fvaw 39926 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 39927 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 39928 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 39929 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 39930 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 39931 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 39932 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 39933 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 39934 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 39935 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 39936 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 39937 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 39938 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 39939 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 39940 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 39941 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 39942 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 39943 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 39944 TODO FIX COMMENT p. 116 pe...
cdleme48d 39945 TODO: fix comment. (Contr...
cdleme48gfv1 39946 TODO: fix comment. (Contr...
cdleme48gfv 39947 TODO: fix comment. (Contr...
cdleme48fgv 39948 TODO: fix comment. (Contr...
cdlemeg49lebilem 39949 Part of proof of Lemma D i...
cdleme50lebi 39950 Part of proof of Lemma D i...
cdleme50eq 39951 Part of proof of Lemma D i...
cdleme50f 39952 Part of proof of Lemma D i...
cdleme50f1 39953 Part of proof of Lemma D i...
cdleme50rnlem 39954 Part of proof of Lemma D i...
cdleme50rn 39955 Part of proof of Lemma D i...
cdleme50f1o 39956 Part of proof of Lemma D i...
cdleme50laut 39957 Part of proof of Lemma D i...
cdleme50ldil 39958 Part of proof of Lemma D i...
cdleme50trn1 39959 Part of proof that ` F ` i...
cdleme50trn2a 39960 Part of proof that ` F ` i...
cdleme50trn2 39961 Part of proof that ` F ` i...
cdleme50trn12 39962 Part of proof that ` F ` i...
cdleme50trn3 39963 Part of proof that ` F ` i...
cdleme50trn123 39964 Part of proof that ` F ` i...
cdleme51finvfvN 39965 Part of proof of Lemma E i...
cdleme51finvN 39966 Part of proof of Lemma E i...
cdleme50ltrn 39967 Part of proof of Lemma E i...
cdleme51finvtrN 39968 Part of proof of Lemma E i...
cdleme50ex 39969 Part of Lemma E in [Crawle...
cdleme 39970 Lemma E in [Crawley] p. 11...
cdlemf1 39971 Part of Lemma F in [Crawle...
cdlemf2 39972 Part of Lemma F in [Crawle...
cdlemf 39973 Lemma F in [Crawley] p. 11...
cdlemfnid 39974 ~ cdlemf with additional c...
cdlemftr3 39975 Special case of ~ cdlemf s...
cdlemftr2 39976 Special case of ~ cdlemf s...
cdlemftr1 39977 Part of proof of Lemma G o...
cdlemftr0 39978 Special case of ~ cdlemf s...
trlord 39979 The ordering of two Hilber...
cdlemg1a 39980 Shorter expression for ` G...
cdlemg1b2 39981 This theorem can be used t...
cdlemg1idlemN 39982 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 39983 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 39984 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 39985 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 39986 This theorem can be used t...
cdlemg1idN 39987 Version of ~ cdleme31id wi...
ltrniotafvawN 39988 Version of ~ cdleme46fvaw ...
ltrniotacl 39989 Version of ~ cdleme50ltrn ...
ltrniotacnvN 39990 Version of ~ cdleme51finvt...
ltrniotaval 39991 Value of the unique transl...
ltrniotacnvval 39992 Converse value of the uniq...
ltrniotaidvalN 39993 Value of the unique transl...
ltrniotavalbN 39994 Value of the unique transl...
cdlemeiota 39995 A translation is uniquely ...
cdlemg1ci2 39996 Any function of the form o...
cdlemg1cN 39997 Any translation belongs to...
cdlemg1cex 39998 Any translation is one of ...
cdlemg2cN 39999 Any translation belongs to...
cdlemg2dN 40000 This theorem can be used t...
cdlemg2cex 40001 Any translation is one of ...
cdlemg2ce 40002 Utility theorem to elimina...
cdlemg2jlemOLDN 40003 Part of proof of Lemma E i...
cdlemg2fvlem 40004 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 40005 ~ cdleme42keg with simpler...
cdlemg2idN 40006 Version of ~ cdleme31id wi...
cdlemg3a 40007 Part of proof of Lemma G i...
cdlemg2jOLDN 40008 TODO: Replace this with ~...
cdlemg2fv 40009 Value of a translation in ...
cdlemg2fv2 40010 Value of a translation in ...
cdlemg2k 40011 ~ cdleme42keg with simpler...
cdlemg2kq 40012 ~ cdlemg2k with ` P ` and ...
cdlemg2l 40013 TODO: FIX COMMENT. (Contr...
cdlemg2m 40014 TODO: FIX COMMENT. (Contr...
cdlemg5 40015 TODO: Is there a simpler ...
cdlemb3 40016 Given two atoms not under ...
cdlemg7fvbwN 40017 Properties of a translatio...
cdlemg4a 40018 TODO: FIX COMMENT If fg(p...
cdlemg4b1 40019 TODO: FIX COMMENT. (Contr...
cdlemg4b2 40020 TODO: FIX COMMENT. (Contr...
cdlemg4b12 40021 TODO: FIX COMMENT. (Contr...
cdlemg4c 40022 TODO: FIX COMMENT. (Contr...
cdlemg4d 40023 TODO: FIX COMMENT. (Contr...
cdlemg4e 40024 TODO: FIX COMMENT. (Contr...
cdlemg4f 40025 TODO: FIX COMMENT. (Contr...
cdlemg4g 40026 TODO: FIX COMMENT. (Contr...
cdlemg4 40027 TODO: FIX COMMENT. (Contr...
cdlemg6a 40028 TODO: FIX COMMENT. TODO: ...
cdlemg6b 40029 TODO: FIX COMMENT. TODO: ...
cdlemg6c 40030 TODO: FIX COMMENT. (Contr...
cdlemg6d 40031 TODO: FIX COMMENT. (Contr...
cdlemg6e 40032 TODO: FIX COMMENT. (Contr...
cdlemg6 40033 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 40034 Value of a translation com...
cdlemg7aN 40035 TODO: FIX COMMENT. (Contr...
cdlemg7N 40036 TODO: FIX COMMENT. (Contr...
cdlemg8a 40037 TODO: FIX COMMENT. (Contr...
cdlemg8b 40038 TODO: FIX COMMENT. (Contr...
cdlemg8c 40039 TODO: FIX COMMENT. (Contr...
cdlemg8d 40040 TODO: FIX COMMENT. (Contr...
cdlemg8 40041 TODO: FIX COMMENT. (Contr...
cdlemg9a 40042 TODO: FIX COMMENT. (Contr...
cdlemg9b 40043 The triples ` <. P , ( F `...
cdlemg9 40044 The triples ` <. P , ( F `...
cdlemg10b 40045 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 40046 TODO: FIX COMMENT. TODO: ...
cdlemg11a 40047 TODO: FIX COMMENT. (Contr...
cdlemg11aq 40048 TODO: FIX COMMENT. TODO: ...
cdlemg10c 40049 TODO: FIX COMMENT. TODO: ...
cdlemg10a 40050 TODO: FIX COMMENT. (Contr...
cdlemg10 40051 TODO: FIX COMMENT. (Contr...
cdlemg11b 40052 TODO: FIX COMMENT. (Contr...
cdlemg12a 40053 TODO: FIX COMMENT. (Contr...
cdlemg12b 40054 The triples ` <. P , ( F `...
cdlemg12c 40055 The triples ` <. P , ( F `...
cdlemg12d 40056 TODO: FIX COMMENT. (Contr...
cdlemg12e 40057 TODO: FIX COMMENT. (Contr...
cdlemg12f 40058 TODO: FIX COMMENT. (Contr...
cdlemg12g 40059 TODO: FIX COMMENT. TODO: ...
cdlemg12 40060 TODO: FIX COMMENT. (Contr...
cdlemg13a 40061 TODO: FIX COMMENT. (Contr...
cdlemg13 40062 TODO: FIX COMMENT. (Contr...
cdlemg14f 40063 TODO: FIX COMMENT. (Contr...
cdlemg14g 40064 TODO: FIX COMMENT. (Contr...
cdlemg15a 40065 Eliminate the ` ( F `` P )...
cdlemg15 40066 Eliminate the ` ( (...
cdlemg16 40067 Part of proof of Lemma G o...
cdlemg16ALTN 40068 This version of ~ cdlemg16...
cdlemg16z 40069 Eliminate ` ( ( F `...
cdlemg16zz 40070 Eliminate ` P =/= Q ` from...
cdlemg17a 40071 TODO: FIX COMMENT. (Contr...
cdlemg17b 40072 Part of proof of Lemma G i...
cdlemg17dN 40073 TODO: fix comment. (Contr...
cdlemg17dALTN 40074 Same as ~ cdlemg17dN with ...
cdlemg17e 40075 TODO: fix comment. (Contr...
cdlemg17f 40076 TODO: fix comment. (Contr...
cdlemg17g 40077 TODO: fix comment. (Contr...
cdlemg17h 40078 TODO: fix comment. (Contr...
cdlemg17i 40079 TODO: fix comment. (Contr...
cdlemg17ir 40080 TODO: fix comment. (Contr...
cdlemg17j 40081 TODO: fix comment. (Contr...
cdlemg17pq 40082 Utility theorem for swappi...
cdlemg17bq 40083 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 40084 ~ cdlemg17i with ` P ` and...
cdlemg17irq 40085 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 40086 ~ cdlemg17j with ` P ` and...
cdlemg17 40087 Part of Lemma G of [Crawle...
cdlemg18a 40088 Show two lines are differe...
cdlemg18b 40089 Lemma for ~ cdlemg18c . T...
cdlemg18c 40090 Show two lines intersect a...
cdlemg18d 40091 Show two lines intersect a...
cdlemg18 40092 Show two lines intersect a...
cdlemg19a 40093 Show two lines intersect a...
cdlemg19 40094 Show two lines intersect a...
cdlemg20 40095 Show two lines intersect a...
cdlemg21 40096 Version of cdlemg19 with `...
cdlemg22 40097 ~ cdlemg21 with ` ( F `` P...
cdlemg24 40098 Combine ~ cdlemg16z and ~ ...
cdlemg37 40099 Use ~ cdlemg8 to eliminate...
cdlemg25zz 40100 ~ cdlemg16zz restated for ...
cdlemg26zz 40101 ~ cdlemg16zz restated for ...
cdlemg27a 40102 For use with case when ` (...
cdlemg28a 40103 Part of proof of Lemma G o...
cdlemg31b0N 40104 TODO: Fix comment. (Cont...
cdlemg31b0a 40105 TODO: Fix comment. (Cont...
cdlemg27b 40106 TODO: Fix comment. (Cont...
cdlemg31a 40107 TODO: fix comment. (Contr...
cdlemg31b 40108 TODO: fix comment. (Contr...
cdlemg31c 40109 Show that when ` N ` is an...
cdlemg31d 40110 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 40111 TODO: Fix comment. (Cont...
cdlemg33c0 40112 TODO: Fix comment. (Cont...
cdlemg28b 40113 Part of proof of Lemma G o...
cdlemg28 40114 Part of proof of Lemma G o...
cdlemg29 40115 Eliminate ` ( F `` P ) =/=...
cdlemg33a 40116 TODO: Fix comment. (Cont...
cdlemg33b 40117 TODO: Fix comment. (Cont...
cdlemg33c 40118 TODO: Fix comment. (Cont...
cdlemg33d 40119 TODO: Fix comment. (Cont...
cdlemg33e 40120 TODO: Fix comment. (Cont...
cdlemg33 40121 Combine ~ cdlemg33b , ~ cd...
cdlemg34 40122 Use cdlemg33 to eliminate ...
cdlemg35 40123 TODO: Fix comment. TODO:...
cdlemg36 40124 Use cdlemg35 to eliminate ...
cdlemg38 40125 Use ~ cdlemg37 to eliminat...
cdlemg39 40126 Eliminate ` =/= ` conditio...
cdlemg40 40127 Eliminate ` P =/= Q ` cond...
cdlemg41 40128 Convert ~ cdlemg40 to func...
ltrnco 40129 The composition of two tra...
trlcocnv 40130 Swap the arguments of the ...
trlcoabs 40131 Absorption into a composit...
trlcoabs2N 40132 Absorption of the trace of...
trlcoat 40133 The trace of a composition...
trlcocnvat 40134 Commonly used special case...
trlconid 40135 The composition of two dif...
trlcolem 40136 Lemma for ~ trlco . (Cont...
trlco 40137 The trace of a composition...
trlcone 40138 If two translations have d...
cdlemg42 40139 Part of proof of Lemma G o...
cdlemg43 40140 Part of proof of Lemma G o...
cdlemg44a 40141 Part of proof of Lemma G o...
cdlemg44b 40142 Eliminate ` ( F `` P ) =/=...
cdlemg44 40143 Part of proof of Lemma G o...
cdlemg47a 40144 TODO: fix comment. TODO: ...
cdlemg46 40145 Part of proof of Lemma G o...
cdlemg47 40146 Part of proof of Lemma G o...
cdlemg48 40147 Eliminate ` h ` from ~ cdl...
ltrncom 40148 Composition is commutative...
ltrnco4 40149 Rearrange a composition of...
trljco 40150 Trace joined with trace of...
trljco2 40151 Trace joined with trace of...
tgrpfset 40154 The translation group maps...
tgrpset 40155 The translation group for ...
tgrpbase 40156 The base set of the transl...
tgrpopr 40157 The group operation of the...
tgrpov 40158 The group operation value ...
tgrpgrplem 40159 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 40160 The translation group is a...
tgrpabl 40161 The translation group is a...
tendofset 40168 The set of all trace-prese...
tendoset 40169 The set of trace-preservin...
istendo 40170 The predicate "is a trace-...
tendotp 40171 Trace-preserving property ...
istendod 40172 Deduce the predicate "is a...
tendof 40173 Functionality of a trace-p...
tendoeq1 40174 Condition determining equa...
tendovalco 40175 Value of composition of tr...
tendocoval 40176 Value of composition of en...
tendocl 40177 Closure of a trace-preserv...
tendoco2 40178 Distribution of compositio...
tendoidcl 40179 The identity is a trace-pr...
tendo1mul 40180 Multiplicative identity mu...
tendo1mulr 40181 Multiplicative identity mu...
tendococl 40182 The composition of two tra...
tendoid 40183 The identity value of a tr...
tendoeq2 40184 Condition determining equa...
tendoplcbv 40185 Define sum operation for t...
tendopl 40186 Value of endomorphism sum ...
tendopl2 40187 Value of result of endomor...
tendoplcl2 40188 Value of result of endomor...
tendoplco2 40189 Value of result of endomor...
tendopltp 40190 Trace-preserving property ...
tendoplcl 40191 Endomorphism sum is a trac...
tendoplcom 40192 The endomorphism sum opera...
tendoplass 40193 The endomorphism sum opera...
tendodi1 40194 Endomorphism composition d...
tendodi2 40195 Endomorphism composition d...
tendo0cbv 40196 Define additive identity f...
tendo02 40197 Value of additive identity...
tendo0co2 40198 The additive identity trac...
tendo0tp 40199 Trace-preserving property ...
tendo0cl 40200 The additive identity is a...
tendo0pl 40201 Property of the additive i...
tendo0plr 40202 Property of the additive i...
tendoicbv 40203 Define inverse function fo...
tendoi 40204 Value of inverse endomorph...
tendoi2 40205 Value of additive inverse ...
tendoicl 40206 Closure of the additive in...
tendoipl 40207 Property of the additive i...
tendoipl2 40208 Property of the additive i...
erngfset 40209 The division rings on trac...
erngset 40210 The division ring on trace...
erngbase 40211 The base set of the divisi...
erngfplus 40212 Ring addition operation. ...
erngplus 40213 Ring addition operation. ...
erngplus2 40214 Ring addition operation. ...
erngfmul 40215 Ring multiplication operat...
erngmul 40216 Ring addition operation. ...
erngfset-rN 40217 The division rings on trac...
erngset-rN 40218 The division ring on trace...
erngbase-rN 40219 The base set of the divisi...
erngfplus-rN 40220 Ring addition operation. ...
erngplus-rN 40221 Ring addition operation. ...
erngplus2-rN 40222 Ring addition operation. ...
erngfmul-rN 40223 Ring multiplication operat...
erngmul-rN 40224 Ring addition operation. ...
cdlemh1 40225 Part of proof of Lemma H o...
cdlemh2 40226 Part of proof of Lemma H o...
cdlemh 40227 Lemma H of [Crawley] p. 11...
cdlemi1 40228 Part of proof of Lemma I o...
cdlemi2 40229 Part of proof of Lemma I o...
cdlemi 40230 Lemma I of [Crawley] p. 11...
cdlemj1 40231 Part of proof of Lemma J o...
cdlemj2 40232 Part of proof of Lemma J o...
cdlemj3 40233 Part of proof of Lemma J o...
tendocan 40234 Cancellation law: if the v...
tendoid0 40235 A trace-preserving endomor...
tendo0mul 40236 Additive identity multipli...
tendo0mulr 40237 Additive identity multipli...
tendo1ne0 40238 The identity (unity) is no...
tendoconid 40239 The composition (product) ...
tendotr 40240 The trace of the value of ...
cdlemk1 40241 Part of proof of Lemma K o...
cdlemk2 40242 Part of proof of Lemma K o...
cdlemk3 40243 Part of proof of Lemma K o...
cdlemk4 40244 Part of proof of Lemma K o...
cdlemk5a 40245 Part of proof of Lemma K o...
cdlemk5 40246 Part of proof of Lemma K o...
cdlemk6 40247 Part of proof of Lemma K o...
cdlemk8 40248 Part of proof of Lemma K o...
cdlemk9 40249 Part of proof of Lemma K o...
cdlemk9bN 40250 Part of proof of Lemma K o...
cdlemki 40251 Part of proof of Lemma K o...
cdlemkvcl 40252 Part of proof of Lemma K o...
cdlemk10 40253 Part of proof of Lemma K o...
cdlemksv 40254 Part of proof of Lemma K o...
cdlemksel 40255 Part of proof of Lemma K o...
cdlemksat 40256 Part of proof of Lemma K o...
cdlemksv2 40257 Part of proof of Lemma K o...
cdlemk7 40258 Part of proof of Lemma K o...
cdlemk11 40259 Part of proof of Lemma K o...
cdlemk12 40260 Part of proof of Lemma K o...
cdlemkoatnle 40261 Utility lemma. (Contribut...
cdlemk13 40262 Part of proof of Lemma K o...
cdlemkole 40263 Utility lemma. (Contribut...
cdlemk14 40264 Part of proof of Lemma K o...
cdlemk15 40265 Part of proof of Lemma K o...
cdlemk16a 40266 Part of proof of Lemma K o...
cdlemk16 40267 Part of proof of Lemma K o...
cdlemk17 40268 Part of proof of Lemma K o...
cdlemk1u 40269 Part of proof of Lemma K o...
cdlemk5auN 40270 Part of proof of Lemma K o...
cdlemk5u 40271 Part of proof of Lemma K o...
cdlemk6u 40272 Part of proof of Lemma K o...
cdlemkj 40273 Part of proof of Lemma K o...
cdlemkuvN 40274 Part of proof of Lemma K o...
cdlemkuel 40275 Part of proof of Lemma K o...
cdlemkuat 40276 Part of proof of Lemma K o...
cdlemkuv2 40277 Part of proof of Lemma K o...
cdlemk18 40278 Part of proof of Lemma K o...
cdlemk19 40279 Part of proof of Lemma K o...
cdlemk7u 40280 Part of proof of Lemma K o...
cdlemk11u 40281 Part of proof of Lemma K o...
cdlemk12u 40282 Part of proof of Lemma K o...
cdlemk21N 40283 Part of proof of Lemma K o...
cdlemk20 40284 Part of proof of Lemma K o...
cdlemkoatnle-2N 40285 Utility lemma. (Contribut...
cdlemk13-2N 40286 Part of proof of Lemma K o...
cdlemkole-2N 40287 Utility lemma. (Contribut...
cdlemk14-2N 40288 Part of proof of Lemma K o...
cdlemk15-2N 40289 Part of proof of Lemma K o...
cdlemk16-2N 40290 Part of proof of Lemma K o...
cdlemk17-2N 40291 Part of proof of Lemma K o...
cdlemkj-2N 40292 Part of proof of Lemma K o...
cdlemkuv-2N 40293 Part of proof of Lemma K o...
cdlemkuel-2N 40294 Part of proof of Lemma K o...
cdlemkuv2-2 40295 Part of proof of Lemma K o...
cdlemk18-2N 40296 Part of proof of Lemma K o...
cdlemk19-2N 40297 Part of proof of Lemma K o...
cdlemk7u-2N 40298 Part of proof of Lemma K o...
cdlemk11u-2N 40299 Part of proof of Lemma K o...
cdlemk12u-2N 40300 Part of proof of Lemma K o...
cdlemk21-2N 40301 Part of proof of Lemma K o...
cdlemk20-2N 40302 Part of proof of Lemma K o...
cdlemk22 40303 Part of proof of Lemma K o...
cdlemk30 40304 Part of proof of Lemma K o...
cdlemkuu 40305 Convert between function a...
cdlemk31 40306 Part of proof of Lemma K o...
cdlemk32 40307 Part of proof of Lemma K o...
cdlemkuel-3 40308 Part of proof of Lemma K o...
cdlemkuv2-3N 40309 Part of proof of Lemma K o...
cdlemk18-3N 40310 Part of proof of Lemma K o...
cdlemk22-3 40311 Part of proof of Lemma K o...
cdlemk23-3 40312 Part of proof of Lemma K o...
cdlemk24-3 40313 Part of proof of Lemma K o...
cdlemk25-3 40314 Part of proof of Lemma K o...
cdlemk26b-3 40315 Part of proof of Lemma K o...
cdlemk26-3 40316 Part of proof of Lemma K o...
cdlemk27-3 40317 Part of proof of Lemma K o...
cdlemk28-3 40318 Part of proof of Lemma K o...
cdlemk33N 40319 Part of proof of Lemma K o...
cdlemk34 40320 Part of proof of Lemma K o...
cdlemk29-3 40321 Part of proof of Lemma K o...
cdlemk35 40322 Part of proof of Lemma K o...
cdlemk36 40323 Part of proof of Lemma K o...
cdlemk37 40324 Part of proof of Lemma K o...
cdlemk38 40325 Part of proof of Lemma K o...
cdlemk39 40326 Part of proof of Lemma K o...
cdlemk40 40327 TODO: fix comment. (Contr...
cdlemk40t 40328 TODO: fix comment. (Contr...
cdlemk40f 40329 TODO: fix comment. (Contr...
cdlemk41 40330 Part of proof of Lemma K o...
cdlemkfid1N 40331 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 40332 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 40333 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 40334 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 40335 TODO: is this useful or sh...
cdlemky 40336 Part of proof of Lemma K o...
cdlemkyu 40337 Convert between function a...
cdlemkyuu 40338 ~ cdlemkyu with some hypot...
cdlemk11ta 40339 Part of proof of Lemma K o...
cdlemk19ylem 40340 Lemma for ~ cdlemk19y . (...
cdlemk11tb 40341 Part of proof of Lemma K o...
cdlemk19y 40342 ~ cdlemk19 with simpler hy...
cdlemkid3N 40343 Lemma for ~ cdlemkid . (C...
cdlemkid4 40344 Lemma for ~ cdlemkid . (C...
cdlemkid5 40345 Lemma for ~ cdlemkid . (C...
cdlemkid 40346 The value of the tau funct...
cdlemk35s 40347 Substitution version of ~ ...
cdlemk35s-id 40348 Substitution version of ~ ...
cdlemk39s 40349 Substitution version of ~ ...
cdlemk39s-id 40350 Substitution version of ~ ...
cdlemk42 40351 Part of proof of Lemma K o...
cdlemk19xlem 40352 Lemma for ~ cdlemk19x . (...
cdlemk19x 40353 ~ cdlemk19 with simpler hy...
cdlemk42yN 40354 Part of proof of Lemma K o...
cdlemk11tc 40355 Part of proof of Lemma K o...
cdlemk11t 40356 Part of proof of Lemma K o...
cdlemk45 40357 Part of proof of Lemma K o...
cdlemk46 40358 Part of proof of Lemma K o...
cdlemk47 40359 Part of proof of Lemma K o...
cdlemk48 40360 Part of proof of Lemma K o...
cdlemk49 40361 Part of proof of Lemma K o...
cdlemk50 40362 Part of proof of Lemma K o...
cdlemk51 40363 Part of proof of Lemma K o...
cdlemk52 40364 Part of proof of Lemma K o...
cdlemk53a 40365 Lemma for ~ cdlemk53 . (C...
cdlemk53b 40366 Lemma for ~ cdlemk53 . (C...
cdlemk53 40367 Part of proof of Lemma K o...
cdlemk54 40368 Part of proof of Lemma K o...
cdlemk55a 40369 Lemma for ~ cdlemk55 . (C...
cdlemk55b 40370 Lemma for ~ cdlemk55 . (C...
cdlemk55 40371 Part of proof of Lemma K o...
cdlemkyyN 40372 Part of proof of Lemma K o...
cdlemk43N 40373 Part of proof of Lemma K o...
cdlemk35u 40374 Substitution version of ~ ...
cdlemk55u1 40375 Lemma for ~ cdlemk55u . (...
cdlemk55u 40376 Part of proof of Lemma K o...
cdlemk39u1 40377 Lemma for ~ cdlemk39u . (...
cdlemk39u 40378 Part of proof of Lemma K o...
cdlemk19u1 40379 ~ cdlemk19 with simpler hy...
cdlemk19u 40380 Part of Lemma K of [Crawle...
cdlemk56 40381 Part of Lemma K of [Crawle...
cdlemk19w 40382 Use a fixed element to eli...
cdlemk56w 40383 Use a fixed element to eli...
cdlemk 40384 Lemma K of [Crawley] p. 11...
tendoex 40385 Generalization of Lemma K ...
cdleml1N 40386 Part of proof of Lemma L o...
cdleml2N 40387 Part of proof of Lemma L o...
cdleml3N 40388 Part of proof of Lemma L o...
cdleml4N 40389 Part of proof of Lemma L o...
cdleml5N 40390 Part of proof of Lemma L o...
cdleml6 40391 Part of proof of Lemma L o...
cdleml7 40392 Part of proof of Lemma L o...
cdleml8 40393 Part of proof of Lemma L o...
cdleml9 40394 Part of proof of Lemma L o...
dva1dim 40395 Two expressions for the 1-...
dvhb1dimN 40396 Two expressions for the 1-...
erng1lem 40397 Value of the endomorphism ...
erngdvlem1 40398 Lemma for ~ eringring . (...
erngdvlem2N 40399 Lemma for ~ eringring . (...
erngdvlem3 40400 Lemma for ~ eringring . (...
erngdvlem4 40401 Lemma for ~ erngdv . (Con...
eringring 40402 An endomorphism ring is a ...
erngdv 40403 An endomorphism ring is a ...
erng0g 40404 The division ring zero of ...
erng1r 40405 The division ring unity of...
erngdvlem1-rN 40406 Lemma for ~ eringring . (...
erngdvlem2-rN 40407 Lemma for ~ eringring . (...
erngdvlem3-rN 40408 Lemma for ~ eringring . (...
erngdvlem4-rN 40409 Lemma for ~ erngdv . (Con...
erngring-rN 40410 An endomorphism ring is a ...
erngdv-rN 40411 An endomorphism ring is a ...
dvafset 40414 The constructed partial ve...
dvaset 40415 The constructed partial ve...
dvasca 40416 The ring base set of the c...
dvabase 40417 The ring base set of the c...
dvafplusg 40418 Ring addition operation fo...
dvaplusg 40419 Ring addition operation fo...
dvaplusgv 40420 Ring addition operation fo...
dvafmulr 40421 Ring multiplication operat...
dvamulr 40422 Ring multiplication operat...
dvavbase 40423 The vectors (vector base s...
dvafvadd 40424 The vector sum operation f...
dvavadd 40425 Ring addition operation fo...
dvafvsca 40426 Ring addition operation fo...
dvavsca 40427 Ring addition operation fo...
tendospcl 40428 Closure of endomorphism sc...
tendospass 40429 Associative law for endomo...
tendospdi1 40430 Forward distributive law f...
tendocnv 40431 Converse of a trace-preser...
tendospdi2 40432 Reverse distributive law f...
tendospcanN 40433 Cancellation law for trace...
dvaabl 40434 The constructed partial ve...
dvalveclem 40435 Lemma for ~ dvalvec . (Co...
dvalvec 40436 The constructed partial ve...
dva0g 40437 The zero vector of partial...
diaffval 40440 The partial isomorphism A ...
diafval 40441 The partial isomorphism A ...
diaval 40442 The partial isomorphism A ...
diaelval 40443 Member of the partial isom...
diafn 40444 Functionality and domain o...
diadm 40445 Domain of the partial isom...
diaeldm 40446 Member of domain of the pa...
diadmclN 40447 A member of domain of the ...
diadmleN 40448 A member of domain of the ...
dian0 40449 The value of the partial i...
dia0eldmN 40450 The lattice zero belongs t...
dia1eldmN 40451 The fiducial hyperplane (t...
diass 40452 The value of the partial i...
diael 40453 A member of the value of t...
diatrl 40454 Trace of a member of the p...
diaelrnN 40455 Any value of the partial i...
dialss 40456 The value of partial isomo...
diaord 40457 The partial isomorphism A ...
dia11N 40458 The partial isomorphism A ...
diaf11N 40459 The partial isomorphism A ...
diaclN 40460 Closure of partial isomorp...
diacnvclN 40461 Closure of partial isomorp...
dia0 40462 The value of the partial i...
dia1N 40463 The value of the partial i...
dia1elN 40464 The largest subspace in th...
diaglbN 40465 Partial isomorphism A of a...
diameetN 40466 Partial isomorphism A of a...
diainN 40467 Inverse partial isomorphis...
diaintclN 40468 The intersection of partia...
diasslssN 40469 The partial isomorphism A ...
diassdvaN 40470 The partial isomorphism A ...
dia1dim 40471 Two expressions for the 1-...
dia1dim2 40472 Two expressions for a 1-di...
dia1dimid 40473 A vector (translation) bel...
dia2dimlem1 40474 Lemma for ~ dia2dim . Sho...
dia2dimlem2 40475 Lemma for ~ dia2dim . Def...
dia2dimlem3 40476 Lemma for ~ dia2dim . Def...
dia2dimlem4 40477 Lemma for ~ dia2dim . Sho...
dia2dimlem5 40478 Lemma for ~ dia2dim . The...
dia2dimlem6 40479 Lemma for ~ dia2dim . Eli...
dia2dimlem7 40480 Lemma for ~ dia2dim . Eli...
dia2dimlem8 40481 Lemma for ~ dia2dim . Eli...
dia2dimlem9 40482 Lemma for ~ dia2dim . Eli...
dia2dimlem10 40483 Lemma for ~ dia2dim . Con...
dia2dimlem11 40484 Lemma for ~ dia2dim . Con...
dia2dimlem12 40485 Lemma for ~ dia2dim . Obt...
dia2dimlem13 40486 Lemma for ~ dia2dim . Eli...
dia2dim 40487 A two-dimensional subspace...
dvhfset 40490 The constructed full vecto...
dvhset 40491 The constructed full vecto...
dvhsca 40492 The ring of scalars of the...
dvhbase 40493 The ring base set of the c...
dvhfplusr 40494 Ring addition operation fo...
dvhfmulr 40495 Ring multiplication operat...
dvhmulr 40496 Ring multiplication operat...
dvhvbase 40497 The vectors (vector base s...
dvhelvbasei 40498 Vector membership in the c...
dvhvaddcbv 40499 Change bound variables to ...
dvhvaddval 40500 The vector sum operation f...
dvhfvadd 40501 The vector sum operation f...
dvhvadd 40502 The vector sum operation f...
dvhopvadd 40503 The vector sum operation f...
dvhopvadd2 40504 The vector sum operation f...
dvhvaddcl 40505 Closure of the vector sum ...
dvhvaddcomN 40506 Commutativity of vector su...
dvhvaddass 40507 Associativity of vector su...
dvhvscacbv 40508 Change bound variables to ...
dvhvscaval 40509 The scalar product operati...
dvhfvsca 40510 Scalar product operation f...
dvhvsca 40511 Scalar product operation f...
dvhopvsca 40512 Scalar product operation f...
dvhvscacl 40513 Closure of the scalar prod...
tendoinvcl 40514 Closure of multiplicative ...
tendolinv 40515 Left multiplicative invers...
tendorinv 40516 Right multiplicative inver...
dvhgrp 40517 The full vector space ` U ...
dvhlveclem 40518 Lemma for ~ dvhlvec . TOD...
dvhlvec 40519 The full vector space ` U ...
dvhlmod 40520 The full vector space ` U ...
dvh0g 40521 The zero vector of vector ...
dvheveccl 40522 Properties of a unit vecto...
dvhopclN 40523 Closure of a ` DVecH ` vec...
dvhopaddN 40524 Sum of ` DVecH ` vectors e...
dvhopspN 40525 Scalar product of ` DVecH ...
dvhopN 40526 Decompose a ` DVecH ` vect...
dvhopellsm 40527 Ordered pair membership in...
cdlemm10N 40528 The image of the map ` G `...
docaffvalN 40531 Subspace orthocomplement f...
docafvalN 40532 Subspace orthocomplement f...
docavalN 40533 Subspace orthocomplement f...
docaclN 40534 Closure of subspace orthoc...
diaocN 40535 Value of partial isomorphi...
doca2N 40536 Double orthocomplement of ...
doca3N 40537 Double orthocomplement of ...
dvadiaN 40538 Any closed subspace is a m...
diarnN 40539 Partial isomorphism A maps...
diaf1oN 40540 The partial isomorphism A ...
djaffvalN 40543 Subspace join for ` DVecA ...
djafvalN 40544 Subspace join for ` DVecA ...
djavalN 40545 Subspace join for ` DVecA ...
djaclN 40546 Closure of subspace join f...
djajN 40547 Transfer lattice join to `...
dibffval 40550 The partial isomorphism B ...
dibfval 40551 The partial isomorphism B ...
dibval 40552 The partial isomorphism B ...
dibopelvalN 40553 Member of the partial isom...
dibval2 40554 Value of the partial isomo...
dibopelval2 40555 Member of the partial isom...
dibval3N 40556 Value of the partial isomo...
dibelval3 40557 Member of the partial isom...
dibopelval3 40558 Member of the partial isom...
dibelval1st 40559 Membership in value of the...
dibelval1st1 40560 Membership in value of the...
dibelval1st2N 40561 Membership in value of the...
dibelval2nd 40562 Membership in value of the...
dibn0 40563 The value of the partial i...
dibfna 40564 Functionality and domain o...
dibdiadm 40565 Domain of the partial isom...
dibfnN 40566 Functionality and domain o...
dibdmN 40567 Domain of the partial isom...
dibeldmN 40568 Member of domain of the pa...
dibord 40569 The isomorphism B for a la...
dib11N 40570 The isomorphism B for a la...
dibf11N 40571 The partial isomorphism A ...
dibclN 40572 Closure of partial isomorp...
dibvalrel 40573 The value of partial isomo...
dib0 40574 The value of partial isomo...
dib1dim 40575 Two expressions for the 1-...
dibglbN 40576 Partial isomorphism B of a...
dibintclN 40577 The intersection of partia...
dib1dim2 40578 Two expressions for a 1-di...
dibss 40579 The partial isomorphism B ...
diblss 40580 The value of partial isomo...
diblsmopel 40581 Membership in subspace sum...
dicffval 40584 The partial isomorphism C ...
dicfval 40585 The partial isomorphism C ...
dicval 40586 The partial isomorphism C ...
dicopelval 40587 Membership in value of the...
dicelvalN 40588 Membership in value of the...
dicval2 40589 The partial isomorphism C ...
dicelval3 40590 Member of the partial isom...
dicopelval2 40591 Membership in value of the...
dicelval2N 40592 Membership in value of the...
dicfnN 40593 Functionality and domain o...
dicdmN 40594 Domain of the partial isom...
dicvalrelN 40595 The value of partial isomo...
dicssdvh 40596 The partial isomorphism C ...
dicelval1sta 40597 Membership in value of the...
dicelval1stN 40598 Membership in value of the...
dicelval2nd 40599 Membership in value of the...
dicvaddcl 40600 Membership in value of the...
dicvscacl 40601 Membership in value of the...
dicn0 40602 The value of the partial i...
diclss 40603 The value of partial isomo...
diclspsn 40604 The value of isomorphism C...
cdlemn2 40605 Part of proof of Lemma N o...
cdlemn2a 40606 Part of proof of Lemma N o...
cdlemn3 40607 Part of proof of Lemma N o...
cdlemn4 40608 Part of proof of Lemma N o...
cdlemn4a 40609 Part of proof of Lemma N o...
cdlemn5pre 40610 Part of proof of Lemma N o...
cdlemn5 40611 Part of proof of Lemma N o...
cdlemn6 40612 Part of proof of Lemma N o...
cdlemn7 40613 Part of proof of Lemma N o...
cdlemn8 40614 Part of proof of Lemma N o...
cdlemn9 40615 Part of proof of Lemma N o...
cdlemn10 40616 Part of proof of Lemma N o...
cdlemn11a 40617 Part of proof of Lemma N o...
cdlemn11b 40618 Part of proof of Lemma N o...
cdlemn11c 40619 Part of proof of Lemma N o...
cdlemn11pre 40620 Part of proof of Lemma N o...
cdlemn11 40621 Part of proof of Lemma N o...
cdlemn 40622 Lemma N of [Crawley] p. 12...
dihordlem6 40623 Part of proof of Lemma N o...
dihordlem7 40624 Part of proof of Lemma N o...
dihordlem7b 40625 Part of proof of Lemma N o...
dihjustlem 40626 Part of proof after Lemma ...
dihjust 40627 Part of proof after Lemma ...
dihord1 40628 Part of proof after Lemma ...
dihord2a 40629 Part of proof after Lemma ...
dihord2b 40630 Part of proof after Lemma ...
dihord2cN 40631 Part of proof after Lemma ...
dihord11b 40632 Part of proof after Lemma ...
dihord10 40633 Part of proof after Lemma ...
dihord11c 40634 Part of proof after Lemma ...
dihord2pre 40635 Part of proof after Lemma ...
dihord2pre2 40636 Part of proof after Lemma ...
dihord2 40637 Part of proof after Lemma ...
dihffval 40640 The isomorphism H for a la...
dihfval 40641 Isomorphism H for a lattic...
dihval 40642 Value of isomorphism H for...
dihvalc 40643 Value of isomorphism H for...
dihlsscpre 40644 Closure of isomorphism H f...
dihvalcqpre 40645 Value of isomorphism H for...
dihvalcq 40646 Value of isomorphism H for...
dihvalb 40647 Value of isomorphism H for...
dihopelvalbN 40648 Ordered pair member of the...
dihvalcqat 40649 Value of isomorphism H for...
dih1dimb 40650 Two expressions for a 1-di...
dih1dimb2 40651 Isomorphism H at an atom u...
dih1dimc 40652 Isomorphism H at an atom n...
dib2dim 40653 Extend ~ dia2dim to partia...
dih2dimb 40654 Extend ~ dib2dim to isomor...
dih2dimbALTN 40655 Extend ~ dia2dim to isomor...
dihopelvalcqat 40656 Ordered pair member of the...
dihvalcq2 40657 Value of isomorphism H for...
dihopelvalcpre 40658 Member of value of isomorp...
dihopelvalc 40659 Member of value of isomorp...
dihlss 40660 The value of isomorphism H...
dihss 40661 The value of isomorphism H...
dihssxp 40662 An isomorphism H value is ...
dihopcl 40663 Closure of an ordered pair...
xihopellsmN 40664 Ordered pair membership in...
dihopellsm 40665 Ordered pair membership in...
dihord6apre 40666 Part of proof that isomorp...
dihord3 40667 The isomorphism H for a la...
dihord4 40668 The isomorphism H for a la...
dihord5b 40669 Part of proof that isomorp...
dihord6b 40670 Part of proof that isomorp...
dihord6a 40671 Part of proof that isomorp...
dihord5apre 40672 Part of proof that isomorp...
dihord5a 40673 Part of proof that isomorp...
dihord 40674 The isomorphism H is order...
dih11 40675 The isomorphism H is one-t...
dihf11lem 40676 Functionality of the isomo...
dihf11 40677 The isomorphism H for a la...
dihfn 40678 Functionality and domain o...
dihdm 40679 Domain of isomorphism H. (...
dihcl 40680 Closure of isomorphism H. ...
dihcnvcl 40681 Closure of isomorphism H c...
dihcnvid1 40682 The converse isomorphism o...
dihcnvid2 40683 The isomorphism of a conve...
dihcnvord 40684 Ordering property for conv...
dihcnv11 40685 The converse of isomorphis...
dihsslss 40686 The isomorphism H maps to ...
dihrnlss 40687 The isomorphism H maps to ...
dihrnss 40688 The isomorphism H maps to ...
dihvalrel 40689 The value of isomorphism H...
dih0 40690 The value of isomorphism H...
dih0bN 40691 A lattice element is zero ...
dih0vbN 40692 A vector is zero iff its s...
dih0cnv 40693 The isomorphism H converse...
dih0rn 40694 The zero subspace belongs ...
dih0sb 40695 A subspace is zero iff the...
dih1 40696 The value of isomorphism H...
dih1rn 40697 The full vector space belo...
dih1cnv 40698 The isomorphism H converse...
dihwN 40699 Value of isomorphism H at ...
dihmeetlem1N 40700 Isomorphism H of a conjunc...
dihglblem5apreN 40701 A conjunction property of ...
dihglblem5aN 40702 A conjunction property of ...
dihglblem2aN 40703 Lemma for isomorphism H of...
dihglblem2N 40704 The GLB of a set of lattic...
dihglblem3N 40705 Isomorphism H of a lattice...
dihglblem3aN 40706 Isomorphism H of a lattice...
dihglblem4 40707 Isomorphism H of a lattice...
dihglblem5 40708 Isomorphism H of a lattice...
dihmeetlem2N 40709 Isomorphism H of a conjunc...
dihglbcpreN 40710 Isomorphism H of a lattice...
dihglbcN 40711 Isomorphism H of a lattice...
dihmeetcN 40712 Isomorphism H of a lattice...
dihmeetbN 40713 Isomorphism H of a lattice...
dihmeetbclemN 40714 Lemma for isomorphism H of...
dihmeetlem3N 40715 Lemma for isomorphism H of...
dihmeetlem4preN 40716 Lemma for isomorphism H of...
dihmeetlem4N 40717 Lemma for isomorphism H of...
dihmeetlem5 40718 Part of proof that isomorp...
dihmeetlem6 40719 Lemma for isomorphism H of...
dihmeetlem7N 40720 Lemma for isomorphism H of...
dihjatc1 40721 Lemma for isomorphism H of...
dihjatc2N 40722 Isomorphism H of join with...
dihjatc3 40723 Isomorphism H of join with...
dihmeetlem8N 40724 Lemma for isomorphism H of...
dihmeetlem9N 40725 Lemma for isomorphism H of...
dihmeetlem10N 40726 Lemma for isomorphism H of...
dihmeetlem11N 40727 Lemma for isomorphism H of...
dihmeetlem12N 40728 Lemma for isomorphism H of...
dihmeetlem13N 40729 Lemma for isomorphism H of...
dihmeetlem14N 40730 Lemma for isomorphism H of...
dihmeetlem15N 40731 Lemma for isomorphism H of...
dihmeetlem16N 40732 Lemma for isomorphism H of...
dihmeetlem17N 40733 Lemma for isomorphism H of...
dihmeetlem18N 40734 Lemma for isomorphism H of...
dihmeetlem19N 40735 Lemma for isomorphism H of...
dihmeetlem20N 40736 Lemma for isomorphism H of...
dihmeetALTN 40737 Isomorphism H of a lattice...
dih1dimatlem0 40738 Lemma for ~ dih1dimat . (...
dih1dimatlem 40739 Lemma for ~ dih1dimat . (...
dih1dimat 40740 Any 1-dimensional subspace...
dihlsprn 40741 The span of a vector belon...
dihlspsnssN 40742 A subspace included in a 1...
dihlspsnat 40743 The inverse isomorphism H ...
dihatlat 40744 The isomorphism H of an at...
dihat 40745 There exists at least one ...
dihpN 40746 The value of isomorphism H...
dihlatat 40747 The reverse isomorphism H ...
dihatexv 40748 There is a nonzero vector ...
dihatexv2 40749 There is a nonzero vector ...
dihglblem6 40750 Isomorphism H of a lattice...
dihglb 40751 Isomorphism H of a lattice...
dihglb2 40752 Isomorphism H of a lattice...
dihmeet 40753 Isomorphism H of a lattice...
dihintcl 40754 The intersection of closed...
dihmeetcl 40755 Closure of closed subspace...
dihmeet2 40756 Reverse isomorphism H of a...
dochffval 40759 Subspace orthocomplement f...
dochfval 40760 Subspace orthocomplement f...
dochval 40761 Subspace orthocomplement f...
dochval2 40762 Subspace orthocomplement f...
dochcl 40763 Closure of subspace orthoc...
dochlss 40764 A subspace orthocomplement...
dochssv 40765 A subspace orthocomplement...
dochfN 40766 Domain and codomain of the...
dochvalr 40767 Orthocomplement of a close...
doch0 40768 Orthocomplement of the zer...
doch1 40769 Orthocomplement of the uni...
dochoc0 40770 The zero subspace is close...
dochoc1 40771 The unit subspace (all vec...
dochvalr2 40772 Orthocomplement of a close...
dochvalr3 40773 Orthocomplement of a close...
doch2val2 40774 Double orthocomplement for...
dochss 40775 Subset law for orthocomple...
dochocss 40776 Double negative law for or...
dochoc 40777 Double negative law for or...
dochsscl 40778 If a set of vectors is inc...
dochoccl 40779 A set of vectors is closed...
dochord 40780 Ordering law for orthocomp...
dochord2N 40781 Ordering law for orthocomp...
dochord3 40782 Ordering law for orthocomp...
doch11 40783 Orthocomplement is one-to-...
dochsordN 40784 Strict ordering law for or...
dochn0nv 40785 An orthocomplement is nonz...
dihoml4c 40786 Version of ~ dihoml4 with ...
dihoml4 40787 Orthomodular law for const...
dochspss 40788 The span of a set of vecto...
dochocsp 40789 The span of an orthocomple...
dochspocN 40790 The span of an orthocomple...
dochocsn 40791 The double orthocomplement...
dochsncom 40792 Swap vectors in an orthoco...
dochsat 40793 The double orthocomplement...
dochshpncl 40794 If a hyperplane is not clo...
dochlkr 40795 Equivalent conditions for ...
dochkrshp 40796 The closure of a kernel is...
dochkrshp2 40797 Properties of the closure ...
dochkrshp3 40798 Properties of the closure ...
dochkrshp4 40799 Properties of the closure ...
dochdmj1 40800 De Morgan-like law for sub...
dochnoncon 40801 Law of noncontradiction. ...
dochnel2 40802 A nonzero member of a subs...
dochnel 40803 A nonzero vector doesn't b...
djhffval 40806 Subspace join for ` DVecH ...
djhfval 40807 Subspace join for ` DVecH ...
djhval 40808 Subspace join for ` DVecH ...
djhval2 40809 Value of subspace join for...
djhcl 40810 Closure of subspace join f...
djhlj 40811 Transfer lattice join to `...
djhljjN 40812 Lattice join in terms of `...
djhjlj 40813 ` DVecH ` vector space clo...
djhj 40814 ` DVecH ` vector space clo...
djhcom 40815 Subspace join commutes. (...
djhspss 40816 Subspace span of union is ...
djhsumss 40817 Subspace sum is a subset o...
dihsumssj 40818 The subspace sum of two is...
djhunssN 40819 Subspace union is a subset...
dochdmm1 40820 De Morgan-like law for clo...
djhexmid 40821 Excluded middle property o...
djh01 40822 Closed subspace join with ...
djh02 40823 Closed subspace join with ...
djhlsmcl 40824 A closed subspace sum equa...
djhcvat42 40825 A covering property. ( ~ ...
dihjatb 40826 Isomorphism H of lattice j...
dihjatc 40827 Isomorphism H of lattice j...
dihjatcclem1 40828 Lemma for isomorphism H of...
dihjatcclem2 40829 Lemma for isomorphism H of...
dihjatcclem3 40830 Lemma for ~ dihjatcc . (C...
dihjatcclem4 40831 Lemma for isomorphism H of...
dihjatcc 40832 Isomorphism H of lattice j...
dihjat 40833 Isomorphism H of lattice j...
dihprrnlem1N 40834 Lemma for ~ dihprrn , show...
dihprrnlem2 40835 Lemma for ~ dihprrn . (Co...
dihprrn 40836 The span of a vector pair ...
djhlsmat 40837 The sum of two subspace at...
dihjat1lem 40838 Subspace sum of a closed s...
dihjat1 40839 Subspace sum of a closed s...
dihsmsprn 40840 Subspace sum of a closed s...
dihjat2 40841 The subspace sum of a clos...
dihjat3 40842 Isomorphism H of lattice j...
dihjat4 40843 Transfer the subspace sum ...
dihjat6 40844 Transfer the subspace sum ...
dihsmsnrn 40845 The subspace sum of two si...
dihsmatrn 40846 The subspace sum of a clos...
dihjat5N 40847 Transfer lattice join with...
dvh4dimat 40848 There is an atom that is o...
dvh3dimatN 40849 There is an atom that is o...
dvh2dimatN 40850 Given an atom, there exist...
dvh1dimat 40851 There exists an atom. (Co...
dvh1dim 40852 There exists a nonzero vec...
dvh4dimlem 40853 Lemma for ~ dvh4dimN . (C...
dvhdimlem 40854 Lemma for ~ dvh2dim and ~ ...
dvh2dim 40855 There is a vector that is ...
dvh3dim 40856 There is a vector that is ...
dvh4dimN 40857 There is a vector that is ...
dvh3dim2 40858 There is a vector that is ...
dvh3dim3N 40859 There is a vector that is ...
dochsnnz 40860 The orthocomplement of a s...
dochsatshp 40861 The orthocomplement of a s...
dochsatshpb 40862 The orthocomplement of a s...
dochsnshp 40863 The orthocomplement of a n...
dochshpsat 40864 A hyperplane is closed iff...
dochkrsat 40865 The orthocomplement of a k...
dochkrsat2 40866 The orthocomplement of a k...
dochsat0 40867 The orthocomplement of a k...
dochkrsm 40868 The subspace sum of a clos...
dochexmidat 40869 Special case of excluded m...
dochexmidlem1 40870 Lemma for ~ dochexmid . H...
dochexmidlem2 40871 Lemma for ~ dochexmid . (...
dochexmidlem3 40872 Lemma for ~ dochexmid . U...
dochexmidlem4 40873 Lemma for ~ dochexmid . (...
dochexmidlem5 40874 Lemma for ~ dochexmid . (...
dochexmidlem6 40875 Lemma for ~ dochexmid . (...
dochexmidlem7 40876 Lemma for ~ dochexmid . C...
dochexmidlem8 40877 Lemma for ~ dochexmid . T...
dochexmid 40878 Excluded middle law for cl...
dochsnkrlem1 40879 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 40880 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 40881 Lemma for ~ dochsnkr . (C...
dochsnkr 40882 A (closed) kernel expresse...
dochsnkr2 40883 Kernel of the explicit fun...
dochsnkr2cl 40884 The ` X ` determining func...
dochflcl 40885 Closure of the explicit fu...
dochfl1 40886 The value of the explicit ...
dochfln0 40887 The value of a functional ...
dochkr1 40888 A nonzero functional has a...
dochkr1OLDN 40889 A nonzero functional has a...
lpolsetN 40892 The set of polarities of a...
islpolN 40893 The predicate "is a polari...
islpoldN 40894 Properties that determine ...
lpolfN 40895 Functionality of a polarit...
lpolvN 40896 The polarity of the whole ...
lpolconN 40897 Contraposition property of...
lpolsatN 40898 The polarity of an atomic ...
lpolpolsatN 40899 Property of a polarity. (...
dochpolN 40900 The subspace orthocompleme...
lcfl1lem 40901 Property of a functional w...
lcfl1 40902 Property of a functional w...
lcfl2 40903 Property of a functional w...
lcfl3 40904 Property of a functional w...
lcfl4N 40905 Property of a functional w...
lcfl5 40906 Property of a functional w...
lcfl5a 40907 Property of a functional w...
lcfl6lem 40908 Lemma for ~ lcfl6 . A fun...
lcfl7lem 40909 Lemma for ~ lcfl7N . If t...
lcfl6 40910 Property of a functional w...
lcfl7N 40911 Property of a functional w...
lcfl8 40912 Property of a functional w...
lcfl8a 40913 Property of a functional w...
lcfl8b 40914 Property of a nonzero func...
lcfl9a 40915 Property implying that a f...
lclkrlem1 40916 The set of functionals hav...
lclkrlem2a 40917 Lemma for ~ lclkr . Use ~...
lclkrlem2b 40918 Lemma for ~ lclkr . (Cont...
lclkrlem2c 40919 Lemma for ~ lclkr . (Cont...
lclkrlem2d 40920 Lemma for ~ lclkr . (Cont...
lclkrlem2e 40921 Lemma for ~ lclkr . The k...
lclkrlem2f 40922 Lemma for ~ lclkr . Const...
lclkrlem2g 40923 Lemma for ~ lclkr . Compa...
lclkrlem2h 40924 Lemma for ~ lclkr . Elimi...
lclkrlem2i 40925 Lemma for ~ lclkr . Elimi...
lclkrlem2j 40926 Lemma for ~ lclkr . Kerne...
lclkrlem2k 40927 Lemma for ~ lclkr . Kerne...
lclkrlem2l 40928 Lemma for ~ lclkr . Elimi...
lclkrlem2m 40929 Lemma for ~ lclkr . Const...
lclkrlem2n 40930 Lemma for ~ lclkr . (Cont...
lclkrlem2o 40931 Lemma for ~ lclkr . When ...
lclkrlem2p 40932 Lemma for ~ lclkr . When ...
lclkrlem2q 40933 Lemma for ~ lclkr . The s...
lclkrlem2r 40934 Lemma for ~ lclkr . When ...
lclkrlem2s 40935 Lemma for ~ lclkr . Thus,...
lclkrlem2t 40936 Lemma for ~ lclkr . We el...
lclkrlem2u 40937 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 40938 Lemma for ~ lclkr . When ...
lclkrlem2w 40939 Lemma for ~ lclkr . This ...
lclkrlem2x 40940 Lemma for ~ lclkr . Elimi...
lclkrlem2y 40941 Lemma for ~ lclkr . Resta...
lclkrlem2 40942 The set of functionals hav...
lclkr 40943 The set of functionals wit...
lcfls1lem 40944 Property of a functional w...
lcfls1N 40945 Property of a functional w...
lcfls1c 40946 Property of a functional w...
lclkrslem1 40947 The set of functionals hav...
lclkrslem2 40948 The set of functionals hav...
lclkrs 40949 The set of functionals hav...
lclkrs2 40950 The set of functionals wit...
lcfrvalsnN 40951 Reconstruction from the du...
lcfrlem1 40952 Lemma for ~ lcfr . Note t...
lcfrlem2 40953 Lemma for ~ lcfr . (Contr...
lcfrlem3 40954 Lemma for ~ lcfr . (Contr...
lcfrlem4 40955 Lemma for ~ lcfr . (Contr...
lcfrlem5 40956 Lemma for ~ lcfr . The se...
lcfrlem6 40957 Lemma for ~ lcfr . Closur...
lcfrlem7 40958 Lemma for ~ lcfr . Closur...
lcfrlem8 40959 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 40960 Lemma for ~ lcf1o . (This...
lcf1o 40961 Define a function ` J ` th...
lcfrlem10 40962 Lemma for ~ lcfr . (Contr...
lcfrlem11 40963 Lemma for ~ lcfr . (Contr...
lcfrlem12N 40964 Lemma for ~ lcfr . (Contr...
lcfrlem13 40965 Lemma for ~ lcfr . (Contr...
lcfrlem14 40966 Lemma for ~ lcfr . (Contr...
lcfrlem15 40967 Lemma for ~ lcfr . (Contr...
lcfrlem16 40968 Lemma for ~ lcfr . (Contr...
lcfrlem17 40969 Lemma for ~ lcfr . Condit...
lcfrlem18 40970 Lemma for ~ lcfr . (Contr...
lcfrlem19 40971 Lemma for ~ lcfr . (Contr...
lcfrlem20 40972 Lemma for ~ lcfr . (Contr...
lcfrlem21 40973 Lemma for ~ lcfr . (Contr...
lcfrlem22 40974 Lemma for ~ lcfr . (Contr...
lcfrlem23 40975 Lemma for ~ lcfr . TODO: ...
lcfrlem24 40976 Lemma for ~ lcfr . (Contr...
lcfrlem25 40977 Lemma for ~ lcfr . Specia...
lcfrlem26 40978 Lemma for ~ lcfr . Specia...
lcfrlem27 40979 Lemma for ~ lcfr . Specia...
lcfrlem28 40980 Lemma for ~ lcfr . TODO: ...
lcfrlem29 40981 Lemma for ~ lcfr . (Contr...
lcfrlem30 40982 Lemma for ~ lcfr . (Contr...
lcfrlem31 40983 Lemma for ~ lcfr . (Contr...
lcfrlem32 40984 Lemma for ~ lcfr . (Contr...
lcfrlem33 40985 Lemma for ~ lcfr . (Contr...
lcfrlem34 40986 Lemma for ~ lcfr . (Contr...
lcfrlem35 40987 Lemma for ~ lcfr . (Contr...
lcfrlem36 40988 Lemma for ~ lcfr . (Contr...
lcfrlem37 40989 Lemma for ~ lcfr . (Contr...
lcfrlem38 40990 Lemma for ~ lcfr . Combin...
lcfrlem39 40991 Lemma for ~ lcfr . Elimin...
lcfrlem40 40992 Lemma for ~ lcfr . Elimin...
lcfrlem41 40993 Lemma for ~ lcfr . Elimin...
lcfrlem42 40994 Lemma for ~ lcfr . Elimin...
lcfr 40995 Reconstruction of a subspa...
lcdfval 40998 Dual vector space of funct...
lcdval 40999 Dual vector space of funct...
lcdval2 41000 Dual vector space of funct...
lcdlvec 41001 The dual vector space of f...
lcdlmod 41002 The dual vector space of f...
lcdvbase 41003 Vector base set of a dual ...
lcdvbasess 41004 The vector base set of the...
lcdvbaselfl 41005 A vector in the base set o...
lcdvbasecl 41006 Closure of the value of a ...
lcdvadd 41007 Vector addition for the cl...
lcdvaddval 41008 The value of the value of ...
lcdsca 41009 The ring of scalars of the...
lcdsbase 41010 Base set of scalar ring fo...
lcdsadd 41011 Scalar addition for the cl...
lcdsmul 41012 Scalar multiplication for ...
lcdvs 41013 Scalar product for the clo...
lcdvsval 41014 Value of scalar product op...
lcdvscl 41015 The scalar product operati...
lcdlssvscl 41016 Closure of scalar product ...
lcdvsass 41017 Associative law for scalar...
lcd0 41018 The zero scalar of the clo...
lcd1 41019 The unit scalar of the clo...
lcdneg 41020 The unit scalar of the clo...
lcd0v 41021 The zero functional in the...
lcd0v2 41022 The zero functional in the...
lcd0vvalN 41023 Value of the zero function...
lcd0vcl 41024 Closure of the zero functi...
lcd0vs 41025 A scalar zero times a func...
lcdvs0N 41026 A scalar times the zero fu...
lcdvsub 41027 The value of vector subtra...
lcdvsubval 41028 The value of the value of ...
lcdlss 41029 Subspaces of a dual vector...
lcdlss2N 41030 Subspaces of a dual vector...
lcdlsp 41031 Span in the set of functio...
lcdlkreqN 41032 Colinear functionals have ...
lcdlkreq2N 41033 Colinear functionals have ...
mapdffval 41036 Projectivity from vector s...
mapdfval 41037 Projectivity from vector s...
mapdval 41038 Value of projectivity from...
mapdvalc 41039 Value of projectivity from...
mapdval2N 41040 Value of projectivity from...
mapdval3N 41041 Value of projectivity from...
mapdval4N 41042 Value of projectivity from...
mapdval5N 41043 Value of projectivity from...
mapdordlem1a 41044 Lemma for ~ mapdord . (Co...
mapdordlem1bN 41045 Lemma for ~ mapdord . (Co...
mapdordlem1 41046 Lemma for ~ mapdord . (Co...
mapdordlem2 41047 Lemma for ~ mapdord . Ord...
mapdord 41048 Ordering property of the m...
mapd11 41049 The map defined by ~ df-ma...
mapddlssN 41050 The mapping of a subspace ...
mapdsn 41051 Value of the map defined b...
mapdsn2 41052 Value of the map defined b...
mapdsn3 41053 Value of the map defined b...
mapd1dim2lem1N 41054 Value of the map defined b...
mapdrvallem2 41055 Lemma for ~ mapdrval . TO...
mapdrvallem3 41056 Lemma for ~ mapdrval . (C...
mapdrval 41057 Given a dual subspace ` R ...
mapd1o 41058 The map defined by ~ df-ma...
mapdrn 41059 Range of the map defined b...
mapdunirnN 41060 Union of the range of the ...
mapdrn2 41061 Range of the map defined b...
mapdcnvcl 41062 Closure of the converse of...
mapdcl 41063 Closure the value of the m...
mapdcnvid1N 41064 Converse of the value of t...
mapdsord 41065 Strong ordering property o...
mapdcl2 41066 The mapping of a subspace ...
mapdcnvid2 41067 Value of the converse of t...
mapdcnvordN 41068 Ordering property of the c...
mapdcnv11N 41069 The converse of the map de...
mapdcv 41070 Covering property of the c...
mapdincl 41071 Closure of dual subspace i...
mapdin 41072 Subspace intersection is p...
mapdlsmcl 41073 Closure of dual subspace s...
mapdlsm 41074 Subspace sum is preserved ...
mapd0 41075 Projectivity map of the ze...
mapdcnvatN 41076 Atoms are preserved by the...
mapdat 41077 Atoms are preserved by the...
mapdspex 41078 The map of a span equals t...
mapdn0 41079 Transfer nonzero property ...
mapdncol 41080 Transfer non-colinearity f...
mapdindp 41081 Transfer (part of) vector ...
mapdpglem1 41082 Lemma for ~ mapdpg . Baer...
mapdpglem2 41083 Lemma for ~ mapdpg . Baer...
mapdpglem2a 41084 Lemma for ~ mapdpg . (Con...
mapdpglem3 41085 Lemma for ~ mapdpg . Baer...
mapdpglem4N 41086 Lemma for ~ mapdpg . (Con...
mapdpglem5N 41087 Lemma for ~ mapdpg . (Con...
mapdpglem6 41088 Lemma for ~ mapdpg . Baer...
mapdpglem8 41089 Lemma for ~ mapdpg . Baer...
mapdpglem9 41090 Lemma for ~ mapdpg . Baer...
mapdpglem10 41091 Lemma for ~ mapdpg . Baer...
mapdpglem11 41092 Lemma for ~ mapdpg . (Con...
mapdpglem12 41093 Lemma for ~ mapdpg . TODO...
mapdpglem13 41094 Lemma for ~ mapdpg . (Con...
mapdpglem14 41095 Lemma for ~ mapdpg . (Con...
mapdpglem15 41096 Lemma for ~ mapdpg . (Con...
mapdpglem16 41097 Lemma for ~ mapdpg . Baer...
mapdpglem17N 41098 Lemma for ~ mapdpg . Baer...
mapdpglem18 41099 Lemma for ~ mapdpg . Baer...
mapdpglem19 41100 Lemma for ~ mapdpg . Baer...
mapdpglem20 41101 Lemma for ~ mapdpg . Baer...
mapdpglem21 41102 Lemma for ~ mapdpg . (Con...
mapdpglem22 41103 Lemma for ~ mapdpg . Baer...
mapdpglem23 41104 Lemma for ~ mapdpg . Baer...
mapdpglem30a 41105 Lemma for ~ mapdpg . (Con...
mapdpglem30b 41106 Lemma for ~ mapdpg . (Con...
mapdpglem25 41107 Lemma for ~ mapdpg . Baer...
mapdpglem26 41108 Lemma for ~ mapdpg . Baer...
mapdpglem27 41109 Lemma for ~ mapdpg . Baer...
mapdpglem29 41110 Lemma for ~ mapdpg . Baer...
mapdpglem28 41111 Lemma for ~ mapdpg . Baer...
mapdpglem30 41112 Lemma for ~ mapdpg . Baer...
mapdpglem31 41113 Lemma for ~ mapdpg . Baer...
mapdpglem24 41114 Lemma for ~ mapdpg . Exis...
mapdpglem32 41115 Lemma for ~ mapdpg . Uniq...
mapdpg 41116 Part 1 of proof of the fir...
baerlem3lem1 41117 Lemma for ~ baerlem3 . (C...
baerlem5alem1 41118 Lemma for ~ baerlem5a . (...
baerlem5blem1 41119 Lemma for ~ baerlem5b . (...
baerlem3lem2 41120 Lemma for ~ baerlem3 . (C...
baerlem5alem2 41121 Lemma for ~ baerlem5a . (...
baerlem5blem2 41122 Lemma for ~ baerlem5b . (...
baerlem3 41123 An equality that holds whe...
baerlem5a 41124 An equality that holds whe...
baerlem5b 41125 An equality that holds whe...
baerlem5amN 41126 An equality that holds whe...
baerlem5bmN 41127 An equality that holds whe...
baerlem5abmN 41128 An equality that holds whe...
mapdindp0 41129 Vector independence lemma....
mapdindp1 41130 Vector independence lemma....
mapdindp2 41131 Vector independence lemma....
mapdindp3 41132 Vector independence lemma....
mapdindp4 41133 Vector independence lemma....
mapdhval 41134 Lemmma for ~~? mapdh . (C...
mapdhval0 41135 Lemmma for ~~? mapdh . (C...
mapdhval2 41136 Lemmma for ~~? mapdh . (C...
mapdhcl 41137 Lemmma for ~~? mapdh . (C...
mapdheq 41138 Lemmma for ~~? mapdh . Th...
mapdheq2 41139 Lemmma for ~~? mapdh . On...
mapdheq2biN 41140 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 41141 Lemma for ~ mapdheq4 . Pa...
mapdheq4 41142 Lemma for ~~? mapdh . Par...
mapdh6lem1N 41143 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 41144 Lemma for ~ mapdh6N . Par...
mapdh6aN 41145 Lemma for ~ mapdh6N . Par...
mapdh6b0N 41146 Lemmma for ~ mapdh6N . (C...
mapdh6bN 41147 Lemmma for ~ mapdh6N . (C...
mapdh6cN 41148 Lemmma for ~ mapdh6N . (C...
mapdh6dN 41149 Lemmma for ~ mapdh6N . (C...
mapdh6eN 41150 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 41151 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 41152 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 41153 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 41154 Lemmma for ~ mapdh6N . El...
mapdh6jN 41155 Lemmma for ~ mapdh6N . El...
mapdh6kN 41156 Lemmma for ~ mapdh6N . El...
mapdh6N 41157 Part (6) of [Baer] p. 47 l...
mapdh7eN 41158 Part (7) of [Baer] p. 48 l...
mapdh7cN 41159 Part (7) of [Baer] p. 48 l...
mapdh7dN 41160 Part (7) of [Baer] p. 48 l...
mapdh7fN 41161 Part (7) of [Baer] p. 48 l...
mapdh75e 41162 Part (7) of [Baer] p. 48 l...
mapdh75cN 41163 Part (7) of [Baer] p. 48 l...
mapdh75d 41164 Part (7) of [Baer] p. 48 l...
mapdh75fN 41165 Part (7) of [Baer] p. 48 l...
hvmapffval 41168 Map from nonzero vectors t...
hvmapfval 41169 Map from nonzero vectors t...
hvmapval 41170 Value of map from nonzero ...
hvmapvalvalN 41171 Value of value of map (i.e...
hvmapidN 41172 The value of the vector to...
hvmap1o 41173 The vector to functional m...
hvmapclN 41174 Closure of the vector to f...
hvmap1o2 41175 The vector to functional m...
hvmapcl2 41176 Closure of the vector to f...
hvmaplfl 41177 The vector to functional m...
hvmaplkr 41178 Kernel of the vector to fu...
mapdhvmap 41179 Relationship between ` map...
lspindp5 41180 Obtain an independent vect...
hdmaplem1 41181 Lemma to convert a frequen...
hdmaplem2N 41182 Lemma to convert a frequen...
hdmaplem3 41183 Lemma to convert a frequen...
hdmaplem4 41184 Lemma to convert a frequen...
mapdh8a 41185 Part of Part (8) in [Baer]...
mapdh8aa 41186 Part of Part (8) in [Baer]...
mapdh8ab 41187 Part of Part (8) in [Baer]...
mapdh8ac 41188 Part of Part (8) in [Baer]...
mapdh8ad 41189 Part of Part (8) in [Baer]...
mapdh8b 41190 Part of Part (8) in [Baer]...
mapdh8c 41191 Part of Part (8) in [Baer]...
mapdh8d0N 41192 Part of Part (8) in [Baer]...
mapdh8d 41193 Part of Part (8) in [Baer]...
mapdh8e 41194 Part of Part (8) in [Baer]...
mapdh8g 41195 Part of Part (8) in [Baer]...
mapdh8i 41196 Part of Part (8) in [Baer]...
mapdh8j 41197 Part of Part (8) in [Baer]...
mapdh8 41198 Part (8) in [Baer] p. 48. ...
mapdh9a 41199 Lemma for part (9) in [Bae...
mapdh9aOLDN 41200 Lemma for part (9) in [Bae...
hdmap1ffval 41205 Preliminary map from vecto...
hdmap1fval 41206 Preliminary map from vecto...
hdmap1vallem 41207 Value of preliminary map f...
hdmap1val 41208 Value of preliminary map f...
hdmap1val0 41209 Value of preliminary map f...
hdmap1val2 41210 Value of preliminary map f...
hdmap1eq 41211 The defining equation for ...
hdmap1cbv 41212 Frequently used lemma to c...
hdmap1valc 41213 Connect the value of the p...
hdmap1cl 41214 Convert closure theorem ~ ...
hdmap1eq2 41215 Convert ~ mapdheq2 to use ...
hdmap1eq4N 41216 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 41217 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 41218 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 41219 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 41220 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 41221 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 41222 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 41223 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 41224 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 41225 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 41226 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 41227 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 41228 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 41229 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 41230 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 41231 Part (6) of [Baer] p. 47 l...
hdmap1eulem 41232 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 41233 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 41234 Convert ~ mapdh9a to use t...
hdmap1euOLDN 41235 Convert ~ mapdh9aOLDN to u...
hdmapffval 41236 Map from vectors to functi...
hdmapfval 41237 Map from vectors to functi...
hdmapval 41238 Value of map from vectors ...
hdmapfnN 41239 Functionality of map from ...
hdmapcl 41240 Closure of map from vector...
hdmapval2lem 41241 Lemma for ~ hdmapval2 . (...
hdmapval2 41242 Value of map from vectors ...
hdmapval0 41243 Value of map from vectors ...
hdmapeveclem 41244 Lemma for ~ hdmapevec . T...
hdmapevec 41245 Value of map from vectors ...
hdmapevec2 41246 The inner product of the r...
hdmapval3lemN 41247 Value of map from vectors ...
hdmapval3N 41248 Value of map from vectors ...
hdmap10lem 41249 Lemma for ~ hdmap10 . (Co...
hdmap10 41250 Part 10 in [Baer] p. 48 li...
hdmap11lem1 41251 Lemma for ~ hdmapadd . (C...
hdmap11lem2 41252 Lemma for ~ hdmapadd . (C...
hdmapadd 41253 Part 11 in [Baer] p. 48 li...
hdmapeq0 41254 Part of proof of part 12 i...
hdmapnzcl 41255 Nonzero vector closure of ...
hdmapneg 41256 Part of proof of part 12 i...
hdmapsub 41257 Part of proof of part 12 i...
hdmap11 41258 Part of proof of part 12 i...
hdmaprnlem1N 41259 Part of proof of part 12 i...
hdmaprnlem3N 41260 Part of proof of part 12 i...
hdmaprnlem3uN 41261 Part of proof of part 12 i...
hdmaprnlem4tN 41262 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 41263 Part of proof of part 12 i...
hdmaprnlem6N 41264 Part of proof of part 12 i...
hdmaprnlem7N 41265 Part of proof of part 12 i...
hdmaprnlem8N 41266 Part of proof of part 12 i...
hdmaprnlem9N 41267 Part of proof of part 12 i...
hdmaprnlem3eN 41268 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 41269 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 41270 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 41271 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 41272 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 41273 Lemma for ~ hdmaprnN . In...
hdmaprnN 41274 Part of proof of part 12 i...
hdmapf1oN 41275 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 41276 Prior to part 14 in [Baer]...
hdmap14lem2a 41277 Prior to part 14 in [Baer]...
hdmap14lem1 41278 Prior to part 14 in [Baer]...
hdmap14lem2N 41279 Prior to part 14 in [Baer]...
hdmap14lem3 41280 Prior to part 14 in [Baer]...
hdmap14lem4a 41281 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 41282 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 41283 Case where ` F ` is zero. ...
hdmap14lem7 41284 Combine cases of ` F ` . ...
hdmap14lem8 41285 Part of proof of part 14 i...
hdmap14lem9 41286 Part of proof of part 14 i...
hdmap14lem10 41287 Part of proof of part 14 i...
hdmap14lem11 41288 Part of proof of part 14 i...
hdmap14lem12 41289 Lemma for proof of part 14...
hdmap14lem13 41290 Lemma for proof of part 14...
hdmap14lem14 41291 Part of proof of part 14 i...
hdmap14lem15 41292 Part of proof of part 14 i...
hgmapffval 41295 Map from the scalar divisi...
hgmapfval 41296 Map from the scalar divisi...
hgmapval 41297 Value of map from the scal...
hgmapfnN 41298 Functionality of scalar si...
hgmapcl 41299 Closure of scalar sigma ma...
hgmapdcl 41300 Closure of the vector spac...
hgmapvs 41301 Part 15 of [Baer] p. 50 li...
hgmapval0 41302 Value of the scalar sigma ...
hgmapval1 41303 Value of the scalar sigma ...
hgmapadd 41304 Part 15 of [Baer] p. 50 li...
hgmapmul 41305 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 41306 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 41307 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 41308 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 41309 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 41310 Lemma for ~ hgmaprnN . El...
hgmaprnN 41311 Part of proof of part 16 i...
hgmap11 41312 The scalar sigma map is on...
hgmapf1oN 41313 The scalar sigma map is a ...
hgmapeq0 41314 The scalar sigma map is ze...
hdmapipcl 41315 The inner product (Hermiti...
hdmapln1 41316 Linearity property that wi...
hdmaplna1 41317 Additive property of first...
hdmaplns1 41318 Subtraction property of fi...
hdmaplnm1 41319 Multiplicative property of...
hdmaplna2 41320 Additive property of secon...
hdmapglnm2 41321 g-linear property of secon...
hdmapgln2 41322 g-linear property that wil...
hdmaplkr 41323 Kernel of the vector to du...
hdmapellkr 41324 Membership in the kernel (...
hdmapip0 41325 Zero property that will be...
hdmapip1 41326 Construct a proportional v...
hdmapip0com 41327 Commutation property of Ba...
hdmapinvlem1 41328 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 41329 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 41330 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 41331 Part 1.1 of Proposition 1 ...
hdmapglem5 41332 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 41333 Involution property of sca...
hgmapvvlem2 41334 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 41335 Lemma for ~ hgmapvv . Eli...
hgmapvv 41336 Value of a double involuti...
hdmapglem7a 41337 Lemma for ~ hdmapg . (Con...
hdmapglem7b 41338 Lemma for ~ hdmapg . (Con...
hdmapglem7 41339 Lemma for ~ hdmapg . Line...
hdmapg 41340 Apply the scalar sigma fun...
hdmapoc 41341 Express our constructed or...
hlhilset 41344 The final Hilbert space co...
hlhilsca 41345 The scalar of the final co...
hlhilbase 41346 The base set of the final ...
hlhilplus 41347 The vector addition for th...
hlhilslem 41348 Lemma for ~ hlhilsbase etc...
hlhilslemOLD 41349 Obsolete version of ~ hlhi...
hlhilsbase 41350 The scalar base set of the...
hlhilsbaseOLD 41351 Obsolete version of ~ hlhi...
hlhilsplus 41352 Scalar addition for the fi...
hlhilsplusOLD 41353 Obsolete version of ~ hlhi...
hlhilsmul 41354 Scalar multiplication for ...
hlhilsmulOLD 41355 Obsolete version of ~ hlhi...
hlhilsbase2 41356 The scalar base set of the...
hlhilsplus2 41357 Scalar addition for the fi...
hlhilsmul2 41358 Scalar multiplication for ...
hlhils0 41359 The scalar ring zero for t...
hlhils1N 41360 The scalar ring unity for ...
hlhilvsca 41361 The scalar product for the...
hlhilip 41362 Inner product operation fo...
hlhilipval 41363 Value of inner product ope...
hlhilnvl 41364 The involution operation o...
hlhillvec 41365 The final constructed Hilb...
hlhildrng 41366 The star division ring for...
hlhilsrnglem 41367 Lemma for ~ hlhilsrng . (...
hlhilsrng 41368 The star division ring for...
hlhil0 41369 The zero vector for the fi...
hlhillsm 41370 The vector sum operation f...
hlhilocv 41371 The orthocomplement for th...
hlhillcs 41372 The closed subspaces of th...
hlhilphllem 41373 Lemma for ~ hlhil . (Cont...
hlhilhillem 41374 Lemma for ~ hlhil . (Cont...
hlathil 41375 Construction of a Hilbert ...
iscsrg 41378 A commutative semiring is ...
leexp1ad 41379 Weak base ordering relatio...
relogbcld 41380 Closure of the general log...
relogbexpd 41381 Identity law for general l...
relogbzexpd 41382 Power law for the general ...
logblebd 41383 The general logarithm is m...
uzindd 41384 Induction on the upper int...
fzadd2d 41385 Membership of a sum in a f...
zltlem1d 41386 Integer ordering relation,...
zltp1led 41387 Integer ordering relation,...
fzne2d 41388 Elementhood in a finite se...
eqfnfv2d2 41389 Equality of functions is d...
fzsplitnd 41390 Split a finite interval of...
fzsplitnr 41391 Split a finite interval of...
addassnni 41392 Associative law for additi...
addcomnni 41393 Commutative law for additi...
mulassnni 41394 Associative law for multip...
mulcomnni 41395 Commutative law for multip...
gcdcomnni 41396 Commutative law for gcd. ...
gcdnegnni 41397 Negation invariance for gc...
neggcdnni 41398 Negation invariance for gc...
bccl2d 41399 Closure of the binomial co...
recbothd 41400 Take reciprocal on both si...
gcdmultiplei 41401 The GCD of a multiple of a...
gcdaddmzz2nni 41402 Adding a multiple of one o...
gcdaddmzz2nncomi 41403 Adding a multiple of one o...
gcdnncli 41404 Closure of the gcd operato...
muldvds1d 41405 If a product divides an in...
muldvds2d 41406 If a product divides an in...
nndivdvdsd 41407 A positive integer divides...
nnproddivdvdsd 41408 A product of natural numbe...
coprmdvds2d 41409 If an integer is divisible...
imadomfi 41410 An image of a function und...
12gcd5e1 41411 The gcd of 12 and 5 is 1. ...
60gcd6e6 41412 The gcd of 60 and 6 is 6. ...
60gcd7e1 41413 The gcd of 60 and 7 is 1. ...
420gcd8e4 41414 The gcd of 420 and 8 is 4....
lcmeprodgcdi 41415 Calculate the least common...
12lcm5e60 41416 The lcm of 12 and 5 is 60....
60lcm6e60 41417 The lcm of 60 and 6 is 60....
60lcm7e420 41418 The lcm of 60 and 7 is 420...
420lcm8e840 41419 The lcm of 420 and 8 is 84...
lcmfunnnd 41420 Useful equation to calcula...
lcm1un 41421 Least common multiple of n...
lcm2un 41422 Least common multiple of n...
lcm3un 41423 Least common multiple of n...
lcm4un 41424 Least common multiple of n...
lcm5un 41425 Least common multiple of n...
lcm6un 41426 Least common multiple of n...
lcm7un 41427 Least common multiple of n...
lcm8un 41428 Least common multiple of n...
3factsumint1 41429 Move constants out of inte...
3factsumint2 41430 Move constants out of inte...
3factsumint3 41431 Move constants out of inte...
3factsumint4 41432 Move constants out of inte...
3factsumint 41433 Helpful equation for lcm i...
resopunitintvd 41434 Restrict continuous functi...
resclunitintvd 41435 Restrict continuous functi...
resdvopclptsd 41436 Restrict derivative on uni...
lcmineqlem1 41437 Part of lcm inequality lem...
lcmineqlem2 41438 Part of lcm inequality lem...
lcmineqlem3 41439 Part of lcm inequality lem...
lcmineqlem4 41440 Part of lcm inequality lem...
lcmineqlem5 41441 Technical lemma for recipr...
lcmineqlem6 41442 Part of lcm inequality lem...
lcmineqlem7 41443 Derivative of 1-x for chai...
lcmineqlem8 41444 Derivative of (1-x)^(N-M)....
lcmineqlem9 41445 (1-x)^(N-M) is continuous....
lcmineqlem10 41446 Induction step of ~ lcmine...
lcmineqlem11 41447 Induction step, continuati...
lcmineqlem12 41448 Base case for induction. ...
lcmineqlem13 41449 Induction proof for lcm in...
lcmineqlem14 41450 Technical lemma for inequa...
lcmineqlem15 41451 F times the least common m...
lcmineqlem16 41452 Technical divisibility lem...
lcmineqlem17 41453 Inequality of 2^{2n}. (Co...
lcmineqlem18 41454 Technical lemma to shift f...
lcmineqlem19 41455 Dividing implies inequalit...
lcmineqlem20 41456 Inequality for lcm lemma. ...
lcmineqlem21 41457 The lcm inequality lemma w...
lcmineqlem22 41458 The lcm inequality lemma w...
lcmineqlem23 41459 Penultimate step to the lc...
lcmineqlem 41460 The least common multiple ...
3exp7 41461 3 to the power of 7 equals...
3lexlogpow5ineq1 41462 First inequality in inequa...
3lexlogpow5ineq2 41463 Second inequality in inequ...
3lexlogpow5ineq4 41464 Sharper logarithm inequali...
3lexlogpow5ineq3 41465 Combined inequality chain ...
3lexlogpow2ineq1 41466 Result for bound in AKS in...
3lexlogpow2ineq2 41467 Result for bound in AKS in...
3lexlogpow5ineq5 41468 Result for bound in AKS in...
intlewftc 41469 Inequality inference by in...
aks4d1lem1 41470 Technical lemma to reduce ...
aks4d1p1p1 41471 Exponential law for finite...
dvrelog2 41472 The derivative of the loga...
dvrelog3 41473 The derivative of the loga...
dvrelog2b 41474 Derivative of the binary l...
0nonelalab 41475 Technical lemma for open i...
dvrelogpow2b 41476 Derivative of the power of...
aks4d1p1p3 41477 Bound of a ceiling of the ...
aks4d1p1p2 41478 Rewrite ` A ` in more suit...
aks4d1p1p4 41479 Technical step for inequal...
dvle2 41480 Collapsed ~ dvle . (Contr...
aks4d1p1p6 41481 Inequality lift to differe...
aks4d1p1p7 41482 Bound of intermediary of i...
aks4d1p1p5 41483 Show inequality for existe...
aks4d1p1 41484 Show inequality for existe...
aks4d1p2 41485 Technical lemma for existe...
aks4d1p3 41486 There exists a small enoug...
aks4d1p4 41487 There exists a small enoug...
aks4d1p5 41488 Show that ` N ` and ` R ` ...
aks4d1p6 41489 The maximal prime power ex...
aks4d1p7d1 41490 Technical step in AKS lemm...
aks4d1p7 41491 Technical step in AKS lemm...
aks4d1p8d1 41492 If a prime divides one num...
aks4d1p8d2 41493 Any prime power dividing a...
aks4d1p8d3 41494 The remainder of a divisio...
aks4d1p8 41495 Show that ` N ` and ` R ` ...
aks4d1p9 41496 Show that the order is bou...
aks4d1 41497 Lemma 4.1 from ~ https://w...
fldhmf1 41498 A field homomorphism is in...
isprimroot 41501 The value of a primitive r...
mndmolinv 41502 An element of a monoid tha...
linvh 41503 If an element has a unique...
primrootsunit1 41504 Primitive roots have left ...
primrootsunit 41505 Primitive roots have left ...
primrootscoprmpow 41506 Coprime powers of primitiv...
posbezout 41507 Bezout's identity restrict...
primrootscoprf 41508 Coprime powers of primitiv...
primrootscoprbij 41509 A bijection between coprim...
primrootscoprbij2 41510 A bijection between coprim...
aks6d1c1p1 41511 Definition of the introspe...
aks6d1c1p1rcl 41512 Reverse closure of the int...
aks6d1c1p2 41513 ` P ` and linear factors a...
aks6d1c1p3 41514 In a field with a Frobeniu...
aks6d1c1p4 41515 The product of polynomials...
aks6d1c1p5 41516 The product of exponents i...
aks6d1c1p7 41517 ` X ` is introspective to ...
aks6d1c1p6 41518 If a polynomials ` F ` is ...
aks6d1c1p8 41519 If a number ` E ` is intro...
aks6d1c1 41520 Claim 1 of Theorem 6.1 ~ h...
evl1gprodd 41521 Polynomial evaluation buil...
aks6d1c2p1 41522 In the AKS-theorem the sub...
aks6d1c2p2 41523 Injective condition for co...
hashscontpowcl 41524 Closure of E for ~ https:/...
hashscontpow1 41525 Helper lemma for to prove ...
hashscontpow 41526 If a set contains all ` N ...
aks6d1c3 41527 Claim 3 of Theorem 6.1 of ...
aks6d1c1rh 41528 Claim 1 of AKS primality p...
aks6d1c2lem3 41529 Lemma for ~ aks6d1c2 to si...
aks6d1c2lem4 41530 Claim 2 of Theorem 6.1 AKS...
hashnexinj 41531 If the number of elements ...
hashnexinjle 41532 If the number of elements ...
aks6d1c2 41533 Claim 2 of Theorem 6.1 of ...
rspcsbnea 41534 Special case related to ~ ...
idomnnzpownz 41535 A non-zero power in an int...
idomnnzgmulnz 41536 A finite product of non-ze...
ringexp0nn 41537 Zero to the power of a pos...
aks6d1c5lem0 41538 Lemma for Claim 5 of Theor...
aks6d1c5lem1 41539 Lemma for claim 5, evaluat...
aks6d1c5lem3 41540 Lemma for Claim 5, polynom...
aks6d1c5lem2 41541 Lemma for Claim 5, contrad...
aks6d1c5 41542 Claim 5 of Theorem 6.1 ~ h...
deg1mul 41543 Degree of multiplication o...
deg1gprod 41544 Degree multiplication is a...
deg1pow 41545 Exact degree of a power of...
5bc2eq10 41546 The value of 5 choose 2. ...
facp2 41547 The factorial of a success...
2np3bcnp1 41548 Part of induction step for...
2ap1caineq 41549 Inequality for Theorem 6.6...
sticksstones1 41550 Different strictly monoton...
sticksstones2 41551 The range function on stri...
sticksstones3 41552 The range function on stri...
sticksstones4 41553 Equinumerosity lemma for s...
sticksstones5 41554 Count the number of strict...
sticksstones6 41555 Function induces an order ...
sticksstones7 41556 Closure property of sticks...
sticksstones8 41557 Establish mapping between ...
sticksstones9 41558 Establish mapping between ...
sticksstones10 41559 Establish mapping between ...
sticksstones11 41560 Establish bijective mappin...
sticksstones12a 41561 Establish bijective mappin...
sticksstones12 41562 Establish bijective mappin...
sticksstones13 41563 Establish bijective mappin...
sticksstones14 41564 Sticks and stones with def...
sticksstones15 41565 Sticks and stones with alm...
sticksstones16 41566 Sticks and stones with col...
sticksstones17 41567 Extend sticks and stones t...
sticksstones18 41568 Extend sticks and stones t...
sticksstones19 41569 Extend sticks and stones t...
sticksstones20 41570 Lift sticks and stones to ...
sticksstones21 41571 Lift sticks and stones to ...
sticksstones22 41572 Non-exhaustive sticks and ...
sticksstones23 41573 Non-exhaustive sticks and ...
aks6d1c6lem1 41574 Lemma for claim 6, deduce ...
aks6d1c6lem2 41575 Every primitive root is ro...
aks6d1c6lem3 41576 Claim 6 of Theorem 6.1 of ...
metakunt1 41577 A is an endomapping. (Con...
metakunt2 41578 A is an endomapping. (Con...
metakunt3 41579 Value of A. (Contributed b...
metakunt4 41580 Value of A. (Contributed b...
metakunt5 41581 C is the left inverse for ...
metakunt6 41582 C is the left inverse for ...
metakunt7 41583 C is the left inverse for ...
metakunt8 41584 C is the left inverse for ...
metakunt9 41585 C is the left inverse for ...
metakunt10 41586 C is the right inverse for...
metakunt11 41587 C is the right inverse for...
metakunt12 41588 C is the right inverse for...
metakunt13 41589 C is the right inverse for...
metakunt14 41590 A is a primitive permutati...
metakunt15 41591 Construction of another pe...
metakunt16 41592 Construction of another pe...
metakunt17 41593 The union of three disjoin...
metakunt18 41594 Disjoint domains and codom...
metakunt19 41595 Domains on restrictions of...
metakunt20 41596 Show that B coincides on t...
metakunt21 41597 Show that B coincides on t...
metakunt22 41598 Show that B coincides on t...
metakunt23 41599 B coincides on the union o...
metakunt24 41600 Technical condition such t...
metakunt25 41601 B is a permutation. (Cont...
metakunt26 41602 Construction of one soluti...
metakunt27 41603 Construction of one soluti...
metakunt28 41604 Construction of one soluti...
metakunt29 41605 Construction of one soluti...
metakunt30 41606 Construction of one soluti...
metakunt31 41607 Construction of one soluti...
metakunt32 41608 Construction of one soluti...
metakunt33 41609 Construction of one soluti...
metakunt34 41610 ` D ` is a permutation. (...
fac2xp3 41611 Factorial of 2x+3, sublemm...
prodsplit 41612 Product split into two fac...
2xp3dxp2ge1d 41613 2x+3 is greater than or eq...
factwoffsmonot 41614 A factorial with offset is...
ioin9i8 41615 Miscellaneous inference cr...
jaodd 41616 Double deduction form of ~...
syl3an12 41617 A double syllogism inferen...
sbtd 41618 A true statement is true u...
sbor2 41619 One direction of ~ sbor , ...
19.9dev 41620 ~ 19.9d in the case of an ...
3rspcedvdw 41621 Triple application of ~ rs...
3rspcedvd 41622 Triple application of ~ rs...
rabdif 41623 Move difference in and out...
sn-axrep5v 41624 A condensed form of ~ axre...
sn-axprlem3 41625 ~ axprlem3 using only Tars...
sn-exelALT 41626 Alternate proof of ~ exel ...
ss2ab1 41627 Class abstractions in a su...
ssabdv 41628 Deduction of abstraction s...
sn-iotalem 41629 An unused lemma showing th...
sn-iotalemcor 41630 Corollary of ~ sn-iotalem ...
abbi1sn 41631 Originally part of ~ uniab...
brif2 41632 Move a relation inside and...
brif12 41633 Move a relation inside and...
pssexg 41634 The proper subset of a set...
pssn0 41635 A proper superset is nonem...
psspwb 41636 Classes are proper subclas...
xppss12 41637 Proper subset theorem for ...
coexd 41638 The composition of two set...
elpwbi 41639 Membership in a power set,...
imaopab 41640 The image of a class of or...
fnsnbt 41641 A function's domain is a s...
fnimasnd 41642 The image of a function by...
eqresfnbd 41643 Property of being the rest...
f1o2d2 41644 Sufficient condition for a...
fmpocos 41645 Composition of two functio...
ovmpogad 41646 Value of an operation give...
ofun 41647 A function operation of un...
dfqs2 41648 Alternate definition of qu...
dfqs3 41649 Alternate definition of qu...
qseq12d 41650 Equality theorem for quoti...
qsalrel 41651 The quotient set is equal ...
elmapssresd 41652 A restricted mapping is a ...
mapcod 41653 Compose two mappings. (Co...
fzosumm1 41654 Separate out the last term...
ccatcan2d 41655 Cancellation law for conca...
nelsubginvcld 41656 The inverse of a non-subgr...
nelsubgcld 41657 A non-subgroup-member plus...
nelsubgsubcld 41658 A non-subgroup-member minu...
rnasclg 41659 The set of injected scalar...
frlmfielbas 41660 The vectors of a finite fr...
frlmfzwrd 41661 A vector of a module with ...
frlmfzowrd 41662 A vector of a module with ...
frlmfzolen 41663 The dimension of a vector ...
frlmfzowrdb 41664 The vectors of a module wi...
frlmfzoccat 41665 The concatenation of two v...
frlmvscadiccat 41666 Scalar multiplication dist...
grpasscan2d 41667 An associative cancellatio...
grpcominv1 41668 If two elements commute, t...
grpcominv2 41669 If two elements commute, t...
finsubmsubg 41670 A submonoid of a finite gr...
crngcomd 41671 Multiplication is commutat...
crng12d 41672 Commutative/associative la...
imacrhmcl 41673 The image of a commutative...
rimrcl1 41674 Reverse closure of a ring ...
rimrcl2 41675 Reverse closure of a ring ...
rimcnv 41676 The converse of a ring iso...
rimco 41677 The composition of ring is...
ricsym 41678 Ring isomorphism is symmet...
rictr 41679 Ring isomorphism is transi...
riccrng1 41680 Ring isomorphism preserves...
riccrng 41681 A ring is commutative if a...
drnginvrn0d 41682 A multiplicative inverse i...
drngmulcanad 41683 Cancellation of a nonzero ...
drngmulcan2ad 41684 Cancellation of a nonzero ...
drnginvmuld 41685 Inverse of a nonzero produ...
ricdrng1 41686 A ring isomorphism maps a ...
ricdrng 41687 A ring is a division ring ...
ricfld 41688 A ring is a field if and o...
lvecgrp 41689 A vector space is a group....
lvecring 41690 The scalar component of a ...
frlm0vald 41691 All coordinates of the zer...
frlmsnic 41692 Given a free module with a...
uvccl 41693 A unit vector is a vector....
uvcn0 41694 A unit vector is nonzero. ...
pwselbasr 41695 The reverse direction of ~...
pwsgprod 41696 Finite products in a power...
psrmnd 41697 The ring of power series i...
psrbagres 41698 Restrict a bag of variable...
mpllmodd 41699 The polynomial ring is a l...
mplringd 41700 The polynomial ring is a r...
mplcrngd 41701 The polynomial ring is a c...
mplsubrgcl 41702 An element of a polynomial...
mhmcompl 41703 The composition of a monoi...
rhmmpllem1 41704 Lemma for ~ rhmmpl . A su...
rhmmpllem2 41705 Lemma for ~ rhmmpl . A su...
mhmcoaddmpl 41706 Show that the ring homomor...
rhmcomulmpl 41707 Show that the ring homomor...
rhmmpl 41708 Provide a ring homomorphis...
mplascl0 41709 The zero scalar as a polyn...
mplascl1 41710 The one scalar as a polyno...
mplmapghm 41711 The function ` H ` mapping...
evl0 41712 The zero polynomial evalua...
evlscl 41713 A polynomial over the ring...
evlsval3 41714 Give a formula for the pol...
evlsvval 41715 Give a formula for the eva...
evlsvvvallem 41716 Lemma for ~ evlsvvval akin...
evlsvvvallem2 41717 Lemma for theorems using ~...
evlsvvval 41718 Give a formula for the eva...
evlsscaval 41719 Polynomial evaluation buil...
evlsvarval 41720 Polynomial evaluation buil...
evlsbagval 41721 Polynomial evaluation buil...
evlsexpval 41722 Polynomial evaluation buil...
evlsaddval 41723 Polynomial evaluation buil...
evlsmulval 41724 Polynomial evaluation buil...
evlsmaprhm 41725 The function ` F ` mapping...
evlsevl 41726 Evaluation in a subring is...
evlcl 41727 A polynomial over the ring...
evlvvval 41728 Give a formula for the eva...
evlvvvallem 41729 Lemma for theorems using ~...
evladdval 41730 Polynomial evaluation buil...
evlmulval 41731 Polynomial evaluation buil...
selvcllem1 41732 ` T ` is an associative al...
selvcllem2 41733 ` D ` is a ring homomorphi...
selvcllem3 41734 The third argument passed ...
selvcllemh 41735 Apply the third argument (...
selvcllem4 41736 The fourth argument passed...
selvcllem5 41737 The fifth argument passed ...
selvcl 41738 Closure of the "variable s...
selvval2 41739 Value of the "variable sel...
selvvvval 41740 Recover the original polyn...
evlselvlem 41741 Lemma for ~ evlselv . Use...
evlselv 41742 Evaluating a selection of ...
selvadd 41743 The "variable selection" f...
selvmul 41744 The "variable selection" f...
fsuppind 41745 Induction on functions ` F...
fsuppssindlem1 41746 Lemma for ~ fsuppssind . ...
fsuppssindlem2 41747 Lemma for ~ fsuppssind . ...
fsuppssind 41748 Induction on functions ` F...
mhpind 41749 The homogeneous polynomial...
evlsmhpvvval 41750 Give a formula for the eva...
mhphflem 41751 Lemma for ~ mhphf . Add s...
mhphf 41752 A homogeneous polynomial d...
mhphf2 41753 A homogeneous polynomial d...
mhphf3 41754 A homogeneous polynomial d...
mhphf4 41755 A homogeneous polynomial d...
c0exALT 41756 Alternate proof of ~ c0ex ...
0cnALT3 41757 Alternate proof of ~ 0cn u...
elre0re 41758 Specialized version of ~ 0...
1t1e1ALT 41759 Alternate proof of ~ 1t1e1...
remulcan2d 41760 ~ mulcan2d for real number...
readdridaddlidd 41761 Given some real number ` B...
sn-1ne2 41762 A proof of ~ 1ne2 without ...
nnn1suc 41763 A positive integer that is...
nnadd1com 41764 Addition with 1 is commuta...
nnaddcom 41765 Addition is commutative fo...
nnaddcomli 41766 Version of ~ addcomli for ...
nnadddir 41767 Right-distributivity for n...
nnmul1com 41768 Multiplication with 1 is c...
nnmulcom 41769 Multiplication is commutat...
readdrcl2d 41770 Reverse closure for additi...
mvrrsubd 41771 Move a subtraction in the ...
laddrotrd 41772 Rotate the variables right...
raddcom12d 41773 Swap the first two variabl...
lsubrotld 41774 Rotate the variables left ...
lsubcom23d 41775 Swap the second and third ...
addsubeq4com 41776 Relation between sums and ...
sqsumi 41777 A sum squared. (Contribut...
negn0nposznnd 41778 Lemma for ~ dffltz . (Con...
sqmid3api 41779 Value of the square of the...
decaddcom 41780 Commute ones place in addi...
sqn5i 41781 The square of a number end...
sqn5ii 41782 The square of a number end...
decpmulnc 41783 Partial products algorithm...
decpmul 41784 Partial products algorithm...
sqdeccom12 41785 The square of a number in ...
sq3deccom12 41786 Variant of ~ sqdeccom12 wi...
4t5e20 41787 4 times 5 equals 20. (Con...
sq9 41788 The square of 9 is 81. (C...
235t711 41789 Calculate a product by lon...
ex-decpmul 41790 Example usage of ~ decpmul...
fz1sumconst 41791 The sum of ` N ` constant ...
fz1sump1 41792 Add one more term to a sum...
oddnumth 41793 The Odd Number Theorem. T...
nicomachus 41794 Nicomachus's Theorem. The...
sumcubes 41795 The sum of the first ` N `...
pine0 41796 ` _pi ` is nonzero. (Cont...
ine1 41797 ` _i ` is not 1. (Contrib...
0tie0 41798 0 times ` _i ` equals 0. ...
it1ei 41799 ` _i ` times 1 equals ` _i...
1tiei 41800 1 times ` _i ` equals ` _i...
itrere 41801 ` _i ` times a real is rea...
retire 41802 A real times ` _i ` is rea...
oexpreposd 41803 Lemma for ~ dffltz . TODO...
ltexp1d 41804 ~ ltmul1d for exponentiati...
ltexp1dd 41805 Raising both sides of 'les...
exp11nnd 41806 ~ sq11d for positive real ...
exp11d 41807 ~ exp11nnd for nonzero int...
0dvds0 41808 0 divides 0. (Contributed...
absdvdsabsb 41809 Divisibility is invariant ...
dvdsexpim 41810 ~ dvdssqim generalized to ...
gcdnn0id 41811 The ` gcd ` of a nonnegati...
gcdle1d 41812 The greatest common diviso...
gcdle2d 41813 The greatest common diviso...
dvdsexpad 41814 Deduction associated with ...
nn0rppwr 41815 If ` A ` and ` B ` are rel...
expgcd 41816 Exponentiation distributes...
nn0expgcd 41817 Exponentiation distributes...
zexpgcd 41818 Exponentiation distributes...
numdenexp 41819 ~ numdensq extended to non...
numexp 41820 ~ numsq extended to nonneg...
denexp 41821 ~ densq extended to nonneg...
dvdsexpnn 41822 ~ dvdssqlem generalized to...
dvdsexpnn0 41823 ~ dvdsexpnn generalized to...
dvdsexpb 41824 ~ dvdssq generalized to po...
posqsqznn 41825 When a positive rational s...
zrtelqelz 41826 ~ zsqrtelqelz generalized ...
zrtdvds 41827 A positive integer root di...
rtprmirr 41828 The root of a prime number...
zdivgd 41829 Two ways to express " ` N ...
efne0d 41830 The exponential of a compl...
efsubd 41831 Difference of exponents la...
ef11d 41832 General condition for the ...
logccne0d 41833 The logarithm isn't 0 if i...
cxp112d 41834 General condition for comp...
cxp111d 41835 General condition for comp...
cxpi11d 41836 ` _i ` to the powers of ` ...
logne0d 41837 Deduction form of ~ logne0...
rxp112d 41838 Real exponentiation is one...
log11d 41839 The natural logarithm is o...
rplog11d 41840 The natural logarithm is o...
rxp11d 41841 Real exponentiation is one...
resubval 41844 Value of real subtraction,...
renegeulemv 41845 Lemma for ~ renegeu and si...
renegeulem 41846 Lemma for ~ renegeu and si...
renegeu 41847 Existential uniqueness of ...
rernegcl 41848 Closure law for negative r...
renegadd 41849 Relationship between real ...
renegid 41850 Addition of a real number ...
reneg0addlid 41851 Negative zero is a left ad...
resubeulem1 41852 Lemma for ~ resubeu . A v...
resubeulem2 41853 Lemma for ~ resubeu . A v...
resubeu 41854 Existential uniqueness of ...
rersubcl 41855 Closure for real subtracti...
resubadd 41856 Relation between real subt...
resubaddd 41857 Relationship between subtr...
resubf 41858 Real subtraction is an ope...
repncan2 41859 Addition and subtraction o...
repncan3 41860 Addition and subtraction o...
readdsub 41861 Law for addition and subtr...
reladdrsub 41862 Move LHS of a sum into RHS...
reltsub1 41863 Subtraction from both side...
reltsubadd2 41864 'Less than' relationship b...
resubcan2 41865 Cancellation law for real ...
resubsub4 41866 Law for double subtraction...
rennncan2 41867 Cancellation law for real ...
renpncan3 41868 Cancellation law for real ...
repnpcan 41869 Cancellation law for addit...
reppncan 41870 Cancellation law for mixed...
resubidaddlidlem 41871 Lemma for ~ resubidaddlid ...
resubidaddlid 41872 Any real number subtracted...
resubdi 41873 Distribution of multiplica...
re1m1e0m0 41874 Equality of two left-addit...
sn-00idlem1 41875 Lemma for ~ sn-00id . (Co...
sn-00idlem2 41876 Lemma for ~ sn-00id . (Co...
sn-00idlem3 41877 Lemma for ~ sn-00id . (Co...
sn-00id 41878 ~ 00id proven without ~ ax...
re0m0e0 41879 Real number version of ~ 0...
readdlid 41880 Real number version of ~ a...
sn-addlid 41881 ~ addlid without ~ ax-mulc...
remul02 41882 Real number version of ~ m...
sn-0ne2 41883 ~ 0ne2 without ~ ax-mulcom...
remul01 41884 Real number version of ~ m...
resubid 41885 Subtraction of a real numb...
readdrid 41886 Real number version of ~ a...
resubid1 41887 Real number version of ~ s...
renegneg 41888 A real number is equal to ...
readdcan2 41889 Commuted version of ~ read...
renegid2 41890 Commuted version of ~ rene...
remulneg2d 41891 Product with negative is n...
sn-it0e0 41892 Proof of ~ it0e0 without ~...
sn-negex12 41893 A combination of ~ cnegex ...
sn-negex 41894 Proof of ~ cnegex without ...
sn-negex2 41895 Proof of ~ cnegex2 without...
sn-addcand 41896 ~ addcand without ~ ax-mul...
sn-addrid 41897 ~ addrid without ~ ax-mulc...
sn-addcan2d 41898 ~ addcan2d without ~ ax-mu...
reixi 41899 ~ ixi without ~ ax-mulcom ...
rei4 41900 ~ i4 without ~ ax-mulcom ....
sn-addid0 41901 A number that sums to itse...
sn-mul01 41902 ~ mul01 without ~ ax-mulco...
sn-subeu 41903 ~ negeu without ~ ax-mulco...
sn-subcl 41904 ~ subcl without ~ ax-mulco...
sn-subf 41905 ~ subf without ~ ax-mulcom...
resubeqsub 41906 Equivalence between real s...
subresre 41907 Subtraction restricted to ...
addinvcom 41908 A number commutes with its...
remulinvcom 41909 A left multiplicative inve...
remullid 41910 Commuted version of ~ ax-1...
sn-1ticom 41911 Lemma for ~ sn-mullid and ...
sn-mullid 41912 ~ mullid without ~ ax-mulc...
sn-it1ei 41913 ~ it1ei without ~ ax-mulco...
ipiiie0 41914 The multiplicative inverse...
remulcand 41915 Commuted version of ~ remu...
sn-0tie0 41916 Lemma for ~ sn-mul02 . Co...
sn-mul02 41917 ~ mul02 without ~ ax-mulco...
sn-ltaddpos 41918 ~ ltaddpos without ~ ax-mu...
sn-ltaddneg 41919 ~ ltaddneg without ~ ax-mu...
reposdif 41920 Comparison of two numbers ...
relt0neg1 41921 Comparison of a real and i...
relt0neg2 41922 Comparison of a real and i...
sn-addlt0d 41923 The sum of negative number...
sn-addgt0d 41924 The sum of positive number...
sn-nnne0 41925 ~ nnne0 without ~ ax-mulco...
reelznn0nn 41926 ~ elznn0nn restated using ...
nn0addcom 41927 Addition is commutative fo...
zaddcomlem 41928 Lemma for ~ zaddcom . (Co...
zaddcom 41929 Addition is commutative fo...
renegmulnnass 41930 Move multiplication by a n...
nn0mulcom 41931 Multiplication is commutat...
zmulcomlem 41932 Lemma for ~ zmulcom . (Co...
zmulcom 41933 Multiplication is commutat...
mulgt0con1dlem 41934 Lemma for ~ mulgt0con1d . ...
mulgt0con1d 41935 Counterpart to ~ mulgt0con...
mulgt0con2d 41936 Lemma for ~ mulgt0b2d and ...
mulgt0b2d 41937 Biconditional, deductive f...
sn-ltmul2d 41938 ~ ltmul2d without ~ ax-mul...
sn-0lt1 41939 ~ 0lt1 without ~ ax-mulcom...
sn-ltp1 41940 ~ ltp1 without ~ ax-mulcom...
reneg1lt0 41941 Lemma for ~ sn-inelr . (C...
sn-inelr 41942 ~ inelr without ~ ax-mulco...
sn-itrere 41943 ` _i ` times a real is rea...
sn-retire 41944 Commuted version of ~ sn-i...
cnreeu 41945 The reals in the expressio...
sn-sup2 41946 ~ sup2 with exactly the sa...
prjspval 41949 Value of the projective sp...
prjsprel 41950 Utility theorem regarding ...
prjspertr 41951 The relation in ` PrjSp ` ...
prjsperref 41952 The relation in ` PrjSp ` ...
prjspersym 41953 The relation in ` PrjSp ` ...
prjsper 41954 The relation used to defin...
prjspreln0 41955 Two nonzero vectors are eq...
prjspvs 41956 A nonzero multiple of a ve...
prjsprellsp 41957 Two vectors are equivalent...
prjspeclsp 41958 The vectors equivalent to ...
prjspval2 41959 Alternate definition of pr...
prjspnval 41962 Value of the n-dimensional...
prjspnerlem 41963 A lemma showing that the e...
prjspnval2 41964 Value of the n-dimensional...
prjspner 41965 The relation used to defin...
prjspnvs 41966 A nonzero multiple of a ve...
prjspnssbas 41967 A projective point spans a...
prjspnn0 41968 A projective point is none...
0prjspnlem 41969 Lemma for ~ 0prjspn . The...
prjspnfv01 41970 Any vector is equivalent t...
prjspner01 41971 Any vector is equivalent t...
prjspner1 41972 Two vectors whose zeroth c...
0prjspnrel 41973 In the zero-dimensional pr...
0prjspn 41974 A zero-dimensional project...
prjcrvfval 41977 Value of the projective cu...
prjcrvval 41978 Value of the projective cu...
prjcrv0 41979 The "curve" (zero set) cor...
dffltz 41980 Fermat's Last Theorem (FLT...
fltmul 41981 A counterexample to FLT st...
fltdiv 41982 A counterexample to FLT st...
flt0 41983 A counterexample for FLT d...
fltdvdsabdvdsc 41984 Any factor of both ` A ` a...
fltabcoprmex 41985 A counterexample to FLT im...
fltaccoprm 41986 A counterexample to FLT wi...
fltbccoprm 41987 A counterexample to FLT wi...
fltabcoprm 41988 A counterexample to FLT wi...
infdesc 41989 Infinite descent. The hyp...
fltne 41990 If a counterexample to FLT...
flt4lem 41991 Raising a number to the fo...
flt4lem1 41992 Satisfy the antecedent use...
flt4lem2 41993 If ` A ` is even, ` B ` is...
flt4lem3 41994 Equivalent to ~ pythagtrip...
flt4lem4 41995 If the product of two copr...
flt4lem5 41996 In the context of the lemm...
flt4lem5elem 41997 Version of ~ fltaccoprm an...
flt4lem5a 41998 Part 1 of Equation 1 of ...
flt4lem5b 41999 Part 2 of Equation 1 of ...
flt4lem5c 42000 Part 2 of Equation 2 of ...
flt4lem5d 42001 Part 3 of Equation 2 of ...
flt4lem5e 42002 Satisfy the hypotheses of ...
flt4lem5f 42003 Final equation of ~...
flt4lem6 42004 Remove shared factors in a...
flt4lem7 42005 Convert ~ flt4lem5f into a...
nna4b4nsq 42006 Strengthening of Fermat's ...
fltltc 42007 ` ( C ^ N ) ` is the large...
fltnltalem 42008 Lemma for ~ fltnlta . A l...
fltnlta 42009 In a Fermat counterexample...
iddii 42010 Version of ~ a1ii with the...
bicomdALT 42011 Alternate proof of ~ bicom...
elabgw 42012 Membership in a class abst...
elab2gw 42013 Membership in a class abst...
elrab2w 42014 Membership in a restricted...
ruvALT 42015 Alternate proof of ~ ruv w...
sn-wcdeq 42016 Alternative to ~ wcdeq and...
sq45 42017 45 squared is 2025. (Cont...
sum9cubes 42018 The sum of the first nine ...
acos1half 42019 The arccosine of ` 1 / 2 `...
aprilfools2025 42020 An abuse of notation. (Co...
binom2d 42021 Deduction form of binom2. ...
cu3addd 42022 Cube of sum of three numbe...
sqnegd 42023 The square of the negative...
negexpidd 42024 The sum of a real number t...
rexlimdv3d 42025 An extended version of ~ r...
3cubeslem1 42026 Lemma for ~ 3cubes . (Con...
3cubeslem2 42027 Lemma for ~ 3cubes . Used...
3cubeslem3l 42028 Lemma for ~ 3cubes . (Con...
3cubeslem3r 42029 Lemma for ~ 3cubes . (Con...
3cubeslem3 42030 Lemma for ~ 3cubes . (Con...
3cubeslem4 42031 Lemma for ~ 3cubes . This...
3cubes 42032 Every rational number is a...
rntrclfvOAI 42033 The range of the transitiv...
moxfr 42034 Transfer at-most-one betwe...
imaiinfv 42035 Indexed intersection of an...
elrfi 42036 Elementhood in a set of re...
elrfirn 42037 Elementhood in a set of re...
elrfirn2 42038 Elementhood in a set of re...
cmpfiiin 42039 In a compact topology, a s...
ismrcd1 42040 Any function from the subs...
ismrcd2 42041 Second half of ~ ismrcd1 ....
istopclsd 42042 A closure function which s...
ismrc 42043 A function is a Moore clos...
isnacs 42046 Expand definition of Noeth...
nacsfg 42047 In a Noetherian-type closu...
isnacs2 42048 Express Noetherian-type cl...
mrefg2 42049 Slight variation on finite...
mrefg3 42050 Slight variation on finite...
nacsacs 42051 A closure system of Noethe...
isnacs3 42052 A choice-free order equiva...
incssnn0 42053 Transitivity induction of ...
nacsfix 42054 An increasing sequence of ...
constmap 42055 A constant (represented wi...
mapco2g 42056 Renaming indices in a tupl...
mapco2 42057 Post-composition (renaming...
mapfzcons 42058 Extending a one-based mapp...
mapfzcons1 42059 Recover prefix mapping fro...
mapfzcons1cl 42060 A nonempty mapping has a p...
mapfzcons2 42061 Recover added element from...
mptfcl 42062 Interpret range of a maps-...
mzpclval 42067 Substitution lemma for ` m...
elmzpcl 42068 Double substitution lemma ...
mzpclall 42069 The set of all functions w...
mzpcln0 42070 Corollary of ~ mzpclall : ...
mzpcl1 42071 Defining property 1 of a p...
mzpcl2 42072 Defining property 2 of a p...
mzpcl34 42073 Defining properties 3 and ...
mzpval 42074 Value of the ` mzPoly ` fu...
dmmzp 42075 ` mzPoly ` is defined for ...
mzpincl 42076 Polynomial closedness is a...
mzpconst 42077 Constant functions are pol...
mzpf 42078 A polynomial function is a...
mzpproj 42079 A projection function is p...
mzpadd 42080 The pointwise sum of two p...
mzpmul 42081 The pointwise product of t...
mzpconstmpt 42082 A constant function expres...
mzpaddmpt 42083 Sum of polynomial function...
mzpmulmpt 42084 Product of polynomial func...
mzpsubmpt 42085 The difference of two poly...
mzpnegmpt 42086 Negation of a polynomial f...
mzpexpmpt 42087 Raise a polynomial functio...
mzpindd 42088 "Structural" induction to ...
mzpmfp 42089 Relationship between multi...
mzpsubst 42090 Substituting polynomials f...
mzprename 42091 Simplified version of ~ mz...
mzpresrename 42092 A polynomial is a polynomi...
mzpcompact2lem 42093 Lemma for ~ mzpcompact2 . ...
mzpcompact2 42094 Polynomials are finitary o...
coeq0i 42095 ~ coeq0 but without explic...
fzsplit1nn0 42096 Split a finite 1-based set...
eldiophb 42099 Initial expression of Diop...
eldioph 42100 Condition for a set to be ...
diophrw 42101 Renaming and adding unused...
eldioph2lem1 42102 Lemma for ~ eldioph2 . Co...
eldioph2lem2 42103 Lemma for ~ eldioph2 . Co...
eldioph2 42104 Construct a Diophantine se...
eldioph2b 42105 While Diophantine sets wer...
eldiophelnn0 42106 Remove antecedent on ` B `...
eldioph3b 42107 Define Diophantine sets in...
eldioph3 42108 Inference version of ~ eld...
ellz1 42109 Membership in a lower set ...
lzunuz 42110 The union of a lower set o...
fz1eqin 42111 Express a one-based finite...
lzenom 42112 Lower integers are countab...
elmapresaunres2 42113 ~ fresaunres2 transposed t...
diophin 42114 If two sets are Diophantin...
diophun 42115 If two sets are Diophantin...
eldiophss 42116 Diophantine sets are sets ...
diophrex 42117 Projecting a Diophantine s...
eq0rabdioph 42118 This is the first of a num...
eqrabdioph 42119 Diophantine set builder fo...
0dioph 42120 The null set is Diophantin...
vdioph 42121 The "universal" set (as la...
anrabdioph 42122 Diophantine set builder fo...
orrabdioph 42123 Diophantine set builder fo...
3anrabdioph 42124 Diophantine set builder fo...
3orrabdioph 42125 Diophantine set builder fo...
2sbcrex 42126 Exchange an existential qu...
sbcrexgOLD 42127 Interchange class substitu...
2sbcrexOLD 42128 Exchange an existential qu...
sbc2rex 42129 Exchange a substitution wi...
sbc2rexgOLD 42130 Exchange a substitution wi...
sbc4rex 42131 Exchange a substitution wi...
sbc4rexgOLD 42132 Exchange a substitution wi...
sbcrot3 42133 Rotate a sequence of three...
sbcrot5 42134 Rotate a sequence of five ...
sbccomieg 42135 Commute two explicit subst...
rexrabdioph 42136 Diophantine set builder fo...
rexfrabdioph 42137 Diophantine set builder fo...
2rexfrabdioph 42138 Diophantine set builder fo...
3rexfrabdioph 42139 Diophantine set builder fo...
4rexfrabdioph 42140 Diophantine set builder fo...
6rexfrabdioph 42141 Diophantine set builder fo...
7rexfrabdioph 42142 Diophantine set builder fo...
rabdiophlem1 42143 Lemma for arithmetic dioph...
rabdiophlem2 42144 Lemma for arithmetic dioph...
elnn0rabdioph 42145 Diophantine set builder fo...
rexzrexnn0 42146 Rewrite an existential qua...
lerabdioph 42147 Diophantine set builder fo...
eluzrabdioph 42148 Diophantine set builder fo...
elnnrabdioph 42149 Diophantine set builder fo...
ltrabdioph 42150 Diophantine set builder fo...
nerabdioph 42151 Diophantine set builder fo...
dvdsrabdioph 42152 Divisibility is a Diophant...
eldioph4b 42153 Membership in ` Dioph ` ex...
eldioph4i 42154 Forward-only version of ~ ...
diophren 42155 Change variables in a Diop...
rabrenfdioph 42156 Change variable numbers in...
rabren3dioph 42157 Change variable numbers in...
fphpd 42158 Pigeonhole principle expre...
fphpdo 42159 Pigeonhole principle for s...
ctbnfien 42160 An infinite subset of a co...
fiphp3d 42161 Infinite pigeonhole princi...
rencldnfilem 42162 Lemma for ~ rencldnfi . (...
rencldnfi 42163 A set of real numbers whic...
irrapxlem1 42164 Lemma for ~ irrapx1 . Div...
irrapxlem2 42165 Lemma for ~ irrapx1 . Two...
irrapxlem3 42166 Lemma for ~ irrapx1 . By ...
irrapxlem4 42167 Lemma for ~ irrapx1 . Eli...
irrapxlem5 42168 Lemma for ~ irrapx1 . Swi...
irrapxlem6 42169 Lemma for ~ irrapx1 . Exp...
irrapx1 42170 Dirichlet's approximation ...
pellexlem1 42171 Lemma for ~ pellex . Arit...
pellexlem2 42172 Lemma for ~ pellex . Arit...
pellexlem3 42173 Lemma for ~ pellex . To e...
pellexlem4 42174 Lemma for ~ pellex . Invo...
pellexlem5 42175 Lemma for ~ pellex . Invo...
pellexlem6 42176 Lemma for ~ pellex . Doin...
pellex 42177 Every Pell equation has a ...
pell1qrval 42188 Value of the set of first-...
elpell1qr 42189 Membership in a first-quad...
pell14qrval 42190 Value of the set of positi...
elpell14qr 42191 Membership in the set of p...
pell1234qrval 42192 Value of the set of genera...
elpell1234qr 42193 Membership in the set of g...
pell1234qrre 42194 General Pell solutions are...
pell1234qrne0 42195 No solution to a Pell equa...
pell1234qrreccl 42196 General solutions of the P...
pell1234qrmulcl 42197 General solutions of the P...
pell14qrss1234 42198 A positive Pell solution i...
pell14qrre 42199 A positive Pell solution i...
pell14qrne0 42200 A positive Pell solution i...
pell14qrgt0 42201 A positive Pell solution i...
pell14qrrp 42202 A positive Pell solution i...
pell1234qrdich 42203 A general Pell solution is...
elpell14qr2 42204 A number is a positive Pel...
pell14qrmulcl 42205 Positive Pell solutions ar...
pell14qrreccl 42206 Positive Pell solutions ar...
pell14qrdivcl 42207 Positive Pell solutions ar...
pell14qrexpclnn0 42208 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 42209 Positive Pell solutions ar...
pell1qrss14 42210 First-quadrant Pell soluti...
pell14qrdich 42211 A positive Pell solution i...
pell1qrge1 42212 A Pell solution in the fir...
pell1qr1 42213 1 is a Pell solution and i...
elpell1qr2 42214 The first quadrant solutio...
pell1qrgaplem 42215 Lemma for ~ pell1qrgap . ...
pell1qrgap 42216 First-quadrant Pell soluti...
pell14qrgap 42217 Positive Pell solutions ar...
pell14qrgapw 42218 Positive Pell solutions ar...
pellqrexplicit 42219 Condition for a calculated...
infmrgelbi 42220 Any lower bound of a nonem...
pellqrex 42221 There is a nontrivial solu...
pellfundval 42222 Value of the fundamental s...
pellfundre 42223 The fundamental solution o...
pellfundge 42224 Lower bound on the fundame...
pellfundgt1 42225 Weak lower bound on the Pe...
pellfundlb 42226 A nontrivial first quadran...
pellfundglb 42227 If a real is larger than t...
pellfundex 42228 The fundamental solution a...
pellfund14gap 42229 There are no solutions bet...
pellfundrp 42230 The fundamental Pell solut...
pellfundne1 42231 The fundamental Pell solut...
reglogcl 42232 General logarithm is a rea...
reglogltb 42233 General logarithm preserve...
reglogleb 42234 General logarithm preserve...
reglogmul 42235 Multiplication law for gen...
reglogexp 42236 Power law for general log....
reglogbas 42237 General log of the base is...
reglog1 42238 General log of 1 is 0. (C...
reglogexpbas 42239 General log of a power of ...
pellfund14 42240 Every positive Pell soluti...
pellfund14b 42241 The positive Pell solution...
rmxfval 42246 Value of the X sequence. ...
rmyfval 42247 Value of the Y sequence. ...
rmspecsqrtnq 42248 The discriminant used to d...
rmspecnonsq 42249 The discriminant used to d...
qirropth 42250 This lemma implements the ...
rmspecfund 42251 The base of exponent used ...
rmxyelqirr 42252 The solutions used to cons...
rmxyelqirrOLD 42253 Obsolete version of ~ rmxy...
rmxypairf1o 42254 The function used to extra...
rmxyelxp 42255 Lemma for ~ frmx and ~ frm...
frmx 42256 The X sequence is a nonneg...
frmy 42257 The Y sequence is an integ...
rmxyval 42258 Main definition of the X a...
rmspecpos 42259 The discriminant used to d...
rmxycomplete 42260 The X and Y sequences take...
rmxynorm 42261 The X and Y sequences defi...
rmbaserp 42262 The base of exponentiation...
rmxyneg 42263 Negation law for X and Y s...
rmxyadd 42264 Addition formula for X and...
rmxy1 42265 Value of the X and Y seque...
rmxy0 42266 Value of the X and Y seque...
rmxneg 42267 Negation law (even functio...
rmx0 42268 Value of X sequence at 0. ...
rmx1 42269 Value of X sequence at 1. ...
rmxadd 42270 Addition formula for X seq...
rmyneg 42271 Negation formula for Y seq...
rmy0 42272 Value of Y sequence at 0. ...
rmy1 42273 Value of Y sequence at 1. ...
rmyadd 42274 Addition formula for Y seq...
rmxp1 42275 Special addition-of-1 form...
rmyp1 42276 Special addition of 1 form...
rmxm1 42277 Subtraction of 1 formula f...
rmym1 42278 Subtraction of 1 formula f...
rmxluc 42279 The X sequence is a Lucas ...
rmyluc 42280 The Y sequence is a Lucas ...
rmyluc2 42281 Lucas sequence property of...
rmxdbl 42282 "Double-angle formula" for...
rmydbl 42283 "Double-angle formula" for...
monotuz 42284 A function defined on an u...
monotoddzzfi 42285 A function which is odd an...
monotoddzz 42286 A function (given implicit...
oddcomabszz 42287 An odd function which take...
2nn0ind 42288 Induction on nonnegative i...
zindbi 42289 Inductively transfer a pro...
rmxypos 42290 For all nonnegative indice...
ltrmynn0 42291 The Y-sequence is strictly...
ltrmxnn0 42292 The X-sequence is strictly...
lermxnn0 42293 The X-sequence is monotoni...
rmxnn 42294 The X-sequence is defined ...
ltrmy 42295 The Y-sequence is strictly...
rmyeq0 42296 Y is zero only at zero. (...
rmyeq 42297 Y is one-to-one. (Contrib...
lermy 42298 Y is monotonic (non-strict...
rmynn 42299 ` rmY ` is positive for po...
rmynn0 42300 ` rmY ` is nonnegative for...
rmyabs 42301 ` rmY ` commutes with ` ab...
jm2.24nn 42302 X(n) is strictly greater t...
jm2.17a 42303 First half of lemma 2.17 o...
jm2.17b 42304 Weak form of the second ha...
jm2.17c 42305 Second half of lemma 2.17 ...
jm2.24 42306 Lemma 2.24 of [JonesMatija...
rmygeid 42307 Y(n) increases faster than...
congtr 42308 A wff of the form ` A || (...
congadd 42309 If two pairs of numbers ar...
congmul 42310 If two pairs of numbers ar...
congsym 42311 Congruence mod ` A ` is a ...
congneg 42312 If two integers are congru...
congsub 42313 If two pairs of numbers ar...
congid 42314 Every integer is congruent...
mzpcong 42315 Polynomials commute with c...
congrep 42316 Every integer is congruent...
congabseq 42317 If two integers are congru...
acongid 42318 A wff like that in this th...
acongsym 42319 Symmetry of alternating co...
acongneg2 42320 Negate right side of alter...
acongtr 42321 Transitivity of alternatin...
acongeq12d 42322 Substitution deduction for...
acongrep 42323 Every integer is alternati...
fzmaxdif 42324 Bound on the difference be...
fzneg 42325 Reflection of a finite ran...
acongeq 42326 Two numbers in the fundame...
dvdsacongtr 42327 Alternating congruence pas...
coprmdvdsb 42328 Multiplication by a coprim...
modabsdifz 42329 Divisibility in terms of m...
dvdsabsmod0 42330 Divisibility in terms of m...
jm2.18 42331 Theorem 2.18 of [JonesMati...
jm2.19lem1 42332 Lemma for ~ jm2.19 . X an...
jm2.19lem2 42333 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 42334 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 42335 Lemma for ~ jm2.19 . Exte...
jm2.19 42336 Lemma 2.19 of [JonesMatija...
jm2.21 42337 Lemma for ~ jm2.20nn . Ex...
jm2.22 42338 Lemma for ~ jm2.20nn . Ap...
jm2.23 42339 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 42340 Lemma 2.20 of [JonesMatija...
jm2.25lem1 42341 Lemma for ~ jm2.26 . (Con...
jm2.25 42342 Lemma for ~ jm2.26 . Rema...
jm2.26a 42343 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 42344 Lemma for ~ jm2.26 . Use ...
jm2.26 42345 Lemma 2.26 of [JonesMatija...
jm2.15nn0 42346 Lemma 2.15 of [JonesMatija...
jm2.16nn0 42347 Lemma 2.16 of [JonesMatija...
jm2.27a 42348 Lemma for ~ jm2.27 . Reve...
jm2.27b 42349 Lemma for ~ jm2.27 . Expa...
jm2.27c 42350 Lemma for ~ jm2.27 . Forw...
jm2.27 42351 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 42352 Lemma for ~ rmydioph . Su...
jm2.27dlem2 42353 Lemma for ~ rmydioph . Th...
jm2.27dlem3 42354 Lemma for ~ rmydioph . In...
jm2.27dlem4 42355 Lemma for ~ rmydioph . In...
jm2.27dlem5 42356 Lemma for ~ rmydioph . Us...
rmydioph 42357 ~ jm2.27 restated in terms...
rmxdiophlem 42358 X can be expressed in term...
rmxdioph 42359 X is a Diophantine functio...
jm3.1lem1 42360 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 42361 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 42362 Lemma for ~ jm3.1 . (Cont...
jm3.1 42363 Diophantine expression for...
expdiophlem1 42364 Lemma for ~ expdioph . Fu...
expdiophlem2 42365 Lemma for ~ expdioph . Ex...
expdioph 42366 The exponential function i...
setindtr 42367 Set induction for sets con...
setindtrs 42368 Set induction scheme witho...
dford3lem1 42369 Lemma for ~ dford3 . (Con...
dford3lem2 42370 Lemma for ~ dford3 . (Con...
dford3 42371 Ordinals are precisely the...
dford4 42372 ~ dford3 expressed in prim...
wopprc 42373 Unrelated: Wiener pairs t...
rpnnen3lem 42374 Lemma for ~ rpnnen3 . (Co...
rpnnen3 42375 Dedekind cut injection of ...
axac10 42376 Characterization of choice...
harinf 42377 The Hartogs number of an i...
wdom2d2 42378 Deduction for weak dominan...
ttac 42379 Tarski's theorem about cho...
pw2f1ocnv 42380 Define a bijection between...
pw2f1o2 42381 Define a bijection between...
pw2f1o2val 42382 Function value of the ~ pw...
pw2f1o2val2 42383 Membership in a mapped set...
soeq12d 42384 Equality deduction for tot...
freq12d 42385 Equality deduction for fou...
weeq12d 42386 Equality deduction for wel...
limsuc2 42387 Limit ordinals in the sens...
wepwsolem 42388 Transfer an ordering on ch...
wepwso 42389 A well-ordering induces a ...
dnnumch1 42390 Define an enumeration of a...
dnnumch2 42391 Define an enumeration (wea...
dnnumch3lem 42392 Value of the ordinal injec...
dnnumch3 42393 Define an injection from a...
dnwech 42394 Define a well-ordering fro...
fnwe2val 42395 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 42396 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 42397 Lemma for ~ fnwe2 . An el...
fnwe2lem3 42398 Lemma for ~ fnwe2 . Trich...
fnwe2 42399 A well-ordering can be con...
aomclem1 42400 Lemma for ~ dfac11 . This...
aomclem2 42401 Lemma for ~ dfac11 . Succ...
aomclem3 42402 Lemma for ~ dfac11 . Succ...
aomclem4 42403 Lemma for ~ dfac11 . Limi...
aomclem5 42404 Lemma for ~ dfac11 . Comb...
aomclem6 42405 Lemma for ~ dfac11 . Tran...
aomclem7 42406 Lemma for ~ dfac11 . ` ( R...
aomclem8 42407 Lemma for ~ dfac11 . Perf...
dfac11 42408 The right-hand side of thi...
kelac1 42409 Kelley's choice, basic for...
kelac2lem 42410 Lemma for ~ kelac2 and ~ d...
kelac2 42411 Kelley's choice, most comm...
dfac21 42412 Tychonoff's theorem is a c...
islmodfg 42415 Property of a finitely gen...
islssfg 42416 Property of a finitely gen...
islssfg2 42417 Property of a finitely gen...
islssfgi 42418 Finitely spanned subspaces...
fglmod 42419 Finitely generated left mo...
lsmfgcl 42420 The sum of two finitely ge...
islnm 42423 Property of being a Noethe...
islnm2 42424 Property of being a Noethe...
lnmlmod 42425 A Noetherian left module i...
lnmlssfg 42426 A submodule of Noetherian ...
lnmlsslnm 42427 All submodules of a Noethe...
lnmfg 42428 A Noetherian left module i...
kercvrlsm 42429 The domain of a linear fun...
lmhmfgima 42430 A homomorphism maps finite...
lnmepi 42431 Epimorphic images of Noeth...
lmhmfgsplit 42432 If the kernel and range of...
lmhmlnmsplit 42433 If the kernel and range of...
lnmlmic 42434 Noetherian is an invariant...
pwssplit4 42435 Splitting for structure po...
filnm 42436 Finite left modules are No...
pwslnmlem0 42437 Zeroeth powers are Noether...
pwslnmlem1 42438 First powers are Noetheria...
pwslnmlem2 42439 A sum of powers is Noether...
pwslnm 42440 Finite powers of Noetheria...
unxpwdom3 42441 Weaker version of ~ unxpwd...
pwfi2f1o 42442 The ~ pw2f1o bijection rel...
pwfi2en 42443 Finitely supported indicat...
frlmpwfi 42444 Formal linear combinations...
gicabl 42445 Being Abelian is a group i...
imasgim 42446 A relabeling of the elemen...
isnumbasgrplem1 42447 A set which is equipollent...
harn0 42448 The Hartogs number of a se...
numinfctb 42449 A numerable infinite set c...
isnumbasgrplem2 42450 If the (to be thought of a...
isnumbasgrplem3 42451 Every nonempty numerable s...
isnumbasabl 42452 A set is numerable iff it ...
isnumbasgrp 42453 A set is numerable iff it ...
dfacbasgrp 42454 A choice equivalent in abs...
islnr 42457 Property of a left-Noether...
lnrring 42458 Left-Noetherian rings are ...
lnrlnm 42459 Left-Noetherian rings have...
islnr2 42460 Property of being a left-N...
islnr3 42461 Relate left-Noetherian rin...
lnr2i 42462 Given an ideal in a left-N...
lpirlnr 42463 Left principal ideal rings...
lnrfrlm 42464 Finite-dimensional free mo...
lnrfg 42465 Finitely-generated modules...
lnrfgtr 42466 A submodule of a finitely ...
hbtlem1 42469 Value of the leading coeff...
hbtlem2 42470 Leading coefficient ideals...
hbtlem7 42471 Functionality of leading c...
hbtlem4 42472 The leading ideal function...
hbtlem3 42473 The leading ideal function...
hbtlem5 42474 The leading ideal function...
hbtlem6 42475 There is a finite set of p...
hbt 42476 The Hilbert Basis Theorem ...
dgrsub2 42481 Subtracting two polynomial...
elmnc 42482 Property of a monic polyno...
mncply 42483 A monic polynomial is a po...
mnccoe 42484 A monic polynomial has lea...
mncn0 42485 A monic polynomial is not ...
dgraaval 42490 Value of the degree functi...
dgraalem 42491 Properties of the degree o...
dgraacl 42492 Closure of the degree func...
dgraaf 42493 Degree function on algebra...
dgraaub 42494 Upper bound on degree of a...
dgraa0p 42495 A rational polynomial of d...
mpaaeu 42496 An algebraic number has ex...
mpaaval 42497 Value of the minimal polyn...
mpaalem 42498 Properties of the minimal ...
mpaacl 42499 Minimal polynomial is a po...
mpaadgr 42500 Minimal polynomial has deg...
mpaaroot 42501 The minimal polynomial of ...
mpaamn 42502 Minimal polynomial is moni...
itgoval 42507 Value of the integral-over...
aaitgo 42508 The standard algebraic num...
itgoss 42509 An integral element is int...
itgocn 42510 All integral elements are ...
cnsrexpcl 42511 Exponentiation is closed i...
fsumcnsrcl 42512 Finite sums are closed in ...
cnsrplycl 42513 Polynomials are closed in ...
rgspnval 42514 Value of the ring-span of ...
rgspncl 42515 The ring-span of a set is ...
rgspnssid 42516 The ring-span of a set con...
rgspnmin 42517 The ring-span is contained...
rgspnid 42518 The span of a subring is i...
rngunsnply 42519 Adjoining one element to a...
flcidc 42520 Finite linear combinations...
algstr 42523 Lemma to shorten proofs of...
algbase 42524 The base set of a construc...
algaddg 42525 The additive operation of ...
algmulr 42526 The multiplicative operati...
algsca 42527 The set of scalars of a co...
algvsca 42528 The scalar product operati...
mendval 42529 Value of the module endomo...
mendbas 42530 Base set of the module end...
mendplusgfval 42531 Addition in the module end...
mendplusg 42532 A specific addition in the...
mendmulrfval 42533 Multiplication in the modu...
mendmulr 42534 A specific multiplication ...
mendsca 42535 The module endomorphism al...
mendvscafval 42536 Scalar multiplication in t...
mendvsca 42537 A specific scalar multipli...
mendring 42538 The module endomorphism al...
mendlmod 42539 The module endomorphism al...
mendassa 42540 The module endomorphism al...
idomodle 42541 Limit on the number of ` N...
fiuneneq 42542 Two finite sets of equal s...
idomsubgmo 42543 The units of an integral d...
proot1mul 42544 Any primitive ` N ` -th ro...
proot1hash 42545 If an integral domain has ...
proot1ex 42546 The complex field has prim...
isdomn3 42549 Nonzero elements form a mu...
mon1psubm 42550 Monic polynomials are a mu...
deg1mhm 42551 Homomorphic property of th...
cytpfn 42552 Functionality of the cyclo...
cytpval 42553 Substitutions for the Nth ...
fgraphopab 42554 Express a function as a su...
fgraphxp 42555 Express a function as a su...
hausgraph 42556 The graph of a continuous ...
r1sssucd 42561 Deductive form of ~ r1sssu...
iocunico 42562 Split an open interval int...
iocinico 42563 The intersection of two se...
iocmbl 42564 An open-below, closed-abov...
cnioobibld 42565 A bounded, continuous func...
arearect 42566 The area of a rectangle wh...
areaquad 42567 The area of a quadrilatera...
uniel 42568 Two ways to say a union is...
unielss 42569 Two ways to say the union ...
unielid 42570 Two ways to say the union ...
ssunib 42571 Two ways to say a class is...
rp-intrabeq 42572 Equality theorem for supre...
rp-unirabeq 42573 Equality theorem for infim...
onmaxnelsup 42574 Two ways to say the maximu...
onsupneqmaxlim0 42575 If the supremum of a class...
onsupcl2 42576 The supremum of a set of o...
onuniintrab 42577 The union of a set of ordi...
onintunirab 42578 The intersection of a non-...
onsupnmax 42579 If the union of a class of...
onsupuni 42580 The supremum of a set of o...
onsupuni2 42581 The supremum of a set of o...
onsupintrab 42582 The supremum of a set of o...
onsupintrab2 42583 The supremum of a set of o...
onsupcl3 42584 The supremum of a set of o...
onsupex3 42585 The supremum of a set of o...
onuniintrab2 42586 The union of a set of ordi...
oninfint 42587 The infimum of a non-empty...
oninfunirab 42588 The infimum of a non-empty...
oninfcl2 42589 The infimum of a non-empty...
onsupmaxb 42590 The union of a class of or...
onexgt 42591 For any ordinal, there is ...
onexomgt 42592 For any ordinal, there is ...
omlimcl2 42593 The product of a limit ord...
onexlimgt 42594 For any ordinal, there is ...
onexoegt 42595 For any ordinal, there is ...
oninfex2 42596 The infimum of a non-empty...
onsupeqmax 42597 Condition when the supremu...
onsupeqnmax 42598 Condition when the supremu...
onsuplub 42599 The supremum of a set of o...
onsupnub 42600 An upper bound of a set of...
onfisupcl 42601 Sufficient condition when ...
onelord 42602 Every element of a ordinal...
onepsuc 42603 Every ordinal is less than...
epsoon 42604 The ordinals are strictly ...
epirron 42605 The strict order on the or...
oneptr 42606 The strict order on the or...
oneltr 42607 The elementhood relation o...
oneptri 42608 The strict, complete (line...
oneltri 42609 The elementhood relation o...
ordeldif 42610 Membership in the differen...
ordeldifsucon 42611 Membership in the differen...
ordeldif1o 42612 Membership in the differen...
ordne0gt0 42613 Ordinal zero is less than ...
ondif1i 42614 Ordinal zero is less than ...
onsucelab 42615 The successor of every ord...
dflim6 42616 A limit ordinal is a non-z...
limnsuc 42617 A limit ordinal is not an ...
onsucss 42618 If one ordinal is less tha...
ordnexbtwnsuc 42619 For any distinct pair of o...
orddif0suc 42620 For any distinct pair of o...
onsucf1lem 42621 For ordinals, the successo...
onsucf1olem 42622 The successor operation is...
onsucrn 42623 The successor operation is...
onsucf1o 42624 The successor operation is...
dflim7 42625 A limit ordinal is a non-z...
onov0suclim 42626 Compactly express rules fo...
oa0suclim 42627 Closed form expression of ...
om0suclim 42628 Closed form expression of ...
oe0suclim 42629 Closed form expression of ...
oaomoecl 42630 The operations of addition...
onsupsucismax 42631 If the union of a set of o...
onsssupeqcond 42632 If for every element of a ...
limexissup 42633 An ordinal which is a limi...
limiun 42634 A limit ordinal is the uni...
limexissupab 42635 An ordinal which is a limi...
om1om1r 42636 Ordinal one is both a left...
oe0rif 42637 Ordinal zero raised to any...
oasubex 42638 While subtraction can't be...
nnamecl 42639 Natural numbers are closed...
onsucwordi 42640 The successor operation pr...
oalim2cl 42641 The ordinal sum of any ord...
oaltublim 42642 Given ` C ` is a limit ord...
oaordi3 42643 Ordinal addition of the sa...
oaord3 42644 When the same ordinal is a...
1oaomeqom 42645 Ordinal one plus omega is ...
oaabsb 42646 The right addend absorbs t...
oaordnrex 42647 When omega is added on the...
oaordnr 42648 When the same ordinal is a...
omge1 42649 Any non-zero ordinal produ...
omge2 42650 Any non-zero ordinal produ...
omlim2 42651 The non-zero product with ...
omord2lim 42652 Given a limit ordinal, the...
omord2i 42653 Ordinal multiplication of ...
omord2com 42654 When the same non-zero ord...
2omomeqom 42655 Ordinal two times omega is...
omnord1ex 42656 When omega is multiplied o...
omnord1 42657 When the same non-zero ord...
oege1 42658 Any non-zero ordinal power...
oege2 42659 Any power of an ordinal at...
rp-oelim2 42660 The power of an ordinal at...
oeord2lim 42661 Given a limit ordinal, the...
oeord2i 42662 Ordinal exponentiation of ...
oeord2com 42663 When the same base at leas...
nnoeomeqom 42664 Any natural number at leas...
df3o2 42665 Ordinal 3 is the unordered...
df3o3 42666 Ordinal 3, fully expanded....
oenord1ex 42667 When ordinals two and thre...
oenord1 42668 When two ordinals (both at...
oaomoencom 42669 Ordinal addition, multipli...
oenassex 42670 Ordinal two raised to two ...
oenass 42671 Ordinal exponentiation is ...
cantnftermord 42672 For terms of the form of a...
cantnfub 42673 Given a finite number of t...
cantnfub2 42674 Given a finite number of t...
bropabg 42675 Equivalence for two classe...
cantnfresb 42676 A Cantor normal form which...
cantnf2 42677 For every ordinal, ` A ` ,...
oawordex2 42678 If ` C ` is between ` A ` ...
nnawordexg 42679 If an ordinal, ` B ` , is ...
succlg 42680 Closure law for ordinal su...
dflim5 42681 A limit ordinal is either ...
oacl2g 42682 Closure law for ordinal ad...
onmcl 42683 If an ordinal is less than...
omabs2 42684 Ordinal multiplication by ...
omcl2 42685 Closure law for ordinal mu...
omcl3g 42686 Closure law for ordinal mu...
ordsssucb 42687 An ordinal number is less ...
tfsconcatlem 42688 Lemma for ~ tfsconcatun . ...
tfsconcatun 42689 The concatenation of two t...
tfsconcatfn 42690 The concatenation of two t...
tfsconcatfv1 42691 An early value of the conc...
tfsconcatfv2 42692 A latter value of the conc...
tfsconcatfv 42693 The value of the concatena...
tfsconcatrn 42694 The range of the concatena...
tfsconcatfo 42695 The concatenation of two t...
tfsconcatb0 42696 The concatentation with th...
tfsconcat0i 42697 The concatentation with th...
tfsconcat0b 42698 The concatentation with th...
tfsconcat00 42699 The concatentation of two ...
tfsconcatrev 42700 If the domain of a transfi...
tfsconcatrnss12 42701 The range of the concatena...
tfsconcatrnss 42702 The concatenation of trans...
tfsconcatrnsson 42703 The concatenation of trans...
tfsnfin 42704 A transfinite sequence is ...
rp-tfslim 42705 The limit of a sequence of...
ofoafg 42706 Addition operator for func...
ofoaf 42707 Addition operator for func...
ofoafo 42708 Addition operator for func...
ofoacl 42709 Closure law for component ...
ofoaid1 42710 Identity law for component...
ofoaid2 42711 Identity law for component...
ofoaass 42712 Component-wise addition of...
ofoacom 42713 Component-wise addition of...
naddcnff 42714 Addition operator for Cant...
naddcnffn 42715 Addition operator for Cant...
naddcnffo 42716 Addition of Cantor normal ...
naddcnfcl 42717 Closure law for component-...
naddcnfcom 42718 Component-wise ordinal add...
naddcnfid1 42719 Identity law for component...
naddcnfid2 42720 Identity law for component...
naddcnfass 42721 Component-wise addition of...
onsucunifi 42722 The successor to the union...
sucunisn 42723 The successor to the union...
onsucunipr 42724 The successor to the union...
onsucunitp 42725 The successor to the union...
oaun3lem1 42726 The class of all ordinal s...
oaun3lem2 42727 The class of all ordinal s...
oaun3lem3 42728 The class of all ordinal s...
oaun3lem4 42729 The class of all ordinal s...
rp-abid 42730 Two ways to express a clas...
oadif1lem 42731 Express the set difference...
oadif1 42732 Express the set difference...
oaun2 42733 Ordinal addition as a unio...
oaun3 42734 Ordinal addition as a unio...
naddov4 42735 Alternate expression for n...
nadd2rabtr 42736 The set of ordinals which ...
nadd2rabord 42737 The set of ordinals which ...
nadd2rabex 42738 The class of ordinals whic...
nadd2rabon 42739 The set of ordinals which ...
nadd1rabtr 42740 The set of ordinals which ...
nadd1rabord 42741 The set of ordinals which ...
nadd1rabex 42742 The class of ordinals whic...
nadd1rabon 42743 The set of ordinals which ...
nadd1suc 42744 Natural addition with 1 is...
naddsuc2 42745 Natural addition with succ...
naddass1 42746 Natural addition of ordina...
naddgeoa 42747 Natural addition results i...
naddonnn 42748 Natural addition with a na...
naddwordnexlem0 42749 When ` A ` is the sum of a...
naddwordnexlem1 42750 When ` A ` is the sum of a...
naddwordnexlem2 42751 When ` A ` is the sum of a...
naddwordnexlem3 42752 When ` A ` is the sum of a...
oawordex3 42753 When ` A ` is the sum of a...
naddwordnexlem4 42754 When ` A ` is the sum of a...
ordsssucim 42755 If an ordinal is less than...
insucid 42756 The intersection of a clas...
om2 42757 Two ways to double an ordi...
oaltom 42758 Multiplication eventually ...
oe2 42759 Two ways to square an ordi...
omltoe 42760 Exponentiation eventually ...
abeqabi 42761 Generalized condition for ...
abpr 42762 Condition for a class abst...
abtp 42763 Condition for a class abst...
ralopabb 42764 Restricted universal quant...
fpwfvss 42765 Functions into a powerset ...
sdomne0 42766 A class that strictly domi...
sdomne0d 42767 A class that strictly domi...
safesnsupfiss 42768 If ` B ` is a finite subse...
safesnsupfiub 42769 If ` B ` is a finite subse...
safesnsupfidom1o 42770 If ` B ` is a finite subse...
safesnsupfilb 42771 If ` B ` is a finite subse...
isoeq145d 42772 Equality deduction for iso...
resisoeq45d 42773 Equality deduction for equ...
negslem1 42774 An equivalence between ide...
nvocnvb 42775 Equivalence to saying the ...
rp-brsslt 42776 Binary relation form of a ...
nla0002 42777 Extending a linear order t...
nla0003 42778 Extending a linear order t...
nla0001 42779 Extending a linear order t...
faosnf0.11b 42780 ` B ` is called a non-limi...
dfno2 42781 A surreal number, in the f...
onnog 42782 Every ordinal maps to a su...
onnobdayg 42783 Every ordinal maps to a su...
bdaybndex 42784 Bounds formed from the bir...
bdaybndbday 42785 Bounds formed from the bir...
onno 42786 Every ordinal maps to a su...
onnoi 42787 Every ordinal maps to a su...
0no 42788 Ordinal zero maps to a sur...
1no 42789 Ordinal one maps to a surr...
2no 42790 Ordinal two maps to a surr...
3no 42791 Ordinal three maps to a su...
4no 42792 Ordinal four maps to a sur...
fnimafnex 42793 The functional image of a ...
nlimsuc 42794 A successor is not a limit...
nlim1NEW 42795 1 is not a limit ordinal. ...
nlim2NEW 42796 2 is not a limit ordinal. ...
nlim3 42797 3 is not a limit ordinal. ...
nlim4 42798 4 is not a limit ordinal. ...
oa1un 42799 Given ` A e. On ` , let ` ...
oa1cl 42800 ` A +o 1o ` is in ` On ` ....
0finon 42801 0 is a finite ordinal. Se...
1finon 42802 1 is a finite ordinal. Se...
2finon 42803 2 is a finite ordinal. Se...
3finon 42804 3 is a finite ordinal. Se...
4finon 42805 4 is a finite ordinal. Se...
finona1cl 42806 The finite ordinals are cl...
finonex 42807 The finite ordinals are a ...
fzunt 42808 Union of two adjacent fini...
fzuntd 42809 Union of two adjacent fini...
fzunt1d 42810 Union of two overlapping f...
fzuntgd 42811 Union of two adjacent or o...
ifpan123g 42812 Conjunction of conditional...
ifpan23 42813 Conjunction of conditional...
ifpdfor2 42814 Define or in terms of cond...
ifporcor 42815 Corollary of commutation o...
ifpdfan2 42816 Define and with conditiona...
ifpancor 42817 Corollary of commutation o...
ifpdfor 42818 Define or in terms of cond...
ifpdfan 42819 Define and with conditiona...
ifpbi2 42820 Equivalence theorem for co...
ifpbi3 42821 Equivalence theorem for co...
ifpim1 42822 Restate implication as con...
ifpnot 42823 Restate negated wff as con...
ifpid2 42824 Restate wff as conditional...
ifpim2 42825 Restate implication as con...
ifpbi23 42826 Equivalence theorem for co...
ifpbiidcor 42827 Restatement of ~ biid . (...
ifpbicor 42828 Corollary of commutation o...
ifpxorcor 42829 Corollary of commutation o...
ifpbi1 42830 Equivalence theorem for co...
ifpnot23 42831 Negation of conditional lo...
ifpnotnotb 42832 Factor conditional logic o...
ifpnorcor 42833 Corollary of commutation o...
ifpnancor 42834 Corollary of commutation o...
ifpnot23b 42835 Negation of conditional lo...
ifpbiidcor2 42836 Restatement of ~ biid . (...
ifpnot23c 42837 Negation of conditional lo...
ifpnot23d 42838 Negation of conditional lo...
ifpdfnan 42839 Define nand as conditional...
ifpdfxor 42840 Define xor as conditional ...
ifpbi12 42841 Equivalence theorem for co...
ifpbi13 42842 Equivalence theorem for co...
ifpbi123 42843 Equivalence theorem for co...
ifpidg 42844 Restate wff as conditional...
ifpid3g 42845 Restate wff as conditional...
ifpid2g 42846 Restate wff as conditional...
ifpid1g 42847 Restate wff as conditional...
ifpim23g 42848 Restate implication as con...
ifpim3 42849 Restate implication as con...
ifpnim1 42850 Restate negated implicatio...
ifpim4 42851 Restate implication as con...
ifpnim2 42852 Restate negated implicatio...
ifpim123g 42853 Implication of conditional...
ifpim1g 42854 Implication of conditional...
ifp1bi 42855 Substitute the first eleme...
ifpbi1b 42856 When the first variable is...
ifpimimb 42857 Factor conditional logic o...
ifpororb 42858 Factor conditional logic o...
ifpananb 42859 Factor conditional logic o...
ifpnannanb 42860 Factor conditional logic o...
ifpor123g 42861 Disjunction of conditional...
ifpimim 42862 Consequnce of implication....
ifpbibib 42863 Factor conditional logic o...
ifpxorxorb 42864 Factor conditional logic o...
rp-fakeimass 42865 A special case where impli...
rp-fakeanorass 42866 A special case where a mix...
rp-fakeoranass 42867 A special case where a mix...
rp-fakeinunass 42868 A special case where a mix...
rp-fakeuninass 42869 A special case where a mix...
rp-isfinite5 42870 A set is said to be finite...
rp-isfinite6 42871 A set is said to be finite...
intabssd 42872 When for each element ` y ...
eu0 42873 There is only one empty se...
epelon2 42874 Over the ordinal numbers, ...
ontric3g 42875 For all ` x , y e. On ` , ...
dfsucon 42876 ` A ` is called a successo...
snen1g 42877 A singleton is equinumerou...
snen1el 42878 A singleton is equinumerou...
sn1dom 42879 A singleton is dominated b...
pr2dom 42880 An unordered pair is domin...
tr3dom 42881 An unordered triple is dom...
ensucne0 42882 A class equinumerous to a ...
ensucne0OLD 42883 A class equinumerous to a ...
dfom6 42884 Let ` _om ` be defined to ...
infordmin 42885 ` _om ` is the smallest in...
iscard4 42886 Two ways to express the pr...
minregex 42887 Given any cardinal number ...
minregex2 42888 Given any cardinal number ...
iscard5 42889 Two ways to express the pr...
elrncard 42890 Let us define a cardinal n...
harval3 42891 ` ( har `` A ) ` is the le...
harval3on 42892 For any ordinal number ` A...
omssrncard 42893 All natural numbers are ca...
0iscard 42894 0 is a cardinal number. (...
1iscard 42895 1 is a cardinal number. (...
omiscard 42896 ` _om ` is a cardinal numb...
sucomisnotcard 42897 ` _om +o 1o ` is not a car...
nna1iscard 42898 For any natural number, th...
har2o 42899 The least cardinal greater...
en2pr 42900 A class is equinumerous to...
pr2cv 42901 If an unordered pair is eq...
pr2el1 42902 If an unordered pair is eq...
pr2cv1 42903 If an unordered pair is eq...
pr2el2 42904 If an unordered pair is eq...
pr2cv2 42905 If an unordered pair is eq...
pren2 42906 An unordered pair is equin...
pr2eldif1 42907 If an unordered pair is eq...
pr2eldif2 42908 If an unordered pair is eq...
pren2d 42909 A pair of two distinct set...
aleph1min 42910 ` ( aleph `` 1o ) ` is the...
alephiso2 42911 ` aleph ` is a strictly or...
alephiso3 42912 ` aleph ` is a strictly or...
pwelg 42913 The powerclass is an eleme...
pwinfig 42914 The powerclass of an infin...
pwinfi2 42915 The powerclass of an infin...
pwinfi3 42916 The powerclass of an infin...
pwinfi 42917 The powerclass of an infin...
fipjust 42918 A definition of the finite...
cllem0 42919 The class of all sets with...
superficl 42920 The class of all supersets...
superuncl 42921 The class of all supersets...
ssficl 42922 The class of all subsets o...
ssuncl 42923 The class of all subsets o...
ssdifcl 42924 The class of all subsets o...
sssymdifcl 42925 The class of all subsets o...
fiinfi 42926 If two classes have the fi...
rababg 42927 Condition when restricted ...
elinintab 42928 Two ways of saying a set i...
elmapintrab 42929 Two ways to say a set is a...
elinintrab 42930 Two ways of saying a set i...
inintabss 42931 Upper bound on intersectio...
inintabd 42932 Value of the intersection ...
xpinintabd 42933 Value of the intersection ...
relintabex 42934 If the intersection of a c...
elcnvcnvintab 42935 Two ways of saying a set i...
relintab 42936 Value of the intersection ...
nonrel 42937 A non-relation is equal to...
elnonrel 42938 Only an ordered pair where...
cnvssb 42939 Subclass theorem for conve...
relnonrel 42940 The non-relation part of a...
cnvnonrel 42941 The converse of the non-re...
brnonrel 42942 A non-relation cannot rela...
dmnonrel 42943 The domain of the non-rela...
rnnonrel 42944 The range of the non-relat...
resnonrel 42945 A restriction of the non-r...
imanonrel 42946 An image under the non-rel...
cononrel1 42947 Composition with the non-r...
cononrel2 42948 Composition with the non-r...
elmapintab 42949 Two ways to say a set is a...
fvnonrel 42950 The function value of any ...
elinlem 42951 Two ways to say a set is a...
elcnvcnvlem 42952 Two ways to say a set is a...
cnvcnvintabd 42953 Value of the relationship ...
elcnvlem 42954 Two ways to say a set is a...
elcnvintab 42955 Two ways of saying a set i...
cnvintabd 42956 Value of the converse of t...
undmrnresiss 42957 Two ways of saying the ide...
reflexg 42958 Two ways of saying a relat...
cnvssco 42959 A condition weaker than re...
refimssco 42960 Reflexive relations are su...
cleq2lem 42961 Equality implies bijection...
cbvcllem 42962 Change of bound variable i...
clublem 42963 If a superset ` Y ` of ` X...
clss2lem 42964 The closure of a property ...
dfid7 42965 Definition of identity rel...
mptrcllem 42966 Show two versions of a clo...
cotrintab 42967 The intersection of a clas...
rclexi 42968 The reflexive closure of a...
rtrclexlem 42969 Existence of relation impl...
rtrclex 42970 The reflexive-transitive c...
trclubgNEW 42971 If a relation exists then ...
trclubNEW 42972 If a relation exists then ...
trclexi 42973 The transitive closure of ...
rtrclexi 42974 The reflexive-transitive c...
clrellem 42975 When the property ` ps ` h...
clcnvlem 42976 When ` A ` , an upper boun...
cnvtrucl0 42977 The converse of the trivia...
cnvrcl0 42978 The converse of the reflex...
cnvtrcl0 42979 The converse of the transi...
dmtrcl 42980 The domain of the transiti...
rntrcl 42981 The range of the transitiv...
dfrtrcl5 42982 Definition of reflexive-tr...
trcleq2lemRP 42983 Equality implies bijection...
sqrtcvallem1 42984 Two ways of saying a compl...
reabsifneg 42985 Alternate expression for t...
reabsifnpos 42986 Alternate expression for t...
reabsifpos 42987 Alternate expression for t...
reabsifnneg 42988 Alternate expression for t...
reabssgn 42989 Alternate expression for t...
sqrtcvallem2 42990 Equivalent to saying that ...
sqrtcvallem3 42991 Equivalent to saying that ...
sqrtcvallem4 42992 Equivalent to saying that ...
sqrtcvallem5 42993 Equivalent to saying that ...
sqrtcval 42994 Explicit formula for the c...
sqrtcval2 42995 Explicit formula for the c...
resqrtval 42996 Real part of the complex s...
imsqrtval 42997 Imaginary part of the comp...
resqrtvalex 42998 Example for ~ resqrtval . ...
imsqrtvalex 42999 Example for ~ imsqrtval . ...
al3im 43000 Version of ~ ax-4 for a ne...
intima0 43001 Two ways of expressing the...
elimaint 43002 Element of image of inters...
cnviun 43003 Converse of indexed union....
imaiun1 43004 The image of an indexed un...
coiun1 43005 Composition with an indexe...
elintima 43006 Element of intersection of...
intimass 43007 The image under the inters...
intimass2 43008 The image under the inters...
intimag 43009 Requirement for the image ...
intimasn 43010 Two ways to express the im...
intimasn2 43011 Two ways to express the im...
ss2iundf 43012 Subclass theorem for index...
ss2iundv 43013 Subclass theorem for index...
cbviuneq12df 43014 Rule used to change the bo...
cbviuneq12dv 43015 Rule used to change the bo...
conrel1d 43016 Deduction about compositio...
conrel2d 43017 Deduction about compositio...
trrelind 43018 The intersection of transi...
xpintrreld 43019 The intersection of a tran...
restrreld 43020 The restriction of a trans...
trrelsuperreldg 43021 Concrete construction of a...
trficl 43022 The class of all transitiv...
cnvtrrel 43023 The converse of a transiti...
trrelsuperrel2dg 43024 Concrete construction of a...
dfrcl2 43027 Reflexive closure of a rel...
dfrcl3 43028 Reflexive closure of a rel...
dfrcl4 43029 Reflexive closure of a rel...
relexp2 43030 A set operated on by the r...
relexpnul 43031 If the domain and range of...
eliunov2 43032 Membership in the indexed ...
eltrclrec 43033 Membership in the indexed ...
elrtrclrec 43034 Membership in the indexed ...
briunov2 43035 Two classes related by the...
brmptiunrelexpd 43036 If two elements are connec...
fvmptiunrelexplb0d 43037 If the indexed union range...
fvmptiunrelexplb0da 43038 If the indexed union range...
fvmptiunrelexplb1d 43039 If the indexed union range...
brfvid 43040 If two elements are connec...
brfvidRP 43041 If two elements are connec...
fvilbd 43042 A set is a subset of its i...
fvilbdRP 43043 A set is a subset of its i...
brfvrcld 43044 If two elements are connec...
brfvrcld2 43045 If two elements are connec...
fvrcllb0d 43046 A restriction of the ident...
fvrcllb0da 43047 A restriction of the ident...
fvrcllb1d 43048 A set is a subset of its i...
brtrclrec 43049 Two classes related by the...
brrtrclrec 43050 Two classes related by the...
briunov2uz 43051 Two classes related by the...
eliunov2uz 43052 Membership in the indexed ...
ov2ssiunov2 43053 Any particular operator va...
relexp0eq 43054 The zeroth power of relati...
iunrelexp0 43055 Simplification of zeroth p...
relexpxpnnidm 43056 Any positive power of a Ca...
relexpiidm 43057 Any power of any restricti...
relexpss1d 43058 The relational power of a ...
comptiunov2i 43059 The composition two indexe...
corclrcl 43060 The reflexive closure is i...
iunrelexpmin1 43061 The indexed union of relat...
relexpmulnn 43062 With exponents limited to ...
relexpmulg 43063 With ordered exponents, th...
trclrelexplem 43064 The union of relational po...
iunrelexpmin2 43065 The indexed union of relat...
relexp01min 43066 With exponents limited to ...
relexp1idm 43067 Repeated raising a relatio...
relexp0idm 43068 Repeated raising a relatio...
relexp0a 43069 Absorption law for zeroth ...
relexpxpmin 43070 The composition of powers ...
relexpaddss 43071 The composition of two pow...
iunrelexpuztr 43072 The indexed union of relat...
dftrcl3 43073 Transitive closure of a re...
brfvtrcld 43074 If two elements are connec...
fvtrcllb1d 43075 A set is a subset of its i...
trclfvcom 43076 The transitive closure of ...
cnvtrclfv 43077 The converse of the transi...
cotrcltrcl 43078 The transitive closure is ...
trclimalb2 43079 Lower bound for image unde...
brtrclfv2 43080 Two ways to indicate two e...
trclfvdecomr 43081 The transitive closure of ...
trclfvdecoml 43082 The transitive closure of ...
dmtrclfvRP 43083 The domain of the transiti...
rntrclfvRP 43084 The range of the transitiv...
rntrclfv 43085 The range of the transitiv...
dfrtrcl3 43086 Reflexive-transitive closu...
brfvrtrcld 43087 If two elements are connec...
fvrtrcllb0d 43088 A restriction of the ident...
fvrtrcllb0da 43089 A restriction of the ident...
fvrtrcllb1d 43090 A set is a subset of its i...
dfrtrcl4 43091 Reflexive-transitive closu...
corcltrcl 43092 The composition of the ref...
cortrcltrcl 43093 Composition with the refle...
corclrtrcl 43094 Composition with the refle...
cotrclrcl 43095 The composition of the ref...
cortrclrcl 43096 Composition with the refle...
cotrclrtrcl 43097 Composition with the refle...
cortrclrtrcl 43098 The reflexive-transitive c...
frege77d 43099 If the images of both ` { ...
frege81d 43100 If the image of ` U ` is a...
frege83d 43101 If the image of the union ...
frege96d 43102 If ` C ` follows ` A ` in ...
frege87d 43103 If the images of both ` { ...
frege91d 43104 If ` B ` follows ` A ` in ...
frege97d 43105 If ` A ` contains all elem...
frege98d 43106 If ` C ` follows ` A ` and...
frege102d 43107 If either ` A ` and ` C ` ...
frege106d 43108 If ` B ` follows ` A ` in ...
frege108d 43109 If either ` A ` and ` C ` ...
frege109d 43110 If ` A ` contains all elem...
frege114d 43111 If either ` R ` relates ` ...
frege111d 43112 If either ` A ` and ` C ` ...
frege122d 43113 If ` F ` is a function, ` ...
frege124d 43114 If ` F ` is a function, ` ...
frege126d 43115 If ` F ` is a function, ` ...
frege129d 43116 If ` F ` is a function and...
frege131d 43117 If ` F ` is a function and...
frege133d 43118 If ` F ` is a function and...
dfxor4 43119 Express exclusive-or in te...
dfxor5 43120 Express exclusive-or in te...
df3or2 43121 Express triple-or in terms...
df3an2 43122 Express triple-and in term...
nev 43123 Express that not every set...
0pssin 43124 Express that an intersecti...
dfhe2 43127 The property of relation `...
dfhe3 43128 The property of relation `...
heeq12 43129 Equality law for relations...
heeq1 43130 Equality law for relations...
heeq2 43131 Equality law for relations...
sbcheg 43132 Distribute proper substitu...
hess 43133 Subclass law for relations...
xphe 43134 Any Cartesian product is h...
0he 43135 The empty relation is here...
0heALT 43136 The empty relation is here...
he0 43137 Any relation is hereditary...
unhe1 43138 The union of two relations...
snhesn 43139 Any singleton is hereditar...
idhe 43140 The identity relation is h...
psshepw 43141 The relation between sets ...
sshepw 43142 The relation between sets ...
rp-simp2-frege 43145 Simplification of triple c...
rp-simp2 43146 Simplification of triple c...
rp-frege3g 43147 Add antecedent to ~ ax-fre...
frege3 43148 Add antecedent to ~ ax-fre...
rp-misc1-frege 43149 Double-use of ~ ax-frege2 ...
rp-frege24 43150 Introducing an embedded an...
rp-frege4g 43151 Deduction related to distr...
frege4 43152 Special case of closed for...
frege5 43153 A closed form of ~ syl . ...
rp-7frege 43154 Distribute antecedent and ...
rp-4frege 43155 Elimination of a nested an...
rp-6frege 43156 Elimination of a nested an...
rp-8frege 43157 Eliminate antecedent when ...
rp-frege25 43158 Closed form for ~ a1dd . ...
frege6 43159 A closed form of ~ imim2d ...
axfrege8 43160 Swap antecedents. Identic...
frege7 43161 A closed form of ~ syl6 . ...
frege26 43163 Identical to ~ idd . Prop...
frege27 43164 We cannot (at the same tim...
frege9 43165 Closed form of ~ syl with ...
frege12 43166 A closed form of ~ com23 ....
frege11 43167 Elimination of a nested an...
frege24 43168 Closed form for ~ a1d . D...
frege16 43169 A closed form of ~ com34 ....
frege25 43170 Closed form for ~ a1dd . ...
frege18 43171 Closed form of a syllogism...
frege22 43172 A closed form of ~ com45 ....
frege10 43173 Result commuting anteceden...
frege17 43174 A closed form of ~ com3l ....
frege13 43175 A closed form of ~ com3r ....
frege14 43176 Closed form of a deduction...
frege19 43177 A closed form of ~ syl6 . ...
frege23 43178 Syllogism followed by rota...
frege15 43179 A closed form of ~ com4r ....
frege21 43180 Replace antecedent in ante...
frege20 43181 A closed form of ~ syl8 . ...
axfrege28 43182 Contraposition. Identical...
frege29 43184 Closed form of ~ con3d . ...
frege30 43185 Commuted, closed form of ~...
axfrege31 43186 Identical to ~ notnotr . ...
frege32 43188 Deduce ~ con1 from ~ con3 ...
frege33 43189 If ` ph ` or ` ps ` takes ...
frege34 43190 If as a consequence of the...
frege35 43191 Commuted, closed form of ~...
frege36 43192 The case in which ` ps ` i...
frege37 43193 If ` ch ` is a necessary c...
frege38 43194 Identical to ~ pm2.21 . P...
frege39 43195 Syllogism between ~ pm2.18...
frege40 43196 Anything implies ~ pm2.18 ...
axfrege41 43197 Identical to ~ notnot . A...
frege42 43199 Not not ~ id . Propositio...
frege43 43200 If there is a choice only ...
frege44 43201 Similar to a commuted ~ pm...
frege45 43202 Deduce ~ pm2.6 from ~ con1...
frege46 43203 If ` ps ` holds when ` ph ...
frege47 43204 Deduce consequence follows...
frege48 43205 Closed form of syllogism w...
frege49 43206 Closed form of deduction w...
frege50 43207 Closed form of ~ jaoi . P...
frege51 43208 Compare with ~ jaod . Pro...
axfrege52a 43209 Justification for ~ ax-fre...
frege52aid 43211 The case when the content ...
frege53aid 43212 Specialization of ~ frege5...
frege53a 43213 Lemma for ~ frege55a . Pr...
axfrege54a 43214 Justification for ~ ax-fre...
frege54cor0a 43216 Synonym for logical equiva...
frege54cor1a 43217 Reflexive equality. (Cont...
frege55aid 43218 Lemma for ~ frege57aid . ...
frege55lem1a 43219 Necessary deduction regard...
frege55lem2a 43220 Core proof of Proposition ...
frege55a 43221 Proposition 55 of [Frege18...
frege55cor1a 43222 Proposition 55 of [Frege18...
frege56aid 43223 Lemma for ~ frege57aid . ...
frege56a 43224 Proposition 56 of [Frege18...
frege57aid 43225 This is the all imporant f...
frege57a 43226 Analogue of ~ frege57aid ....
axfrege58a 43227 Identical to ~ anifp . Ju...
frege58acor 43229 Lemma for ~ frege59a . (C...
frege59a 43230 A kind of Aristotelian inf...
frege60a 43231 Swap antecedents of ~ ax-f...
frege61a 43232 Lemma for ~ frege65a . Pr...
frege62a 43233 A kind of Aristotelian inf...
frege63a 43234 Proposition 63 of [Frege18...
frege64a 43235 Lemma for ~ frege65a . Pr...
frege65a 43236 A kind of Aristotelian inf...
frege66a 43237 Swap antecedents of ~ freg...
frege67a 43238 Lemma for ~ frege68a . Pr...
frege68a 43239 Combination of applying a ...
axfrege52c 43240 Justification for ~ ax-fre...
frege52b 43242 The case when the content ...
frege53b 43243 Lemma for frege102 (via ~ ...
axfrege54c 43244 Reflexive equality of clas...
frege54b 43246 Reflexive equality of sets...
frege54cor1b 43247 Reflexive equality. (Cont...
frege55lem1b 43248 Necessary deduction regard...
frege55lem2b 43249 Lemma for ~ frege55b . Co...
frege55b 43250 Lemma for ~ frege57b . Pr...
frege56b 43251 Lemma for ~ frege57b . Pr...
frege57b 43252 Analogue of ~ frege57aid ....
axfrege58b 43253 If ` A. x ph ` is affirmed...
frege58bid 43255 If ` A. x ph ` is affirmed...
frege58bcor 43256 Lemma for ~ frege59b . (C...
frege59b 43257 A kind of Aristotelian inf...
frege60b 43258 Swap antecedents of ~ ax-f...
frege61b 43259 Lemma for ~ frege65b . Pr...
frege62b 43260 A kind of Aristotelian inf...
frege63b 43261 Lemma for ~ frege91 . Pro...
frege64b 43262 Lemma for ~ frege65b . Pr...
frege65b 43263 A kind of Aristotelian inf...
frege66b 43264 Swap antecedents of ~ freg...
frege67b 43265 Lemma for ~ frege68b . Pr...
frege68b 43266 Combination of applying a ...
frege53c 43267 Proposition 53 of [Frege18...
frege54cor1c 43268 Reflexive equality. (Cont...
frege55lem1c 43269 Necessary deduction regard...
frege55lem2c 43270 Core proof of Proposition ...
frege55c 43271 Proposition 55 of [Frege18...
frege56c 43272 Lemma for ~ frege57c . Pr...
frege57c 43273 Swap order of implication ...
frege58c 43274 Principle related to ~ sp ...
frege59c 43275 A kind of Aristotelian inf...
frege60c 43276 Swap antecedents of ~ freg...
frege61c 43277 Lemma for ~ frege65c . Pr...
frege62c 43278 A kind of Aristotelian inf...
frege63c 43279 Analogue of ~ frege63b . ...
frege64c 43280 Lemma for ~ frege65c . Pr...
frege65c 43281 A kind of Aristotelian inf...
frege66c 43282 Swap antecedents of ~ freg...
frege67c 43283 Lemma for ~ frege68c . Pr...
frege68c 43284 Combination of applying a ...
dffrege69 43285 If from the proposition th...
frege70 43286 Lemma for ~ frege72 . Pro...
frege71 43287 Lemma for ~ frege72 . Pro...
frege72 43288 If property ` A ` is hered...
frege73 43289 Lemma for ~ frege87 . Pro...
frege74 43290 If ` X ` has a property ` ...
frege75 43291 If from the proposition th...
dffrege76 43292 If from the two propositio...
frege77 43293 If ` Y ` follows ` X ` in ...
frege78 43294 Commuted form of ~ frege77...
frege79 43295 Distributed form of ~ freg...
frege80 43296 Add additional condition t...
frege81 43297 If ` X ` has a property ` ...
frege82 43298 Closed-form deduction base...
frege83 43299 Apply commuted form of ~ f...
frege84 43300 Commuted form of ~ frege81...
frege85 43301 Commuted form of ~ frege77...
frege86 43302 Conclusion about element o...
frege87 43303 If ` Z ` is a result of an...
frege88 43304 Commuted form of ~ frege87...
frege89 43305 One direction of ~ dffrege...
frege90 43306 Add antecedent to ~ frege8...
frege91 43307 Every result of an applica...
frege92 43308 Inference from ~ frege91 ....
frege93 43309 Necessary condition for tw...
frege94 43310 Looking one past a pair re...
frege95 43311 Looking one past a pair re...
frege96 43312 Every result of an applica...
frege97 43313 The property of following ...
frege98 43314 If ` Y ` follows ` X ` and...
dffrege99 43315 If ` Z ` is identical with...
frege100 43316 One direction of ~ dffrege...
frege101 43317 Lemma for ~ frege102 . Pr...
frege102 43318 If ` Z ` belongs to the ` ...
frege103 43319 Proposition 103 of [Frege1...
frege104 43320 Proposition 104 of [Frege1...
frege105 43321 Proposition 105 of [Frege1...
frege106 43322 Whatever follows ` X ` in ...
frege107 43323 Proposition 107 of [Frege1...
frege108 43324 If ` Y ` belongs to the ` ...
frege109 43325 The property of belonging ...
frege110 43326 Proposition 110 of [Frege1...
frege111 43327 If ` Y ` belongs to the ` ...
frege112 43328 Identity implies belonging...
frege113 43329 Proposition 113 of [Frege1...
frege114 43330 If ` X ` belongs to the ` ...
dffrege115 43331 If from the circumstance t...
frege116 43332 One direction of ~ dffrege...
frege117 43333 Lemma for ~ frege118 . Pr...
frege118 43334 Simplified application of ...
frege119 43335 Lemma for ~ frege120 . Pr...
frege120 43336 Simplified application of ...
frege121 43337 Lemma for ~ frege122 . Pr...
frege122 43338 If ` X ` is a result of an...
frege123 43339 Lemma for ~ frege124 . Pr...
frege124 43340 If ` X ` is a result of an...
frege125 43341 Lemma for ~ frege126 . Pr...
frege126 43342 If ` M ` follows ` Y ` in ...
frege127 43343 Communte antecedents of ~ ...
frege128 43344 Lemma for ~ frege129 . Pr...
frege129 43345 If the procedure ` R ` is ...
frege130 43346 Lemma for ~ frege131 . Pr...
frege131 43347 If the procedure ` R ` is ...
frege132 43348 Lemma for ~ frege133 . Pr...
frege133 43349 If the procedure ` R ` is ...
enrelmap 43350 The set of all possible re...
enrelmapr 43351 The set of all possible re...
enmappw 43352 The set of all mappings fr...
enmappwid 43353 The set of all mappings fr...
rfovd 43354 Value of the operator, ` (...
rfovfvd 43355 Value of the operator, ` (...
rfovfvfvd 43356 Value of the operator, ` (...
rfovcnvf1od 43357 Properties of the operator...
rfovcnvd 43358 Value of the converse of t...
rfovf1od 43359 The value of the operator,...
rfovcnvfvd 43360 Value of the converse of t...
fsovd 43361 Value of the operator, ` (...
fsovrfovd 43362 The operator which gives a...
fsovfvd 43363 Value of the operator, ` (...
fsovfvfvd 43364 Value of the operator, ` (...
fsovfd 43365 The operator, ` ( A O B ) ...
fsovcnvlem 43366 The ` O ` operator, which ...
fsovcnvd 43367 The value of the converse ...
fsovcnvfvd 43368 The value of the converse ...
fsovf1od 43369 The value of ` ( A O B ) `...
dssmapfvd 43370 Value of the duality opera...
dssmapfv2d 43371 Value of the duality opera...
dssmapfv3d 43372 Value of the duality opera...
dssmapnvod 43373 For any base set ` B ` the...
dssmapf1od 43374 For any base set ` B ` the...
dssmap2d 43375 For any base set ` B ` the...
or3or 43376 Decompose disjunction into...
andi3or 43377 Distribute over triple dis...
uneqsn 43378 If a union of classes is e...
brfvimex 43379 If a binary relation holds...
brovmptimex 43380 If a binary relation holds...
brovmptimex1 43381 If a binary relation holds...
brovmptimex2 43382 If a binary relation holds...
brcoffn 43383 Conditions allowing the de...
brcofffn 43384 Conditions allowing the de...
brco2f1o 43385 Conditions allowing the de...
brco3f1o 43386 Conditions allowing the de...
ntrclsbex 43387 If (pseudo-)interior and (...
ntrclsrcomplex 43388 The relative complement of...
neik0imk0p 43389 Kuratowski's K0 axiom impl...
ntrk2imkb 43390 If an interior function is...
ntrkbimka 43391 If the interiors of disjoi...
ntrk0kbimka 43392 If the interiors of disjoi...
clsk3nimkb 43393 If the base set is not emp...
clsk1indlem0 43394 The ansatz closure functio...
clsk1indlem2 43395 The ansatz closure functio...
clsk1indlem3 43396 The ansatz closure functio...
clsk1indlem4 43397 The ansatz closure functio...
clsk1indlem1 43398 The ansatz closure functio...
clsk1independent 43399 For generalized closure fu...
neik0pk1imk0 43400 Kuratowski's K0' and K1 ax...
isotone1 43401 Two different ways to say ...
isotone2 43402 Two different ways to say ...
ntrk1k3eqk13 43403 An interior function is bo...
ntrclsf1o 43404 If (pseudo-)interior and (...
ntrclsnvobr 43405 If (pseudo-)interior and (...
ntrclsiex 43406 If (pseudo-)interior and (...
ntrclskex 43407 If (pseudo-)interior and (...
ntrclsfv1 43408 If (pseudo-)interior and (...
ntrclsfv2 43409 If (pseudo-)interior and (...
ntrclselnel1 43410 If (pseudo-)interior and (...
ntrclselnel2 43411 If (pseudo-)interior and (...
ntrclsfv 43412 The value of the interior ...
ntrclsfveq1 43413 If interior and closure fu...
ntrclsfveq2 43414 If interior and closure fu...
ntrclsfveq 43415 If interior and closure fu...
ntrclsss 43416 If interior and closure fu...
ntrclsneine0lem 43417 If (pseudo-)interior and (...
ntrclsneine0 43418 If (pseudo-)interior and (...
ntrclscls00 43419 If (pseudo-)interior and (...
ntrclsiso 43420 If (pseudo-)interior and (...
ntrclsk2 43421 An interior function is co...
ntrclskb 43422 The interiors of disjoint ...
ntrclsk3 43423 The intersection of interi...
ntrclsk13 43424 The interior of the inters...
ntrclsk4 43425 Idempotence of the interio...
ntrneibex 43426 If (pseudo-)interior and (...
ntrneircomplex 43427 The relative complement of...
ntrneif1o 43428 If (pseudo-)interior and (...
ntrneiiex 43429 If (pseudo-)interior and (...
ntrneinex 43430 If (pseudo-)interior and (...
ntrneicnv 43431 If (pseudo-)interior and (...
ntrneifv1 43432 If (pseudo-)interior and (...
ntrneifv2 43433 If (pseudo-)interior and (...
ntrneiel 43434 If (pseudo-)interior and (...
ntrneifv3 43435 The value of the neighbors...
ntrneineine0lem 43436 If (pseudo-)interior and (...
ntrneineine1lem 43437 If (pseudo-)interior and (...
ntrneifv4 43438 The value of the interior ...
ntrneiel2 43439 Membership in iterated int...
ntrneineine0 43440 If (pseudo-)interior and (...
ntrneineine1 43441 If (pseudo-)interior and (...
ntrneicls00 43442 If (pseudo-)interior and (...
ntrneicls11 43443 If (pseudo-)interior and (...
ntrneiiso 43444 If (pseudo-)interior and (...
ntrneik2 43445 An interior function is co...
ntrneix2 43446 An interior (closure) func...
ntrneikb 43447 The interiors of disjoint ...
ntrneixb 43448 The interiors (closures) o...
ntrneik3 43449 The intersection of interi...
ntrneix3 43450 The closure of the union o...
ntrneik13 43451 The interior of the inters...
ntrneix13 43452 The closure of the union o...
ntrneik4w 43453 Idempotence of the interio...
ntrneik4 43454 Idempotence of the interio...
clsneibex 43455 If (pseudo-)closure and (p...
clsneircomplex 43456 The relative complement of...
clsneif1o 43457 If a (pseudo-)closure func...
clsneicnv 43458 If a (pseudo-)closure func...
clsneikex 43459 If closure and neighborhoo...
clsneinex 43460 If closure and neighborhoo...
clsneiel1 43461 If a (pseudo-)closure func...
clsneiel2 43462 If a (pseudo-)closure func...
clsneifv3 43463 Value of the neighborhoods...
clsneifv4 43464 Value of the closure (inte...
neicvgbex 43465 If (pseudo-)neighborhood a...
neicvgrcomplex 43466 The relative complement of...
neicvgf1o 43467 If neighborhood and conver...
neicvgnvo 43468 If neighborhood and conver...
neicvgnvor 43469 If neighborhood and conver...
neicvgmex 43470 If the neighborhoods and c...
neicvgnex 43471 If the neighborhoods and c...
neicvgel1 43472 A subset being an element ...
neicvgel2 43473 The complement of a subset...
neicvgfv 43474 The value of the neighborh...
ntrrn 43475 The range of the interior ...
ntrf 43476 The interior function of a...
ntrf2 43477 The interior function is a...
ntrelmap 43478 The interior function is a...
clsf2 43479 The closure function is a ...
clselmap 43480 The closure function is a ...
dssmapntrcls 43481 The interior and closure o...
dssmapclsntr 43482 The closure and interior o...
gneispa 43483 Each point ` p ` of the ne...
gneispb 43484 Given a neighborhood ` N `...
gneispace2 43485 The predicate that ` F ` i...
gneispace3 43486 The predicate that ` F ` i...
gneispace 43487 The predicate that ` F ` i...
gneispacef 43488 A generic neighborhood spa...
gneispacef2 43489 A generic neighborhood spa...
gneispacefun 43490 A generic neighborhood spa...
gneispacern 43491 A generic neighborhood spa...
gneispacern2 43492 A generic neighborhood spa...
gneispace0nelrn 43493 A generic neighborhood spa...
gneispace0nelrn2 43494 A generic neighborhood spa...
gneispace0nelrn3 43495 A generic neighborhood spa...
gneispaceel 43496 Every neighborhood of a po...
gneispaceel2 43497 Every neighborhood of a po...
gneispacess 43498 All supersets of a neighbo...
gneispacess2 43499 All supersets of a neighbo...
k0004lem1 43500 Application of ~ ssin to r...
k0004lem2 43501 A mapping with a particula...
k0004lem3 43502 When the value of a mappin...
k0004val 43503 The topological simplex of...
k0004ss1 43504 The topological simplex of...
k0004ss2 43505 The topological simplex of...
k0004ss3 43506 The topological simplex of...
k0004val0 43507 The topological simplex of...
inductionexd 43508 Simple induction example. ...
wwlemuld 43509 Natural deduction form of ...
leeq1d 43510 Specialization of ~ breq1d...
leeq2d 43511 Specialization of ~ breq2d...
absmulrposd 43512 Specialization of absmuld ...
imadisjld 43513 Natural dduction form of o...
wnefimgd 43514 The image of a mapping fro...
fco2d 43515 Natural deduction form of ...
wfximgfd 43516 The value of a function on...
extoimad 43517 If |f(x)| <= C for all x t...
imo72b2lem0 43518 Lemma for ~ imo72b2 . (Co...
suprleubrd 43519 Natural deduction form of ...
imo72b2lem2 43520 Lemma for ~ imo72b2 . (Co...
suprlubrd 43521 Natural deduction form of ...
imo72b2lem1 43522 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 43523 'Less than or equal to' re...
lemuldiv4d 43524 'Less than or equal to' re...
imo72b2 43525 IMO 1972 B2. (14th Intern...
int-addcomd 43526 AdditionCommutativity gene...
int-addassocd 43527 AdditionAssociativity gene...
int-addsimpd 43528 AdditionSimplification gen...
int-mulcomd 43529 MultiplicationCommutativit...
int-mulassocd 43530 MultiplicationAssociativit...
int-mulsimpd 43531 MultiplicationSimplificati...
int-leftdistd 43532 AdditionMultiplicationLeft...
int-rightdistd 43533 AdditionMultiplicationRigh...
int-sqdefd 43534 SquareDefinition generator...
int-mul11d 43535 First MultiplicationOne ge...
int-mul12d 43536 Second MultiplicationOne g...
int-add01d 43537 First AdditionZero generat...
int-add02d 43538 Second AdditionZero genera...
int-sqgeq0d 43539 SquareGEQZero generator ru...
int-eqprincd 43540 PrincipleOfEquality genera...
int-eqtransd 43541 EqualityTransitivity gener...
int-eqmvtd 43542 EquMoveTerm generator rule...
int-eqineqd 43543 EquivalenceImpliesDoubleIn...
int-ineqmvtd 43544 IneqMoveTerm generator rul...
int-ineq1stprincd 43545 FirstPrincipleOfInequality...
int-ineq2ndprincd 43546 SecondPrincipleOfInequalit...
int-ineqtransd 43547 InequalityTransitivity gen...
unitadd 43548 Theorem used in conjunctio...
gsumws3 43549 Valuation of a length 3 wo...
gsumws4 43550 Valuation of a length 4 wo...
amgm2d 43551 Arithmetic-geometric mean ...
amgm3d 43552 Arithmetic-geometric mean ...
amgm4d 43553 Arithmetic-geometric mean ...
spALT 43554 ~ sp can be proven from th...
elnelneqd 43555 Two classes are not equal ...
elnelneq2d 43556 Two classes are not equal ...
rr-spce 43557 Prove an existential. (Co...
rexlimdvaacbv 43558 Unpack a restricted existe...
rexlimddvcbvw 43559 Unpack a restricted existe...
rexlimddvcbv 43560 Unpack a restricted existe...
rr-elrnmpt3d 43561 Elementhood in an image se...
finnzfsuppd 43562 If a function is zero outs...
rr-phpd 43563 Equivalent of ~ php withou...
suceqd 43564 Deduction associated with ...
tfindsd 43565 Deduction associated with ...
mnringvald 43568 Value of the monoid ring f...
mnringnmulrd 43569 Components of a monoid rin...
mnringnmulrdOLD 43570 Obsolete version of ~ mnri...
mnringbased 43571 The base set of a monoid r...
mnringbasedOLD 43572 Obsolete version of ~ mnri...
mnringbaserd 43573 The base set of a monoid r...
mnringelbased 43574 Membership in the base set...
mnringbasefd 43575 Elements of a monoid ring ...
mnringbasefsuppd 43576 Elements of a monoid ring ...
mnringaddgd 43577 The additive operation of ...
mnringaddgdOLD 43578 Obsolete version of ~ mnri...
mnring0gd 43579 The additive identity of a...
mnring0g2d 43580 The additive identity of a...
mnringmulrd 43581 The ring product of a mono...
mnringscad 43582 The scalar ring of a monoi...
mnringscadOLD 43583 Obsolete version of ~ mnri...
mnringvscad 43584 The scalar product of a mo...
mnringvscadOLD 43585 Obsolete version of ~ mnri...
mnringlmodd 43586 Monoid rings are left modu...
mnringmulrvald 43587 Value of multiplication in...
mnringmulrcld 43588 Monoid rings are closed un...
gru0eld 43589 A nonempty Grothendieck un...
grusucd 43590 Grothendieck universes are...
r1rankcld 43591 Any rank of the cumulative...
grur1cld 43592 Grothendieck universes are...
grurankcld 43593 Grothendieck universes are...
grurankrcld 43594 If a Grothendieck universe...
scotteqd 43597 Equality theorem for the S...
scotteq 43598 Closed form of ~ scotteqd ...
nfscott 43599 Bound-variable hypothesis ...
scottabf 43600 Value of the Scott operati...
scottab 43601 Value of the Scott operati...
scottabes 43602 Value of the Scott operati...
scottss 43603 Scott's trick produces a s...
elscottab 43604 An element of the output o...
scottex2 43605 ~ scottex expressed using ...
scotteld 43606 The Scott operation sends ...
scottelrankd 43607 Property of a Scott's tric...
scottrankd 43608 Rank of a nonempty Scott's...
gruscottcld 43609 If a Grothendieck universe...
dfcoll2 43612 Alternate definition of th...
colleq12d 43613 Equality theorem for the c...
colleq1 43614 Equality theorem for the c...
colleq2 43615 Equality theorem for the c...
nfcoll 43616 Bound-variable hypothesis ...
collexd 43617 The output of the collecti...
cpcolld 43618 Property of the collection...
cpcoll2d 43619 ~ cpcolld with an extra ex...
grucollcld 43620 A Grothendieck universe co...
ismnu 43621 The hypothesis of this the...
mnuop123d 43622 Operations of a minimal un...
mnussd 43623 Minimal universes are clos...
mnuss2d 43624 ~ mnussd with arguments pr...
mnu0eld 43625 A nonempty minimal univers...
mnuop23d 43626 Second and third operation...
mnupwd 43627 Minimal universes are clos...
mnusnd 43628 Minimal universes are clos...
mnuprssd 43629 A minimal universe contain...
mnuprss2d 43630 Special case of ~ mnuprssd...
mnuop3d 43631 Third operation of a minim...
mnuprdlem1 43632 Lemma for ~ mnuprd . (Con...
mnuprdlem2 43633 Lemma for ~ mnuprd . (Con...
mnuprdlem3 43634 Lemma for ~ mnuprd . (Con...
mnuprdlem4 43635 Lemma for ~ mnuprd . Gene...
mnuprd 43636 Minimal universes are clos...
mnuunid 43637 Minimal universes are clos...
mnuund 43638 Minimal universes are clos...
mnutrcld 43639 Minimal universes contain ...
mnutrd 43640 Minimal universes are tran...
mnurndlem1 43641 Lemma for ~ mnurnd . (Con...
mnurndlem2 43642 Lemma for ~ mnurnd . Dedu...
mnurnd 43643 Minimal universes contain ...
mnugrud 43644 Minimal universes are Grot...
grumnudlem 43645 Lemma for ~ grumnud . (Co...
grumnud 43646 Grothendieck universes are...
grumnueq 43647 The class of Grothendieck ...
expandan 43648 Expand conjunction to prim...
expandexn 43649 Expand an existential quan...
expandral 43650 Expand a restricted univer...
expandrexn 43651 Expand a restricted existe...
expandrex 43652 Expand a restricted existe...
expanduniss 43653 Expand ` U. A C_ B ` to pr...
ismnuprim 43654 Express the predicate on `...
rr-grothprimbi 43655 Express "every set is cont...
inagrud 43656 Inaccessible levels of the...
inaex 43657 Assuming the Tarski-Grothe...
gruex 43658 Assuming the Tarski-Grothe...
rr-groth 43659 An equivalent of ~ ax-grot...
rr-grothprim 43660 An equivalent of ~ ax-grot...
ismnushort 43661 Express the predicate on `...
dfuniv2 43662 Alternative definition of ...
rr-grothshortbi 43663 Express "every set is cont...
rr-grothshort 43664 A shorter equivalent of ~ ...
nanorxor 43665 'nand' is equivalent to th...
undisjrab 43666 Union of two disjoint rest...
iso0 43667 The empty set is an ` R , ...
ssrecnpr 43668 ` RR ` is a subset of both...
seff 43669 Let set ` S ` be the real ...
sblpnf 43670 The infinity ball in the a...
prmunb2 43671 The primes are unbounded. ...
dvgrat 43672 Ratio test for divergence ...
cvgdvgrat 43673 Ratio test for convergence...
radcnvrat 43674 Let ` L ` be the limit, if...
reldvds 43675 The divides relation is in...
nznngen 43676 All positive integers in t...
nzss 43677 The set of multiples of _m...
nzin 43678 The intersection of the se...
nzprmdif 43679 Subtract one prime's multi...
hashnzfz 43680 Special case of ~ hashdvds...
hashnzfz2 43681 Special case of ~ hashnzfz...
hashnzfzclim 43682 As the upper bound ` K ` o...
caofcan 43683 Transfer a cancellation la...
ofsubid 43684 Function analogue of ~ sub...
ofmul12 43685 Function analogue of ~ mul...
ofdivrec 43686 Function analogue of ~ div...
ofdivcan4 43687 Function analogue of ~ div...
ofdivdiv2 43688 Function analogue of ~ div...
lhe4.4ex1a 43689 Example of the Fundamental...
dvsconst 43690 Derivative of a constant f...
dvsid 43691 Derivative of the identity...
dvsef 43692 Derivative of the exponent...
expgrowthi 43693 Exponential growth and dec...
dvconstbi 43694 The derivative of a functi...
expgrowth 43695 Exponential growth and dec...
bccval 43698 Value of the generalized b...
bcccl 43699 Closure of the generalized...
bcc0 43700 The generalized binomial c...
bccp1k 43701 Generalized binomial coeff...
bccm1k 43702 Generalized binomial coeff...
bccn0 43703 Generalized binomial coeff...
bccn1 43704 Generalized binomial coeff...
bccbc 43705 The binomial coefficient a...
uzmptshftfval 43706 When ` F ` is a maps-to fu...
dvradcnv2 43707 The radius of convergence ...
binomcxplemwb 43708 Lemma for ~ binomcxp . Th...
binomcxplemnn0 43709 Lemma for ~ binomcxp . Wh...
binomcxplemrat 43710 Lemma for ~ binomcxp . As...
binomcxplemfrat 43711 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 43712 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 43713 Lemma for ~ binomcxp . By...
binomcxplemcvg 43714 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 43715 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 43716 Lemma for ~ binomcxp . Wh...
binomcxp 43717 Generalize the binomial th...
pm10.12 43718 Theorem *10.12 in [Whitehe...
pm10.14 43719 Theorem *10.14 in [Whitehe...
pm10.251 43720 Theorem *10.251 in [Whiteh...
pm10.252 43721 Theorem *10.252 in [Whiteh...
pm10.253 43722 Theorem *10.253 in [Whiteh...
albitr 43723 Theorem *10.301 in [Whiteh...
pm10.42 43724 Theorem *10.42 in [Whitehe...
pm10.52 43725 Theorem *10.52 in [Whitehe...
pm10.53 43726 Theorem *10.53 in [Whitehe...
pm10.541 43727 Theorem *10.541 in [Whiteh...
pm10.542 43728 Theorem *10.542 in [Whiteh...
pm10.55 43729 Theorem *10.55 in [Whitehe...
pm10.56 43730 Theorem *10.56 in [Whitehe...
pm10.57 43731 Theorem *10.57 in [Whitehe...
2alanimi 43732 Removes two universal quan...
2al2imi 43733 Removes two universal quan...
pm11.11 43734 Theorem *11.11 in [Whitehe...
pm11.12 43735 Theorem *11.12 in [Whitehe...
19.21vv 43736 Compare Theorem *11.3 in [...
2alim 43737 Theorem *11.32 in [Whitehe...
2albi 43738 Theorem *11.33 in [Whitehe...
2exim 43739 Theorem *11.34 in [Whitehe...
2exbi 43740 Theorem *11.341 in [Whiteh...
spsbce-2 43741 Theorem *11.36 in [Whitehe...
19.33-2 43742 Theorem *11.421 in [Whiteh...
19.36vv 43743 Theorem *11.43 in [Whitehe...
19.31vv 43744 Theorem *11.44 in [Whitehe...
19.37vv 43745 Theorem *11.46 in [Whitehe...
19.28vv 43746 Theorem *11.47 in [Whitehe...
pm11.52 43747 Theorem *11.52 in [Whitehe...
aaanv 43748 Theorem *11.56 in [Whitehe...
pm11.57 43749 Theorem *11.57 in [Whitehe...
pm11.58 43750 Theorem *11.58 in [Whitehe...
pm11.59 43751 Theorem *11.59 in [Whitehe...
pm11.6 43752 Theorem *11.6 in [Whitehea...
pm11.61 43753 Theorem *11.61 in [Whitehe...
pm11.62 43754 Theorem *11.62 in [Whitehe...
pm11.63 43755 Theorem *11.63 in [Whitehe...
pm11.7 43756 Theorem *11.7 in [Whitehea...
pm11.71 43757 Theorem *11.71 in [Whitehe...
sbeqal1 43758 If ` x = y ` always implie...
sbeqal1i 43759 Suppose you know ` x = y `...
sbeqal2i 43760 If ` x = y ` implies ` x =...
axc5c4c711 43761 Proof of a theorem that ca...
axc5c4c711toc5 43762 Rederivation of ~ sp from ...
axc5c4c711toc4 43763 Rederivation of ~ axc4 fro...
axc5c4c711toc7 43764 Rederivation of ~ axc7 fro...
axc5c4c711to11 43765 Rederivation of ~ ax-11 fr...
axc11next 43766 This theorem shows that, g...
pm13.13a 43767 One result of theorem *13....
pm13.13b 43768 Theorem *13.13 in [Whitehe...
pm13.14 43769 Theorem *13.14 in [Whitehe...
pm13.192 43770 Theorem *13.192 in [Whiteh...
pm13.193 43771 Theorem *13.193 in [Whiteh...
pm13.194 43772 Theorem *13.194 in [Whiteh...
pm13.195 43773 Theorem *13.195 in [Whiteh...
pm13.196a 43774 Theorem *13.196 in [Whiteh...
2sbc6g 43775 Theorem *13.21 in [Whitehe...
2sbc5g 43776 Theorem *13.22 in [Whitehe...
iotain 43777 Equivalence between two di...
iotaexeu 43778 The iota class exists. Th...
iotasbc 43779 Definition *14.01 in [Whit...
iotasbc2 43780 Theorem *14.111 in [Whiteh...
pm14.12 43781 Theorem *14.12 in [Whitehe...
pm14.122a 43782 Theorem *14.122 in [Whiteh...
pm14.122b 43783 Theorem *14.122 in [Whiteh...
pm14.122c 43784 Theorem *14.122 in [Whiteh...
pm14.123a 43785 Theorem *14.123 in [Whiteh...
pm14.123b 43786 Theorem *14.123 in [Whiteh...
pm14.123c 43787 Theorem *14.123 in [Whiteh...
pm14.18 43788 Theorem *14.18 in [Whitehe...
iotaequ 43789 Theorem *14.2 in [Whitehea...
iotavalb 43790 Theorem *14.202 in [Whiteh...
iotasbc5 43791 Theorem *14.205 in [Whiteh...
pm14.24 43792 Theorem *14.24 in [Whitehe...
iotavalsb 43793 Theorem *14.242 in [Whiteh...
sbiota1 43794 Theorem *14.25 in [Whitehe...
sbaniota 43795 Theorem *14.26 in [Whitehe...
eubiOLD 43796 Obsolete proof of ~ eubi a...
iotasbcq 43797 Theorem *14.272 in [Whiteh...
elnev 43798 Any set that contains one ...
rusbcALT 43799 A version of Russell's par...
compeq 43800 Equality between two ways ...
compne 43801 The complement of ` A ` is...
compab 43802 Two ways of saying "the co...
conss2 43803 Contrapositive law for sub...
conss1 43804 Contrapositive law for sub...
ralbidar 43805 More general form of ~ ral...
rexbidar 43806 More general form of ~ rex...
dropab1 43807 Theorem to aid use of the ...
dropab2 43808 Theorem to aid use of the ...
ipo0 43809 If the identity relation p...
ifr0 43810 A class that is founded by...
ordpss 43811 ~ ordelpss with an anteced...
fvsb 43812 Explicit substitution of a...
fveqsb 43813 Implicit substitution of a...
xpexb 43814 A Cartesian product exists...
trelpss 43815 An element of a transitive...
addcomgi 43816 Generalization of commutat...
addrval 43826 Value of the operation of ...
subrval 43827 Value of the operation of ...
mulvval 43828 Value of the operation of ...
addrfv 43829 Vector addition at a value...
subrfv 43830 Vector subtraction at a va...
mulvfv 43831 Scalar multiplication at a...
addrfn 43832 Vector addition produces a...
subrfn 43833 Vector subtraction produce...
mulvfn 43834 Scalar multiplication prod...
addrcom 43835 Vector addition is commuta...
idiALT 43839 Placeholder for ~ idi . T...
exbir 43840 Exportation implication al...
3impexpbicom 43841 Version of ~ 3impexp where...
3impexpbicomi 43842 Inference associated with ...
bi1imp 43843 Importation inference simi...
bi2imp 43844 Importation inference simi...
bi3impb 43845 Similar to ~ 3impb with im...
bi3impa 43846 Similar to ~ 3impa with im...
bi23impib 43847 ~ 3impib with the inner im...
bi13impib 43848 ~ 3impib with the outer im...
bi123impib 43849 ~ 3impib with the implicat...
bi13impia 43850 ~ 3impia with the outer im...
bi123impia 43851 ~ 3impia with the implicat...
bi33imp12 43852 ~ 3imp with innermost impl...
bi23imp13 43853 ~ 3imp with middle implica...
bi13imp23 43854 ~ 3imp with outermost impl...
bi13imp2 43855 Similar to ~ 3imp except t...
bi12imp3 43856 Similar to ~ 3imp except a...
bi23imp1 43857 Similar to ~ 3imp except a...
bi123imp0 43858 Similar to ~ 3imp except a...
4animp1 43859 A single hypothesis unific...
4an31 43860 A rearrangement of conjunc...
4an4132 43861 A rearrangement of conjunc...
expcomdg 43862 Biconditional form of ~ ex...
iidn3 43863 ~ idn3 without virtual ded...
ee222 43864 ~ e222 without virtual ded...
ee3bir 43865 Right-biconditional form o...
ee13 43866 ~ e13 without virtual dedu...
ee121 43867 ~ e121 without virtual ded...
ee122 43868 ~ e122 without virtual ded...
ee333 43869 ~ e333 without virtual ded...
ee323 43870 ~ e323 without virtual ded...
3ornot23 43871 If the second and third di...
orbi1r 43872 ~ orbi1 with order of disj...
3orbi123 43873 ~ pm4.39 with a 3-conjunct...
syl5imp 43874 Closed form of ~ syl5 . D...
impexpd 43875 The following User's Proof...
com3rgbi 43876 The following User's Proof...
impexpdcom 43877 The following User's Proof...
ee1111 43878 Non-virtual deduction form...
pm2.43bgbi 43879 Logical equivalence of a 2...
pm2.43cbi 43880 Logical equivalence of a 3...
ee233 43881 Non-virtual deduction form...
imbi13 43882 Join three logical equival...
ee33 43883 Non-virtual deduction form...
con5 43884 Biconditional contrapositi...
con5i 43885 Inference form of ~ con5 ....
exlimexi 43886 Inference similar to Theor...
sb5ALT 43887 Equivalence for substituti...
eexinst01 43888 ~ exinst01 without virtual...
eexinst11 43889 ~ exinst11 without virtual...
vk15.4j 43890 Excercise 4j of Unit 15 of...
notnotrALT 43891 Converse of double negatio...
con3ALT2 43892 Contraposition. Alternate...
ssralv2 43893 Quantification restricted ...
sbc3or 43894 ~ sbcor with a 3-disjuncts...
alrim3con13v 43895 Closed form of ~ alrimi wi...
rspsbc2 43896 ~ rspsbc with two quantify...
sbcoreleleq 43897 Substitution of a setvar v...
tratrb 43898 If a class is transitive a...
ordelordALT 43899 An element of an ordinal c...
sbcim2g 43900 Distribution of class subs...
sbcbi 43901 Implication form of ~ sbcb...
trsbc 43902 Formula-building inference...
truniALT 43903 The union of a class of tr...
onfrALTlem5 43904 Lemma for ~ onfrALT . (Co...
onfrALTlem4 43905 Lemma for ~ onfrALT . (Co...
onfrALTlem3 43906 Lemma for ~ onfrALT . (Co...
ggen31 43907 ~ gen31 without virtual de...
onfrALTlem2 43908 Lemma for ~ onfrALT . (Co...
cbvexsv 43909 A theorem pertaining to th...
onfrALTlem1 43910 Lemma for ~ onfrALT . (Co...
onfrALT 43911 The membership relation is...
19.41rg 43912 Closed form of right-to-le...
opelopab4 43913 Ordered pair membership in...
2pm13.193 43914 ~ pm13.193 for two variabl...
hbntal 43915 A closed form of ~ hbn . ~...
hbimpg 43916 A closed form of ~ hbim . ...
hbalg 43917 Closed form of ~ hbal . D...
hbexg 43918 Closed form of ~ nfex . D...
ax6e2eq 43919 Alternate form of ~ ax6e f...
ax6e2nd 43920 If at least two sets exist...
ax6e2ndeq 43921 "At least two sets exist" ...
2sb5nd 43922 Equivalence for double sub...
2uasbanh 43923 Distribute the unabbreviat...
2uasban 43924 Distribute the unabbreviat...
e2ebind 43925 Absorption of an existenti...
elpwgded 43926 ~ elpwgdedVD in convention...
trelded 43927 Deduction form of ~ trel ....
jaoded 43928 Deduction form of ~ jao . ...
sbtT 43929 A substitution into a theo...
not12an2impnot1 43930 If a double conjunction is...
in1 43933 Inference form of ~ df-vd1...
iin1 43934 ~ in1 without virtual dedu...
dfvd1ir 43935 Inference form of ~ df-vd1...
idn1 43936 Virtual deduction identity...
dfvd1imp 43937 Left-to-right part of defi...
dfvd1impr 43938 Right-to-left part of defi...
dfvd2 43941 Definition of a 2-hypothes...
dfvd2an 43944 Definition of a 2-hypothes...
dfvd2ani 43945 Inference form of ~ dfvd2a...
dfvd2anir 43946 Right-to-left inference fo...
dfvd2i 43947 Inference form of ~ dfvd2 ...
dfvd2ir 43948 Right-to-left inference fo...
dfvd3 43953 Definition of a 3-hypothes...
dfvd3i 43954 Inference form of ~ dfvd3 ...
dfvd3ir 43955 Right-to-left inference fo...
dfvd3an 43956 Definition of a 3-hypothes...
dfvd3ani 43957 Inference form of ~ dfvd3a...
dfvd3anir 43958 Right-to-left inference fo...
vd01 43959 A virtual hypothesis virtu...
vd02 43960 Two virtual hypotheses vir...
vd03 43961 A theorem is virtually inf...
vd12 43962 A virtual deduction with 1...
vd13 43963 A virtual deduction with 1...
vd23 43964 A virtual deduction with 2...
dfvd2imp 43965 The virtual deduction form...
dfvd2impr 43966 A 2-antecedent nested impl...
in2 43967 The virtual deduction intr...
int2 43968 The virtual deduction intr...
iin2 43969 ~ in2 without virtual dedu...
in2an 43970 The virtual deduction intr...
in3 43971 The virtual deduction intr...
iin3 43972 ~ in3 without virtual dedu...
in3an 43973 The virtual deduction intr...
int3 43974 The virtual deduction intr...
idn2 43975 Virtual deduction identity...
iden2 43976 Virtual deduction identity...
idn3 43977 Virtual deduction identity...
gen11 43978 Virtual deduction generali...
gen11nv 43979 Virtual deduction generali...
gen12 43980 Virtual deduction generali...
gen21 43981 Virtual deduction generali...
gen21nv 43982 Virtual deduction form of ...
gen31 43983 Virtual deduction generali...
gen22 43984 Virtual deduction generali...
ggen22 43985 ~ gen22 without virtual de...
exinst 43986 Existential Instantiation....
exinst01 43987 Existential Instantiation....
exinst11 43988 Existential Instantiation....
e1a 43989 A Virtual deduction elimin...
el1 43990 A Virtual deduction elimin...
e1bi 43991 Biconditional form of ~ e1...
e1bir 43992 Right biconditional form o...
e2 43993 A virtual deduction elimin...
e2bi 43994 Biconditional form of ~ e2...
e2bir 43995 Right biconditional form o...
ee223 43996 ~ e223 without virtual ded...
e223 43997 A virtual deduction elimin...
e222 43998 A virtual deduction elimin...
e220 43999 A virtual deduction elimin...
ee220 44000 ~ e220 without virtual ded...
e202 44001 A virtual deduction elimin...
ee202 44002 ~ e202 without virtual ded...
e022 44003 A virtual deduction elimin...
ee022 44004 ~ e022 without virtual ded...
e002 44005 A virtual deduction elimin...
ee002 44006 ~ e002 without virtual ded...
e020 44007 A virtual deduction elimin...
ee020 44008 ~ e020 without virtual ded...
e200 44009 A virtual deduction elimin...
ee200 44010 ~ e200 without virtual ded...
e221 44011 A virtual deduction elimin...
ee221 44012 ~ e221 without virtual ded...
e212 44013 A virtual deduction elimin...
ee212 44014 ~ e212 without virtual ded...
e122 44015 A virtual deduction elimin...
e112 44016 A virtual deduction elimin...
ee112 44017 ~ e112 without virtual ded...
e121 44018 A virtual deduction elimin...
e211 44019 A virtual deduction elimin...
ee211 44020 ~ e211 without virtual ded...
e210 44021 A virtual deduction elimin...
ee210 44022 ~ e210 without virtual ded...
e201 44023 A virtual deduction elimin...
ee201 44024 ~ e201 without virtual ded...
e120 44025 A virtual deduction elimin...
ee120 44026 Virtual deduction rule ~ e...
e021 44027 A virtual deduction elimin...
ee021 44028 ~ e021 without virtual ded...
e012 44029 A virtual deduction elimin...
ee012 44030 ~ e012 without virtual ded...
e102 44031 A virtual deduction elimin...
ee102 44032 ~ e102 without virtual ded...
e22 44033 A virtual deduction elimin...
e22an 44034 Conjunction form of ~ e22 ...
ee22an 44035 ~ e22an without virtual de...
e111 44036 A virtual deduction elimin...
e1111 44037 A virtual deduction elimin...
e110 44038 A virtual deduction elimin...
ee110 44039 ~ e110 without virtual ded...
e101 44040 A virtual deduction elimin...
ee101 44041 ~ e101 without virtual ded...
e011 44042 A virtual deduction elimin...
ee011 44043 ~ e011 without virtual ded...
e100 44044 A virtual deduction elimin...
ee100 44045 ~ e100 without virtual ded...
e010 44046 A virtual deduction elimin...
ee010 44047 ~ e010 without virtual ded...
e001 44048 A virtual deduction elimin...
ee001 44049 ~ e001 without virtual ded...
e11 44050 A virtual deduction elimin...
e11an 44051 Conjunction form of ~ e11 ...
ee11an 44052 ~ e11an without virtual de...
e01 44053 A virtual deduction elimin...
e01an 44054 Conjunction form of ~ e01 ...
ee01an 44055 ~ e01an without virtual de...
e10 44056 A virtual deduction elimin...
e10an 44057 Conjunction form of ~ e10 ...
ee10an 44058 ~ e10an without virtual de...
e02 44059 A virtual deduction elimin...
e02an 44060 Conjunction form of ~ e02 ...
ee02an 44061 ~ e02an without virtual de...
eel021old 44062 ~ el021old without virtual...
el021old 44063 A virtual deduction elimin...
eel132 44064 ~ syl2an with antecedents ...
eel000cT 44065 An elimination deduction. ...
eel0TT 44066 An elimination deduction. ...
eelT00 44067 An elimination deduction. ...
eelTTT 44068 An elimination deduction. ...
eelT11 44069 An elimination deduction. ...
eelT1 44070 Syllogism inference combin...
eelT12 44071 An elimination deduction. ...
eelTT1 44072 An elimination deduction. ...
eelT01 44073 An elimination deduction. ...
eel0T1 44074 An elimination deduction. ...
eel12131 44075 An elimination deduction. ...
eel2131 44076 ~ syl2an with antecedents ...
eel3132 44077 ~ syl2an with antecedents ...
eel0321old 44078 ~ el0321old without virtua...
el0321old 44079 A virtual deduction elimin...
eel2122old 44080 ~ el2122old without virtua...
el2122old 44081 A virtual deduction elimin...
eel0000 44082 Elimination rule similar t...
eel00001 44083 An elimination deduction. ...
eel00000 44084 Elimination rule similar ~...
eel11111 44085 Five-hypothesis eliminatio...
e12 44086 A virtual deduction elimin...
e12an 44087 Conjunction form of ~ e12 ...
el12 44088 Virtual deduction form of ...
e20 44089 A virtual deduction elimin...
e20an 44090 Conjunction form of ~ e20 ...
ee20an 44091 ~ e20an without virtual de...
e21 44092 A virtual deduction elimin...
e21an 44093 Conjunction form of ~ e21 ...
ee21an 44094 ~ e21an without virtual de...
e333 44095 A virtual deduction elimin...
e33 44096 A virtual deduction elimin...
e33an 44097 Conjunction form of ~ e33 ...
ee33an 44098 ~ e33an without virtual de...
e3 44099 Meta-connective form of ~ ...
e3bi 44100 Biconditional form of ~ e3...
e3bir 44101 Right biconditional form o...
e03 44102 A virtual deduction elimin...
ee03 44103 ~ e03 without virtual dedu...
e03an 44104 Conjunction form of ~ e03 ...
ee03an 44105 Conjunction form of ~ ee03...
e30 44106 A virtual deduction elimin...
ee30 44107 ~ e30 without virtual dedu...
e30an 44108 A virtual deduction elimin...
ee30an 44109 Conjunction form of ~ ee30...
e13 44110 A virtual deduction elimin...
e13an 44111 A virtual deduction elimin...
ee13an 44112 ~ e13an without virtual de...
e31 44113 A virtual deduction elimin...
ee31 44114 ~ e31 without virtual dedu...
e31an 44115 A virtual deduction elimin...
ee31an 44116 ~ e31an without virtual de...
e23 44117 A virtual deduction elimin...
e23an 44118 A virtual deduction elimin...
ee23an 44119 ~ e23an without virtual de...
e32 44120 A virtual deduction elimin...
ee32 44121 ~ e32 without virtual dedu...
e32an 44122 A virtual deduction elimin...
ee32an 44123 ~ e33an without virtual de...
e123 44124 A virtual deduction elimin...
ee123 44125 ~ e123 without virtual ded...
el123 44126 A virtual deduction elimin...
e233 44127 A virtual deduction elimin...
e323 44128 A virtual deduction elimin...
e000 44129 A virtual deduction elimin...
e00 44130 Elimination rule identical...
e00an 44131 Elimination rule identical...
eel00cT 44132 An elimination deduction. ...
eelTT 44133 An elimination deduction. ...
e0a 44134 Elimination rule identical...
eelT 44135 An elimination deduction. ...
eel0cT 44136 An elimination deduction. ...
eelT0 44137 An elimination deduction. ...
e0bi 44138 Elimination rule identical...
e0bir 44139 Elimination rule identical...
uun0.1 44140 Convention notation form o...
un0.1 44141 ` T. ` is the constant tru...
uunT1 44142 A deduction unionizing a n...
uunT1p1 44143 A deduction unionizing a n...
uunT21 44144 A deduction unionizing a n...
uun121 44145 A deduction unionizing a n...
uun121p1 44146 A deduction unionizing a n...
uun132 44147 A deduction unionizing a n...
uun132p1 44148 A deduction unionizing a n...
anabss7p1 44149 A deduction unionizing a n...
un10 44150 A unionizing deduction. (...
un01 44151 A unionizing deduction. (...
un2122 44152 A deduction unionizing a n...
uun2131 44153 A deduction unionizing a n...
uun2131p1 44154 A deduction unionizing a n...
uunTT1 44155 A deduction unionizing a n...
uunTT1p1 44156 A deduction unionizing a n...
uunTT1p2 44157 A deduction unionizing a n...
uunT11 44158 A deduction unionizing a n...
uunT11p1 44159 A deduction unionizing a n...
uunT11p2 44160 A deduction unionizing a n...
uunT12 44161 A deduction unionizing a n...
uunT12p1 44162 A deduction unionizing a n...
uunT12p2 44163 A deduction unionizing a n...
uunT12p3 44164 A deduction unionizing a n...
uunT12p4 44165 A deduction unionizing a n...
uunT12p5 44166 A deduction unionizing a n...
uun111 44167 A deduction unionizing a n...
3anidm12p1 44168 A deduction unionizing a n...
3anidm12p2 44169 A deduction unionizing a n...
uun123 44170 A deduction unionizing a n...
uun123p1 44171 A deduction unionizing a n...
uun123p2 44172 A deduction unionizing a n...
uun123p3 44173 A deduction unionizing a n...
uun123p4 44174 A deduction unionizing a n...
uun2221 44175 A deduction unionizing a n...
uun2221p1 44176 A deduction unionizing a n...
uun2221p2 44177 A deduction unionizing a n...
3impdirp1 44178 A deduction unionizing a n...
3impcombi 44179 A 1-hypothesis proposition...
trsspwALT 44180 Virtual deduction proof of...
trsspwALT2 44181 Virtual deduction proof of...
trsspwALT3 44182 Short predicate calculus p...
sspwtr 44183 Virtual deduction proof of...
sspwtrALT 44184 Virtual deduction proof of...
sspwtrALT2 44185 Short predicate calculus p...
pwtrVD 44186 Virtual deduction proof of...
pwtrrVD 44187 Virtual deduction proof of...
suctrALT 44188 The successor of a transit...
snssiALTVD 44189 Virtual deduction proof of...
snssiALT 44190 If a class is an element o...
snsslVD 44191 Virtual deduction proof of...
snssl 44192 If a singleton is a subcla...
snelpwrVD 44193 Virtual deduction proof of...
unipwrVD 44194 Virtual deduction proof of...
unipwr 44195 A class is a subclass of t...
sstrALT2VD 44196 Virtual deduction proof of...
sstrALT2 44197 Virtual deduction proof of...
suctrALT2VD 44198 Virtual deduction proof of...
suctrALT2 44199 Virtual deduction proof of...
elex2VD 44200 Virtual deduction proof of...
elex22VD 44201 Virtual deduction proof of...
eqsbc2VD 44202 Virtual deduction proof of...
zfregs2VD 44203 Virtual deduction proof of...
tpid3gVD 44204 Virtual deduction proof of...
en3lplem1VD 44205 Virtual deduction proof of...
en3lplem2VD 44206 Virtual deduction proof of...
en3lpVD 44207 Virtual deduction proof of...
simplbi2VD 44208 Virtual deduction proof of...
3ornot23VD 44209 Virtual deduction proof of...
orbi1rVD 44210 Virtual deduction proof of...
bitr3VD 44211 Virtual deduction proof of...
3orbi123VD 44212 Virtual deduction proof of...
sbc3orgVD 44213 Virtual deduction proof of...
19.21a3con13vVD 44214 Virtual deduction proof of...
exbirVD 44215 Virtual deduction proof of...
exbiriVD 44216 Virtual deduction proof of...
rspsbc2VD 44217 Virtual deduction proof of...
3impexpVD 44218 Virtual deduction proof of...
3impexpbicomVD 44219 Virtual deduction proof of...
3impexpbicomiVD 44220 Virtual deduction proof of...
sbcoreleleqVD 44221 Virtual deduction proof of...
hbra2VD 44222 Virtual deduction proof of...
tratrbVD 44223 Virtual deduction proof of...
al2imVD 44224 Virtual deduction proof of...
syl5impVD 44225 Virtual deduction proof of...
idiVD 44226 Virtual deduction proof of...
ancomstVD 44227 Closed form of ~ ancoms . ...
ssralv2VD 44228 Quantification restricted ...
ordelordALTVD 44229 An element of an ordinal c...
equncomVD 44230 If a class equals the unio...
equncomiVD 44231 Inference form of ~ equnco...
sucidALTVD 44232 A set belongs to its succe...
sucidALT 44233 A set belongs to its succe...
sucidVD 44234 A set belongs to its succe...
imbi12VD 44235 Implication form of ~ imbi...
imbi13VD 44236 Join three logical equival...
sbcim2gVD 44237 Distribution of class subs...
sbcbiVD 44238 Implication form of ~ sbcb...
trsbcVD 44239 Formula-building inference...
truniALTVD 44240 The union of a class of tr...
ee33VD 44241 Non-virtual deduction form...
trintALTVD 44242 The intersection of a clas...
trintALT 44243 The intersection of a clas...
undif3VD 44244 The first equality of Exer...
sbcssgVD 44245 Virtual deduction proof of...
csbingVD 44246 Virtual deduction proof of...
onfrALTlem5VD 44247 Virtual deduction proof of...
onfrALTlem4VD 44248 Virtual deduction proof of...
onfrALTlem3VD 44249 Virtual deduction proof of...
simplbi2comtVD 44250 Virtual deduction proof of...
onfrALTlem2VD 44251 Virtual deduction proof of...
onfrALTlem1VD 44252 Virtual deduction proof of...
onfrALTVD 44253 Virtual deduction proof of...
csbeq2gVD 44254 Virtual deduction proof of...
csbsngVD 44255 Virtual deduction proof of...
csbxpgVD 44256 Virtual deduction proof of...
csbresgVD 44257 Virtual deduction proof of...
csbrngVD 44258 Virtual deduction proof of...
csbima12gALTVD 44259 Virtual deduction proof of...
csbunigVD 44260 Virtual deduction proof of...
csbfv12gALTVD 44261 Virtual deduction proof of...
con5VD 44262 Virtual deduction proof of...
relopabVD 44263 Virtual deduction proof of...
19.41rgVD 44264 Virtual deduction proof of...
2pm13.193VD 44265 Virtual deduction proof of...
hbimpgVD 44266 Virtual deduction proof of...
hbalgVD 44267 Virtual deduction proof of...
hbexgVD 44268 Virtual deduction proof of...
ax6e2eqVD 44269 The following User's Proof...
ax6e2ndVD 44270 The following User's Proof...
ax6e2ndeqVD 44271 The following User's Proof...
2sb5ndVD 44272 The following User's Proof...
2uasbanhVD 44273 The following User's Proof...
e2ebindVD 44274 The following User's Proof...
sb5ALTVD 44275 The following User's Proof...
vk15.4jVD 44276 The following User's Proof...
notnotrALTVD 44277 The following User's Proof...
con3ALTVD 44278 The following User's Proof...
elpwgdedVD 44279 Membership in a power clas...
sspwimp 44280 If a class is a subclass o...
sspwimpVD 44281 The following User's Proof...
sspwimpcf 44282 If a class is a subclass o...
sspwimpcfVD 44283 The following User's Proof...
suctrALTcf 44284 The sucessor of a transiti...
suctrALTcfVD 44285 The following User's Proof...
suctrALT3 44286 The successor of a transit...
sspwimpALT 44287 If a class is a subclass o...
unisnALT 44288 A set equals the union of ...
notnotrALT2 44289 Converse of double negatio...
sspwimpALT2 44290 If a class is a subclass o...
e2ebindALT 44291 Absorption of an existenti...
ax6e2ndALT 44292 If at least two sets exist...
ax6e2ndeqALT 44293 "At least two sets exist" ...
2sb5ndALT 44294 Equivalence for double sub...
chordthmALT 44295 The intersecting chords th...
isosctrlem1ALT 44296 Lemma for ~ isosctr . Thi...
iunconnlem2 44297 The indexed union of conne...
iunconnALT 44298 The indexed union of conne...
sineq0ALT 44299 A complex number whose sin...
evth2f 44300 A version of ~ evth2 using...
elunif 44301 A version of ~ eluni using...
rzalf 44302 A version of ~ rzal using ...
fvelrnbf 44303 A version of ~ fvelrnb usi...
rfcnpre1 44304 If F is a continuous funct...
ubelsupr 44305 If U belongs to A and U is...
fsumcnf 44306 A finite sum of functions ...
mulltgt0 44307 The product of a negative ...
rspcegf 44308 A version of ~ rspcev usin...
rabexgf 44309 A version of ~ rabexg usin...
fcnre 44310 A function continuous with...
sumsnd 44311 A sum of a singleton is th...
evthf 44312 A version of ~ evth using ...
cnfex 44313 The class of continuous fu...
fnchoice 44314 For a finite set, a choice...
refsumcn 44315 A finite sum of continuous...
rfcnpre2 44316 If ` F ` is a continuous f...
cncmpmax 44317 When the hypothesis for th...
rfcnpre3 44318 If F is a continuous funct...
rfcnpre4 44319 If F is a continuous funct...
sumpair 44320 Sum of two distinct comple...
rfcnnnub 44321 Given a real continuous fu...
refsum2cnlem1 44322 This is the core Lemma for...
refsum2cn 44323 The sum of two continuus r...
adantlllr 44324 Deduction adding a conjunc...
3adantlr3 44325 Deduction adding a conjunc...
3adantll2 44326 Deduction adding a conjunc...
3adantll3 44327 Deduction adding a conjunc...
ssnel 44328 If not element of a set, t...
sncldre 44329 A singleton is closed w.r....
n0p 44330 A polynomial with a nonzer...
pm2.65ni 44331 Inference rule for proof b...
pwssfi 44332 Every element of the power...
iuneq2df 44333 Equality deduction for ind...
nnfoctb 44334 There exists a mapping fro...
ssinss1d 44335 Intersection preserves sub...
elpwinss 44336 An element of the powerset...
unidmex 44337 If ` F ` is a set, then ` ...
ndisj2 44338 A non-disjointness conditi...
zenom 44339 The set of integer numbers...
uzwo4 44340 Well-ordering principle: a...
unisn0 44341 The union of the singleton...
ssin0 44342 If two classes are disjoin...
inabs3 44343 Absorption law for interse...
pwpwuni 44344 Relationship between power...
disjiun2 44345 In a disjoint collection, ...
0pwfi 44346 The empty set is in any po...
ssinss2d 44347 Intersection preserves sub...
zct 44348 The set of integer numbers...
pwfin0 44349 A finite set always belong...
uzct 44350 An upper integer set is co...
iunxsnf 44351 A singleton index picks ou...
fiiuncl 44352 If a set is closed under t...
iunp1 44353 The addition of the next s...
fiunicl 44354 If a set is closed under t...
ixpeq2d 44355 Equality theorem for infin...
disjxp1 44356 The sets of a cartesian pr...
disjsnxp 44357 The sets in the cartesian ...
eliind 44358 Membership in indexed inte...
rspcef 44359 Restricted existential spe...
inn0f 44360 A nonempty intersection. ...
ixpssmapc 44361 An infinite Cartesian prod...
inn0 44362 A nonempty intersection. ...
elintd 44363 Membership in class inters...
ssdf 44364 A sufficient condition for...
brneqtrd 44365 Substitution of equal clas...
ssnct 44366 A set containing an uncoun...
ssuniint 44367 Sufficient condition for b...
elintdv 44368 Membership in class inters...
ssd 44369 A sufficient condition for...
ralimralim 44370 Introducing any antecedent...
snelmap 44371 Membership of the element ...
xrnmnfpnf 44372 An extended real that is n...
nelrnmpt 44373 Non-membership in the rang...
iuneq1i 44374 Equality theorem for index...
nssrex 44375 Negation of subclass relat...
ssinc 44376 Inclusion relation for a m...
ssdec 44377 Inclusion relation for a m...
elixpconstg 44378 Membership in an infinite ...
iineq1d 44379 Equality theorem for index...
metpsmet 44380 A metric is a pseudometric...
ixpssixp 44381 Subclass theorem for infin...
ballss3 44382 A sufficient condition for...
iunincfi 44383 Given a sequence of increa...
nsstr 44384 If it's not a subclass, it...
rexanuz3 44385 Combine two different uppe...
cbvmpo2 44386 Rule to change the second ...
cbvmpo1 44387 Rule to change the first b...
eliuniin 44388 Indexed union of indexed i...
ssabf 44389 Subclass of a class abstra...
pssnssi 44390 A proper subclass does not...
rabidim2 44391 Membership in a restricted...
eluni2f 44392 Membership in class union....
eliin2f 44393 Membership in indexed inte...
nssd 44394 Negation of subclass relat...
iineq12dv 44395 Equality deduction for ind...
supxrcld 44396 The supremum of an arbitra...
elrestd 44397 A sufficient condition for...
eliuniincex 44398 Counterexample to show tha...
eliincex 44399 Counterexample to show tha...
eliinid 44400 Membership in an indexed i...
abssf 44401 Class abstraction in a sub...
supxrubd 44402 A member of a set of exten...
ssrabf 44403 Subclass of a restricted c...
ssrabdf 44404 Subclass of a restricted c...
eliin2 44405 Membership in indexed inte...
ssrab2f 44406 Subclass relation for a re...
restuni3 44407 The underlying set of a su...
rabssf 44408 Restricted class abstracti...
eliuniin2 44409 Indexed union of indexed i...
restuni4 44410 The underlying set of a su...
restuni6 44411 The underlying set of a su...
restuni5 44412 The underlying set of a su...
unirestss 44413 The union of an elementwis...
iniin1 44414 Indexed intersection of in...
iniin2 44415 Indexed intersection of in...
cbvrabv2 44416 A more general version of ...
cbvrabv2w 44417 A more general version of ...
iinssiin 44418 Subset implication for an ...
eliind2 44419 Membership in indexed inte...
iinssd 44420 Subset implication for an ...
rabbida2 44421 Equivalent wff's yield equ...
iinexd 44422 The existence of an indexe...
rabexf 44423 Separation Scheme in terms...
rabbida3 44424 Equivalent wff's yield equ...
r19.36vf 44425 Restricted quantifier vers...
raleqd 44426 Equality deduction for res...
iinssf 44427 Subset implication for an ...
iinssdf 44428 Subset implication for an ...
resabs2i 44429 Absorption law for restric...
ssdf2 44430 A sufficient condition for...
rabssd 44431 Restricted class abstracti...
rexnegd 44432 Minus a real number. (Con...
rexlimd3 44433 * Inference from Theorem 1...
resabs1i 44434 Absorption law for restric...
nel1nelin 44435 Membership in an intersect...
nel2nelin 44436 Membership in an intersect...
nel1nelini 44437 Membership in an intersect...
nel2nelini 44438 Membership in an intersect...
eliunid 44439 Membership in indexed unio...
reximddv3 44440 Deduction from Theorem 19....
reximdd 44441 Deduction from Theorem 19....
unfid 44442 The union of two finite se...
inopnd 44443 The intersection of two op...
ss2rabdf 44444 Deduction of restricted ab...
restopn3 44445 If ` A ` is open, then ` A...
restopnssd 44446 A topology restricted to a...
restsubel 44447 A subset belongs in the sp...
toprestsubel 44448 A subset is open in the to...
rabidd 44449 An "identity" law of concr...
iunssdf 44450 Subset theorem for an inde...
iinss2d 44451 Subset implication for an ...
r19.3rzf 44452 Restricted quantification ...
r19.28zf 44453 Restricted quantifier vers...
iindif2f 44454 Indexed intersection of cl...
ralfal 44455 Two ways of expressing emp...
archd 44456 Archimedean property of re...
eliund 44457 Membership in indexed unio...
nimnbi 44458 If an implication is false...
nimnbi2 44459 If an implication is false...
notbicom 44460 Commutative law for the ne...
rexeqif 44461 Equality inference for res...
rspced 44462 Restricted existential spe...
feq1dd 44463 Equality deduction for fun...
fnresdmss 44464 A function does not change...
fmptsnxp 44465 Maps-to notation and Carte...
fvmpt2bd 44466 Value of a function given ...
rnmptfi 44467 The range of a function wi...
fresin2 44468 Restriction of a function ...
ffi 44469 A function with finite dom...
suprnmpt 44470 An explicit bound for the ...
rnffi 44471 The range of a function wi...
mptelpm 44472 A function in maps-to nota...
rnmptpr 44473 Range of a function define...
resmpti 44474 Restriction of the mapping...
founiiun 44475 Union expressed as an inde...
rnresun 44476 Distribution law for range...
elrnmptf 44477 The range of a function in...
rnmptssrn 44478 Inclusion relation for two...
disjf1 44479 A 1 to 1 mapping built fro...
rnsnf 44480 The range of a function wh...
wessf1ornlem 44481 Given a function ` F ` on ...
wessf1orn 44482 Given a function ` F ` on ...
nelrnres 44483 If ` A ` is not in the ran...
disjrnmpt2 44484 Disjointness of the range ...
elrnmpt1sf 44485 Elementhood in an image se...
founiiun0 44486 Union expressed as an inde...
disjf1o 44487 A bijection built from dis...
disjinfi 44488 Only a finite number of di...
fvovco 44489 Value of the composition o...
ssnnf1octb 44490 There exists a bijection b...
nnf1oxpnn 44491 There is a bijection betwe...
rnmptssd 44492 The range of a function gi...
projf1o 44493 A biijection from a set to...
fvmap 44494 Function value for a membe...
fvixp2 44495 Projection of a factor of ...
choicefi 44496 For a finite set, a choice...
mpct 44497 The exponentiation of a co...
cnmetcoval 44498 Value of the distance func...
fcomptss 44499 Express composition of two...
elmapsnd 44500 Membership in a set expone...
mapss2 44501 Subset inheritance for set...
fsneq 44502 Equality condition for two...
difmap 44503 Difference of two sets exp...
unirnmap 44504 Given a subset of a set ex...
inmap 44505 Intersection of two sets e...
fcoss 44506 Composition of two mapping...
fsneqrn 44507 Equality condition for two...
difmapsn 44508 Difference of two sets exp...
mapssbi 44509 Subset inheritance for set...
unirnmapsn 44510 Equality theorem for a sub...
iunmapss 44511 The indexed union of set e...
ssmapsn 44512 A subset ` C ` of a set ex...
iunmapsn 44513 The indexed union of set e...
absfico 44514 Mapping domain and codomai...
icof 44515 The set of left-closed rig...
elpmrn 44516 The range of a partial fun...
imaexi 44517 The image of a set is a se...
axccdom 44518 Relax the constraint on ax...
dmmptdff 44519 The domain of the mapping ...
dmmptdf 44520 The domain of the mapping ...
elpmi2 44521 The domain of a partial fu...
dmrelrnrel 44522 A relation preserving func...
fvcod 44523 Value of a function compos...
elrnmpoid 44524 Membership in the range of...
axccd 44525 An alternative version of ...
axccd2 44526 An alternative version of ...
feqresmptf 44527 Express a restricted funct...
dmresss 44528 The domain of a restrictio...
dmmptssf 44529 The domain of a mapping is...
dmmptdf2 44530 The domain of the mapping ...
dmuz 44531 Domain of the upper intege...
fmptd2f 44532 Domain and codomain of the...
mpteq1df 44533 An equality theorem for th...
mpteq1dfOLD 44534 Obsolete version of ~ mpte...
mptexf 44535 If the domain of a functio...
fvmpt4 44536 Value of a function given ...
fmptf 44537 Functionality of the mappi...
resimass 44538 The image of a restriction...
mptssid 44539 The mapping operation expr...
mptfnd 44540 The maps-to notation defin...
mpteq12daOLD 44541 Obsolete version of ~ mpte...
rnmptlb 44542 Boundness below of the ran...
rnmptbddlem 44543 Boundness of the range of ...
rnmptbdd 44544 Boundness of the range of ...
funimaeq 44545 Membership relation for th...
rnmptssf 44546 The range of a function gi...
rnmptbd2lem 44547 Boundness below of the ran...
rnmptbd2 44548 Boundness below of the ran...
infnsuprnmpt 44549 The indexed infimum of rea...
suprclrnmpt 44550 Closure of the indexed sup...
suprubrnmpt2 44551 A member of a nonempty ind...
suprubrnmpt 44552 A member of a nonempty ind...
rnmptssdf 44553 The range of a function gi...
rnmptbdlem 44554 Boundness above of the ran...
rnmptbd 44555 Boundness above of the ran...
rnmptss2 44556 The range of a function gi...
elmptima 44557 The image of a function in...
ralrnmpt3 44558 A restricted quantifier ov...
fvelima2 44559 Function value in an image...
rnmptssbi 44560 The range of a function gi...
imass2d 44561 Subset theorem for image. ...
imassmpt 44562 Membership relation for th...
fpmd 44563 A total function is a part...
fconst7 44564 An alternative way to expr...
fnmptif 44565 Functionality and domain o...
dmmptif 44566 Domain of the mapping oper...
mpteq2dfa 44567 Slightly more general equa...
dmmpt1 44568 The domain of the mapping ...
fmptff 44569 Functionality of the mappi...
fvmptelcdmf 44570 The value of a function at...
fmptdff 44571 A version of ~ fmptd using...
fvmpt2df 44572 Deduction version of ~ fvm...
rn1st 44573 The range of a function wi...
rnmptssff 44574 The range of a function gi...
rnmptssdff 44575 The range of a function gi...
fvmpt4d 44576 Value of a function given ...
sub2times 44577 Subtracting from a number,...
nnxrd 44578 A natural number is an ext...
nnxr 44579 A natural number is an ext...
abssubrp 44580 The distance of two distin...
elfzfzo 44581 Relationship between membe...
oddfl 44582 Odd number representation ...
abscosbd 44583 Bound for the absolute val...
mul13d 44584 Commutative/associative la...
negpilt0 44585 Negative ` _pi ` is negati...
dstregt0 44586 A complex number ` A ` tha...
subadd4b 44587 Rearrangement of 4 terms i...
xrlttri5d 44588 Not equal and not larger i...
neglt 44589 The negative of a positive...
zltlesub 44590 If an integer ` N ` is les...
divlt0gt0d 44591 The ratio of a negative nu...
subsub23d 44592 Swap subtrahend and result...
2timesgt 44593 Double of a positive real ...
reopn 44594 The reals are open with re...
sub31 44595 Swap the first and third t...
nnne1ge2 44596 A positive integer which i...
lefldiveq 44597 A closed enough, smaller r...
negsubdi3d 44598 Distribution of negative o...
ltdiv2dd 44599 Division of a positive num...
abssinbd 44600 Bound for the absolute val...
halffl 44601 Floor of ` ( 1 / 2 ) ` . ...
monoords 44602 Ordering relation for a st...
hashssle 44603 The size of a subset of a ...
lttri5d 44604 Not equal and not larger i...
fzisoeu 44605 A finite ordered set has a...
lt3addmuld 44606 If three real numbers are ...
absnpncan2d 44607 Triangular inequality, com...
fperiodmullem 44608 A function with period ` T...
fperiodmul 44609 A function with period T i...
upbdrech 44610 Choice of an upper bound f...
lt4addmuld 44611 If four real numbers are l...
absnpncan3d 44612 Triangular inequality, com...
upbdrech2 44613 Choice of an upper bound f...
ssfiunibd 44614 A finite union of bounded ...
fzdifsuc2 44615 Remove a successor from th...
fzsscn 44616 A finite sequence of integ...
divcan8d 44617 A cancellation law for div...
dmmcand 44618 Cancellation law for divis...
fzssre 44619 A finite sequence of integ...
bccld 44620 A binomial coefficient, in...
leadd12dd 44621 Addition to both sides of ...
fzssnn0 44622 A finite set of sequential...
xreqle 44623 Equality implies 'less tha...
xaddlidd 44624 ` 0 ` is a left identity f...
xadd0ge 44625 A number is less than or e...
elfzolem1 44626 A member in a half-open in...
xrgtned 44627 'Greater than' implies not...
xrleneltd 44628 'Less than or equal to' an...
xaddcomd 44629 The extended real addition...
supxrre3 44630 The supremum of a nonempty...
uzfissfz 44631 For any finite subset of t...
xleadd2d 44632 Addition of extended reals...
suprltrp 44633 The supremum of a nonempty...
xleadd1d 44634 Addition of extended reals...
xreqled 44635 Equality implies 'less tha...
xrgepnfd 44636 An extended real greater t...
xrge0nemnfd 44637 A nonnegative extended rea...
supxrgere 44638 If a real number can be ap...
iuneqfzuzlem 44639 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 44640 If two unions indexed by u...
xle2addd 44641 Adding both side of two in...
supxrgelem 44642 If an extended real number...
supxrge 44643 If an extended real number...
suplesup 44644 If any element of ` A ` ca...
infxrglb 44645 The infimum of a set of ex...
xadd0ge2 44646 A number is less than or e...
nepnfltpnf 44647 An extended real that is n...
ltadd12dd 44648 Addition to both sides of ...
nemnftgtmnft 44649 An extended real that is n...
xrgtso 44650 'Greater than' is a strict...
rpex 44651 The positive reals form a ...
xrge0ge0 44652 A nonnegative extended rea...
xrssre 44653 A subset of extended reals...
ssuzfz 44654 A finite subset of the upp...
absfun 44655 The absolute value is a fu...
infrpge 44656 The infimum of a nonempty,...
xrlexaddrp 44657 If an extended real number...
supsubc 44658 The supremum function dist...
xralrple2 44659 Show that ` A ` is less th...
nnuzdisj 44660 The first ` N ` elements o...
ltdivgt1 44661 Divsion by a number greate...
xrltned 44662 'Less than' implies not eq...
nnsplit 44663 Express the set of positiv...
divdiv3d 44664 Division into a fraction. ...
abslt2sqd 44665 Comparison of the square o...
qenom 44666 The set of rational number...
qct 44667 The set of rational number...
xrltnled 44668 'Less than' in terms of 'l...
lenlteq 44669 'less than or equal to' bu...
xrred 44670 An extended real that is n...
rr2sscn2 44671 The cartesian square of ` ...
infxr 44672 The infimum of a set of ex...
infxrunb2 44673 The infimum of an unbounde...
infxrbnd2 44674 The infimum of a bounded-b...
infleinflem1 44675 Lemma for ~ infleinf , cas...
infleinflem2 44676 Lemma for ~ infleinf , whe...
infleinf 44677 If any element of ` B ` ca...
xralrple4 44678 Show that ` A ` is less th...
xralrple3 44679 Show that ` A ` is less th...
eluzelzd 44680 A member of an upper set o...
suplesup2 44681 If any element of ` A ` is...
recnnltrp 44682 ` N ` is a natural number ...
nnn0 44683 The set of positive intege...
fzct 44684 A finite set of sequential...
rpgtrecnn 44685 Any positive real number i...
fzossuz 44686 A half-open integer interv...
infxrrefi 44687 The real and extended real...
xrralrecnnle 44688 Show that ` A ` is less th...
fzoct 44689 A finite set of sequential...
frexr 44690 A function taking real val...
nnrecrp 44691 The reciprocal of a positi...
reclt0d 44692 The reciprocal of a negati...
lt0neg1dd 44693 If a number is negative, i...
infxrcld 44694 The infimum of an arbitrar...
xrralrecnnge 44695 Show that ` A ` is less th...
reclt0 44696 The reciprocal of a negati...
ltmulneg 44697 Multiplying by a negative ...
allbutfi 44698 For all but finitely many....
ltdiv23neg 44699 Swap denominator with othe...
xreqnltd 44700 A consequence of trichotom...
mnfnre2 44701 Minus infinity is not a re...
zssxr 44702 The integers are a subset ...
fisupclrnmpt 44703 A nonempty finite indexed ...
supxrunb3 44704 The supremum of an unbound...
elfzod 44705 Membership in a half-open ...
fimaxre4 44706 A nonempty finite set of r...
ren0 44707 The set of reals is nonemp...
eluzelz2 44708 A member of an upper set o...
resabs2d 44709 Absorption law for restric...
uzid2 44710 Membership of the least me...
supxrleubrnmpt 44711 The supremum of a nonempty...
uzssre2 44712 An upper set of integers i...
uzssd 44713 Subset relationship for tw...
eluzd 44714 Membership in an upper set...
infxrlbrnmpt2 44715 A member of a nonempty ind...
xrre4 44716 An extended real is real i...
uz0 44717 The upper integers functio...
eluzelz2d 44718 A member of an upper set o...
infleinf2 44719 If any element in ` B ` is...
unb2ltle 44720 "Unbounded below" expresse...
uzidd2 44721 Membership of the least me...
uzssd2 44722 Subset relationship for tw...
rexabslelem 44723 An indexed set of absolute...
rexabsle 44724 An indexed set of absolute...
allbutfiinf 44725 Given a "for all but finit...
supxrrernmpt 44726 The real and extended real...
suprleubrnmpt 44727 The supremum of a nonempty...
infrnmptle 44728 An indexed infimum of exte...
infxrunb3 44729 The infimum of an unbounde...
uzn0d 44730 The upper integers are all...
uzssd3 44731 Subset relationship for tw...
rexabsle2 44732 An indexed set of absolute...
infxrunb3rnmpt 44733 The infimum of an unbounde...
supxrre3rnmpt 44734 The indexed supremum of a ...
uzublem 44735 A set of reals, indexed by...
uzub 44736 A set of reals, indexed by...
ssrexr 44737 A subset of the reals is a...
supxrmnf2 44738 Removing minus infinity fr...
supxrcli 44739 The supremum of an arbitra...
uzid3 44740 Membership of the least me...
infxrlesupxr 44741 The supremum of a nonempty...
xnegeqd 44742 Equality of two extended n...
xnegrecl 44743 The extended real negative...
xnegnegi 44744 Extended real version of ~...
xnegeqi 44745 Equality of two extended n...
nfxnegd 44746 Deduction version of ~ nfx...
xnegnegd 44747 Extended real version of ~...
uzred 44748 An upper integer is a real...
xnegcli 44749 Closure of extended real n...
supminfrnmpt 44750 The indexed supremum of a ...
infxrpnf 44751 Adding plus infinity to a ...
infxrrnmptcl 44752 The infimum of an arbitrar...
leneg2d 44753 Negative of one side of 'l...
supxrltinfxr 44754 The supremum of the empty ...
max1d 44755 A number is less than or e...
supxrleubrnmptf 44756 The supremum of a nonempty...
nleltd 44757 'Not less than or equal to...
zxrd 44758 An integer is an extended ...
infxrgelbrnmpt 44759 The infimum of an indexed ...
rphalfltd 44760 Half of a positive real is...
uzssz2 44761 An upper set of integers i...
leneg3d 44762 Negative of one side of 'l...
max2d 44763 A number is less than or e...
uzn0bi 44764 The upper integers functio...
xnegrecl2 44765 If the extended real negat...
nfxneg 44766 Bound-variable hypothesis ...
uzxrd 44767 An upper integer is an ext...
infxrpnf2 44768 Removing plus infinity fro...
supminfxr 44769 The extended real suprema ...
infrpgernmpt 44770 The infimum of a nonempty,...
xnegre 44771 An extended real is real i...
xnegrecl2d 44772 If the extended real negat...
uzxr 44773 An upper integer is an ext...
supminfxr2 44774 The extended real suprema ...
xnegred 44775 An extended real is real i...
supminfxrrnmpt 44776 The indexed supremum of a ...
min1d 44777 The minimum of two numbers...
min2d 44778 The minimum of two numbers...
pnfged 44779 Plus infinity is an upper ...
xrnpnfmnf 44780 An extended real that is n...
uzsscn 44781 An upper set of integers i...
absimnre 44782 The absolute value of the ...
uzsscn2 44783 An upper set of integers i...
xrtgcntopre 44784 The standard topologies on...
absimlere 44785 The absolute value of the ...
rpssxr 44786 The positive reals are a s...
monoordxrv 44787 Ordering relation for a mo...
monoordxr 44788 Ordering relation for a mo...
monoord2xrv 44789 Ordering relation for a mo...
monoord2xr 44790 Ordering relation for a mo...
xrpnf 44791 An extended real is plus i...
xlenegcon1 44792 Extended real version of ~...
xlenegcon2 44793 Extended real version of ~...
pimxrneun 44794 The preimage of a set of e...
caucvgbf 44795 A function is convergent i...
cvgcau 44796 A convergent function is C...
cvgcaule 44797 A convergent function is C...
rexanuz2nf 44798 A simple counterexample re...
gtnelioc 44799 A real number larger than ...
ioossioc 44800 An open interval is a subs...
ioondisj2 44801 A condition for two open i...
ioondisj1 44802 A condition for two open i...
ioogtlb 44803 An element of a closed int...
evthiccabs 44804 Extreme Value Theorem on y...
ltnelicc 44805 A real number smaller than...
eliood 44806 Membership in an open real...
iooabslt 44807 An upper bound for the dis...
gtnelicc 44808 A real number greater than...
iooinlbub 44809 An open interval has empty...
iocgtlb 44810 An element of a left-open ...
iocleub 44811 An element of a left-open ...
eliccd 44812 Membership in a closed rea...
eliccre 44813 A member of a closed inter...
eliooshift 44814 Element of an open interva...
eliocd 44815 Membership in a left-open ...
icoltub 44816 An element of a left-close...
eliocre 44817 A member of a left-open ri...
iooltub 44818 An element of an open inte...
ioontr 44819 The interior of an interva...
snunioo1 44820 The closure of one end of ...
lbioc 44821 A left-open right-closed i...
ioomidp 44822 The midpoint is an element...
iccdifioo 44823 If the open inverval is re...
iccdifprioo 44824 An open interval is the cl...
ioossioobi 44825 Biconditional form of ~ io...
iccshift 44826 A closed interval shifted ...
iccsuble 44827 An upper bound to the dist...
iocopn 44828 A left-open right-closed i...
eliccelioc 44829 Membership in a closed int...
iooshift 44830 An open interval shifted b...
iccintsng 44831 Intersection of two adiace...
icoiccdif 44832 Left-closed right-open int...
icoopn 44833 A left-closed right-open i...
icoub 44834 A left-closed, right-open ...
eliccxrd 44835 Membership in a closed rea...
pnfel0pnf 44836 ` +oo ` is a nonnegative e...
eliccnelico 44837 An element of a closed int...
eliccelicod 44838 A member of a closed inter...
ge0xrre 44839 A nonnegative extended rea...
ge0lere 44840 A nonnegative extended Rea...
elicores 44841 Membership in a left-close...
inficc 44842 The infimum of a nonempty ...
qinioo 44843 The rational numbers are d...
lenelioc 44844 A real number smaller than...
ioonct 44845 A nonempty open interval i...
xrgtnelicc 44846 A real number greater than...
iccdificc 44847 The difference of two clos...
iocnct 44848 A nonempty left-open, righ...
iccnct 44849 A closed interval, with mo...
iooiinicc 44850 A closed interval expresse...
iccgelbd 44851 An element of a closed int...
iooltubd 44852 An element of an open inte...
icoltubd 44853 An element of a left-close...
qelioo 44854 The rational numbers are d...
tgqioo2 44855 Every open set of reals is...
iccleubd 44856 An element of a closed int...
elioored 44857 A member of an open interv...
ioogtlbd 44858 An element of a closed int...
ioofun 44859 ` (,) ` is a function. (C...
icomnfinre 44860 A left-closed, right-open,...
sqrlearg 44861 The square compared with i...
ressiocsup 44862 If the supremum belongs to...
ressioosup 44863 If the supremum does not b...
iooiinioc 44864 A left-open, right-closed ...
ressiooinf 44865 If the infimum does not be...
icogelbd 44866 An element of a left-close...
iocleubd 44867 An element of a left-open ...
uzinico 44868 An upper interval of integ...
preimaiocmnf 44869 Preimage of a right-closed...
uzinico2 44870 An upper interval of integ...
uzinico3 44871 An upper interval of integ...
icossico2 44872 Condition for a closed-bel...
dmico 44873 The domain of the closed-b...
ndmico 44874 The closed-below, open-abo...
uzubioo 44875 The upper integers are unb...
uzubico 44876 The upper integers are unb...
uzubioo2 44877 The upper integers are unb...
uzubico2 44878 The upper integers are unb...
iocgtlbd 44879 An element of a left-open ...
xrtgioo2 44880 The topology on the extend...
tgioo4 44881 The standard topology on t...
fsummulc1f 44882 Closure of a finite sum of...
fsumnncl 44883 Closure of a nonempty, fin...
fsumge0cl 44884 The finite sum of nonnegat...
fsumf1of 44885 Re-index a finite sum usin...
fsumiunss 44886 Sum over a disjoint indexe...
fsumreclf 44887 Closure of a finite sum of...
fsumlessf 44888 A shorter sum of nonnegati...
fsumsupp0 44889 Finite sum of function val...
fsumsermpt 44890 A finite sum expressed in ...
fmul01 44891 Multiplying a finite numbe...
fmulcl 44892 If ' Y ' is closed under t...
fmuldfeqlem1 44893 induction step for the pro...
fmuldfeq 44894 X and Z are two equivalent...
fmul01lt1lem1 44895 Given a finite multiplicat...
fmul01lt1lem2 44896 Given a finite multiplicat...
fmul01lt1 44897 Given a finite multiplicat...
cncfmptss 44898 A continuous complex funct...
rrpsscn 44899 The positive reals are a s...
mulc1cncfg 44900 A version of ~ mulc1cncf u...
infrglb 44901 The infimum of a nonempty ...
expcnfg 44902 If ` F ` is a complex cont...
prodeq2ad 44903 Equality deduction for pro...
fprodsplit1 44904 Separate out a term in a f...
fprodexp 44905 Positive integer exponenti...
fprodabs2 44906 The absolute value of a fi...
fprod0 44907 A finite product with a ze...
mccllem 44908 * Induction step for ~ mcc...
mccl 44909 A multinomial coefficient,...
fprodcnlem 44910 A finite product of functi...
fprodcn 44911 A finite product of functi...
clim1fr1 44912 A class of sequences of fr...
isumneg 44913 Negation of a converging s...
climrec 44914 Limit of the reciprocal of...
climmulf 44915 A version of ~ climmul usi...
climexp 44916 The limit of natural power...
climinf 44917 A bounded monotonic noninc...
climsuselem1 44918 The subsequence index ` I ...
climsuse 44919 A subsequence ` G ` of a c...
climrecf 44920 A version of ~ climrec usi...
climneg 44921 Complex limit of the negat...
climinff 44922 A version of ~ climinf usi...
climdivf 44923 Limit of the ratio of two ...
climreeq 44924 If ` F ` is a real functio...
ellimciota 44925 An explicit value for the ...
climaddf 44926 A version of ~ climadd usi...
mullimc 44927 Limit of the product of tw...
ellimcabssub0 44928 An equivalent condition fo...
limcdm0 44929 If a function has empty do...
islptre 44930 An equivalence condition f...
limccog 44931 Limit of the composition o...
limciccioolb 44932 The limit of a function at...
climf 44933 Express the predicate: Th...
mullimcf 44934 Limit of the multiplicatio...
constlimc 44935 Limit of constant function...
rexlim2d 44936 Inference removing two res...
idlimc 44937 Limit of the identity func...
divcnvg 44938 The sequence of reciprocal...
limcperiod 44939 If ` F ` is a periodic fun...
limcrecl 44940 If ` F ` is a real-valued ...
sumnnodd 44941 A series indexed by ` NN `...
lptioo2 44942 The upper bound of an open...
lptioo1 44943 The lower bound of an open...
elprn1 44944 A member of an unordered p...
elprn2 44945 A member of an unordered p...
limcmptdm 44946 The domain of a maps-to fu...
clim2f 44947 Express the predicate: Th...
limcicciooub 44948 The limit of a function at...
ltmod 44949 A sufficient condition for...
islpcn 44950 A characterization for a l...
lptre2pt 44951 If a set in the real line ...
limsupre 44952 If a sequence is bounded, ...
limcresiooub 44953 The left limit doesn't cha...
limcresioolb 44954 The right limit doesn't ch...
limcleqr 44955 If the left and the right ...
lptioo2cn 44956 The upper bound of an open...
lptioo1cn 44957 The lower bound of an open...
neglimc 44958 Limit of the negative func...
addlimc 44959 Sum of two limits. (Contr...
0ellimcdiv 44960 If the numerator converges...
clim2cf 44961 Express the predicate ` F ...
limclner 44962 For a limit point, both fr...
sublimc 44963 Subtraction of two limits....
reclimc 44964 Limit of the reciprocal of...
clim0cf 44965 Express the predicate ` F ...
limclr 44966 For a limit point, both fr...
divlimc 44967 Limit of the quotient of t...
expfac 44968 Factorial grows faster tha...
climconstmpt 44969 A constant sequence conver...
climresmpt 44970 A function restricted to u...
climsubmpt 44971 Limit of the difference of...
climsubc2mpt 44972 Limit of the difference of...
climsubc1mpt 44973 Limit of the difference of...
fnlimfv 44974 The value of the limit fun...
climreclf 44975 The limit of a convergent ...
climeldmeq 44976 Two functions that are eve...
climf2 44977 Express the predicate: Th...
fnlimcnv 44978 The sequence of function v...
climeldmeqmpt 44979 Two functions that are eve...
climfveq 44980 Two functions that are eve...
clim2f2 44981 Express the predicate: Th...
climfveqmpt 44982 Two functions that are eve...
climd 44983 Express the predicate: Th...
clim2d 44984 The limit of complex numbe...
fnlimfvre 44985 The limit function of real...
allbutfifvre 44986 Given a sequence of real-v...
climleltrp 44987 The limit of complex numbe...
fnlimfvre2 44988 The limit function of real...
fnlimf 44989 The limit function of real...
fnlimabslt 44990 A sequence of function val...
climfveqf 44991 Two functions that are eve...
climmptf 44992 Exhibit a function ` G ` w...
climfveqmpt3 44993 Two functions that are eve...
climeldmeqf 44994 Two functions that are eve...
climreclmpt 44995 The limit of B convergent ...
limsupref 44996 If a sequence is bounded, ...
limsupbnd1f 44997 If a sequence is eventuall...
climbddf 44998 A converging sequence of c...
climeqf 44999 Two functions that are eve...
climeldmeqmpt3 45000 Two functions that are eve...
limsupcld 45001 Closure of the superior li...
climfv 45002 The limit of a convergent ...
limsupval3 45003 The superior limit of an i...
climfveqmpt2 45004 Two functions that are eve...
limsup0 45005 The superior limit of the ...
climeldmeqmpt2 45006 Two functions that are eve...
limsupresre 45007 The supremum limit of a fu...
climeqmpt 45008 Two functions that are eve...
climfvd 45009 The limit of a convergent ...
limsuplesup 45010 An upper bound for the sup...
limsupresico 45011 The superior limit doesn't...
limsuppnfdlem 45012 If the restriction of a fu...
limsuppnfd 45013 If the restriction of a fu...
limsupresuz 45014 If the real part of the do...
limsupub 45015 If the limsup is not ` +oo...
limsupres 45016 The superior limit of a re...
climinf2lem 45017 A convergent, nonincreasin...
climinf2 45018 A convergent, nonincreasin...
limsupvaluz 45019 The superior limit, when t...
limsupresuz2 45020 If the domain of a functio...
limsuppnflem 45021 If the restriction of a fu...
limsuppnf 45022 If the restriction of a fu...
limsupubuzlem 45023 If the limsup is not ` +oo...
limsupubuz 45024 For a real-valued function...
climinf2mpt 45025 A bounded below, monotonic...
climinfmpt 45026 A bounded below, monotonic...
climinf3 45027 A convergent, nonincreasin...
limsupvaluzmpt 45028 The superior limit, when t...
limsupequzmpt2 45029 Two functions that are eve...
limsupubuzmpt 45030 If the limsup is not ` +oo...
limsupmnflem 45031 The superior limit of a fu...
limsupmnf 45032 The superior limit of a fu...
limsupequzlem 45033 Two functions that are eve...
limsupequz 45034 Two functions that are eve...
limsupre2lem 45035 Given a function on the ex...
limsupre2 45036 Given a function on the ex...
limsupmnfuzlem 45037 The superior limit of a fu...
limsupmnfuz 45038 The superior limit of a fu...
limsupequzmptlem 45039 Two functions that are eve...
limsupequzmpt 45040 Two functions that are eve...
limsupre2mpt 45041 Given a function on the ex...
limsupequzmptf 45042 Two functions that are eve...
limsupre3lem 45043 Given a function on the ex...
limsupre3 45044 Given a function on the ex...
limsupre3mpt 45045 Given a function on the ex...
limsupre3uzlem 45046 Given a function on the ex...
limsupre3uz 45047 Given a function on the ex...
limsupreuz 45048 Given a function on the re...
limsupvaluz2 45049 The superior limit, when t...
limsupreuzmpt 45050 Given a function on the re...
supcnvlimsup 45051 If a function on a set of ...
supcnvlimsupmpt 45052 If a function on a set of ...
0cnv 45053 If ` (/) ` is a complex nu...
climuzlem 45054 Express the predicate: Th...
climuz 45055 Express the predicate: Th...
lmbr3v 45056 Express the binary relatio...
climisp 45057 If a sequence converges to...
lmbr3 45058 Express the binary relatio...
climrescn 45059 A sequence converging w.r....
climxrrelem 45060 If a sequence ranging over...
climxrre 45061 If a sequence ranging over...
limsuplt2 45064 The defining property of t...
liminfgord 45065 Ordering property of the i...
limsupvald 45066 The superior limit of a se...
limsupresicompt 45067 The superior limit doesn't...
limsupcli 45068 Closure of the superior li...
liminfgf 45069 Closure of the inferior li...
liminfval 45070 The inferior limit of a se...
climlimsup 45071 A sequence of real numbers...
limsupge 45072 The defining property of t...
liminfgval 45073 Value of the inferior limi...
liminfcl 45074 Closure of the inferior li...
liminfvald 45075 The inferior limit of a se...
liminfval5 45076 The inferior limit of an i...
limsupresxr 45077 The superior limit of a fu...
liminfresxr 45078 The inferior limit of a fu...
liminfval2 45079 The superior limit, relati...
climlimsupcex 45080 Counterexample for ~ climl...
liminfcld 45081 Closure of the inferior li...
liminfresico 45082 The inferior limit doesn't...
limsup10exlem 45083 The range of the given fun...
limsup10ex 45084 The superior limit of a fu...
liminf10ex 45085 The inferior limit of a fu...
liminflelimsuplem 45086 The superior limit is grea...
liminflelimsup 45087 The superior limit is grea...
limsupgtlem 45088 For any positive real, the...
limsupgt 45089 Given a sequence of real n...
liminfresre 45090 The inferior limit of a fu...
liminfresicompt 45091 The inferior limit doesn't...
liminfltlimsupex 45092 An example where the ` lim...
liminfgelimsup 45093 The inferior limit is grea...
liminfvalxr 45094 Alternate definition of ` ...
liminfresuz 45095 If the real part of the do...
liminflelimsupuz 45096 The superior limit is grea...
liminfvalxrmpt 45097 Alternate definition of ` ...
liminfresuz2 45098 If the domain of a functio...
liminfgelimsupuz 45099 The inferior limit is grea...
liminfval4 45100 Alternate definition of ` ...
liminfval3 45101 Alternate definition of ` ...
liminfequzmpt2 45102 Two functions that are eve...
liminfvaluz 45103 Alternate definition of ` ...
liminf0 45104 The inferior limit of the ...
limsupval4 45105 Alternate definition of ` ...
liminfvaluz2 45106 Alternate definition of ` ...
liminfvaluz3 45107 Alternate definition of ` ...
liminflelimsupcex 45108 A counterexample for ~ lim...
limsupvaluz3 45109 Alternate definition of ` ...
liminfvaluz4 45110 Alternate definition of ` ...
limsupvaluz4 45111 Alternate definition of ` ...
climliminflimsupd 45112 If a sequence of real numb...
liminfreuzlem 45113 Given a function on the re...
liminfreuz 45114 Given a function on the re...
liminfltlem 45115 Given a sequence of real n...
liminflt 45116 Given a sequence of real n...
climliminf 45117 A sequence of real numbers...
liminflimsupclim 45118 A sequence of real numbers...
climliminflimsup 45119 A sequence of real numbers...
climliminflimsup2 45120 A sequence of real numbers...
climliminflimsup3 45121 A sequence of real numbers...
climliminflimsup4 45122 A sequence of real numbers...
limsupub2 45123 A extended real valued fun...
limsupubuz2 45124 A sequence with values in ...
xlimpnfxnegmnf 45125 A sequence converges to ` ...
liminflbuz2 45126 A sequence with values in ...
liminfpnfuz 45127 The inferior limit of a fu...
liminflimsupxrre 45128 A sequence with values in ...
xlimrel 45131 The limit on extended real...
xlimres 45132 A function converges iff i...
xlimcl 45133 The limit of a sequence of...
rexlimddv2 45134 Restricted existential eli...
xlimclim 45135 Given a sequence of reals,...
xlimconst 45136 A constant sequence conver...
climxlim 45137 A converging sequence in t...
xlimbr 45138 Express the binary relatio...
fuzxrpmcn 45139 A function mapping from an...
cnrefiisplem 45140 Lemma for ~ cnrefiisp (som...
cnrefiisp 45141 A non-real, complex number...
xlimxrre 45142 If a sequence ranging over...
xlimmnfvlem1 45143 Lemma for ~ xlimmnfv : the...
xlimmnfvlem2 45144 Lemma for ~ xlimmnf : the ...
xlimmnfv 45145 A function converges to mi...
xlimconst2 45146 A sequence that eventually...
xlimpnfvlem1 45147 Lemma for ~ xlimpnfv : the...
xlimpnfvlem2 45148 Lemma for ~ xlimpnfv : the...
xlimpnfv 45149 A function converges to pl...
xlimclim2lem 45150 Lemma for ~ xlimclim2 . H...
xlimclim2 45151 Given a sequence of extend...
xlimmnf 45152 A function converges to mi...
xlimpnf 45153 A function converges to pl...
xlimmnfmpt 45154 A function converges to pl...
xlimpnfmpt 45155 A function converges to pl...
climxlim2lem 45156 In this lemma for ~ climxl...
climxlim2 45157 A sequence of extended rea...
dfxlim2v 45158 An alternative definition ...
dfxlim2 45159 An alternative definition ...
climresd 45160 A function restricted to u...
climresdm 45161 A real function converges ...
dmclimxlim 45162 A real valued sequence tha...
xlimmnflimsup2 45163 A sequence of extended rea...
xlimuni 45164 An infinite sequence conve...
xlimclimdm 45165 A sequence of extended rea...
xlimfun 45166 The convergence relation o...
xlimmnflimsup 45167 If a sequence of extended ...
xlimdm 45168 Two ways to express that a...
xlimpnfxnegmnf2 45169 A sequence converges to ` ...
xlimresdm 45170 A function converges in th...
xlimpnfliminf 45171 If a sequence of extended ...
xlimpnfliminf2 45172 A sequence of extended rea...
xlimliminflimsup 45173 A sequence of extended rea...
xlimlimsupleliminf 45174 A sequence of extended rea...
coseq0 45175 A complex number whose cos...
sinmulcos 45176 Multiplication formula for...
coskpi2 45177 The cosine of an integer m...
cosnegpi 45178 The cosine of negative ` _...
sinaover2ne0 45179 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 45180 The cosine of an integer m...
mulcncff 45181 The multiplication of two ...
cncfmptssg 45182 A continuous complex funct...
constcncfg 45183 A constant function is a c...
idcncfg 45184 The identity function is a...
cncfshift 45185 A periodic continuous func...
resincncf 45186 ` sin ` restricted to real...
addccncf2 45187 Adding a constant is a con...
0cnf 45188 The empty set is a continu...
fsumcncf 45189 The finite sum of continuo...
cncfperiod 45190 A periodic continuous func...
subcncff 45191 The subtraction of two con...
negcncfg 45192 The opposite of a continuo...
cnfdmsn 45193 A function with a singleto...
cncfcompt 45194 Composition of continuous ...
addcncff 45195 The sum of two continuous ...
ioccncflimc 45196 Limit at the upper bound o...
cncfuni 45197 A complex function on a su...
icccncfext 45198 A continuous function on a...
cncficcgt0 45199 A the absolute value of a ...
icocncflimc 45200 Limit at the lower bound, ...
cncfdmsn 45201 A complex function with a ...
divcncff 45202 The quotient of two contin...
cncfshiftioo 45203 A periodic continuous func...
cncfiooicclem1 45204 A continuous function ` F ...
cncfiooicc 45205 A continuous function ` F ...
cncfiooiccre 45206 A continuous function ` F ...
cncfioobdlem 45207 ` G ` actually extends ` F...
cncfioobd 45208 A continuous function ` F ...
jumpncnp 45209 Jump discontinuity or disc...
cxpcncf2 45210 The complex power function...
fprodcncf 45211 The finite product of cont...
add1cncf 45212 Addition to a constant is ...
add2cncf 45213 Addition to a constant is ...
sub1cncfd 45214 Subtracting a constant is ...
sub2cncfd 45215 Subtraction from a constan...
fprodsub2cncf 45216 ` F ` is continuous. (Con...
fprodadd2cncf 45217 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 45218 The sequence ` S ` of fini...
fprodsubrecnncnv 45219 The sequence ` S ` of fini...
fprodaddrecnncnvlem 45220 The sequence ` S ` of fini...
fprodaddrecnncnv 45221 The sequence ` S ` of fini...
dvsinexp 45222 The derivative of sin^N . ...
dvcosre 45223 The real derivative of the...
dvsinax 45224 Derivative exercise: the d...
dvsubf 45225 The subtraction rule for e...
dvmptconst 45226 Function-builder for deriv...
dvcnre 45227 From complex differentiati...
dvmptidg 45228 Function-builder for deriv...
dvresntr 45229 Function-builder for deriv...
fperdvper 45230 The derivative of a period...
dvasinbx 45231 Derivative exercise: the d...
dvresioo 45232 Restriction of a derivativ...
dvdivf 45233 The quotient rule for ever...
dvdivbd 45234 A sufficient condition for...
dvsubcncf 45235 A sufficient condition for...
dvmulcncf 45236 A sufficient condition for...
dvcosax 45237 Derivative exercise: the d...
dvdivcncf 45238 A sufficient condition for...
dvbdfbdioolem1 45239 Given a function with boun...
dvbdfbdioolem2 45240 A function on an open inte...
dvbdfbdioo 45241 A function on an open inte...
ioodvbdlimc1lem1 45242 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 45243 Limit at the lower bound o...
ioodvbdlimc1 45244 A real function with bound...
ioodvbdlimc2lem 45245 Limit at the upper bound o...
ioodvbdlimc2 45246 A real function with bound...
dvdmsscn 45247 ` X ` is a subset of ` CC ...
dvmptmulf 45248 Function-builder for deriv...
dvnmptdivc 45249 Function-builder for itera...
dvdsn1add 45250 If ` K ` divides ` N ` but...
dvxpaek 45251 Derivative of the polynomi...
dvnmptconst 45252 The ` N ` -th derivative o...
dvnxpaek 45253 The ` n ` -th derivative o...
dvnmul 45254 Function-builder for the `...
dvmptfprodlem 45255 Induction step for ~ dvmpt...
dvmptfprod 45256 Function-builder for deriv...
dvnprodlem1 45257 ` D ` is bijective. (Cont...
dvnprodlem2 45258 Induction step for ~ dvnpr...
dvnprodlem3 45259 The multinomial formula fo...
dvnprod 45260 The multinomial formula fo...
itgsin0pilem1 45261 Calculation of the integra...
ibliccsinexp 45262 sin^n on a closed interval...
itgsin0pi 45263 Calculation of the integra...
iblioosinexp 45264 sin^n on an open integral ...
itgsinexplem1 45265 Integration by parts is ap...
itgsinexp 45266 A recursive formula for th...
iblconstmpt 45267 A constant function is int...
itgeq1d 45268 Equality theorem for an in...
mbfres2cn 45269 Measurability of a piecewi...
vol0 45270 The measure of the empty s...
ditgeqiooicc 45271 A function ` F ` on an ope...
volge0 45272 The volume of a set is alw...
cnbdibl 45273 A continuous bounded funct...
snmbl 45274 A singleton is measurable....
ditgeq3d 45275 Equality theorem for the d...
iblempty 45276 The empty function is inte...
iblsplit 45277 The union of two integrabl...
volsn 45278 A singleton has 0 Lebesgue...
itgvol0 45279 If the domani is negligibl...
itgcoscmulx 45280 Exercise: the integral of ...
iblsplitf 45281 A version of ~ iblsplit us...
ibliooicc 45282 If a function is integrabl...
volioc 45283 The measure of a left-open...
iblspltprt 45284 If a function is integrabl...
itgsincmulx 45285 Exercise: the integral of ...
itgsubsticclem 45286 lemma for ~ itgsubsticc . ...
itgsubsticc 45287 Integration by u-substitut...
itgioocnicc 45288 The integral of a piecewis...
iblcncfioo 45289 A continuous function ` F ...
itgspltprt 45290 The ` S. ` integral splits...
itgiccshift 45291 The integral of a function...
itgperiod 45292 The integral of a periodic...
itgsbtaddcnst 45293 Integral substitution, add...
volico 45294 The measure of left-closed...
sublevolico 45295 The Lebesgue measure of a ...
dmvolss 45296 Lebesgue measurable sets a...
ismbl3 45297 The predicate " ` A ` is L...
volioof 45298 The function that assigns ...
ovolsplit 45299 The Lebesgue outer measure...
fvvolioof 45300 The function value of the ...
volioore 45301 The measure of an open int...
fvvolicof 45302 The function value of the ...
voliooico 45303 An open interval and a lef...
ismbl4 45304 The predicate " ` A ` is L...
volioofmpt 45305 ` ( ( vol o. (,) ) o. F ) ...
volicoff 45306 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 45307 The Lebesgue measure of op...
volicofmpt 45308 ` ( ( vol o. [,) ) o. F ) ...
volicc 45309 The Lebesgue measure of a ...
voliccico 45310 A closed interval and a le...
mbfdmssre 45311 The domain of a measurable...
stoweidlem1 45312 Lemma for ~ stoweid . Thi...
stoweidlem2 45313 lemma for ~ stoweid : here...
stoweidlem3 45314 Lemma for ~ stoweid : if `...
stoweidlem4 45315 Lemma for ~ stoweid : a cl...
stoweidlem5 45316 There exists a δ as ...
stoweidlem6 45317 Lemma for ~ stoweid : two ...
stoweidlem7 45318 This lemma is used to prov...
stoweidlem8 45319 Lemma for ~ stoweid : two ...
stoweidlem9 45320 Lemma for ~ stoweid : here...
stoweidlem10 45321 Lemma for ~ stoweid . Thi...
stoweidlem11 45322 This lemma is used to prov...
stoweidlem12 45323 Lemma for ~ stoweid . Thi...
stoweidlem13 45324 Lemma for ~ stoweid . Thi...
stoweidlem14 45325 There exists a ` k ` as in...
stoweidlem15 45326 This lemma is used to prov...
stoweidlem16 45327 Lemma for ~ stoweid . The...
stoweidlem17 45328 This lemma proves that the...
stoweidlem18 45329 This theorem proves Lemma ...
stoweidlem19 45330 If a set of real functions...
stoweidlem20 45331 If a set A of real functio...
stoweidlem21 45332 Once the Stone Weierstrass...
stoweidlem22 45333 If a set of real functions...
stoweidlem23 45334 This lemma is used to prov...
stoweidlem24 45335 This lemma proves that for...
stoweidlem25 45336 This lemma proves that for...
stoweidlem26 45337 This lemma is used to prov...
stoweidlem27 45338 This lemma is used to prov...
stoweidlem28 45339 There exists a δ as ...
stoweidlem29 45340 When the hypothesis for th...
stoweidlem30 45341 This lemma is used to prov...
stoweidlem31 45342 This lemma is used to prov...
stoweidlem32 45343 If a set A of real functio...
stoweidlem33 45344 If a set of real functions...
stoweidlem34 45345 This lemma proves that for...
stoweidlem35 45346 This lemma is used to prov...
stoweidlem36 45347 This lemma is used to prov...
stoweidlem37 45348 This lemma is used to prov...
stoweidlem38 45349 This lemma is used to prov...
stoweidlem39 45350 This lemma is used to prov...
stoweidlem40 45351 This lemma proves that q_n...
stoweidlem41 45352 This lemma is used to prov...
stoweidlem42 45353 This lemma is used to prov...
stoweidlem43 45354 This lemma is used to prov...
stoweidlem44 45355 This lemma is used to prov...
stoweidlem45 45356 This lemma proves that, gi...
stoweidlem46 45357 This lemma proves that set...
stoweidlem47 45358 Subtracting a constant fro...
stoweidlem48 45359 This lemma is used to prov...
stoweidlem49 45360 There exists a function q_...
stoweidlem50 45361 This lemma proves that set...
stoweidlem51 45362 There exists a function x ...
stoweidlem52 45363 There exists a neighborhoo...
stoweidlem53 45364 This lemma is used to prov...
stoweidlem54 45365 There exists a function ` ...
stoweidlem55 45366 This lemma proves the exis...
stoweidlem56 45367 This theorem proves Lemma ...
stoweidlem57 45368 There exists a function x ...
stoweidlem58 45369 This theorem proves Lemma ...
stoweidlem59 45370 This lemma proves that the...
stoweidlem60 45371 This lemma proves that the...
stoweidlem61 45372 This lemma proves that the...
stoweidlem62 45373 This theorem proves the St...
stoweid 45374 This theorem proves the St...
stowei 45375 This theorem proves the St...
wallispilem1 45376 ` I ` is monotone: increas...
wallispilem2 45377 A first set of properties ...
wallispilem3 45378 I maps to real values. (C...
wallispilem4 45379 ` F ` maps to explicit exp...
wallispilem5 45380 The sequence ` H ` converg...
wallispi 45381 Wallis' formula for Ï€ :...
wallispi2lem1 45382 An intermediate step betwe...
wallispi2lem2 45383 Two expressions are proven...
wallispi2 45384 An alternative version of ...
stirlinglem1 45385 A simple limit of fraction...
stirlinglem2 45386 ` A ` maps to positive rea...
stirlinglem3 45387 Long but simple algebraic ...
stirlinglem4 45388 Algebraic manipulation of ...
stirlinglem5 45389 If ` T ` is between ` 0 ` ...
stirlinglem6 45390 A series that converges to...
stirlinglem7 45391 Algebraic manipulation of ...
stirlinglem8 45392 If ` A ` converges to ` C ...
stirlinglem9 45393 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 45394 A bound for any B(N)-B(N +...
stirlinglem11 45395 ` B ` is decreasing. (Con...
stirlinglem12 45396 The sequence ` B ` is boun...
stirlinglem13 45397 ` B ` is decreasing and ha...
stirlinglem14 45398 The sequence ` A ` converg...
stirlinglem15 45399 The Stirling's formula is ...
stirling 45400 Stirling's approximation f...
stirlingr 45401 Stirling's approximation f...
dirkerval 45402 The N_th Dirichlet Kernel....
dirker2re 45403 The Dirichlet Kernel value...
dirkerdenne0 45404 The Dirichlet Kernel denom...
dirkerval2 45405 The N_th Dirichlet Kernel ...
dirkerre 45406 The Dirichlet Kernel at an...
dirkerper 45407 the Dirichlet Kernel has p...
dirkerf 45408 For any natural number ` N...
dirkertrigeqlem1 45409 Sum of an even number of a...
dirkertrigeqlem2 45410 Trigonomic equality lemma ...
dirkertrigeqlem3 45411 Trigonometric equality lem...
dirkertrigeq 45412 Trigonometric equality for...
dirkeritg 45413 The definite integral of t...
dirkercncflem1 45414 If ` Y ` is a multiple of ...
dirkercncflem2 45415 Lemma used to prove that t...
dirkercncflem3 45416 The Dirichlet Kernel is co...
dirkercncflem4 45417 The Dirichlet Kernel is co...
dirkercncf 45418 For any natural number ` N...
fourierdlem1 45419 A partition interval is a ...
fourierdlem2 45420 Membership in a partition....
fourierdlem3 45421 Membership in a partition....
fourierdlem4 45422 ` E ` is a function that m...
fourierdlem5 45423 ` S ` is a function. (Con...
fourierdlem6 45424 ` X ` is in the periodic p...
fourierdlem7 45425 The difference between the...
fourierdlem8 45426 A partition interval is a ...
fourierdlem9 45427 ` H ` is a complex functio...
fourierdlem10 45428 Condition on the bounds of...
fourierdlem11 45429 If there is a partition, t...
fourierdlem12 45430 A point of a partition is ...
fourierdlem13 45431 Value of ` V ` in terms of...
fourierdlem14 45432 Given the partition ` V ` ...
fourierdlem15 45433 The range of the partition...
fourierdlem16 45434 The coefficients of the fo...
fourierdlem17 45435 The defined ` L ` is actua...
fourierdlem18 45436 The function ` S ` is cont...
fourierdlem19 45437 If two elements of ` D ` h...
fourierdlem20 45438 Every interval in the part...
fourierdlem21 45439 The coefficients of the fo...
fourierdlem22 45440 The coefficients of the fo...
fourierdlem23 45441 If ` F ` is continuous and...
fourierdlem24 45442 A sufficient condition for...
fourierdlem25 45443 If ` C ` is not in the ran...
fourierdlem26 45444 Periodic image of a point ...
fourierdlem27 45445 A partition open interval ...
fourierdlem28 45446 Derivative of ` ( F `` ( X...
fourierdlem29 45447 Explicit function value fo...
fourierdlem30 45448 Sum of three small pieces ...
fourierdlem31 45449 If ` A ` is finite and for...
fourierdlem32 45450 Limit of a continuous func...
fourierdlem33 45451 Limit of a continuous func...
fourierdlem34 45452 A partition is one to one....
fourierdlem35 45453 There is a single point in...
fourierdlem36 45454 ` F ` is an isomorphism. ...
fourierdlem37 45455 ` I ` is a function that m...
fourierdlem38 45456 The function ` F ` is cont...
fourierdlem39 45457 Integration by parts of ...
fourierdlem40 45458 ` H ` is a continuous func...
fourierdlem41 45459 Lemma used to prove that e...
fourierdlem42 45460 The set of points in a mov...
fourierdlem43 45461 ` K ` is a real function. ...
fourierdlem44 45462 A condition for having ` (...
fourierdlem46 45463 The function ` F ` has a l...
fourierdlem47 45464 For ` r ` large enough, th...
fourierdlem48 45465 The given periodic functio...
fourierdlem49 45466 The given periodic functio...
fourierdlem50 45467 Continuity of ` O ` and it...
fourierdlem51 45468 ` X ` is in the periodic p...
fourierdlem52 45469 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 45470 The limit of ` F ( s ) ` a...
fourierdlem54 45471 Given a partition ` Q ` an...
fourierdlem55 45472 ` U ` is a real function. ...
fourierdlem56 45473 Derivative of the ` K ` fu...
fourierdlem57 45474 The derivative of ` O ` . ...
fourierdlem58 45475 The derivative of ` K ` is...
fourierdlem59 45476 The derivative of ` H ` is...
fourierdlem60 45477 Given a differentiable fun...
fourierdlem61 45478 Given a differentiable fun...
fourierdlem62 45479 The function ` K ` is cont...
fourierdlem63 45480 The upper bound of interva...
fourierdlem64 45481 The partition ` V ` is fin...
fourierdlem65 45482 The distance of two adjace...
fourierdlem66 45483 Value of the ` G ` functio...
fourierdlem67 45484 ` G ` is a function. (Con...
fourierdlem68 45485 The derivative of ` O ` is...
fourierdlem69 45486 A piecewise continuous fun...
fourierdlem70 45487 A piecewise continuous fun...
fourierdlem71 45488 A periodic piecewise conti...
fourierdlem72 45489 The derivative of ` O ` is...
fourierdlem73 45490 A version of the Riemann L...
fourierdlem74 45491 Given a piecewise smooth f...
fourierdlem75 45492 Given a piecewise smooth f...
fourierdlem76 45493 Continuity of ` O ` and it...
fourierdlem77 45494 If ` H ` is bounded, then ...
fourierdlem78 45495 ` G ` is continuous when r...
fourierdlem79 45496 ` E ` projects every inter...
fourierdlem80 45497 The derivative of ` O ` is...
fourierdlem81 45498 The integral of a piecewis...
fourierdlem82 45499 Integral by substitution, ...
fourierdlem83 45500 The fourier partial sum fo...
fourierdlem84 45501 If ` F ` is piecewise coni...
fourierdlem85 45502 Limit of the function ` G ...
fourierdlem86 45503 Continuity of ` O ` and it...
fourierdlem87 45504 The integral of ` G ` goes...
fourierdlem88 45505 Given a piecewise continuo...
fourierdlem89 45506 Given a piecewise continuo...
fourierdlem90 45507 Given a piecewise continuo...
fourierdlem91 45508 Given a piecewise continuo...
fourierdlem92 45509 The integral of a piecewis...
fourierdlem93 45510 Integral by substitution (...
fourierdlem94 45511 For a piecewise smooth fun...
fourierdlem95 45512 Algebraic manipulation of ...
fourierdlem96 45513 limit for ` F ` at the low...
fourierdlem97 45514 ` F ` is continuous on the...
fourierdlem98 45515 ` F ` is continuous on the...
fourierdlem99 45516 limit for ` F ` at the upp...
fourierdlem100 45517 A piecewise continuous fun...
fourierdlem101 45518 Integral by substitution f...
fourierdlem102 45519 For a piecewise smooth fun...
fourierdlem103 45520 The half lower part of the...
fourierdlem104 45521 The half upper part of the...
fourierdlem105 45522 A piecewise continuous fun...
fourierdlem106 45523 For a piecewise smooth fun...
fourierdlem107 45524 The integral of a piecewis...
fourierdlem108 45525 The integral of a piecewis...
fourierdlem109 45526 The integral of a piecewis...
fourierdlem110 45527 The integral of a piecewis...
fourierdlem111 45528 The fourier partial sum fo...
fourierdlem112 45529 Here abbreviations (local ...
fourierdlem113 45530 Fourier series convergence...
fourierdlem114 45531 Fourier series convergence...
fourierdlem115 45532 Fourier serier convergence...
fourierd 45533 Fourier series convergence...
fourierclimd 45534 Fourier series convergence...
fourierclim 45535 Fourier series convergence...
fourier 45536 Fourier series convergence...
fouriercnp 45537 If ` F ` is continuous at ...
fourier2 45538 Fourier series convergence...
sqwvfoura 45539 Fourier coefficients for t...
sqwvfourb 45540 Fourier series ` B ` coeff...
fourierswlem 45541 The Fourier series for the...
fouriersw 45542 Fourier series convergence...
fouriercn 45543 If the derivative of ` F `...
elaa2lem 45544 Elementhood in the set of ...
elaa2 45545 Elementhood in the set of ...
etransclem1 45546 ` H ` is a function. (Con...
etransclem2 45547 Derivative of ` G ` . (Co...
etransclem3 45548 The given ` if ` term is a...
etransclem4 45549 ` F ` expressed as a finit...
etransclem5 45550 A change of bound variable...
etransclem6 45551 A change of bound variable...
etransclem7 45552 The given product is an in...
etransclem8 45553 ` F ` is a function. (Con...
etransclem9 45554 If ` K ` divides ` N ` but...
etransclem10 45555 The given ` if ` term is a...
etransclem11 45556 A change of bound variable...
etransclem12 45557 ` C ` applied to ` N ` . ...
etransclem13 45558 ` F ` applied to ` Y ` . ...
etransclem14 45559 Value of the term ` T ` , ...
etransclem15 45560 Value of the term ` T ` , ...
etransclem16 45561 Every element in the range...
etransclem17 45562 The ` N ` -th derivative o...
etransclem18 45563 The given function is inte...
etransclem19 45564 The ` N ` -th derivative o...
etransclem20 45565 ` H ` is smooth. (Contrib...
etransclem21 45566 The ` N ` -th derivative o...
etransclem22 45567 The ` N ` -th derivative o...
etransclem23 45568 This is the claim proof in...
etransclem24 45569 ` P ` divides the I -th de...
etransclem25 45570 ` P ` factorial divides th...
etransclem26 45571 Every term in the sum of t...
etransclem27 45572 The ` N ` -th derivative o...
etransclem28 45573 ` ( P - 1 ) ` factorial di...
etransclem29 45574 The ` N ` -th derivative o...
etransclem30 45575 The ` N ` -th derivative o...
etransclem31 45576 The ` N ` -th derivative o...
etransclem32 45577 This is the proof for the ...
etransclem33 45578 ` F ` is smooth. (Contrib...
etransclem34 45579 The ` N ` -th derivative o...
etransclem35 45580 ` P ` does not divide the ...
etransclem36 45581 The ` N ` -th derivative o...
etransclem37 45582 ` ( P - 1 ) ` factorial di...
etransclem38 45583 ` P ` divides the I -th de...
etransclem39 45584 ` G ` is a function. (Con...
etransclem40 45585 The ` N ` -th derivative o...
etransclem41 45586 ` P ` does not divide the ...
etransclem42 45587 The ` N ` -th derivative o...
etransclem43 45588 ` G ` is a continuous func...
etransclem44 45589 The given finite sum is no...
etransclem45 45590 ` K ` is an integer. (Con...
etransclem46 45591 This is the proof for equa...
etransclem47 45592 ` _e ` is transcendental. ...
etransclem48 45593 ` _e ` is transcendental. ...
etransc 45594 ` _e ` is transcendental. ...
rrxtopn 45595 The topology of the genera...
rrxngp 45596 Generalized Euclidean real...
rrxtps 45597 Generalized Euclidean real...
rrxtopnfi 45598 The topology of the n-dime...
rrxtopon 45599 The topology on generalize...
rrxtop 45600 The topology on generalize...
rrndistlt 45601 Given two points in the sp...
rrxtoponfi 45602 The topology on n-dimensio...
rrxunitopnfi 45603 The base set of the standa...
rrxtopn0 45604 The topology of the zero-d...
qndenserrnbllem 45605 n-dimensional rational num...
qndenserrnbl 45606 n-dimensional rational num...
rrxtopn0b 45607 The topology of the zero-d...
qndenserrnopnlem 45608 n-dimensional rational num...
qndenserrnopn 45609 n-dimensional rational num...
qndenserrn 45610 n-dimensional rational num...
rrxsnicc 45611 A multidimensional singlet...
rrnprjdstle 45612 The distance between two p...
rrndsmet 45613 ` D ` is a metric for the ...
rrndsxmet 45614 ` D ` is an extended metri...
ioorrnopnlem 45615 The a point in an indexed ...
ioorrnopn 45616 The indexed product of ope...
ioorrnopnxrlem 45617 Given a point ` F ` that b...
ioorrnopnxr 45618 The indexed product of ope...
issal 45625 Express the predicate " ` ...
pwsal 45626 The power set of a given s...
salunicl 45627 SAlg sigma-algebra is clos...
saluncl 45628 The union of two sets in a...
prsal 45629 The pair of the empty set ...
saldifcl 45630 The complement of an eleme...
0sal 45631 The empty set belongs to e...
salgenval 45632 The sigma-algebra generate...
saliunclf 45633 SAlg sigma-algebra is clos...
saliuncl 45634 SAlg sigma-algebra is clos...
salincl 45635 The intersection of two se...
saluni 45636 A set is an element of any...
saliinclf 45637 SAlg sigma-algebra is clos...
saliincl 45638 SAlg sigma-algebra is clos...
saldifcl2 45639 The difference of two elem...
intsaluni 45640 The union of an arbitrary ...
intsal 45641 The arbitrary intersection...
salgenn0 45642 The set used in the defini...
salgencl 45643 ` SalGen ` actually genera...
issald 45644 Sufficient condition to pr...
salexct 45645 An example of nontrivial s...
sssalgen 45646 A set is a subset of the s...
salgenss 45647 The sigma-algebra generate...
salgenuni 45648 The base set of the sigma-...
issalgend 45649 One side of ~ dfsalgen2 . ...
salexct2 45650 An example of a subset tha...
unisalgen 45651 The union of a set belongs...
dfsalgen2 45652 Alternate characterization...
salexct3 45653 An example of a sigma-alge...
salgencntex 45654 This counterexample shows ...
salgensscntex 45655 This counterexample shows ...
issalnnd 45656 Sufficient condition to pr...
dmvolsal 45657 Lebesgue measurable sets f...
saldifcld 45658 The complement of an eleme...
saluncld 45659 The union of two sets in a...
salgencld 45660 ` SalGen ` actually genera...
0sald 45661 The empty set belongs to e...
iooborel 45662 An open interval is a Bore...
salincld 45663 The intersection of two se...
salunid 45664 A set is an element of any...
unisalgen2 45665 The union of a set belongs...
bor1sal 45666 The Borel sigma-algebra on...
iocborel 45667 A left-open, right-closed ...
subsaliuncllem 45668 A subspace sigma-algebra i...
subsaliuncl 45669 A subspace sigma-algebra i...
subsalsal 45670 A subspace sigma-algebra i...
subsaluni 45671 A set belongs to the subsp...
salrestss 45672 A sigma-algebra restricted...
sge0rnre 45675 When ` sum^ ` is applied t...
fge0icoicc 45676 If ` F ` maps to nonnegati...
sge0val 45677 The value of the sum of no...
fge0npnf 45678 If ` F ` maps to nonnegati...
sge0rnn0 45679 The range used in the defi...
sge0vald 45680 The value of the sum of no...
fge0iccico 45681 A range of nonnegative ext...
gsumge0cl 45682 Closure of group sum, for ...
sge0reval 45683 Value of the sum of nonneg...
sge0pnfval 45684 If a term in the sum of no...
fge0iccre 45685 A range of nonnegative ext...
sge0z 45686 Any nonnegative extended s...
sge00 45687 The sum of nonnegative ext...
fsumlesge0 45688 Every finite subsum of non...
sge0revalmpt 45689 Value of the sum of nonneg...
sge0sn 45690 A sum of a nonnegative ext...
sge0tsms 45691 ` sum^ ` applied to a nonn...
sge0cl 45692 The arbitrary sum of nonne...
sge0f1o 45693 Re-index a nonnegative ext...
sge0snmpt 45694 A sum of a nonnegative ext...
sge0ge0 45695 The sum of nonnegative ext...
sge0xrcl 45696 The arbitrary sum of nonne...
sge0repnf 45697 The of nonnegative extende...
sge0fsum 45698 The arbitrary sum of a fin...
sge0rern 45699 If the sum of nonnegative ...
sge0supre 45700 If the arbitrary sum of no...
sge0fsummpt 45701 The arbitrary sum of a fin...
sge0sup 45702 The arbitrary sum of nonne...
sge0less 45703 A shorter sum of nonnegati...
sge0rnbnd 45704 The range used in the defi...
sge0pr 45705 Sum of a pair of nonnegati...
sge0gerp 45706 The arbitrary sum of nonne...
sge0pnffigt 45707 If the sum of nonnegative ...
sge0ssre 45708 If a sum of nonnegative ex...
sge0lefi 45709 A sum of nonnegative exten...
sge0lessmpt 45710 A shorter sum of nonnegati...
sge0ltfirp 45711 If the sum of nonnegative ...
sge0prle 45712 The sum of a pair of nonne...
sge0gerpmpt 45713 The arbitrary sum of nonne...
sge0resrnlem 45714 The sum of nonnegative ext...
sge0resrn 45715 The sum of nonnegative ext...
sge0ssrempt 45716 If a sum of nonnegative ex...
sge0resplit 45717 ` sum^ ` splits into two p...
sge0le 45718 If all of the terms of sum...
sge0ltfirpmpt 45719 If the extended sum of non...
sge0split 45720 Split a sum of nonnegative...
sge0lempt 45721 If all of the terms of sum...
sge0splitmpt 45722 Split a sum of nonnegative...
sge0ss 45723 Change the index set to a ...
sge0iunmptlemfi 45724 Sum of nonnegative extende...
sge0p1 45725 The addition of the next t...
sge0iunmptlemre 45726 Sum of nonnegative extende...
sge0fodjrnlem 45727 Re-index a nonnegative ext...
sge0fodjrn 45728 Re-index a nonnegative ext...
sge0iunmpt 45729 Sum of nonnegative extende...
sge0iun 45730 Sum of nonnegative extende...
sge0nemnf 45731 The generalized sum of non...
sge0rpcpnf 45732 The sum of an infinite num...
sge0rernmpt 45733 If the sum of nonnegative ...
sge0lefimpt 45734 A sum of nonnegative exten...
nn0ssge0 45735 Nonnegative integers are n...
sge0clmpt 45736 The generalized sum of non...
sge0ltfirpmpt2 45737 If the extended sum of non...
sge0isum 45738 If a series of nonnegative...
sge0xrclmpt 45739 The generalized sum of non...
sge0xp 45740 Combine two generalized su...
sge0isummpt 45741 If a series of nonnegative...
sge0ad2en 45742 The value of the infinite ...
sge0isummpt2 45743 If a series of nonnegative...
sge0xaddlem1 45744 The extended addition of t...
sge0xaddlem2 45745 The extended addition of t...
sge0xadd 45746 The extended addition of t...
sge0fsummptf 45747 The generalized sum of a f...
sge0snmptf 45748 A sum of a nonnegative ext...
sge0ge0mpt 45749 The sum of nonnegative ext...
sge0repnfmpt 45750 The of nonnegative extende...
sge0pnffigtmpt 45751 If the generalized sum of ...
sge0splitsn 45752 Separate out a term in a g...
sge0pnffsumgt 45753 If the sum of nonnegative ...
sge0gtfsumgt 45754 If the generalized sum of ...
sge0uzfsumgt 45755 If a real number is smalle...
sge0pnfmpt 45756 If a term in the sum of no...
sge0seq 45757 A series of nonnegative re...
sge0reuz 45758 Value of the generalized s...
sge0reuzb 45759 Value of the generalized s...
ismea 45762 Express the predicate " ` ...
dmmeasal 45763 The domain of a measure is...
meaf 45764 A measure is a function th...
mea0 45765 The measure of the empty s...
nnfoctbdjlem 45766 There exists a mapping fro...
nnfoctbdj 45767 There exists a mapping fro...
meadjuni 45768 The measure of the disjoin...
meacl 45769 The measure of a set is a ...
iundjiunlem 45770 The sets in the sequence `...
iundjiun 45771 Given a sequence ` E ` of ...
meaxrcl 45772 The measure of a set is an...
meadjun 45773 The measure of the union o...
meassle 45774 The measure of a set is gr...
meaunle 45775 The measure of the union o...
meadjiunlem 45776 The sum of nonnegative ext...
meadjiun 45777 The measure of the disjoin...
ismeannd 45778 Sufficient condition to pr...
meaiunlelem 45779 The measure of the union o...
meaiunle 45780 The measure of the union o...
psmeasurelem 45781 ` M ` applied to a disjoin...
psmeasure 45782 Point supported measure, R...
voliunsge0lem 45783 The Lebesgue measure funct...
voliunsge0 45784 The Lebesgue measure funct...
volmea 45785 The Lebesgue measure on th...
meage0 45786 If the measure of a measur...
meadjunre 45787 The measure of the union o...
meassre 45788 If the measure of a measur...
meale0eq0 45789 A measure that is less tha...
meadif 45790 The measure of the differe...
meaiuninclem 45791 Measures are continuous fr...
meaiuninc 45792 Measures are continuous fr...
meaiuninc2 45793 Measures are continuous fr...
meaiunincf 45794 Measures are continuous fr...
meaiuninc3v 45795 Measures are continuous fr...
meaiuninc3 45796 Measures are continuous fr...
meaiininclem 45797 Measures are continuous fr...
meaiininc 45798 Measures are continuous fr...
meaiininc2 45799 Measures are continuous fr...
caragenval 45804 The sigma-algebra generate...
isome 45805 Express the predicate " ` ...
caragenel 45806 Membership in the Caratheo...
omef 45807 An outer measure is a func...
ome0 45808 The outer measure of the e...
omessle 45809 The outer measure of a set...
omedm 45810 The domain of an outer mea...
caragensplit 45811 If ` E ` is in the set gen...
caragenelss 45812 An element of the Caratheo...
carageneld 45813 Membership in the Caratheo...
omecl 45814 The outer measure of a set...
caragenss 45815 The sigma-algebra generate...
omeunile 45816 The outer measure of the u...
caragen0 45817 The empty set belongs to a...
omexrcl 45818 The outer measure of a set...
caragenunidm 45819 The base set of an outer m...
caragensspw 45820 The sigma-algebra generate...
omessre 45821 If the outer measure of a ...
caragenuni 45822 The base set of the sigma-...
caragenuncllem 45823 The Caratheodory's constru...
caragenuncl 45824 The Caratheodory's constru...
caragendifcl 45825 The Caratheodory's constru...
caragenfiiuncl 45826 The Caratheodory's constru...
omeunle 45827 The outer measure of the u...
omeiunle 45828 The outer measure of the i...
omelesplit 45829 The outer measure of a set...
omeiunltfirp 45830 If the outer measure of a ...
omeiunlempt 45831 The outer measure of the i...
carageniuncllem1 45832 The outer measure of ` A i...
carageniuncllem2 45833 The Caratheodory's constru...
carageniuncl 45834 The Caratheodory's constru...
caragenunicl 45835 The Caratheodory's constru...
caragensal 45836 Caratheodory's method gene...
caratheodorylem1 45837 Lemma used to prove that C...
caratheodorylem2 45838 Caratheodory's constructio...
caratheodory 45839 Caratheodory's constructio...
0ome 45840 The map that assigns 0 to ...
isomenndlem 45841 ` O ` is sub-additive w.r....
isomennd 45842 Sufficient condition to pr...
caragenel2d 45843 Membership in the Caratheo...
omege0 45844 If the outer measure of a ...
omess0 45845 If the outer measure of a ...
caragencmpl 45846 A measure built with the C...
vonval 45851 Value of the Lebesgue meas...
ovnval 45852 Value of the Lebesgue oute...
elhoi 45853 Membership in a multidimen...
icoresmbl 45854 A closed-below, open-above...
hoissre 45855 The projection of a half-o...
ovnval2 45856 Value of the Lebesgue oute...
volicorecl 45857 The Lebesgue measure of a ...
hoiprodcl 45858 The pre-measure of half-op...
hoicvr 45859 ` I ` is a countable set o...
hoissrrn 45860 A half-open interval is a ...
ovn0val 45861 The Lebesgue outer measure...
ovnn0val 45862 The value of a (multidimen...
ovnval2b 45863 Value of the Lebesgue oute...
volicorescl 45864 The Lebesgue measure of a ...
ovnprodcl 45865 The product used in the de...
hoiprodcl2 45866 The pre-measure of half-op...
hoicvrrex 45867 Any subset of the multidim...
ovnsupge0 45868 The set used in the defini...
ovnlecvr 45869 Given a subset of multidim...
ovnpnfelsup 45870 ` +oo ` is an element of t...
ovnsslelem 45871 The (multidimensional, non...
ovnssle 45872 The (multidimensional) Leb...
ovnlerp 45873 The Lebesgue outer measure...
ovnf 45874 The Lebesgue outer measure...
ovncvrrp 45875 The Lebesgue outer measure...
ovn0lem 45876 For any finite dimension, ...
ovn0 45877 For any finite dimension, ...
ovncl 45878 The Lebesgue outer measure...
ovn02 45879 For the zero-dimensional s...
ovnxrcl 45880 The Lebesgue outer measure...
ovnsubaddlem1 45881 The Lebesgue outer measure...
ovnsubaddlem2 45882 ` ( voln* `` X ) ` is suba...
ovnsubadd 45883 ` ( voln* `` X ) ` is suba...
ovnome 45884 ` ( voln* `` X ) ` is an o...
vonmea 45885 ` ( voln `` X ) ` is a mea...
volicon0 45886 The measure of a nonempty ...
hsphoif 45887 ` H ` is a function (that ...
hoidmvval 45888 The dimensional volume of ...
hoissrrn2 45889 A half-open interval is a ...
hsphoival 45890 ` H ` is a function (that ...
hoiprodcl3 45891 The pre-measure of half-op...
volicore 45892 The Lebesgue measure of a ...
hoidmvcl 45893 The dimensional volume of ...
hoidmv0val 45894 The dimensional volume of ...
hoidmvn0val 45895 The dimensional volume of ...
hsphoidmvle2 45896 The dimensional volume of ...
hsphoidmvle 45897 The dimensional volume of ...
hoidmvval0 45898 The dimensional volume of ...
hoiprodp1 45899 The dimensional volume of ...
sge0hsphoire 45900 If the generalized sum of ...
hoidmvval0b 45901 The dimensional volume of ...
hoidmv1lelem1 45902 The supremum of ` U ` belo...
hoidmv1lelem2 45903 This is the contradiction ...
hoidmv1lelem3 45904 The dimensional volume of ...
hoidmv1le 45905 The dimensional volume of ...
hoidmvlelem1 45906 The supremum of ` U ` belo...
hoidmvlelem2 45907 This is the contradiction ...
hoidmvlelem3 45908 This is the contradiction ...
hoidmvlelem4 45909 The dimensional volume of ...
hoidmvlelem5 45910 The dimensional volume of ...
hoidmvle 45911 The dimensional volume of ...
ovnhoilem1 45912 The Lebesgue outer measure...
ovnhoilem2 45913 The Lebesgue outer measure...
ovnhoi 45914 The Lebesgue outer measure...
dmovn 45915 The domain of the Lebesgue...
hoicoto2 45916 The half-open interval exp...
dmvon 45917 Lebesgue measurable n-dime...
hoi2toco 45918 The half-open interval exp...
hoidifhspval 45919 ` D ` is a function that r...
hspval 45920 The value of the half-spac...
ovnlecvr2 45921 Given a subset of multidim...
ovncvr2 45922 ` B ` and ` T ` are the le...
dmovnsal 45923 The domain of the Lebesgue...
unidmovn 45924 Base set of the n-dimensio...
rrnmbl 45925 The set of n-dimensional R...
hoidifhspval2 45926 ` D ` is a function that r...
hspdifhsp 45927 A n-dimensional half-open ...
unidmvon 45928 Base set of the n-dimensio...
hoidifhspf 45929 ` D ` is a function that r...
hoidifhspval3 45930 ` D ` is a function that r...
hoidifhspdmvle 45931 The dimensional volume of ...
voncmpl 45932 The Lebesgue measure is co...
hoiqssbllem1 45933 The center of the n-dimens...
hoiqssbllem2 45934 The center of the n-dimens...
hoiqssbllem3 45935 A n-dimensional ball conta...
hoiqssbl 45936 A n-dimensional ball conta...
hspmbllem1 45937 Any half-space of the n-di...
hspmbllem2 45938 Any half-space of the n-di...
hspmbllem3 45939 Any half-space of the n-di...
hspmbl 45940 Any half-space of the n-di...
hoimbllem 45941 Any n-dimensional half-ope...
hoimbl 45942 Any n-dimensional half-ope...
opnvonmbllem1 45943 The half-open interval exp...
opnvonmbllem2 45944 An open subset of the n-di...
opnvonmbl 45945 An open subset of the n-di...
opnssborel 45946 Open sets of a generalized...
borelmbl 45947 All Borel subsets of the n...
volicorege0 45948 The Lebesgue measure of a ...
isvonmbl 45949 The predicate " ` A ` is m...
mblvon 45950 The n-dimensional Lebesgue...
vonmblss 45951 n-dimensional Lebesgue mea...
volico2 45952 The measure of left-closed...
vonmblss2 45953 n-dimensional Lebesgue mea...
ovolval2lem 45954 The value of the Lebesgue ...
ovolval2 45955 The value of the Lebesgue ...
ovnsubadd2lem 45956 ` ( voln* `` X ) ` is suba...
ovnsubadd2 45957 ` ( voln* `` X ) ` is suba...
ovolval3 45958 The value of the Lebesgue ...
ovnsplit 45959 The n-dimensional Lebesgue...
ovolval4lem1 45960 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 45961 The value of the Lebesgue ...
ovolval4 45962 The value of the Lebesgue ...
ovolval5lem1 45963 ` |- ( ph -> ( sum^ `` ( n...
ovolval5lem2 45964 ` |- ( ( ph /\ n e. NN ) -...
ovolval5lem3 45965 The value of the Lebesgue ...
ovolval5 45966 The value of the Lebesgue ...
ovnovollem1 45967 if ` F ` is a cover of ` B...
ovnovollem2 45968 if ` I ` is a cover of ` (...
ovnovollem3 45969 The 1-dimensional Lebesgue...
ovnovol 45970 The 1-dimensional Lebesgue...
vonvolmbllem 45971 If a subset ` B ` of real ...
vonvolmbl 45972 A subset of Real numbers i...
vonvol 45973 The 1-dimensional Lebesgue...
vonvolmbl2 45974 A subset ` X ` of the spac...
vonvol2 45975 The 1-dimensional Lebesgue...
hoimbl2 45976 Any n-dimensional half-ope...
voncl 45977 The Lebesgue measure of a ...
vonhoi 45978 The Lebesgue outer measure...
vonxrcl 45979 The Lebesgue measure of a ...
ioosshoi 45980 A n-dimensional open inter...
vonn0hoi 45981 The Lebesgue outer measure...
von0val 45982 The Lebesgue measure (for ...
vonhoire 45983 The Lebesgue measure of a ...
iinhoiicclem 45984 A n-dimensional closed int...
iinhoiicc 45985 A n-dimensional closed int...
iunhoiioolem 45986 A n-dimensional open inter...
iunhoiioo 45987 A n-dimensional open inter...
ioovonmbl 45988 Any n-dimensional open int...
iccvonmbllem 45989 Any n-dimensional closed i...
iccvonmbl 45990 Any n-dimensional closed i...
vonioolem1 45991 The sequence of the measur...
vonioolem2 45992 The n-dimensional Lebesgue...
vonioo 45993 The n-dimensional Lebesgue...
vonicclem1 45994 The sequence of the measur...
vonicclem2 45995 The n-dimensional Lebesgue...
vonicc 45996 The n-dimensional Lebesgue...
snvonmbl 45997 A n-dimensional singleton ...
vonn0ioo 45998 The n-dimensional Lebesgue...
vonn0icc 45999 The n-dimensional Lebesgue...
ctvonmbl 46000 Any n-dimensional countabl...
vonn0ioo2 46001 The n-dimensional Lebesgue...
vonsn 46002 The n-dimensional Lebesgue...
vonn0icc2 46003 The n-dimensional Lebesgue...
vonct 46004 The n-dimensional Lebesgue...
vitali2 46005 There are non-measurable s...
pimltmnf2f 46008 Given a real-valued functi...
pimltmnf2 46009 Given a real-valued functi...
preimagelt 46010 The preimage of a right-op...
preimalegt 46011 The preimage of a left-ope...
pimconstlt0 46012 Given a constant function,...
pimconstlt1 46013 Given a constant function,...
pimltpnff 46014 Given a real-valued functi...
pimltpnf 46015 Given a real-valued functi...
pimgtpnf2f 46016 Given a real-valued functi...
pimgtpnf2 46017 Given a real-valued functi...
salpreimagelt 46018 If all the preimages of le...
pimrecltpos 46019 The preimage of an unbound...
salpreimalegt 46020 If all the preimages of ri...
pimiooltgt 46021 The preimage of an open in...
preimaicomnf 46022 Preimage of an open interv...
pimltpnf2f 46023 Given a real-valued functi...
pimltpnf2 46024 Given a real-valued functi...
pimgtmnf2 46025 Given a real-valued functi...
pimdecfgtioc 46026 Given a nonincreasing func...
pimincfltioc 46027 Given a nondecreasing func...
pimdecfgtioo 46028 Given a nondecreasing func...
pimincfltioo 46029 Given a nondecreasing func...
preimaioomnf 46030 Preimage of an open interv...
preimageiingt 46031 A preimage of a left-close...
preimaleiinlt 46032 A preimage of a left-open,...
pimgtmnff 46033 Given a real-valued functi...
pimgtmnf 46034 Given a real-valued functi...
pimrecltneg 46035 The preimage of an unbound...
salpreimagtge 46036 If all the preimages of le...
salpreimaltle 46037 If all the preimages of ri...
issmflem 46038 The predicate " ` F ` is a...
issmf 46039 The predicate " ` F ` is a...
salpreimalelt 46040 If all the preimages of ri...
salpreimagtlt 46041 If all the preimages of le...
smfpreimalt 46042 Given a function measurabl...
smff 46043 A function measurable w.r....
smfdmss 46044 The domain of a function m...
issmff 46045 The predicate " ` F ` is a...
issmfd 46046 A sufficient condition for...
smfpreimaltf 46047 Given a function measurabl...
issmfdf 46048 A sufficient condition for...
sssmf 46049 The restriction of a sigma...
mbfresmf 46050 A real-valued measurable f...
cnfsmf 46051 A continuous function is m...
incsmflem 46052 A nondecreasing function i...
incsmf 46053 A real-valued, nondecreasi...
smfsssmf 46054 If a function is measurabl...
issmflelem 46055 The predicate " ` F ` is a...
issmfle 46056 The predicate " ` F ` is a...
smfpimltmpt 46057 Given a function measurabl...
smfpimltxr 46058 Given a function measurabl...
issmfdmpt 46059 A sufficient condition for...
smfconst 46060 Given a sigma-algebra over...
sssmfmpt 46061 The restriction of a sigma...
cnfrrnsmf 46062 A function, continuous fro...
smfid 46063 The identity function is B...
bormflebmf 46064 A Borel measurable functio...
smfpreimale 46065 Given a function measurabl...
issmfgtlem 46066 The predicate " ` F ` is a...
issmfgt 46067 The predicate " ` F ` is a...
issmfled 46068 A sufficient condition for...
smfpimltxrmptf 46069 Given a function measurabl...
smfpimltxrmpt 46070 Given a function measurabl...
smfmbfcex 46071 A constant function, with ...
issmfgtd 46072 A sufficient condition for...
smfpreimagt 46073 Given a function measurabl...
smfaddlem1 46074 Given the sum of two funct...
smfaddlem2 46075 The sum of two sigma-measu...
smfadd 46076 The sum of two sigma-measu...
decsmflem 46077 A nonincreasing function i...
decsmf 46078 A real-valued, nonincreasi...
smfpreimagtf 46079 Given a function measurabl...
issmfgelem 46080 The predicate " ` F ` is a...
issmfge 46081 The predicate " ` F ` is a...
smflimlem1 46082 Lemma for the proof that t...
smflimlem2 46083 Lemma for the proof that t...
smflimlem3 46084 The limit of sigma-measura...
smflimlem4 46085 Lemma for the proof that t...
smflimlem5 46086 Lemma for the proof that t...
smflimlem6 46087 Lemma for the proof that t...
smflim 46088 The limit of sigma-measura...
nsssmfmbflem 46089 The sigma-measurable funct...
nsssmfmbf 46090 The sigma-measurable funct...
smfpimgtxr 46091 Given a function measurabl...
smfpimgtmpt 46092 Given a function measurabl...
smfpreimage 46093 Given a function measurabl...
mbfpsssmf 46094 Real-valued measurable fun...
smfpimgtxrmptf 46095 Given a function measurabl...
smfpimgtxrmpt 46096 Given a function measurabl...
smfpimioompt 46097 Given a function measurabl...
smfpimioo 46098 Given a function measurabl...
smfresal 46099 Given a sigma-measurable f...
smfrec 46100 The reciprocal of a sigma-...
smfres 46101 The restriction of sigma-m...
smfmullem1 46102 The multiplication of two ...
smfmullem2 46103 The multiplication of two ...
smfmullem3 46104 The multiplication of two ...
smfmullem4 46105 The multiplication of two ...
smfmul 46106 The multiplication of two ...
smfmulc1 46107 A sigma-measurable functio...
smfdiv 46108 The fraction of two sigma-...
smfpimbor1lem1 46109 Every open set belongs to ...
smfpimbor1lem2 46110 Given a sigma-measurable f...
smfpimbor1 46111 Given a sigma-measurable f...
smf2id 46112 Twice the identity functio...
smfco 46113 The composition of a Borel...
smfneg 46114 The negative of a sigma-me...
smffmptf 46115 A function measurable w.r....
smffmpt 46116 A function measurable w.r....
smflim2 46117 The limit of a sequence of...
smfpimcclem 46118 Lemma for ~ smfpimcc given...
smfpimcc 46119 Given a countable set of s...
issmfle2d 46120 A sufficient condition for...
smflimmpt 46121 The limit of a sequence of...
smfsuplem1 46122 The supremum of a countabl...
smfsuplem2 46123 The supremum of a countabl...
smfsuplem3 46124 The supremum of a countabl...
smfsup 46125 The supremum of a countabl...
smfsupmpt 46126 The supremum of a countabl...
smfsupxr 46127 The supremum of a countabl...
smfinflem 46128 The infimum of a countable...
smfinf 46129 The infimum of a countable...
smfinfmpt 46130 The infimum of a countable...
smflimsuplem1 46131 If ` H ` converges, the ` ...
smflimsuplem2 46132 The superior limit of a se...
smflimsuplem3 46133 The limit of the ` ( H `` ...
smflimsuplem4 46134 If ` H ` converges, the ` ...
smflimsuplem5 46135 ` H ` converges to the sup...
smflimsuplem6 46136 The superior limit of a se...
smflimsuplem7 46137 The superior limit of a se...
smflimsuplem8 46138 The superior limit of a se...
smflimsup 46139 The superior limit of a se...
smflimsupmpt 46140 The superior limit of a se...
smfliminflem 46141 The inferior limit of a co...
smfliminf 46142 The inferior limit of a co...
smfliminfmpt 46143 The inferior limit of a co...
adddmmbl 46144 If two functions have doma...
adddmmbl2 46145 If two functions have doma...
muldmmbl 46146 If two functions have doma...
muldmmbl2 46147 If two functions have doma...
smfdmmblpimne 46148 If a measurable function w...
smfdivdmmbl 46149 If a functions and a sigma...
smfpimne 46150 Given a function measurabl...
smfpimne2 46151 Given a function measurabl...
smfdivdmmbl2 46152 If a functions and a sigma...
fsupdm 46153 The domain of the sup func...
fsupdm2 46154 The domain of the sup func...
smfsupdmmbllem 46155 If a countable set of sigm...
smfsupdmmbl 46156 If a countable set of sigm...
finfdm 46157 The domain of the inf func...
finfdm2 46158 The domain of the inf func...
smfinfdmmbllem 46159 If a countable set of sigm...
smfinfdmmbl 46160 If a countable set of sigm...
sigarval 46161 Define the signed area by ...
sigarim 46162 Signed area takes value in...
sigarac 46163 Signed area is anticommuta...
sigaraf 46164 Signed area is additive by...
sigarmf 46165 Signed area is additive (w...
sigaras 46166 Signed area is additive by...
sigarms 46167 Signed area is additive (w...
sigarls 46168 Signed area is linear by t...
sigarid 46169 Signed area of a flat para...
sigarexp 46170 Expand the signed area for...
sigarperm 46171 Signed area ` ( A - C ) G ...
sigardiv 46172 If signed area between vec...
sigarimcd 46173 Signed area takes value in...
sigariz 46174 If signed area is zero, th...
sigarcol 46175 Given three points ` A ` ,...
sharhght 46176 Let ` A B C ` be a triangl...
sigaradd 46177 Subtracting (double) area ...
cevathlem1 46178 Ceva's theorem first lemma...
cevathlem2 46179 Ceva's theorem second lemm...
cevath 46180 Ceva's theorem. Let ` A B...
simpcntrab 46181 The center of a simple gro...
et-ltneverrefl 46182 Less-than class is never r...
et-equeucl 46183 Alternative proof that equ...
et-sqrtnegnre 46184 The square root of a negat...
natlocalincr 46185 Global monotonicity on hal...
natglobalincr 46186 Local monotonicity on half...
upwordnul 46189 Empty set is an increasing...
upwordisword 46190 Any increasing sequence is...
singoutnword 46191 Singleton with character o...
singoutnupword 46192 Singleton with character o...
upwordsing 46193 Singleton is an increasing...
upwordsseti 46194 Strictly increasing sequen...
tworepnotupword 46195 Concatenation of identical...
upwrdfi 46196 There is a finite number o...
hirstL-ax3 46197 The third axiom of a syste...
ax3h 46198 Recover ~ ax-3 from ~ hirs...
aibandbiaiffaiffb 46199 A closed form showing (a i...
aibandbiaiaiffb 46200 A closed form showing (a i...
notatnand 46201 Do not use. Use intnanr i...
aistia 46202 Given a is equivalent to `...
aisfina 46203 Given a is equivalent to `...
bothtbothsame 46204 Given both a, b are equiva...
bothfbothsame 46205 Given both a, b are equiva...
aiffbbtat 46206 Given a is equivalent to b...
aisbbisfaisf 46207 Given a is equivalent to b...
axorbtnotaiffb 46208 Given a is exclusive to b,...
aiffnbandciffatnotciffb 46209 Given a is equivalent to (...
axorbciffatcxorb 46210 Given a is equivalent to (...
aibnbna 46211 Given a implies b, (not b)...
aibnbaif 46212 Given a implies b, not b, ...
aiffbtbat 46213 Given a is equivalent to b...
astbstanbst 46214 Given a is equivalent to T...
aistbistaandb 46215 Given a is equivalent to T...
aisbnaxb 46216 Given a is equivalent to b...
atbiffatnnb 46217 If a implies b, then a imp...
bisaiaisb 46218 Application of bicom1 with...
atbiffatnnbalt 46219 If a implies b, then a imp...
abnotbtaxb 46220 Assuming a, not b, there e...
abnotataxb 46221 Assuming not a, b, there e...
conimpf 46222 Assuming a, not b, and a i...
conimpfalt 46223 Assuming a, not b, and a i...
aistbisfiaxb 46224 Given a is equivalent to T...
aisfbistiaxb 46225 Given a is equivalent to F...
aifftbifffaibif 46226 Given a is equivalent to T...
aifftbifffaibifff 46227 Given a is equivalent to T...
atnaiana 46228 Given a, it is not the cas...
ainaiaandna 46229 Given a, a implies it is n...
abcdta 46230 Given (((a and b) and c) a...
abcdtb 46231 Given (((a and b) and c) a...
abcdtc 46232 Given (((a and b) and c) a...
abcdtd 46233 Given (((a and b) and c) a...
abciffcbatnabciffncba 46234 Operands in a biconditiona...
abciffcbatnabciffncbai 46235 Operands in a biconditiona...
nabctnabc 46236 not ( a -> ( b /\ c ) ) we...
jabtaib 46237 For when pm3.4 lacks a pm3...
onenotinotbothi 46238 From one negated implicati...
twonotinotbothi 46239 From these two negated imp...
clifte 46240 show d is the same as an i...
cliftet 46241 show d is the same as an i...
clifteta 46242 show d is the same as an i...
cliftetb 46243 show d is the same as an i...
confun 46244 Given the hypotheses there...
confun2 46245 Confun simplified to two p...
confun3 46246 Confun's more complex form...
confun4 46247 An attempt at derivative. ...
confun5 46248 An attempt at derivative. ...
plcofph 46249 Given, a,b and a "definiti...
pldofph 46250 Given, a,b c, d, "definiti...
plvcofph 46251 Given, a,b,d, and "definit...
plvcofphax 46252 Given, a,b,d, and "definit...
plvofpos 46253 rh is derivable because ON...
mdandyv0 46254 Given the equivalences set...
mdandyv1 46255 Given the equivalences set...
mdandyv2 46256 Given the equivalences set...
mdandyv3 46257 Given the equivalences set...
mdandyv4 46258 Given the equivalences set...
mdandyv5 46259 Given the equivalences set...
mdandyv6 46260 Given the equivalences set...
mdandyv7 46261 Given the equivalences set...
mdandyv8 46262 Given the equivalences set...
mdandyv9 46263 Given the equivalences set...
mdandyv10 46264 Given the equivalences set...
mdandyv11 46265 Given the equivalences set...
mdandyv12 46266 Given the equivalences set...
mdandyv13 46267 Given the equivalences set...
mdandyv14 46268 Given the equivalences set...
mdandyv15 46269 Given the equivalences set...
mdandyvr0 46270 Given the equivalences set...
mdandyvr1 46271 Given the equivalences set...
mdandyvr2 46272 Given the equivalences set...
mdandyvr3 46273 Given the equivalences set...
mdandyvr4 46274 Given the equivalences set...
mdandyvr5 46275 Given the equivalences set...
mdandyvr6 46276 Given the equivalences set...
mdandyvr7 46277 Given the equivalences set...
mdandyvr8 46278 Given the equivalences set...
mdandyvr9 46279 Given the equivalences set...
mdandyvr10 46280 Given the equivalences set...
mdandyvr11 46281 Given the equivalences set...
mdandyvr12 46282 Given the equivalences set...
mdandyvr13 46283 Given the equivalences set...
mdandyvr14 46284 Given the equivalences set...
mdandyvr15 46285 Given the equivalences set...
mdandyvrx0 46286 Given the exclusivities se...
mdandyvrx1 46287 Given the exclusivities se...
mdandyvrx2 46288 Given the exclusivities se...
mdandyvrx3 46289 Given the exclusivities se...
mdandyvrx4 46290 Given the exclusivities se...
mdandyvrx5 46291 Given the exclusivities se...
mdandyvrx6 46292 Given the exclusivities se...
mdandyvrx7 46293 Given the exclusivities se...
mdandyvrx8 46294 Given the exclusivities se...
mdandyvrx9 46295 Given the exclusivities se...
mdandyvrx10 46296 Given the exclusivities se...
mdandyvrx11 46297 Given the exclusivities se...
mdandyvrx12 46298 Given the exclusivities se...
mdandyvrx13 46299 Given the exclusivities se...
mdandyvrx14 46300 Given the exclusivities se...
mdandyvrx15 46301 Given the exclusivities se...
H15NH16TH15IH16 46302 Given 15 hypotheses and a ...
dandysum2p2e4 46303 CONTRADICTION PROVED AT 1 ...
mdandysum2p2e4 46304 CONTRADICTION PROVED AT 1 ...
adh-jarrsc 46305 Replacement of a nested an...
adh-minim 46306 A single axiom for minimal...
adh-minim-ax1-ax2-lem1 46307 First lemma for the deriva...
adh-minim-ax1-ax2-lem2 46308 Second lemma for the deriv...
adh-minim-ax1-ax2-lem3 46309 Third lemma for the deriva...
adh-minim-ax1-ax2-lem4 46310 Fourth lemma for the deriv...
adh-minim-ax1 46311 Derivation of ~ ax-1 from ...
adh-minim-ax2-lem5 46312 Fifth lemma for the deriva...
adh-minim-ax2-lem6 46313 Sixth lemma for the deriva...
adh-minim-ax2c 46314 Derivation of a commuted f...
adh-minim-ax2 46315 Derivation of ~ ax-2 from ...
adh-minim-idALT 46316 Derivation of ~ id (reflex...
adh-minim-pm2.43 46317 Derivation of ~ pm2.43 Whi...
adh-minimp 46318 Another single axiom for m...
adh-minimp-jarr-imim1-ax2c-lem1 46319 First lemma for the deriva...
adh-minimp-jarr-lem2 46320 Second lemma for the deriv...
adh-minimp-jarr-ax2c-lem3 46321 Third lemma for the deriva...
adh-minimp-sylsimp 46322 Derivation of ~ jarr (also...
adh-minimp-ax1 46323 Derivation of ~ ax-1 from ...
adh-minimp-imim1 46324 Derivation of ~ imim1 ("le...
adh-minimp-ax2c 46325 Derivation of a commuted f...
adh-minimp-ax2-lem4 46326 Fourth lemma for the deriv...
adh-minimp-ax2 46327 Derivation of ~ ax-2 from ...
adh-minimp-idALT 46328 Derivation of ~ id (reflex...
adh-minimp-pm2.43 46329 Derivation of ~ pm2.43 Whi...
n0nsn2el 46330 If a class with one elemen...
eusnsn 46331 There is a unique element ...
absnsb 46332 If the class abstraction `...
euabsneu 46333 Another way to express exi...
elprneb 46334 An element of a proper uno...
oppr 46335 Equality for ordered pairs...
opprb 46336 Equality for unordered pai...
or2expropbilem1 46337 Lemma 1 for ~ or2expropbi ...
or2expropbilem2 46338 Lemma 2 for ~ or2expropbi ...
or2expropbi 46339 If two classes are strictl...
eubrv 46340 If there is a unique set w...
eubrdm 46341 If there is a unique set w...
eldmressn 46342 Element of the domain of a...
iota0def 46343 Example for a defined iota...
iota0ndef 46344 Example for an undefined i...
fveqvfvv 46345 If a function's value at a...
fnresfnco 46346 Composition of two functio...
funcoressn 46347 A composition restricted t...
funressnfv 46348 A restriction to a singlet...
funressndmfvrn 46349 The value of a function ` ...
funressnvmo 46350 A function restricted to a...
funressnmo 46351 A function restricted to a...
funressneu 46352 There is exactly one value...
fresfo 46353 Conditions for a restricti...
fsetsniunop 46354 The class of all functions...
fsetabsnop 46355 The class of all functions...
fsetsnf 46356 The mapping of an element ...
fsetsnf1 46357 The mapping of an element ...
fsetsnfo 46358 The mapping of an element ...
fsetsnf1o 46359 The mapping of an element ...
fsetsnprcnex 46360 The class of all functions...
cfsetssfset 46361 The class of constant func...
cfsetsnfsetfv 46362 The function value of the ...
cfsetsnfsetf 46363 The mapping of the class o...
cfsetsnfsetf1 46364 The mapping of the class o...
cfsetsnfsetfo 46365 The mapping of the class o...
cfsetsnfsetf1o 46366 The mapping of the class o...
fsetprcnexALT 46367 First version of proof for...
fcoreslem1 46368 Lemma 1 for ~ fcores . (C...
fcoreslem2 46369 Lemma 2 for ~ fcores . (C...
fcoreslem3 46370 Lemma 3 for ~ fcores . (C...
fcoreslem4 46371 Lemma 4 for ~ fcores . (C...
fcores 46372 Every composite function `...
fcoresf1lem 46373 Lemma for ~ fcoresf1 . (C...
fcoresf1 46374 If a composition is inject...
fcoresf1b 46375 A composition is injective...
fcoresfo 46376 If a composition is surjec...
fcoresfob 46377 A composition is surjectiv...
fcoresf1ob 46378 A composition is bijective...
f1cof1blem 46379 Lemma for ~ f1cof1b and ~ ...
f1cof1b 46380 If the range of ` F ` equa...
funfocofob 46381 If the domain of a functio...
fnfocofob 46382 If the domain of a functio...
focofob 46383 If the domain of a functio...
f1ocof1ob 46384 If the range of ` F ` equa...
f1ocof1ob2 46385 If the range of ` F ` equa...
aiotajust 46387 Soundness justification th...
dfaiota2 46389 Alternate definition of th...
reuabaiotaiota 46390 The iota and the alternate...
reuaiotaiota 46391 The iota and the alternate...
aiotaexb 46392 The alternate iota over a ...
aiotavb 46393 The alternate iota over a ...
aiotaint 46394 This is to ~ df-aiota what...
dfaiota3 46395 Alternate definition of ` ...
iotan0aiotaex 46396 If the iota over a wff ` p...
aiotaexaiotaiota 46397 The alternate iota over a ...
aiotaval 46398 Theorem 8.19 in [Quine] p....
aiota0def 46399 Example for a defined alte...
aiota0ndef 46400 Example for an undefined a...
r19.32 46401 Theorem 19.32 of [Margaris...
rexsb 46402 An equivalent expression f...
rexrsb 46403 An equivalent expression f...
2rexsb 46404 An equivalent expression f...
2rexrsb 46405 An equivalent expression f...
cbvral2 46406 Change bound variables of ...
cbvrex2 46407 Change bound variables of ...
ralndv1 46408 Example for a theorem abou...
ralndv2 46409 Second example for a theor...
reuf1odnf 46410 There is exactly one eleme...
reuf1od 46411 There is exactly one eleme...
euoreqb 46412 There is a set which is eq...
2reu3 46413 Double restricted existent...
2reu7 46414 Two equivalent expressions...
2reu8 46415 Two equivalent expressions...
2reu8i 46416 Implication of a double re...
2reuimp0 46417 Implication of a double re...
2reuimp 46418 Implication of a double re...
ralbinrald 46425 Elemination of a restricte...
nvelim 46426 If a class is the universa...
alneu 46427 If a statement holds for a...
eu2ndop1stv 46428 If there is a unique secon...
dfateq12d 46429 Equality deduction for "de...
nfdfat 46430 Bound-variable hypothesis ...
dfdfat2 46431 Alternate definition of th...
fundmdfat 46432 A function is defined at a...
dfatprc 46433 A function is not defined ...
dfatelrn 46434 The value of a function ` ...
dfafv2 46435 Alternative definition of ...
afveq12d 46436 Equality deduction for fun...
afveq1 46437 Equality theorem for funct...
afveq2 46438 Equality theorem for funct...
nfafv 46439 Bound-variable hypothesis ...
csbafv12g 46440 Move class substitution in...
afvfundmfveq 46441 If a class is a function r...
afvnfundmuv 46442 If a set is not in the dom...
ndmafv 46443 The value of a class outsi...
afvvdm 46444 If the function value of a...
nfunsnafv 46445 If the restriction of a cl...
afvvfunressn 46446 If the function value of a...
afvprc 46447 A function's value at a pr...
afvvv 46448 If a function's value at a...
afvpcfv0 46449 If the value of the altern...
afvnufveq 46450 The value of the alternati...
afvvfveq 46451 The value of the alternati...
afv0fv0 46452 If the value of the altern...
afvfvn0fveq 46453 If the function's value at...
afv0nbfvbi 46454 The function's value at an...
afvfv0bi 46455 The function's value at an...
afveu 46456 The value of a function at...
fnbrafvb 46457 Equivalence of function va...
fnopafvb 46458 Equivalence of function va...
funbrafvb 46459 Equivalence of function va...
funopafvb 46460 Equivalence of function va...
funbrafv 46461 The second argument of a b...
funbrafv2b 46462 Function value in terms of...
dfafn5a 46463 Representation of a functi...
dfafn5b 46464 Representation of a functi...
fnrnafv 46465 The range of a function ex...
afvelrnb 46466 A member of a function's r...
afvelrnb0 46467 A member of a function's r...
dfaimafn 46468 Alternate definition of th...
dfaimafn2 46469 Alternate definition of th...
afvelima 46470 Function value in an image...
afvelrn 46471 A function's value belongs...
fnafvelrn 46472 A function's value belongs...
fafvelcdm 46473 A function's value belongs...
ffnafv 46474 A function maps to a class...
afvres 46475 The value of a restricted ...
tz6.12-afv 46476 Function value. Theorem 6...
tz6.12-1-afv 46477 Function value (Theorem 6....
dmfcoafv 46478 Domains of a function comp...
afvco2 46479 Value of a function compos...
rlimdmafv 46480 Two ways to express that a...
aoveq123d 46481 Equality deduction for ope...
nfaov 46482 Bound-variable hypothesis ...
csbaovg 46483 Move class substitution in...
aovfundmoveq 46484 If a class is a function r...
aovnfundmuv 46485 If an ordered pair is not ...
ndmaov 46486 The value of an operation ...
ndmaovg 46487 The value of an operation ...
aovvdm 46488 If the operation value of ...
nfunsnaov 46489 If the restriction of a cl...
aovvfunressn 46490 If the operation value of ...
aovprc 46491 The value of an operation ...
aovrcl 46492 Reverse closure for an ope...
aovpcov0 46493 If the alternative value o...
aovnuoveq 46494 The alternative value of t...
aovvoveq 46495 The alternative value of t...
aov0ov0 46496 If the alternative value o...
aovovn0oveq 46497 If the operation's value a...
aov0nbovbi 46498 The operation's value on a...
aovov0bi 46499 The operation's value on a...
rspceaov 46500 A frequently used special ...
fnotaovb 46501 Equivalence of operation v...
ffnaov 46502 An operation maps to a cla...
faovcl 46503 Closure law for an operati...
aovmpt4g 46504 Value of a function given ...
aoprssdm 46505 Domain of closure of an op...
ndmaovcl 46506 The "closure" of an operat...
ndmaovrcl 46507 Reverse closure law, in co...
ndmaovcom 46508 Any operation is commutati...
ndmaovass 46509 Any operation is associati...
ndmaovdistr 46510 Any operation is distribut...
dfatafv2iota 46513 If a function is defined a...
ndfatafv2 46514 The alternate function val...
ndfatafv2undef 46515 The alternate function val...
dfatafv2ex 46516 The alternate function val...
afv2ex 46517 The alternate function val...
afv2eq12d 46518 Equality deduction for fun...
afv2eq1 46519 Equality theorem for funct...
afv2eq2 46520 Equality theorem for funct...
nfafv2 46521 Bound-variable hypothesis ...
csbafv212g 46522 Move class substitution in...
fexafv2ex 46523 The alternate function val...
ndfatafv2nrn 46524 The alternate function val...
ndmafv2nrn 46525 The value of a class outsi...
funressndmafv2rn 46526 The alternate function val...
afv2ndefb 46527 Two ways to say that an al...
nfunsnafv2 46528 If the restriction of a cl...
afv2prc 46529 A function's value at a pr...
dfatafv2rnb 46530 The alternate function val...
afv2orxorb 46531 If a set is in the range o...
dmafv2rnb 46532 The alternate function val...
fundmafv2rnb 46533 The alternate function val...
afv2elrn 46534 An alternate function valu...
afv20defat 46535 If the alternate function ...
fnafv2elrn 46536 An alternate function valu...
fafv2elcdm 46537 An alternate function valu...
fafv2elrnb 46538 An alternate function valu...
fcdmvafv2v 46539 If the codomain of a funct...
tz6.12-2-afv2 46540 Function value when ` F ` ...
afv2eu 46541 The value of a function at...
afv2res 46542 The value of a restricted ...
tz6.12-afv2 46543 Function value (Theorem 6....
tz6.12-1-afv2 46544 Function value (Theorem 6....
tz6.12c-afv2 46545 Corollary of Theorem 6.12(...
tz6.12i-afv2 46546 Corollary of Theorem 6.12(...
funressnbrafv2 46547 The second argument of a b...
dfatbrafv2b 46548 Equivalence of function va...
dfatopafv2b 46549 Equivalence of function va...
funbrafv2 46550 The second argument of a b...
fnbrafv2b 46551 Equivalence of function va...
fnopafv2b 46552 Equivalence of function va...
funbrafv22b 46553 Equivalence of function va...
funopafv2b 46554 Equivalence of function va...
dfatsnafv2 46555 Singleton of function valu...
dfafv23 46556 A definition of function v...
dfatdmfcoafv2 46557 Domain of a function compo...
dfatcolem 46558 Lemma for ~ dfatco . (Con...
dfatco 46559 The predicate "defined at"...
afv2co2 46560 Value of a function compos...
rlimdmafv2 46561 Two ways to express that a...
dfafv22 46562 Alternate definition of ` ...
afv2ndeffv0 46563 If the alternate function ...
dfatafv2eqfv 46564 If a function is defined a...
afv2rnfveq 46565 If the alternate function ...
afv20fv0 46566 If the alternate function ...
afv2fvn0fveq 46567 If the function's value at...
afv2fv0 46568 If the function's value at...
afv2fv0b 46569 The function's value at an...
afv2fv0xorb 46570 If a set is in the range o...
an4com24 46571 Rearrangement of 4 conjunc...
3an4ancom24 46572 Commutative law for a conj...
4an21 46573 Rearrangement of 4 conjunc...
dfnelbr2 46576 Alternate definition of th...
nelbr 46577 The binary relation of a s...
nelbrim 46578 If a set is related to ano...
nelbrnel 46579 A set is related to anothe...
nelbrnelim 46580 If a set is related to ano...
ralralimp 46581 Selecting one of two alter...
otiunsndisjX 46582 The union of singletons co...
fvifeq 46583 Equality of function value...
rnfdmpr 46584 The range of a one-to-one ...
imarnf1pr 46585 The image of the range of ...
funop1 46586 A function is an ordered p...
fun2dmnopgexmpl 46587 A function with a domain c...
opabresex0d 46588 A collection of ordered pa...
opabbrfex0d 46589 A collection of ordered pa...
opabresexd 46590 A collection of ordered pa...
opabbrfexd 46591 A collection of ordered pa...
f1oresf1orab 46592 Build a bijection by restr...
f1oresf1o 46593 Build a bijection by restr...
f1oresf1o2 46594 Build a bijection by restr...
fvmptrab 46595 Value of a function mappin...
fvmptrabdm 46596 Value of a function mappin...
cnambpcma 46597 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 46598 ((a+b)-c)+d = ((a+d)+b)-c ...
addsubeq0 46599 The sum of two complex num...
leaddsuble 46600 Addition and subtraction o...
2leaddle2 46601 If two real numbers are le...
ltnltne 46602 Variant of trichotomy law ...
p1lep2 46603 A real number increasd by ...
ltsubsubaddltsub 46604 If the result of subtracti...
zm1nn 46605 An integer minus 1 is posi...
readdcnnred 46606 The sum of a real number a...
resubcnnred 46607 The difference of a real n...
recnmulnred 46608 The product of a real numb...
cndivrenred 46609 The quotient of an imagina...
sqrtnegnre 46610 The square root of a negat...
nn0resubcl 46611 Closure law for subtractio...
zgeltp1eq 46612 If an integer is between a...
1t10e1p1e11 46613 11 is 1 times 10 to the po...
deccarry 46614 Add 1 to a 2 digit number ...
eluzge0nn0 46615 If an integer is greater t...
nltle2tri 46616 Negated extended trichotom...
ssfz12 46617 Subset relationship for fi...
elfz2z 46618 Membership of an integer i...
2elfz3nn0 46619 If there are two elements ...
fz0addcom 46620 The addition of two member...
2elfz2melfz 46621 If the sum of two integers...
fz0addge0 46622 The sum of two integers in...
elfzlble 46623 Membership of an integer i...
elfzelfzlble 46624 Membership of an element o...
fzopred 46625 Join a predecessor to the ...
fzopredsuc 46626 Join a predecessor and a s...
1fzopredsuc 46627 Join 0 and a successor to ...
el1fzopredsuc 46628 An element of an open inte...
subsubelfzo0 46629 Subtracting a difference f...
fzoopth 46630 A half-open integer range ...
2ffzoeq 46631 Two functions over a half-...
m1mod0mod1 46632 An integer decreased by 1 ...
elmod2 46633 An integer modulo 2 is eit...
smonoord 46634 Ordering relation for a st...
fsummsndifre 46635 A finite sum with one of i...
fsumsplitsndif 46636 Separate out a term in a f...
fsummmodsndifre 46637 A finite sum of summands m...
fsummmodsnunz 46638 A finite sum of summands m...
setsidel 46639 The injected slot is an el...
setsnidel 46640 The injected slot is an el...
setsv 46641 The value of the structure...
preimafvsnel 46642 The preimage of a function...
preimafvn0 46643 The preimage of a function...
uniimafveqt 46644 The union of the image of ...
uniimaprimaeqfv 46645 The union of the image of ...
setpreimafvex 46646 The class ` P ` of all pre...
elsetpreimafvb 46647 The characterization of an...
elsetpreimafv 46648 An element of the class ` ...
elsetpreimafvssdm 46649 An element of the class ` ...
fvelsetpreimafv 46650 There is an element in a p...
preimafvelsetpreimafv 46651 The preimage of a function...
preimafvsspwdm 46652 The class ` P ` of all pre...
0nelsetpreimafv 46653 The empty set is not an el...
elsetpreimafvbi 46654 An element of the preimage...
elsetpreimafveqfv 46655 The elements of the preima...
eqfvelsetpreimafv 46656 If an element of the domai...
elsetpreimafvrab 46657 An element of the preimage...
imaelsetpreimafv 46658 The image of an element of...
uniimaelsetpreimafv 46659 The union of the image of ...
elsetpreimafveq 46660 If two preimages of functi...
fundcmpsurinjlem1 46661 Lemma 1 for ~ fundcmpsurin...
fundcmpsurinjlem2 46662 Lemma 2 for ~ fundcmpsurin...
fundcmpsurinjlem3 46663 Lemma 3 for ~ fundcmpsurin...
imasetpreimafvbijlemf 46664 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv 46665 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfv1 46666 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemf1 46667 Lemma for ~ imasetpreimafv...
imasetpreimafvbijlemfo 46668 Lemma for ~ imasetpreimafv...
imasetpreimafvbij 46669 The mapping ` H ` is a bij...
fundcmpsurbijinjpreimafv 46670 Every function ` F : A -->...
fundcmpsurinjpreimafv 46671 Every function ` F : A -->...
fundcmpsurinj 46672 Every function ` F : A -->...
fundcmpsurbijinj 46673 Every function ` F : A -->...
fundcmpsurinjimaid 46674 Every function ` F : A -->...
fundcmpsurinjALT 46675 Alternate proof of ~ fundc...
iccpval 46678 Partition consisting of a ...
iccpart 46679 A special partition. Corr...
iccpartimp 46680 Implications for a class b...
iccpartres 46681 The restriction of a parti...
iccpartxr 46682 If there is a partition, t...
iccpartgtprec 46683 If there is a partition, t...
iccpartipre 46684 If there is a partition, t...
iccpartiltu 46685 If there is a partition, t...
iccpartigtl 46686 If there is a partition, t...
iccpartlt 46687 If there is a partition, t...
iccpartltu 46688 If there is a partition, t...
iccpartgtl 46689 If there is a partition, t...
iccpartgt 46690 If there is a partition, t...
iccpartleu 46691 If there is a partition, t...
iccpartgel 46692 If there is a partition, t...
iccpartrn 46693 If there is a partition, t...
iccpartf 46694 The range of the partition...
iccpartel 46695 If there is a partition, t...
iccelpart 46696 An element of any partitio...
iccpartiun 46697 A half-open interval of ex...
icceuelpartlem 46698 Lemma for ~ icceuelpart . ...
icceuelpart 46699 An element of a partitione...
iccpartdisj 46700 The segments of a partitio...
iccpartnel 46701 A point of a partition is ...
fargshiftfv 46702 If a class is a function, ...
fargshiftf 46703 If a class is a function, ...
fargshiftf1 46704 If a function is 1-1, then...
fargshiftfo 46705 If a function is onto, the...
fargshiftfva 46706 The values of a shifted fu...
lswn0 46707 The last symbol of a not e...
nfich1 46710 The first interchangeable ...
nfich2 46711 The second interchangeable...
ichv 46712 Setvar variables are inter...
ichf 46713 Setvar variables are inter...
ichid 46714 A setvar variable is alway...
icht 46715 A theorem is interchangeab...
ichbidv 46716 Formula building rule for ...
ichcircshi 46717 The setvar variables are i...
ichan 46718 If two setvar variables ar...
ichn 46719 Negation does not affect i...
ichim 46720 Formula building rule for ...
dfich2 46721 Alternate definition of th...
ichcom 46722 The interchangeability of ...
ichbi12i 46723 Equivalence for interchang...
icheqid 46724 In an equality for the sam...
icheq 46725 In an equality of setvar v...
ichnfimlem 46726 Lemma for ~ ichnfim : A s...
ichnfim 46727 If in an interchangeabilit...
ichnfb 46728 If ` x ` and ` y ` are int...
ichal 46729 Move a universal quantifie...
ich2al 46730 Two setvar variables are a...
ich2ex 46731 Two setvar variables are a...
ichexmpl1 46732 Example for interchangeabl...
ichexmpl2 46733 Example for interchangeabl...
ich2exprop 46734 If the setvar variables ar...
ichnreuop 46735 If the setvar variables ar...
ichreuopeq 46736 If the setvar variables ar...
sprid 46737 Two identical representati...
elsprel 46738 An unordered pair is an el...
spr0nelg 46739 The empty set is not an el...
sprval 46742 The set of all unordered p...
sprvalpw 46743 The set of all unordered p...
sprssspr 46744 The set of all unordered p...
spr0el 46745 The empty set is not an un...
sprvalpwn0 46746 The set of all unordered p...
sprel 46747 An element of the set of a...
prssspr 46748 An element of a subset of ...
prelspr 46749 An unordered pair of eleme...
prsprel 46750 The elements of a pair fro...
prsssprel 46751 The elements of a pair fro...
sprvalpwle2 46752 The set of all unordered p...
sprsymrelfvlem 46753 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 46754 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 46755 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 46756 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 46757 The value of the function ...
sprsymrelf 46758 The mapping ` F ` is a fun...
sprsymrelf1 46759 The mapping ` F ` is a one...
sprsymrelfo 46760 The mapping ` F ` is a fun...
sprsymrelf1o 46761 The mapping ` F ` is a bij...
sprbisymrel 46762 There is a bijection betwe...
sprsymrelen 46763 The class ` P ` of subsets...
prpair 46764 Characterization of a prop...
prproropf1olem0 46765 Lemma 0 for ~ prproropf1o ...
prproropf1olem1 46766 Lemma 1 for ~ prproropf1o ...
prproropf1olem2 46767 Lemma 2 for ~ prproropf1o ...
prproropf1olem3 46768 Lemma 3 for ~ prproropf1o ...
prproropf1olem4 46769 Lemma 4 for ~ prproropf1o ...
prproropf1o 46770 There is a bijection betwe...
prproropen 46771 The set of proper pairs an...
prproropreud 46772 There is exactly one order...
pairreueq 46773 Two equivalent representat...
paireqne 46774 Two sets are not equal iff...
prprval 46777 The set of all proper unor...
prprvalpw 46778 The set of all proper unor...
prprelb 46779 An element of the set of a...
prprelprb 46780 A set is an element of the...
prprspr2 46781 The set of all proper unor...
prprsprreu 46782 There is a unique proper u...
prprreueq 46783 There is a unique proper u...
sbcpr 46784 The proper substitution of...
reupr 46785 There is a unique unordere...
reuprpr 46786 There is a unique proper u...
poprelb 46787 Equality for unordered pai...
2exopprim 46788 The existence of an ordere...
reuopreuprim 46789 There is a unique unordere...
fmtno 46792 The ` N ` th Fermat number...
fmtnoge3 46793 Each Fermat number is grea...
fmtnonn 46794 Each Fermat number is a po...
fmtnom1nn 46795 A Fermat number minus one ...
fmtnoodd 46796 Each Fermat number is odd....
fmtnorn 46797 A Fermat number is a funct...
fmtnof1 46798 The enumeration of the Fer...
fmtnoinf 46799 The set of Fermat numbers ...
fmtnorec1 46800 The first recurrence relat...
sqrtpwpw2p 46801 The floor of the square ro...
fmtnosqrt 46802 The floor of the square ro...
fmtno0 46803 The ` 0 ` th Fermat number...
fmtno1 46804 The ` 1 ` st Fermat number...
fmtnorec2lem 46805 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 46806 The second recurrence rela...
fmtnodvds 46807 Any Fermat number divides ...
goldbachthlem1 46808 Lemma 1 for ~ goldbachth ....
goldbachthlem2 46809 Lemma 2 for ~ goldbachth ....
goldbachth 46810 Goldbach's theorem: Two d...
fmtnorec3 46811 The third recurrence relat...
fmtnorec4 46812 The fourth recurrence rela...
fmtno2 46813 The ` 2 ` nd Fermat number...
fmtno3 46814 The ` 3 ` rd Fermat number...
fmtno4 46815 The ` 4 ` th Fermat number...
fmtno5lem1 46816 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 46817 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 46818 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 46819 Lemma 4 for ~ fmtno5 . (C...
fmtno5 46820 The ` 5 ` th Fermat number...
fmtno0prm 46821 The ` 0 ` th Fermat number...
fmtno1prm 46822 The ` 1 ` st Fermat number...
fmtno2prm 46823 The ` 2 ` nd Fermat number...
257prm 46824 257 is a prime number (the...
fmtno3prm 46825 The ` 3 ` rd Fermat number...
odz2prm2pw 46826 Any power of two is coprim...
fmtnoprmfac1lem 46827 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 46828 Divisor of Fermat number (...
fmtnoprmfac2lem1 46829 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 46830 Divisor of Fermat number (...
fmtnofac2lem 46831 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 46832 Divisor of Fermat number (...
fmtnofac1 46833 Divisor of Fermat number (...
fmtno4sqrt 46834 The floor of the square ro...
fmtno4prmfac 46835 If P was a (prime) factor ...
fmtno4prmfac193 46836 If P was a (prime) factor ...
fmtno4nprmfac193 46837 193 is not a (prime) facto...
fmtno4prm 46838 The ` 4 `-th Fermat number...
65537prm 46839 65537 is a prime number (t...
fmtnofz04prm 46840 The first five Fermat numb...
fmtnole4prm 46841 The first five Fermat numb...
fmtno5faclem1 46842 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 46843 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 46844 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 46845 The factorisation of the `...
fmtno5nprm 46846 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 46847 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 46848 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 46849 The mapping of a Fermat nu...
prmdvdsfmtnof1 46850 The mapping of a Fermat nu...
prminf2 46851 The set of prime numbers i...
2pwp1prm 46852 For ` ( ( 2 ^ k ) + 1 ) ` ...
2pwp1prmfmtno 46853 Every prime number of the ...
m2prm 46854 The second Mersenne number...
m3prm 46855 The third Mersenne number ...
flsqrt 46856 A condition equivalent to ...
flsqrt5 46857 The floor of the square ro...
3ndvds4 46858 3 does not divide 4. (Con...
139prmALT 46859 139 is a prime number. In...
31prm 46860 31 is a prime number. In ...
m5prm 46861 The fifth Mersenne number ...
127prm 46862 127 is a prime number. (C...
m7prm 46863 The seventh Mersenne numbe...
m11nprm 46864 The eleventh Mersenne numb...
mod42tp1mod8 46865 If a number is ` 3 ` modul...
sfprmdvdsmersenne 46866 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 46867 If ` P ` is a Sophie Germa...
lighneallem1 46868 Lemma 1 for ~ lighneal . ...
lighneallem2 46869 Lemma 2 for ~ lighneal . ...
lighneallem3 46870 Lemma 3 for ~ lighneal . ...
lighneallem4a 46871 Lemma 1 for ~ lighneallem4...
lighneallem4b 46872 Lemma 2 for ~ lighneallem4...
lighneallem4 46873 Lemma 3 for ~ lighneal . ...
lighneal 46874 If a power of a prime ` P ...
modexp2m1d 46875 The square of an integer w...
proththdlem 46876 Lemma for ~ proththd . (C...
proththd 46877 Proth's theorem (1878). I...
5tcu2e40 46878 5 times the cube of 2 is 4...
3exp4mod41 46879 3 to the fourth power is -...
41prothprmlem1 46880 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 46881 Lemma 2 for ~ 41prothprm ....
41prothprm 46882 41 is a _Proth prime_. (C...
quad1 46883 A condition for a quadrati...
requad01 46884 A condition for a quadrati...
requad1 46885 A condition for a quadrati...
requad2 46886 A condition for a quadrati...
iseven 46891 The predicate "is an even ...
isodd 46892 The predicate "is an odd n...
evenz 46893 An even number is an integ...
oddz 46894 An odd number is an intege...
evendiv2z 46895 The result of dividing an ...
oddp1div2z 46896 The result of dividing an ...
oddm1div2z 46897 The result of dividing an ...
isodd2 46898 The predicate "is an odd n...
dfodd2 46899 Alternate definition for o...
dfodd6 46900 Alternate definition for o...
dfeven4 46901 Alternate definition for e...
evenm1odd 46902 The predecessor of an even...
evenp1odd 46903 The successor of an even n...
oddp1eveni 46904 The successor of an odd nu...
oddm1eveni 46905 The predecessor of an odd ...
evennodd 46906 An even number is not an o...
oddneven 46907 An odd number is not an ev...
enege 46908 The negative of an even nu...
onego 46909 The negative of an odd num...
m1expevenALTV 46910 Exponentiation of -1 by an...
m1expoddALTV 46911 Exponentiation of -1 by an...
dfeven2 46912 Alternate definition for e...
dfodd3 46913 Alternate definition for o...
iseven2 46914 The predicate "is an even ...
isodd3 46915 The predicate "is an odd n...
2dvdseven 46916 2 divides an even number. ...
m2even 46917 A multiple of 2 is an even...
2ndvdsodd 46918 2 does not divide an odd n...
2dvdsoddp1 46919 2 divides an odd number in...
2dvdsoddm1 46920 2 divides an odd number de...
dfeven3 46921 Alternate definition for e...
dfodd4 46922 Alternate definition for o...
dfodd5 46923 Alternate definition for o...
zefldiv2ALTV 46924 The floor of an even numbe...
zofldiv2ALTV 46925 The floor of an odd numer ...
oddflALTV 46926 Odd number representation ...
iseven5 46927 The predicate "is an even ...
isodd7 46928 The predicate "is an odd n...
dfeven5 46929 Alternate definition for e...
dfodd7 46930 Alternate definition for o...
gcd2odd1 46931 The greatest common diviso...
zneoALTV 46932 No even integer equals an ...
zeoALTV 46933 An integer is even or odd....
zeo2ALTV 46934 An integer is even or odd ...
nneoALTV 46935 A positive integer is even...
nneoiALTV 46936 A positive integer is even...
odd2np1ALTV 46937 An integer is odd iff it i...
oddm1evenALTV 46938 An integer is odd iff its ...
oddp1evenALTV 46939 An integer is odd iff its ...
oexpnegALTV 46940 The exponential of the neg...
oexpnegnz 46941 The exponential of the neg...
bits0ALTV 46942 Value of the zeroth bit. ...
bits0eALTV 46943 The zeroth bit of an even ...
bits0oALTV 46944 The zeroth bit of an odd n...
divgcdoddALTV 46945 Either ` A / ( A gcd B ) `...
opoeALTV 46946 The sum of two odds is eve...
opeoALTV 46947 The sum of an odd and an e...
omoeALTV 46948 The difference of two odds...
omeoALTV 46949 The difference of an odd a...
oddprmALTV 46950 A prime not equal to ` 2 `...
0evenALTV 46951 0 is an even number. (Con...
0noddALTV 46952 0 is not an odd number. (...
1oddALTV 46953 1 is an odd number. (Cont...
1nevenALTV 46954 1 is not an even number. ...
2evenALTV 46955 2 is an even number. (Con...
2noddALTV 46956 2 is not an odd number. (...
nn0o1gt2ALTV 46957 An odd nonnegative integer...
nnoALTV 46958 An alternate characterizat...
nn0oALTV 46959 An alternate characterizat...
nn0e 46960 An alternate characterizat...
nneven 46961 An alternate characterizat...
nn0onn0exALTV 46962 For each odd nonnegative i...
nn0enn0exALTV 46963 For each even nonnegative ...
nnennexALTV 46964 For each even positive int...
nnpw2evenALTV 46965 2 to the power of a positi...
epoo 46966 The sum of an even and an ...
emoo 46967 The difference of an even ...
epee 46968 The sum of two even number...
emee 46969 The difference of two even...
evensumeven 46970 If a summand is even, the ...
3odd 46971 3 is an odd number. (Cont...
4even 46972 4 is an even number. (Con...
5odd 46973 5 is an odd number. (Cont...
6even 46974 6 is an even number. (Con...
7odd 46975 7 is an odd number. (Cont...
8even 46976 8 is an even number. (Con...
evenprm2 46977 A prime number is even iff...
oddprmne2 46978 Every prime number not bei...
oddprmuzge3 46979 A prime number which is od...
evenltle 46980 If an even number is great...
odd2prm2 46981 If an odd number is the su...
even3prm2 46982 If an even number is the s...
mogoldbblem 46983 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 46984 Lemma for ~ perfectALTV . ...
perfectALTVlem2 46985 Lemma for ~ perfectALTV . ...
perfectALTV 46986 The Euclid-Euler theorem, ...
fppr 46989 The set of Fermat pseudopr...
fpprmod 46990 The set of Fermat pseudopr...
fpprel 46991 A Fermat pseudoprime to th...
fpprbasnn 46992 The base of a Fermat pseud...
fpprnn 46993 A Fermat pseudoprime to th...
fppr2odd 46994 A Fermat pseudoprime to th...
11t31e341 46995 341 is the product of 11 a...
2exp340mod341 46996 Eight to the eighth power ...
341fppr2 46997 341 is the (smallest) _Pou...
4fppr1 46998 4 is the (smallest) Fermat...
8exp8mod9 46999 Eight to the eighth power ...
9fppr8 47000 9 is the (smallest) Fermat...
dfwppr 47001 Alternate definition of a ...
fpprwppr 47002 A Fermat pseudoprime to th...
fpprwpprb 47003 An integer ` X ` which is ...
fpprel2 47004 An alternate definition fo...
nfermltl8rev 47005 Fermat's little theorem wi...
nfermltl2rev 47006 Fermat's little theorem wi...
nfermltlrev 47007 Fermat's little theorem re...
isgbe 47014 The predicate "is an even ...
isgbow 47015 The predicate "is a weak o...
isgbo 47016 The predicate "is an odd G...
gbeeven 47017 An even Goldbach number is...
gbowodd 47018 A weak odd Goldbach number...
gbogbow 47019 A (strong) odd Goldbach nu...
gboodd 47020 An odd Goldbach number is ...
gbepos 47021 Any even Goldbach number i...
gbowpos 47022 Any weak odd Goldbach numb...
gbopos 47023 Any odd Goldbach number is...
gbegt5 47024 Any even Goldbach number i...
gbowgt5 47025 Any weak odd Goldbach numb...
gbowge7 47026 Any weak odd Goldbach numb...
gboge9 47027 Any odd Goldbach number is...
gbege6 47028 Any even Goldbach number i...
gbpart6 47029 The Goldbach partition of ...
gbpart7 47030 The (weak) Goldbach partit...
gbpart8 47031 The Goldbach partition of ...
gbpart9 47032 The (strong) Goldbach part...
gbpart11 47033 The (strong) Goldbach part...
6gbe 47034 6 is an even Goldbach numb...
7gbow 47035 7 is a weak odd Goldbach n...
8gbe 47036 8 is an even Goldbach numb...
9gbo 47037 9 is an odd Goldbach numbe...
11gbo 47038 11 is an odd Goldbach numb...
stgoldbwt 47039 If the strong ternary Gold...
sbgoldbwt 47040 If the strong binary Goldb...
sbgoldbst 47041 If the strong binary Goldb...
sbgoldbaltlem1 47042 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 47043 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 47044 An alternate (related to t...
sbgoldbb 47045 If the strong binary Goldb...
sgoldbeven3prm 47046 If the binary Goldbach con...
sbgoldbm 47047 If the strong binary Goldb...
mogoldbb 47048 If the modern version of t...
sbgoldbmb 47049 The strong binary Goldbach...
sbgoldbo 47050 If the strong binary Goldb...
nnsum3primes4 47051 4 is the sum of at most 3 ...
nnsum4primes4 47052 4 is the sum of at most 4 ...
nnsum3primesprm 47053 Every prime is "the sum of...
nnsum4primesprm 47054 Every prime is "the sum of...
nnsum3primesgbe 47055 Any even Goldbach number i...
nnsum4primesgbe 47056 Any even Goldbach number i...
nnsum3primesle9 47057 Every integer greater than...
nnsum4primesle9 47058 Every integer greater than...
nnsum4primesodd 47059 If the (weak) ternary Gold...
nnsum4primesoddALTV 47060 If the (strong) ternary Go...
evengpop3 47061 If the (weak) ternary Gold...
evengpoap3 47062 If the (strong) ternary Go...
nnsum4primeseven 47063 If the (weak) ternary Gold...
nnsum4primesevenALTV 47064 If the (strong) ternary Go...
wtgoldbnnsum4prm 47065 If the (weak) ternary Gold...
stgoldbnnsum4prm 47066 If the (strong) ternary Go...
bgoldbnnsum3prm 47067 If the binary Goldbach con...
bgoldbtbndlem1 47068 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 47069 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 47070 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 47071 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 47072 If the binary Goldbach con...
tgoldbachgtALTV 47075 Variant of Thierry Arnoux'...
bgoldbachlt 47076 The binary Goldbach conjec...
tgblthelfgott 47078 The ternary Goldbach conje...
tgoldbachlt 47079 The ternary Goldbach conje...
tgoldbach 47080 The ternary Goldbach conje...
grimfn 47086 The graph isomorphism func...
grimdmrel 47087 The domain of the graph is...
isgrim 47089 An isomorphism of graphs i...
grimprop 47090 An isomorphism of graphs i...
grimf1o 47091 An isomorphism of graphs i...
isuspgrim0lem 47092 An isomorphism of simple p...
isuspgrim0 47093 An isomorphism of simple p...
uspgrimprop 47094 An isomorphism of simple p...
isuspgrimlem 47095 Lemma for ~ isuspgrim . (...
isuspgrim 47096 A class is an isomorphism ...
grimidvtxedg 47097 The identity relation rest...
grimid 47098 The identity relation rest...
grimuhgr 47099 If there is a graph isomor...
grimcnv 47100 The converse of a graph is...
grimco 47101 The composition of graph i...
brgric 47102 The relation "is isomorphi...
brgrici 47103 Prove that two graphs are ...
dfgric2 47104 Alternate, explicit defini...
gricbri 47105 Implications of two graphs...
gricushgr 47106 The "is isomorphic to" rel...
gricuspgr 47107 The "is isomorphic to" rel...
gricrel 47108 The "is isomorphic to" rel...
gricref 47109 Graph isomorphism is refle...
gricsym 47110 Graph isomorphism is symme...
gricsymb 47111 Graph isomorphism is symme...
grictr 47112 Graph isomorphism is trans...
gricer 47113 Isomorphism is an equivale...
gricen 47114 Isomorphic graphs have equ...
opstrgric 47115 A graph represented as an ...
ushggricedg 47116 A simple hypergraph (with ...
1hegrlfgr 47117 A graph ` G ` with one hyp...
upwlksfval 47120 The set of simple walks (i...
isupwlk 47121 Properties of a pair of fu...
isupwlkg 47122 Generalization of ~ isupwl...
upwlkbprop 47123 Basic properties of a simp...
upwlkwlk 47124 A simple walk is a walk. ...
upgrwlkupwlk 47125 In a pseudograph, a walk i...
upgrwlkupwlkb 47126 In a pseudograph, the defi...
upgrisupwlkALT 47127 Alternate proof of ~ upgri...
upgredgssspr 47128 The set of edges of a pseu...
uspgropssxp 47129 The set ` G ` of "simple p...
uspgrsprfv 47130 The value of the function ...
uspgrsprf 47131 The mapping ` F ` is a fun...
uspgrsprf1 47132 The mapping ` F ` is a one...
uspgrsprfo 47133 The mapping ` F ` is a fun...
uspgrsprf1o 47134 The mapping ` F ` is a bij...
uspgrex 47135 The class ` G ` of all "si...
uspgrbispr 47136 There is a bijection betwe...
uspgrspren 47137 The set ` G ` of the "simp...
uspgrymrelen 47138 The set ` G ` of the "simp...
uspgrbisymrel 47139 There is a bijection betwe...
uspgrbisymrelALT 47140 Alternate proof of ~ uspgr...
ovn0dmfun 47141 If a class operation value...
xpsnopab 47142 A Cartesian product with a...
xpiun 47143 A Cartesian product expres...
ovn0ssdmfun 47144 If a class' operation valu...
fnxpdmdm 47145 The domain of the domain o...
cnfldsrngbas 47146 The base set of a subring ...
cnfldsrngadd 47147 The group addition operati...
cnfldsrngmul 47148 The ring multiplication op...
plusfreseq 47149 If the empty set is not co...
mgmplusfreseq 47150 If the empty set is not co...
0mgm 47151 A set with an empty base s...
opmpoismgm 47152 A structure with a group a...
copissgrp 47153 A structure with a constan...
copisnmnd 47154 A structure with a constan...
0nodd 47155 0 is not an odd integer. ...
1odd 47156 1 is an odd integer. (Con...
2nodd 47157 2 is not an odd integer. ...
oddibas 47158 Lemma 1 for ~ oddinmgm : ...
oddiadd 47159 Lemma 2 for ~ oddinmgm : ...
oddinmgm 47160 The structure of all odd i...
nnsgrpmgm 47161 The structure of positive ...
nnsgrp 47162 The structure of positive ...
nnsgrpnmnd 47163 The structure of positive ...
nn0mnd 47164 The set of nonnegative int...
gsumsplit2f 47165 Split a group sum into two...
gsumdifsndf 47166 Extract a summand from a f...
gsumfsupp 47167 A group sum of a family ca...
iscllaw 47174 The predicate "is a closed...
iscomlaw 47175 The predicate "is a commut...
clcllaw 47176 Closure of a closed operat...
isasslaw 47177 The predicate "is an assoc...
asslawass 47178 Associativity of an associ...
mgmplusgiopALT 47179 Slot 2 (group operation) o...
sgrpplusgaopALT 47180 Slot 2 (group operation) o...
intopval 47187 The internal (binary) oper...
intop 47188 An internal (binary) opera...
clintopval 47189 The closed (internal binar...
assintopval 47190 The associative (closed in...
assintopmap 47191 The associative (closed in...
isclintop 47192 The predicate "is a closed...
clintop 47193 A closed (internal binary)...
assintop 47194 An associative (closed int...
isassintop 47195 The predicate "is an assoc...
clintopcllaw 47196 The closure law holds for ...
assintopcllaw 47197 The closure low holds for ...
assintopasslaw 47198 The associative low holds ...
assintopass 47199 An associative (closed int...
ismgmALT 47208 The predicate "is a magma"...
iscmgmALT 47209 The predicate "is a commut...
issgrpALT 47210 The predicate "is a semigr...
iscsgrpALT 47211 The predicate "is a commut...
mgm2mgm 47212 Equivalence of the two def...
sgrp2sgrp 47213 Equivalence of the two def...
lmod0rng 47214 If the scalar ring of a mo...
nzrneg1ne0 47215 The additive inverse of th...
lidldomn1 47216 If a (left) ideal (which i...
lidlabl 47217 A (left) ideal of a ring i...
lidlrng 47218 A (left) ideal of a ring i...
zlidlring 47219 The zero (left) ideal of a...
uzlidlring 47220 Only the zero (left) ideal...
lidldomnnring 47221 A (left) ideal of a domain...
0even 47222 0 is an even integer. (Co...
1neven 47223 1 is not an even integer. ...
2even 47224 2 is an even integer. (Co...
2zlidl 47225 The even integers are a (l...
2zrng 47226 The ring of integers restr...
2zrngbas 47227 The base set of R is the s...
2zrngadd 47228 The group addition operati...
2zrng0 47229 The additive identity of R...
2zrngamgm 47230 R is an (additive) magma. ...
2zrngasgrp 47231 R is an (additive) semigro...
2zrngamnd 47232 R is an (additive) monoid....
2zrngacmnd 47233 R is a commutative (additi...
2zrngagrp 47234 R is an (additive) group. ...
2zrngaabl 47235 R is an (additive) abelian...
2zrngmul 47236 The ring multiplication op...
2zrngmmgm 47237 R is a (multiplicative) ma...
2zrngmsgrp 47238 R is a (multiplicative) se...
2zrngALT 47239 The ring of integers restr...
2zrngnmlid 47240 R has no multiplicative (l...
2zrngnmrid 47241 R has no multiplicative (r...
2zrngnmlid2 47242 R has no multiplicative (l...
2zrngnring 47243 R is not a unital ring. (...
cznrnglem 47244 Lemma for ~ cznrng : The ...
cznabel 47245 The ring constructed from ...
cznrng 47246 The ring constructed from ...
cznnring 47247 The ring constructed from ...
rngcvalALTV 47250 Value of the category of n...
rngcbasALTV 47251 Set of objects of the cate...
rngchomfvalALTV 47252 Set of arrows of the categ...
rngchomALTV 47253 Set of arrows of the categ...
elrngchomALTV 47254 A morphism of non-unital r...
rngccofvalALTV 47255 Composition in the categor...
rngccoALTV 47256 Composition in the categor...
rngccatidALTV 47257 Lemma for ~ rngccatALTV . ...
rngccatALTV 47258 The category of non-unital...
rngcidALTV 47259 The identity arrow in the ...
rngcsectALTV 47260 A section in the category ...
rngcinvALTV 47261 An inverse in the category...
rngcisoALTV 47262 An isomorphism in the cate...
rngchomffvalALTV 47263 The value of the functiona...
rngchomrnghmresALTV 47264 The value of the functiona...
rngcrescrhmALTV 47265 The category of non-unital...
rhmsubcALTVlem1 47266 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 47267 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 47268 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 47269 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 47270 According to ~ df-subc , t...
rhmsubcALTVcat 47271 The restriction of the cat...
ringcvalALTV 47274 Value of the category of r...
funcringcsetcALTV2lem1 47275 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 47276 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 47277 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 47278 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 47279 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 47280 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 47281 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 47282 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 47283 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 47284 The "natural forgetful fun...
ringcbasALTV 47285 Set of objects of the cate...
ringchomfvalALTV 47286 Set of arrows of the categ...
ringchomALTV 47287 Set of arrows of the categ...
elringchomALTV 47288 A morphism of rings is a f...
ringccofvalALTV 47289 Composition in the categor...
ringccoALTV 47290 Composition in the categor...
ringccatidALTV 47291 Lemma for ~ ringccatALTV ....
ringccatALTV 47292 The category of rings is a...
ringcidALTV 47293 The identity arrow in the ...
ringcsectALTV 47294 A section in the category ...
ringcinvALTV 47295 An inverse in the category...
ringcisoALTV 47296 An isomorphism in the cate...
ringcbasbasALTV 47297 An element of the base set...
funcringcsetclem1ALTV 47298 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 47299 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 47300 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 47301 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 47302 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 47303 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 47304 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 47305 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 47306 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 47307 The "natural forgetful fun...
srhmsubcALTVlem1 47308 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 47309 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 47310 According to ~ df-subc , t...
sringcatALTV 47311 The restriction of the cat...
crhmsubcALTV 47312 According to ~ df-subc , t...
cringcatALTV 47313 The restriction of the cat...
drhmsubcALTV 47314 According to ~ df-subc , t...
drngcatALTV 47315 The restriction of the cat...
fldcatALTV 47316 The restriction of the cat...
fldcALTV 47317 The restriction of the cat...
fldhmsubcALTV 47318 According to ~ df-subc , t...
opeliun2xp 47319 Membership of an ordered p...
eliunxp2 47320 Membership in a union of C...
mpomptx2 47321 Express a two-argument fun...
cbvmpox2 47322 Rule to change the bound v...
dmmpossx2 47323 The domain of a mapping is...
mpoexxg2 47324 Existence of an operation ...
ovmpordxf 47325 Value of an operation give...
ovmpordx 47326 Value of an operation give...
ovmpox2 47327 The value of an operation ...
fdmdifeqresdif 47328 The restriction of a condi...
offvalfv 47329 The function operation exp...
ofaddmndmap 47330 The function operation app...
mapsnop 47331 A singleton of an ordered ...
fprmappr 47332 A function with a domain o...
mapprop 47333 An unordered pair containi...
ztprmneprm 47334 A prime is not an integer ...
2t6m3t4e0 47335 2 times 6 minus 3 times 4 ...
ssnn0ssfz 47336 For any finite subset of `...
nn0sumltlt 47337 If the sum of two nonnegat...
bcpascm1 47338 Pascal's rule for the bino...
altgsumbc 47339 The sum of binomial coeffi...
altgsumbcALT 47340 Alternate proof of ~ altgs...
zlmodzxzlmod 47341 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 47342 An element of the (base se...
zlmodzxz0 47343 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 47344 The scalar multiplication ...
zlmodzxzadd 47345 The addition of the ` ZZ `...
zlmodzxzsubm 47346 The subtraction of the ` Z...
zlmodzxzsub 47347 The subtraction of the ` Z...
mgpsumunsn 47348 Extract a summand/factor f...
mgpsumz 47349 If the group sum for the m...
mgpsumn 47350 If the group sum for the m...
exple2lt6 47351 A nonnegative integer to t...
pgrple2abl 47352 Every symmetric group on a...
pgrpgt2nabl 47353 Every symmetric group on a...
invginvrid 47354 Identity for a multiplicat...
rmsupp0 47355 The support of a mapping o...
domnmsuppn0 47356 The support of a mapping o...
rmsuppss 47357 The support of a mapping o...
mndpsuppss 47358 The support of a mapping o...
scmsuppss 47359 The support of a mapping o...
rmsuppfi 47360 The support of a mapping o...
rmfsupp 47361 A mapping of a multiplicat...
mndpsuppfi 47362 The support of a mapping o...
mndpfsupp 47363 A mapping of a scalar mult...
scmsuppfi 47364 The support of a mapping o...
scmfsupp 47365 A mapping of a scalar mult...
suppmptcfin 47366 The support of a mapping w...
mptcfsupp 47367 A mapping with value 0 exc...
fsuppmptdmf 47368 A mapping with a finite do...
lmodvsmdi 47369 Multiple distributive law ...
gsumlsscl 47370 Closure of a group sum in ...
assaascl0 47371 The scalar 0 embedded into...
assaascl1 47372 The scalar 1 embedded into...
ply1vr1smo 47373 The variable in a polynomi...
ply1sclrmsm 47374 The ring multiplication of...
coe1id 47375 Coefficient vector of the ...
coe1sclmulval 47376 The value of the coefficie...
ply1mulgsumlem1 47377 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 47378 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 47379 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 47380 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 47381 The product of two polynom...
evl1at0 47382 Polynomial evaluation for ...
evl1at1 47383 Polynomial evaluation for ...
linply1 47384 A term of the form ` x - C...
lineval 47385 A term of the form ` x - C...
linevalexample 47386 The polynomial ` x - 3 ` o...
dmatALTval 47391 The algebra of ` N ` x ` N...
dmatALTbas 47392 The base set of the algebr...
dmatALTbasel 47393 An element of the base set...
dmatbas 47394 The set of all ` N ` x ` N...
lincop 47399 A linear combination as op...
lincval 47400 The value of a linear comb...
dflinc2 47401 Alternative definition of ...
lcoop 47402 A linear combination as op...
lcoval 47403 The value of a linear comb...
lincfsuppcl 47404 A linear combination of ve...
linccl 47405 A linear combination of ve...
lincval0 47406 The value of an empty line...
lincvalsng 47407 The linear combination ove...
lincvalsn 47408 The linear combination ove...
lincvalpr 47409 The linear combination ove...
lincval1 47410 The linear combination ove...
lcosn0 47411 Properties of a linear com...
lincvalsc0 47412 The linear combination whe...
lcoc0 47413 Properties of a linear com...
linc0scn0 47414 If a set contains the zero...
lincdifsn 47415 A vector is a linear combi...
linc1 47416 A vector is a linear combi...
lincellss 47417 A linear combination of a ...
lco0 47418 The set of empty linear co...
lcoel0 47419 The zero vector is always ...
lincsum 47420 The sum of two linear comb...
lincscm 47421 A linear combinations mult...
lincsumcl 47422 The sum of two linear comb...
lincscmcl 47423 The multiplication of a li...
lincsumscmcl 47424 The sum of a linear combin...
lincolss 47425 According to the statement...
ellcoellss 47426 Every linear combination o...
lcoss 47427 A set of vectors of a modu...
lspsslco 47428 Lemma for ~ lspeqlco . (C...
lcosslsp 47429 Lemma for ~ lspeqlco . (C...
lspeqlco 47430 Equivalence of a _span_ of...
rellininds 47434 The class defining the rel...
linindsv 47436 The classes of the module ...
islininds 47437 The property of being a li...
linindsi 47438 The implications of being ...
linindslinci 47439 The implications of being ...
islinindfis 47440 The property of being a li...
islinindfiss 47441 The property of being a li...
linindscl 47442 A linearly independent set...
lindepsnlininds 47443 A linearly dependent subse...
islindeps 47444 The property of being a li...
lincext1 47445 Property 1 of an extension...
lincext2 47446 Property 2 of an extension...
lincext3 47447 Property 3 of an extension...
lindslinindsimp1 47448 Implication 1 for ~ lindsl...
lindslinindimp2lem1 47449 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 47450 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 47451 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 47452 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 47453 Lemma 5 for ~ lindslininds...
lindslinindsimp2 47454 Implication 2 for ~ lindsl...
lindslininds 47455 Equivalence of definitions...
linds0 47456 The empty set is always a ...
el0ldep 47457 A set containing the zero ...
el0ldepsnzr 47458 A set containing the zero ...
lindsrng01 47459 Any subset of a module is ...
lindszr 47460 Any subset of a module ove...
snlindsntorlem 47461 Lemma for ~ snlindsntor . ...
snlindsntor 47462 A singleton is linearly in...
ldepsprlem 47463 Lemma for ~ ldepspr . (Co...
ldepspr 47464 If a vector is a scalar mu...
lincresunit3lem3 47465 Lemma 3 for ~ lincresunit3...
lincresunitlem1 47466 Lemma 1 for properties of ...
lincresunitlem2 47467 Lemma for properties of a ...
lincresunit1 47468 Property 1 of a specially ...
lincresunit2 47469 Property 2 of a specially ...
lincresunit3lem1 47470 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 47471 Lemma 2 for ~ lincresunit3...
lincresunit3 47472 Property 3 of a specially ...
lincreslvec3 47473 Property 3 of a specially ...
islindeps2 47474 Conditions for being a lin...
islininds2 47475 Implication of being a lin...
isldepslvec2 47476 Alternative definition of ...
lindssnlvec 47477 A singleton not containing...
lmod1lem1 47478 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 47479 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 47480 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 47481 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 47482 Lemma 5 for ~ lmod1 . (Co...
lmod1 47483 The (smallest) structure r...
lmod1zr 47484 The (smallest) structure r...
lmod1zrnlvec 47485 There is a (left) module (...
lmodn0 47486 Left modules exist. (Cont...
zlmodzxzequa 47487 Example of an equation wit...
zlmodzxznm 47488 Example of a linearly depe...
zlmodzxzldeplem 47489 A and B are not equal. (C...
zlmodzxzequap 47490 Example of an equation wit...
zlmodzxzldeplem1 47491 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 47492 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 47493 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 47494 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 47495 { A , B } is a linearly de...
ldepsnlinclem1 47496 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 47497 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 47498 The class of all (left) ve...
ldepsnlinc 47499 The reverse implication of...
ldepslinc 47500 For (left) vector spaces, ...
suppdm 47501 If the range of a function...
eluz2cnn0n1 47502 An integer greater than 1 ...
divge1b 47503 The ratio of a real number...
divgt1b 47504 The ratio of a real number...
ltsubaddb 47505 Equivalence for the "less ...
ltsubsubb 47506 Equivalence for the "less ...
ltsubadd2b 47507 Equivalence for the "less ...
divsub1dir 47508 Distribution of division o...
expnegico01 47509 An integer greater than 1 ...
elfzolborelfzop1 47510 An element of a half-open ...
pw2m1lepw2m1 47511 2 to the power of a positi...
zgtp1leeq 47512 If an integer is between a...
flsubz 47513 An integer can be moved in...
fldivmod 47514 Expressing the floor of a ...
mod0mul 47515 If an integer is 0 modulo ...
modn0mul 47516 If an integer is not 0 mod...
m1modmmod 47517 An integer decreased by 1 ...
difmodm1lt 47518 The difference between an ...
nn0onn0ex 47519 For each odd nonnegative i...
nn0enn0ex 47520 For each even nonnegative ...
nnennex 47521 For each even positive int...
nneop 47522 A positive integer is even...
nneom 47523 A positive integer is even...
nn0eo 47524 A nonnegative integer is e...
nnpw2even 47525 2 to the power of a positi...
zefldiv2 47526 The floor of an even integ...
zofldiv2 47527 The floor of an odd intege...
nn0ofldiv2 47528 The floor of an odd nonneg...
flnn0div2ge 47529 The floor of a positive in...
flnn0ohalf 47530 The floor of the half of a...
logcxp0 47531 Logarithm of a complex pow...
regt1loggt0 47532 The natural logarithm for ...
fdivval 47535 The quotient of two functi...
fdivmpt 47536 The quotient of two functi...
fdivmptf 47537 The quotient of two functi...
refdivmptf 47538 The quotient of two functi...
fdivpm 47539 The quotient of two functi...
refdivpm 47540 The quotient of two functi...
fdivmptfv 47541 The function value of a qu...
refdivmptfv 47542 The function value of a qu...
bigoval 47545 Set of functions of order ...
elbigofrcl 47546 Reverse closure of the "bi...
elbigo 47547 Properties of a function o...
elbigo2 47548 Properties of a function o...
elbigo2r 47549 Sufficient condition for a...
elbigof 47550 A function of order G(x) i...
elbigodm 47551 The domain of a function o...
elbigoimp 47552 The defining property of a...
elbigolo1 47553 A function (into the posit...
rege1logbrege0 47554 The general logarithm, wit...
rege1logbzge0 47555 The general logarithm, wit...
fllogbd 47556 A real number is between t...
relogbmulbexp 47557 The logarithm of the produ...
relogbdivb 47558 The logarithm of the quoti...
logbge0b 47559 The logarithm of a number ...
logblt1b 47560 The logarithm of a number ...
fldivexpfllog2 47561 The floor of a positive re...
nnlog2ge0lt1 47562 A positive integer is 1 if...
logbpw2m1 47563 The floor of the binary lo...
fllog2 47564 The floor of the binary lo...
blenval 47567 The binary length of an in...
blen0 47568 The binary length of 0. (...
blenn0 47569 The binary length of a "nu...
blenre 47570 The binary length of a pos...
blennn 47571 The binary length of a pos...
blennnelnn 47572 The binary length of a pos...
blennn0elnn 47573 The binary length of a non...
blenpw2 47574 The binary length of a pow...
blenpw2m1 47575 The binary length of a pow...
nnpw2blen 47576 A positive integer is betw...
nnpw2blenfzo 47577 A positive integer is betw...
nnpw2blenfzo2 47578 A positive integer is eith...
nnpw2pmod 47579 Every positive integer can...
blen1 47580 The binary length of 1. (...
blen2 47581 The binary length of 2. (...
nnpw2p 47582 Every positive integer can...
nnpw2pb 47583 A number is a positive int...
blen1b 47584 The binary length of a non...
blennnt2 47585 The binary length of a pos...
nnolog2flm1 47586 The floor of the binary lo...
blennn0em1 47587 The binary length of the h...
blennngt2o2 47588 The binary length of an od...
blengt1fldiv2p1 47589 The binary length of an in...
blennn0e2 47590 The binary length of an ev...
digfval 47593 Operation to obtain the ` ...
digval 47594 The ` K ` th digit of a no...
digvalnn0 47595 The ` K ` th digit of a no...
nn0digval 47596 The ` K ` th digit of a no...
dignn0fr 47597 The digits of the fraction...
dignn0ldlem 47598 Lemma for ~ dignnld . (Co...
dignnld 47599 The leading digits of a po...
dig2nn0ld 47600 The leading digits of a po...
dig2nn1st 47601 The first (relevant) digit...
dig0 47602 All digits of 0 are 0. (C...
digexp 47603 The ` K ` th digit of a po...
dig1 47604 All but one digits of 1 ar...
0dig1 47605 The ` 0 ` th digit of 1 is...
0dig2pr01 47606 The integers 0 and 1 corre...
dig2nn0 47607 A digit of a nonnegative i...
0dig2nn0e 47608 The last bit of an even in...
0dig2nn0o 47609 The last bit of an odd int...
dig2bits 47610 The ` K ` th digit of a no...
dignn0flhalflem1 47611 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 47612 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 47613 The digits of the half of ...
dignn0flhalf 47614 The digits of the rounded ...
nn0sumshdiglemA 47615 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 47616 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 47617 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 47618 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 47619 A nonnegative integer can ...
nn0mulfsum 47620 Trivial algorithm to calcu...
nn0mullong 47621 Standard algorithm (also k...
naryfval 47624 The set of the n-ary (endo...
naryfvalixp 47625 The set of the n-ary (endo...
naryfvalel 47626 An n-ary (endo)function on...
naryrcl 47627 Reverse closure for n-ary ...
naryfvalelfv 47628 The value of an n-ary (end...
naryfvalelwrdf 47629 An n-ary (endo)function on...
0aryfvalel 47630 A nullary (endo)function o...
0aryfvalelfv 47631 The value of a nullary (en...
1aryfvalel 47632 A unary (endo)function on ...
fv1arycl 47633 Closure of a unary (endo)f...
1arympt1 47634 A unary (endo)function in ...
1arympt1fv 47635 The value of a unary (endo...
1arymaptfv 47636 The value of the mapping o...
1arymaptf 47637 The mapping of unary (endo...
1arymaptf1 47638 The mapping of unary (endo...
1arymaptfo 47639 The mapping of unary (endo...
1arymaptf1o 47640 The mapping of unary (endo...
1aryenef 47641 The set of unary (endo)fun...
1aryenefmnd 47642 The set of unary (endo)fun...
2aryfvalel 47643 A binary (endo)function on...
fv2arycl 47644 Closure of a binary (endo)...
2arympt 47645 A binary (endo)function in...
2arymptfv 47646 The value of a binary (end...
2arymaptfv 47647 The value of the mapping o...
2arymaptf 47648 The mapping of binary (end...
2arymaptf1 47649 The mapping of binary (end...
2arymaptfo 47650 The mapping of binary (end...
2arymaptf1o 47651 The mapping of binary (end...
2aryenef 47652 The set of binary (endo)fu...
itcoval 47657 The value of the function ...
itcoval0 47658 A function iterated zero t...
itcoval1 47659 A function iterated once. ...
itcoval2 47660 A function iterated twice....
itcoval3 47661 A function iterated three ...
itcoval0mpt 47662 A mapping iterated zero ti...
itcovalsuc 47663 The value of the function ...
itcovalsucov 47664 The value of the function ...
itcovalendof 47665 The n-th iterate of an end...
itcovalpclem1 47666 Lemma 1 for ~ itcovalpc : ...
itcovalpclem2 47667 Lemma 2 for ~ itcovalpc : ...
itcovalpc 47668 The value of the function ...
itcovalt2lem2lem1 47669 Lemma 1 for ~ itcovalt2lem...
itcovalt2lem2lem2 47670 Lemma 2 for ~ itcovalt2lem...
itcovalt2lem1 47671 Lemma 1 for ~ itcovalt2 : ...
itcovalt2lem2 47672 Lemma 2 for ~ itcovalt2 : ...
itcovalt2 47673 The value of the function ...
ackvalsuc1mpt 47674 The Ackermann function at ...
ackvalsuc1 47675 The Ackermann function at ...
ackval0 47676 The Ackermann function at ...
ackval1 47677 The Ackermann function at ...
ackval2 47678 The Ackermann function at ...
ackval3 47679 The Ackermann function at ...
ackendofnn0 47680 The Ackermann function at ...
ackfnnn0 47681 The Ackermann function at ...
ackval0val 47682 The Ackermann function at ...
ackvalsuc0val 47683 The Ackermann function at ...
ackvalsucsucval 47684 The Ackermann function at ...
ackval0012 47685 The Ackermann function at ...
ackval1012 47686 The Ackermann function at ...
ackval2012 47687 The Ackermann function at ...
ackval3012 47688 The Ackermann function at ...
ackval40 47689 The Ackermann function at ...
ackval41a 47690 The Ackermann function at ...
ackval41 47691 The Ackermann function at ...
ackval42 47692 The Ackermann function at ...
ackval42a 47693 The Ackermann function at ...
ackval50 47694 The Ackermann function at ...
fv1prop 47695 The function value of unor...
fv2prop 47696 The function value of unor...
submuladdmuld 47697 Transformation of a sum of...
affinecomb1 47698 Combination of two real af...
affinecomb2 47699 Combination of two real af...
affineid 47700 Identity of an affine comb...
1subrec1sub 47701 Subtract the reciprocal of...
resum2sqcl 47702 The sum of two squares of ...
resum2sqgt0 47703 The sum of the square of a...
resum2sqrp 47704 The sum of the square of a...
resum2sqorgt0 47705 The sum of the square of t...
reorelicc 47706 Membership in and outside ...
rrx2pxel 47707 The x-coordinate of a poin...
rrx2pyel 47708 The y-coordinate of a poin...
prelrrx2 47709 An unordered pair of order...
prelrrx2b 47710 An unordered pair of order...
rrx2pnecoorneor 47711 If two different points ` ...
rrx2pnedifcoorneor 47712 If two different points ` ...
rrx2pnedifcoorneorr 47713 If two different points ` ...
rrx2xpref1o 47714 There is a bijection betwe...
rrx2xpreen 47715 The set of points in the t...
rrx2plord 47716 The lexicographical orderi...
rrx2plord1 47717 The lexicographical orderi...
rrx2plord2 47718 The lexicographical orderi...
rrx2plordisom 47719 The set of points in the t...
rrx2plordso 47720 The lexicographical orderi...
ehl2eudisval0 47721 The Euclidean distance of ...
ehl2eudis0lt 47722 An upper bound of the Eucl...
lines 47727 The lines passing through ...
line 47728 The line passing through t...
rrxlines 47729 Definition of lines passin...
rrxline 47730 The line passing through t...
rrxlinesc 47731 Definition of lines passin...
rrxlinec 47732 The line passing through t...
eenglngeehlnmlem1 47733 Lemma 1 for ~ eenglngeehln...
eenglngeehlnmlem2 47734 Lemma 2 for ~ eenglngeehln...
eenglngeehlnm 47735 The line definition in the...
rrx2line 47736 The line passing through t...
rrx2vlinest 47737 The vertical line passing ...
rrx2linest 47738 The line passing through t...
rrx2linesl 47739 The line passing through t...
rrx2linest2 47740 The line passing through t...
elrrx2linest2 47741 The line passing through t...
spheres 47742 The spheres for given cent...
sphere 47743 A sphere with center ` X `...
rrxsphere 47744 The sphere with center ` M...
2sphere 47745 The sphere with center ` M...
2sphere0 47746 The sphere around the orig...
line2ylem 47747 Lemma for ~ line2y . This...
line2 47748 Example for a line ` G ` p...
line2xlem 47749 Lemma for ~ line2x . This...
line2x 47750 Example for a horizontal l...
line2y 47751 Example for a vertical lin...
itsclc0lem1 47752 Lemma for theorems about i...
itsclc0lem2 47753 Lemma for theorems about i...
itsclc0lem3 47754 Lemma for theorems about i...
itscnhlc0yqe 47755 Lemma for ~ itsclc0 . Qua...
itschlc0yqe 47756 Lemma for ~ itsclc0 . Qua...
itsclc0yqe 47757 Lemma for ~ itsclc0 . Qua...
itsclc0yqsollem1 47758 Lemma 1 for ~ itsclc0yqsol...
itsclc0yqsollem2 47759 Lemma 2 for ~ itsclc0yqsol...
itsclc0yqsol 47760 Lemma for ~ itsclc0 . Sol...
itscnhlc0xyqsol 47761 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol1 47762 Lemma for ~ itsclc0 . Sol...
itschlc0xyqsol 47763 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsol 47764 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolr 47765 Lemma for ~ itsclc0 . Sol...
itsclc0xyqsolb 47766 Lemma for ~ itsclc0 . Sol...
itsclc0 47767 The intersection points of...
itsclc0b 47768 The intersection points of...
itsclinecirc0 47769 The intersection points of...
itsclinecirc0b 47770 The intersection points of...
itsclinecirc0in 47771 The intersection points of...
itsclquadb 47772 Quadratic equation for the...
itsclquadeu 47773 Quadratic equation for the...
2itscplem1 47774 Lemma 1 for ~ 2itscp . (C...
2itscplem2 47775 Lemma 2 for ~ 2itscp . (C...
2itscplem3 47776 Lemma D for ~ 2itscp . (C...
2itscp 47777 A condition for a quadrati...
itscnhlinecirc02plem1 47778 Lemma 1 for ~ itscnhlineci...
itscnhlinecirc02plem2 47779 Lemma 2 for ~ itscnhlineci...
itscnhlinecirc02plem3 47780 Lemma 3 for ~ itscnhlineci...
itscnhlinecirc02p 47781 Intersection of a nonhoriz...
inlinecirc02plem 47782 Lemma for ~ inlinecirc02p ...
inlinecirc02p 47783 Intersection of a line wit...
inlinecirc02preu 47784 Intersection of a line wit...
pm4.71da 47785 Deduction converting a bic...
logic1 47786 Distribution of implicatio...
logic1a 47787 Variant of ~ logic1 . (Co...
logic2 47788 Variant of ~ logic1 . (Co...
pm5.32dav 47789 Distribution of implicatio...
pm5.32dra 47790 Reverse distribution of im...
exp12bd 47791 The import-export theorem ...
mpbiran3d 47792 Equivalence with a conjunc...
mpbiran4d 47793 Equivalence with a conjunc...
dtrucor3 47794 An example of how ~ ax-5 w...
ralbidb 47795 Formula-building rule for ...
ralbidc 47796 Formula-building rule for ...
r19.41dv 47797 A complex deduction form o...
rmotru 47798 Two ways of expressing "at...
reutru 47799 Two ways of expressing "ex...
reutruALT 47800 Alternate proof for ~ reut...
ssdisjd 47801 Subset preserves disjointn...
ssdisjdr 47802 Subset preserves disjointn...
disjdifb 47803 Relative complement is ant...
predisj 47804 Preimages of disjoint sets...
vsn 47805 The singleton of the unive...
mosn 47806 "At most one" element in a...
mo0 47807 "At most one" element in a...
mosssn 47808 "At most one" element in a...
mo0sn 47809 Two ways of expressing "at...
mosssn2 47810 Two ways of expressing "at...
unilbss 47811 Superclass of the greatest...
inpw 47812 Two ways of expressing a c...
mof0 47813 There is at most one funct...
mof02 47814 A variant of ~ mof0 . (Co...
mof0ALT 47815 Alternate proof for ~ mof0...
eufsnlem 47816 There is exactly one funct...
eufsn 47817 There is exactly one funct...
eufsn2 47818 There is exactly one funct...
mofsn 47819 There is at most one funct...
mofsn2 47820 There is at most one funct...
mofsssn 47821 There is at most one funct...
mofmo 47822 There is at most one funct...
mofeu 47823 The uniqueness of a functi...
elfvne0 47824 If a function value has a ...
fdomne0 47825 A function with non-empty ...
f1sn2g 47826 A function that maps a sin...
f102g 47827 A function that maps the e...
f1mo 47828 A function that maps a set...
f002 47829 A function with an empty c...
map0cor 47830 A function exists iff an e...
fvconstr 47831 Two ways of expressing ` A...
fvconstrn0 47832 Two ways of expressing ` A...
fvconstr2 47833 Two ways of expressing ` A...
fvconst0ci 47834 A constant function's valu...
fvconstdomi 47835 A constant function's valu...
f1omo 47836 There is at most one eleme...
f1omoALT 47837 There is at most one eleme...
iccin 47838 Intersection of two closed...
iccdisj2 47839 If the upper bound of one ...
iccdisj 47840 If the upper bound of one ...
mreuniss 47841 The union of a collection ...
clduni 47842 The union of closed sets i...
opncldeqv 47843 Conditions on open sets ar...
opndisj 47844 Two ways of saying that tw...
clddisj 47845 Two ways of saying that tw...
neircl 47846 Reverse closure of the nei...
opnneilem 47847 Lemma factoring out common...
opnneir 47848 If something is true for a...
opnneirv 47849 A variant of ~ opnneir wit...
opnneilv 47850 The converse of ~ opnneir ...
opnneil 47851 A variant of ~ opnneilv . ...
opnneieqv 47852 The equivalence between ne...
opnneieqvv 47853 The equivalence between ne...
restcls2lem 47854 A closed set in a subspace...
restcls2 47855 A closed set in a subspace...
restclsseplem 47856 Lemma for ~ restclssep . ...
restclssep 47857 Two disjoint closed sets i...
cnneiima 47858 Given a continuous functio...
iooii 47859 Open intervals are open se...
icccldii 47860 Closed intervals are close...
i0oii 47861 ` ( 0 [,) A ) ` is open in...
io1ii 47862 ` ( A (,] 1 ) ` is open in...
sepnsepolem1 47863 Lemma for ~ sepnsepo . (C...
sepnsepolem2 47864 Open neighborhood and neig...
sepnsepo 47865 Open neighborhood and neig...
sepdisj 47866 Separated sets are disjoin...
seposep 47867 If two sets are separated ...
sepcsepo 47868 If two sets are separated ...
sepfsepc 47869 If two sets are separated ...
seppsepf 47870 If two sets are precisely ...
seppcld 47871 If two sets are precisely ...
isnrm4 47872 A topological space is nor...
dfnrm2 47873 A topological space is nor...
dfnrm3 47874 A topological space is nor...
iscnrm3lem1 47875 Lemma for ~ iscnrm3 . Sub...
iscnrm3lem2 47876 Lemma for ~ iscnrm3 provin...
iscnrm3lem3 47877 Lemma for ~ iscnrm3lem4 . ...
iscnrm3lem4 47878 Lemma for ~ iscnrm3lem5 an...
iscnrm3lem5 47879 Lemma for ~ iscnrm3l . (C...
iscnrm3lem6 47880 Lemma for ~ iscnrm3lem7 . ...
iscnrm3lem7 47881 Lemma for ~ iscnrm3rlem8 a...
iscnrm3rlem1 47882 Lemma for ~ iscnrm3rlem2 ....
iscnrm3rlem2 47883 Lemma for ~ iscnrm3rlem3 ....
iscnrm3rlem3 47884 Lemma for ~ iscnrm3r . Th...
iscnrm3rlem4 47885 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem5 47886 Lemma for ~ iscnrm3rlem6 ....
iscnrm3rlem6 47887 Lemma for ~ iscnrm3rlem7 ....
iscnrm3rlem7 47888 Lemma for ~ iscnrm3rlem8 ....
iscnrm3rlem8 47889 Lemma for ~ iscnrm3r . Di...
iscnrm3r 47890 Lemma for ~ iscnrm3 . If ...
iscnrm3llem1 47891 Lemma for ~ iscnrm3l . Cl...
iscnrm3llem2 47892 Lemma for ~ iscnrm3l . If...
iscnrm3l 47893 Lemma for ~ iscnrm3 . Giv...
iscnrm3 47894 A completely normal topolo...
iscnrm3v 47895 A topology is completely n...
iscnrm4 47896 A completely normal topolo...
isprsd 47897 Property of being a preord...
lubeldm2 47898 Member of the domain of th...
glbeldm2 47899 Member of the domain of th...
lubeldm2d 47900 Member of the domain of th...
glbeldm2d 47901 Member of the domain of th...
lubsscl 47902 If a subset of ` S ` conta...
glbsscl 47903 If a subset of ` S ` conta...
lubprlem 47904 Lemma for ~ lubprdm and ~ ...
lubprdm 47905 The set of two comparable ...
lubpr 47906 The LUB of the set of two ...
glbprlem 47907 Lemma for ~ glbprdm and ~ ...
glbprdm 47908 The set of two comparable ...
glbpr 47909 The GLB of the set of two ...
joindm2 47910 The join of any two elemen...
joindm3 47911 The join of any two elemen...
meetdm2 47912 The meet of any two elemen...
meetdm3 47913 The meet of any two elemen...
posjidm 47914 Poset join is idempotent. ...
posmidm 47915 Poset meet is idempotent. ...
toslat 47916 A toset is a lattice. (Co...
isclatd 47917 The predicate "is a comple...
intubeu 47918 Existential uniqueness of ...
unilbeu 47919 Existential uniqueness of ...
ipolublem 47920 Lemma for ~ ipolubdm and ~...
ipolubdm 47921 The domain of the LUB of t...
ipolub 47922 The LUB of the inclusion p...
ipoglblem 47923 Lemma for ~ ipoglbdm and ~...
ipoglbdm 47924 The domain of the GLB of t...
ipoglb 47925 The GLB of the inclusion p...
ipolub0 47926 The LUB of the empty set i...
ipolub00 47927 The LUB of the empty set i...
ipoglb0 47928 The GLB of the empty set i...
mrelatlubALT 47929 Least upper bounds in a Mo...
mrelatglbALT 47930 Greatest lower bounds in a...
mreclat 47931 A Moore space is a complet...
topclat 47932 A topology is a complete l...
toplatglb0 47933 The empty intersection in ...
toplatlub 47934 Least upper bounds in a to...
toplatglb 47935 Greatest lower bounds in a...
toplatjoin 47936 Joins in a topology are re...
toplatmeet 47937 Meets in a topology are re...
topdlat 47938 A topology is a distributi...
catprslem 47939 Lemma for ~ catprs . (Con...
catprs 47940 A preorder can be extracte...
catprs2 47941 A category equipped with t...
catprsc 47942 A construction of the preo...
catprsc2 47943 An alternate construction ...
endmndlem 47944 A diagonal hom-set in a ca...
idmon 47945 An identity arrow, or an i...
idepi 47946 An identity arrow, or an i...
funcf2lem 47947 A utility theorem for prov...
isthinc 47950 The predicate "is a thin c...
isthinc2 47951 A thin category is a categ...
isthinc3 47952 A thin category is a categ...
thincc 47953 A thin category is a categ...
thinccd 47954 A thin category is a categ...
thincssc 47955 A thin category is a categ...
isthincd2lem1 47956 Lemma for ~ isthincd2 and ...
thincmo2 47957 Morphisms in the same hom-...
thincmo 47958 There is at most one morph...
thincmoALT 47959 Alternate proof for ~ thin...
thincmod 47960 At most one morphism in ea...
thincn0eu 47961 In a thin category, a hom-...
thincid 47962 In a thin category, a morp...
thincmon 47963 In a thin category, all mo...
thincepi 47964 In a thin category, all mo...
isthincd2lem2 47965 Lemma for ~ isthincd2 . (...
isthincd 47966 The predicate "is a thin c...
isthincd2 47967 The predicate " ` C ` is a...
oppcthin 47968 The opposite category of a...
subthinc 47969 A subcategory of a thin ca...
functhinclem1 47970 Lemma for ~ functhinc . G...
functhinclem2 47971 Lemma for ~ functhinc . (...
functhinclem3 47972 Lemma for ~ functhinc . T...
functhinclem4 47973 Lemma for ~ functhinc . O...
functhinc 47974 A functor to a thin catego...
fullthinc 47975 A functor to a thin catego...
fullthinc2 47976 A full functor to a thin c...
thincfth 47977 A functor from a thin cate...
thincciso 47978 Two thin categories are is...
0thincg 47979 Any structure with an empt...
0thinc 47980 The empty category (see ~ ...
indthinc 47981 An indiscrete category in ...
indthincALT 47982 An alternate proof for ~ i...
prsthinc 47983 Preordered sets as categor...
setcthin 47984 A category of sets all of ...
setc2othin 47985 The category ` ( SetCat ``...
thincsect 47986 In a thin category, one mo...
thincsect2 47987 In a thin category, ` F ` ...
thincinv 47988 In a thin category, ` F ` ...
thinciso 47989 In a thin category, ` F : ...
thinccic 47990 In a thin category, two ob...
prstcval 47993 Lemma for ~ prstcnidlem an...
prstcnidlem 47994 Lemma for ~ prstcnid and ~...
prstcnid 47995 Components other than ` Ho...
prstcbas 47996 The base set is unchanged....
prstcleval 47997 Value of the less-than-or-...
prstclevalOLD 47998 Obsolete proof of ~ prstcl...
prstcle 47999 Value of the less-than-or-...
prstcocval 48000 Orthocomplementation is un...
prstcocvalOLD 48001 Obsolete proof of ~ prstco...
prstcoc 48002 Orthocomplementation is un...
prstchomval 48003 Hom-sets of the constructe...
prstcprs 48004 The category is a preorder...
prstcthin 48005 The preordered set is equi...
prstchom 48006 Hom-sets of the constructe...
prstchom2 48007 Hom-sets of the constructe...
prstchom2ALT 48008 Hom-sets of the constructe...
postcpos 48009 The converted category is ...
postcposALT 48010 Alternate proof for ~ post...
postc 48011 The converted category is ...
mndtcval 48014 Value of the category buil...
mndtcbasval 48015 The base set of the catego...
mndtcbas 48016 The category built from a ...
mndtcob 48017 Lemma for ~ mndtchom and ~...
mndtcbas2 48018 Two objects in a category ...
mndtchom 48019 The only hom-set of the ca...
mndtcco 48020 The composition of the cat...
mndtcco2 48021 The composition of the cat...
mndtccatid 48022 Lemma for ~ mndtccat and ~...
mndtccat 48023 The function value is a ca...
mndtcid 48024 The identity morphism, or ...
grptcmon 48025 All morphisms in a categor...
grptcepi 48026 All morphisms in a categor...
nfintd 48027 Bound-variable hypothesis ...
nfiund 48028 Bound-variable hypothesis ...
nfiundg 48029 Bound-variable hypothesis ...
iunord 48030 The indexed union of a col...
iunordi 48031 The indexed union of a col...
spd 48032 Specialization deduction, ...
spcdvw 48033 A version of ~ spcdv where...
tfis2d 48034 Transfinite Induction Sche...
bnd2d 48035 Deduction form of ~ bnd2 ....
dffun3f 48036 Alternate definition of fu...
setrecseq 48039 Equality theorem for set r...
nfsetrecs 48040 Bound-variable hypothesis ...
setrec1lem1 48041 Lemma for ~ setrec1 . Thi...
setrec1lem2 48042 Lemma for ~ setrec1 . If ...
setrec1lem3 48043 Lemma for ~ setrec1 . If ...
setrec1lem4 48044 Lemma for ~ setrec1 . If ...
setrec1 48045 This is the first of two f...
setrec2fun 48046 This is the second of two ...
setrec2lem1 48047 Lemma for ~ setrec2 . The...
setrec2lem2 48048 Lemma for ~ setrec2 . The...
setrec2 48049 This is the second of two ...
setrec2v 48050 Version of ~ setrec2 with ...
setrec2mpt 48051 Version of ~ setrec2 where...
setis 48052 Version of ~ setrec2 expre...
elsetrecslem 48053 Lemma for ~ elsetrecs . A...
elsetrecs 48054 A set ` A ` is an element ...
setrecsss 48055 The ` setrecs ` operator r...
setrecsres 48056 A recursively generated cl...
vsetrec 48057 Construct ` _V ` using set...
0setrec 48058 If a function sends the em...
onsetreclem1 48059 Lemma for ~ onsetrec . (C...
onsetreclem2 48060 Lemma for ~ onsetrec . (C...
onsetreclem3 48061 Lemma for ~ onsetrec . (C...
onsetrec 48062 Construct ` On ` using set...
elpglem1 48065 Lemma for ~ elpg . (Contr...
elpglem2 48066 Lemma for ~ elpg . (Contr...
elpglem3 48067 Lemma for ~ elpg . (Contr...
elpg 48068 Membership in the class of...
pgindlem 48069 Lemma for ~ pgind . (Cont...
pgindnf 48070 Version of ~ pgind with ex...
pgind 48071 Induction on partizan game...
sbidd 48072 An identity theorem for su...
sbidd-misc 48073 An identity theorem for su...
gte-lte 48078 Simple relationship betwee...
gt-lt 48079 Simple relationship betwee...
gte-lteh 48080 Relationship between ` <_ ...
gt-lth 48081 Relationship between ` < `...
ex-gt 48082 Simple example of ` > ` , ...
ex-gte 48083 Simple example of ` >_ ` ,...
sinhval-named 48090 Value of the named sinh fu...
coshval-named 48091 Value of the named cosh fu...
tanhval-named 48092 Value of the named tanh fu...
sinh-conventional 48093 Conventional definition of...
sinhpcosh 48094 Prove that ` ( sinh `` A )...
secval 48101 Value of the secant functi...
cscval 48102 Value of the cosecant func...
cotval 48103 Value of the cotangent fun...
seccl 48104 The closure of the secant ...
csccl 48105 The closure of the cosecan...
cotcl 48106 The closure of the cotange...
reseccl 48107 The closure of the secant ...
recsccl 48108 The closure of the cosecan...
recotcl 48109 The closure of the cotange...
recsec 48110 The reciprocal of secant i...
reccsc 48111 The reciprocal of cosecant...
reccot 48112 The reciprocal of cotangen...
rectan 48113 The reciprocal of tangent ...
sec0 48114 The value of the secant fu...
onetansqsecsq 48115 Prove the tangent squared ...
cotsqcscsq 48116 Prove the tangent squared ...
ifnmfalse 48117 If A is not a member of B,...
logb2aval 48118 Define the value of the ` ...
comraddi 48125 Commute RHS addition. See...
mvlraddi 48126 Move the right term in a s...
mvrladdi 48127 Move the left term in a su...
assraddsubi 48128 Associate RHS addition-sub...
joinlmuladdmuli 48129 Join AB+CB into (A+C) on L...
joinlmulsubmuld 48130 Join AB-CB into (A-C) on L...
joinlmulsubmuli 48131 Join AB-CB into (A-C) on L...
mvlrmuld 48132 Move the right term in a p...
mvlrmuli 48133 Move the right term in a p...
i2linesi 48134 Solve for the intersection...
i2linesd 48135 Solve for the intersection...
alimp-surprise 48136 Demonstrate that when usin...
alimp-no-surprise 48137 There is no "surprise" in ...
empty-surprise 48138 Demonstrate that when usin...
empty-surprise2 48139 "Prove" that false is true...
eximp-surprise 48140 Show what implication insi...
eximp-surprise2 48141 Show that "there exists" w...
alsconv 48146 There is an equivalence be...
alsi1d 48147 Deduction rule: Given "al...
alsi2d 48148 Deduction rule: Given "al...
alsc1d 48149 Deduction rule: Given "al...
alsc2d 48150 Deduction rule: Given "al...
alscn0d 48151 Deduction rule: Given "al...
alsi-no-surprise 48152 Demonstrate that there is ...
5m4e1 48153 Prove that 5 - 4 = 1. (Co...
2p2ne5 48154 Prove that ` 2 + 2 =/= 5 `...
resolution 48155 Resolution rule. This is ...
testable 48156 In classical logic all wff...
aacllem 48157 Lemma for other theorems a...
amgmwlem 48158 Weighted version of ~ amgm...
amgmlemALT 48159 Alternate proof of ~ amgml...
amgmw2d 48160 Weighted arithmetic-geomet...
young2d 48161 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator